1
|
Nagy RN, Makkos A, Baranyai T, Giricz Z, Szabó M, Kravcsenko-Kiss B, Bereczki Z, Ágg B, Puskás LG, Faragó N, Schulz R, Gyöngyösi M, Lukovic D, Varga ZV, Görbe A, Ferdinandy P. Cardioprotective microRNAs (protectomiRs) in a pig model of acute myocardial infarction and cardioprotection by ischaemic conditioning: MiR-450a. Br J Pharmacol 2025; 182:396-416. [PMID: 39294819 DOI: 10.1111/bph.17313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 06/05/2024] [Accepted: 07/04/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND AND PURPOSE Cardioprotective miRNAs (protectomiRs) are promising therapeutic tools. Here, we aimed to identify protectomiRs in a translational porcine model of acute myocardial infarction (AMI) and to validate their cardiocytoprotective effect. EXPERIMENTAL APPROACH ProtectomiR candidates were selected after systematic analysis of miRNA expression changes in cardiac tissue samples from a closed-chest AMI model in pigs subjected to sham operation, AMI and ischaemic preconditioning, postconditioning or remote preconditioning, respectively. Cross-species orthologue protectomiR candidates were validated in simulated ischaemia-reperfusion injury (sI/R) model of isolated rat ocardiomyocytes and in human AC16 cells as well. For miR-450a, we performed target prediction and analysed the potential mechanisms of action by GO enrichment and KEGG pathway analysis. KEY RESULTS Out of the 220 detected miRNAs, four were up-regulated and 10 were down-regulated due to all three conditionings versus AMI. MiR-450a and miR-451 mimics at 25 nM were protective in rat cardiomyocytes, and miR-450a showed protection in human cardiomyocytes as well. MiR-450a has 3987 predicted mRNA targets in pigs, 4279 in rats and 8328 in humans. Of these, 607 genes are expressed in all three species. A total of 421 common enriched GO terms were identified in all three species, whereas KEGG pathway analysis revealed 13 common pathways. CONCLUSION AND IMPLICATIONS This is the first demonstration that miR-450a is associated with cardioprotection by ischaemic conditioning in a clinically relevant porcine model and shows cardiocytoprotective effect in human cardiomyocytes, making it a promising drug candidate. The mechanism of action of miR-450a involves multiple cardioprotective pathways. LINKED ARTICLES This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
Grants
- OTKA ANN 107803 Hungarian Scientific Research Fund
- OTKA K-105555 Hungarian Scientific Research Fund
- 2018-1.3.1-VKE-2018-00024 National Research, Development and Innovation Office
- NVKP-16-1-2016-0017 National Heart Program National Research, Development and Innovation Office
- OTKA-FK 134751 National Research, Development and Innovation Office
- TKP/ITM/NFKIH National Research, Development and Innovation Office
- OTKAK21-139105 National Research, Development and Innovation Office
- RRF-2.3.1-21-2022-00003 European Union
- EU COST Action CardioRNA.eu, Cardioprotection.eu
- 88öu1 Austrian-Hungarian Action Scholarship
- 739593 European Union's Horizon 2020
- 2019-1.1.1-PIACI-KFI-2019-00367 National Research, Development and Innovation Fund
- 2020-1.1.5-GYORSÍTÓSÁV-2021-00011 National Research, Development and Innovation Fund
- ÚNKP-20-5 National Research, Development and Innovation Fund
- ÚNKP-23-4-II-SE-34 National Research, Development and Innovation Fund
- János Bolyai Research Scholarship of Hungarian Academy of Sciences
Collapse
Affiliation(s)
- Regina N Nagy
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - András Makkos
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Tamás Baranyai
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Zoltán Giricz
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Márta Szabó
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Bernadett Kravcsenko-Kiss
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Zoltán Bereczki
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Bence Ágg
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - László G Puskás
- Laboratory of Functional Genomics, Biological Research Centre, Szeged, Hungary
| | - Nóra Faragó
- Laboratory of Functional Genomics, Biological Research Centre, Szeged, Hungary
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University of Giessen, Giessen, Germany
| | - Mariann Gyöngyösi
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Dominika Lukovic
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Zoltán V Varga
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, Budapest, Hungary
| | - Anikó Görbe
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Péter Ferdinandy
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| |
Collapse
|
2
|
Mao L, Liu S, Chen Y, Huang H, Ding F, Deng L. Engineered exosomes: a potential therapeutic strategy for septic cardiomyopathy. Front Cardiovasc Med 2024; 11:1399738. [PMID: 39006168 PMCID: PMC11239395 DOI: 10.3389/fcvm.2024.1399738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024] Open
Abstract
Septic cardiomyopathy, a life-threatening complication of sepsis, can cause acute heart failure and carry a high mortality risk. Current treatments have limitations. Fortunately, engineered exosomes, created through bioengineering technology, may represent a potential new treatment method. These exosomes can both diagnose and treat septic cardiomyopathy, playing a crucial role in its development and progression. This article examines the strategies for using engineered exosomes to protect cardiac function and treat septic cardiomyopathy. It covers three innovative aspects: exosome surface modification technology, the use of exosomes as a multifunctional drug delivery platform, and plant exosome-like nanoparticle carriers. The article highlights the ability of exosomes to deliver small molecules, proteins, and drugs, summarizing several RNA molecules, proteins, and drugs beneficial for treating septic cardiomyopathy. Although engineered exosomes are a promising biotherapeutic carrier, they face challenges in clinical application, such as understanding the interaction mechanism with host cells, distribution within the body, metabolism, and long-term safety. Further research is essential, but engineered exosomes hold promise as an effective treatment for septic cardiomyopathy.
Collapse
Affiliation(s)
- Lixia Mao
- Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Songtao Liu
- Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yongxia Chen
- Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Huiyi Huang
- Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Fenghua Ding
- Outpatient Appointment Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Liehua Deng
- Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
3
|
Sun X, Wu S, Mao C, Qu Y, Xu Z, Xie Y, Jiang D, Song Y. Therapeutic Potential of Hydrogen Sulfide in Ischemia and Reperfusion Injury. Biomolecules 2024; 14:740. [PMID: 39062455 PMCID: PMC11274451 DOI: 10.3390/biom14070740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Ischemia-reperfusion (I/R) injury, a prevalent pathological condition in medical practice, presents significant treatment challenges. Hydrogen sulfide (H2S), acknowledged as the third gas signaling molecule, profoundly impacts various physiological and pathophysiological processes. Extensive research has demonstrated that H2S can mitigate I/R damage across multiple organs and tissues. This review investigates the protective effects of H2S in preventing I/R damage in the heart, brain, liver, kidney, intestines, lungs, stomach, spinal cord, testes, eyes, and other tissues. H2S provides protection against I/R damage by alleviating inflammation and endoplasmic reticulum stress; inhibiting apoptosis, oxidative stress, and mitochondrial autophagy and dysfunction; and regulating microRNAs. Significant advancements in understanding the mechanisms by which H2S reduces I/R damage have led to the development and synthesis of H2S-releasing agents such as diallyl trisulfide-loaded mesoporous silica nanoparticles (DATS-MSN), AP39, zofenopril, and ATB-344, offering a new therapeutic avenue for I/R injury.
Collapse
Affiliation(s)
- Xutao Sun
- Department of Typhoid, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Siyu Wu
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (S.W.); (C.M.); (Y.Q.); (Z.X.)
| | - Caiyun Mao
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (S.W.); (C.M.); (Y.Q.); (Z.X.)
| | - Ying Qu
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (S.W.); (C.M.); (Y.Q.); (Z.X.)
| | - Zihang Xu
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (S.W.); (C.M.); (Y.Q.); (Z.X.)
| | - Ying Xie
- Department of Synopsis of the Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Deyou Jiang
- Department of Synopsis of the Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Yunjia Song
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (S.W.); (C.M.); (Y.Q.); (Z.X.)
| |
Collapse
|
4
|
Troise D, Infante B, Mercuri S, Piccoli C, Lindholm B, Stallone G. Hypoxic Inducible Factor Stabilization in Pericytes beyond Erythropoietin Production: The Good and the Bad. Antioxidants (Basel) 2024; 13:537. [PMID: 38790642 PMCID: PMC11118908 DOI: 10.3390/antiox13050537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
The paracrine signaling pathways for the crosstalk between pericytes and endothelial cells are essential for the coordination of cell responses to challenges such as hypoxia in both healthy individuals and pathological conditions. Ischemia-reperfusion injury (IRI), one of the causes of cellular dysfunction and death, is associated with increased expression of genes involved in cellular adaptation to a hypoxic environment. Hypoxic inducible factors (HIFs) have a central role in the response to processes initiated by IRI not only linked to erythropoietin production but also because of their participation in inflammation, angiogenesis, metabolic adaptation, and fibrosis. While pericytes have an essential physiological function in erythropoietin production, a lesser-known role of HIF stabilization during IRI is that pericytes' HIF expression could influence vascular remodeling, cell loss and organ fibrosis. Better knowledge of mechanisms that control functions and consequences of HIF stabilization in pericytes beyond erythropoietin production is advisable for the development of therapeutic strategies to influence disease progression and improve treatments. Thus, in this review, we discuss the dual roles-for good or bad-of HIF stabilization during IRI, focusing on pericytes, and consequences in particular for the kidneys.
Collapse
Affiliation(s)
- Dario Troise
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Renal Medicine and Baxter Novum, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Barbara Infante
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Silvia Mercuri
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Claudia Piccoli
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Bengt Lindholm
- Renal Medicine and Baxter Novum, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
5
|
Yang Y, Yao Z, Wang H, Jia S, Wang M, Wang S, Yun D. Severe inflammation in C57/BL6 mice leads to prolonged cognitive impairment by initiating the IL-1β/TRPM2 pathway. Int Immunopharmacol 2024; 128:111380. [PMID: 38176340 DOI: 10.1016/j.intimp.2023.111380] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/26/2023] [Accepted: 12/11/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Sepsis could lead to chronic cognitive impairment by unclear molecular mechanisms. Transient receptor potential melastatin-2 (TRPM2) is essential against immunity-related activities and inflammation. Our study attempted to decipher the relationship between cognitive impairment caused by severe inflammation and TRPM2 expression levels. METHODS Severe inflammation was induced by intraperitoneally injecting C57/BL6 mice with a high dosage (5 mg kg-1) of Lipopolysaccharide (LPS). Fear conditioning and a Morris water maze test were performed to examine the cognitive abilities of the mice. Moreover, the signaling and expression of pro-inflammatory cytokines and TRPM2 were measured using Western blotting and Reverse transcription-polymerase chain reaction (RT-PCR). Flow cytometry and immunofluorescence staining helped to determine the astrocyte apoptosis rate. RESULTS Severe inflammation can lead to long-term cognitive impairment in C57/BL6 mice. The interleukin-1 beta (IL-1β) levels intra-hippocampus were significantly elevated until P14 post-LPS introduction. At both P7 and P14, there is an up-regulation of TRPM2 expression within hippocampus. Administration of recombinant IL-1β to astrocytes results in a significant up-regulation of TRPM2 expression. IL-1β or TRPM2 level knockdown helped counter the cognitive impairment caused by significant inflammation. CONCLUSIONS A continuous increase in IL-1β levels within the hippocampus can lead to cognitive impairment by enhancing TRPM2 levels caused by severe inflammation.
Collapse
Affiliation(s)
- Yujiao Yang
- Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China; Department of Anesthesiology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Zhihua Yao
- Department of Anesthesiology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Hushan Wang
- Department of Anesthesiology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Shuaiying Jia
- Department of Anesthesiology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Mingfei Wang
- Department of Anesthesiology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Shan Wang
- Department of Anesthesiology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Debo Yun
- Department of Neurosurgery, Nanchong Central Hospital, Nanchong, Sichuan, China.
| |
Collapse
|
6
|
Li JH, Jia JJ, He N, Zhou XL, Qiao YB, Xie HY, Zhou L, Zheng SS. Exosome is involved in liver graft protection after remote ischemia reperfusion conditioning. Hepatobiliary Pancreat Dis Int 2023; 22:498-503. [PMID: 35534341 DOI: 10.1016/j.hbpd.2022.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 04/11/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Remote ischemic perconditioning (RIPerC) has been demonstrated to protect grafts from hepatic ischemia-reperfusion injury (IRI). This study investigated the role of exosomes in RIPerC of liver grafts in rats. METHODS Twenty-five rats (including 10 donors) were randomly divided into five groups (n = 5 each group): five rats were used as sham-operated controls (Sham), ten rats were for orthotopic liver transplantation (OLT, 5 donors and 5 recipients) and ten rats were for OLT + RIPerC (5 donors and 5 recipients). Liver architecture and function were evaluated. RESULTS Compared to the OLT group, the OLT + RIPerC group exhibited significantly improved liver graft histopathology and liver function (P < 0.05). Furthermore, the number of exosomes and the level of P-Akt were increased in the OLT + RIPerC group. CONCLUSIONS RIPerC effectively improves graft architecture and function, and this protective effect may be related to the increased number of exosomes. The upregulation of P-Akt may be involved in underlying mechanisms.
