1
|
Sukati S, Rattanatham R, Masangkay FR, Tseng CP, Kotepui M. Alterations in von Willebrand Factor Levels in Patients with Malaria: A Systematic Review and Meta-Analysis of Disease Severity. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:767. [PMID: 40283058 PMCID: PMC12028635 DOI: 10.3390/medicina61040767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025]
Abstract
Background and Objectives: Elevated von Willebrand factor (vWF) levels have been reported in malaria, but their relationship with disease severity remains unclear. This study aimed to compare vWF levels between Plasmodium-infected and uninfected individuals and assess changes in severe infections. Materials and Methods: The systematic review was registered in PROSPERO (CRD42024558479). A comprehensive search across six databases identified studies reporting vWF levels in malaria. A meta-analysis was conducted using a random-effects model, with standardized mean difference (SMD) as the effect measure due to varying measurement units. Heterogeneity was assessed using the I2 statistic. Results: Of 1647 identified records, 26 studies met the inclusion criteria. The meta-analysis showed significantly higher vWF levels in Plasmodium-infected individuals compared to uninfected controls (p < 0.001, SMD: 2.689 [95% CI 1.362; 4.017], I2: 98.1%, 12 studies, 3109 participants). However, no significant difference was found between severe and less severe cases (p = 0.051, SMD: 3.551 [95% CI -0.007; 7.109], I2: 99.3%, 8 studies, 1453 participants). Conclusions: vWF levels are significantly elevated in individuals with Plasmodium infections, indicating a potential role in malaria pathophysiology. Although levels tend to be higher in severe cases, current evidence is insufficient to support vWF as a reliable marker for disease severity. Further prospective and well-controlled studies are needed to validate its diagnostic and prognostic value in malaria management.
Collapse
Affiliation(s)
- Suriyan Sukati
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat 80160, Thailand;
- Hematology and Transfusion Science Research Center, Walailak University, Tha Sala, Nakhon Si Thammarat 80160, Thailand
| | - Rujikorn Rattanatham
- Medical Technology Program, Faculty of Science, Nakhon Phanom University, Nakhon Phanom 48000, Thailand
| | | | - Ching-Ping Tseng
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Manas Kotepui
- Medical Technology Program, Faculty of Science, Nakhon Phanom University, Nakhon Phanom 48000, Thailand
| |
Collapse
|
2
|
Mayhew JA, Witten AJ, Bond CA, Opoka RO, Bangirana P, Conroy AL, Hernandez-Alvarado N, Schleiss MR, John CC. Cytomegalovirus reactivation and acute and chronic complications in children with cerebral malaria: a prospective cohort study. Malar J 2025; 24:48. [PMID: 39962580 PMCID: PMC11834542 DOI: 10.1186/s12936-025-05293-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/12/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Virus co-infection or reactivation may modify the host response during cerebral malaria. Cytomegalovirus (CMV) DNAemia has been associated with increased morbidity and mortality in adults with sepsis; however, the impact of CMV DNAemia on adverse outcomes in children with cerebral malaria is unknown. METHODS Clinical, physiological, and neurocognitive outcomes were compared in children aged 18 months to 12 years with cerebral malaria (N = 242) based on the presence or absence of CMV DNAemia 24 h after admission. The primary study outcome was subsequent in-hospital mortality. Secondary outcomes included the presence of acute kidney injury, neurocognitive impairment over a 2-year follow-up, and chronic kidney disease at the 1-year follow-up. Markers of platelet and endothelial cell activation and oxidative and nitrosative stress were measured to characterize the mechanisms by which CMV DNAemia might contribute to pathogenesis. RESULTS CMV DNAemia was present in 33 children with cerebral malaria (13.6%) 24 h after admission. CMV DNAemia was not significantly associated with mortality in this study. Children with CMV-DNAemia had a higher prevalence of acute kidney injury than those without CMV-DNAemia (59.4% vs. 38.6%, p = 0.03). There was no difference in the prevalence of chronic kidney disease or long-term neurocognitive impairment based on the presence of DNAemia. CMV DNAemia was associated with elevated plasma levels of P-selectin, angiopoietin-1, asymmetric dimethylarginine, and platelet counts. CONCLUSIONS In children with cerebral malaria, CMV DNAemia is associated with acute kidney injury but not in-hospital mortality, chronic kidney disease, or long-term neurocognitive impairment.
