1
|
AbuJabal R, Ramakrishnan RK, Bajbouj K, Hamid Q. Role of IL-5 in asthma and airway remodelling. Clin Exp Allergy 2024; 54:538-549. [PMID: 38938056 DOI: 10.1111/cea.14489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 06/29/2024]
Abstract
Asthma is a common and burdensome chronic inflammatory airway disease that affects both children and adults. One of the main concerns with asthma is the manifestation of irreversible tissue remodelling of the airways due to the chronic inflammatory environment that eventually disrupts the whole structure of the airways. Most people with troublesome asthma are treated with inhaled corticosteroids. However, the development of steroid resistance is a commonly encountered issue, necessitating other treatment options for these patients. Biological therapies are a promising therapeutic approach for people with steroid-resistant asthma. Interleukin 5 is recently gaining a lot of attention as a biological target relevant to the tissue remodelling process. Since IL-5-neutralizing monoclonal antibodies (mepolizumab, reslizumab and benralizumab) are currently available for clinical use, this review aims to revisit the role of IL-5 in asthma pathogenesis at large and airway remodelling in particular, in addition to exploring its role as a target for biological treatments.
Collapse
Affiliation(s)
- Rola AbuJabal
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Rakhee K Ramakrishnan
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Khuloud Bajbouj
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Qutayba Hamid
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Meakins-Christie Laboratories, McGill University, Montreal, Québec, Canada
| |
Collapse
|
2
|
Balkrishna A, Sinha S, Karumuri S, Maity M, Dev R, Varshney A. Bronchom assuages airway hyperresponsiveness in house dust mite-induced mouse model of allergic asthma and moderates goblet cell metaplasia, sub-epithelial fibrosis along with changes in Th2 cytokines and chemokines. Front Immunol 2024; 15:1384697. [PMID: 38807596 PMCID: PMC11130375 DOI: 10.3389/fimmu.2024.1384697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/19/2024] [Indexed: 05/30/2024] Open
Abstract
Background Asthma is a common obstructive airway disease with an inflammatory etiology. The main unmet need in the management of asthma is inadequate adherence to pharmacotherapy, leading to a poorly-controlled disease state, necessitating the development of novel therapies. Bronchom is a calcio-herbal formulation, which is purported to treat chronic asthma. The objective of the current study was to examine the in-vivo efficacy of Bronchom in mouse model of allergic asthma. Methods Ultra high performance liquid chromatography was utilized to analyze the phytocompounds in Bronchom. Further, the in-vivo efficacy of Bronchom was evaluated in House dust mite (HDM)-induced allergic asthma in mice. Mice were challenged with aerosolized methacholine to assess airway hyperresponsiveness. Subsequently, inflammatory cell influx was evaluated in bronchoalveolar lavage fluid (BALF) followed by lung histology, wherein airway remodeling features were studied. Simultaneously, the levels of Th2 cytokines and chemokines in the BALF was also evaluated. Additionally, the mRNA expression of pro-inflammatory and Th2 cytokines was also assessed in the lung along with the oxidative stress markers. Results Phytocompounds present in Bronchom included, gallic acid, protocatechuic acid, methyl gallate, rosmarinic acid, glycyrrhizin, eugenol, 6-gingerol and piperine. Bronchom effectively suppressed HDM-induced airway hyperresponsiveness along with the influx of leukocytes in the BALF. Additionally, Bronchom reduced the infiltration of inflammatory cells in the lung and it also ameliorated goblet cell metaplasia, sub-epithelial fibrosis and increase in α-smooth muscle actin. Bronchom decreased Th2 cytokines (IL-4 and IL-5) and chemokines (Eotaxin and IP-10) in the BALF. Likewise, it could also suppress the mRNA expression of pro-inflammatory cytokines (TNF-α, IFN-γ, IL-6 and IL-33), and IL-13. Moreover, Bronchom restored the HDM-induced diminution of endogenous anti-oxidants (GSH and SOD) and the increase in pro-oxidants (GSSG and MDA). Furthermore, Bronchom could also decrease the nitrosative stress by lowering the observed increase in nitrite levels. Conclusion Taken together, the results of the present study data convincingly demonstrate that Bronchom exhibits pharmacological effects in an animal model of allergic asthma. Bronchom mitigated airway hyperresponsiveness, inflammation and airway remodeling evoked by a clinically relevant allergen and accordingly it possesses therapeutic potential for the treatment of asthma.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, India
- Department of Allied and Applied Sciences, University of Patanjali, Haridwar, India
- Patanjali UK Trust, Glasgow, United Kingdom
- Vedic Acharya Samaj Foundation, Inc., Groveland, FL, United States
| | - Sandeep Sinha
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, India
| | - Shadrakbabu Karumuri
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, India
| | - Madhulina Maity
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, India
| | - Rishabh Dev
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, India
- Department of Allied and Applied Sciences, University of Patanjali, Haridwar, India
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
3
|
Gutiérrez-Vera C, García-Betancourt R, Palacios PA, Müller M, Montero DA, Verdugo C, Ortiz F, Simon F, Kalergis AM, González PA, Saavedra-Avila NA, Porcelli SA, Carreño LJ. Natural killer T cells in allergic asthma: implications for the development of novel immunotherapeutical strategies. Front Immunol 2024; 15:1364774. [PMID: 38629075 PMCID: PMC11018981 DOI: 10.3389/fimmu.2024.1364774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/06/2024] [Indexed: 04/19/2024] Open
Abstract
Allergic asthma has emerged as a prevalent allergic disease worldwide, affecting most prominently both young individuals and lower-income populations in developing and developed countries. To devise effective and curative immunotherapy, it is crucial to comprehend the intricate nature of this condition, characterized by an immune response imbalance that favors a proinflammatory profile orchestrated by diverse subsets of immune cells. Although the involvement of Natural Killer T (NKT) cells in asthma pathology is frequently implied, their specific contributions to disease onset and progression remain incompletely understood. Given their remarkable ability to modulate the immune response through the rapid secretion of various cytokines, NKT cells represent a promising target for the development of effective immunotherapy against allergic asthma. This review provides a comprehensive summary of the current understanding of NKT cells in the context of allergic asthma, along with novel therapeutic approaches that leverage the functional response of these cells.
Collapse
Affiliation(s)
- Cristián Gutiérrez-Vera
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Richard García-Betancourt
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Pablo A. Palacios
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Marioly Müller
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - David A. Montero
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Carlos Verdugo
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Francisca Ortiz
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Felipe Simon
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Noemi A. Saavedra-Avila
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Steven A. Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Leandro J. Carreño
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
4
|
Jiang Y, Nguyen TV, Jin J, Yu ZN, Song CH, Chai OH. Tectorigenin inhibits oxidative stress by activating the Keap1/Nrf2/HO-1 signaling pathway in Th2-mediated allergic asthmatic mice. Free Radic Biol Med 2024; 212:207-219. [PMID: 38147892 DOI: 10.1016/j.freeradbiomed.2023.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/01/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023]
Abstract
Asthma is a chronic obstructive airway condition and one of the most common non-communicable illnesses worldwide. Tectorigenin (Tec) is an isoflavonoid found in plants that possesses significant antioxidative and anti-inflammatory abilities. Nevertheless, the antioxidative properties of Tec have not yet been documented in allergic asthma. In this study, we created an asthmatic BALB/c mouse model induced by ovalbumin (OVA) and used it to assess the efficacy of Tec as a possible therapy agent. Tec decreased the serum OVA-specific immunoglobulin (Ig) E and IgG1 secretion levels. The total number of cells and the distribution of inflammatory cells decreased significantly in bronchoalveolar lavage fluid (BALF), with weakened inflammatory reaction in pulmonary tissues. Additionally, Tec regulated the T helper 1(Th1)/Th2 balance by increasing the expression of Th1- related factors (interleukin (IL)-12 and T-bet) and decreasing the expression of Th2-related factors (IL-4, IL-5, IL-13, and GATA binding protein 3. In addition, the pro-inflammatory cytokines such as IL-6, tumor necrosis factor-alpha, and IL-1β were also inhibited by Tec. Tec also dramatically increased antioxidant (catalase and superoxide dismutase) concentrations while lowering the intensity of the indicators of oxidative stress such as reactive oxygen species and malondialdehyde in BALF. Finally, Tec effectively activated the Keap1/Nrf2/HO-1 signaling pathway and prevented the epithelial-mesenchymal transition. The results of the current study show that Tec may be useful in relieving the inflammatory and oxidative stress responses associated with asthma.
Collapse
Affiliation(s)
- Yuna Jiang
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju, 54896, Republic of Korea
| | - Thi Van Nguyen
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju, 54896, Republic of Korea
| | - Juan Jin
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju, 54896, Republic of Korea
| | - Zhen Nan Yu
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju, 54896, Republic of Korea
| | - Chang Ho Song
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju, 54896, Republic of Korea; Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, 54896, Jeonbuk, Republic of Korea.
| | - Ok Hee Chai
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju, 54896, Republic of Korea; Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, 54896, Jeonbuk, Republic of Korea.
| |
Collapse
|
5
|
Zhang M, Zhou JX, Huang CQ, Feng KN, Zou XL, Cen JM, Meng P, Li HT, Zhang TT. IL-38 alleviates airway remodeling in chronic asthma via blocking the profibrotic effect of IL-36γ. Clin Exp Immunol 2023; 214:260-274. [PMID: 37586814 PMCID: PMC10719219 DOI: 10.1093/cei/uxad099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/30/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023] Open
Abstract
Airway remodeling is a major feature of asthma. Interleukin (IL)-36γ is significantly upregulated and promotes airway hyper-responsiveness (AHR) in asthma, but its role in airway remodeling is unknown. Here, we aimed to investigate the role of IL-36γ in airway remodeling, and whether IL-38 can alleviate airway remodeling in chronic asthma by blocking the effects of IL-36γ. IL-36γ was quantified in mice inhaled with house dust mite (HDM). Extracellular matrix (ECM) deposition in lung tissues and AHR were assessed following IL-36γ administration to mice. Airway inflammation, AHR, and remodeling were evaluated after IL-38 or blocking IL-36 receptor (IL-36R) treatment in asthmatic mice. The effects of lung fibroblasts stimulated with IL-36γ and IL-38 were quantified in vitro. Increased expression of IL-36γ was detected in lung tissues of HDM-induced asthmatic mice. The intratracheal instillation of IL-36γ to mice significantly enhanced the ECM deposition, AHR, and the number of activated lung fibroblasts around the airways. IL-38 or blocking IL-36R treated asthmatic mice showed a significant alleviation in the airway inflammation, AHR, airway remodeling, and number of activated fibroblasts around airways as compared with the HDM group. In vitro, IL-36γ promoted the activation and migration of human lung fibroblasts (HFL-1). The administration of IL-38 can counteract these biological processes induced by IL-36γ in HFL-1cells. The results indicated that IL-38 can mitigate airway remodeling by blocking the profibrotic effects of IL-36γ in chronic asthma. IL-36γ may be a new therapeutic target, and IL-38 is a potential candidate agent for inhibiting airway remodeling in asthma.
Collapse
Affiliation(s)
- Min Zhang
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Disease of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jian-Xia Zhou
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Disease of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Chu-Qin Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Kang-Ni Feng
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Disease of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiao-Ling Zou
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Disease of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jie-Mei Cen
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Disease of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Ping Meng
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Disease of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Hong-Tao Li
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Disease of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Tian-Tuo Zhang
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Disease of Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Scott G, Asrat S, Allinne J, Keat Lim W, Nagashima K, Birchard D, Srivatsan S, Ajithdoss DK, Oyejide A, Ben LH, Walls J, Le Floc'h A, Yancopoulos GD, Murphy AJ, Sleeman MA, Orengo JM. IL-4 and IL-13, not eosinophils, drive type 2 airway inflammation, remodeling and lung function decline. Cytokine 2023; 162:156091. [PMID: 36481478 DOI: 10.1016/j.cyto.2022.156091] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/02/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022]
Abstract
RATIONALE Type 2 (T2) asthma is characterized by airflow limitations and elevated levels of blood and sputum eosinophils, fractional exhaled nitric oxide, IgE, and periostin. While eosinophils are associated with exacerbations, the contribution of eosinophils to lung inflammation, remodeling and function remains largely hypothetical. OBJECTIVES To determine the effect of T2 cytokines IL-4, IL-13 and IL-5 on eosinophil biology and compare the impact of depleting just eosinophils versus inhibiting all aspects of T2 inflammation on airway inflammation. METHODS Human eosinophils or endothelial cells stimulated with IL-4, IL-13 or IL-5 were assessed for gene changes or chemokine release.Mice exposed to house dust mite extract received anti-IL-4Rα (dupilumab), anti-IL-5 or control antibodies and were assessed for changes in lung histological and inflammatory endpoints. MEASUREMENTS AND MAIN RESULTS IL-4 or IL-13 stimulation of human eosinophils and endothelial cells induced gene expression changes related to granulocyte migration; whereas, IL-5 induced changes reflecting granulocyte differentiation.In a mouse model, blocking IL-4Rα improved lung function by impacting multiple effectors of inflammation and remodeling, except peripheral eosinophil counts, thereby disconnecting blood eosinophils from airway inflammation, remodeling and function. Blocking IL-5 globally reduced eosinophil counts but did not impact inflammatory or functional measures of lung pathology. Whole lung transcriptome analysis revealed that IL-5 or IL-4Rα blockade impacted eosinophil associated genes, whereas IL-4Rα blockade also impacted genes associated with multiple cells, cytokines and chemokines, mucus production, cell:cell adhesion and vascular permeability. CONCLUSIONS Eosinophils are not the sole contributor to asthma pathophysiology or lung function decline and emphasizes the need to block additional mediators to modify lung inflammation and impact lung function.