Collapse
Affiliation(s)
- Jian-Hui Li
- Department of Hepatobiliary and Pancreatic Surgery, Department of Liver Transplantation, Shulan (Hangzhou) Hospital, Zhejiang Shuren University School of Medicine, Hangzhou 310022, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310022, China
| | - Jun-Jun Jia
- Division of Hepatobiliary Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ning He
- Division of Hepatobiliary Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xue-Lian Zhou
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Yin-Biao Qiao
- Division of Hepatobiliary Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Hai-Yang Xie
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310022, China
| | - Lin Zhou
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310022, China
| | - Shu-Sen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, Department of Liver Transplantation, Shulan (Hangzhou) Hospital, Zhejiang Shuren University School of Medicine, Hangzhou 310022, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310022, China; Division of Hepatobiliary Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
7
|
Gan Y, Zhao G, Wang Z, Zhang X, Wu MX, Lu M. Bacterial Membrane Vesicles: Physiological Roles, Infection Immunology, and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301357. [PMID: 37357142 PMCID: PMC10477901 DOI: 10.1002/advs.202301357] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/19/2023] [Indexed: 06/27/2023]
Abstract
Bacterial or fungal membrane vesicles, traditionally considered as microbial metabolic wastes, are secreted mainly from the outer membrane or cell membrane of microorganisms. However, recent studies have shown that these vesicles play essential roles in direct or indirect communications among microorganisms and between microorganisms and hosts. This review aims to provide an updated understanding of the physiological functions and emerging applications of bacterial membrane vesicles, with a focus on their biogenesis, mechanisms of adsorption and invasion into host cells, immune stimulatory effects, and roles in the much-concerned problem of bacterial resistance. Additionally, the potential applications of these vesicles as biomarkers, vaccine candidates, and drug delivery platforms are discussed.
Collapse
Affiliation(s)
- Yixiao Gan
- Department of Transfusion MedicineHuashan HospitalFudan UniversityShanghai200040P. R. China
| | - Gang Zhao
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200240P. R. China
| | - Zhicheng Wang
- Department of Transfusion MedicineHuashan HospitalFudan UniversityShanghai200040P. R. China
| | - Xingcai Zhang
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
| | - Mei X. Wu
- Wellman Center for PhotomedicineMassachusetts General HospitalDepartment of DermatologyHarvard Medical School, 50 Blossom StreetBostonMA02114USA
| | - Min Lu
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200240P. R. China
| |
Collapse
|
8
|
Troise D, Infante B, Mercuri S, Netti GS, Ranieri E, Gesualdo L, Stallone G, Pontrelli P. Hypoxic State of Cells and Immunosenescence: A Focus on the Role of the HIF Signaling Pathway. Biomedicines 2023; 11:2163. [PMID: 37626660 PMCID: PMC10452839 DOI: 10.3390/biomedicines11082163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/20/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Hypoxia activates hypoxia-related signaling pathways controlled by hypoxia-inducible factors (HIFs). HIFs represent a quick and effective detection system involved in the cellular response to insufficient oxygen concentration. Activation of HIF signaling pathways is involved in improving the oxygen supply, promoting cell survival through anaerobic ATP generation, and adapting energy metabolism to meet cell demands. Hypoxia can also contribute to the development of the aging process, leading to aging-related degenerative diseases; among these, the aging of the immune system under hypoxic conditions can play a role in many different immune-mediated diseases. Thus, in this review we aim to discuss the role of HIF signaling pathways following cellular hypoxia and their effects on the mechanisms driving immune system senescence.
Collapse
Affiliation(s)
- Dario Troise
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Science, University of Foggia, 71122 Foggia, Italy; (D.T.); (B.I.); (S.M.); (G.S.)
| | - Barbara Infante
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Science, University of Foggia, 71122 Foggia, Italy; (D.T.); (B.I.); (S.M.); (G.S.)
| | - Silvia Mercuri
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Science, University of Foggia, 71122 Foggia, Italy; (D.T.); (B.I.); (S.M.); (G.S.)
| | - Giuseppe Stefano Netti
- Clinical Pathology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.S.N.); (E.R.)
| | - Elena Ranieri
- Clinical Pathology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.S.N.); (E.R.)
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy;
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Science, University of Foggia, 71122 Foggia, Italy; (D.T.); (B.I.); (S.M.); (G.S.)
| | - Paola Pontrelli
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy;
| |
Collapse
|
9
|
Liang L, Liu S, Wu Q, Chen R, Jiang S, Yang Z. m6A-mediated upregulation of miRNA-193a aggravates cardiomyocyte apoptosis and inflammatory response in sepsis-induced cardiomyopathy via the METTL3/ miRNA-193a/BCL2L2 pathway. Exp Cell Res 2023:113712. [PMID: 37414203 DOI: 10.1016/j.yexcr.2023.113712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/25/2023] [Accepted: 07/01/2023] [Indexed: 07/08/2023]
Abstract
The impact of N6-methyladenosine (m6A) modification on pri-miRNA in sepsis-induced cardiomyopathy (SICM), and its underlying regulatory mechanism, have not been fully elucidated. We successfully constructed a SICM mice model through cecal ligation and puncture (CLP). In vitro, a lipopolysaccharide (LPS)-induced HL-1 cells model was also established. The results showed that sepsis frequently resulted in excessive inflammatory response concomitant with impaired myocardial function in mice exposed to CLP, as indicated by decreases in ejection fraction (EF), fraction shortening (FS), and left ventricular end diastolic diameters (LVDd). miR-193a was enriched in CLP mice heart and in LPS-treated HL-1 cells, while overexpression of miR-193a significantly increased the expression levels of cytokines. Sepsis-induced enrichment of miR-193a significantly inhibited cardiomyocytes proliferation and enhanced apoptosis, while this was reversed by miR-193a knockdown. Furthermore, under our experimental conditions, enrichment of miR-193a in SICM could be considered excessively maturated on pri-miR-193a by enhanced m6A modification. This modification was catalyzed by sepsis-induced overexpression of methyltransferase-like 3 (METTL3). Moreover, mature miRNA-193a bound to a predictive sequence within 3'UTRs of a downstream target, BCL2L2, which was further validated by the observation that the BCL2L2-3'UTR mutant failed to decrease luciferase activity when co-transfected with miRNA-193a. The interaction between miRNA-193a and BCL2L2 resulted in BCL2L2 downregulation, subsequently activating the caspase-3 apoptotic pathway. In conclusion, sepsis-induced miR-193a enrichment via m6A modification plays an essential regulatory role in cardiomyocyte apoptosis and inflammatory response in SICM. The detrimental axis of METTL3/m6A/miR-193a/BCL2L2 is implicated in the development of SICM.
Collapse
Affiliation(s)
- Lian Liang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Siqi Liu
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qingyu Wu
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan, China
| | - Ran Chen
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shanping Jiang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Zhengfei Yang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
10
|
Li ZL, Wang B, Wen Y, Wu QL, Lv LL, Liu BC. Disturbance of Hypoxia Response and Its Implications in Kidney Diseases. Antioxid Redox Signal 2022; 37:936-955. [PMID: 35044244 DOI: 10.1089/ars.2021.0271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: The disturbance of the hypoxia response system is closely related to human diseases, because it is essential for the maintenance of homeostasis. Given the significant role of the hypoxia response system in human health, therapeutic applications targeting prolyl hydroxylase-hypoxia-inducible factor (HIF) signaling have been attempted. Thus, systemically reviewing the hypoxia response-based therapeutic strategies is of great significance. Recent Advances: Disturbance of the hypoxia response is a characteristic feature of various diseases. Targeting the hypoxia response system is, thus, a promising therapeutic strategy. Interestingly, several compounds and drugs are currently under clinical trials, and some have already been approved for use in the treatment of certain human diseases. Critical Issues: We summarize the molecular mechanisms of the hypoxia response system and address the potential therapeutic implications in kidney diseases. Given that the effects of hypoxia response in kidney diseases are likely to depend on the pathological context, specific cell types, and the differences in the activation pattern of HIF isoforms, the precise application is critical for the treatment of kidney diseases. Although HIF-PHIs (HIF-PHD inhibitors) have been proven to be effective and well tolerated in chronic kidney disease patients with anemia, the potential on-target consequence of HIF activation and some outstanding questions warrant further consideration. Future Direction: The mechanism of the hypoxia response system disturbance remains unclear. Elucidation of the molecular mechanism of hypoxia response and its precise effects on kidney diseases warrants clarification. Considering the complexity of the hypoxia response system and multiple biological processes controlled by HIF signaling, the development of more specific inhibitors is highly warranted. Antioxid. Redox Signal. 37, 936-955.
Collapse
Affiliation(s)
- Zuo-Lin Li
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - Bin Wang
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - Yi Wen
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - Qiu-Li Wu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - Lin-Li Lv
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| |
Collapse
|
11
|
Xie D, Qian B, Li X. Nucleic acids and proteins carried by exosomes from various sources: Potential role in liver diseases. Front Physiol 2022; 13:957036. [PMID: 36213232 PMCID: PMC9538374 DOI: 10.3389/fphys.2022.957036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/17/2022] [Indexed: 12/24/2022] Open
Abstract
Exosomes are extracellular membrane-encapsulated vesicles that are released into the extracellular space or biological fluids by many cell types through exocytosis. As a newly identified form of intercellular signal communication, exosomes mediate various pathological and physiological processes by exchanging various active substances between cells. The incidence and mortality of liver diseases is increasing worldwide. Therefore, we reviewed recent studies evaluating the role of exosomes from various sources in the diagnosis and treatment of liver diseases.
Collapse
Affiliation(s)
- Danna Xie
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Baolin Qian
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xun Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
- Department of General Surgery, the First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
- Center for Cancer Prevention and Treatment, School of Medicine, Lanzhou University, Lanzhou, China
- Gansu Provincial Institute of Hepatobiliary and Pancreatic Surgery, Lanzhou, China
- *Correspondence: Xun Li,
| |
Collapse
|
12
|
Xin W, Qin Y, Lei P, Zhang J, Yang X, Wang Z. From cerebral ischemia towards myocardial, renal, and hepatic ischemia: Exosomal miRNAs as a general concept of intercellular communication in ischemia-reperfusion injury. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:900-922. [PMID: 36159596 PMCID: PMC9464648 DOI: 10.1016/j.omtn.2022.08.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Expression of MicroRNAs in Sepsis-Related Organ Dysfunction: A Systematic Review. Int J Mol Sci 2022; 23:ijms23169354. [PMID: 36012630 PMCID: PMC9409129 DOI: 10.3390/ijms23169354] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 02/06/2023] Open
Abstract
Sepsis is a critical condition characterized by increased levels of pro-inflammatory cytokines and proliferating cells such as neutrophils and macrophages in response to microbial pathogens. Such processes lead to an abnormal inflammatory response and multi-organ failure. MicroRNAs (miRNA) are single-stranded non-coding RNAs with the function of gene regulation. This means that miRNAs are involved in multiple intracellular pathways and thus contribute to or inhibit inflammation. As a result, their variable expression in different tissues and organs may play a key role in regulating the pathophysiological events of sepsis. Thanks to this property, miRNAs may serve as potential diagnostic and prognostic biomarkers in such life-threatening events. In this narrative review, we collect the results of recent studies on the expression of miRNAs in heart, blood, lung, liver, brain, and kidney during sepsis and the molecular processes in which they are involved. In reviewing the literature, we find at least 122 miRNAs and signaling pathways involved in sepsis-related organ dysfunction. This may help clinicians to detect, prevent, and treat sepsis-related organ failures early, although further studies are needed to deepen the knowledge of their potential contribution.
Collapse
|
14
|
Jia P, Xu S, Ren T, Pan T, Wang X, Zhang Y, Zou Z, Guo M, Zeng Q, Shen B, Ding X. LncRNA IRAR regulates chemokines production in tubular epithelial cells thus promoting kidney ischemia-reperfusion injury. Cell Death Dis 2022; 13:562. [PMID: 35732633 PMCID: PMC9217935 DOI: 10.1038/s41419-022-05018-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 02/07/2023]
Abstract
Increasing evidence demonstrates that long noncoding RNAs (lncRNAs) play an important role in several pathogenic processes of the kidney. However, functions of lncRNAs in ischemic acute kidney injury (AKI) remain undefined. In this study, global lncRNA profiling indicated that many lncRNA transcripts were deregulated in kidney after ischemia reperfusion (IR). Among them, we identified IRAR (ischemia-reperfusion injury associated RNA) as a potential lncRNA candidate, which was mostly expressed by the tubular epithelial cells (TECs) after IR, involved in the development of AKI. GapmeR-mediated silencing and viral-based overexpression of IRAR were carried out to assess its function and contribution to IR-induced AKI. The results revealed that in vivo silencing of IRAR significantly reduced IR-induced proinflammatory cells infiltration and AKI. IRAR overexpression induced chemokine CCL2, CXCL1 and CXCL2 expression both in mRNA and protein levels in TECs, while, silencing of IRAR resulted in downregulation of these chemokines. RNA immunoprecipitation and RNA pulldown assay validated the association between IRAR and CCL2, CXCL1/2. Further examination revealed that specific ablation of CCL2 in TECs reduced macrophages infiltration and proinflammatory cytokine production, attenuated renal dysfunction in IR mice. Inhibition of CXC chemokine receptor 2 (receptor of CXCL1/2) reduced neutrofils infiltration, but had no overt effect on kidney function. To explore the mechanism of IRAR upregulation in kidney during IR, we analyzed promoter region of IRAR and predicted a potential binding site for transcription factor C/EBP β on IRAR promoter. Silencing of C/EBP β reduced IRAR expression in TECs. A dual-luciferase reporter assay and chromatin immunoprecipitation (ChIP) confirmed that IRAR was a transcriptional target of the C/EBP β. Altogether, our findings identify IRAR as a new player in the development of ischemic AKI through regulating chemokine production and immune cells infiltration, suggesting that IRAR is a potential target for prevention and/or attenuation of AKI.