Collapse
Affiliation(s)
- Jonathan A Mayhew
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Indiana University School of Medicine, 705 Riley Hospital Dr, Indianapolis, IN, 46202, USA
- Department of Pediatric and Adolescent Medicine, Western Michigan University, Homer Stryker, M.D. School of Medicine, Kalamazoo, MI, USA
| | - Andrew J Witten
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Indiana University School of Medicine, 705 Riley Hospital Dr, Indianapolis, IN, 46202, USA
| | - Caitlin A Bond
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Indiana University School of Medicine, 705 Riley Hospital Dr, Indianapolis, IN, 46202, USA
| | - Robert O Opoka
- Aga Khan University, Nairobi, Kenya
- Global Health Uganda, Kampala, Uganda
| | - Paul Bangirana
- Global Health Uganda, Kampala, Uganda
- Makerere University College of Health Sciences, Kampala, Uganda
| | - Andrea L Conroy
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Indiana University School of Medicine, 705 Riley Hospital Dr, Indianapolis, IN, 46202, USA
| | | | - Mark R Schleiss
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Chandy C John
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Indiana University School of Medicine, 705 Riley Hospital Dr, Indianapolis, IN, 46202, USA.
| |
Collapse
|
3
|
Mwaba C, Munsaka S, Mwakazanga D, Rutagwerae D, Ngalamika O, Mwanza S, McCulloch M, Mpabalwani E. Clinical, immune and genetic risk factors of malaria-associated acute kidney injury in Zambian children: A study protocol. PLoS One 2025; 20:e0316205. [PMID: 39913368 PMCID: PMC11801570 DOI: 10.1371/journal.pone.0316205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 12/06/2024] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Acute kidney injury (AKI) affects nearly half of children with severe malaria and increases the risk of adverse outcomes such as death and poor cognitive function. The pathogenesis and predictors of malaria-associated acute kidney injury (MAKI) are not fully described. This study aims to determine the clinical, immune, and genetic correlates of risk to AKI in Zambian children admitted with malaria. In addition, we intend to assess a modified renal angina index (mRAI), kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), and soluble urokinase receptor (suPAR), when done on the first day of admission, for the ability to predict AKI two days later (day 3) in children admitted with malaria. METHODS This is an unmatched case-control study with a nested prospective observational study. A case-to-control ratio of 1:1 is used and 380 children with malaria and aged less than 16 years are being recruited from two hospitals in Zambia. Eligible children are recruited after obtaining written informed consent. Recruitment occurs during the malaria season and began on 6th March 2024 and will continue until July 2025. AKI is defined using the 2012 KIDGO AKI creatinine criteria, and cases are defined as children admitted with malaria who develop AKI within 72 hours of admission, while controls are children admitted with malaria but with no AKI. Serum creatinine is collected on Day 1 within 24 hours of admission, on Day 3 and then again on discharge or day 7, whichever comes sooner. Baseline biomarker concentrations will be determined using the Luminex multiplex Elisa system or high-sensitivity ELISA. SPSS version 29 will be used for data analysis. Descriptive statistics and inferential statistical tests will be run as appropriate. A p ≤ 0.05 will be considered as significant. The sensitivity, specificity, and estimates of the area under the curve (AUC) for the renal angina score will be determined.
