1
|
Papo M, Cappy P, Degachi A, Woerther PL, Saal C, Charlotte F, Brocheriou I, Lhote R, Trefond L, Hié M, Haroche J, Pha M, Cohen-Aubart F, Mathian A, Rodriguez C, Amoura Z. Lymphadenopathy in systemic lupus erythematosus: no microbial trigger found by shotgun metagenomics in a retrospective study on 38 patients. Rheumatology (Oxford) 2025; 64:3906-3909. [PMID: 39468734 DOI: 10.1093/rheumatology/keae578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/16/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024] Open
Abstract
OBJECTIVES Lymphadenopathy is a classical manifestation of SLE flare, occurring in approximately half of patients during the course of the disease. Lymphadenopathy in SLE is frequently associated with fever. Microbial infection may play a role in SLE onset and flares. The objectives of this study were to describe lymphadenopathy in the course of SLE and identify potential infectious triggers using microbial metagenomic analysis. METHODS We performed a retrospective monocentric study of 38 patients with SLE who had lymph node biopsy at baseline or during follow-up. Shotgun metagenomics were performed in the patient's lymph node biopsy to look for microbial RNA and/or DNA. RESULTS Lymph node pathological analyses revealed follicular and/or paracortical hyperplasia in 73.7% of patients and histiocytic necrotizing lymphadenitis in 23.7%. At the time of biopsy, SLE patients exhibited fever in 29%, splenomegaly in 10%, cutaneous manifestations in 47%, polyarthritis in 32%, seritis in 13% and LN in 18%. Half of the patients (50%) had an increased CRP level, 35% had low C3, 65% had hypergammaglobulinemia. Microbial metagenomic analysis of lymph node biopsy revealed an absence of microbial DNA in 92% of patients, the presence of CMV in very small quantities in 2 patients, and the presence of HHV-7 in low quantities in a single patient. CONCLUSION Despite suggestion that certain microorganisms may play a role in the pathogenesis and flares of SLE, our microbial metagenomic analysis study did not highlight possible infectious triggering factors. Further and better-designed studies are needed to confirm these results.
Collapse
Affiliation(s)
- Matthias Papo
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupement Hospitalier Pitié-Salpêtrière, Centre National de Référence Pour le Lupus, le Syndrome des Anticorps Anti-Phospholipides et Autres Maladies Auto-Immunes Rares, Service de Médecine Interne 2, Institut E3M, Paris, France
| | - Pierre Cappy
- Genobiomics Platform, Henri Mondor Hospital (AP-HP), University of Paris-Est, Créteil, France
- Team "Viruses, Hepatology, Cancer, Institut Mondor de Recherche Biomédicale, INSERM U955, Créteil, France
| | - Alexandre Degachi
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupement Hospitalier Pitié-Salpêtrière, Centre National de Référence Pour le Lupus, le Syndrome des Anticorps Anti-Phospholipides et Autres Maladies Auto-Immunes Rares, Service de Médecine Interne 2, Institut E3M, Paris, France
| | - Paul-Louis Woerther
- Genobiomics Platform, Henri Mondor Hospital (AP-HP), University of Paris-Est, Créteil, France
| | - Caroline Saal
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Service d'Anatomopathologie, Paris, France
| | - Frédéric Charlotte
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Service d'Anatomopathologie, Paris, France
| | - Isabelle Brocheriou
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Service d'Anatomopathologie, Paris, France
| | - Raphaël Lhote
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupement Hospitalier Pitié-Salpêtrière, Centre National de Référence Pour le Lupus, le Syndrome des Anticorps Anti-Phospholipides et Autres Maladies Auto-Immunes Rares, Service de Médecine Interne 2, Institut E3M, Paris, France
| | - Ludovic Trefond
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupement Hospitalier Pitié-Salpêtrière, Centre National de Référence Pour le Lupus, le Syndrome des Anticorps Anti-Phospholipides et Autres Maladies Auto-Immunes Rares, Service de Médecine Interne 2, Institut E3M, Paris, France
| | - Miguel Hié
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupement Hospitalier Pitié-Salpêtrière, Centre National de Référence Pour le Lupus, le Syndrome des Anticorps Anti-Phospholipides et Autres Maladies Auto-Immunes Rares, Service de Médecine Interne 2, Institut E3M, Paris, France
| | - Julien Haroche
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupement Hospitalier Pitié-Salpêtrière, Centre National de Référence Pour le Lupus, le Syndrome des Anticorps Anti-Phospholipides et Autres Maladies Auto-Immunes Rares, Service de Médecine Interne 2, Institut E3M, Paris, France
| | - Micheline Pha
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupement Hospitalier Pitié-Salpêtrière, Centre National de Référence Pour le Lupus, le Syndrome des Anticorps Anti-Phospholipides et Autres Maladies Auto-Immunes Rares, Service de Médecine Interne 2, Institut E3M, Paris, France
| | - Fleur Cohen-Aubart
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupement Hospitalier Pitié-Salpêtrière, Centre National de Référence Pour le Lupus, le Syndrome des Anticorps Anti-Phospholipides et Autres Maladies Auto-Immunes Rares, Service de Médecine Interne 2, Institut E3M, Paris, France
| | - Alexis Mathian
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupement Hospitalier Pitié-Salpêtrière, Centre National de Référence Pour le Lupus, le Syndrome des Anticorps Anti-Phospholipides et Autres Maladies Auto-Immunes Rares, Service de Médecine Interne 2, Institut E3M, Paris, France
| | - Christophe Rodriguez
- Genobiomics Platform, Henri Mondor Hospital (AP-HP), University of Paris-Est, Créteil, France
- Team "Viruses, Hepatology, Cancer, Institut Mondor de Recherche Biomédicale, INSERM U955, Créteil, France
| | - Zahir Amoura
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupement Hospitalier Pitié-Salpêtrière, Centre National de Référence Pour le Lupus, le Syndrome des Anticorps Anti-Phospholipides et Autres Maladies Auto-Immunes Rares, Service de Médecine Interne 2, Institut E3M, Paris, France
| |
Collapse
|
2
|
Cannata C, Tirelli F, Meneghel A, Zulian F. COVID19-Related Onset and Relapses of Juvenile Systemic Lupus Erythematosus-Like Disease. J Paediatr Child Health 2025. [PMID: 40405448 DOI: 10.1111/jpc.70087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/13/2025] [Accepted: 05/06/2025] [Indexed: 05/24/2025]
Affiliation(s)
| | - Francesca Tirelli
- Pediatric Rheumatology Unit, Department of Woman's and Child's Health, University of Padova, Padua, Italy
| | - Alessandra Meneghel
- Pediatric Rheumatology Unit, Department of Woman's and Child's Health, University of Padova, Padua, Italy
| | - Francesco Zulian
- Pediatric Rheumatology Unit, Department of Woman's and Child's Health, University of Padova, Padua, Italy
| |
Collapse
|
3
|
Lupu A, Stoleriu G, Nedelcu AH, Perju SN, Gavrilovici C, Baciu G, Mihai CM, Chisnoiu T, Morariu ID, Grigore E, Shawais SK, Salaru DL, Revenco N, Lupu VV. Overview of Oxidative Stress in Systemic Lupus Erythematosus. Antioxidants (Basel) 2025; 14:303. [PMID: 40227251 PMCID: PMC11939823 DOI: 10.3390/antiox14030303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/16/2025] [Accepted: 02/27/2025] [Indexed: 04/15/2025] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that is frequently diagnosed in female patients, caused by multiple interacting factors. It has a complex pathogenesis which can affect almost any organ, from the kidneys to the cardiovascular, pulmonary, neurological, osteoarticular, and hematological systems. The present narrative review seeks to elucidate the role of reactive oxygen species (ROS) in the pathogenesis of SLE. The central question guiding this study is to what extent these serum protein modifications correlate with disease activity and organ damage in SLE. It is characterized by the decreased apoptosis and increased necrosis of T cells and the NETosis of granulocytes. Given the impact of an SLE diagnosis on one's life, this narrative review aims to evaluate the intricacies of oxidative stress and its relevance to the pathogenesis and treatment of the disease. Topics such as understanding processes of oxidative stress, their damaging pathways, oxidative stress biomarkers, and their role in the future assistance of clinical decisions will be discussed in the article. The accurate determination of biomarkers is taught to improve both the diagnosis and the management of the disease, while antioxidant therapy may open a new door for the treatment.
Collapse
Affiliation(s)
- Ancuta Lupu
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.L.); (C.G.); (V.V.L.)
| | - Gabriela Stoleriu
- Clinical Medical Department, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania; (G.S.); (G.B.)
| | - Alin Horatiu Nedelcu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania (S.K.S.); (D.L.S.)
| | - Sara Nadeea Perju
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.L.); (C.G.); (V.V.L.)
| | - Cristina Gavrilovici
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.L.); (C.G.); (V.V.L.)
| | - Ginel Baciu
- Clinical Medical Department, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania; (G.S.); (G.B.)
| | - Cristina Maria Mihai
- Pediatrics, Faculty of Medicine, “Ovidius” University, 900470 Constanta, Romania; (C.M.M.); (T.C.)
| | - Tatiana Chisnoiu
- Pediatrics, Faculty of Medicine, “Ovidius” University, 900470 Constanta, Romania; (C.M.M.); (T.C.)
| | - Ionela Daniela Morariu
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Ecaterina Grigore
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania (S.K.S.); (D.L.S.)
| | - Shwan Karwan Shawais
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania (S.K.S.); (D.L.S.)
| | - Delia Lidia Salaru
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania (S.K.S.); (D.L.S.)
| | - Ninel Revenco
- Pediatrics, “Nicolae Testemitanu” State University of Medicine and Pharmacy, 2004 Chisinau, Moldova;
| | - Vasile Valeriu Lupu
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.L.); (C.G.); (V.V.L.)
| |
Collapse
|
4
|
Shin JH, Pyo JY, Han M, Lee M, Lim SM, Baek JY, Lee JY, Kang JM, Jung I, Ahn JG. Incidence and disease burden of autoimmune inflammatory rheumatic diseases after non-pharmaceutical interventions in the COVID-19 era: A nationwide observational study in Korea. Int J Rheum Dis 2024; 27:e15144. [PMID: 38590055 DOI: 10.1111/1756-185x.15144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/04/2023] [Accepted: 03/26/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND Infections are considered risk factors for autoimmune inflammatory rheumatic diseases (AIRDs), the incidence of which is considered to have been impacted by the COVID-19 pandemic. The impact of non-pharmaceutical interventions (NPIs) on the incidence of AIRDs and their associated health care services and medical expenses in Korea was investigated. METHODS We included all AIRD cases reported between January 2016 and February 2021 based on the National Health Insurance Service data. We evaluated changes in incidence trends for each AIRD before and after NPI implementation (Feb 2020 to Feb 2021) using segmented regression analysis. Changes in health care utilization and medical costs for each AIRD before and after NPI implementation were also investigated. RESULTS After NPI implementation, monthly incidence rates declined significantly by 0.205 per 1 000 000 (95% confidence interval [CI], -0.308 to -0.101, p < .001) in patients with systemic lupus erythematosus (SLE). No significant changes in the incidence of all AIRDs other than SLE were observed before and after implementation. Further, annual outpatient department visits per patient were lower during implementation for all diseases, except juvenile idiopathic arthritis (JIA). The prescription days per outpatient visit increased significantly during implementation for all diseases, except JIA and ankylosing spondylitis. During implementation, the total annual medical costs per patient tended to decrease for all diseases, except JIA and mixed connective tissue disease. CONCLUSION Implementation of NPIs to contain the pandemic led to a reduction in the incidence of SLE and changed patterns of medical care utilization and treatment cost for most AIRDs.