Collapse
Affiliation(s)
- Ping Jia
- grid.8547.e0000 0001 0125 2443Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China ,Shanghai Medical Center of Kidney, Shanghai, China ,Kidney and Dialysis Institute of Shanghai, Shanghai, China ,Kidney and Blood Purification Laboratory of Shanghai, Shanghai, China
| | - Sujuan Xu
- grid.8547.e0000 0001 0125 2443Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ting Ren
- grid.8547.e0000 0001 0125 2443Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tianyi Pan
- grid.8547.e0000 0001 0125 2443Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoyan Wang
- grid.8547.e0000 0001 0125 2443Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunlu Zhang
- grid.8547.e0000 0001 0125 2443Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhouping Zou
- grid.8547.e0000 0001 0125 2443Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Man Guo
- grid.8547.e0000 0001 0125 2443Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qi Zeng
- grid.8547.e0000 0001 0125 2443Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bo Shen
- grid.8547.e0000 0001 0125 2443Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China ,Kidney and Dialysis Institute of Shanghai, Shanghai, China
| | - Xiaoqiang Ding
- grid.8547.e0000 0001 0125 2443Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China ,Shanghai Medical Center of Kidney, Shanghai, China ,Kidney and Dialysis Institute of Shanghai, Shanghai, China ,Kidney and Blood Purification Laboratory of Shanghai, Shanghai, China ,Hemodialysis quality control center of Shanghai, Shanghai, China
| |
Collapse
|
15
|
Jia P, Xu SJ, Wang X, Wu X, Ren T, Zou Z, Zeng Q, Shen B, Ding X. Chemokine CCL2 from proximal tubular epithelial cells contributes to sepsis-induced acute kidney injury. Am J Physiol Renal Physiol 2022; 323:F107-F119. [PMID: 35658715 DOI: 10.1152/ajprenal.00037.2022] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Damage-associated molecular patterns secreted from activated kidney cells initiate inflammatory response, a critical step in the development of sepsis-induced acute kidney injury (AKI). However, the underlying mechanism remains to be clarified. Here, we established a mouse model of sepsis-induced AKI through intraperitoneal injection of lipopolysaccharide (LPS), and demonstrated that LPS induced dramatical upregulation of C-C motif chemokine ligand 2 (CCL2) at both the mRNA and the protein levels in kidney, which was mainly expressed by tubular epithelial cells (TECs), especially by proximal TECs. Proximal tubule-specific ablation of CCL2 reduced LPS-induced macrophage infiltration, proinflammatory cytokine expression, and attenuated AKI. In vitro, using transwell migration assay, we found that deficiency of CCL2 in TECs decreased macrophage migration ability. However, myeloid-specific depletion of CCL2 could not protect the kidneys from the aforementioned effects. Mechanistically, LPS activated toll like receptor (TLR) 2 signaling in TECs, which induced activation of its downstream effector nuclear factor (NF)-κB. Blockade of TLR2 signaling or inhibition of NF-κB activation in TECs significantly suppressed LPS-induced CCL2 expression. Furthermore, ChIP analyses confirmed a direct binding of NF-κB p65 in the CCL2 promoter regein, and LPS increased the binding of NF-κB p65 to CCL2 promoter, suggesting that TLR2/NF-κB p65 regulates CCL2 expression in TECs. Together, these results demonstrate that endogenous CCL2 released from PTECs, not from myeloid cells was responsible for sepsis-induced kidney inflammation and AKI. Specificly targeting tubular TLR2/NF-κB/CCL2 signaling may be a potential therapeutic strategy for prevention or attenuation of septic AKI.
Collapse
Affiliation(s)
- Ping Jia
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Su-Juan Xu
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoyan Wang
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoli Wu
- Traditional Chinese Medicine Pharmacology Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ting Ren
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhouping Zou
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qi Zeng
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bo Shen
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoqiang Ding
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Kidney and Dialysis Institute of Shanghai, Shanghai, China.,Kidney and Blood Purification Laboratory of Shanghai, Shanghai, China.,Hemodialysis quality control center of Shanghai, Shanghai, China
| |
Collapse
|
16
|
miR-21 Regulates Immune Balance Mediated by Th17/Treg in Peripheral Blood of Septic Rats during the Early Phase through Apoptosis Pathway. Biochem Res Int 2022; 2022:9948229. [PMID: 35528843 PMCID: PMC9068307 DOI: 10.1155/2022/9948229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 02/23/2022] [Accepted: 04/08/2022] [Indexed: 11/27/2022] Open
Abstract
Objective To study the mechanism by which miR-21 regulates the differentiation and function of Th17/Treg cells in sepsis. Methods A rat model with sepsis was made by cecal ligation and puncture (CLP). Then, some of the septic rats were transfected with miR-21 mimic or inhibitor by liposome. At 48 hours, lymphocytes and plasma from septic rats were isolated for further experimental detection. The expression of miR-21 in lymphocytes was detected by Polymerase Chain Reaction (PCR); the differentiation of Th17/Treg cells was counted by flow cytometry; lymphocyte apoptosis was observed by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) assay. The caspase-3/9 proteins were tested by Western blot; IL-10 and IL-17 were detected by enzyme-linked immunosorbent assay (ELISA). Results Compared with the sepsis group (SP group), the Th17 cells increased significantly, the Treg cells decreased significantly, the apoptosis rate of lymphocytes decreased significantly, the mRNA and proteins of caspase-3/9 decreased significantly, the IL-17 decreased, and the IL-10 increased in the sepsis group transfected with miR-21 (SP + miR-21 mimic group). After transfection of miR-21 inhibitor, the results were almost opposite to those of SP + miR-21 mimic group. Conclusions The differentiation and function of Th17/Treg cells were regulated by miR-21 in sepsis through caspase pathway.
Collapse
|
17
|
Nong R, Qin C, Lin Q, Lu Y, Li J. Down-regulated HDAC1 and up-regulated microRNA-124-5p recover myocardial damage of septic mice. Bioengineered 2022; 13:7168-7180. [PMID: 35285407 PMCID: PMC9278975 DOI: 10.1080/21655979.2022.2034583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Studies have revealed the relationship between histone deacetylases (HDACs)/microRNAs (miRNAs) and sepsis, but little has ever investigated the mechanism of HDAC1/miR-124-5p in sepsis. Herein, we studied the impacts of HDAC1/miR-124-5p on myocardial damage of septic mice via regulating high-mobility group box chromosomal protein 1 (HMGB1). Septic mice were induced by cecal ligation and puncture. HDAC1, miR-124-5p and HMGB1 expression in myocardial tissues of septic mice were detected. Septic mice were injected with HDAC1 low expression-, miR-124-5p high expression- or HMGB1 low expression-related structures to observe cardiac function, inflammatory response, oxidative stress response, myocardial pathological changes and apoptosis in myocardial tissues of septic mice. The relationship of HDAC1/miR-124-5p/HMGB1 was verified. HDAC1 and HMGB1 expression were upregulated while miR-124-5p expression was decreased in myocardial tissues of septic mice. Restored miR-124-5p/depleted HDAC1 or HMGB1 recovered the cardiac function, improved cardiac function, inflammatory response, oxidative stress response, myocardial pathological changes and inhibit ed cardiomyocyte apoptosis in septic mice. HDAC1 bound to miR-124-5p which directly targeted HMGB1. This study suggests that down-regulated HDAC1 or up-regulated miR-124-5p recovers myocardial damage of septic mice via decreasing HMGB1.
Collapse
Affiliation(s)
- Rongmao Nong
- Department of Icu (Intensive Care Unit), The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- The First Clinical Medical College of Jinan University, Guangzhou, China
| | - Chunyan Qin
- Department of Icu (Intensive Care Unit), The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- The First Clinical Medical College of Jinan University, Guangzhou, China
| | - Qiqing Lin
- Emergency Department, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yi Lu
- The First Clinical Medical College of Jinan University, Guangzhou, China
| | - Jun Li
- The First Clinical Medical College of Jinan University, Guangzhou, China
- Department of Respiratory Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
18
|
Grimes JA, Lourenço BN, Coleman AE, Rissi DR, Schmiedt CW. MicroRNAs are differentially expressed in the serum and renal tissues of cats with experimentally induced chronic kidney disease: a preliminary study. Am J Vet Res 2022; 83:426-433. [PMID: 35239506 DOI: 10.2460/ajvr.21.08.0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To identify differentially expressed microRNA in the serum and renal tissues of cats with experimentally induced chronic kidney disease (CKD). SAMPLE Banked renal tissues and serum from 4 cats. PROCEDURES Cats previously underwent 90-minute unilateral ischemia with delayed contralateral nephrectomy 3 months after ischemia. Tissues were collected from the contralateral kidney at the time of nephrectomy and from the ischemic kidney 6 months after nephrectomy (study end). Serum was collected prior to ischemia (baseline serum) and at study end (end point serum). Total RNA was isolated from tissues and serum, and microRNA sequencing was performed with differential expression analysis between the contralateral and ischemic kidney and baseline and end point serum. RESULTS 20 microRNAs were differentially expressed between ischemic and contralateral kidneys, and 52 microRNAs were differentially expressed between end point and baseline serum. Five microRNAs were mutually differentially expressed between ischemic and contralateral kidneys and baseline and end point serum, with 4 (mir-21, mir-146, mir-199, and mir-235) having increased expression in both the ischemic kidney and end point serum and 1 (mir-382) having increased expression in the ischemic kidney and decreased expression in end point serum. Predicted target search for these microRNA revealed multiple genes previously shown to be involved in the pathogenesis of feline CKD, including hypoxia-inducible factor-1α, transforming growth factor-β, hepatocyte growth factor, fibronectin, and vascular endothelial growth factor A. CLINICAL RELEVANCE MicroRNAs were differentially expressed after CKD induction in this preliminary study. Regulation of renal fibrosis in feline CKD may occur through microRNA regulation of mRNAs of pro- and anti-fibrotic genes.
Collapse
Affiliation(s)
- Janet A Grimes
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA
| | - Bianca N Lourenço
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA
| | - Amanda E Coleman
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA
| | - Daniel R Rissi
- Athens Veterinary Diagnostic Laboratory, Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA
| | - Chad W Schmiedt
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA
| |
Collapse
|
19
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Taheri M, Arefian N. Regulatory Role of Non-Coding RNAs on Immune Responses During Sepsis. Front Immunol 2021; 12:798713. [PMID: 34956235 PMCID: PMC8695688 DOI: 10.3389/fimmu.2021.798713] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/19/2021] [Indexed: 12/22/2022] Open
Abstract
Sepsis is resulted from a systemic inflammatory response to bacterial, viral, or fungal agents. The induced inflammatory response by these microorganisms can lead to multiple organ system failure with devastating consequences. Recent studies have shown altered expressions of several non-coding RNAs such as long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and circular RNAs (circRNAs) during sepsis. These transcripts have also been found to participate in the pathogenesis of multiple organ system failure through different mechanisms. NEAT1, MALAT1, THRIL, XIST, MIAT and TUG1 are among lncRNAs that participate in the pathoetiology of sepsis-related complications. miR-21, miR-155, miR-15a-5p, miR-494-3p, miR-218, miR-122, miR-208a-5p, miR-328 and miR-218 are examples of miRNAs participating in these complications. Finally, tens of circRNAs such as circC3P1, hsa_circRNA_104484, hsa_circRNA_104670 and circVMA21 and circ-PRKCI have been found to affect pathogenesis of sepsis. In the current review, we describe the role of these three classes of noncoding RNAs in the pathoetiology of sepsis-related complications.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Normohammad Arefian
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Wang B, Wang Y, Xu K, Zeng Z, Xu Z, Yue D, Li T, Luo J, Liu J, Yuan J. Resveratrol alleviates sepsis-induced acute kidney injury by deactivating the lncRNA MALAT1/MiR-205 axis. Cent Eur J Immunol 2021; 46:295-304. [PMID: 34764801 PMCID: PMC8574118 DOI: 10.5114/ceji.2021.109195] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 05/19/2021] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Resveratrol plays a protective role against sepsis development, and the long noncoding RNA (lncRNA) MALAT1 is an inflammation-relevant biomarker. This investigation attempted to reveal whether resveratrol attenuated inflammation of sepsis-induced acute kidney injury (AKI) by regulating MALAT1. MATERIAL AND METHODS In total 120 rats were divided into a control group (n = 20), a Sham group (n = 20), a sepsis group (n = 40) and a resveratrol group (n = 40), and serum levels of inflammatory cytokines and AKI biomarkers were determined. An equal number of rats under identical treatments were, additionally, tracked for their survival, and the serum level of lncRNA MALAT1 was measured by RT-PCR. Moreover, septic cell models were constructed by treating HK-2 cells with lipopolysaccharide (LPS), and tumor necrosis factor α (TNF-α), interleukin (IL)-1β, IL-6 levels released by the cells were determined with ELISA. RESULTS Resveratrol treatment significantly brought down serum levels of inflammatory cytokines (i.e. TNF-α, IL-1β and IL-6), kidney function indicators (i.e. Scr, blood urea nitrogen [BUN] and Scys C), AKI biomarkers (i.e. NGAL and KIM-1) and MALAT1 in cecal ligation and puncture (CLP)-induced septic model rats (all p < 0.05), and the life span of septic rats was elongated by resveratrol treatment (p < 0.05). Viability and cytokine release of LPS-treated HK2 cells were rescued by resveratrol (p < 0.05), which was accompanied by a marked fall of MALAT1 expression (p < 0.05). In addition, si-MALAT1 diminished viability and suppressed cytokine release of HK2 cells, while pcDNA3.1-MALAT1 hindered the impact of resveratrol on the inflammatory response of HK2 cells (p < 0.05). Ultimately, miR-205, a protective molecule in sepsis-relevant AKI, was down-regulated by resveratrol and si-MALAT1 (p < 0.05). CONCLUSIONS Resveratrol relieved sepsis-induced AKI by restraining the lncRNA MALAT1/miR-205 axis.