Collapse
Affiliation(s)
- George Scott
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Seblewongel Asrat
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Jeanne Allinne
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Wei Keat Lim
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Kirsten Nagashima
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Dylan Birchard
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Subhashini Srivatsan
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Dharani K Ajithdoss
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Adelekan Oyejide
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Li-Hong Ben
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Johnathon Walls
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Audrey Le Floc'h
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - George D Yancopoulos
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Andrew J Murphy
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Matthew A Sleeman
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Jamie M Orengo
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA.
| |
Collapse
|
7
|
Gao Q, Feng C, Shi Q, Wang Q, Ding Z, Chu H, Kong D, Yin X, Ni J, Sun W, Li Y. Guishaozichuan granules can attenuate asthma in rats via the MUC5AC/EGFR signaling pathway. Front Pharmacol 2023; 13:1011751. [PMID: 36699060 PMCID: PMC9868446 DOI: 10.3389/fphar.2022.1011751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
Background: Guishaozichuan (GSZC) granules are a traditional Chinese medicine formulation created by Professor Li (Chinese-Japanese Friendship Hospital, Beijing, China) we studied the effect of GSZC granules in rats suffering from asthma. Methods: Specific pathogen-free Sprague-Dawley rats were divided randomly into seven groups. Ovalbumin (OVA) and Al (OH)3 gel were used to create an asthma model. On day 1, rats were injected with OVA (10 mg) and an Al(OH)3 gel suspension (100 mg). One week later, rats were sensitized again. On day 15, rats were given aerosolized OVA (1%) for 30 min/day for 10 days. Gastric administration of OVA was 1 h before nebulization. At 24 h after the last stimulation, changes in airway resistance (RI) and dynamic compliance (Cdyn) in rat lungs were measured after challenge with methacholine at increasing concentrations. The contents of immunoglobulin (Ig)E, interleukin (IL)-4, IL-5, IL-13, and IL-17 in serum were measured by enzyme-linked immunosorbent assays. The percentage of eosinophils (EOS) and the white blood cell (WBC) count in bronchoalveolar lavage fluid (BALF) were counted under an optical microscope. Pathologic alterations in lung tissue were evaluated by optical microscopy, and lung injury score calculated. Expression of mucin 5AC, oligomeric mucus/gel-forming (MUC5AC) and epidermal growth factor receptor (EGFR) in lung tissue was measured by immunohistochemistry. mRNA expression of MUC5AC and EGFR in lung tissue was measured by real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Results: GSZC granules reduced RI markedly and improved Cdyn, decreased serum levels of IgE, IL-4, IL-5, IL-13, IL-17, %EOS and the WBC count in BALF. GSZC granules alleviated lung-tissue damage, diminished the Inflammation Score, and reduced mRNA and protein expression of MUC5AC and EGFR in lung tissue. Conclusion: GSZC granules could improve bronchial hyperresponsiveness, bronchial inflammation, and histopathologic damage in the lungs of rats suffering from asthma. This phenomenon may be related to its regulation of cytokine levels and the MUC5AC/EGFR signaling pathway.
Collapse
Affiliation(s)
- Qinqin Gao
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chenran Feng
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Qi Shi
- The 2nd Pulmonary Department of TCM, Beijing Key Laboratory (No. BZ0321), The Key Institute of State Administration of Traditional Chinese Medicine (Pneumonopathy Chronic Cough and Dyspnea), China-Japan Friendship Hospital, Beijing, China
| | - Qingling Wang
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zitong Ding
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Huilun Chu
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Deming Kong
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xingbin Yin
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jian Ni
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wenyan Sun
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Youlin Li
- The 2nd Pulmonary Department of TCM, Beijing Key Laboratory (No. BZ0321), The Key Institute of State Administration of Traditional Chinese Medicine (Pneumonopathy Chronic Cough and Dyspnea), China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
8
|
Thiam F, Yazeedi SA, Feng K, Phogat S, Demirsoy E, Brussow J, Abokor FA, Osei ET. Understanding fibroblast-immune cell interactions via co-culture models and their role in asthma pathogenesis. Front Immunol 2023; 14:1128023. [PMID: 36911735 PMCID: PMC9996007 DOI: 10.3389/fimmu.2023.1128023] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Asthma is a chronic lung disease involving airway inflammation and fibrosis. Fibroblasts are the main effector cells important for lung tissue production which becomes abnormal in asthmatics and is one of the main contributors to airway fibrosis. Although fibroblasts were traditionally viewed solely as structural cells, they have been discovered to be highly active, and involved in lung inflammatory and fibrotic processes in asthma. In line with this, using 2D and 3D in vitro co-culture models, a complex interaction between lung fibroblasts and various immune cells important for the pathogenesis of asthma have been recently uncovered. Hence, in this review, we provide the first-ever summary of various studies that used 2D and 3D in vitro co-culture models to assess the nature of aberrant immune cell-fibroblast interactions and their contributions to chronic inflammation and fibrotic mechanisms in asthma pathogenesis.
Collapse
Affiliation(s)
- F Thiam
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - S Al Yazeedi
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - K Feng
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - S Phogat
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - E Demirsoy
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - J Brussow
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - F A Abokor
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - E T Osei
- Department of Biology, University of British Columbia, Kelowna, BC, Canada.,Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
| |
Collapse
|
9
|
Lin CC, Chuang KC, Chen SW, Chao YH, Yen CC, Yang SH, Chen W, Chang KH, Chang YK, Chen CM. Lactoferrin Ameliorates Ovalbumin-Induced Asthma in Mice through Reducing Dendritic-Cell-Derived Th2 Cell Responses. Int J Mol Sci 2022; 23:ijms232214185. [PMID: 36430662 PMCID: PMC9696322 DOI: 10.3390/ijms232214185] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022] Open
Abstract
Asthma is a chronic respiratory disease with symptoms such as expiratory airflow narrowing and airway hyperresponsiveness (AHR). Millions of people suffer from asthma and are at risk of life-threatening conditions. Lactoferrin (LF) is a glycoprotein with multiple physiological functions, including antioxidant, anti-inflammatory, antimicrobial, and antitumoral activities. LF has been shown to function in immunoregulatory activities in ovalbumin (OVA)-induced delayed type hypersensitivity (DTH) in mice. Hence, the purpose of this study was to investigate the roles of LF in AHR and the functions of dendritic cells (DCs) and Th2-related responses in asthma. Twenty 8-week-old male BALB/c mice were divided into normal control (NC), ovalbumin (OVA)-sensitized, and OVA-sensitized with low dose of LF (100 mg/kg) or high dose of LF (300 mg/kg) treatment groups. The mice were challenged by intranasal instillation with 5% OVA on the 21st to 27th day after the start of the sensitization period. The AHR, cytokines in bronchoalveolar lavage fluid, and pulmonary histology of each mouse were measured. Serum OVA-specific IgE and IgG1 and OVA-specific splenocyte responses were further detected. The results showed that LF exhibited protective effects in ameliorating AHR, as well as lung inflammation and damage, in reducing the expression of Th2 cytokines and the secretion of allergen-specific antibodies, in influencing the functions of DCs, and in decreasing the level of Th2 immune responses in a BALB/c mouse model of OVA-induced allergic asthma. Importantly, we demonstrated that LF has practical application in reducing DC-induced Th2 cell responses in asthma. In conclusion, LF exhibits anti-inflammation and immunoregulation activities in OVA-induced allergic asthma. These results suggest that LF may act as a supplement to prevent asthma-induced lung injury and provide an additional agent for reducing asthma severity.
Collapse
Affiliation(s)
- Chi-Chien Lin
- Department of Life Sciences, Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Kai-Cheng Chuang
- Department of Life Sciences, Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Shih-Wei Chen
- Department of Life Sciences, Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Department of Otolaryngology, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan
| | - Ya-Hsuan Chao
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Chih-Ching Yen
- Department of Life Sciences, Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Department of Internal Medicine, China Medical University Hospital, College of Health Care, China Medical University, Taichung 404, Taiwan
| | - Shang-Hsun Yang
- Department of Physiology, Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Wei Chen
- Division of Pulmonary and Critical Care Medicine, Chia-Yi Christian Hospital, Chiayi 600, Taiwan
| | - Kuang-Hsi Chang
- Department of Medical Research, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan
| | - Yu-Kang Chang
- Department of Medical Research, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan
| | - Chuan-Mu Chen
- Department of Life Sciences, Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
- The iEGG and Animal Biotechnology Center, The Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: ; Tel.: +886-4-22856309; Fax: +886-4-22874740
| |
Collapse
|
10
|
Roach K, Roberts J. A comprehensive summary of disease variants implicated in metal allergy. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2022; 25:279-341. [PMID: 35975293 PMCID: PMC9968405 DOI: 10.1080/10937404.2022.2104981] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Allergic disease represents one of the most prominent global public health crises of the 21st century. Although many different substances are known to produce hypersensitivity responses, metals constitute one of the major classes of allergens responsible for a disproportionately large segment of the total burden of disease associated with allergy. Some of the most prevalent forms of metal allergy - including allergic contact dermatitis - are well-recognized; however, to our knowledge, a comprehensive review of the many unique disease variants implicated in human cases of metal allergy is not available within the current scientific literature. Consequently, the main goal in composing this review was to (1) generate an up-to-date reference document containing this information to assist in the efforts of lab researchers, clinicians, regulatory toxicologists, industrial hygienists, and other scientists concerned with metal allergy and (2) identify knowledge gaps related to disease. Accordingly, an extensive review of the scientific literature was performed - from which, hundreds of publications describing cases of metal-specific allergic responses in human patients were identified, collected, and analyzed. The information obtained from these articles was then used to compile an exhaustive list of distinctive dermal/ocular, respiratory, gastrointestinal, and systemic hypersensitivity responses associated with metal allergy. Each of these disease variants is discussed briefly within this review, wherein specific metals implicated in each response type are identified, underlying immunological mechanisms are summarized, and major clinical presentations of each reaction are described.Abbreviations: ACD: allergic contact dermatitis, AHR: airway hyperreactivity, ASIA: autoimmune/ autoinflammatory syndrome induced by adjuvants, BAL: bronchoalveolar lavage, CBD: chronic beryllium disease, CTCL: cutaneous T-cell lymphoma, CTL: cytotoxic T-Lymphocyte, DRESS: drug reaction with eosinophilia and systemic symptoms, GERD: gastro-esophageal reflux disease, GI: gastrointestinal, GIP: giant cell interstitial pneumonia, GM-CSF: granulocyte macrophage-colony stimulating factor, HMLD: hard metal lung disease, HMW: high molecular weight, IBS: irritable bowel syndrome, Ig: immunoglobulin, IL: interleukin, LMW: low molecular weight, PAP: pulmonary alveolar proteinosis, PPE: personal protective equipment, PRR: pathogen recognition receptor, SLE: systemic lupus erythematosus, SNAS: systemic nickel allergy syndrome, Th: helper T-cell, UC: ulcerative colitis, UV: ultraviolet.