Collapse
Affiliation(s)
- Chisambo Mwaba
- Department of Paediatrics and Child Health, School of Medicine, University of Zambia, Lusaka, Zambia
- Department of Paediatrics, University Teaching Hospitals-Children’s Hospital, Lusaka, Zambia
| | - Sody Munsaka
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | - David Mwakazanga
- Public Health Department, Epidemiology and Statistics Unit, Tropical Diseases Research Centre, Ndola, Zambia
| | - David Rutagwerae
- Kaposi’s Sarcoma Molecular Laboratory, Paediatric Centre of Excellence, University Teaching Hospitals-Children’s Hospital, Lusaka, Zambia
| | - Owen Ngalamika
- Dermatology and Venereology Division, Department of Internal Medicine, University Teaching Hospital, University of Zambia School of Medicine, Lusaka, Zambia
| | - Suzanna Mwanza
- Department of Paediatrics and Child Health, Chipata Central Hospital, Chipata, Zambia
| | - Mignon McCulloch
- Division of Paediatric Nephrology, Red Cross War Memorial Children’s Hospital, University of Cape Town, Cape Town, South Africa
| | - Evans Mpabalwani
- Department of Paediatrics and Child Health, School of Medicine, University of Zambia, Lusaka, Zambia
- Department of Paediatrics, University Teaching Hospitals-Children’s Hospital, Lusaka, Zambia
| |
Collapse
|
4
|
Bertran-Cobo C, Dumont E, Noordin NR, Lai MY, Stone W, Tetteh KKA, Drakeley C, Krishna S, Lau YL, Wassmer SC. Plasmodium knowlesi Infection Is Associated With Elevated Circulating Biomarkers of Brain Injury and Endothelial Activation. J Infect Dis 2024:jiae553. [PMID: 39658124 DOI: 10.1093/infdis/jiae553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Malaria remains a major public health concern with substantial morbidity and mortality worldwide. In Malaysia, the emergence of Plasmodium knowlesi has led to a surge in zoonotic malaria cases and deaths in recent years. Signs of cerebral involvement have been observed in a noncomatose, fatal case of knowlesi infection, but the potential impact of this malaria species on the brain remains unexplored. To address this gap, we investigated circulating levels of brain injury, inflammation, and vascular biomarkers in a cohort of knowlesi-infected patients and controls. METHODS Archived plasma samples from 19 Malaysian patients with symptomatic knowlesi infection and 19 healthy, age-matched controls were analyzed. Fifty-two biomarkers of brain injury, inflammation, and vascular activation were measured. Wilcoxon tests were used to examine group differences, and biomarker profiles were explored through hierarchical clustering heatmap analysis. RESULTS Bonferroni-corrected analyses revealed significantly elevated brain injury biomarker levels in knowlesi-infected patients, including S100B (P < .0001), Tau (P = .0007), UCH-L1 (P < .0001), αSyn (P < .0001), Park7 (P = .0006), NRGN (P = .0022), and TDP-43 (P = .005). Compared to controls, levels were lower in the infected group for BDNF (P < .0001), CaBD (P < .0001), CNTN1 (P < .0001), NCAM-1 (P < .0001), GFAP (P = .0013), and KLK6 (P = .0126). Hierarchical clustering revealed distinct group profiles for brain injury and vascular activation biomarkers. CONCLUSIONS Our findings highlight for the first time a potential impact of P knowlesi infection on the brain, with specific changes in cerebral injury and endothelial activation biomarker profiles. Further studies are warranted to investigate the pathophysiology and clinical significance of these altered markers, through neuroimaging and long-term neurocognitive assessments.
Collapse
Affiliation(s)
- Cesc Bertran-Cobo
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, United Kingdom
- Department of Psychiatry and Mental Health, University of Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, South Africa
| | - Elin Dumont
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, United Kingdom
| | - Naqib Rafieqin Noordin
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Meng-Yee Lai
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - William Stone
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, United Kingdom
| | - Kevin K A Tetteh
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, United Kingdom
| | - Chris Drakeley
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, United Kingdom
| | - Sanjeev Krishna
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Institut Für Tropenmedizin, Eberhard Karls Universität Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Gabon
- Clinical Academic Group in Institute for Infection and Immunity, St George's University of London, United Kingdom
| | - Yee-Ling Lau
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Samuel C Wassmer
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, United Kingdom
| |
Collapse
|
5
|
Slaughter MG, Bhumbra S, Mellencamp KA, Namazzi R, Opoka RO, John CC. Elevated levels of PDGF-BB and VEGF are associated with a decreased risk of readmission or death in children with severe malarial anemia. J Infect Dis 2024:jiae527. [PMID: 39449682 DOI: 10.1093/infdis/jiae527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/03/2024] [Accepted: 10/22/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Children with severe malarial anemia (SMA) typically have low in-hospital mortality but have a high risk of post-discharge readmission or death. We hypothesized that the dysregulation of hematopoiesis, vascular growth factors, and endothelial function that occurs in SMA might affect risk of readmission or death. METHODS Plasma was obtained from children 18 months to 12 years old with SMA (N=145) in Kampala, Uganda on admission, and outcomes were assessed over 12-month follow-up. Admission plasma levels of ten biomarkers of vascular growth, hematopoiesis, and endothelial function were compared to risk of readmission or death over 12-month follow-up. RESULTS Over 12-month follow-up, 19 of 145 children with SMA were either readmitted or died: 15 children were readmitted (13 with malaria) and 4 children died. In multivariable analyses adjusted for age and sex, elevated plasma levels of platelet-derived growth factor-BB (PDGF-BB) and vascular endothelial growth factor (VEGF) on admission were independently associated with a decreased risk of all-cause readmission or death (adjusted hazard ratios [95% confidence intervals], 0.28 [0.16-0.51] and 0.19 [0.08-0.48], respectively) and a decreased risk of readmission due to severe malaria (0.27 [0.15, 0.51] and 0.16 [0.05, 0.47]) but not with risk of uncomplicated malaria (1.01 [0.53, 1.95] and 2.07 [0.93-4.64]). CONCLUSIONS In children with severe malarial anemia, elevated plasma levels of PDGF-BB and VEGF, two factors that promote angiogenesis, are associated with a decreased risk of readmission or death in the year following admission, primarily driven by a decrease in the risk of recurrent severe malaria.