Collapse
Affiliation(s)
- Biao Wang
- The Second Hospital, University of South China, China
| | | | - Ke Xu
- Chenzhou No. 1 People’s Hospital, China
| | - Zhenhua Zeng
- Nanfang Hospital, Southern Medical University, China
| | | | | | - Tao Li
- Chenzhou No. 1 People’s Hospital, China
| | - Jihui Luo
- Chenzhou No. 1 People’s Hospital, China
| | | | | |
Collapse
|
21
|
Hu JM, He LJ, Wang PB, Yu Y, Ye YP, Liang L. Antagonist targeting miR‑106b‑5p attenuates acute renal injury by regulating renal function, apoptosis and autophagy via the upregulation of TCF4. Int J Mol Med 2021; 48:169. [PMID: 34278441 PMCID: PMC8285052 DOI: 10.3892/ijmm.2021.5002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/03/2021] [Indexed: 12/11/2022] Open
Abstract
Acute renal injury (ARI) is a life‑threatening condition and a main contributor to end‑stage renal disease, which is mainly caused by ischemia‑reperfusion (I/R). miR‑106b‑5p is a kidney function‑related miRNA; however, whether miR‑106b‑5p regulates the progression of ARI remains unclear. The present study thus aimed to examine the effects of miR‑106b‑5p antagonist on the regulation of ARI progression. It was found that miR‑106b‑5p expression was upregulated in the renal tissue of rats with I/R‑induced ARI and in NRK‑52E rat renal proximal tubular epithelial cells subjected to hypoxia‑reoxygenation (H/R). In vitro, H/R induction suppressed the proliferation, and promoted the apoptosis and autophagy of NRK‑52E cells, whereas miR‑106b‑5p antagonist (inhibition of miR‑106b‑5p) promoted the proliferation, and attenuated the apoptosis and autophagy of NRK‑52E cells under the H/R condition. Dual luciferase reporter gene assay validated that transcription factor 4 (TCF4) was a target of miR‑106b‑5p. It was further found that TCF4 overexpression promoted the proliferation, and inhibited the apoptosis and autophagy of NRK‑52E cells subjected to H/R. Moreover, the effects of miR‑106b‑5p antagonist on NRK‑52E cell proliferation, apoptosis and autophagy were mediated through the regulation of TCF4. In vivo, miR‑106b‑5p antagonist reduced the severity of renal injury, decreased cell proliferation in renal tissues and lowered the serum creatinine (Scr) and blood urea nitrogen (BUN) levels in the blood samples from rats with I/R‑induced ARI. On the whole, the findings presented herein demonstrate that miR‑106b‑5p antagonist attenuates ARI by promoting the proliferation, and suppressing the apoptosis and autophagy of renal cells via upregulating TCF4.
Collapse
Affiliation(s)
- Jing-Meng Hu
- Department of Pathology, The Southern Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Li-Jie He
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710000, P.R. China
| | - Peng-Bo Wang
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710000, P.R. China
| | - Yan Yu
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710000, P.R. China
| | - Ya-Ping Ye
- Department of Pathology, The Southern Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Li Liang
- Department of Pathology, The Southern Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
22
|
Akseh S, Nemati M, Zamani-Gharehchamani E, Rezaie Nezhad Zamani A, Jodati A, Pezeshkian M, Nouri M, Gholizadeh D, Safaie N, Faridvand Y. Amnion membrane proteins attenuate LPS-induced inflammation and apoptosis by inhibiting TLR4/NF-κB pathway and repressing MicroRNA-155 in rat H9c2 cells. Immunopharmacol Immunotoxicol 2021; 43:487-494. [PMID: 34227443 DOI: 10.1080/08923973.2021.1945086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Amnion membrane (AM) has been popular for the treatment of inflammatory disorders due to its cell repairing properties. This current study aims to find the underlying mechanisms of amnion membrane proteins (AMPs) against the pro-inflammatory miRNA, miR-155, miR-146, and anti-apoptotic microRNA, miR-21, in LPS-treated H9c2 cells. METHODS Cell viability and apoptosis were determined by MTT assay and annexin V/PI staining. The production of the cytokines, TNF-α and IL-6 were evaluated by using qPCR and Enzyme-linked immunosorbent assay (ELISA), respectively. In addition, the expression of miRNAs was quantified by qPCR, and also the protein level of TLR4 and NF-kβ was determined with western blotting. RESULTS We found that AMPs ameliorated LPS-induced reduction of cell viability and augment apoptosis in H9c2 cells. AMPs efficiently inhibited cytokine expression (IL-6 and TNF-α) and activity of TLR4/NF-κB pathway in LPS-treated H9c2 cells. Correspondingly, in parallel with the suppression of pro-inflammatory cytokines and apoptosis, AMPs mitigated pro-inflammatory miRNA, miR-155 expression, while, the expression of miR-155 was found to be increased in LPS-treated H9c2 cells. Also, AMPs activated miR-146 expression in H9c2 cells under LPS treatment. Additionally, the elevated expression of miR-21 provoked by LPS was further enhanced by AMPs. CONCLUSIONS In conclusion, AMPs could alleviate LPS-induced cardiomyocytes cells injury via up-regulation of miR-21, miR-146, and suppression of TLR4/NF-κB pathway, which plays a key role in the down-regulation of LPS-mediated miR-155 and inflammatory cytokine expression.
Collapse
Affiliation(s)
- Saeideh Akseh
- Stem Cells Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Genetics, Islamic Azad University, Ahar, Iran
| | - Maryam Nemati
- Department of Genetic, Islamic Azad University, Tabriz, Iran
| | | | | | - Ahmadreza Jodati
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Pezeshkian
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Stem Cells Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davoud Gholizadeh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasser Safaie
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Faridvand
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
23
|
Kuang Q, Wu S, Xue N, Wang X, Ding X, Fang Y. Selective Wnt/β-Catenin Pathway Activation Concomitant With Sustained Overexpression of miR-21 is Responsible for Aristolochic Acid-Induced AKI-to-CKD Transition. Front Pharmacol 2021; 12:667282. [PMID: 34122087 PMCID: PMC8193720 DOI: 10.3389/fphar.2021.667282] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/13/2021] [Indexed: 01/09/2023] Open
Abstract
Acute kidney injury (AKI) is increasingly recognized as a cumulative risk factor for chronic kidney disease (CKD) progression. However, the underlying mechanisms remain unclear. Using an aristolochic acid (AA)-induced mouse model of AKI-to-CKD transition, we found that the development of tubulointerstitial fibrosis following AKI was accompanied with a strong activation of miR-21 and canonical Wnt signaling, whereas inhibition of miR-21 or selective silencing of Wnt ligands partially attenuated AKI-to-CKD transition. To explore the interaction between miR-21 and Wnt/β-catenin signaling, we examined the effects of genetic absence or pharmacologic inhibition of miR-21 on Wnt/β-catenin pathway expression. In miR-21-/- mice and in wild-type mice treated with anti-miR21 oligos, Wnt1 and Wnt4 canonical signaling in the renal tissue was significantly reduced, with partial reversal of renal interstitial fibrosis. Although the renal abundance of miR-21 remained unchanged after inhibition or activation of Wnt/β-catenin signaling, early intervention with ICG-001, a β-catenin inhibitor, significantly attenuated renal interstitial fibrosis. Moreover, early (within 24 h), but not late β-catenin inhibition after AA administration attenuated AA-induced apoptosis and inflammation. In conclusion, inhibition of miR-21 or β-catenin signaling may be an effective approach to prevent AKI-to-CKD progression.
Collapse
Affiliation(s)
- Qing Kuang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Sheng Wu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Nephrology, Suzhou Dushuhu Public Hospital, Suzhou, China
| | - Ning Xue
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
| | - Xiaoyan Wang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoqianq Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
| | - Yi Fang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
| |
Collapse
|
24
|
Xing Y, Wang Z, Lu Z, Xia J, Xie Z, Jiao M, Liu R, Chu Y. MicroRNAs: immune modulators in cancer immunotherapy. IMMUNOTHERAPY ADVANCES 2021; 1:ltab006. [PMID: 35919742 PMCID: PMC9327120 DOI: 10.1093/immadv/ltab006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/18/2021] [Accepted: 05/07/2021] [Indexed: 12/27/2022] Open
Abstract
Summary
MicroRNA (miRNA) is a class of endogenous small non-coding RNA of 18–25 nucleotides and plays regulatory roles in both physiological and pathological processes. Emerging evidence support that miRNAs function as immune modulators in tumors. MiRNAs as tumor suppressors or oncogenes are also found to be able to modulate anti-tumor immunity or link the crosstalk between tumor cells and immune cells surrounding. Based on the specific regulating function, miRNAs can be used as predictive, prognostic biomarkers, and therapeutic targets in immunotherapy. Here, we review new findings about the role of miRNAs in modulating immune responses, as well as discuss mechanisms underlying their dysregulation, and their clinical potentials as indicators of tumor prognosis or to sensitize cancer immunotherapy.
Collapse
Affiliation(s)
- Yun Xing
- Shanghai Fifth People’s Hospital and Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Zhiqiang Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Zhou Lu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, P.R. China
| | - Jie Xia
- Shanghai Fifth People’s Hospital and Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Zhangjuan Xie
- Shanghai Fifth People’s Hospital and Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Mengxia Jiao
- Shanghai Fifth People’s Hospital and Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Ronghua Liu
- Shanghai Fifth People’s Hospital and Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Yiwei Chu
- Shanghai Fifth People’s Hospital and Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P.R. China
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
25
|
Akinci SB, Saricaoglu F, Akinci M, Turgut HC, Zeybek ND, Muftuoglu S. Remote Ischemic Conditioning Increases Organ Injury in Murine Sepsis: Experimental Research. Indian J Surg 2021. [DOI: 10.1007/s12262-021-02866-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
26
|
Zheng J, Chen P, Zhong J, Cheng Y, Chen H, He Y, Chen C. HIF‑1α in myocardial ischemia‑reperfusion injury (Review). Mol Med Rep 2021; 23:352. [PMID: 33760122 PMCID: PMC7974458 DOI: 10.3892/mmr.2021.11991] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022] Open
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is a severe injury to the ischemic myocardium following the recovery of blood flow. Currently, there is no effective treatment for MIRI in clinical practice. Over the past two decades, biological studies of hypoxia and hypoxia-inducible factor-1α (HIF-1α) have notably improved understanding of oxygen homeostasis. HIF-1α is an oxygen-sensitive transcription factor that mediates adaptive metabolic responses to hypoxia and serves a pivotal role in MIRI. In particular, previous studies have demonstrated that HIF-1α improves mitochondrial function, decreases cellular oxidative stress, activates cardioprotective signaling pathways and downstream protective genes and interacts with non-coding RNAs. The present review summarizes the roles and associated mechanisms of action of HIF-1α in MIRI. In addition, HIF-1α-associated MIRI intervention, including natural compounds, exosomes, ischemic preconditioning and ischemic post-processing are presented. The present review provides evidence for the roles of HIF-1α activation in MIRI and supports its use as a therapeutic target.