Collapse
Affiliation(s)
- Ka Roach
- Allergy and Clinical Immunology Branch (ACIB), National Institute of Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - Jr Roberts
- Allergy and Clinical Immunology Branch (ACIB), National Institute of Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| |
Collapse
|
11
|
Protective Effects of Korean Herbal Remedy against Airway Inflammation in an Allergic Asthma by Suppressing Eosinophil Recruitment and Infiltration in Lung. Antioxidants (Basel) 2020; 10:antiox10010006. [PMID: 33374657 PMCID: PMC7822450 DOI: 10.3390/antiox10010006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/21/2022] Open
Abstract
The increasing prevalence of allergic asthma has become the world’s major health issue. Current treatments for allergic asthma focus on treating symptoms, while permanent cures still remain undiscovered. In this study, we investigated the effect of Korean traditional herbal remedy, Pyunkang-tang (PGT)—composed of six plants—on asthma alleviation in a mouse model. The PGT mixture was orally gavaged to mice (PM group, 20 mg/mouse/day) from 7 days before sensitization with ovalbumin (OVA) (day −7). On day 0 and day 14, mice from OVA-control (n = 9) and PM group (n = 8) were sensitized with OVA and alum through intraperitoneal injection. On days 18~20, OVA was challenged to mice through nasal injection and sacrificed next day. Cell profile in lung tissue was analyzed by flow cytometry and RT-qPCR analysis, and the number of eosinophils and expression of siglec-F were significantly reduced in the PM group. Lung tissue was examined with hematoxylin and eosin (H&E) and Alcian blue/periodic acid–Schiff (AB-PAS) staining. Noticeably reduced eosinophil infiltration around bronchioles was displayed in the PM group compared to the OVA-control group. Furthermore, PGT-treated mice showed a significant reduction in IL-13 and a mild reduction in IL-5 in lungs. A decreasing tendency of IL-5/13 (+) CD4+ T cells and IL-13(+) innate lymphoid cells (ILCs) and a significant reduction in IL5(+) ILCs were also observed. When treating PGT on murine lung epithelial cells stimulated by papain, there was a significant reduction in IL-33 mRNA expression levels. Taken together, oral delivery of PGT successfully alleviated asthmatic responses provoked by OVA in a mouse model and could lead to novel therapies for allergic asthma.
Collapse
|
12
|
Cui H, Cheng Y, He Y, Cheng W, Zhao W, Zhao H, Zhou FH, Wang L, Dong J, Cai S. The AKT inhibitor MK2206 suppresses airway inflammation and the pro‑remodeling pathway in a TDI‑induced asthma mouse model. Mol Med Rep 2020; 22:3723-3734. [PMID: 33000187 PMCID: PMC7533517 DOI: 10.3892/mmr.2020.11450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022] Open
Abstract
The cellular and molecular mechanisms via which MK2206, an AKT inhibitor, prevents the activation of AKT in toluene diisocyanate (TDI)‑induced asthma remain unclear. Thus, the present study aimed to evaluate the potential effects of MK2206 on airway AKT activation, inflammation and remodeling in a TDI‑induced mouse model of asthma. A total of 24 BALB/c mice were selected and randomly divided into untreated (AOO), asthma (TDI), MK2206 (TDI + MK2206), and dexamethasone (TDI + DEX) groups. Phosphorylated AKT (p‑AKT), total AKT, airway remodeling indices, α‑smooth muscle actin (α‑SMA) and collagen I levels in pulmonary tissue were measured using western blotting. Airway inflammation factors, including interleukin (IL)‑4, ‑5, ‑6, and ‑13 in bronchoalveolar lavage fluid (BALF) and IgE in serum, were determined using ELISA. Additionally, the airway hyperresponsiveness (AHR) and pulmonary pathology of all groups were evaluated. The results of the present study demonstrated that p‑AKT levels in lung protein lysate were upregulated, and neutrophil, eosinophil and lymphocyte counts were increased in the lungs obtained from the asthma group compared with the AOO group. Both MK2206 and DEX treatment in TDI‑induced mice resulted not only in the attenuation of AKT phosphorylation, but also reductions in neutrophil, eosinophil and lymphocyte counts in the lungs of mice in the asthma group. Consistently, increases in the levels of the inflammatory cytokines IL‑4, ‑5, ‑6 and ‑13 analyzed in BALF, and serum IgE in the TDI group were demonstrated to be attenuated in the TDI + MK2206 and TDI + DEX groups. Furthermore, α‑SMA and AHR were significantly attenuated in the TDI + MK2206 group compared with the TDI group. These results revealed that MK2206 not only inhibited AKT activation, but also served a role in downregulating airway inflammation and airway remodeling in chemical‑induced asthma. Therefore, the findings of the present study may provide important insight into further combination therapy.
Collapse
Affiliation(s)
- Haiyan Cui
- Department of Respiratory and Critical Care Medicine, Chronic Airway Disease Laboratory, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong 510000, P.R. China
| | - Yuanxiong Cheng
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Yi He
- Department of Immunology Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Weiying Cheng
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Wenqu Zhao
- Department of Respiratory and Critical Care Medicine, Chronic Airway Disease Laboratory, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong 510000, P.R. China
| | - Haijin Zhao
- Department of Respiratory and Critical Care Medicine, Chronic Airway Disease Laboratory, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong 510000, P.R. China
| | - Fiona H Zhou
- UniSA Clinical and Health Sciences, UniSA Cancer Research Institute, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Liping Wang
- UniSA Clinical and Health Sciences, UniSA Cancer Research Institute, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Jianghui Dong
- UniSA Clinical and Health Sciences, UniSA Cancer Research Institute, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Shaoxi Cai
- Department of Respiratory and Critical Care Medicine, Chronic Airway Disease Laboratory, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong 510000, P.R. China
| |
Collapse
|
13
|
Hu Q, Jin L, Zeng J, Wang J, Zhong S, Fan W, Liao W. Tryptophan metabolite-regulated Treg responses contribute to attenuation of airway inflammation during specific immunotherapy in a mouse asthma model. Hum Vaccin Immunother 2020; 16:1891-1899. [PMID: 31951781 DOI: 10.1080/21645515.2019.1698900] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
In allergen-specific immunotherapy for asthma, antigens attached to dendritic cells increase the tryptophan metabolism in these cells and alter the Th17/Treg balance in the airways. Tryptophan metabolism has long been suggested to be relevant in the pathophysiology of allergic disorders, including asthma. Our study investigated whether tryptophan metabolites are responsible for the changes in Th17/Treg balance and decreases in airway hyperreactivity and inflammation seen during allergen-specific immunotherapy in an asthma model. Ovalbumin was injected intraperitoneally into mice to establish an asthma model, and then high dose ovalbumin allergen-specific immunotherapy was administered to induce immune tolerance. Airway hyperreactivity and serum ovalbumin-specific immunoglobulin E were measured to assess whether the animal model was successfully established. We then examined the influence of inhibition of tryptophan metabolism and the addition of tryptophan metabolites on allergen-specific immunotherapy-induced changes in the Th17/Treg balance and decreases in airway inflammation and inflammatory cytokines. Production of tryptophan metabolites was partly responsible for the allergen-specific immunotherapy-induced increase in Tregs, decrease in airway inflammation, and decrease in inflammatory cytokines. Ovalbumin-specific immunoglobulin E and airway hyperreactivity were not affected. In the context of asthma, an increase in tryptophan metabolites is one of the mechanisms by which allergen-specific immunotherapy achieves immune tolerance.
Collapse
Affiliation(s)
- Qi Hu
- Department of Pediatrics, The First Hospital Affiliated to Army Medical University , Chongqing, China
| | - Ling Jin
- Department of Pediatrics, The First Hospital Affiliated to Army Medical University , Chongqing, China
| | - Jing Zeng
- Department of Pediatrics, The First Hospital Affiliated to Army Medical University , Chongqing, China
| | - Jinyu Wang
- Department of the Laboratory of Neurosurgery, The First Hospital Affiliated to Army Medical University , Chongqing, China
| | - Shimin Zhong
- Department of Pediatrics, The First Hospital Affiliated to Army Medical University , Chongqing, China
| | - Wenting Fan
- Department of Pediatrics, The First Hospital Affiliated to Army Medical University , Chongqing, China
| | - Wei Liao
- Department of Pediatrics, The First Hospital Affiliated to Army Medical University , Chongqing, China
| |
Collapse
|
14
|
Sohn KH, Song WJ, Park JS, Park HW, Kim TB, Park CS, Cho SH. Risk Factors for Acute Exacerbations in Elderly Asthma: What Makes Asthma in Older Adults Distinctive? ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2020; 12:443-453. [PMID: 32141258 PMCID: PMC7061162 DOI: 10.4168/aair.2020.12.3.443] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/01/2019] [Accepted: 12/12/2019] [Indexed: 01/13/2023]
Abstract
Purpose Asthma in the elderly (EA; ≥ 65 years of age) is increasing, adding a heavy socioeconomic burden to the healthcare system. However, little is known about risk factors associated with acute exacerbations in EA patients. The objective of this study was to investigate risk factors for acute exacerbation in EA compared to non-elderly asthma (NEA). Methods We combined data from 3 adult asthma cohorts under a unified protocol and database. Asthmatic patients with regular follow-up during a 1-year period were selected from the cohorts to identify the risk factors predicting acute exacerbations in EA compared to NEA. Results We selected a total of 1,086 patients from the merged cohort. During the observation period, 503 and 583 patients were assigned to the EA and NEA groups, respectively. The exacerbation rate was 31.0% in the EA and 33.2% in the NEA group. Multivariate logistic regression analysis revealed fixed airway obstruction, chronic rhinosinusitis (CRS), and male sex as independent risk factors for exacerbation in the EA group. In the NEA group, exacerbation increased along with an increase in eosinophil count. Bayesian analysis of the interactions among clinical factors revealed that forced expiratory volume in 1 second/forced vital capacity was directly related to exacerbation in the EA group, and eosinophil count was related to exacerbation in the NEA group. Conclusions We suggest that fixed airway obstruction and CRS as the important clinical factors predicting acute exacerbations in EA, whereas in NEA, eosinophil count was the strong predictor of exacerbation.
Collapse
Affiliation(s)
- Kyoung Hee Sohn
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine, Seoul, Korea.,Department of Internal Medicine, Kyung Hee University Medical Center, Seoul, Korea
| | - Woo Jung Song
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jong Sook Park
- Division of Allergy and Respiratory Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Heung Woo Park
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine, Seoul, Korea.,Division of Allergy and Clinical Immunology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Tae Bum Kim
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Choon Sik Park
- Division of Allergy and Respiratory Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Sang Heon Cho
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine, Seoul, Korea.,Division of Allergy and Clinical Immunology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.
| | | |
Collapse
|
15
|
Roach KA, Stefaniak AB, Roberts JR. Metal nanomaterials: Immune effects and implications of physicochemical properties on sensitization, elicitation, and exacerbation of allergic disease. J Immunotoxicol 2019; 16:87-124. [PMID: 31195861 PMCID: PMC6649684 DOI: 10.1080/1547691x.2019.1605553] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 03/15/2019] [Accepted: 04/05/2019] [Indexed: 12/25/2022] Open
Abstract
The recent surge in incorporation of metallic and metal oxide nanomaterials into consumer products and their corresponding use in occupational settings have raised concerns over the potential for metals to induce size-specific adverse toxicological effects. Although nano-metals have been shown to induce greater lung injury and inflammation than their larger metal counterparts, their size-related effects on the immune system and allergic disease remain largely unknown. This knowledge gap is particularly concerning since metals are historically recognized as common inducers of allergic contact dermatitis, occupational asthma, and allergic adjuvancy. The investigation into the potential for adverse immune effects following exposure to metal nanomaterials is becoming an area of scientific interest since these characteristically lightweight materials are easily aerosolized and inhaled, and their small size may allow for penetration of the skin, which may promote unique size-specific immune effects with implications for allergic disease. Additionally, alterations in physicochemical properties of metals in the nano-scale greatly influence their interactions with components of biological systems, potentially leading to implications for inducing or exacerbating allergic disease. Although some research has been directed toward addressing these concerns, many aspects of metal nanomaterial-induced immune effects remain unclear. Overall, more scientific knowledge exists in regards to the potential for metal nanomaterials to exacerbate allergic disease than to their potential to induce allergic disease. Furthermore, effects of metal nanomaterial exposure on respiratory allergy have been more thoroughly-characterized than their potential influence on dermal allergy. Current knowledge regarding metal nanomaterials and their potential to induce/exacerbate dermal and respiratory allergy are summarized in this review. In addition, an examination of several remaining knowledge gaps and considerations for future studies is provided.
Collapse
Affiliation(s)
- Katherine A Roach
- a Allergy and Clinical Immunology Branch (ACIB) , National Institute of Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
- b School of Pharmacy , West Virginia University , Morgantown , WV , USA
| | - Aleksandr B Stefaniak
- c Respiratory Health Division (RHD) , National Institute of Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
| | - Jenny R Roberts
- a Allergy and Clinical Immunology Branch (ACIB) , National Institute of Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
| |
Collapse
|
16
|
Zhou X, Wei T, Cox CW, Walls AF, Jiang Y, Roche WR. Mast cell chymase impairs bronchial epithelium integrity by degrading cell junction molecules of epithelial cells. Allergy 2019; 74:1266-1276. [PMID: 30428129 DOI: 10.1111/all.13666] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/05/2018] [Accepted: 09/25/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND An increased degree of mast cell (MC) degranulation and damage to the epithelial lining are prominent features of bronchial asthma. In asthmatic airways, it seems likely that epithelial cells will be exposed to increased concentrations of proteases from MC, though their actions on the epithelium are still not very clear. METHODS Bronchial rings from human lung tissue or 16HBE cell monolayer were incubated with MC chymase in different doses or various inhibitors. The sections of paraffin-embedded tissue were haematoxylin-eosin stained and computerized by image analysis for epithelial damage-scale-evaluation; the cell viability, proliferation, adhesion and lactate dehydrogenase activity release were assayed; the expressions of gelatinases, cell junction molecules and structure proteins of 16HBE were examined. RESULTS Mast cell chymase was found to provoke profound changes in the morphology of bronchi epithelial layer. Following incubation with chymase, there was 40% reduction in the length of epithelium that was intact, with detachment of columnar epithelial cells and basal cells. Chymase reduced epithelial cell proliferation and induced cell detachment, which were associated with the changes in secretion and activation of matrix metalloproteinase-2/9. In intact epithelial cell layers, immunocytochemistry study revealed that chymase reduced the expressions of occludin, claudin-4, ZO-1, E-cadherin, focal adhesion kinase and cytokeratin. Overall data of this study indicated that MC chymase can influence tissue remodelling, disrupt epithelial cell junctions, inhibit wound healing and impair the barrier function of epithelium, resulting in dysfunction of airway wall and ECM remodelling in pathogenesis of asthma. CONCLUSION Mast cell chymase plays a key role in inducing the damage to bronchial epithelium in asthma.