Collapse
Affiliation(s)
- Mary G Slaughter
- Ryan White Center for Pediatric Infectious Disease and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Samina Bhumbra
- Ryan White Center for Pediatric Infectious Disease and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kagan A Mellencamp
- Ryan White Center for Pediatric Infectious Disease and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ruth Namazzi
- Department of Paediatrics and Child Health, Makerere University, Kampala, Uganda
| | - Robert O Opoka
- Aga Khan University Medical School East Africa, Nairobi, Kenya
| | - Chandy C John
- Ryan White Center for Pediatric Infectious Disease and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
6
|
Lima-Cooper G, Ouma BJ, Datta D, Bond C, Soto AA, Conroy AL, Park GS, Bangirana P, Joloba ML, Opoka RO, Idro R, John CC. Apolipoprotein-E4: risk of severe malaria and mortality and cognitive impairment in pediatric cerebral malaria. Pediatr Res 2024; 96:89-96. [PMID: 38007518 PMCID: PMC12009649 DOI: 10.1038/s41390-023-02912-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/21/2023] [Accepted: 11/02/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND The relationship of apolipoprotein-E4 (APOE4) to mortality and cognition after severe malaria in children is unknown. METHODS APOE genotyping was performed in children with cerebral malaria (CM, n = 261), severe malarial anemia (SMA, n = 224) and community children (CC, n = 213). Cognition was assessed over 2-year follow-up. RESULTS A greater proportion of children with CM or SMA than CC had APOE4 (n = 162, 31.0%; n = 142, 31.7%; n = 103, 24.2%, respectively, p = 0.02), but no difference was seen in APOE3 (n = 310, 59.4%; n = 267, 59.6%; n = 282, 66.2%, respectively, p = 0.06), or APOE2 (n = 50, 9.6%; n = 39, 8.7%; and n = 41, 9.6%, respectively, p = 0.87). APOE4 was associated with increased mortality in CM (odds ratio, 2.28; 95% CI, 1.01, 5.11). However, APOE4 was associated with better long-term cognition (ß, 0.55; 95% CI, 0.04, 1.07, p = 0.04) and attention (ß 0.78; 95% CI, 0.26, 1.30, p = 0.004) in children with CM < 5 years old, but worse attention (ß, -0.90; 95% CI, -1.69, -0.10, p = 0.03) in children with CM ≥ 5 years old. Among children with CM, risk of post-discharge malaria was increased with APOE4 and decreased with APOE3. CONCLUSIONS APOE4 is associated with higher risk of CM or SMA and mortality in children with CM, but better long-term cognition in CM survivors <5 years of age.