Collapse
Affiliation(s)
- Je Hee Shin
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Jung Yoon Pyo
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Minkyung Han
- Biostatistics Collaboration Unit, Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, South Korea
| | - Myeongjee Lee
- Biostatistics Collaboration Unit, Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Min Lim
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Jee Yeon Baek
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Ji Young Lee
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Ji-Man Kang
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - InKyung Jung
- Division of Biostatistics, Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong Gyun Ahn
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
5
|
Huang N, Winans T, Wyman B, Oaks Z, Faludi T, Choudhary G, Lai ZW, Lewis J, Beckford M, Duarte M, Krakko D, Patel A, Park J, Caza T, Sadeghzadeh M, Morel L, Haas M, Middleton F, Banki K, Perl A. Rab4A-directed endosome traffic shapes pro-inflammatory mitochondrial metabolism in T cells via mitophagy, CD98 expression, and kynurenine-sensitive mTOR activation. Nat Commun 2024; 15:2598. [PMID: 38519468 PMCID: PMC10960037 DOI: 10.1038/s41467-024-46441-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 02/28/2024] [Indexed: 03/25/2024] Open
Abstract
Activation of the mechanistic target of rapamycin (mTOR) is a key metabolic checkpoint of pro-inflammatory T-cell development that contributes to the pathogenesis of autoimmune diseases, such as systemic lupus erythematosus (SLE), however, the underlying mechanisms remain poorly understood. Here, we identify a functional role for Rab4A-directed endosome traffic in CD98 receptor recycling, mTOR activation, and accumulation of mitochondria that connect metabolic pathways with immune cell lineage development and lupus pathogenesis. Based on integrated analyses of gene expression, receptor traffic, and stable isotope tracing of metabolic pathways, constitutively active Rab4AQ72L exerts cell type-specific control over metabolic networks, dominantly impacting CD98-dependent kynurenine production, mTOR activation, mitochondrial electron transport and flux through the tricarboxylic acid cycle and thus expands CD4+ and CD3+CD4-CD8- double-negative T cells over CD8+ T cells, enhancing B cell activation, plasma cell development, antinuclear and antiphospholipid autoantibody production, and glomerulonephritis in lupus-prone mice. Rab4A deletion in T cells and pharmacological mTOR blockade restrain CD98 expression, mitochondrial metabolism and lineage skewing and attenuate glomerulonephritis. This study identifies Rab4A-directed endosome traffic as a multilevel regulator of T cell lineage specification during lupus pathogenesis.
Collapse
Affiliation(s)
- Nick Huang
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Thomas Winans
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Brandon Wyman
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Zachary Oaks
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Tamas Faludi
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Gourav Choudhary
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Zhi-Wei Lai
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Joshua Lewis
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Miguel Beckford
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Manuel Duarte
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Daniel Krakko
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Akshay Patel
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Joy Park
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Tiffany Caza
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Mahsa Sadeghzadeh
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Mark Haas
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Frank Middleton
- Department of Neuroscience and Physiology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Katalin Banki
- Department of Pathology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Andras Perl
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA.
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA.
- Department of Microbiology and Immunology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA.
| |
Collapse
|
6
|
Guo CY, Jin ZK, Feng Q, Feng YM, Sun LJ, Xu CX, Zhang YL. The heterophilicic epitopes in conserved HA regions of human and avian influenza viruses can produce antibodies that bound to kidney tissue. Microb Pathog 2023; 185:106331. [PMID: 37678657 DOI: 10.1016/j.micpath.2023.106331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/27/2023] [Accepted: 09/02/2023] [Indexed: 09/09/2023]
Abstract
Influenza virus infection can cause kidney damage. However, the link between influenza infection and disease is still unclear. The purpose of this study was to analyze the relationship between heterophilic epitopes on H5N1 hemagglutinin (HA) and disease. The monoclonal antibody (mAb) against H5N1 was prepared, mAbs binding to human kidney tissue were screened, and the reactivities of mAbs with five different subtypes of influenza virus were detected. Design and synthesize the peptides according to the common amino acid sequence of these antigens, and analyze the distribution of the epitope on the crystal structure of HA. Immunological methods were used to detect whether the heterophilic epitopes could induce the production of antibodies that cross-react with kidney tissue. The results showed that H5-30 mA b binding to human kidney tissue recognized the heterophilic epitope 191-LVLWGIHHP-199 on the head of HA. The key amino acid were V192, L193, W194 and I196, which were highly conserved in human and avian influenza virus HA. The heterophilic epitope could induce mice to produce different mAbs binding to kidney tissue. Such heterophilic antibodies were also detected in the serum of the patients. It can provide materials for the mechanism of renal diseases caused by influenza virus infection.
Collapse
Affiliation(s)
- Chun Yan Guo
- Shaanxi Provincial People's Hospital, Xi'an, 710068, China; Shaanxi Engineering Research Center of Cell Immunology, Xi'an, 710068, China; Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Xi'an, 710068, China
| | - Zhan Kui Jin
- Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Qing Feng
- Shaanxi Provincial People's Hospital, Xi'an, 710068, China; Shaanxi Engineering Research Center of Cell Immunology, Xi'an, 710068, China; Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Xi'an, 710068, China
| | - Yang Meng Feng
- Shaanxi Provincial People's Hospital, Xi'an, 710068, China; Shaanxi Engineering Research Center of Cell Immunology, Xi'an, 710068, China
| | - Li Jun Sun
- Shaanxi Provincial People's Hospital, Xi'an, 710068, China; Shaanxi Engineering Research Center of Cell Immunology, Xi'an, 710068, China; Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Xi'an, 710068, China
| | - Cui Xiang Xu
- Shaanxi Provincial People's Hospital, Xi'an, 710068, China; Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Xi'an, 710068, China.
| | - Yu Lian Zhang
- Shaanxi Provincial People's Hospital, Xi'an, 710068, China.
| |
Collapse
|
7
|
Vinuesa CG, Grenov A, Kassiotis G. Innate virus-sensing pathways in B cell systemic autoimmunity. Science 2023; 380:478-484. [PMID: 37141353 DOI: 10.1126/science.adg6427] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Although all multicellular organisms have germ line-encoded innate receptors to sense pathogen-associated molecular patterns, vertebrates also evolved adaptive immunity based on somatically generated antigen receptors on B and T cells. Because randomly generated antigen receptors may also react with self-antigens, tolerance checkpoints operate to limit but not completely prevent autoimmunity. These two systems are intricately linked, with innate immunity playing an instrumental role in the induction of adaptive antiviral immunity. In this work, we review how inborn errors of innate immunity can instigate B cell autoimmunity. Increased nucleic acid sensing, often resulting from defects in metabolizing pathways or retroelement control, can break B cell tolerance and converge into TLR7-, cGAS-STING-, or MAVS-dominant signaling pathways. The resulting syndromes span a spectrum that ranges from chilblain and systemic lupus to severe interferonopathies.
Collapse
Affiliation(s)
- Carola G Vinuesa
- The Francis Crick Institute, London, UK
- China Centre for Personalised Immunology, Renji Hospital, Shanghai, China
| | | | - George Kassiotis
- The Francis Crick Institute, London, UK
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
8
|
Dhillon P, Mulholland KA, Hu H, Park J, Sheng X, Abedini A, Liu H, Vassalotti A, Wu J, Susztak K. Increased levels of endogenous retroviruses trigger fibroinflammation and play a role in kidney disease development. Nat Commun 2023; 14:559. [PMID: 36732547 PMCID: PMC9895454 DOI: 10.1038/s41467-023-36212-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Inflammation is a common feature of all forms of chronic kidney disease; however, the underlying mechanism remains poorly understood. Evolutionarily inherited endogenous retroviruses (ERVs) have the potential to trigger an immune reaction. Comprehensive RNA-sequencing of control and diseased kidneys from human and mouse disease models indicated higher expression of transposable elements (TEs) and ERVs in diseased kidneys. Loss of cytosine methylation causing epigenetic derepression likely contributes to an increase in ERV levels. Genetic deletion/pharmacological inhibition of DNA methyltransferase 1 (DNMT1) induces ERV expression. In cultured kidney tubule cells, ERVs elicit the activation of cytosolic nucleotide sensors such as RIG-I, MDA5, and STING. ERVs expressions in kidney tubules trigger RIG-I/STING, and cytokine expression, and correlate with the presence of immune cells. Genetic deletion of RIG-I or STING or treatment with reverse transcriptase inhibitor ameliorates kidney fibroinflammation. Our data indicate an important role of epigenetic derepression-induced ERV activation triggering renal fibroinflammation.
Collapse
Affiliation(s)
- Poonam Dhillon
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
| | - Kelly Ann Mulholland
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
| | - Hailong Hu
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
| | - Jihwan Park
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
| | - Xin Sheng
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
| | - Amin Abedini
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
| | - Hongbo Liu
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
| | - Allison Vassalotti
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
| | - Junnan Wu
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA.
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA.
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA.
| |
Collapse
|
9
|
Rangel SC, da Silva MD, da Silva AL, dos Santos JDMB, Neves LM, Pedrosa A, Rodrigues FM, Trettel CDS, Furtado GE, de Barros MP, Bachi ALL, Romano CM, Nali LHDS. Human endogenous retroviruses and the inflammatory response: A vicious circle associated with health and illness. Front Immunol 2022; 13:1057791. [PMID: 36518758 PMCID: PMC9744114 DOI: 10.3389/fimmu.2022.1057791] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
Human Endogenous Retroviruses (HERVs) are derived from ancient exogenous retroviral infections that have infected our ancestors' germline cells, underwent endogenization process, and were passed throughout the generations by retrotransposition and hereditary transmission. HERVs comprise 8% of the human genome and are critical for several physiological activities. Yet, HERVs reactivation is involved in pathological process as cancer and autoimmune diseases. In this review, we summarize the multiple aspects of HERVs' role within the human genome, as well as virological and molecular aspects, and their fusogenic property. We also discuss possibilities of how the HERVs are possibly transactivated and participate in modulating the inflammatory response in health conditions. An update on their role in several autoimmune, inflammatory, and aging-related diseases is also presented.
Collapse
Affiliation(s)
- Sara Coelho Rangel
- UNISA Research Center, Universidade Santo Amaro, Post-Graduation in Health Sciences, São Paulo, Brazil
| | | | - Amanda Lopes da Silva
- Laboratório de Virologia, Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo, Brazil
| | | | - Lucas Melo Neves
- UNISA Research Center, Universidade Santo Amaro, Post-Graduation in Health Sciences, São Paulo, Brazil
| | - Ana Pedrosa
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, (3004-504), Coimbra, Portugal
| | | | - Caio dos Santos Trettel
- Interdisciplinary Program in Health Sciences, Institute of Physical Activity Sciences and Sports (ICAFE), Cruzeiro do Sul University, São Paulo, Brazil
| | - Guilherme Eustáquio Furtado
- Polytechnic Institute of Coimbra, Applied Research Institute, Rua da Misericórdia, Lagar dos Cortiços – S. Martinho do Bispo, Coimbra, Portugal
| | - Marcelo Paes de Barros
- Interdisciplinary Program in Health Sciences, Institute of Physical Activity Sciences and Sports (ICAFE), Cruzeiro do Sul University, São Paulo, Brazil
| | - André Luis Lacerda Bachi
- UNISA Research Center, Universidade Santo Amaro, Post-Graduation in Health Sciences, São Paulo, Brazil
| | - Camila Malta Romano
- Laboratório de Virologia, Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo, Brazil
- Hospital das Clínicas HCFMUSP (LIM52), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
10
|
Guo Y, Yang C, Liu Y, Li T, Li H, Han J, Jia L, Wang X, Zhang B, Li J, Li L. High Expression of HERV-K (HML-2) Might Stimulate Interferon in COVID-19 Patients. Viruses 2022; 14:996. [PMID: 35632738 PMCID: PMC9143815 DOI: 10.3390/v14050996] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 12/15/2022] Open
Abstract
Background. Interferon is a marker of host antiviral immunity, which is disordered in COVID-19 patients. ERV can affect the secretion of interferon through the cGAS-STING pathway. In this study, we explored whether IFN-I and HERV-K (HML-2) were activated in COVID-19 patients and whether there was an interaction between them. Methods. We collected blood samples from COVID-19 patients and healthy controls. We first detected the expression of HERV-K (HML-2) gag, env, and pol genes and IFN-I-related genes between patients and healthy people by qPCR, synchronously detected VERO cells infected with SARS-CoV-2. Then, the chromosome distributions of highly expressed HERV-K (HML-2) gag, env, and pol genes were mapped by the next-generation sequencing results, and GO analysis was performed on the related genes. Results. We found that the HERV-K (HML-2) gag, env, and pol genes were highly expressed in COVID-19 patients and VERO cells infected with SARS-CoV-2. The interferon-related genes IFNB1, ISG15, and IFIT1 were also activated in COVID-19 patients, and GO analysis showed that HERV-K (HML-2) can regulate the secretion of interferon. Conclusions. The high expression of HERV-K (HML-2) might activate the increase of interferon in COVID-19 patients, proving that HERV-K does not only play a negative role in the human body.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Lin Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (Y.G.); (C.Y.); (Y.L.); (T.L.); (H.L.); (J.H.); (L.J.); (X.W.); (B.Z.); (J.L.)