Collapse
Affiliation(s)
- Xiaoying Zhou
- The School of Pharmaceutical Engineering and Life Science Changzhou University Jiangsu China
- The Faculty of Medicine The University of Southampton Southampton UK
| | - Tao Wei
- The School of Pharmaceutical Engineering and Life Science Changzhou University Jiangsu China
| | | | - Andrew F. Walls
- The Faculty of Medicine The University of Southampton Southampton UK
| | - Yuan Jiang
- The School of Pharmaceutical Engineering and Life Science Changzhou University Jiangsu China
| | - William R. Roche
- The Faculty of Medicine The University of Southampton Southampton UK
| |
Collapse
|
17
|
Yu ZW, Xu YQ, Zhang XJ, Pan JR, Xiang HX, Gu XH, Ji SB, Qian J. Mutual regulation between miR-21 and the TGFβ/Smad signaling pathway in human bronchial fibroblasts promotes airway remodeling. J Asthma 2018; 56:341-349. [PMID: 29621415 DOI: 10.1080/02770903.2018.1455859] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
OBJECTIVE Airway remodeling is an important pathological feature of asthma. Excessive deposition of extracellular matrix (e.g., collagen) secreted from fibroblasts is a major factor contributing to airway remodeling. Currently, the mechanism by which collagen continues to be oversynthesized in the airway remains unclear. In this study, we investigated the role of the microRNA-21 (miR-21) and TGFβ/Smad signaling pathway in human bronchial fibroblasts (HBFs), and explored the regulatory mechanism of airway remodeling. METHODS HBFs were cultured in vitro and treated with the transforming growth factor β (TGFβ), receptor inhibitor (SB431542), and TGFβ1. miR-21 and Smad7 overexpressing lentiviruses, as well as an miR-21 interfering lentivirus were constructed and transfected into HBFs. Western blotting was used to determine the expression of airway remodeling-related proteins and proteins in the TGFβ/Smad signaling pathway. miR-21 expression was measured by quantitative real-time PCR. RESULTS The high expression of miR-21 induced by TGFβ1 was reduced following the treatment with the SB431542 in HBFs. Smad7 overexpression inhibited the elevated expression of the COL I protein induced by miR-21 overexpression in HBFs. Inhibiting miR-21 expression upregulated the level of Smad7 protein, thus reducing the expression of airway remodeling-related proteins induced by TGFβ1 stimulation in HBFs. CONCLUSIONS TGFβ1 can induce miR-21 expression in HBFs through the TGFβ/Smad signaling pathway to promote airway remodeling. miR-21 downregulates Smad7, activates the TGFβ/Smad signaling pathway, and promotes airway remodeling. Mutual regulation between miR-21 and the TGFβ/Smad signaling pathway in HBFs promotes airway remodeling.
Collapse
Affiliation(s)
- Zhi-Wei Yu
- a Department of Pediatrics , Wuxi Children's Hospital Affiliated to Nanjing Medical University , Wuxi , China
| | - Ya-Qin Xu
- a Department of Pediatrics , Wuxi Children's Hospital Affiliated to Nanjing Medical University , Wuxi , China
| | - Xiao-Juan Zhang
- a Department of Pediatrics , Wuxi Children's Hospital Affiliated to Nanjing Medical University , Wuxi , China
| | - Jian-Rong Pan
- a Department of Pediatrics , Wuxi Children's Hospital Affiliated to Nanjing Medical University , Wuxi , China
| | - Hong-Xia Xiang
- a Department of Pediatrics , Wuxi Children's Hospital Affiliated to Nanjing Medical University , Wuxi , China
| | - Xiao-Hong Gu
- a Department of Pediatrics , Wuxi Children's Hospital Affiliated to Nanjing Medical University , Wuxi , China
| | - Shan-Bao Ji
- a Department of Pediatrics , Wuxi Children's Hospital Affiliated to Nanjing Medical University , Wuxi , China
| | - Jun Qian
- a Department of Pediatrics , Wuxi Children's Hospital Affiliated to Nanjing Medical University , Wuxi , China
| |
Collapse
|
18
|
Reid AT, Veerati PC, Gosens R, Bartlett NW, Wark PA, Grainge CL, Stick SM, Kicic A, Moheimani F, Hansbro PM, Knight DA. Persistent induction of goblet cell differentiation in the airways: Therapeutic approaches. Pharmacol Ther 2017; 185:155-169. [PMID: 29287707 DOI: 10.1016/j.pharmthera.2017.12.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dysregulated induction of goblet cell differentiation results in excessive production and retention of mucus and is a common feature of several chronic airways diseases. To date, therapeutic strategies to reduce mucus accumulation have focused primarily on altering the properties of the mucus itself, or have aimed to limit the production of mucus-stimulating cytokines. Here we review the current knowledge of key molecular pathways that are dysregulated during persistent goblet cell differentiation and highlights both pre-existing and novel therapeutic strategies to combat this pathology.
Collapse
Affiliation(s)
- Andrew T Reid
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia.
| | - Punnam Chander Veerati
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Nathan W Bartlett
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Peter A Wark
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia; Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Chris L Grainge
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia; Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Stephen M Stick
- School of Paediatrics and Child Health, University of Western Australia, Nedlands 6009, Western Australia, Australia; Telethon Kids Institute, University of Western Australia, Nedlands 6009, Western Australia, Australia; Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth 6001, Western Australia, Australia; Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia, Nedlands 6009, Western Australia, Australia
| | - Anthony Kicic
- School of Paediatrics and Child Health, University of Western Australia, Nedlands 6009, Western Australia, Australia; Telethon Kids Institute, University of Western Australia, Nedlands 6009, Western Australia, Australia; Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth 6001, Western Australia, Australia; Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia, Nedlands 6009, Western Australia, Australia; Occupation and Environment, School of Public Health, Curtin University, Bentley 6102, Western Australia, Australia
| | - Fatemeh Moheimani
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Philip M Hansbro
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Darryl A Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia; Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
19
|
Kim SW, Kim JH, Park CK, Kim TJ, Lee SY, Kim YK, Kwon SS, Rhee CK, Yoon HK. Effect of roflumilast on airway remodelling in a murine model of chronic asthma. Clin Exp Allergy 2017; 46:754-63. [PMID: 26542330 DOI: 10.1111/cea.12670] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/16/2015] [Accepted: 10/17/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND Airway remodelling is associated with irreversible, or partially reversible, airflow obstruction and ultimately unresponsiveness to asthma therapies such as corticosteroids. Roflumilast is a selective phosphodiesterase-4 inhibitor that has an anti-inflammatory effect in chronic obstructive pulmonary disease (COPD). OBJECTIVE The objective of this study was to study the effect of roflumilast on airway inflammation and remodelling in a murine model of chronic asthma. METHODS BALB/c mice sensitized to ovalbumin (OVA) were chronically exposed to intranasal OVA administration twice a week for additional 3 months. Roflumilast was administered orally during the intranasal OVA challenge. A lung fibroblast cell line was used in the proliferation assay. RESULTS Compared with control mice, mice chronically exposed to OVA developed eosinophilic airway inflammation, airway hyper-responsiveness (AHR), and exhibited features of airway remodelling. Administration of roflumilast significantly inhibited airway inflammation and AHR. Roflumilast also significantly decreased goblet cell hyperplasia and pulmonary fibrosis, which are parameters of airway remodelling. The levels of interleukin (IL)-4, IL-5, and IL-13 in the bronchoalveolar lavage (BAL) fluids were significantly lower in the roflumilast group. In vitro, roflumilast significantly inhibited stem cell factor (SCF)-induced cell proliferation of fibroblasts. The SCF concentration and mRNA expression in a murine model also significantly decreased with roflumilast treatment. CONCLUSIONS These results suggest that the administration of roflumilast regulates airway inflammation, AHR, and airway remodelling in a model of chronic asthma. The beneficial effects from roflumilast may be related to the SCF/c-kit pathway.
Collapse
Affiliation(s)
- S W Kim
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - J H Kim
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - C K Park
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - T J Kim
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - S Y Lee
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Y K Kim
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - S S Kwon
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - C K Rhee
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - H K Yoon
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
20
|
Bitter Taste Receptor Agonists Mitigate Features of Allergic Asthma in Mice. Sci Rep 2017; 7:46166. [PMID: 28397820 PMCID: PMC5387415 DOI: 10.1038/srep46166] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/09/2017] [Indexed: 01/25/2023] Open
Abstract
Asthma is characterized by airway inflammation, mucus secretion, remodeling and hyperresponsiveness (AHR). Recent research has established the bronchodilatory effect of bitter taste receptor (TAS2R) agonists in various models. Comprehensive pre-clinical studies aimed at establishing effectiveness of TAS2R agonists in disease models are lacking. Here we aimed to determine the effect of TAS2R agonists on features of asthma. Further, we elucidated a mechanism by which TAS2R agonists mitigate features of asthma. Asthma was induced in mice using intranasal house dust mite or aerosol ova-albumin challenge, and chloroquine or quinine were tested in both prophylactic and treatment models. Allergen challenge resulted in airway inflammation as evidenced by increased immune cells infiltration and release of cytokines and chemokines in the lungs, which were significantly attenuated in TAS2R agonists treated mice. TAS2R agonists attenuated features of airway remodeling including smooth muscle mass, extracellular matrix deposition and pro-fibrotic signaling, and also prevented mucus accumulation and development of AHR in mice. Mechanistic studies using human neutrophils demonstrated that inhibition of immune cell chemotaxis is a key mechanism by which TAS2R agonists blocked allergic airway inflammation and exerted anti-asthma effects. Our comprehensive studies establish the effectiveness of TAS2R agonists in mitigating multiple features of allergic asthma.
Collapse
|
21
|
MiR-3162-3p Is a Novel MicroRNA That Exacerbates Asthma by Regulating β-Catenin. PLoS One 2016; 11:e0149257. [PMID: 26959414 PMCID: PMC4784915 DOI: 10.1371/journal.pone.0149257] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/29/2016] [Indexed: 12/21/2022] Open
Abstract
Asthma is a common chronic respiratory disease. In a previous study, we found several circulating microRNA signatures associated with childhood asthma and selected miR-3162-3p for subsequent studies. Since the target proteins and underlying molecular mechanisms of miR-3162-3p in asthma etiopathogenesis are not well characterized, we designed this study to clarify its role. We employed bioinformatics and quantitative PCR methods as a first step to determine the target of miR-3162-3p, and we elucidated β-catenin. Luciferase assays and western blot analysis confirmed β-catenin as a direct target of miR-3162-3p as the 3'-untranslated region of β-catenin mRNA possesses a specific miR-3162-3p pairing site. The correlation between the expression levels of miR-3162-3p and β-catenin is confirmed by quantitative PCR and western blot studies in A549, Beas-2B and H1299 cell lines and OVA-induced asthma mouse model. Of note, upregulation of the endogenous miR-3162-3p level is concomitant with the reduction of β-catenin mRNA and protein expression levels. MiR-3162-3p antagomir treatment antagonizes the endogenous miR-3162-3p and effectively rescues the attenuation of endogenous β-catenin in OVA-induced asthmatic mice, which alleviates airway hyperresponsiveness and ameliorates airway inflammation. Collectively, our findings suggest a novel relationship between miR-3162-3p and β-catenin and clarify their mechanistic role in asthma etiopathogenesis.
Collapse
|
22
|
Oñatibia-Astibia A, Martínez-Pinilla E, Franco R. The potential of methylxanthine-based therapies in pediatric respiratory tract diseases. Respir Med 2016; 112:1-9. [PMID: 26880379 DOI: 10.1016/j.rmed.2016.01.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/07/2015] [Accepted: 01/28/2016] [Indexed: 02/03/2023]
Abstract
Caffeine, theophylline and theobromine are the most known methylxanthines as they are present in coffee, tea and/or chocolate. In the last decades, a huge experimental effort has been devoted to get insight into the variety of actions that these compounds exert in humans. From such knowledge it is known that methylxanthines have a great potential in prevention, therapy and/or management of a variety of diseases. The benefits of methylxanthine-based therapies in the apnea of prematurity and their translational potential in pediatric affections of the respiratory tract are here presented.