Collapse
Affiliation(s)
- Jie Zheng
- Laboratory of Cardiovascular Diseases, Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Peier Chen
- Laboratory of Cardiovascular Diseases, Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Jianfeng Zhong
- Guangdong Key Laboratory of Age‑related Cardiac and Cerebral Diseases, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Yu Cheng
- Laboratory of Cardiovascular Diseases, Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Hao Chen
- Laboratory of Cardiovascular Diseases, Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Yuan He
- Laboratory of Cardiovascular Diseases, Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Can Chen
- Department of Cardiology, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524003, P.R. China
| |
Collapse
|
27
|
Gao X, Huang X, Yang Q, Zhang S, Yan Z, Luo R, Wang P, Wang W, Xie K, Gun S. MicroRNA-21-5p targets PDCD4 to modulate apoptosis and inflammatory response to Clostridium perfringens beta2 toxin infection in IPEC-J2 cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103849. [PMID: 32888967 DOI: 10.1016/j.dci.2020.103849] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Clostridium perfringens (C. perfringens), a toxin-producing enteric pathogen, causes a variety of intestinal infections in humans and animals. C. perfringens beta2 (CPB2) toxin has been considered to be a strong virulence factor for C. perfringens infectious enteric diseases (CPED). Altered levels and functions of microRNA-21-5p (miR-21-5p) have been associated with apoptosis and inflammation response in pathological processes. However, little is known about its functional mechanism in CPED. Here, we found that miR-21-5p expressed in multiple tissues of pig, had a highest level in jejunum, and significantly upregulated in intestinal porcine epithelial cells (IPEC-J2) exposed to CPB2 toxin. Noteworthily, transfection of CPB2-treated IPEC-J2 cells with miR-21-5p mimic increased cell viability and Bcl2 expression, as well as reduced cytotoxicity, apoptosis rates and Bax level. Moreover, overexpression of miR-21-5p significantly suppressed the levels of interleukin (IL)-6, IL-8, TNF-α, IL-1β and nuclear factor-kappa B (NF-κB p65) activity induced by CPB2 toxin, whereas that of the IL-10 was increased in IPEC-J2 cells. On the contrary, transfection of miR-21-5p inhibitor promoted CPB2-induced cell apoptosis and inflammation. Furthermore, we validated that programmed cell death 4 (PDCD4) was strikingly downregulated in CPB2-treated IPEC-J2 cells. PDCD4 exhibited opposing effects to those of miR-21-5p mimic on IPEC-J2 cells, and restoration of PDCD4 expression counteracted the suppressive effect of miR-21-5p on CPB2-induced apoptosis and inflammatory response. Collectively, our findings demonstrated that miR-21-5p was involved in regulating the immune response triggered by CPB2 toxin and contributed to protective effects in CPB2-induced CPED cell model by targeting PDCD4.
Collapse
Affiliation(s)
- Xiaoli Gao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xiaoyu Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Qiaoli Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Shengwei Zhang
- Farmer Education and Training Work Station of Gansu Province, Lanzhou, 730070, China
| | - Zunqiang Yan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Ruirui Luo
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Pengfei Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wei Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Kaihui Xie
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China; Gansu Research Center for Swine Production Engineering and Technology, Lanzhou, 730070, China.
| |
Collapse
|
28
|
Yao M, Cui B, Zhang W, Ma W, Zhao G, Xing L. Exosomal miR-21 secreted by IL-1β-primed-mesenchymal stem cells induces macrophage M2 polarization and ameliorates sepsis. Life Sci 2021; 264:118658. [PMID: 33115604 DOI: 10.1016/j.lfs.2020.118658] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/12/2020] [Accepted: 10/21/2020] [Indexed: 02/08/2023]
Abstract
Sepsis occurs due to a damaging host response to infection and is the chief cause of death in most intensive care units. Mesenchymal stem cells (MSCs) exhibit immunomodulatory properties and can modulate key cells of the innate and adaptive immune systems through various effector mechanisms, such as exosomes. Exosomes and their microRNA (miRNA or miR) cargo including miR-21 can initiate profound phenotypic changes in the tumor microenvironment due to their intercellular communication transmitting the pleiotropic messages between different cell types, tissues, and body fluids. Here, we aimed to characterize the effect of miR-21 delivered from MSC-derived exosomes on the polarization of macrophages in a mouse sepsis model. First, we isolated exosomes from interleukin-1β (IL-1β)-pretreated murine MSCs (βMSCs) and injected them into cecal ligation and puncture (CLP) septic models. We found that βMSCs-derived exosomes could more effectively induce M2-like polarization of macrophages in vitro and in vivo. Administration of βMSCs-derived exosomes attenuated the symptoms in septic mice more effectively and increased their survival rate as compared to exosomes released by naïve MSCs. Importantly, we found that miR-21 was abundantly upregulated in MSCs upon IL-1β stimulation and packaged into exosomes. This exosomal miR-21 was transferred to macrophages, leading to M2 polarization in vitro and in vivo. The therapeutic efficacy of βMSC-derived exosomes was partially lost upon miR-21 inhibition by its specific inhibitors. More specifically, we demonstrated βMSCs-derived exosomes inhibited the effects of PDCD4, the target gene of miR-21, on macrophage polarization and sepsis. In conclusion, exosomal miR-21 emerged as a key mediator of IL-1β pretreatment induced immunomodulatory properties of MSCs. The study indicated a novel basis for therapeutic application of MSCs in sepsis.
Collapse
Affiliation(s)
- Mengying Yao
- Department of Respiratory Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Bing Cui
- Department of Nephrology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450052, PR China
| | - Weihong Zhang
- Department of Anatomy, Nursing College of Zhengzhou University, Zhengzhou 450052, PR China
| | - Wentao Ma
- Department of Respiratory Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Gaofeng Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China.
| | - Lihua Xing
- Department of Respiratory Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China.
| |
Collapse
|
29
|
Yuan Y, Zhang H, Huang H. microRNAs in inflammatory alveolar bone defect: A review. J Periodontal Res 2020; 56:219-225. [PMID: 33296525 DOI: 10.1111/jre.12819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/24/2020] [Accepted: 10/28/2020] [Indexed: 01/12/2023]
Abstract
Inflammatory alveolar bone defects are caused by periodontal pathogens, are one of the most common oral diseases in the clinic, and are characterized by periodontal support tissue damage. MicroRNAs (miRNAs) can participate in a variety of inflammatory lesions and modulate bone metabolism through the posttranscriptional regulation of target genes. In recent years, studies have confirmed that some miRNAs play significant roles in the development of inflammatory alveolar bone defects. Therefore, we reviewed the correlation between miRNAs and inflammatory alveolar bone defects and elucidated the underlying mechanisms to provide new ideas for the prevention and treatment of inflammatory alveolar bone defects.
Collapse
Affiliation(s)
- Yun Yuan
- Department of Prosthodontics, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center of Stomatology, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Hongming Zhang
- Department of Prosthodontics, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center of Stomatology, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Hui Huang
- Department of Prosthodontics, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center of Stomatology, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
30
|
Intestinal Epithelium-Derived Luminally Released Extracellular Vesicles in Sepsis Exhibit the Ability to Suppress TNF-a and IL-17A Expression in Mucosal Inflammation. Int J Mol Sci 2020; 21:ijms21228445. [PMID: 33182773 PMCID: PMC7696152 DOI: 10.3390/ijms21228445] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022] Open
Abstract
Sepsis is a systemic inflammatory disorder induced by a dysregulated immune response to infection resulting in dysfunction of multiple critical organs, including the intestines. Previous studies have reported contrasting results regarding the abilities of exosomes circulating in the blood of sepsis mice and patients to either promote or suppress inflammation. Little is known about how the gut epithelial cell-derived exosomes released in the intestinal luminal space during sepsis affect mucosal inflammation. To study this question, we isolated extracellular vesicles (EVs) from intestinal lavage of septic mice. The EVs expressed typical exosomal (CD63 and CD9) and epithelial (EpCAM) markers, which were further increased by sepsis. Moreover, septic-EV injection into inflamed gut induced a significant reduction in the messaging of pro-inflammatory cytokines TNF-α and IL-17A. MicroRNA (miRNA) profiling and reverse transcription and quantitative polymerase chain reaction (RT-qPCR) revealed a sepsis-induced exosomal increase in multiple miRNAs, which putatively target TNF-α and IL-17A. These results imply that intestinal epithelial cell (IEC)-derived luminal EVs carry miRNAs that mitigate pro-inflammatory responses. Taken together, our study proposes a novel mechanism by which IEC EVs released during sepsis transfer regulatory miRNAs to cells, possibly contributing to the amelioration of gut inflammation.
Collapse
|
31
|
Abstract
Sepsis is a major cause of acute kidney injury (AKI) among patients in the intensive care unit. However, the numbers of basic science papers for septic AKI account for only 1% of all publications on AKI. This may be partially attributable to the specific pathophysiology of septic AKI as compared to that of the other types of AKI because it shows only modest histological changes despite functional decline and often requires real-time functional analysis. To increase the scope of research in this field, this article reviews the basic research information that has been reported thus far on the subject of septic AKI, mainly from the viewpoint of functional dysregulation, including some knowledge acquired with multiphoton intravital imaging. Moreover, the efficacy and limitation of the potential novel therapies are discussed. Finally, the author proposes several points that should be considered when designing the study, such as monitoring the long-term effects of the intervention and reflecting the clinical settings for identifying the molecular mechanisms and for challenging the intervention effects.
Collapse
Affiliation(s)
- Daisuke Nakano
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki, Kita, Kagawa, 761-0793, Japan.
| |
Collapse
|
32
|
Raupach A, Torregroza C, Niestegge J, Feige K, Klemm-Meyer S, Bauer I, Brandenburger T, Grievink H, Heinen A, Huhn R. MiR-21-5p but not miR-1-3p expression is modulated by preconditioning in a rat model of myocardial infarction. Mol Biol Rep 2020; 47:6669-6677. [PMID: 32789575 PMCID: PMC7561583 DOI: 10.1007/s11033-020-05721-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/02/2020] [Indexed: 11/27/2022]
Abstract
Isoflurane (Iso) preconditioning (PC) is known to be cardioprotective against ischemia/reperfusion (I/R) injury. It was previously shown that microRNA-21-5p (miR-21-5p) is regulated by Iso-PC. It is unclear, if expression of cardiac enriched miR-1-3p is also affected by Iso-PC, and associated with activation of HIF1α (hypoxia-inducible factor 1-alpha). Male Wistar rats (n = 6–8) were randomly assigned to treatment with or without 1 MAC Iso for 30 min, followed by 25 min of regional myocardial ischemia, with 120 min reperfusion. At the end of reperfusion, myocardial expression of miR-1-3p, miR-21-5p and mRNAs of two HIF-1α-dependent genes, VEGF (vascular endothelial growth factor) and HO-1 (heme oxygenase-1), were determined by quantitative PCR. Protein expression of a miR-21 target gene, PDCD4 (programmed cell death protein 4), was assessed by western blot analysis. Infarct sizes were analyzed with triphenyltetrazoliumchloride staining. MiR-21-5p expression was increased by Iso, whereas expression of miR-1-3p was not altered. The expression of VEGF but not HO-1 was induced by Iso. Iso-PC reduced infarct sizes compared to untreated controls. No regulation of miRNA and mRNA expression was detected after I/R. PDCD4 protein expression was not affected after Iso exposure. Expression of miR-21-5p, in contrast to miR-1-3p, is altered during this early time point of Iso-PC. HIF1α signaling seems to be involved in miR-21-5p regulation.
Collapse
Affiliation(s)
- Annika Raupach
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Carolin Torregroza
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany.
| | - Julia Niestegge
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Katharina Feige
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Swantje Klemm-Meyer
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Inge Bauer
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Timo Brandenburger
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Hilbert Grievink
- Cyclotron/Radiochemistry/MicroPET Unit, Hadassah Hebrew University Hospital, 91120, Jerusalem, Israel
| | - André Heinen
- Department of Cardiovascular Physiology, Heinrich-Heine-University Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Ragnar Huhn
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| |
Collapse
|
33
|
Extracellular vesicles carrying miRNAs in kidney diseases: a systemic review. Clin Exp Nephrol 2020; 24:1103-1121. [DOI: 10.1007/s10157-020-01947-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 07/27/2020] [Indexed: 01/26/2023]
|
34
|
Time-Dependent miRNA Profile during Septic Acute Kidney Injury in Mice. Int J Mol Sci 2020; 21:ijms21155316. [PMID: 32727087 PMCID: PMC7432314 DOI: 10.3390/ijms21155316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 07/25/2020] [Indexed: 12/11/2022] Open
Abstract
(1) Background: Lipopolysaccharide (LPS)-induced systemic inflammation is associated with septic acute kidney injury (AKI). We investigated the time-dependent miRNA expression changes in the kidney caused by LPS. (2) Methods: Male outbred NMRI mice were injected with LPS and sacrificed at 1.5 and 6 h (40 mg/kg i.p., early phase, EP) or at 24 and 48 h (10 mg/kg i.p., late phase, LP). The miRNA profile was established using miRCURY LNA™ microarray and confirmed with qPCR. Total renal proteome was analyzed by LC-MS/MS (ProteomeXchange: PXD014664). (3) Results: Septic AKI was confirmed by increases in plasma urea concentration and in renal TNF-α and IL-6 mRNA expression. Most miRNAs were altered at 6 and 24 h and declined by 48 h. In EP miR-762 was newly identified and validated and was the most elevated miRNA. The predicted target of miR-762, Ras related GTPase 1B (Sar1b) was downregulated. In LP miR-21a-5p was the most influenced miRNA followed by miR-451a, miR-144-3p, and miR-146a-5p. Among the potential protein targets of the most influenced miRNAs, only aquaporin-1, a target of miR-144-3p was downregulated at 24 h. (4) Conclusion: Besides already known miRNAs, septic AKI upregulated miR-762, which may regulate GTP signaling, and miR-144-3p and downregulated its target, aquaporin-1.