Collapse
Affiliation(s)
- Giselle Lima-Cooper
- Department of Pediatrics, Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Benson J Ouma
- Department of Medical Microbiology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Dibyadyuti Datta
- Department of Pediatrics, Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Caitlin Bond
- Department of Pediatrics, Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alejandro A Soto
- Department of Pediatrics, Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrea L Conroy
- Department of Pediatrics, Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gregory S Park
- Office of the Vice President for Research, University of Minnesota, Minneapolis, MN, USA
| | - Paul Bangirana
- Department of Psychiatry, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Moses L Joloba
- Department of Medical Microbiology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Robert O Opoka
- Department of Pediatrics and Child Health, Makerere University, Kampala, Uganda
| | - Richard Idro
- Department of Pediatrics and Child Health, Makerere University, Kampala, Uganda
- Nuffield Department of Medicine, Centre of Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Chandy C John
- Department of Pediatrics, Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
7
|
Zhang J, Huang Z, Lin Q, Hu W, Zhong H, Zhang F, Huang J. The correlation between serum angiopoietin-2 levels and acute kidney injury (AKI): a meta-analysis. Clin Chem Lab Med 2024; 0:cclm-2024-0365. [PMID: 38915251 DOI: 10.1515/cclm-2024-0365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/10/2024] [Indexed: 06/26/2024]
Abstract
INTRODUCTION The correlation between serum angiopoietin-2 levels and acute kidney injury (AKI) is a topic of significant clinical interest. This meta-analysis aims to provide a comprehensive evaluation of this relationship. CONTENT A systematic search was conducted in PubMed, Embase, Web of Science, and Cochrane databases up to October 11, 2023. The included studies were evaluated using the Newcastle-Ottawa Scale (NOS) and Methodological Index for Non-Randomized Studies (MINORS). Weighted mean differences (WMD) and odds ratios (OR) were calculated using random-effects models. Sensitivity analysis, funnel plots, and Egger's test were used to assess the robustness and publication bias of the findings. Subgroup analyses were performed to explore potential variations between adults and children. SUMMARY Eighteen studies encompassing a total of 7,453 participants were included. The analysis revealed a significant elevation in serum angiopoietin-2 levels in patients with AKI compared to those without (WMD: 4.85; 95 % CI: 0.75 to 0.27; I²=93.2 %, p<0.001). Subgroup analysis indicated significantly higher angiopoietin-2 levels in adults with AKI (WMD: 5.17; 95 % CI: 3.51 to 6.83; I²=82.6 %, p<0.001), but not in children. Additionally, high serum angiopoietin-2 levels were associated with an increased risk of AKI (OR: 1.58; 95 % CI: 1.39 to 1.8; I²=89.1 %, p<0.001). Sensitivity analysis validated the robustness of these results, showing no substantial change in the overall effect size upon the exclusion of individual studies. OUTLOOK This meta-analysis supports a significant association between elevated serum angiopoietin-2 levels and increased risk of AKI. The observed differential association between adults and children highlights the need for further targeted research to understand these age-specific variations.
Collapse
Affiliation(s)
- Juncheng Zhang
- The School of Clinical Medicine, 74551 Fujian Medical University , Fuzhou, Fujian, China
| | - Zhengjie Huang
- The School of Clinical Medicine, 74551 Fujian Medical University , Fuzhou, Fujian, China
| | - Qin Lin
- The School of Clinical Medicine, 74551 Fujian Medical University , Fuzhou, Fujian, China
- Department of Nephrology, Xiamen Key Laboratory of Precision Diagnosis and Treatment of Chronic Kidney Disease, The Fifth Hospital of Xiamen, Xiamen, Fujian, China
- Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Weiping Hu
- The School of Clinical Medicine, 74551 Fujian Medical University , Fuzhou, Fujian, China
- Department of Nephrology, Xiamen Key Laboratory of Precision Diagnosis and Treatment of Chronic Kidney Disease, The Fifth Hospital of Xiamen, Xiamen, Fujian, China
- Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Hongbin Zhong
- The School of Clinical Medicine, 74551 Fujian Medical University , Fuzhou, Fujian, China
- Department of Nephrology, Xiamen Key Laboratory of Precision Diagnosis and Treatment of Chronic Kidney Disease, The Fifth Hospital of Xiamen, Xiamen, Fujian, China
- Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Fengling Zhang
- The School of Clinical Medicine, 74551 Fujian Medical University , Fuzhou, Fujian, China
- Department of Nephrology, Xiamen Key Laboratory of Precision Diagnosis and Treatment of Chronic Kidney Disease, The Fifth Hospital of Xiamen, Xiamen, Fujian, China
- Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jiyi Huang
- The School of Clinical Medicine, 74551 Fujian Medical University , Fuzhou, Fujian, China
- Department of Nephrology, Xiamen Key Laboratory of Precision Diagnosis and Treatment of Chronic Kidney Disease, The Fifth Hospital of Xiamen, Xiamen, Fujian, China
- Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
8
|