Collapse
Affiliation(s)
| | - Eva Martínez-Pinilla
- Neuroscience Department, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain.
| | - Rafael Franco
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; CIBERNED, Centro de Investigación en Red, Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28049 Madrid, Spain; Institute of Biomedicine of the University of Barcelona, IBUB, 08028, Barcelona, Spain.
| |
Collapse
|
23
|
Patil-Gadhe A, Pokharkar V. Pulmonary targeting potential of rosuvastatin loaded nanostructured lipid carrier: Optimization by factorial design. Int J Pharm 2016; 501:199-210. [PMID: 26844785 DOI: 10.1016/j.ijpharm.2016.01.080] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 01/30/2016] [Accepted: 01/30/2016] [Indexed: 12/21/2022]
Abstract
Rosuvastatin (RSVS), an anti-lipidemic agent suggested for the treatment of airway remodeling in chronic obstructive pulmonary disease (COPD). It shows a pleiotropic effect on airway smooth muscles and inhibits proliferative activities of physiological mitogens. The aim of the present study was to develop and investigate the targeting potential of rosuvastatin (RSVS) to lung as loaded in nanostructured lipid carrier dry powder for inhalation (RNLC-DPI). RNLC dispersion was converted into respirable particle by lyophilization using 5% mannitol as cryoprotectant-carrier. Targeting efficiency of RNLC-DPI was evaluated in vitro for aerosol performance using 8-stage cascade impactor as well in vivo in Wistar rats for pulmokinetics. In vitro aerosol performance demonstrated mass median aerodynamic diameter of <3 μm with fine particle fraction of >90% at 60 L/min. Improved aerosol performance was observed for RNLC-DPI prepared using l-leucin as anti-static agent. Modified in vivo performance with higher Cmax (1.14-fold), improvement in t1/2 (5-fold) and 35-fold improvement in AUC0-∞ indicated significant improvement in bioavailability of RNLC-DPI. Lipidic nature and smaller size of particles helped in bypassing macrophage clearance leading to higher targeting factor. Thus, study demonstrated potential of RNLC-DPI for lung targeting and further for COPD treatment.
Collapse
Affiliation(s)
- Arpana Patil-Gadhe
- Department of Pharmaceutics, Bharati Vidyapeeth University, Poona College of Pharmacy, Erandwane, Pune, 411038 Maharashtra, India
| | - Varsha Pokharkar
- Department of Pharmaceutics, Bharati Vidyapeeth University, Poona College of Pharmacy, Erandwane, Pune, 411038 Maharashtra, India.
| |
Collapse
|
24
|
Chen H, Xia Q, Feng X, Cao F, Yu H, Song Y, Ni X. Effect of P2X4R on airway inflammation and airway remodeling in allergic airway challenge in mice. Mol Med Rep 2015; 13:697-704. [PMID: 26648454 PMCID: PMC4686060 DOI: 10.3892/mmr.2015.4622] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 10/29/2015] [Indexed: 11/29/2022] Open
Abstract
P2X4 receptor (P2X4R) is the most widely expressed subtype of the P2XRs in the purinergic receptor family. Adenosine triphosphate (ATP), a ligand for this receptor, has been implicated in the pathogenesis of asthma. ATP-P2X4R signaling is involved in pulmonary vascular remodeling, and in the proliferation and differentiation of airway and alveolar epithelial cell lines. However, the role of P2X4R in asthma remains to be elucidated. This aim of the present study was to investigate the effects of P2X4R in a murine experimental asthma model. The asthmatic model was established by the inhalation of ovalbumin (OVA) in BALB/c mice. The mice were treated with P2X4R-specific agonists and antagonists to investigate the role of this receptor in vivo. Pathological changes in the bronchi and lung tissues were examined using hematoxylin and eosin staining, Masson's trichrome staining and Alcian blue staining. The inflammatory cells in the bronchoalveolar lavage fluid were counted, and the expression levels of P2X4R, α-smooth muscle actin (α-SMA) and proliferating cell nuclear antigen (PCNA) were detected using western blotting. In the OVA-challenged mice, inflammation, infiltration, collagen deposition, mucus production, and the expression levels of P2X4R and PCNA were all increased; however, the expression of α-SMA was decreased, compared with the mice in the control group. Whereas treatment with the P2X4R agonist, ATP, enhanced the allergic reaction, treatment with the P2X4R antagonist, 5-BDBD, attenuated the allergic reaction. The results suggested that ATP-P2X4R signaling may not only contribute to airway inflammation, but it may also contribute to airway remodeling in allergic asthma in mice.
Collapse
Affiliation(s)
- Hongxia Chen
- Department of Pathology, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319, P.R. China
| | - Qingqing Xia
- Department of Anatomy, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319, P.R. China
| | - Xiaoqian Feng
- Department of Pathology, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319, P.R. China
| | - Fangyuan Cao
- Department of Pathology, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319, P.R. China
| | - Hang Yu
- Department of Physiology, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319, P.R. China
| | - Yinli Song
- Department of Pathology, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319, P.R. China
| | - Xiuqin Ni
- Department of Anatomy, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319, P.R. China
| |
Collapse
|
25
|
Zhao L, Sullivan MN, Chase M, Gonzales AL, Earley S. Calcineurin/nuclear factor of activated T cells-coupled vanilliod transient receptor potential channel 4 ca2+ sparklets stimulate airway smooth muscle cell proliferation. Am J Respir Cell Mol Biol 2014; 50:1064-75. [PMID: 24392954 PMCID: PMC4068915 DOI: 10.1165/rcmb.2013-0416oc] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 12/16/2013] [Indexed: 11/24/2022] Open
Abstract
Proliferation of airway smooth muscle cells (ASMCs) contributes to the remodeling and irreversible obstruction of airways during severe asthma, but the mechanisms underlying this disease process are poorly understood. Here we tested the hypothesis that Ca(2+) influx through the vanilliod transient receptor potential channel (TRPV) 4 stimulates ASMC proliferation. We found that synthetic and endogenous TRPV4 agonists increase proliferation of primary ASMCs. Furthermore, we demonstrate that Ca(2+) influx through individual TRPV4 channels produces Ca(2+) microdomains in ASMCs, called "TRPV4 Ca(2+) sparklets." We also show that TRPV4 channels colocalize with the Ca(2+)/calmodulin-dependent protein phosphatase calcineurin in ASMCs. Activated calcineurin dephosphorylates nuclear factor of activated T cells (NFAT) transcription factors cytosolic (c) to allow nuclear translocation and activation of synthetic transcriptional pathways. We show that ASMC proliferation in response to TRPV4 activity is associated with calcineurin-dependent nuclear translocation of the NFATc3 isoform tagged with green florescent protein. Our findings suggest that Ca(2+) microdomains created by TRPV4 Ca(2+) sparklets activate calcineurin to stimulate nuclear translocation of NFAT and ASMC proliferation. These findings further suggest that inhibition of TRPV4 could diminish asthma-induced airway remodeling.
Collapse
Affiliation(s)
- Limin Zhao
- Vascular Physiology Research Group, Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
- Henan Provincial People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Michelle N. Sullivan
- Vascular Physiology Research Group, Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Marlee Chase
- Vascular Physiology Research Group, Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Albert L. Gonzales
- Department of Pharmacology, University of Vermont School of Medicine, Burlington, Vermont; and
| | - Scott Earley
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada
| |
Collapse
|
26
|
Rhee CK, Kang JY, Park CK, Lee SY, Kwon SS, Kim YK, Yoon HK. Effect of nilotinib on airway remodeling in a murine model of chronic asthma. Exp Lung Res 2014; 40:199-210. [PMID: 24784417 DOI: 10.3109/01902148.2013.831959] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
UNLABELLED ABSTRACT Objective: The tyrosine kinase inhibitor nilotinib has potent inhibitory activity against the stem cell growth factor receptor c-Kit and platelet-derived growth factor receptor (PDGFR). The present study aimed to determine whether nilotinib suppresses airway remodeling and whether its effect is associated with the c-Kit and PDGFR pathways. We also aimed to compare the effect of nilotinib and imatinib on remodeling. METHODS We developed a mouse model of airway remodeling, which includes smooth muscle thickening, in which ovalbumin (OVA)-sensitized mice were repeatedly exposed to intranasal OVA administration twice a week for 3 months. Mice were treated with nilotinib or imatinib during the OVA challenge. RESULTS Compared with control mice, the mice chronically exposed to OVA developed sustained eosinophilic airway inflammation, airway hyperresponsiveness (AHR), and exhibited features of airway remodeling, including thickening of the peribronchial smooth muscle layer. Administration of nilotinib significantly inhibited eosinophilic inflammation, AHR, and remodeling in mice chronically exposed to OVA. Nilotinib showed a trend of more potent effect than imatinib on attenuating remodeling in hydroxyproline assay and smooth muscle staining. Nilotinib treatment significantly reduced the expression of phosphorylated (p)-c-Kit, p-PDGFRβ, and p-extracellular signal-regulated kinase 1/2. The expression levels of the genes encoding c-Kit and PDGFRβ were also reduced by nilotinib treatment. Treatment with nilotinib did not affect significantly the level of OVA-specific IgE and IgG1 in serum. In vitro, nilotinib significantly inhibited cell proliferation of fibroblast. CONCLUSIONS These results suggest that nilotinib administration can prevent airway inflammation, AHR, and airway remodeling associated with chronic allergen challenge.
Collapse
Affiliation(s)
- Chin Kook Rhee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
27
|
Shi Y, Xu X, Tan Y, Mao S, Fang S, Gu W. A liver-X-receptor ligand, T0901317, attenuates IgE production and airway remodeling in chronic asthma model of mice. PLoS One 2014; 9:e92668. [PMID: 24681543 PMCID: PMC3969355 DOI: 10.1371/journal.pone.0092668] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 02/25/2014] [Indexed: 01/09/2023] Open
Abstract
The liver-X-receptors have shown anti-inflammatory ability in several animal models of respiratory disease. Our purpose is to investigate the effect of LXR ligand in allergen-induced airway remodeling in mice. Ovalbumin-sensitized mice were chronically challenged with aerosolized ovalbumin for 8 weeks. Some mice were administered a LXR agonist, T0901317 (12.5, 25, 50 mg/kg bodyweight) before challenge. Then mice were evaluated for airway inflammation, airway hyperresponsiveness and airway remodeling. T0901317 failed to attenuate the inflammatory cells and Th2 cytokines in bronchoalveolar lavage fluid. But the application of T0901317 reduced the thickness of airway smooth muscle and the collagen deposition. Meanwhile, T0901317 treatment evidently abolished the high level of OVA-specific IgE, TGF-β1 and MMP-9 in lung. So LXRs may attenuate the progressing of airway remodeling, providing a potential treatment of asthma.
Collapse
Affiliation(s)
- Ying Shi
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiantao Xu
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yan Tan
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Shan Mao
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Surong Fang
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wei Gu
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- * E-mail:
| |
Collapse
|
28
|
Shi Y, Tan Y, Mao S, Gu W. Naringenin inhibits allergen‑induced airway remodeling in a murine model of asthma. Mol Med Rep 2014; 9:1204-8. [PMID: 24534822 DOI: 10.3892/mmr.2014.1940] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 01/23/2014] [Indexed: 11/05/2022] Open
Abstract
The flavonoid naringenin has been shown to attenuate airway inflammation and airway hyper‑reactivity in acute murine models of asthma. The purpose of this study was to investigate the effects of naringenin in allergen‑induced airway remodeling in mice. Ovalbumin (OVA)‑sensitized mice were challenged with OVA for 8 weeks to produce a model of chronic asthma. Airway hyper-responsiveness (AHR), inflammation and remodeling were evaluated in mice receiving naringenin prior to OVA challenge. Compared to OVA-sensitized and -challenged mice, those treated with naringenin showed markedly attenuated chronic inflammation, persistent AHR and airway remodeling. In addition, naringenin treatment caused a significant reduction in the levels of total serum IgE and of T helper 2 (Th2) cytokines in the bronchoalveolar lavage fluid (BALF). Naringenin may thus delay the progression of airway remodeling, providing a potential treatment for asthma.