Collapse
|
35
|
Jia P, Pan T, Xu S, Fang Y, Song N, Guo M, Liang Y, Xu X, Ding X. Depletion of miR-21 in dendritic cells aggravates renal ischemia-reperfusion injury. FASEB J 2020; 34:11729-11740. [PMID: 32667078 DOI: 10.1096/fj.201903222rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 01/30/2023]
Abstract
Dendritic cells (DCs) play an important role in the pathophysiology of renal ischemia-reperfusion injury (IRI). The mechanisms underlying DCs phenotypic modulation and their function are not fully understood. In this study, we examined the effect of miR-21 on the phenotypic modulation of DCs in vitro and in vivo, and further investigated the impact of miR-21-overexpression DC or miR-21-deficient DC on renal IRI. We found that treatment with hypoxia/reoxygenation (H/R) suppressed miR-21 expression in bone marrow-derived dendritic cells (BMDCs), and significantly increased the percentage of mature DCs (CD11c+ /MHC-II+ /CD80+ ). Using a selection of microRNA mimics, we successfully induced the upregulation of miR-21 in BMDCs, which induced immature DC phenotype and an anti-inflammatory DC response. However, deletion of miR-21 in BMDCs promoted maturation of DCs under H/R. Adoptive transfer of miR-21-overexpression BMDCs could alleviate renal IR-induced pro-inflammatory cytokines production and acute kidney injury (AKI). Mice with miR-21 deficiency in DCs subjected to renal IR showed more severe renal dysfunction and inflammatory response compared with wild-type mice. In addition, chemokine C receptor 7 (CCR7), a surface marker of mature DC, was a target gene of miR-21, and silencing of CCR7 in BMDCs led to reduced mature DCs under H/R. In conclusion, our findings highlight miR-21 as a key regulator of DCs subset phenotype and a potential therapeutic target in renal IRI.
Collapse
Affiliation(s)
- Ping Jia
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Kidney and Blood Purification Laboratory of Shanghai, Shanghai, China
| | - Tianyi Pan
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Association, Shanghai, China
| | - Sujuan Xu
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi Fang
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Nana Song
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Man Guo
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiran Liang
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xialian Xu
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoqiang Ding
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Kidney and Blood Purification Laboratory of Shanghai, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Kidney and Dialysis Institute of Shanghai, Shanghai, China.,Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| |
Collapse
|
36
|
MicroRNA-19a Targets Fibroblast Growth Factor-Inducible Molecule 14 and Prevents Tubular Damage in Septic AKI. Anal Cell Pathol (Amst) 2020; 2020:2894650. [PMID: 32670778 PMCID: PMC7349421 DOI: 10.1155/2020/2894650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 05/19/2020] [Accepted: 05/25/2020] [Indexed: 12/18/2022] Open
Abstract
Fibroblast growth factor-inducible molecule 14 (Fn14) plays a principal role in triggering tubular damage during septic acute kidney injury (AKI). Here, we explore the mechanism underlying Fn14 deregulation in septic AKI. We identify Fn14 as a bona fide target of miR-19a, which directly binds to 3′ UTR of Fn14 for repression independent of cylindromatosis (CYLD), the deubiquitinase (DUB) downstream of miR-19a, and thereby antagonizes the LPS-induced tubular cell apoptosis. Genetic ablation of Fn14, but not of CYLD, abolishes the ability of miR-19a to antagonize the tubular apoptosis by lipopolysaccharide (LPS). In mice, systemic delivery of miR-19a confers protection against septic AKI. Our findings implicate that miR-19a may serve as a promising therapeutic candidate in the prevention of septic AKI.
Collapse
|
37
|
Park EJ, Appiah MG, Myint PK, Gaowa A, Kawamoto E, Shimaoka M. Exosomes in Sepsis and Inflammatory Tissue Injury. Curr Pharm Des 2020; 25:4486-4495. [PMID: 31738129 DOI: 10.2174/1381612825666191116125525] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 11/13/2019] [Indexed: 12/28/2022]
Abstract
Sepsis is the leading cause of death in medical intensive care units, and thus represents a serious healthcare problem worldwide. Sepsis is often caused by the aberrant host responses to infection, which induce dysregulated inflammation that leads to life-threatening multiple organ failures. Mediators such as proinflammatory cytokines that drive the sepsis pathogenesis have been extensively studied. Exosomes, biological lipid bilayer nanoparticles secreted via the endosomal pathway of cells, have recently emerged as important cargos that carry multiple mediators critical for the pathogenesis of sepsis-associated organ dysfunctions. Here we will review current knowledge on the exosomes in sepsis and relevant inflammatory tissue injuries.
Collapse
Affiliation(s)
- Eun J Park
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Mie 514- 8507, Japan
| | - Michael G Appiah
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Mie 514- 8507, Japan
| | - Phyoe K Myint
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Mie 514- 8507, Japan
| | - Arong Gaowa
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Mie 514- 8507, Japan
| | - Eiji Kawamoto
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Mie 514- 8507, Japan.,Department of Emergency and Disaster Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Motomu Shimaoka
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Mie 514- 8507, Japan
| |
Collapse
|
38
|
Crimi E, Cirri S, Benincasa G, Napoli C. Epigenetics Mechanisms in Multiorgan Dysfunction Syndrome. Anesth Analg 2020; 129:1422-1432. [PMID: 31397699 DOI: 10.1213/ane.0000000000004331] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Epigenetic mechanisms including deoxyribonucleic acid (DNA) methylation, histone modifications (eg, histone acetylation), and microribonucleic acids (miRNAs) have gained much scientific interest in the last decade as regulators of genes expression and cellular function. Epigenetic control is involved in the modulation of inflammation and immunity, and its dysregulation can contribute to cell damage and organ dysfunction. There is growing evidence that epigenetic changes can contribute to the development of multiorgan dysfunction syndrome (MODS), a leading cause of mortality in the intensive care unit (ICU). DNA hypermethylation, histone deacetylation, and miRNA dysregulation can influence cytokine and immune cell expression and promote endothelial dysfunction, apoptosis, and end-organ injury, contributing to the development of MODS after a critical injury. Epigenetics processes, particularly miRNAs, are emerging as potential biomarkers of severity of disease, organ damage, and prognostic factors in critical illness. Targeting epigenetics modifications can represent a novel therapeutic approach in critical care. Inhibitors of histone deacetylases (HDCAIs) with anti-inflammatory and antiapoptotic activities represent the first class of drugs that reverse epigenetics modifications with human application. Further studies are required to acquire a complete knowledge of epigenetics processes, full understanding of their individual variability, to expand their use as accurate and reliable biomarkers and as safe target to prevent or attenuate MODS in critical disease.
Collapse
Affiliation(s)
- Ettore Crimi
- From the University of Central Florida, College of Medicine, Orlando, Florida.,Department of Anesthesiology and Critical Care Medicine, Ocala Health, Ocala, Florida
| | - Silvia Cirri
- Division of Anesthesiology and Intensive Care, Cardiothoracic Department, Istituto Clinico Sant'Ambrogio, Gruppo Ospedaliero San Donato, Milan, Italy
| | - Giuditta Benincasa
- Clinical Department of Internal Medicine and Specialistics, Department of Advanced Clinical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Claudio Napoli
- Clinical Department of Internal Medicine and Specialistics, Department of Advanced Clinical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Foundation SDN, Naples, Italy
| |
Collapse
|
39
|
Libert C, Ayala A, Bauer M, Cavaillon JM, Deutschman C, Frostell C, Knapp S, Kozlov AV, Wang P, Osuchowski MF, Remick DG. Part II: Minimum Quality Threshold in Preclinical Sepsis Studies (MQTiPSS) for Types of Infections and Organ Dysfunction Endpoints. Shock 2020; 51:23-32. [PMID: 30106873 DOI: 10.1097/shk.0000000000001242] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although the clinical definitions of sepsis and recommended treatments are regularly updated, a systematic review has not been done for preclinical models. To address this deficit, a Wiggers-Bernard Conference on preclinical sepsis modeling reviewed the 260 most highly cited papers between 2003 and 2012 using sepsis models to create a series of recommendations. This Part II report provides recommendations for the types of infections and documentation of organ injury in preclinical sepsis models. Concerning the types of infections, the review showed that the cecal ligation and puncture model was used for 44% of the studies while 40% injected endotoxin. Recommendation #8 (numbered sequentially from Part I): endotoxin injection should not be considered as a model of sepsis; live bacteria or fungal strains derived from clinical isolates are more appropriate. Recommendation #9: microorganisms should replicate those typically found in human sepsis. Sepsis-3 states that sepsis is life-threatening organ dysfunction caused by a dysregulated host response to infection, but the review of the papers showed limited attempts to document organ dysfunction. Recommendation #10: organ dysfunction definitions should be used in preclinical models. Recommendation #11: not all activities in an organ/system need to be abnormal to verify organ dysfunction. Recommendation #12: organ dysfunction should be measured in an objective manner using reproducible scoring systems. Recommendation #13: not all experiments must measure all parameters of organ dysfunction, but investigators should attempt to fully capture as much information as possible. These recommendations are proposed as "best practices" for animal models of sepsis.
Collapse
Affiliation(s)
- Claude Libert
- Center for Inflammation Research, VIB, Ghent, Belgium.,Ghent University, Ghent, Belgium
| | - Alfred Ayala
- Rhode Island Hospital & Alpert School of Medicine at Brown University, Providence, Rhode Island
| | | | | | - Clifford Deutschman
- Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York
| | - Claes Frostell
- Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden
| | | | - Andrey V Kozlov
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Research Center, Vienna, Austria
| | - Ping Wang
- Feinstein Institute for Medical Research, Manhasset, New York
| | - Marcin F Osuchowski
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Research Center, Vienna, Austria
| | | |
Collapse
|
40
|
Ding C, Dou M, Wang Y, Li Y, Wang Y, Zheng J, Li X, Xue W, Ding X, Tian P. miR-124/IRE-1α affects renal ischemia/reperfusion injury by regulating endoplasmic reticulum stress in renal tubular epithelial cells. Acta Biochim Biophys Sin (Shanghai) 2020; 52:160-167. [PMID: 31965139 DOI: 10.1093/abbs/gmz150] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/24/2019] [Accepted: 11/25/2019] [Indexed: 12/11/2022] Open
Abstract
Acute kidney injury (AKI) refers to a clinical syndrome that occurs as a result of a rapid decline in renal function caused by multiple factors. Renal ischemia/reperfusion (I/R) injury is one of the main causes of AKI and has a high incidence and mortality. However, the specific pathogenesis of renal I/R injury is still unclear. In recent years, a major breakthrough has been made in the study of endoplasmic reticulum stress (ERS)-mediated apoptosis in I/R injury. It has been reported that miRNAs play protective roles in ischemic/reperfused organs, but the molecular mechanisms have not been investigated deeply. In this study, the renal I/R mouse model was used to explore the roles of miR-124 in ERS and in renal I/R injury. The western blot results showed that the expression levels of ERS-related proteins IRE-1α, XBP-1, and glucose-regulated protein 78 (GRP78) were significantly increased in the I/R model group when compared with those in the control group. Meanwhile, qPCR results showed that miR-124 expression was decreased in the I/R injury model, and overexpression of miR-124 using miR-124 mimics effectively reduced the expression of ERS-related proteins and alleviated renal I/R injury. In addition, luciferase reporter assay was performed, and the results showed that IRE-1α and miR-124 may have direct interaction. In conclusion, our data indicated that miR-124 was a negative regulator of ERS via binding to IRE-1α, ultimately conferring its protective effect on the kidney, which demonstrates the regulatory mechanism of miR-124 in renal I/R injury and provides new ideas and methods for the prevention and treatment of renal I/R injury.