| |
Collapse
|
11
|
Chen J, Zhang P, Chen H, Wang X, He X, Zhong J, Zheng H, Li X, Jakovlić I, Zhang Y, Chen Y, Shen B, Deng C, Wu Y. Whole-genome sequencing identifies rare missense variants of WNT16 and ERVW-1 causing the systemic lupus erythematosus. Genomics 2022; 114:110332. [PMID: 35283196 DOI: 10.1016/j.ygeno.2022.110332] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/27/2022] [Accepted: 03/06/2022] [Indexed: 01/14/2023]
Abstract
Systemic lupus erythematosus (SLE, OMIM 152700) is a rare autoimmune disease with high heritability that affects ~0.1% of the population. Previous studies have revealed several common variants with small effects in European and East Asian SLE patients. However, there is still no rare variant study on Chinese SLE patients using the whole-genome sequencing technology (WGS). Here, we designed a family based WGS study to identify novel rare variants with large effects. Based on large-scale allele frequency data from the gnomAD database, we identified rare protein-coding gene variants with disruptive and sequence-altering impacts in SLE patients. We found that the burden of rare variants was significantly higher than that of common variants in patients, suggesting a larger effect of rare variants on the SLE pathogenesis. We identified the pathogenic risk of rare missense variants with significant odds ratios (p < 0.05) in two genes, including WNT16 (NC_000007.14:g.121329757G > C, NP_057171.2:p.(Ala86Pro) and 7 g.121329760G > C, NP_057171.2:p.(Ala87Pro)), which explains five out of seven patients covering all three families but are absent from all controls, and ERVW-1 (NC_000007.14:g.92469882A > G, NP_001124397.1:p.(Leu167Pro), rs74545114; NC_000007.14:g.92469907G > A, NP_001124397.1:p.(Arg159Cys), rs201142302; NC_000007.14:g.92469919G > A, NP_001124397.1:p.(His155Tyr), rs199552228), which explains the other two patients. None of these variants were identified in any of the controls. These associations are supported by known gene expression studies in SLE patients based on literature review. We further tested the wild and mutant types using the luciferase assays and qPCR in cells. We found that WNT16 can activate the canonical Wnt/β-catenin pathway while the mutant cannot. Additionally, the wild ERVW-1 expression can be significantly up-regulated by cAMP while the mutant cannot. Our study provides the first direct genetic and in vitro evidence for the pathogenic risk of mutant WNT16 and ERVW-1, which may facilitate the design of precision therapy for SLE.
Collapse
Affiliation(s)
- Jianhai Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ping Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haidi Chen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xin Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuefei He
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Zhong
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - HuaPing Zheng
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoyu Li
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | | | - Yong Zhang
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Younan Chen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Cheng Deng
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yongkang Wu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
12
|
Budd RC, Scharer CD, Barrantes-Reynolds R, Legunn S, Fortner KA. T Cell Homeostatic Proliferation Promotes a Redox State That Drives Metabolic and Epigenetic Upregulation of Inflammatory Pathways in Lupus. Antioxid Redox Signal 2022; 36:410-422. [PMID: 34328790 PMCID: PMC8982120 DOI: 10.1089/ars.2021.0078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Significance: Numerous abnormalities in T cells have been described in patients with systemic lupus erythematosus (SLE), including lymphopenia, DNA demethylation, expression of endogenous retroviruses (ERVs), increased cell death, enlarged mitochondria, production of reactive oxygen species (ROS), and the appearance of unusual CD4-CD8- T cells. Our studies propose a model in which accelerated homeostatic proliferation of T cells promotes an epigenetic and metabolic program, leading to this cluster of abnormalities. Recent Advances: Growing knowledge of the innate immune disorders in SLE has included increased mitochondrial size and ROS production that induces oligomerization of the mitochondrial antiviral signaling (MAVS) protein and type I interferon production, as well as DNA demethylation, upregulation of inflammatory genes, and expression of certain ERVs in SLE peripheral blood mononuclear cells. All these events are part of the cellular program that occurs during homeostatic proliferation of T cells. Evidence from a murine model of SLE as well as in human SLE reveals that increased T cell homeostatic proliferation may be a driving factor in these processes. Critical Issues: Despite extensive knowledge of the myriad autoantibodies in SLE and other immune abnormalities, a cogent model has been lacking to link the numerous and seemingly disparate immune aberrations. This may partly explain the general lack of new drugs specifically for SLE in over 50 years. A more coherent model of SLE would not only unify the variety of immune abnormalities is SLE but would also suggest new therapies. Future Directions: The model of augmented homeostatic proliferation leading to increased mitochondrial mass, ROS, DNA demethylation, and upregulation of inflammatory genes suggests strategic new targets for SLE, including antioxidants and certain inhibitors of metabolism. Antioxid. Redox Signal. 36, 410-422.
Collapse
Affiliation(s)
- Ralph C Budd
- Department of Medicine, Vermont Center for Immunology and Infectious Diseases, Larner College of Medicine, The University of Vermont, Burlington, Vermont, USA
| | - Christopher D Scharer
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Ramiro Barrantes-Reynolds
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, The University of Vermont, Burlington, Vermont, USA
| | - Scott Legunn
- Department of Medicine, Vermont Center for Immunology and Infectious Diseases, Larner College of Medicine, The University of Vermont, Burlington, Vermont, USA
| | - Karen A Fortner
- Department of Medicine, Vermont Center for Immunology and Infectious Diseases, Larner College of Medicine, The University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
13
|
Stearrett N, Dawson T, Rahnavard A, Bachali P, Bendall ML, Zeng C, Caricchio R, Pérez-Losada M, Grammer AC, Lipsky PE, Crandall KA. Expression of Human Endogenous Retroviruses in Systemic Lupus Erythematosus: Multiomic Integration With Gene Expression. Front Immunol 2021; 12:661437. [PMID: 33986751 PMCID: PMC8112243 DOI: 10.3389/fimmu.2021.661437] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/12/2021] [Indexed: 11/20/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by the production of autoantibodies predominantly to nuclear material. Many aspects of disease pathology are mediated by the deposition of nucleic acid containing immune complexes, which also induce the type 1interferon response, a characteristic feature of SLE. Notably, SLE is remarkably heterogeneous, with a variety of organs involved in different individuals, who also show variation in disease severity related to their ancestries. Here, we probed one potential contribution to disease heterogeneity as well as a possible source of immunoreactive nucleic acids by exploring the expression of human endogenous retroviruses (HERVs). We investigated the expression of HERVs in SLE and their potential relationship to SLE features and the expression of biochemical pathways, including the interferon gene signature (IGS). Towards this goal, we analyzed available and new RNA-Seq data from two independent whole blood studies using Telescope. We identified 481 locus specific HERV encoding regions that are differentially expressed between case and control individuals with only 14% overlap of differentially expressed HERVs between these two datasets. We identified significant differences between differentially expressed HERVs and non-differentially expressed HERVs between the two datasets. We also characterized the host differentially expressed genes and tested their association with the differentially expressed HERVs. We found that differentially expressed HERVs were significantly more physically proximal to host differentially expressed genes than non-differentially expressed HERVs. Finally, we capitalized on locus specific resolution of HERV mapping to identify key molecular pathways impacted by differential HERV expression in people with SLE.
Collapse
Affiliation(s)
- Nathaniel Stearrett
- Computational Biology Institute, George Washington University, Washington, DC, United States
| | - Tyson Dawson
- Computational Biology Institute, George Washington University, Washington, DC, United States
| | - Ali Rahnavard
- Computational Biology Institute, George Washington University, Washington, DC, United States
- Department of Biostatistics & Bioinformatics, Milken Institute School of Public Health, George Washington University, Washington, DC, United States
| | - Prathyusha Bachali
- RILITE Research Institute and AMPEL BioSolutions, Charlottesville, VA, United States
| | - Matthew L. Bendall
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Chen Zeng
- Department of Physics, The George Washington University, Washington, DC, United States
| | - Roberto Caricchio
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Marcos Pérez-Losada
- Computational Biology Institute, George Washington University, Washington, DC, United States
- Department of Biostatistics & Bioinformatics, Milken Institute School of Public Health, George Washington University, Washington, DC, United States
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Amrie C. Grammer
- RILITE Research Institute and AMPEL BioSolutions, Charlottesville, VA, United States
| | - Peter E. Lipsky
- RILITE Research Institute and AMPEL BioSolutions, Charlottesville, VA, United States
| | - Keith A. Crandall
- Computational Biology Institute, George Washington University, Washington, DC, United States
- Department of Biostatistics & Bioinformatics, Milken Institute School of Public Health, George Washington University, Washington, DC, United States
| |
Collapse
|
14
|
Ukadike KC, Mustelin T. Implications of Endogenous Retroelements in the Etiopathogenesis of Systemic Lupus Erythematosus. J Clin Med 2021; 10:856. [PMID: 33669709 PMCID: PMC7922054 DOI: 10.3390/jcm10040856] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/09/2021] [Accepted: 02/13/2021] [Indexed: 12/12/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease. While its etiology remains elusive, current understanding suggests a multifactorial process with contributions by genetic, immunologic, hormonal, and environmental factors. A hypothesis that combines several of these factors proposes that genomic elements, the L1 retrotransposons, are instrumental in SLE pathogenesis. L1 retroelements are transcriptionally activated in SLE and produce two proteins, ORF1p and ORF2p, which are immunogenic and can drive type I interferon (IFN) production by producing DNA species that activate cytosolic DNA sensors. In addition, these two proteins reside in RNA-rich macromolecular assemblies that also contain well-known SLE autoantigens like Ro60. We surmise that cells expressing L1 will exhibit all the hallmarks of cells infected by a virus, resulting in a cellular and humoral immune response similar to those in chronic viral infections. However, unlike exogenous viruses, L1 retroelements cannot be eliminated from the host genome. Hence, dysregulated L1 will cause a chronic, but perhaps episodic, challenge for the immune system. The clinical and immunological features of SLE can be at least partly explained by this model. Here we review the support for, and the gaps in, this hypothesis of SLE and its potential for new diagnostic, prognostic, and therapeutic options in SLE.