Collapse
Affiliation(s)
- Ying Shi
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Yan Tan
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Shan Mao
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Wei Gu
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| |
Collapse
|
29
|
Wierstra I. The transcription factor FOXM1 (Forkhead box M1): proliferation-specific expression, transcription factor function, target genes, mouse models, and normal biological roles. Adv Cancer Res 2013; 118:97-398. [PMID: 23768511 DOI: 10.1016/b978-0-12-407173-5.00004-2] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
FOXM1 (Forkhead box M1) is a typical proliferation-associated transcription factor, which stimulates cell proliferation and exhibits a proliferation-specific expression pattern. Accordingly, both the expression and the transcriptional activity of FOXM1 are increased by proliferation signals, but decreased by antiproliferation signals, including the positive and negative regulation by protooncoproteins or tumor suppressors, respectively. FOXM1 stimulates cell cycle progression by promoting the entry into S-phase and M-phase. Moreover, FOXM1 is required for proper execution of mitosis. Accordingly, FOXM1 regulates the expression of genes, whose products control G1/S-transition, S-phase progression, G2/M-transition, and M-phase progression. Additionally, FOXM1 target genes encode proteins with functions in the execution of DNA replication and mitosis. FOXM1 is a transcriptional activator with a forkhead domain as DNA binding domain and with a very strong acidic transactivation domain. However, wild-type FOXM1 is (almost) inactive because the transactivation domain is repressed by three inhibitory domains. Inactive FOXM1 can be converted into a very potent transactivator by activating signals, which release the transactivation domain from its inhibition by the inhibitory domains. FOXM1 is essential for embryonic development and the foxm1 knockout is embryonically lethal. In adults, FOXM1 is important for tissue repair after injury. FOXM1 prevents premature senescence and interferes with contact inhibition. FOXM1 plays a role for maintenance of stem cell pluripotency and for self-renewal capacity of stem cells. The functions of FOXM1 in prevention of polyploidy and aneuploidy and in homologous recombination repair of DNA-double-strand breaks suggest an importance of FOXM1 for the maintenance of genomic stability and chromosomal integrity.
Collapse
|
30
|
Chen Y, Rennie DC, Pahwa P, Dosman JA. Pulmonary function in adults with recent and former asthma and the role of sex and atopy. BMC Pulm Med 2012; 12:32. [PMID: 22748064 PMCID: PMC3461462 DOI: 10.1186/1471-2466-12-32] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 06/29/2012] [Indexed: 11/24/2022] Open
Abstract
Background Pulmonary function is not fully reversible in asthma in children and may continue into adult life. This study was to determine the association between asthma and reduced pulmonary function in adults and the modification by sex and atopic status. Methods A cross-sectional study of 1492 adults aged 18 years or over was conducted in a rural community. Atopy, height, weight, waist circumference (WC) and pulmonary function were measured. Participants with ever asthma were those who reported by questionnaire a history of asthma diagnosed by a physician during lifetime. Participants who had former (only) asthma were those who reported having physician-diagnosed asthma more than 12 months ago. Participants who had recent asthma were those who reported having asthma during the last 12 months. Results Men had higher values of forced vital capacity (FVC) and forced expiratory volume in one second (FEV1) compared with women, but FEV1/FVC ratio showed no significant difference between sexes. Atopic status was not related to pulmonary function and the average values of the pulmonary function testing variables were almost the same for non-atopic and atopic individuals. Individuals with ever, recent or former asthma had significant lower values of FEV1 and FEV1/FVC ratio than those who reported having no asthma, and the associations tended to be stronger in men than in women. The interaction between atopy and asthma was not statistically significant. Conclusions Adults who reported having recent asthma or former asthma had reduced pulmonary function, which was significantly modified by sex but not by atopic status.
Collapse
Affiliation(s)
- Yue Chen
- Department of Epidemiology and Community Medicine, Faculty of Medicine, University of Ottawa, 451, Smyth Road, Ottawa, Ontario, K1H 8 M5, Canada.
| | | | | | | |
Collapse
|
31
|
Kim JH, Park BL, Pasaje CFA, Kim Y, Bae JS, Park JS, Uh ST, Kim YH, Kim MK, Choi IS, Cho SH, Choi BW, Koh I, Park CS, Shin HD. Contribution of the OBSCN nonsynonymous variants to aspirin exacerbated respiratory disease susceptibility in Korean population. DNA Cell Biol 2012; 31:1001-9. [PMID: 22251166 DOI: 10.1089/dna.2011.1436] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Airway remodeling and exacerbated airway narrowing in asthma have been attributed to the regulation of intracellular Ca(2+) by sarcoplasmic reticulum (SR) of the airway smooth muscle cells. The protein encoded by obscurin, cytoskeletal calmodulin and titin-interacting RhoGEF (OBSCN) is a crucial factor in determining the SR architecture in Obscn(-/-) mice. This study genotyped a total of 55 common single-nucleotide polymorphisms (SNPs) in 592 Korean asthmatics including 163 aspirin exacerbated respiratory disease (AERD) cases and 429 aspirin-tolerant asthma (ATA) controls. Eight SNPs, including two nonsynonymous polymorphisms rs1188722C>T (Leu2116Phe) and rs1188729G>C (Cys4642Ser), and one haplotype BL2_ht1 showed statistically significant associations with AERD development (p=0.003-0.03). Two variants, rs1188722C>T (Leu2116Phe) and rs369252C>A, also revealed nominal association with FEV1 decline by aspirin provocation in asthmatics (p=0.03-0.04). Intriguingly, rs1188722C>T (Leu2116Phe) is a highly conserved amino acid residue among species, suggesting its functional relevance to AERD. In addition, the A allele of rs369252C>A, which was more prevalent in AERD than in ATA, was predicted as a potential branch point (BP) site for alternative splicing (BP score=4.29). Although further functional evaluation is required, our findings suggest that OBSCN polymorphisms, in particular, highly conserved nonsynonymous Leu2116Phe variant, might contribute to aspirin hypersensitivity in asthmatics.
Collapse
Affiliation(s)
- Jeong-Hyun Kim
- Department of Life Science, Sogang University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Franko J, Jackson LG, Hubbs A, Kashon M, Meade BJ, Anderson SE. Evaluation of furfuryl alcohol sensitization potential following dermal and pulmonary exposure: enhancement of airway responsiveness. Toxicol Sci 2012; 125:105-15. [PMID: 22003193 PMCID: PMC4699323 DOI: 10.1093/toxsci/kfr271] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Furfuryl alcohol is considered by the U.S. Environmental Protection Agency to be a high volume production chemical, with over 1 million pounds produced annually. Due to its high production volume and its numerous industrial and consumer uses, there is considerable potential for work-related exposure, as well as exposure to the general population, through pulmonary, oral, and dermal routes of exposure. Human exposure data report a high incidence of asthma in foundry mold workers exposed to furan resins, suggesting potential immunologic effects. Although furfuryl alcohol was nominated and evaluated for its carcinogenic potential by the National Toxicology Program, studies evaluating its immunotoxicity are lacking. The studies presented here evaluated the immunotoxic potential of furfuryl alcohol following exposure by the dermal and pulmonary routes using a murine model. When tested in a combined irritancy local lymph node assay, furfuryl alcohol was identified to be an irritant and mild sensitizer (EC3 = 25.6%). Pulmonary exposure to 2% furfuryl alcohol resulted in enhanced airway hyperreactivity, eosinophilic infiltration into the lungs, and enhanced cytokine production (IL-4, IL-5, and interferon-γ) by ex vivo stimulated lung-associated draining lymphoid cells. Airway hyperreactivity and eosinophilic lung infiltration were augmented by prior dermal exposure to furfuryl alcohol. These results suggest that furfuryl alcohol may play a role in the development of allergic airway disease and encourage the need for additional investigation.
Collapse
Affiliation(s)
- Jennifer Franko
- National Institute for Occupational Safety and Health, Health Effects Laboratory Division, Morgantown, West Virginia 26505
| | - Laurel G. Jackson
- National Institute for Occupational Safety and Health, Health Effects Laboratory Division, Morgantown, West Virginia 26505
| | - Ann Hubbs
- National Institute for Occupational Safety and Health, Health Effects Laboratory Division, Morgantown, West Virginia 26505
| | - Michael Kashon
- National Institute for Occupational Safety and Health, Health Effects Laboratory Division, Morgantown, West Virginia 26505
| | - B. J. Meade
- National Institute for Occupational Safety and Health, Health Effects Laboratory Division, Morgantown, West Virginia 26505
| | - Stacey E. Anderson
- National Institute for Occupational Safety and Health, Health Effects Laboratory Division, Morgantown, West Virginia 26505
| |
Collapse
|
33
|
Moon IJ, Kim DY, Rhee CS, Lee CH, Min YG. Role of angiogenic factors in airway remodeling in an allergic rhinitis murine model. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2011; 4:37-45. [PMID: 22211169 PMCID: PMC3242059 DOI: 10.4168/aair.2012.4.1.37] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 08/18/2011] [Indexed: 12/20/2022]
Abstract
PURPOSE There is growing evidence that nasal airway remodeling occurs in allergic rhinitis (AR). Although angiogenesis is an important component of airway remodeling in asthma, its involvement in AR has been little studied. Furthermore, information regarding the role of potent angiogenic factors, such as vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF), in the nasal airway remodeling process is limited. This study was conducted to investigate the role of VEGF and PDGF in nasal airway remodeling, and to assess the preventive effects of anti-angiogenic drugs on this process in a murine AR model. METHODS Mice were systemically sensitized and subjected to inhalation of ovalbumin (OVA) twice a week for 3 months. Control mice were challenged with phosphate buffered saline, while the treatment group received SU1498, a VEGF receptor inhibitor, and/or AG1296, a PDGF receptor inhibitor, via intraperitoneal injection 4 hours prior to each OVA inhalation. Staining using hematoxylin and eosin, Masson's trichrome, and periodic acid-Schiff were separately performed to assess eosinophil infiltration, subepithelial fibrosis, and goblet cell hyperplasia, respectively, in the nasal airway. Immunohistochemical staining for matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of metalloproteinase-1 (TIMP-1) was also conducted. RESULTS Repetitive intranasal inhalation of OVA resulted in significant increases in eosinophil infiltration, subepithelial fibrosis, goblet cell count, and MMP-9/TIMP-1 expression. Administration of SU1498 or AG1296 prevented these abnormal responses. CONCLUSIONS The results of this study suggest that a causal relationship may exist between angiogenic factors and nasal airway remodeling in AR. Inhibition of VEGF or PDGF receptors may, in turn, suppress the remodeling process through the regulation of MMP-9/TIMP-1 expression.
Collapse
Affiliation(s)
- Il Joon Moon
- Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
34
|
Masuno K, Haldar SM, Jeyaraj D, Mailloux CM, Huang X, Panettieri RA, Jain MK, Gerber AN. Expression profiling identifies Klf15 as a glucocorticoid target that regulates airway hyperresponsiveness. Am J Respir Cell Mol Biol 2011; 45:642-9. [PMID: 21257922 PMCID: PMC3175579 DOI: 10.1165/rcmb.2010-0369oc] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 01/11/2011] [Indexed: 12/22/2022] Open
Abstract
Glucocorticoids (GCs), which activate GC receptor (GR) signaling and thus modulate gene expression, are widely used to treat asthma. GCs exert their therapeutic effects in part through modulating airway smooth muscle (ASM) structure and function. However, the effects of genes that are regulated by GCs on airway function are not fully understood. We therefore used transcription profiling to study the effects of a potent GC, dexamethasone, on human ASM (HASM) gene expression at 4 and 24 hours. After 24 hours of dexamethasone treatment, nearly 7,500 genes had statistically distinguishable changes in expression; quantitative PCR validation of a 40-gene subset of putative GR-regulated genes in 6 HASM cell lines suggested that the early transcriptional targets of GR signaling are similar in independent HASM lines. Gene ontology analysis implicated GR targets in controlling multiple aspects of ASM function. One GR-regulated gene, the transcription factor, Kruppel-like factor 15 (Klf15), was already known to modulate vascular smooth and cardiac muscle function, but had no known role in the lung. We therefore analyzed the pulmonary phenotype of Klf15(-/-) mice after ovalbumin sensitization and challenge. We found diminished airway responses to acetylcholine in ovalbumin-challenged Klf15(-/-) mice without a significant change in the induction of asthmatic inflammation. In cultured cells, overexpression of Klf15 reduced proliferation of HASM cells, whereas apoptosis in Klf15(-/-) murine ASM cells was increased. Together, these results further characterize the GR-regulated gene network in ASM and establish a novel role for the GR target, Klf15, in modulating airway function.