Collapse
Affiliation(s)
- Chenguang Ding
- Department of Kidney Transplantation, Nephropathy Hospital, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Institute of Organ Transplantation, Xi’an Jiaotong University, Xi’an 710061, China
| | - Meng Dou
- Department of Kidney Transplantation, Nephropathy Hospital, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Institute of Organ Transplantation, Xi’an Jiaotong University, Xi’an 710061, China
| | - Yuxiang Wang
- Department of Kidney Transplantation, Nephropathy Hospital, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Institute of Organ Transplantation, Xi’an Jiaotong University, Xi’an 710061, China
| | - Yang Li
- Department of Kidney Transplantation, Nephropathy Hospital, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Institute of Organ Transplantation, Xi’an Jiaotong University, Xi’an 710061, China
| | - Ying Wang
- Department of Kidney Transplantation, Nephropathy Hospital, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Institute of Organ Transplantation, Xi’an Jiaotong University, Xi’an 710061, China
| | - Jin Zheng
- Department of Kidney Transplantation, Nephropathy Hospital, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Institute of Organ Transplantation, Xi’an Jiaotong University, Xi’an 710061, China
| | - Xiao Li
- Department of Kidney Transplantation, Nephropathy Hospital, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Institute of Organ Transplantation, Xi’an Jiaotong University, Xi’an 710061, China
| | - Wujun Xue
- Department of Kidney Transplantation, Nephropathy Hospital, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Institute of Organ Transplantation, Xi’an Jiaotong University, Xi’an 710061, China
| | - Xiaoming Ding
- Department of Kidney Transplantation, Nephropathy Hospital, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Institute of Organ Transplantation, Xi’an Jiaotong University, Xi’an 710061, China
| | - Puxun Tian
- Department of Kidney Transplantation, Nephropathy Hospital, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Institute of Organ Transplantation, Xi’an Jiaotong University, Xi’an 710061, China
| |
Collapse
|
41
|
Zhao D, Li S, Cui J, Wang L, Ma X, Li Y. Plasma miR-125a and miR-125b in sepsis: Correlation with disease risk, inflammation, severity, and prognosis. J Clin Lab Anal 2020; 34:e23036. [PMID: 32077163 PMCID: PMC7031612 DOI: 10.1002/jcla.23036] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE This study aimed to explore the predictive value of microRNA (miR)-125a and miR-125b for sepsis risk, and their correlations with inflammation, disease severity, and 28-day mortality in sepsis patients. METHODS Totally, 150 sepsis patients and 150 healthy controls (HCs) were enrolled. Plasma samples were separated from blood samples obtained from sepsis patients and HCs to detect miR-125a and miR-125b expressions by real-time quantitative polymerase chain reaction. Besides, the 28-day mortality of sepsis patients was assessed. MiR-125a and miR-125b expressions were elevated in sepsis patients compared with HCs, and further receiver operating characteristics (ROC) curve analysis displayed that miR-125a (area under the curve (AUC): 0.749, 95% CI: 0.695-0.803) and miR-125b (AUC: 0.839, 95% CI: 0.795-0.882) could predict sepsis risk. As for inflammation, no correlation of miR-125a with C-reactive protein (CRP), tumor necrosis factor-α (TNF-α), interleukin (IL)-6, IL-17, and IL-23 was observed in sepsis patients, while miR-125b was positively associated with CRP, TNF-α, IL-6, IL-17, and IL-23. Regarding disease severity, miR-125a and miR-125b were positively correlated with acute physiology and chronic health care evaluation II and sequential organ failure assessment score in sepsis patients. Besides, ROC curve analysis exhibited that miR-125a failed to predict 28-day mortality risk (AUC: 0.588, 95% CI: 0.491-0.685) in sepsis patients, while miR-125b had a potential value in predicting elevated 28-day mortality risk (AUC: 0.699, 95% CI: 0.603-0.795). CONCLUSION Both miR-125a and miR-125b predict sepsis risk, while only miR-125b exhibits the potency for disease management and prognosis prediction in sepsis patients.
Collapse
Affiliation(s)
- Danna Zhao
- Department of LaboratoryCangzhou People HospitalCangzhouChina
| | - Shilei Li
- Department of EmergencyCangzhou Central HospitalCangzhouChina
| | - Jie Cui
- Department of EmergencyCangzhou Central HospitalCangzhouChina
| | - Lizeng Wang
- Department of EmergencyCangzhou Central HospitalCangzhouChina
| | - Xiaohua Ma
- Department of EmergencyCangzhou Central HospitalCangzhouChina
| | - Yong Li
- Department of EmergencyCangzhou Central HospitalCangzhouChina
| |
Collapse
|
42
|
Wang Z, Zhang W. The crosstalk between hypoxia-inducible factor-1α and microRNAs in acute kidney injury. Exp Biol Med (Maywood) 2020; 245:427-436. [PMID: 31996035 DOI: 10.1177/1535370220902696] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Acute kidney injury (AKI) is a common critical clinical disease that is characterized by a rapid decline in renal function and reduced urine output. Ischemia and hypoxia are dominant pathophysiological changes in AKI that are induced by many factors, and the role of the “master” regulator hypoxia-inducible factor-1α (HIF-1α) is well recognized in AKI-related studies. MicroRNAs have been found to act as critical regulators of AKI pathophysiological process. More studies now have reported mutual interactions between HIF-1α and microRNAs in AKI. Therefore, in this brief review, we look into the mutual regulatory mechanisms between HIF-1α and microRNAs and discuss their function in the process of AKI. Recent studies demonstrated that HIF-1α is involved in the regulation of multiple functional microRNAs in AKI, and in turn, the level of HIF-1α is regulated by specific microRNAs. However, the role of the interactions between HIF-1α and microRNAs in AKI are controversial, and whether interventions targeting relevant mechanisms could achieve clinical benefits is not clear. Much work remains to further explore the value of targeting the HIF-1α-microRNA pathway in AKI treatment. Impact statement At first, we have discussed the role of hypoxia-inducible factor-1α (HIF-1α) and microRNAs in the acute kidney injury (AKI) pathophysiology. Then we have summarized the interactions between HIF-1α and microRNAs reported by AKI-related studies and concluded their regulatory effects in AKI process. Finally, we have made a vision of HIF-1α/microRNAs pathway’s potential as the intervention target in AKI. The mini review provides a systematic understanding of the crosstalk between HIF-1α and microRNAs in AKI and their effects on AKI pathophysiology and treatment.
Collapse
Affiliation(s)
- Zhiyu Wang
- Division of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wen Zhang
- Division of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
43
|
Gracillin inhibits apoptosis and inflammation induced by lipopolysaccharide (LPS) to alleviate cardiac injury in mice via improving miR-29a. Biochem Biophys Res Commun 2020; 523:580-587. [PMID: 31941605 DOI: 10.1016/j.bbrc.2019.11.129] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 12/13/2022]
Abstract
Sepsis induces critical myocardial dysfunction, resulting in an increased mortality. Gracillin (GRA) is a natural steroidal saponin, showing strong capacities of anti-inflammation, but its pharmacological effects on lipopolysaccharide (LPS)-induced acute cardiac injury still remain unclear. In this study, we attempted to explore if GRA was effective to attenuate cardiac injury in LPS-challenged mice and the underlying mechanisms. First, we found that GRA treatments markedly up-regulated the expression of miR-29a in cardiomyocytes. LPS-induced cytotoxicity in cardiomyocytes was significantly alleviated by GRA treatment, as evidenced by the improved cell viability and reduced lactate dehydrogenase (LDH) release. In addition, LPS-triggered apoptotic cell death was clearly ameliorated in cardiomyocytes co-treated with GRA. Notably, LPS-exposed cells showed significantly reduced expression of miR-29a, while being rescued by GRA treatment. In vivo, LPS apparently impaired cardiac function in mice, which was, however, alleviated by GRA administration. In addition, GRA markedly attenuated apoptosis in hearts of LPS-challenged mice by decreasing the expression of cleaved Caspase-3. LPS-triggered inflammatory response in cardiac tissues was also suppressed by GRA through blocking nuclear factor κB (NF-κB) signaling pathway. We also found that miR-29a expression was highly reduced in hearts of LPS-treated mice but was rescued by GRA pretreatment. Besides, miR-29a mimic alleviated LPS-induced apoptosis and inflammation in cardiomyocytes; however, LPS-caused effects were further accelerated by miR-29a. Of note, the protective effects of GRA on LPS-injured cardiac tissues were significantly abrogated by miR-29a suppression. In conclusion, our findings demonstrated that GRA exerted an effective role against LPS-induced acute cardiac injury through impeding apoptosis and inflammation regulated by miR-29a.
Collapse
|
44
|
Na L, Ding H, Xing E, Gao J, Liu B, Wang H, Yu J, Yu C. Lnc-MEG3 acts as a potential biomarker for predicting increased disease risk, systemic inflammation, disease severity, and poor prognosis of sepsis via interacting with miR-21. J Clin Lab Anal 2020; 34:e23123. [PMID: 31907972 PMCID: PMC7171338 DOI: 10.1002/jcla.23123] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/22/2019] [Accepted: 10/29/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND This study aimed to investigate the correlations of long non-coding RNA maternally expressed gene 3 (lnc-MEG3), microRNA (miR)-21, and lnc-MEG3/miR-21 axis with disease risk, inflammation, disease severity, and 28-day mortality of sepsis. METHODS Totally, 219 sepsis patients and 219 health controls (HCs) were enrolled. Plasma samples were obtained from sepsis patients within 24 hours after admission and from HCs on enrollment to detect lnc-MEG3 and miR-21 expressions by real-time quantitative polymerase chain reaction. RESULTS The lnc-MEG3 expression and lnc-MEG3/miR-21 axis were increased, while miR-21 expression was decreased in sepsis patients compared with HCs. Lnc-MEG3 (area under the curve (AUC): 0.887, 95% confidence interval (CI): 0.856-0.917) and lnc-MEG3/miR-21 axis (AUC: 0.934, 95% CI: 0.909-0.958) had good values for predicting elevated sepsis risk, while miR-21 (AUC: 0.801, 95% CI: 0.758-0.844) presented a good predictive value for reduced sepsis risk. Furthermore, lnc-MEG3 expression and lnc-MEG3/miR-21 axis positively correlated with, whereas miR-21 expression negatively correlated with acute pathologic and chronic health evaluation II, sequential organ failure assessment score, serum creatinine, C-reactive protein, tumor necrosis factor-α, interleukin (IL)-1β, IL-6, and IL-17 in sepsis patients. Additionally, lnc-MEG3 (AUC: 0.704, 95% CI: 0.626-0.783) and lnc-MEG3/miR-21 axis (AUC: 0.669, 95% CI: 0.589-0.750) exhibited acceptable values in predicting higher 28-day mortality risk, while miR-21 (AUC: 0.588, 95% CI: 0.505-0.672) presented a poor predictive value for lower 28-day mortality risk in sepsis patients. CONCLUSION Lnc-MEG3 might serve as a potential biomarker for the development, progression, and prognosis prediction of sepsis via interacting with miR-21.
Collapse
Affiliation(s)
- Lei Na
- Emergency Department, Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Huajie Ding
- Ultrasonography Department, Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Enhong Xing
- Clinical Laboratory, Southern District of Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Jun Gao
- Emergency Department, Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Bin Liu
- Radiology Department, Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Huarong Wang
- Emergency Department, Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Jian Yu
- Emergency Department, Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Changyu Yu
- Hand and Foot Surgery Department, Southern District of Affiliated Hospital of Chengde Medical College, Chengde, China
| |
Collapse
|
45
|
Gertz ZM, Cain C, Kraskauskas D, Devarakonda T, Mauro AG, Thompson J, Samidurai A, Chen Q, Gordon SW, Lesnefsky EJ, Das A, Salloum FN. Remote Ischemic Pre-Conditioning Attenuates Adverse Cardiac Remodeling and Mortality Following Doxorubicin Administration in Mice. JACC: CARDIOONCOLOGY 2019; 1:221-234. [PMID: 32699841 PMCID: PMC7375406 DOI: 10.1016/j.jaccao.2019.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Objectives Because of its multifaceted cardioprotective effects, remote ischemic pre-conditioning (RIPC) was examined as a strategy to attenuate doxorubicin (DOX) cardiotoxicity. Background The use of DOX is limited by dose-dependent cardiotoxicity and heart failure. Oxidative stress, mitochondrial dysfunction, inflammation, and autophagy modulation have been proposed as mediators of DOX cardiotoxicity. Methods After baseline echocardiography, adult male CD1 mice were randomized to either sham or RIPC protocol (3 cycles of 5 min femoral artery occlusion followed by 5 min reperfusion) 1 h before receiving DOX (20 mg/kg, intraperitoneal). The mice were observed primarily for survival over 85 days (86 mice). An additional cohort of 50 mice was randomized to either sham or RIPC 1 h before DOX treatment and was followed for 25 days, at which time cardiac fibrosis, apoptosis, and mitochondrial oxidative phosphorylation were assessed, as well as the expression profiles of apoptosis and autophagy markers. Results Survival was significantly improved in the RIPC cohort compared with the sham cohort (p = 0.007). DOX-induced cardiac fibrosis and apoptosis were significantly attenuated with RIPC compared with sham (p < 0.05 and p < 0.001, respectively). Although no mitochondrial dysfunction was detected at 25 days, there was a significant increase in autophagy markers with DOX that was attenuated with RIPC. Moreover, DOX caused a 49% decline in cardiac BCL2/BAX expression, which was restored with RIPC (p < 0.05 vs. DOX). DOX also resulted in a 17% reduction in left ventricular mass at 25 days, which was prevented with RIPC (p < 0.01), despite the lack of significant changes in left ventricular ejection fraction. Conclusions Our preclinical results suggested that RIPC before DOX administration might be a promising approach for attenuating DOX cardiotoxicity.