Gopinadhan A, Hughes JM, Conroy AL, John CC, Canfield SG, Datta D. A human pluripotent stem cell-derived in vitro model of the blood-brain barrier in cerebral malaria. Fluids Barriers CNS 2024; 21:38. [PMID: 38693577 PMCID: PMC11064301 DOI: 10.1186/s12987-024-00541-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/18/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Blood-brain barrier (BBB) disruption is a central feature of cerebral malaria (CM), a severe complication of Plasmodium falciparum (Pf) infections. In CM, sequestration of Pf-infected red blood cells (Pf-iRBCs) to brain endothelial cells combined with inflammation, hemolysis, microvasculature obstruction and endothelial dysfunction mediates BBB disruption, resulting in severe neurologic symptoms including coma and seizures, potentially leading to death or long-term sequelae. In vitro models have advanced our knowledge of CM-mediated BBB disruption, but their physiological relevance remains uncertain. Using human induced pluripotent stem cell-derived brain microvascular endothelial cells (hiPSC-BMECs), we aimed to develop a novel in vitro model of the BBB in CM, exhibiting enhanced barrier properties. METHODS hiPSC-BMECs were co-cultured with HB3var03 strain Pf-iRBCs up to 9 h. Barrier integrity was measured using transendothelial electrical resistance (TEER) and sodium fluorescein permeability assays. Localization and expression of tight junction (TJ) proteins (occludin, zonula occludens-1, claudin-5), cellular adhesion molecules (ICAM-1, VCAM-1), and endothelial surface markers (EPCR) were determined using immunofluorescence imaging (IF) and western blotting (WB). Expression of angiogenic and cell stress markers were measured using multiplex proteome profiler arrays. RESULTS After 6-h of co-culture with Pf-iRBCs, hiPSC-BMECs showed reduced TEER and increased sodium fluorescein permeability compared to co-culture with uninfected RBCs, indicative of a leaky barrier. We observed disruptions in localization of occludin, zonula occludens-1, and claudin-5 by IF, but no change in protein expression by WB in Pf-iRBC co-cultures. Expression of ICAM-1 and VCAM-1 but not EPCR was elevated in hiPSC-BMECs with Pf-iRBC co-culture compared to uninfected RBC co-culture. In addition, there was an increase in expression of angiogenin, platelet factor-4, and phospho-heat shock protein-27 in the Pf-iRBCs co-culture compared to uninfected RBC co-culture. CONCLUSION These findings demonstrate the validity of our hiPSC-BMECs based model of the BBB, that displays enhanced barrier integrity and appropriate TJ protein localization. In the hiPSC-BMEC co-culture with Pf-iRBCs, reduced TEER, increased paracellular permeability, changes in TJ protein localization, increase in expression of adhesion molecules, and markers of angiogenesis and cellular stress all point towards a novel model with enhanced barrier properties, suitable for investigating pathogenic mechanisms underlying BBB disruption in CM.
Collapse
Affiliation(s)
- Adnan Gopinadhan
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, R4-402D 1044 W. Walnut St., Indianapolis, IN, 46202, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jason M Hughes
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, 620 Chestnut Street, Terre Haute, IN, 47809, USA
| | - Andrea L Conroy
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, R4-402D 1044 W. Walnut St., Indianapolis, IN, 46202, USA
| | - Chandy C John
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, R4-402D 1044 W. Walnut St., Indianapolis, IN, 46202, USA
| | - Scott G Canfield
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, 620 Chestnut Street, Terre Haute, IN, 47809, USA.
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Dibyadyuti Datta
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, R4-402D 1044 W. Walnut St., Indianapolis, IN, 46202, USA.
| |
Collapse
|
9
|
Bertran-Cobo C, Dumont E, Noordin NR, Lai MY, Stone W, Tetteh KK, Drakeley C, Krishna S, Lau YL, Wassmer SC. Plasmodium knowlesi infection is associated with elevated circulating biomarkers of brain injury and endothelial activation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.25.24306382. [PMID: 38712121 PMCID: PMC11071568 DOI: 10.1101/2024.04.25.24306382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Introduction Malaria remains a major public health concern with substantial morbidity and mortality worldwide. In Malaysia, the emergence of Plasmodium knowlesi has led to a surge in zoonotic malaria cases and deaths in recent years. Signs of cerebral involvement have been observed in a non-comatose, fatal case of severe knowlesi infection, but the potential impact of this malaria species on the brain remains underexplored. To address this gap, we investigated circulating levels of brain injury, inflammation, and vascular biomarkers in a cohort of knowlesi-infected patients and controls. Methods Archived plasma samples from 19 patients with confirmed symptomatic knowlesi infection and 19 healthy, age-matched controls from Peninsular Malaysia were analysed. A total of 52 plasma biomarkers of brain injury, inflammation, and vascular activation were measured using Luminex and SIMOA assays. Wilcoxon tests were used to examine group differences, and biomarker profiles were explored through hierarchical clustering heatmap analysis. Results Bonferroni-corrected analyses revealed significantly elevated brain injury biomarker levels in knowlesi-infected patients, including S100B (p<0.0001), Tau (p=0.0007), UCH-L1 (p<0.0001), αSyn (p<0.0001), Park7 (p=0.0006), NRGN (p=0.0022), and TDP-43 (p=0.005). Compared to controls, levels were lower in the infected group for BDNF (p<0.0001), CaBD (p<0.0001), CNTN1 (p<0.0001), NCAM-1 (p<0.0001), GFAP (p=0.0013), and KLK6 (p=0.0126). Hierarchical clustering revealed distinct group profiles for circulating levels of brain injury and vascular activation biomarkers. Conclusions Our findings highlight for the first time the impact of Plasmodium knowlesi infection on the brain, with distinct alterations in cerebral injury and endothelial activation biomarker profiles compared to healthy controls. Further studies are warranted to investigate the pathophysiology and clinical significance of these altered surrogate markers, through both neuroimaging and long-term neurocognitive assessments.