Collapse
Affiliation(s)
- Kiriko Masuno
- Department of Molecular and Cellular Pharmacology, University of California, San Francisco, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Zaidi S, Gallos G, Yim PD, Xu D, Sonett JR, Panettieri RA, Gerthoffer W, Emala CW. Functional expression of γ-amino butyric acid transporter 2 in human and guinea pig airway epithelium and smooth muscle. Am J Respir Cell Mol Biol 2011; 45:332-9. [PMID: 21057105 PMCID: PMC3175560 DOI: 10.1165/rcmb.2010-0177oc] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 10/08/2010] [Indexed: 12/25/2022] Open
Abstract
γ-Amino butyric acid (GABA) is a primary inhibitory neurotransmitter in the central nervous system, and is classically released by fusion of synaptic vesicles with the plasma membrane or by egress via GABA transporters (GATs). Recently, a GABAergic system comprised of GABA(A) and GABA(B) receptors has been identified on airway epithelial and smooth muscle cells that regulate mucus secretion and contractile tone of airway smooth muscle (ASM). In addition, the enzyme that synthesizes GABA, glutamic acid decarboxylase, has been identified in airway epithelial cells; however, the mechanism(s) by which this synthesized GABA is released from epithelial intracellular stores is unknown. We questioned whether any of the four known isoforms of GATs are functionally expressed in ASM or epithelial cells. We detected mRNA and protein expression of GAT2 and -4, and isoforms of glutamic acid decarboxylase in native and cultured human ASM and epithelial cells. In contrast, mRNA encoding vesicular GAT (VGAT), the neuronal GABA transporter, was not detected. Functional inhibition of (3)H-GABA uptake was demonstrated using GAT2 and GAT4/betaine-GABA transporter 1 (BGT1) inhibitors in both human ASM and epithelial cells. These results demonstrate that two isoforms of GATs, but not VGAT, are expressed in both airway epithelial and smooth muscle cells. They also provide a mechanism by which locally synthesized GABA can be released from these cells into the airway to activate GABA(A) channels and GABA(B) receptors, with subsequent autocrine and/or paracrine signaling effects on airway epithelium and ASM.
Collapse
Affiliation(s)
- Sarah Zaidi
- Departments of Pediatrics, Anesthesiology, and Surgery, College of Physicians and Surgeons of Columbia University, New York, New York; Pulmonary, Allergy, and Critical Care Division, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama
| | - George Gallos
- Departments of Pediatrics, Anesthesiology, and Surgery, College of Physicians and Surgeons of Columbia University, New York, New York; Pulmonary, Allergy, and Critical Care Division, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama
| | - Peter D. Yim
- Departments of Pediatrics, Anesthesiology, and Surgery, College of Physicians and Surgeons of Columbia University, New York, New York; Pulmonary, Allergy, and Critical Care Division, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama
| | - Dingbang Xu
- Departments of Pediatrics, Anesthesiology, and Surgery, College of Physicians and Surgeons of Columbia University, New York, New York; Pulmonary, Allergy, and Critical Care Division, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama
| | - Joshua R. Sonett
- Departments of Pediatrics, Anesthesiology, and Surgery, College of Physicians and Surgeons of Columbia University, New York, New York; Pulmonary, Allergy, and Critical Care Division, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama
| | - Reynold A. Panettieri
- Departments of Pediatrics, Anesthesiology, and Surgery, College of Physicians and Surgeons of Columbia University, New York, New York; Pulmonary, Allergy, and Critical Care Division, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama
| | - William Gerthoffer
- Departments of Pediatrics, Anesthesiology, and Surgery, College of Physicians and Surgeons of Columbia University, New York, New York; Pulmonary, Allergy, and Critical Care Division, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama
| | - Charles W. Emala
- Departments of Pediatrics, Anesthesiology, and Surgery, College of Physicians and Surgeons of Columbia University, New York, New York; Pulmonary, Allergy, and Critical Care Division, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama
| |
Collapse
|
36
|
Rhee CK, Kim JW, Park CK, Kim JS, Kang JY, Kim SJ, Kim SC, Kwon SS, Kim YK, Park SH, Lee SY. Effect of imatinib on airway smooth muscle thickening in a murine model of chronic asthma. Int Arch Allergy Immunol 2011; 155:243-51. [PMID: 21293142 DOI: 10.1159/000321261] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 09/15/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Asthma is characterized by airway hyperresponsiveness (AHR), inflammation and remodeling. The tyrosine kinase inhibitor imatinib mesylate was developed to inhibit BCR-ABL kinase activity; however, it also has potent inhibitory activity against the c-Kit and platelet-derived growth factor receptors. The present study aimed to determine whether imatinib suppresses airway smooth muscle (ASM) remodeling and whether its effect is associated with growth factors such as transforming growth factor (TGF)-β1 and stem cell factor (SCF). METHODS We developed a mouse model of airway remodeling, which includes smooth muscle thickening, in which ovalbumin (OVA)-sensitized mice were repeatedly exposed to intranasal OVA administration twice a week for 3 months. Mice were treated with imatinib during the OVA challenge. RESULTS Mice chronically exposed to OVA developed sustained eosinophilic airway inflammation and AHR compared with control mice. In addition, the mice chronically exposed to OVA developed features of airway remodeling, including thickening of the peribronchial smooth muscle layer. Administration of imatinib significantly inhibited the development of AHR, eosinophilic inflammation and, importantly, ASM remodeling in mice chronically exposed to OVA. Imatinib treatment significantly reduced the levels of interleukin-4, -5 and -13. In addition, TGF-β1 and SCF were significantly reduced in the imatinib-treated animals. CONCLUSIONS These results suggest that imatinib administration can prevent not only airway inflammation, but also airway remodeling associated with chronic allergen challenge. Imatinib may provide a clinically attractive therapy for chronic severe asthma.
Collapse
Affiliation(s)
- Chin Kook Rhee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kim JY, Kim JH, Park BL, Cheong HS, Park JS, Jang AS, Uh ST, Choi JS, Kim YH, Kim MK, Choi IS, Cho SH, Choi BW, Park CS, Shin HD. Putative association of SMAPIL polymorphisms with risk of aspirin intolerance in asthmatics. J Asthma 2010; 47:959-65. [PMID: 20831471 DOI: 10.1080/02770903.2010.514637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Aspirin-intolerant asthma (AIA), as a clinical syndrome caused by aspirin, is characterized by lung inflammation and reversible bronchoconstriction. Recently, the altered trafficking and diminished airway reactivity have been implicated in allergic airway remodeling. The stromal membrane-associated protein 1-like (SMAP1L) exerts common and distinct functions in vesicle trafficking including endocytosis. The disturbance of pulmonary surfactant synthesis has been elucidated to be associated with asthma experimentally. Moreover, in alveolar type II (ATII) cells that synthesize pulmonary surfactant, alterations of clathrin-dependent endocytosis cause disturbance at the surfactant function, suggesting that SMAP1L, which directly interacts with clathrin, could be associated with asthma and related phenotypes. OBJECTIVE To verify our hypothesis that SMAP1L could play a role in the development of AIA, this study investigated associations between single-nucleotide polymorphisms (SNPs) of the SMAP1L gene and AIA. METHODS We conducted an association study between 19 SNPs of the SMAP1L gene and AIA in a total of 592 Korean subjects including 163 AIA and 429 aspirin-tolerant asthma (ATA) patients. Associations between polymorphisms of SMAP1L and AIA were analyzed with sex, smoking status, atopy, and body mass index as covariates. RESULTS Logistic analyses revealed that three common polymorphisms, rs2982510, rs2294752, and rs446738, were putatively associated with the increased susceptibility to AIA (p = .003, p(corr) = .004, OR = 0.24, 95% CI = 0.09-0.62 for rs2982510 and rs2294752; p = .008, p(corr) = .03, OR = 0.44, 95% CI = 0.24-0.80 for rs446738, in the recessive model). In addition, rs2982510 and rs2294752 were significantly associated with the fall of forced expiratory volume in 1 s (FEV₁) by aspirin provocation (p = .001, p(corr) = .04 in the recessive model for both SNPs). CONCLUSIONS Our findings suggest that SMAP1L might be a susceptible gene to AIA, providing a new strategy for the control of aspirin intolerance.
Collapse
Affiliation(s)
- Jason Yongha Kim
- Department of Life Science, Sogang University, Shinsu-dong, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Qi Y, Operario DJ, Oberholzer CM, Kobie JJ, Looney RJ, Georas SN, Mosmann TR. Human basophils express amphiregulin in response to T cell-derived IL-3. J Allergy Clin Immunol 2010; 126:1260-6.e4. [PMID: 21036386 PMCID: PMC2998547 DOI: 10.1016/j.jaci.2010.08.040] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 07/23/2010] [Accepted: 08/12/2010] [Indexed: 11/23/2022]
Abstract
BACKGROUND Amphiregulin, a member of the epidermal growth factor family, is expressed by activated mouse T(H)2 cells. Amphiregulin produced by mouse hematopoietic cells contributes to the elimination of a nematode infection by a type 2 effector response. OBJECTIVE To identify the human peripheral blood cell population expressing amphiregulin. METHODS Amphiregulin-expressing cells were identified by flow cytometry of cell surface markers and histologic staining. Histamine and amphiregulin in supernatants were measured by enzyme immunoassay. Quantitative real-time PCR was used to measure mRNA expression. RESULTS Stimulation of human PBMCs by anti-CD3 + anti-CD28 antibodies induced expression of amphiregulin mRNA and protein by a non-T-cell population. The amphiregulin-producing cells were basophils, as judged by morphology and expression of CD203c and CD123 (IL-3 receptor α chain). Activated mouse basophils also produced amphiregulin. Amphiregulin expression by basophils in response to anti-TCR stimulation required IL-3 produced by T cells, and IL-3 alone induced high levels of amphiregulin expression by purified basophils. Amphiregulin was expressed at much higher levels when human basophils were stimulated by IL-3 than by IgE cross-linking, whereas the opposite was true for IL-4 expression and histamine release. Heparin-binding epidermal growth factor-like growth factor was also expressed by IL-3-stimulated human basophils. PBMCs from human subjects with asthma contained significantly higher numbers of basophils able to produce amphiregulin compared with controls with or without allergy. CONCLUSION IL-3 can induce basophils to express high levels of amphiregulin, which may contribute to tissue remodeling during type 2 immune responses such as asthma.
Collapse
Affiliation(s)
- Yilin Qi
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Poulin S, Thompson C, Thivierge M, Véronneau S, McMahon S, Dubois CM, Stankova J, Rola-Pleszczynski M. Cysteinyl-leukotrienes induce vascular endothelial growth factor production in human monocytes and bronchial smooth muscle cells. Clin Exp Allergy 2010; 41:204-17. [PMID: 21121979 DOI: 10.1111/j.1365-2222.2010.03653.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Cysteinyl leukotrienes (cysLTs) are suggested to be implicated in the process of airway remodelling in asthma. OBJECTIVE We investigated the potential for cysLTs to modulate vascular endothelial growth factor (VEGF) expression, a growth factor involved in the angiogenesis of airway remodelling. METHODS VEGF mRNA and protein were quantified by real-time PCR and ELISA, respectively. VEGF promoter activation was assessed using luciferase gene-tagged promoter constructs. RESULTS We found that LTD(4) induction of VEGF in human monocytes and bronchial smooth muscle cells is cysLT1 dependent. Stimulation of HEK293 cells stably expressing cysLT1 or cysLT2 with cysLTs showed a concentration-dependent activation of the VEGF promoter and a time-dependent increase in VEGF mRNA and protein. For the cysLT1-mediated response, mutations of hypoxia-induced factor-1 (HIF-1) sites failed to reduce cysLT-induced VEGF promoter activation and 5' deletions showed that the proximal region containing one AP-1 and four specificity protein 1 (Sp1) sites was necessary. Pretreatment with inhibitors of c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK), but not p38, and an overexpression of dominant negative forms of c-Jun, c-Fos or Ras suggested the implication of mitogen-activated protein kinases and AP-1. Mutation of the AP-1-binding element failed to prevent VEGF transactivation suggesting that AP-1 might not act directly on the promoter. Moreover, inhibition of Sp1-dependent transcription by mithramycin completely inhibited VEGF promoter transactivation and VEGF mRNA expression by LTD(4) . Finally, mutations of Sp1 binding elements prevented VEGF promoter transactivation. CONCLUSION AND CLINICAL RELEVANCE Our data indicate for the first time that cysLTs can transcriptionally activate VEGF production via cysLT1 receptors, with the involvement of JNK, ERK, the AP-1 complex and Sp1. These findings suggest that cysLTs may be important in the angiogenic process of airway remodelling and potentially provide a previously unknown benefit of using cysLT1 receptor antagonists in the prevention or treatment of airway remodelling in asthma.
Collapse
Affiliation(s)
- S Poulin
- Department of Pediatrics, Division of Immunology and Allergy, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Lieberman P. Pulmonary remodeling in asthma. F1000 MEDICINE REPORTS 2010; 2. [PMID: 20948826 PMCID: PMC2954424 DOI: 10.3410/m2-74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The inflammatory and immunologic processes responsible for asthma can produce permanently fixed obstructive lung disease unresponsive to medical therapy. This can be manifested clinically by the failure of a childhood asthmatic to reach full expected lung capacity at adulthood and by an accelerated decline in pulmonary capacity in adults. Recent studies have furthered our insight into the pathologic processes underlying these changes and the potential effects of therapy to prevent them.