Collapse
Affiliation(s)
| | - Tomas Mustelin
- Division of Rheumatology, Department of Medicine, University of Washington School of Medicine, 750 Republican Street, Seattle, WA 98109, USA;
| |
Collapse
|
15
|
Viral Infections and Systemic Lupus Erythematosus: New Players in an Old Story. Viruses 2021; 13:v13020277. [PMID: 33670195 PMCID: PMC7916951 DOI: 10.3390/v13020277] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/06/2021] [Accepted: 02/07/2021] [Indexed: 02/07/2023] Open
Abstract
A causal link between viral infections and autoimmunity has been studied for a long time and the role of some viruses in the induction or exacerbation of systemic lupus erythematosus (SLE) in genetically predisposed patients has been proved. The strength of the association between different viral agents and SLE is variable. Epstein-Barr virus (EBV), parvovirus B19 (B19V), and human endogenous retroviruses (HERVs) are involved in SLE pathogenesis, whereas other viruses such as Cytomegalovirus (CMV) probably play a less prominent role. However, the mechanisms of viral-host interactions and the impact of viruses on disease course have yet to be elucidated. In addition to classical mechanisms of viral-triggered autoimmunity, such as molecular mimicry and epitope spreading, there has been a growing appreciation of the role of direct activation of innate response by viral nucleic acids and epigenetic modulation of interferon-related immune response. The latter is especially important for HERVs, which may represent the molecular link between environmental triggers and critical immune genes. Virus-specific proteins modulating interaction with the host immune system have been characterized especially for Epstein-Barr virus and explain immune evasion, persistent infection and self-reactive B-cell "immortalization". Knowledge has also been expanding on key viral proteins of B19-V and CMV and their possible association with specific phenotypes such as antiphospholipid syndrome. This progress may pave the way to new therapeutic perspectives, including the use of known or new antiviral drugs, postviral immune response modulation and innate immunity inhibition. We herein describe the state-of-the-art knowledge on the role of viral infections in SLE, with a focus on their mechanisms of action and potential therapeutic targets.
Collapse
|
16
|
|
17
|
Posttranscriptional regulation of human endogenous retroviruses by RNA-binding motif protein 4, RBM4. Proc Natl Acad Sci U S A 2020; 117:26520-26530. [PMID: 33020268 DOI: 10.1073/pnas.2005237117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The human genome encodes for over 1,500 RNA-binding proteins (RBPs), which coordinate regulatory events on RNA transcripts. Most studies of RBPs have concentrated on their action on host protein-encoding mRNAs, which constitute a minority of the transcriptome. A widely neglected subset of our transcriptome derives from integrated retroviral elements, termed endogenous retroviruses (ERVs), that comprise ∼8% of the human genome. Some ERVs have been shown to be transcribed under physiological and pathological conditions, suggesting that sophisticated regulatory mechanisms to coordinate and prevent their ectopic expression exist. However, it is unknown how broadly RBPs and ERV transcripts directly interact to provide a posttranscriptional layer of regulation. Here, we implemented a computational pipeline to determine the correlation of expression between individual RBPs and ERVs from single-cell or bulk RNA-sequencing data. One of our top candidates for an RBP negatively regulating ERV expression was RNA-binding motif protein 4 (RBM4). We used photoactivatable ribonucleoside-enhanced cross-linking and immunoprecipitation to demonstrate that RBM4 indeed bound ERV transcripts at CGG consensus elements. Loss of RBM4 resulted in an elevated transcript level of bound ERVs of the HERV-K and -H families, as well as increased expression of HERV-K envelope protein. We pinpointed RBM4 regulation of HERV-K to a CGG-containing element that is conserved in the LTRs of HERV-K-10, -K-11, and -K-20, and validated the functionality of this site using reporter assays. In summary, we systematically identified RBPs that may regulate ERV function and demonstrate a role for RBM4 in controlling ERV expression.
Collapse
|
18
|
Panova V, Attig J, Young GR, Stoye JP, Kassiotis G. Antibody-induced internalisation of retroviral envelope glycoproteins is a signal initiation event. PLoS Pathog 2020; 16:e1008605. [PMID: 32453763 PMCID: PMC7274472 DOI: 10.1371/journal.ppat.1008605] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/05/2020] [Accepted: 05/05/2020] [Indexed: 12/31/2022] Open
Abstract
As obligate parasites, viruses highjack, modify and repurpose the cellular machinery for their own replication. Viral proteins have, therefore, evolved biological functions, such as signalling potential, that alter host cell physiology in ways that are still incompletely understood. Retroviral envelope glycoproteins interact with several host proteins, extracellularly with their cellular receptor and anti-envelope antibodies, and intracellularly with proteins of the cytoskeleton or sorting, endocytosis and recirculation pathways. Here, we examined the impact of endogenous retroviral envelope glycoprotein expression and interaction with host proteins, particularly antibodies, on the cell, independently of retroviral infection. We found that in the commonly used C57BL/6 substrains of mice, where murine leukaemia virus (MLV) envelope glycoproteins are expressed by several endogenous MLV proviruses, the highest expressed MLV envelope glycoprotein is under the control of an immune-responsive cellular promoter, thus linking MLV envelope glycoprotein expression with immune activation. We further showed that antibody ligation induces extensive internalisation from the plasma membrane into endocytic compartments of MLV envelope glycoproteins, which are not normally subject to constitutive endocytosis. Importantly, antibody binding and internalisation of MLV envelope glycoproteins initiates signalling cascades in envelope-expressing murine lymphocytic cell lines, leading to cellular activation. Similar effects were observed by MLV envelope glycoprotein ligation by its cellular receptor mCAT-1, and by overexpression in human lymphocytic cells, where it required an intact tyrosine-based YXXΦ motif in the envelope glycoprotein cytoplasmic tail. Together, these results suggest that signalling potential is a general property of retroviral envelope glycoproteins and, therefore, a target for intervention. The outcome of viral infection depends on the balance between host immunity and the ability of the virus to avoid, evade or subvert it. The envelope glycoproteins of diverse viruses, including retroviruses, are displayed on the surface of virions and of infected cells and thus constitute the major target of the host antibody response. Antibody responses are elicited not only against infectious viruses we acquire during our life-history, but also against the numerous retroviral envelopes encoded by our genome and acquired during our species’ life-history. In turn, viruses have evolved ways to reduce exposure of their envelope glycoproteins to the host immune system, including constitutive endocytosis or antibody-induced internalisation. Using murine leukaemia viruses as models of infectious and endogenous retroviruses, we show that antibody binding to retroviral envelopes induces extensive internalisation of the envelope-antibody complex and initiates signalling cascades, ultimately leading to transcriptional activation of envelope glycoprotein-expressing lymphocytes. We further show that expression of endogenous retroviral envelopes is coupled to physiological lymphocyte activation, integrating them with the immune response. These findings reveal an unexpected layer of interaction between the host antibody response and retroviral envelope glycoproteins, which could be considered immune receptors.
Collapse
Affiliation(s)
- Veera Panova
- Retroviral Immunology, The Francis Crick Institute, United Kingdom
| | - Jan Attig
- Retroviral Immunology, The Francis Crick Institute, United Kingdom
| | - George R. Young
- Retrovirus-Host Interactions, The Francis Crick Institute, London, United Kingdom
| | - Jonathan P. Stoye
- Retrovirus-Host Interactions, The Francis Crick Institute, London, United Kingdom
- Department of Medicine, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - George Kassiotis
- Retroviral Immunology, The Francis Crick Institute, United Kingdom
- Department of Medicine, Faculty of Medicine, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
19
|
Talotta R, Atzeni F, Laska MJ. Retroviruses in the pathogenesis of systemic lupus erythematosus: Are they potential therapeutic targets? Autoimmunity 2020; 53:177-191. [PMID: 32321325 DOI: 10.1080/08916934.2020.1755962] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The pathogenesis of systemic lupus erythematosus (SLE) is characterised by the hyper-activation of immunologic pathways related to the antiviral response. Exogenous and endogenous retroviruses, by integrating their DNA templates in the host cell genome, may epigenetically control the transcription of genes involved in the immune response. Furthermore, their nucleic acids or neo-synthesized proteins could stimulate the sensor molecules placed upstream the inflammatory cascade. Exogenous retroviruses, like human immunodeficiency virus, have been associated to SLE-like manifestations or to a fair SLE diagnosis. In addition, there is some evidence confirming a pathogenic role of human endogenous retroviruses in SLE. In line with these data, the use of antiretroviral agents could represent an attractive opportunity in the future therapeutic algorithms of this disease, but studies are still missing.
Collapse
Affiliation(s)
- Rossella Talotta
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University Hospital "Gaetano Martino", Messina, Italy
| | - Fabiola Atzeni
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University Hospital "Gaetano Martino", Messina, Italy
| | | |
Collapse
|
20
|
Godavarthy A, Kelly R, Jimah J, Beckford M, Caza T, Fernandez D, Huang N, Duarte M, Lewis J, Fadel HJ, Poeschla EM, Banki K, Perl A. Lupus-associated endogenous retroviral LTR polymorphism and epigenetic imprinting promote HRES-1/RAB4 expression and mTOR activation. JCI Insight 2020; 5:134010. [PMID: 31805010 PMCID: PMC7030820 DOI: 10.1172/jci.insight.134010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022] Open
Abstract
Overexpression and long terminal repeat (LTR) polymorphism of the HRES‑1/Rab4 human endogenous retrovirus locus have been associated with T cell activation and disease manifestations in systemic lupus erythematosus (SLE). Although genomic DNA methylation is diminished overall in SLE, its role in HRES-1/Rab4 expression is unknown. Therefore, we determined how lupus-associated polymorphic rs451401 alleles of the LTR regulate transcription from the HRES-1/Rab4 promoter and thus affect T cell activation. The results showed that cytosine-119 is hypermethylated while cytosine-51 of the promoter and the LTR enhancer are hypomethylated in SLE. Pharmacologic or genetic inactivation of DNA methyltransferase 1 augmented the expression of HRES-1/Rab4. The minimal promoter was selectively recognized by metabolic stress sensor NRF1 when cytosine-119 but not cytosine-51 was methylated, and NRF1 stimulated HRES-1/Rab4 expression in human T cells. In turn, IRF2 and PSIP1 bound to the LTR enhancer and exerted control over HRES-1/Rab4 expression in rs451401 genotype- and methylation-dependent manners. The LTR enhancer conferred markedly greater expression of HRES-1/Rab4 in subjects with rs451401CC over rs451401GG alleles that in turn promoted mechanistic target of rapamycin (mTOR) activation upon T cell receptor stimulation. HRES-1/Rab4 alone robustly activated mTOR in human T cells. These findings identify HRES-1/Rab4 as a methylation- and rs451401 allele-dependent transducer of environmental stress and controller of T cell activation.
Collapse
Affiliation(s)
| | - Ryan Kelly
- Division of Rheumatology, Department of Medicine
| | - John Jimah
- Division of Rheumatology, Department of Medicine
| | | | - Tiffany Caza
- Division of Rheumatology, Department of Medicine
- Department of Microbiology and Immunology, and
| | - David Fernandez
- Division of Rheumatology, Department of Medicine
- Department of Microbiology and Immunology, and
| | - Nick Huang
- Division of Rheumatology, Department of Medicine
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, College of Medicine, Syracuse, New York, USA
| | | | - Joshua Lewis
- Division of Rheumatology, Department of Medicine
| | - Hind J. Fadel
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, New York, USA
| | - Eric M. Poeschla
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, New York, USA
| | - Katalin Banki
- Department of Pathology, State University of New York, Upstate Medical University, College of Medicine, Syracuse, New York, USA
| | - Andras Perl
- Division of Rheumatology, Department of Medicine
- Department of Microbiology and Immunology, and
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, College of Medicine, Syracuse, New York, USA
| |
Collapse
|
21
|
García Pérez JL, Alarcón-Riquelme ME. The TREX1 Dinosaur Bites the Brain through the LINE. Cell Stem Cell 2019; 21:287-288. [PMID: 28886359 DOI: 10.1016/j.stem.2017.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In this issue of Cell Stem Cell, Thomas et al. (2017) define the nature of accumulated ssDNA present in the neuron and astrocyte cytoplasm of TREX1 mutated stem cell-derived organoids. Accumulated ssDNAs are derived from LINE-1 endogenous retroelements, providing new clues as to the development of Aicardi-Goutières syndrome in the neural system.