Collapse
|
10
|
Knappett M, Nguyen V, Chaudhry M, Trawin J, Kabakyenga J, Kumbakumba E, Jacob ST, Ansermino JM, Kissoon N, Mugisha NK, Wiens MO. Pediatric post-discharge mortality in resource-poor countries: a systematic review and meta-analysis. EClinicalMedicine 2024; 67:102380. [PMID: 38204490 PMCID: PMC10776442 DOI: 10.1016/j.eclinm.2023.102380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/12/2024] Open
Abstract
Background Under-five mortality remains concentrated in resource-poor countries. Post-discharge mortality is becoming increasingly recognized as a significant contributor to overall child mortality. With a substantial recent expansion of research and novel data synthesis methods, this study aims to update the current evidence base by providing a more nuanced understanding of the burden and associated risk factors of pediatric post-discharge mortality after acute illness. Methods Eligible studies published between January 1, 2017 and January 31, 2023, were retrieved using MEDLINE, Embase, and CINAHL databases. Studies published before 2017 were identified in a previous review and added to the total pool of studies. Only studies from countries with low or low-middle Socio-Demographic Index with a post-discharge observation period greater than seven days were included. Risk of bias was assessed using a modified version of the Joanna Briggs Institute critical appraisal tool for prevalence studies. Studies were grouped by patient population, and 6-month post-discharge mortality rates were quantified by random-effects meta-analysis. Secondary outcomes included post-discharge mortality relative to in-hospital mortality, pooled risk factor estimates, and pooled post-discharge Kaplan-Meier survival curves. PROSPERO study registration: #CRD42022350975. Findings Of 1963 articles screened, 42 eligible articles were identified and combined with 22 articles identified in the previous review, resulting in 64 total articles. These articles represented 46 unique patient cohorts and included a total of 105,560 children. For children admitted with a general acute illness, the pooled risk of mortality six months post-discharge was 4.4% (95% CI: 3.5%-5.4%, I2 = 94.2%, n = 11 studies, 34,457 children), and the pooled in-hospital mortality rate was 5.9% (95% CI: 4.2%-7.7%, I2 = 98.7%, n = 12 studies, 63,307 children). Among disease subgroups, severe malnutrition (12.2%, 95% CI: 6.2%-19.7%, I2 = 98.2%, n = 10 studies, 7760 children) and severe anemia (6.4%, 95% CI: 4.2%-9.1%, I2 = 93.3%, n = 9 studies, 7806 children) demonstrated the highest 6-month post-discharge mortality estimates. Diarrhea demonstrated the shortest median time to death (3.3 weeks) and anemia the longest (8.9 weeks). Most significant risk factors for post-discharge mortality included unplanned discharges, severe malnutrition, and HIV seropositivity. Interpretation Pediatric post-discharge mortality rates remain high in resource-poor settings, especially among children admitted with malnutrition or anemia. Global health strategies must prioritize this health issue by dedicating resources to research and policy innovation. Funding No specific funding was received.