Collapse
Affiliation(s)
- Phil Lieberman
- University of Tennessee, College of Medicine, Departments of Medicine and Pediatrics, Division of Allergy and Immunology Memphis, TN 38120 USA
| |
Collapse
|
41
|
Tomlinson KL, Davies GCG, Sutton DJ, Palframan RT. Neutralisation of interleukin-13 in mice prevents airway pathology caused by chronic exposure to house dust mite. PLoS One 2010; 5. [PMID: 20957211 PMCID: PMC2948524 DOI: 10.1371/journal.pone.0013136] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 08/13/2010] [Indexed: 01/03/2023] Open
Abstract
Background Repeated exposure to inhaled allergen can cause airway inflammation, remodeling and dysfunction that manifests as the symptoms of allergic asthma. We have investigated the role of the cytokine interleukin-13 (IL-13) in the generation and persistence of airway cellular inflammation, bronchial remodeling and deterioration in airway function in a model of allergic asthma caused by chronic exposure to the aeroallergen House Dust Mite (HDM). Methodology/Principal Findings Mice were exposed to HDM via the intranasal route for 4 consecutive days per week for up to 8 consecutive weeks. Mice were treated either prophylactically or therapeutically with a potent neutralising anti-IL-13 monoclonal antibody (mAb) administered subcutaneously (s.c.). Airway cellular inflammation was assessed by flow cytometry, peribronchial collagen deposition by histocytochemistry and airway hyperreactivity (AHR) by invasive measurement of lung resistance (RL) and dynamic compliance (Cdyn). Both prophylactic and therapeutic treatment with an anti-IL-13 mAb significantly inhibited (P<0.05) the generation and maintenance of chronic HDM-induced airway cellular inflammation, peribronchial collagen deposition, epithelial goblet cell upregulation. AHR to inhaled methacholine was reversed by prophylactic but not therapeutic treatment with anti-IL-13 mAb. Both prophylactic and therapeutic treatment with anti-IL-13 mAb significantly reversed (P<0.05) the increase in baseline RL and the decrease in baseline Cdyn caused by chronic exposure to inhaled HDM. Conclusions/Significance These data demonstrate that in a model of allergic lung disease driven by chronic exposure to a clinically relevant aeroallergen, IL-13 plays a significant role in the generation and persistence of airway inflammation, remodeling and dysfunction.
Collapse
|
42
|
Vieira WA, Pretorius E. The impact of asthma on the gastrointestinal tract (GIT). J Asthma Allergy 2010; 3:123-30. [PMID: 21437046 PMCID: PMC3047918 DOI: 10.2147/jaa.s10592] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Indexed: 01/21/2023] Open
Abstract
The gastrointestinal tract (GIT) of vertebrates is composed of several distinct compartments and glands as well as an extensive mucosal surface. Its primary function is that of chemical and physical digestion of food and the absorption of nutrients; however, due to its continual antigen exposure, the GIT also has an important defensive immunological function. The GIT's immunological participation is facilitated by the mucosa-associated lymphoid tissues, thought to share the mucosal immunological system with the respiratory mucosa-associated lymphoid tissues. As a result of this shared mucosal immunity, it has been hypothesized that bronchial asthma may be able to affect the body's GIT in the same pathophysiological manner as the airways and lungs. Here we discuss the link between bronchial asthma and pathophysiological features in the GIT - including leukocyte influx, goblet cell alterations, fibrosis, and epithelial and villous atrophy.
Collapse
Affiliation(s)
- Warren Antonio Vieira
- Department of Anatomy, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | | |
Collapse
|
43
|
Pasaje CFA, Kim JH, Park BL, Cheong HS, Chun JY, Park TJ, Lee JS, Kim Y, Bae JS, Park JS, Yoon SH, Uh ST, Choi JS, Kim YH, Kim MK, Choi IS, Cho SH, Choi BW, Park CS, Shin HD. Association of SLC6A12 variants with aspirin-intolerant asthma in a Korean population. Ann Hum Genet 2010; 74:326-34. [PMID: 20597903 DOI: 10.1111/j.1469-1809.2010.00584.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aspirin-intolerant asthma (AIA) occurs from asthma exacerbation after exposure to aspirin. However, the underlying mechanisms of AIA occurrence are still unclear. The critical role of the solute carrier family 6 (neurotransmitter transporter, betaine/GABA) member 12 (SLC6A12) gene in GABAergic transmission, which is associated with mucus production in asthma, makes it a candidate gene for AIA association study. Eight single nucleotide polymorphisms (SNPs) in SLC6A12 were genotyped in 163 aspirin-intolerant asthma (AIA) and 429 aspirin-tolerant asthma (ATA) patients of Korean ethnicity. Associations between polymorphisms of SLC6A12 and AIA were analysed using multivariate logistic analysis. Results showed that two polymorphisms and a haplotype in SLC6A12, rs499368 (P= 0.005; P(corr)= 0.03), rs557881 (non-synonymous C10R, P= 0.007; P(corr)= 0.04), and SLC6A12_BL1_ht1 (P= 0.009; P(corr)= 0.05) respectively, were significantly associated with AIA after multiple testing corrections. In addition, SNPs of SLC6A12 were significantly associated with the fall rate of FEV(1) by aspirin provocation suggesting that SLC6A12 could affect reversibility of lung function abnormalities in AIA patients. Although these results are preliminary and future replications are needed to confirm these findings, this study showed evidence of association between variants in SLC6A12 and AIA occurrence among asthmatics in a Korean population.
Collapse
|
44
|
Kim JH, Cheong HS, Park BL, Bae JS, Jung S, Yoon SH, Park JS, Jang AS, Park SW, Uh ST, Kim YH, Hwang HK, Park CS, Shin HD. A new association between polymorphisms of the SLC6A7 gene in the chromosome 5q31-32 region and asthma. J Hum Genet 2010; 55:358-65. [PMID: 20431603 DOI: 10.1038/jhg.2010.34] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The human chromosomal 5q31-33 region has been implicated as a susceptibility locus for several immune-mediated diseases including asthma in several populations. Recently, the extraneuronal GABAergic system has been implicated as a new link to airway obstruction in asthma. In addition, the SLC6A7 gene, which is positioned at 5q31-32 and encodes the transporter for an excitatory neurotransmitter of L-proline, has never been studied for its association with asthma. In this study, resequencing of all exon, promoter region (2 kb), and exon-intron boundary regions in the SLC6A7 gene found a total of 33 single nucleotide polymorphisms (SNPs) in 24 Korean asthmatic patients. After the initial SNP survey, a total of 17 common SNPs with minor allele frequency (MAF) over 10% were genotyped in 498 asthmatic patients and 303 normal controls. Logistic analyses revealed significant associations between genetic variants of the SLC6A7 gene and asthma (P-value up to 6.0 x 10(-4); P(corr) value up to 0.009). In further regression analyses, minor alleles of intronic +11431T>C, +12213C>T and +12927A>G in linkage disequilibrium block 2 and +20113T>C in 3'UTR significantly increased the bronchodilator response in asthmatics (P-value of recessive model up to 0.008; which are not significant after multiple correction). Therefore, our findings suggest that SLC6A7 could be a susceptible gene for asthma.
Collapse
Affiliation(s)
- Jeong-Hyun Kim
- Department of Life Science, Sogang University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Giordano RJ, Edwards JK, Tuder RM, Arap W, Pasqualini R. Combinatorial ligand-directed lung targeting. PROCEEDINGS OF THE AMERICAN THORACIC SOCIETY 2009; 6:411-5. [PMID: 19687212 PMCID: PMC3266014 DOI: 10.1513/pats.200903-014aw] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 06/26/2009] [Indexed: 12/13/2022]
Abstract
Phage display of random peptide libraries is a powerful, unbiased method frequently used to discover ligands for virtually any protein of interest and to reveal functional protein-protein interaction partners. Moreover, in vivo phage display permits selection of peptides that bind specifically to different vascular beds without any previous knowledge pertaining to the nature of their corresponding receptors. Vascular targeting exploits molecular differences inherent in blood vessels within given organs and tissues, as well as diversity between normal and angiogenic blood vessels. Over the years, our group has identified phage capable of homing to lung blood vessels based on screenings using immortalized lung endothelial cells combined with in vivo selections after intravenous administration of combinatorial libraries. Peptides targeting lung vasculature have been extensively characterized and a lead homing peptide has shown interesting biological properties, bringing novel insights as to the implications of lung endothelial cell apoptosis in the pathogenesis of emphysema. We have also designed and developed targeted nanoparticles with imaging capabilities and/or drug delivery functions by combining phage display technology and elemental gold (Au) nanoparticles, constituting a promising platform for the development of therapeutic agents for imaging and treatment of lung disorders. Given the important role of the endothelium in the pathogenesis and progression of several diseases associated with the airways, ligand-directed discovery of lung vascular markers is an important milestone toward the development of future targeted therapies.
Collapse
Affiliation(s)
- Ricardo J. Giordano
- University of Texas M. D. Anderson Cancer Center, Houston, Texas; and University of Colorado Denver, School of Medicine, Aurora, Colorado
| | - Julianna K. Edwards
- University of Texas M. D. Anderson Cancer Center, Houston, Texas; and University of Colorado Denver, School of Medicine, Aurora, Colorado
| | - Rubin M. Tuder
- University of Texas M. D. Anderson Cancer Center, Houston, Texas; and University of Colorado Denver, School of Medicine, Aurora, Colorado
| | - Wadih Arap
- University of Texas M. D. Anderson Cancer Center, Houston, Texas; and University of Colorado Denver, School of Medicine, Aurora, Colorado
| | - Renata Pasqualini
- University of Texas M. D. Anderson Cancer Center, Houston, Texas; and University of Colorado Denver, School of Medicine, Aurora, Colorado
| |
Collapse
|
46
|
Kumar A, Ghosh B. Genetics of asthma: a molecular biologist perspective. Clin Mol Allergy 2009; 7:7. [PMID: 19419542 PMCID: PMC2684737 DOI: 10.1186/1476-7961-7-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2008] [Accepted: 05/06/2009] [Indexed: 12/30/2022] Open
Abstract
Asthma belongs to the category of classical allergic diseases which generally arise due to IgE mediated hypersensitivity to environmental triggers. Since its prevalence is very high in developed or urbanized societies it is also referred to as "disease of civilizations". Due to its increased prevalence among related individuals, it was understood quite long back that it is a genetic disorder. Well designed epidemiological studies reinforced these views. The advent of modern biological technology saw further refinements in our understanding of genetics of asthma and led to the realization that asthma is not a disorder with simple Mendelian mode of inheritance but a multifactorial disorder of the airways brought about by complex interaction between genetic and environmental factors. Current asthma research has witnessed evidences that are compelling researchers to redefine asthma altogether. Although no consensus exists among workers regarding its definition, it seems obvious that several pathologies, all affecting the airways, have been clubbed into one common category called asthma. Needless to say, genetic studies have led from the front in bringing about these transformations. Genomics, molecular biology, immunology and other interrelated disciplines have unearthed data that has changed the way we think about asthma now. In this review, we center our discussions on genetic basis of asthma; the molecular mechanisms involved in its pathogenesis. Taking cue from the existing data we would briefly ponder over the future directions that should improve our understanding of asthma pathogenesis.
Collapse
Affiliation(s)
- Amrendra Kumar
- Molecular Immunogenetics Laboratory, Institute of Genomics and Integrative Biology Mall Road, Delhi-110007, India.
| | | |
Collapse
|
47
|
Current Opinion in Pulmonary Medicine. Current world literature. Curr Opin Pulm Med 2009; 15:79-87. [PMID: 19077710 DOI: 10.1097/mcp.0b013e32831fb1f3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Bossé Y, Paré PD, Seow CY. Airway wall remodeling in asthma: from the epithelial layer to the adventitia. Curr Allergy Asthma Rep 2008; 8:357-66. [PMID: 18606090 DOI: 10.1007/s11882-008-0056-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Asthma is an episodic respiratory syndrome caused by several pathogenic processes. This recurrent syndrome is associated with an accelerated decline in lung function and increase in airway obstruction over time. The reduced lung function is a consequence of tissue restructuring of all the components of the airway wall: 1) epithelium metaplasia; 2) altered quantity, composition, and distribution of extracellular matrix components; 3) microvascular remodeling; and 4) increase of airway smooth muscle mass. How these structural changes affect lung functions is not entirely clear. Deeper understandings of the altered structure and related functional impairment are important for gaining insights into the mechanisms underlying asthma. This review describes the tissue remodeling observed in different compartments of the asthmatic airway wall, from the airway lumen to adventitia. The underlying mechanisms driving the remodeling processes are also briefly reviewed.
Collapse
Affiliation(s)
- Ynuk Bossé
- James Hogg iCAPTURE Centre/St. Paul's Hospital, Room 166, 1081 Burrard Street, Vancouver, BC, V6Z 1Y6, Canada.
| | | | | |
Collapse
|