Collapse
Affiliation(s)
- José Luis García Pérez
- Pfizer - University of Granada - Andalusian Government Center for Genomics and Oncological Research (GENYO), PTS, 18016, Granada, Spain; Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Marta E Alarcón-Riquelme
- Pfizer - University of Granada - Andalusian Government Center for Genomics and Oncological Research (GENYO), PTS, 18016, Granada, Spain; Unit for Chronic Inflammatory Diseases, Institute for Environmental Medicine, Karolinska Institute, Solna, 171 77, Sweden.
| |
Collapse
|
22
|
PD-1 immunobiology in systemic lupus erythematosus. J Autoimmun 2018; 97:1-9. [PMID: 30396745 DOI: 10.1016/j.jaut.2018.10.025] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/22/2018] [Accepted: 10/28/2018] [Indexed: 01/22/2023]
Abstract
Programmed death (PD)-1 receptors and their ligands have been identified in the pathogenesis and development of systemic lupus erythematosus (SLE). Two key pathways, toll-like receptor and type I interferon, are significant to SLE pathogenesis and modulate the expression of PD-1 and the ligands (PD-L1, PD-L2) through activation of NF-κB and/or STAT1. These cell signals are regulated by tyrosine kinase (Tyro, Axl, Mer) receptors (TAMs) that are aberrantly activated in SLE. STAT1 and NF-κB also exhibit crosstalk with the aryl hydrocarbon receptor (AHR). Ligands to AHR are identified in SLE etiology and pathogenesis. These ligands also regulate the activity of the Epstein-Barr virus (EBV), which is an identified factor in SLE and PD-1 immunobiology. AHR is important in the maintenance of immune tolerance and the development of distinct immune subsets, highlighting a potential role of AHR in PD-1 immunobiology. Understanding the functions of AHR ligands as well as AHR crosstalk with STAT1, NF-κB, and EBV may provide insight into disease development, the PD-1 axis and immunotherapies that target PD-1 and its ligand, PD-L1.
Collapse
|
23
|
Tu J, Wang X, Geng G, Xue X, Lin X, Zhu X, Sun L. The Possible Effect of B-Cell Epitopes of Epstein-Barr Virus Early Antigen, Membrane Antigen, Latent Membrane Protein-1, and -2A on Systemic Lupus Erythematosus. Front Immunol 2018; 9:187. [PMID: 29497417 PMCID: PMC5819577 DOI: 10.3389/fimmu.2018.00187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 01/22/2018] [Indexed: 12/31/2022] Open
Abstract
This study was aimed to evaluate the role of B-cell epitopes of Epstein-Barr virus (EBV) Early antigen protein D (EA), envelope glycoprotein GP340/membrane antigen (MA), latent membrane protein (LMP)-1, and LMP-2A in systemic lupus erythematosus (SLE). B-cell epitopes were predicted by analyzing secondary structure, transmembrane domains, surface properties, and homological comparison. 60 female mice were randomized equally into 12 groups: 1-10 groups were immunized by epitope peptides (EPs) 1-10, respectively, while 11 and 12 groups were PBS and Keyhole limpet hemocyanin (KLH) control groups. Immunoglobulin G (IgG) and autoantibody to nuclear antigen (ANA) concentrations in mice serum were determined at week 8. Indirect levels of EP1-10 were further detected by enzyme-linked immuno sorbent assay (ELISA) in 119 SLE patients and 64 age- and gender-matched health controls (HCs). 10 probable EBV EA, MA, LMP-1, and LMP-2A B-cell epitopes related to SLE self-antigens were predicted and corresponding EP1-10 were synthesized. IgG concentrations at week 8 were increased in EP1-10 and KLH groups compared with PBS group in mice; while ANA levels were elevated in only EP1-4, EP6-7, and EP10 groups compared to KLH group by ELISA, and ANA-positive rates were increased in only EP1, EP2, EP4, EP6, and EP10 groups by indirect immunofluorescence assay. EP1-4, EP6, and EP10 indirect levels were increased in SLE patients than HCs, while EP1, EP3, EP6, and EP9 were correlated with SLE disease activity index score. In conclusion, EBV EA, MA, LMP-1, and LMP-2A B-cell EPs increased SLE-related autoantibodies in mice, and their indirect levels might be served as potential biomarkers for SLE diagnosis and disease severity.
Collapse
Affiliation(s)
- Jianxin Tu
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaobing Wang
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guannan Geng
- Central Laboratory, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangyang Xue
- Department of Microbiology and Immunology, Basic Medical College of Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Lin
- Medical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaochun Zhu
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Li Sun
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
24
|
Sumner RP, Thorne LG, Fink DL, Khan H, Milne RS, Towers GJ. Are Evolution and the Intracellular Innate Immune System Key Determinants in HIV Transmission? Front Immunol 2017; 8:1246. [PMID: 29056936 PMCID: PMC5635324 DOI: 10.3389/fimmu.2017.01246] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/19/2017] [Indexed: 01/05/2023] Open
Abstract
HIV-1 is the single most important sexually transmitted disease in humans from a global health perspective. Among human lentiviruses, HIV-1 M group has uniquely achieved pandemic levels of human-to-human transmission. The requirement to transmit between hosts likely provides the strongest selective forces on a virus, as without transmission, there can be no new infections within a host population. Our perspective is that evolution of all of the virus-host interactions, which are inherited and perpetuated from host-to-host, must be consistent with transmission. For example, CXCR4 use, which often evolves late in infection, does not favor transmission and is therefore lost when a virus transmits to a new host. Thus, transmission inevitably influences all aspects of virus biology, including interactions with the innate immune system, and dictates the biological niche in which the virus exists in the host. A viable viral niche typically does not select features that disfavor transmission. The innate immune response represents a significant selective pressure during the transmission process. In fact, all viruses must antagonize and/or evade the mechanisms of the host innate and adaptive immune systems that they encounter. We believe that viewing host-virus interactions from a transmission perspective helps us understand the mechanistic details of antiviral immunity and viral escape. This is particularly true for the innate immune system, which typically acts from the very earliest stages of the host-virus interaction, and must be bypassed to achieve successful infection. With this in mind, here we review the innate sensing of HIV, the consequent downstream signaling cascades and the viral restriction that results. The centrality of these mechanisms to host defense is illustrated by the array of countermeasures that HIV deploys to escape them, despite the coding constraint of a 10 kb genome. We consider evasion strategies in detail, in particular the role of the HIV capsid and the viral accessory proteins highlighting important unanswered questions and discussing future perspectives.
Collapse
Affiliation(s)
- Rebecca P. Sumner
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Lucy G. Thorne
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Doug L. Fink
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Hataf Khan
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Richard S. Milne
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Greg J. Towers
- Division of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
25
|
Ordaz JD, Damayanti NP, Irudayaraj JMK. Toxicological effects of trichloroethylene exposure on immune disorders. Immunopharmacol Immunotoxicol 2017; 39:305-317. [PMID: 28828896 DOI: 10.1080/08923973.2017.1364262] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Trichloroethylene (TCE) is one of the most common ground water contaminants in USA. Even though recent regulation mandates restricted utilization of TCE, its use is not completely prohibited, especially in industrial and manufacturing processes. The risk of TCE on human health is an ongoing field of study and its implications on certain diseases such as cancer has been recognized and well-documented. However, the link between TCE and immune disorders is still an under-studied area. Studies on the risk of TCE on the immune system is usually focused on certain immune class disorders, but consensus on the impact of TCE on the immune system has not been established. This review presents representative work that investigates the effect of TCE on immune disorders and highlights future opportunities. We attempt to provide a broader perspective of the risks of TCE on the immune system and human health.
Collapse
Affiliation(s)
- Josue D Ordaz
- a Department of Agricultural & Biological Engineering , Bindley Bioscience Center, Purdue University , West Lafayette , IN , USA.,b Indiana University School of Medicine , Indianapolis , IN , USA
| | - Nur P Damayanti
- a Department of Agricultural & Biological Engineering , Bindley Bioscience Center, Purdue University , West Lafayette , IN , USA.,b Indiana University School of Medicine , Indianapolis , IN , USA
| | - Joseph M K Irudayaraj
- a Department of Agricultural & Biological Engineering , Bindley Bioscience Center, Purdue University , West Lafayette , IN , USA
| |
Collapse
|
26
|
Mavragani CP, Sagalovskiy I, Guo Q, Nezos A, Kapsogeorgou EK, Lu P, Liang Zhou J, Kirou KA, Seshan SV, Moutsopoulos HM, Crow MK. Expression of Long Interspersed Nuclear Element 1 Retroelements and Induction of Type I Interferon in Patients With Systemic Autoimmune Disease. Arthritis Rheumatol 2017; 68:2686-2696. [PMID: 27338297 DOI: 10.1002/art.39795] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 06/16/2016] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Increased expression of type I interferon (IFN) and a broad signature of type I IFN-induced gene transcripts are observed in patients with systemic lupus erythematosus (SLE) and other systemic autoimmune diseases. To identify disease-relevant triggers of the type I IFN pathway, this study sought to investigate whether endogenous virus-like genomic repeat elements, normally silent, are expressed in patients with systemic autoimmune disease, and whether these retroelements could activate an innate immune response and induce type I IFN. METHODS Expression of type I IFN and long interspersed nuclear element 1 (LINE-1; L1) was studied by polymerase chain reaction, Western blotting, and immunohistochemistry in samples of kidney tissue from patients with lupus nephritis and minor salivary gland (MSG) tissue from patients with primary Sjögren's syndrome (SS). Induction of type I IFN by L1 was investigated by transfection of plasmacytoid dendritic cells (PDCs) or monocytes with an L1-encoding plasmid or L1 RNA. Involvement of innate immune pathways and altered L1 methylation were assessed. RESULTS Levels of L1 messenger RNA transcripts were increased in lupus nephritis kidneys and in MSG tissue from patients with SS. Transcript expression correlated with the expression of type I IFN and L1 DNA demethylation. L1 open-reading frame 1/p40 protein and IFNβ were expressed in MSG ductal epithelial cells and in lupus nephritis kidneys, and IFNα was detected in infiltrating PDCs. Transfection of PDCs or monocytes with L1-encoding DNA or RNA induced type I IFN. Inhibition of Toll-like receptor 7 (TLR-7)/TLR-8 reduced the induction of IFNα by L1 in PDCs, and an inhibitor of IKKε/TANK-binding kinase 1 abrogated the induction of type I IFN by L1 RNA in monocytes. CONCLUSION L1 genomic repeat elements represent endogenous nucleic acid triggers of the type I IFN pathway in SLE and SS and may contribute to initiation or amplification of autoimmune disease.
Collapse
Affiliation(s)
- Clio P Mavragani
- Hospital for Special Surgery, New York, New York, and National and Kapodistrian University of Athens, Athens, Greece
| | | | - Qiu Guo
- Hospital for Special Surgery, New York, New York
| | - Adrianos Nezos
- National and Kapodistrian University of Athens, Athens, Greece
| | | | - Pin Lu
- Hospital for Special Surgery, New York, New York
| | | | | | | | | | - Mary K Crow
- Hospital for Special Surgery, New York, New York.
| |
Collapse
|
27
|
Abstract
Throughout the animal kingdom, p53 genes function to restrain mobile elements and recent observations indicate that transposons become derepressed in human cancers. Together, these emerging lines of evidence suggest that cancers driven by p53 mutations could represent "transpospoathies," i.e. disease states linked to eruptions of mobile elements. The transposopathy hypothesis predicts that p53 acts through conserved mechanisms to contain transposon movement, and in this way, prevents tumor formation. How transposon eruptions provoke neoplasias is not well understood but, from a broader perspective, this hypothesis also provides an attractive framework to explore unrestrained mobile elements as inciters of late-onset idiopathic disease. Also see the video abstract here.