Collapse
Affiliation(s)
- Zachary M Gertz
- Pauley Heart Center, Department of Internal Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond, Virginia
| | - Chad Cain
- Pauley Heart Center, Department of Internal Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond, Virginia
| | - Donatas Kraskauskas
- Pauley Heart Center, Department of Internal Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond, Virginia
| | - Teja Devarakonda
- Pauley Heart Center, Department of Internal Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond, Virginia
| | - Adolfo G Mauro
- Pauley Heart Center, Department of Internal Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond, Virginia
| | - Jeremy Thompson
- Pauley Heart Center, Department of Internal Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond, Virginia
| | - Arun Samidurai
- Pauley Heart Center, Department of Internal Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond, Virginia
| | - Qun Chen
- Pauley Heart Center, Department of Internal Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond, Virginia
| | - Sarah W Gordon
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Edward J Lesnefsky
- Pauley Heart Center, Department of Internal Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond, Virginia.,Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia.,Medical Service, McGuire VA Medical Center, Richmond, Virginia
| | - Anindita Das
- Pauley Heart Center, Department of Internal Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond, Virginia
| | - Fadi N Salloum
- Pauley Heart Center, Department of Internal Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
46
|
Na L, Ding H, Xing E, Zhang Y, Gao J, Liu B, Yu J, Zhao Y. The predictive value of microRNA-21 for sepsis risk and its correlation with disease severity, systemic inflammation, and 28-day mortality in sepsis patients. J Clin Lab Anal 2019; 34:e23103. [PMID: 31778243 PMCID: PMC7083453 DOI: 10.1002/jcla.23103] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/11/2019] [Accepted: 10/16/2019] [Indexed: 12/17/2022] Open
Abstract
Background This study aimed to investigate the value of microRNA (miR)‐21 for predicting sepsis risk and its correlation with inflammation, disease severity as well as 28‐day mortality in sepsis patients. Methods Totally, 219 sepsis patients and 219 healthy controls (HCs) were recruited. Plasma samples were obtained from sepsis patients within 24 hours after admission and from HCs at the enrollment to detect miR‐21 expressions by real‐time quantitative polymerase chain reaction. Besides, the clinical characteristics of sepsis patients were recorded and the 28‐day mortality of sepsis patients was evaluated. Results MiR‐21 expression was decreased in sepsis patients compared with HCs, and further receiver operating characteristic (ROC) curve analysis revealed that miR‐21 was of a good value in predicting sepsis risk (area under the curve [AUC]: 0.801, 95% CI: 0.758‐0.844). Besides, miR‐21 expression was negatively associated with acute pathologic and chronic health evaluation II (APACHE II) and sequential organ failure assessment (SOFA) score in sepsis patients. Furthermore, miR‐21 expression was negatively correlated with serum creatinine, C‐reactive protein, tumor necrosis factor‐α, interleukin (IL)‐1β, IL‐6, and IL‐17, while positively correlated with albumin in sepsis patients. However, there was no correlation of miR‐21 expression with white blood cell, smoke, or comorbidities in sepsis patients. Additionally, ROC curve analysis displayed that miR‐21 exhibited a poor predictive value for 28‐day mortality risk in sepsis patients (AUC: 0.588, 95% CI: 0.505‐0.672). Conclusion MiR‐21 might serve as a potential biomarker for the development and progression of sepsis, while not for prognosis prediction in sepsis patients.
Collapse
Affiliation(s)
- Lei Na
- Emergency Department, Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Huajie Ding
- Ultrasonography Department, Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Enhong Xing
- Clinical Laboratory, Southern District of Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Yan Zhang
- Science and Education Department, Chengde Maternal and Child Health-Care Hospital, Chengde, China
| | - Jun Gao
- Emergency Department, Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Bin Liu
- Radiology Department, Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Jian Yu
- Emergency Department, Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Yanjun Zhao
- Emergency Department, Affiliated Hospital of Chengde Medical College, Chengde, China
| |
Collapse
|
47
|
Du X, Wei J, Tian D, Wu M, Yan C, Hu P, Wu X, Yang W, Yin T. miR‐182‐5p contributes to intestinal injury in a murine model of
Staphylococcus aureus
pneumonia‐induced sepsis via targeting surfactant protein D. J Cell Physiol 2019; 235:563-572. [PMID: 31318050 DOI: 10.1002/jcp.28995] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/31/2019] [Accepted: 06/04/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Xianjin Du
- Department of Emergency Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Jie Wei
- Department of Emergency Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Dan Tian
- Department of Emergency Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Miao Wu
- Department of Emergency Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Chen Yan
- Department of Emergency Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Peng Hu
- Department of Emergency Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Xu Wu
- Department of Emergency Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Wenbin Yang
- Department of Emergency Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Tailang Yin
- Reproductive Medicine Center Renmin Hospital of Wuhan University Wuhan Hubei China
| |
Collapse
|
48
|
Pan T, Jia P, Chen N, Fang Y, Liang Y, Guo M, Ding X. Delayed Remote Ischemic Preconditioning ConfersRenoprotection against Septic Acute Kidney Injury via Exosomal miR-21. Theranostics 2019; 9:405-423. [PMID: 30809283 PMCID: PMC6376188 DOI: 10.7150/thno.29832] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/29/2018] [Indexed: 12/26/2022] Open
Abstract
Sepsis is a common and life-threatening systemic disorder, often leading to acute injury of multiple organs. Here, we show that remote ischemic preconditioning (rIPC), elicited by brief episodes of ischemia and reperfusion in femoral arteries, provides protective effects against sepsis-induced acute kidney injury (AKI). Methods: Limb rIPC was conducted on mice in vivo 24 h before the onset of cecal ligation and puncture (CLP), and serum exosomes derived from rIPC mice were infused into CLP-challenged recipients. In vitro, we extracted and identified exosomes from differentiated C2C12 cells (myotubes) subjected to hypoxia and reoxygenation (H/R) preconditioning, and the exosomes were administered to lipopolysaccharide (LPS)-treated mouse tubular epithelial cells (mTECs) or intravenously injected into CLP-challenged miR-21 knockout mice for rescue experiments. Results: Limb rIPC protected polymicrobial septic mice from multiple organ dysfunction, systemic accumulation of inflammatory cytokines and accelerated parenchymal cell apoptosis through upregulation of miR-21 in a hypoxia-inducible factor 1α (HIF-1α)-dependent manner in the ischemic limbs of mice. However, in miR-21 knockout mice or mice that received HIF-1α siRNA injection into hind limb muscles, the organ protection conferred by limb rIPC was abolished. Mechanistically, we discovered that miR-21 was transported from preischemic limbs to remote organs via serum exosomes. In kidneys, the enhanced exosomal miR-21 derived from cultured myotubes with H/R or the serum of mice treated with rIPC integrated into renal tubular epithelial cells and then targeted the downstream PDCD4/NF-κB and PTEN/AKT pathways, exerting anti-inflammatory and anti-apoptotic effects and consequently attenuating sepsis-induced renal injury both in vivo and in vitro. Conclusion: This study demonstrates a critical role for exosomal miR-21 in renoprotection conferred by limb rIPC against sepsis and suggests that rIPC and exosomes might serve as the possible therapeutic strategies for sepsis-induced kidney injury.
Collapse
|
49
|
Wei Y, Meng M, Tian Z, Xie F, Yin Q, Dai C, Wang J, Zhang Q, Liu Y, Liu C, Yan F, Jiang F, Guo X. Pharmacological preconditioning with the cellular stress inducer thapsigargin protects against experimental sepsis. Pharmacol Res 2018; 141:114-122. [PMID: 30579975 DOI: 10.1016/j.phrs.2018.12.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/12/2018] [Accepted: 12/19/2018] [Indexed: 02/08/2023]
Abstract
Previous studies have shown that pretreatment with thapsigargin (TG), a cellular stress inducer, produced potent protective actions against various pathologic injuries. So far there is no information on the effects of TG on the development of bacterial sepsis. Using lipopolysaccharides- and cecal ligation/puncture-induced sepsis models in mice, we demonstrated that preconditioning with a single bolus administration of TG conferred significant improvements in survival. The beneficial effects of TG were not mediated by ER stress induction or changes in Toll-like receptor 4 signaling. In vivo and in cultured macrophages, we identified that TG reduced the protein production of pro-inflammatory cytokines, but exhibited no significant effects on steady state levels of their transcriptions. Direct measurement on the fraction of polysome-bound mRNAs revealed that TG reduced the translational efficiency of pro-inflammatory cytokines in macrophages. Moreover, we provided evidence suggesting that repression of the mTOR (the mammalian target of rapamycin) signaling pathway, but not activation of the PERK (protein kinase R-like endoplasmic reticulum kinase)-eIF2α (eukaryotic initiation factor 2α) pathway, might be involved in mediating the TG effects on cytokine production. In summary, our results support that pharmacological preconditioning with TG may represent a novel strategy to prevent sepsis-induced mortality and organ injuries.
Collapse
Affiliation(s)
- Yaping Wei
- Department of Physiology and Pathophysiology, School of Basic Medicine, Shandong University, Jinan, Shandong Province, China
| | - Mei Meng
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated, Shandong University, Jinan, Shandong Province, China
| | - Zhenyu Tian
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Fubo Xie
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Qihui Yin
- Department of Physiology and Pathophysiology, School of Basic Medicine, Shandong University, Jinan, Shandong Province, China
| | - Chaochao Dai
- Department of Physiology and Pathophysiology, School of Basic Medicine, Shandong University, Jinan, Shandong Province, China
| | - Jingjing Wang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Shandong University, Jinan, Shandong Province, China
| | - Qunye Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yu Liu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Shandong University, Jinan, Shandong Province, China
| | - Chang Liu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Shandong University, Jinan, Shandong Province, China
| | - Feng Yan
- Department of Emergency, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Fan Jiang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Shandong University, Jinan, Shandong Province, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| | - Xiaosun Guo
- Department of Physiology and Pathophysiology, School of Basic Medicine, Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
50
|
Wei Q, Sun H, Song S, Liu Y, Liu P, Livingston MJ, Wang J, Liang M, Mi QS, Huo Y, Nahman NS, Mei C, Dong Z. MicroRNA-668 represses MTP18 to preserve mitochondrial dynamics in ischemic acute kidney injury. J Clin Invest 2018; 128:5448-5464. [PMID: 30325740 DOI: 10.1172/jci121859] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 10/04/2018] [Indexed: 01/02/2023] Open
Abstract
The pathogenesis of ischemic diseases remains unclear. Here we demonstrate the induction of microRNA-668 (miR-668) in ischemic acute kidney injury (AKI) in human patients, mice, and renal tubular cells. The induction was HIF-1 dependent, as HIF-1 deficiency in cells and kidney proximal tubules attenuated miR-668 expression. We further identified a functional HIF-1 binding site in the miR-668 gene promoter. Anti-miR-668 increased apoptosis in renal tubular cells and enhanced ischemic AKI in mice, whereas miR-668 mimic was protective. Mechanistically, anti-miR-668 induced mitochondrial fragmentation, whereas miR-668 blocked mitochondrial fragmentation during hypoxia. We analyzed miR-668 target genes through immunoprecipitation of microRNA-induced silencing complexes followed by RNA deep sequencing and identified 124 protein-coding genes as likely targets of miR-668. Among these genes, only mitochondrial protein 18 kDa (MTP18) has been implicated in mitochondrial dynamics. In renal cells and mouse kidneys, miR-668 mimic suppressed MTP18, whereas anti-miR-668 increased MTP18 expression. Luciferase microRNA target reporter assay further verified MTP18 as a direct target of miR-668. In renal tubular cells, knockdown of MTP18 suppressed mitochondrial fragmentation and apoptosis. Together, the results suggest that miR-668 is induced via HIF-1 in ischemic AKI and that, upon induction, miR-668 represses MTP18 to preserve mitochondrial dynamics for renal tubular cell survival and kidney protection.
Collapse
Affiliation(s)
- Qingqing Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Haipeng Sun
- Department of Nephrology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Shuwei Song
- Department of Nephrology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yong Liu
- Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Pengyuan Liu
- Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Man Jiang Livingston
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Jianwen Wang
- Department of Nephrology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Mingyu Liang
- Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Qing-Sheng Mi
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health System, Detroit, Michigan, USA
| | | | - Norris Stanley Nahman
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Changlin Mei
- Department of Nephrology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA.,Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, China.,Charlie Norwood VA Medical Center, Augusta, Georgia, USA
| |
Collapse
|