Collapse
Affiliation(s)
- Annika Wylie
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Amanda E Jones
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John M Abrams
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
28
|
Perl A. Editorial: LINEing Up to Boost Interferon Production: Activation of Endogenous Retroviral DNA in Autoimmunity. Arthritis Rheumatol 2016; 68:2568-2570. [PMID: 27338170 PMCID: PMC5083194 DOI: 10.1002/art.39794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 06/16/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Andras Perl
- State University of New York, Upstate Medical University, Syracuse.
| |
Collapse
|
29
|
Abstract
Retrotransposons have generated about 40 % of the human genome. This review examines the strategies the cell has evolved to coexist with these genomic "parasites", focussing on the non-long terminal repeat retrotransposons of humans and mice. Some of the restriction factors for retrotransposition, including the APOBECs, MOV10, RNASEL, SAMHD1, TREX1, and ZAP, also limit replication of retroviruses, including HIV, and are part of the intrinsic immune system of the cell. Many of these proteins act in the cytoplasm to degrade retroelement RNA or inhibit its translation. Some factors act in the nucleus and involve DNA repair enzymes or epigenetic processes of DNA methylation and histone modification. RISC and piRNA pathway proteins protect the germline. Retrotransposon control is relaxed in some cell types, such as neurons in the brain, stem cells, and in certain types of disease and cancer, with implications for human health and disease. This review also considers potential pitfalls in interpreting retrotransposon-related data, as well as issues to consider for future research.
Collapse
Affiliation(s)
- John L. Goodier
- McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA 212051
| |
Collapse
|
30
|
Kassiotis G, Stoye JP. Immune responses to endogenous retroelements: taking the bad with the good. Nat Rev Immunol 2016; 16:207-19. [PMID: 27026073 DOI: 10.1038/nri.2016.27] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ultimate form of parasitism and evasion of host immunity is for the parasite genome to enter the germ line of the host species. Retroviruses have invaded the host germ line on the grandest scale, and this is evident in the extraordinary abundance of endogenous retroelements in the genome of all vertebrate species that have been studied. Many of these endogenous retroelements have retained viral characteristics; some also the capacity to replicate and, consequently, the potential to trigger host innate and adaptive immune responses. However, although retroelements are mainly recognized for their pathogenic potential, recent evidence suggests that this 'enemy within' may also have beneficial roles in tuning host immune reactivity. In this Review, we discuss how the immune system recognizes and is shaped by endogenous retroelements.
Collapse
Affiliation(s)
- George Kassiotis
- Retroviral Immunology, the Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, UK.,Department of Medicine, Faculty of Medicine, Imperial College London, London W2 1PG, UK
| | - Jonathan P Stoye
- Department of Medicine, Faculty of Medicine, Imperial College London, London W2 1PG, UK.,Retrovirus-Host Interactions, the Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, UK
| |
Collapse
|
31
|
Weindel CG, Richey LJ, Bolland S, Mehta AJ, Kearney JF, Huber BT. B cell autophagy mediates TLR7-dependent autoimmunity and inflammation. Autophagy 2016; 11:1010-24. [PMID: 26120731 DOI: 10.1080/15548627.2015.1052206] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease, defined by loss of B cell self-tolerance that results in production of antinuclear antibodies (ANA) and chronic inflammation. While the initiating events in lupus development are not well defined, overexpression of the RNA-recognizing toll-like receptor (TLR)7 has been linked to SLE in humans and mice. We postulated that autophagy plays an essential role in TLR7 activation of B cells for the induction of SLE by delivering RNA ligands to the endosomes, where this innate immune receptor resides. To test this hypothesis, we compared SLE development in Tlr7 transgenic (Tg) mice with or without B cell-specific ablation of autophagy (Cd19-Cre Atg5(f/f)). We observed that in the absence of B cell autophagy the 2 hallmarks of SLE, ANA and inflammation, were eliminated, thus curing these mice of lupus. This was also evident in the significantly extended survival of the autophagy-deficient mice compared to Tlr7.1 Tg mice. Furthermore, glomerulonephritis was ameliorated, and the serum levels of inflammatory cytokines in the knockout (KO) mice were indistinguishable from those of control mice. These data provide direct evidence that B cells require TLR7-dependent priming through an autophagy-dependent mechanism before autoimmunity is induced, thereafter involving many cell types. Surprisingly, hyper-IgM production persisted in Tlr7.1 Tg mice in the absence of autophagy, likely involving a different activation pathway than the production of autoantibodies. Furthermore, these mice still presented with anemia, but responded with a striking increase in extramedullary hematopoiesis (EMH), possibly due to the absence of pro-inflammatory cytokines.
Collapse
Key Words
- ANA, anti-nuclear Ab
- Ab, antibody
- Atg5 KO
- B cells
- B6, C57BL/6J
- BM, bone marrow
- BMD, BM derived
- BMDM, BMD macrophages
- BMDmDCs, BMD myeloid dendritic cells
- BMDpDCs, BMD plasmacytoid dendritic cells
- CFS3, colony stimulating factor 3 (granulocyte)
- CSF2, colony stimulating factor 2 (granulocyte-macrophage)
- DC, dendritic cell
- ELISA, enzyme-linked immunosorbent assay
- ELISpot, enzyme-linked immunospot assay
- EMH, extramedullary hematopoiesis
- FOB, follicular B cells
- GMP, granulocyte-macrophage progenitor
- H&E, hematoxylin and eosin stain
- IFN, interferon
- IHC, immunohistochemistry
- IL, interleukin
- Irf7, interferon regulatory factor 7
- KO, knockout
- LAP, LC3-associated phagocytosis
- LPS, lipopolysaccharide
- MZB, marginal zone B cells
- MZP, marginal zone precursor B cells
- NEAA, nonessential amino acids
- O/N, overnight
- PAS, periodic acid-Schiff
- PC, phosphocholine
- PCV, packed cell volume
- PEMs, peritoneal macrophages
- RBC, red blood cell
- RT, room temperature
- SLE, systemic lupus erythematosus
- T1B, transitional 1 B cells
- TLR, toll-like receptor
- TLR7
- Tg, transgenic
- WT, wild type
- YAA, Y-linked autoimmune accelerator
- autoimmunity
- ds, double stranded
- inflammation
- lupus
- mDC, myeloid DC
- pDC, plasmacytoid DC
- ss, single stranded
Collapse
Affiliation(s)
- Chi G Weindel
- a Graduate Program in Genetics; Sackler School of Graduate Biomedical Sciences; Tufts University School of Medicine ; Boston , MA , USA
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Over 40% of mammalian genomes comprise the products of reverse transcription. Among such retrotransposed sequences are those characterized by the presence of long terminal repeats (LTRs), including the endogenous retroviruses (ERVs), which are inherited genetic elements closely resembling the proviruses formed following exogenous retrovirus infection. Sequences derived from ERVs make up at least 8 to 10% of the human and mouse genomes and range from ancient sequences that predate mammalian divergence to elements that are currently still active. In this chapter we describe the discovery, classification and origins of ERVs in mammals and consider cellular mechanisms that have evolved to control their expression. We also discuss the negative effects of ERVs as agents of genetic disease and cancer and review examples of ERV protein domestication to serve host functions, as in placental development. Finally, we address growing evidence that the gene regulatory potential of ERV LTRs has been exploited multiple times during evolution to regulate genes and gene networks. Thus, although recently endogenized retroviral elements are often pathogenic, those that survive the forces of negative selection become neutral components of the host genome or can be harnessed to serve beneficial roles.
Collapse
|
33
|
Dema B, Charles N. Autoantibodies in SLE: Specificities, Isotypes and Receptors. Antibodies (Basel) 2016; 5:antib5010002. [PMID: 31557984 PMCID: PMC6698872 DOI: 10.3390/antib5010002] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/09/2015] [Accepted: 12/11/2015] [Indexed: 12/23/2022] Open
Abstract
Systemic Lupus Erythematosus (SLE) is characterized by a wide spectrum of auto-antibodies which recognize several cellular components. The production of these self-reactive antibodies fluctuates during the course of the disease and the involvement of different antibody-secreting cell populations are considered highly relevant for the disease pathogenesis. These cells are developed and stimulated through different ways leading to the secretion of a variety of isotypes, affinities and idiotypes. Each of them has a particular mechanism of action binding to a specific antigen and recognized by distinct receptors. The effector responses triggered lead to a chronic tissue inflammation. DsDNA autoantibodies are the most studied as well as the first in being characterized for its pathogenic role in Lupus nephritis. However, others are of growing interest since they have been associated with other organ-specific damage, such as anti-NMDAR antibodies in neuropsychiatric clinical manifestations or anti-β2GP1 antibodies in vascular symptomatology. In this review, we describe the different auto-antibodies reported to be involved in SLE. How autoantibody isotypes and affinity-binding to their antigen might result in different pathogenic responses is also discussed.
Collapse
Affiliation(s)
- Barbara Dema
- Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine site Bichat, Laboratoire d'Excellence Inflamex, DHU FIRE, Paris 75018, France.
| | - Nicolas Charles
- Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine site Bichat, Laboratoire d'Excellence Inflamex, DHU FIRE, Paris 75018, France.
| |
Collapse
|
34
|
Shaabani N, Honke N, Dolff S, Görg B, Khairnar V, Merches K, Duhan V, Metzger S, Recher M, Barthuber C, Hardt C, Proksch P, Häussinger D, Witzke O, Lang PA, Lang KS. IFN-γ licenses CD11b(+) cells to induce progression of systemic lupus erythematosus. J Autoimmun 2015; 62:11-21. [PMID: 26094774 DOI: 10.1016/j.jaut.2015.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/11/2015] [Accepted: 05/18/2015] [Indexed: 12/11/2022]
Abstract
Autoantibodies are a hallmark of autoimmune diseases, such as rheumatoid arthritis, autoimmune hepatitis, and systemic lupus erythematosus (SLE). High titers of anti-nuclear antibodies are used as surrogate marker for SLE, however their contribution to pathogenesis remains unclear. Using murine model of SLE and human samples, we studied the effect of immune stimulation on relapsing of SLE. Although autoantibodies bound to target cells in vivo, only additional activation of CD8(+) T cells converted this silent autoimmunity into overt disease. In mice as well as in humans CD8(+) T cells derived IFN-γ enhanced expression of Fc-receptors on CD11b(+) cells. High expression of Fc-receptors allowed CD11b(+) cells to bind to antibody covered target cells and to destroy them in vivo. We found that autoantibodies induce clinically relevant disease when adaptive immunity, specific for disease non-related antigen, is activated.
Collapse
Affiliation(s)
- Namir Shaabani
- Institute of Immunology, Medical Faculty, University Duisburg-Essen, Essen, Germany; Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Nadine Honke
- Institute of Immunology, Medical Faculty, University Duisburg-Essen, Essen, Germany; Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sebastian Dolff
- Department for Nephrology, Medical Faculty, University Duisburg-Essen, Essen, Germany
| | - Boris Görg
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Vishal Khairnar
- Institute of Immunology, Medical Faculty, University Duisburg-Essen, Essen, Germany
| | - Katja Merches
- Institute of Immunology, Medical Faculty, University Duisburg-Essen, Essen, Germany
| | - Vikas Duhan
- Institute of Immunology, Medical Faculty, University Duisburg-Essen, Essen, Germany
| | - Sabine Metzger
- Metabolomics Facility, Cologne Biocenter, University Cologne, Cologne, Germany
| | - Mike Recher
- Clinic for Primary Immunodeficiency, Medical Outpatient Unit and Immunodeficiency Lab, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Carmen Barthuber
- Department of Laboratory Medicine, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Cornelia Hardt
- Institute of Immunology, Medical Faculty, University Duisburg-Essen, Essen, Germany
| | - Peter Proksch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Dieter Häussinger
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Oliver Witzke
- Department for Nephrology, Medical Faculty, University Duisburg-Essen, Essen, Germany
| | - Philipp A Lang
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; Department of Molecular Medicine II, Heinrich-Heine-University Düssledorf, Düsseldorf, Germany
| | - Karl S Lang
- Institute of Immunology, Medical Faculty, University Duisburg-Essen, Essen, Germany; Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
35
|
Update on infections and vaccinations in systemic lupus erythematosus and Sjögren's syndrome. Curr Opin Rheumatol 2015; 26:528-37. [PMID: 25022358 DOI: 10.1097/bor.0000000000000084] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW To provide an update on infections in systemic lupus erythematosus (SLE) and Sjögren's syndrome, particularly addressing their role as triggers of autoimmunity, their impact on mortality, the main microorganisms, the approaches to differential diagnosis with disease flares and recommendations for vaccination. RECENT FINDINGS New mechanisms for autoimmunity triggered by Epstein-Barr virus and human commensal microbiota have been described. The increased risk for tuberculosis was recently demonstrated for the first time in Sjögren's syndrome. C-reactive protein was reported to be a more sensitive and specific marker for bacterial infections in SLE than procalcitonin and phagocyte-specific S100A8/A9 protein. Inactivated vaccines are well tolerated and efficacy was demonstrated for influenza vaccine. Immunogenicity is generally reduced but adequate in SLE. Prednisone or immunosuppressants are associated with decreased vaccine serological response, whereas hydroxicloroquine seems to improve vaccine immunogenicity. Other infection-preventive measures for these diseases include antimalarials and prophylaxis for tuberculosis or Pneumocystis jirovecii. SUMMARY Advances in the role of infectious agents as triggers for SLE and Sjögren's syndrome have provided new insights into disease development. Knowledge on vaccine immunogenicity, safety and efficacy has improved with evidence of a generally reduced but adequate response for inactivated vaccines in SLE. Other preventive measures comprise infection prophylaxis and antimalarials.
Collapse
|
36
|
Nelson P, Rylance P, Roden D, Trela M, Tugnet N. Viruses as potential pathogenic agents in systemic lupus erythematosus. Lupus 2014; 23:596-605. [PMID: 24763543 DOI: 10.1177/0961203314531637] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genetic and environmental factors appear to contribute to the pathogenesis of systemic lupus erythematosus (SLE). Viral infections have been reported to be associated with the disease. A number of exogenous viruses have been linked to the pathogenesis of SLE, of which Epstein-Barr virus (EBV) has the most evidence of an aetiological candidate. In addition, human endogenous retroviruses (HERV), HRES-1, ERV-3, HERV-E 4-1, HERV-K10 and HERV-K18 have also been implicated in SLE. HERVs are incorporated into human DNA, and thus can be inherited. HERVs may trigger an autoimmune reaction through molecular mimicry, since homology of amino acid sequences between HERV proteins and SLE autoantigens has been demonstrated. These viruses can also be influenced by oestrogen, DNA hypomethylation, and ultraviolet light (UVB) exposure which have been shown to enhance HERV activation or expression. Viral infection, or other environmental factors, could induce defective apoptosis, resulting in loss of immune tolerance. Further studies in SLE and other autoimmune diseases are needed to elucidate the contribution of both exogenous and endogenous viruses in the development of autoimmunity. If key peptide sequences could be identified as molecular mimics between viruses and autoantigens, then this might offer the possibility of the development of blocking peptides or antibodies as therapeutic agents in SLE and other autoimmune conditions.
Collapse
Affiliation(s)
- P Nelson
- 1Molecular Immunology Research Group, Research Institute in Healthcare Science, University of Wolverhampton, UK
| | | | | | | | | |
Collapse
|
37
|
Ahn J, Ruiz P, Barber GN. Intrinsic self-DNA triggers inflammatory disease dependent on STING. THE JOURNAL OF IMMUNOLOGY 2014; 193:4634-42. [PMID: 25261479 DOI: 10.4049/jimmunol.1401337] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Inflammatory diseases such as Aicardi-Goutières syndrome and severe systemic lupus erythematosus are generally lethal disorders that have been traced to defects in the exonuclease TREX1 (DNase III). Mice lacking TREX1 similarly die at an early age through comparable symptoms, including inflammatory myocarditis, through chronic activation of the stimulator of IFN genes (STING) pathway. In this study, we demonstrate that phagocytes rather than myocytes are predominantly responsible for causing inflammation, an outcome that could be alleviated following adoptive transfer of normal bone marrow into TREX1(-/-) mice. TREX1(-/-) macrophages did not exhibit significant augmented ability to produce proinflammatory cytokines compared with normal macrophages following exposure to STING-dependent activators, but rather appeared chronically stimulated by genomic DNA. These results shed molecular insight into inflammation and provide concepts for the design of new therapies.
Collapse
Affiliation(s)
- Jeonghyun Ahn
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136; and
| | - Phillip Ruiz
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Glen N Barber
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136; and
| |
Collapse
|
38
|
Esposito S, Bosis S, Semino M, Rigante D. Infections and systemic lupus erythematosus. Eur J Clin Microbiol Infect Dis 2014; 33:1467-1475. [PMID: 24715155 DOI: 10.1007/s10096-014-2098-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 03/20/2014] [Indexed: 12/25/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that presents a protean spectrum of clinical manifestations, and may affect any organ. The typical course of SLE is insidious, slow, and progressive, with potential exacerbations and remissions, and even dramatically acute and rapidly fatal outcomes. Recently, infections have been shown to be highly associated with the onset and/or exacerbations of SLE, and their possible causative and/or protective role has been largely emphasized in the medical literature. However, the etiopathogenesis of SLE is still obscure and far from being completely elucidated. Among infections, particularly Epstein-Barr virus (EBV), parvovirus B19, retrovirus, and cytomegalovirus (CMV) infections might play a pivotal pathogenetic role. The multifaceted interactions between infections and autoimmunity reveal many possibilities for either causative or protective associations. Indeed, some infections, primarily protozoan infections, might confer protection from autoimmune processes, depending on the unique interaction between the microorganism and host. Further studies are needed in order to demonstrate that infectious agents might, indeed, be causative of SLE, and to address the potential clinical sequelae of infections in the field of autoimmunity.
Collapse
Affiliation(s)
- S Esposito
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Commenda n. 9, 20122, Milano, Italy,
| | | | | | | |
Collapse
|
39
|
Rigante D, Mazzoni MB, Esposito S. The cryptic interplay between systemic lupus erythematosus and infections. Autoimmun Rev 2014; 13:96-102. [PMID: 24051103 DOI: 10.1016/j.autrev.2013.09.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 09/01/2013] [Indexed: 10/26/2022]
Abstract
The underlying trigger for systemic lupus erythematosus (SLE) has remained elusive, and multiple interacting environmental and genetic factors likely contribute to the onset and perpetuation of the disease. Among environmental influences, infectious agents have been suggested to play a pivotal role in driving autoimmunity pathogenesis via structural or functional molecular mimicry, the expression of proteins that induce cross-reactive responses against self-antigens, and the aberrant activation or apoptosis of different immune system cells in the context of a peculiar genetic background. The increased viral load and changing subsets of lytic or latent viral proteins observed in selected populations with SLE have indicated that common viruses, such as Epstein-Barr virus, parvovirus B19, cytomegalovirus, retroviruses and transfusion-transmitted viruses, might be triggers for this disease. Alternatively, some infectious agents might exert a protective effect from autoimmunity. Existing achievements have not been fully investigated and clarified. Thus, the aim of this review is to analyze the medical literature within the last 15years regarding the role of infectious agents in the pathogenesis of SLE.
Collapse
Affiliation(s)
- Donato Rigante
- Institute of Pediatrics, Università Cattolica Sacro Cuore, Rome, Italy
| | | | | |
Collapse
|
40
|
Caza T, Oaks Z, Perl A. Interplay of Infections, Autoimmunity, and Immunosuppression in Systemic Lupus Erythematosus. Int Rev Immunol 2014; 33:330-63. [DOI: 10.3109/08830185.2013.863305] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
41
|
Abstract
Oxidative stress is increased in systemic lupus erythematosus (SLE), and it contributes to immune system dysregulation, abnormal activation and processing of cell-death signals, autoantibody production and fatal comorbidities. Mitochondrial dysfunction in T cells promotes the release of highly diffusible inflammatory lipid hydroperoxides, which spread oxidative stress to other intracellular organelles and through the bloodstream. Oxidative modification of self antigens triggers autoimmunity, and the degree of such modification of serum proteins shows striking correlation with disease activity and organ damage in SLE. In T cells from patients with SLE and animal models of the disease, glutathione, the main intracellular antioxidant, is depleted and serine/threonine-protein kinase mTOR undergoes redox-dependent activation. In turn, reversal of glutathione depletion by application of its amino acid precursor, N-acetylcysteine, improves disease activity in lupus-prone mice; pilot studies in patients with SLE have yielded positive results that warrant further research. Blocking mTOR activation in T cells could conceivably provide a well-tolerated and inexpensive alternative approach to B-cell blockade and traditional immunosuppressive treatments. Nevertheless, compartmentalized oxidative stress in self-reactive T cells, B cells and phagocytic cells might serve to limit autoimmunity and its inhibition could be detrimental. Antioxidant therapy might also be useful in ameliorating damage caused by other treatments. This Review thus seeks to critically evaluate the complexity of oxidative stress and its relevance to the pathogenesis and treatment of SLE.
Collapse
|
42
|
Young GR, Stoye JP, Kassiotis G. Are human endogenous retroviruses pathogenic? An approach to testing the hypothesis. Bioessays 2013; 35:794-803. [PMID: 23864388 PMCID: PMC4352332 DOI: 10.1002/bies.201300049] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A number of observations have led researchers to postulate that, despite being replication-defective, human endogenous retroviruses (HERVs) may have retained the potential to cause or contribute to disease. However, mechanisms of HERV pathogenicity might differ substantially from those of modern infectious retroviruses or of the infectious precursors of HERVs. Therefore, novel pathways of HERV involvement in disease pathogenesis should be investigated. Recent technological advances in sequencing and bioinformatics are making this task increasingly feasible. The accumulating knowledge of HERV biology may also facilitate the definition and general acceptance of criteria that establish HERV pathogenicity. Here, we explore possible mechanisms whereby HERVs may cause disease and examine the evidence that either has been or should be obtained in order to decisively address the pathogenic potential of HERVs.
Collapse
Affiliation(s)
- George R Young
- Division of Virology, MRC National Institute for Medical Research, London, UK
| | | | | |
Collapse
|
43
|
Molecular mechanism for p202-mediated specific inhibition of AIM2 inflammasome activation. Cell Rep 2013; 4:327-39. [PMID: 23850291 DOI: 10.1016/j.celrep.2013.06.024] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 05/14/2013] [Accepted: 06/19/2013] [Indexed: 02/05/2023] Open
Abstract
Mouse p202 containing two hemopoietic expression, interferon inducibility, nuclear localization (HIN) domains antagonizes AIM2 inflammasome signaling and potentially modifies lupus susceptibility. We found that only HIN1 of p202 binds double-stranded DNA (dsDNA), while HIN2 forms a homotetramer. Crystal structures of HIN1 revealed that dsDNA is bound on face opposite the site used in AIM2 and IFI16. The structure of HIN2 revealed a dimer of dimers, the face analogous to the HIN1 dsDNA binding site being a dimerization interface. Electron microscopy imaging showed that HIN1 is flexibly linked to HIN2 in p202, and tetramerization provided enhanced avidity for dsDNA. Surprisingly, HIN2 of p202 interacts with the AIM HIN domain. We propose that this results in a spatial separation of the AIM2 pyrin domains, and indeed p202 prevented the dsDNA-dependent clustering of apoptosis-associated speck-like protein containing caspase recruitment domain (ASC) and AIM2 inflammasome activation. We hypothesize that while p202 was evolutionarily selected to limit AIM2-mediated inflammation in some mouse strains, the same mechanism contributes to increased interferon production and lupus susceptibility.
Collapse
|
44
|
Lossius A, Johansen JN, Torkildsen Ø, Vartdal F, Holmøy T. Epstein-Barr virus in systemic lupus erythematosus, rheumatoid arthritis and multiple sclerosis—association and causation. Viruses 2013; 4:3701-30. [PMID: 23342374 PMCID: PMC3528287 DOI: 10.3390/v4123701] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Epidemiological data suggest that the Epstein-Barr virus (EBV) is associated with several autoimmune diseases, such as systemic lupus erythematosus, rheumatoid arthritis and multiple sclerosis. However, it is not clear whether EBV plays a role in the pathogenesis of these diseases, and if so, by which mechanisms the virus may contribute. In this review, we discuss possible viral and immunological mechanisms that might explain associations between EBV and autoimmune diseases and whether these associations represent causes or effects of inflammation and autoimmunity.
Collapse
Affiliation(s)
- Andreas Lossius
- Institute of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway.
| | | | | | | | | |
Collapse
|
45
|
Tugnet N, Rylance P, Roden D, Trela M, Nelson P. Human Endogenous Retroviruses (HERVs) and Autoimmune Rheumatic Disease: Is There a Link? Open Rheumatol J 2013; 7:13-21. [PMID: 23750183 PMCID: PMC3636489 DOI: 10.2174/1874312901307010013] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 01/14/2013] [Accepted: 01/16/2013] [Indexed: 12/25/2022] Open
Abstract
Autoimmune rheumatic diseases, such as RA and SLE, are caused by genetic, hormonal and environmental factors. Human Endogenous Retroviruses (HERVs) may be triggers of autoimmune rheumatic disease. HERVs are fossil viruses that began to be integrated into the human genome some 30-40 million years ago and now make up 8% of the genome. Evidence suggests HERVs may cause RA and SLE, among other rheumatic diseases. The key mechanisms by which HERVS are postulated to cause disease include molecular mimicry and immune dysregulation. Identification of HERVs in RA and SLE could lead to novel treatments for these chronic conditions. This review summarises the evidence for HERVs as contributors to autoimmune rheumatic disease and the clinical implications and mechanisms of pathogenesis are discussed.
Collapse
Affiliation(s)
- Nicola Tugnet
- Department of Rheumatology, Royal Wolverhampton Hospitals NHS Trust, Wolverhampton, UK
| | | | | | | | | |
Collapse
|
46
|
Nakkuntod J, Sukkapan P, Avihingsanon Y, Mutirangura A, Hirankarn N. DNA methylation of human endogenous retrovirus in systemic lupus erythematosus. J Hum Genet 2013; 58:241-9. [PMID: 23466822 DOI: 10.1038/jhg.2013.6] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Previous studies have reported that T cells from active systemic lupus erythematosus (SLE) patients contained global hypomethylation and demethylation at the promoter of several genes, which may contribute to the pathogenesis of the disease. Currently there are scarce data on methylation of retroelements in patients with SLE. We estimated and compared the methylated levels of human endogenous retroviruses (HERV)-E and HERV-K in normal and SLE CD3+CD4+ T lymphocytes, CD8+ T and B lymphocytes by using combined bisulfite restriction analysis-interspersed repetitive sequences (COBRA-IRS). HERV-E LTR2C methylation level in CD3+CD4+ T lymphocytes of active SLE was significantly lower than inactive SLE and normal controls (P=0.023 and 0.035, respectively). Surprisingly, HERV-K LTR5_Hs hypomethylation was significantly detected in CD3+CD4+ T lymphocytes from patients with inactive SLE when compared with the active SLE and normal controls (P=0.027 and 0.002, respectively). Demethylation of HERV-K LTR5_Hs in B cells was also detected when compared with the normal controls (P=0.048). Furthermore, the hypomethylation of HERV-E LTR2C in CD3+CD4+ T lymphocytes was positively correlated with lymphopenia in active SLE, whereas the hypomethylation of HERV-K LTR5_Hs was significantly correlated with complement activity and Systemic Lupus Erythematosus Disease Activity Index score. In summary, for each lymphocyte subset in patients with SLE, IRS hypomethylation was found to be type specific. Further studies are needed to confirm and explain these observations.
Collapse
Affiliation(s)
- Jeerawat Nakkuntod
- Medical Microbiology Interdisciplinary Program, Graduate School Chulalongkorn University, Bangkok, Thailand
| | | | | | | | | |
Collapse
|
47
|
Abstract
Human adenoviruses function as genetic models and vectors for gene therapy. Upper respiratory, gastrointestinal or ocular infections usually have mild course without any major complication in immunocompetent individuals. However, reactivation from latency in immunocompromised patients may lead to death. Depending on the underlying diseases, different adenovirus serotypes damage different organs. In children with severe combined immunodeficiency syndrome, serotypes of species A and C induce lung, liver or bladder inflammation. Paediatric hematopoietic stem cell transplantation is frequently followed by serotype 31-induced pneumonia, enteritis, cystitis. B serotypes can destroy transplanted organs. In AIDS patients, D and novel F serotypes cause enteritis. Recombinants of B serotypes induce urinary tract infections. Progression of lymphomas, tumours, and systemic lupus erythematosus might be facilitated by immunosuppressive effects of adenoviruses. As far as the diagnostic work-up of adenoviruses, detection of viral DNA and virus copy number is predictive, while serology testing is quite unreliable. For treatment, cidofovir derivates, ribavirin, ganciclovir, vidarabine and microRNA have been used.
Collapse
Affiliation(s)
- Balázs Stercz
- Semmelweis Egyetem, Általános Orvostudományi Kar Orvosi Mikrobiológiai Intézet Budapest
| | | | | |
Collapse
|
48
|
Brodziak A, Ziółko E, Muc-Wierzgoń M, Nowakowska-Zajdel E, Kokot T, Klakla K. The role of human endogenous retroviruses in the pathogenesis of autoimmune diseases. Med Sci Monit 2012; 18:RA80-8. [PMID: 22648263 PMCID: PMC3560723 DOI: 10.12659/msm.882892] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
This paper presents a new, recently formulated theory, which concerns the etiopathological process of autoimmune diseases. This theory takes into account the existence in the human genome, since approximately 40 million years, of so-called human endogenous retroviruses (HERVs), which are transmitted to descendants “vertically” by the germ cells. It was recently established that these generally silent sequences perform some physiological roles, but occasionally become active and influence the development of some chronic diseases like diabetes, some neoplasms, chronic diseases of the nervous system (eg, sclerosis multiplex), schizophrenia and autoimmune diseases. We present a short synopsis of immunological processes involved in the pathogenesis of autoimmune diseases, such as molecular mimicry, epitope spreading and activation of the superantigen. We then focus on experimental findings related to systemic lupus erythematosus, rheumatoid arthritis, Sjögren’s syndrome and some diseases of hepar and otorhinal tissues. We conclude the outline of this new model of the development of chronic diseases and indicate the conclusions important for the teaching of the basis of pathology.
Collapse
Affiliation(s)
- Andrzej Brodziak
- Department of Internal Diseases, Faculty of Public Health, Medical University of Silesia, Bytom, Poland.
| | | | | | | | | | | |
Collapse
|
49
|
Wen Z, Xu L, Xu W, Xiong S. Production of anti-double-stranded DNA antibodies in activated lymphocyte derived DNA induced lupus model was dependent on CD4+ T cells. Lupus 2012; 21:508-16. [DOI: 10.1177/0961203311434940] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Our previous study demonstrated that activated lymphocyte derived DNA (ALD-DNA) could function as an autoantigen to induce production of anti-double-stranded DNA (anti-dsDNA) antibodies in syngeneic BALB/c mice. Here we carefully evaluated the potential role of T cells in the induction of anti-dsDNA antibody. We demonstrated that ALD-DNA could effectively induce production of anti-dsDNA antibodies in vivo and in vitro. In contrast, ALD-DNA could not induce the generation of anti-dsDNA antibodies in nude mice. We further showed that in vivo depletion of CD3+ T cells blocked the induction of anti-dsDNA antibodies in BALB/c mice. Notably, we demonstrated that CD4+ but not CD8+ T cells conferred ALD-DNA to induce anti-dsDNA antibodies. Finally, we demonstrated that adoptive transfer of CD4+ T cells could rescue ALD-DNA induced anti-dsDNA antibodies in nude mice. Our results suggested that T helper cells were required for ALD-DNA to induce anti-dsDNA antibodies. These findings could further our understanding about the immunogenic properties of DNA and throw new light on SLE pathogenesis.
Collapse
Affiliation(s)
- Z Wen
- Institute for Immunobiology and Department of Immunology, Shanghai Medical College of Fudan University, Shanghai, China
| | - L Xu
- Institute for Immunobiology and Department of Immunology, Shanghai Medical College of Fudan University, Shanghai, China
| | - W Xu
- Institute for Immunobiology and Department of Immunology, Shanghai Medical College of Fudan University, Shanghai, China
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Jiangsu, China
| | - S Xiong
- Institute for Immunobiology and Department of Immunology, Shanghai Medical College of Fudan University, Shanghai, China
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Jiangsu, China
| |
Collapse
|
50
|
Berencsi III G. Fetal and Neonatal Illnesses Caused or Influenced by Maternal Transplacental IgG and/or Therapeutic Antibodies Applied During Pregnancy. MATERNAL FETAL TRANSMISSION OF HUMAN VIRUSES AND THEIR INFLUENCE ON TUMORIGENESIS 2012. [PMCID: PMC7121401 DOI: 10.1007/978-94-007-4216-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The human fetus is protected by the mother’s antibodies. At the end of the pregnancy, the concentration of maternal antibodies is higher in the cord blood, than in the maternal circulation. Simultaneously, the immune system of the fetus begins to work and from the second trimester, fetal IgM is produced by the fetal immune system specific to microorganisms and antigens passing the maternal-fetal barrier. The same time the fetal immune system has to cope and develop tolerance and TREG cells to the maternal microchimeric cells, latent virus-carrier maternal cells and microorganisms transported through the maternal-fetal barrier. The maternal phenotypic inheritance may hide risks for the newborn, too. Antibody mediated enhancement results in dengue shock syndrome in the first 8 month of age of the baby. A series of pathologic maternal antibodies may elicit neonatal illnesses upon birth usually recovering during the first months of the life of the offspring. Certain antibodies, however, may impair the fetal or neonatal tissues or organs resulting prolonged recovery or initiating prolonged pathological processes of the children. The importance of maternal anti-idiotypic antibodies are believed to prime the fetal immune system with epitopes of etiologic agents infected the mother during her whole life before pregnancy and delivery. The chemotherapeutical and biological substances used for the therapy of the mother will be transcytosed into the fetal body during the last two trimesters of pregnancy. The long series of the therapeutic monoclonal antibodies and conjugates has not been tested systematically yet. The available data are summarised in this chapter. The innate immunity plays an important role in fetal defence. The concentration of interferon is relative high in the placenta. This is probably one reason, why the therapeutic interferon treatment of the mother does not impair the fetal development.
Collapse
Affiliation(s)
- György Berencsi III
- , Division of Virology, National Center for Epidemiology, Gyáli Street 2-6, Budapest, 1096 Hungary
| |
Collapse
|