Collapse
Affiliation(s)
- Martina Knappett
- Institute for Global Health, BC Children’s Hospital and BC Women’s Hospital + Health Centre, 305-4088 Cambie Street, Vancouver, BC V5Z 2X8, Canada
| | - Vuong Nguyen
- Institute for Global Health, BC Children’s Hospital and BC Women’s Hospital + Health Centre, 305-4088 Cambie Street, Vancouver, BC V5Z 2X8, Canada
| | - Maryum Chaudhry
- Institute for Global Health, BC Children’s Hospital and BC Women’s Hospital + Health Centre, 305-4088 Cambie Street, Vancouver, BC V5Z 2X8, Canada
| | - Jessica Trawin
- Institute for Global Health, BC Children’s Hospital and BC Women’s Hospital + Health Centre, 305-4088 Cambie Street, Vancouver, BC V5Z 2X8, Canada
| | - Jerome Kabakyenga
- Maternal Newborn & Child Health Institute, Mbarara University of Science and Technology, Mbarara, Uganda
- Faculty of Medicine, Dept of Community Health, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Elias Kumbakumba
- Dept of Paediatrics and Child Health, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Shevin T. Jacob
- Walimu, Plot 5-7, Coral Crescent, Kololo, P.O. Box 9924, Kampala, Uganda
- Dept of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - J. Mark Ansermino
- Institute for Global Health, BC Children’s Hospital and BC Women’s Hospital + Health Centre, 305-4088 Cambie Street, Vancouver, BC V5Z 2X8, Canada
- Dept of Anesthesia, Pharmacology & Therapeutics, University of British Columbia, 217-2176 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- BC Children’s Hospital Research Institute, 938 West 28th Ave, Vancouver, BC V5Z 4H4, Canada
| | - Niranjan Kissoon
- Institute for Global Health, BC Children’s Hospital and BC Women’s Hospital + Health Centre, 305-4088 Cambie Street, Vancouver, BC V5Z 2X8, Canada
- BC Children’s Hospital Research Institute, 938 West 28th Ave, Vancouver, BC V5Z 4H4, Canada
- Dept of Pediatrics, BC Children’s Hospital, University of British Columbia, Rm 2D19, 4480 Oak Street, Vancouver, BC V6H 3V4, Canada
| | | | - Matthew O. Wiens
- Institute for Global Health, BC Children’s Hospital and BC Women’s Hospital + Health Centre, 305-4088 Cambie Street, Vancouver, BC V5Z 2X8, Canada
- Walimu, Plot 5-7, Coral Crescent, Kololo, P.O. Box 9924, Kampala, Uganda
- Dept of Anesthesia, Pharmacology & Therapeutics, University of British Columbia, 217-2176 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- BC Children’s Hospital Research Institute, 938 West 28th Ave, Vancouver, BC V5Z 4H4, Canada
| |
Collapse
|
11
|
Othman B, Zeef L, Szestak T, Rchiad Z, Storm J, Askonas C, Satyam R, Madkhali A, Haley M, Wagstaff S, Couper K, Pain A, Craig A. Different PfEMP1-expressing Plasmodium falciparum variants induce divergent endothelial transcriptional responses during co-culture. PLoS One 2023; 18:e0295053. [PMID: 38033133 PMCID: PMC10688957 DOI: 10.1371/journal.pone.0295053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023] Open
Abstract
The human malaria parasite Plasmodium falciparum is responsible for the majority of mortality and morbidity caused by malaria infection and differs from other human malaria species in the degree of accumulation of parasite-infected red blood cells in the microvasculature, known as cytoadherence or sequestration. In P. falciparum, cytoadherence is mediated by a protein called PfEMP1 which, due to its exposure to the host immune system, undergoes antigenic variation resulting in the expression of different PfEMP1 variants on the infected erythrocyte membrane. These PfEMP1s contain various combinations of adhesive domains, which allow for the differential engagement of a repertoire of endothelial receptors on the host microvasculature, with specific receptor usage associated with severe disease. We used a co-culture model of cytoadherence incubating human brain microvascular endothelial cells with erythrocytes infected with two parasite lines expressing different PfEMP1s that demonstrate different binding profiles to vascular endothelium. We determined the transcriptional profile of human brain microvascular endothelial cells (HBMEC) following different incubation periods with infected erythrocytes, identifying different transcriptional profiles of pathways previously found to be involved in the pathology of severe malaria, such as inflammation, apoptosis and barrier integrity, induced by the two PfEMP1 variants.
Collapse
Affiliation(s)
- Basim Othman
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Leo Zeef
- Faculty of Biology, Medicine and Health, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Tadge Szestak
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Zineb Rchiad
- Pathogen Genomics Laboratory, Bioscience Program, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, KSA
| | - Janet Storm
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Caroline Askonas
- Pathogen Genomics Laboratory, Bioscience Program, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, KSA
| | - Rohit Satyam
- Pathogen Genomics Laboratory, Bioscience Program, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, KSA
| | - Aymen Madkhali
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Michael Haley
- Faculty of Biology, Medicine and Health, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Simon Wagstaff
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Kevin Couper
- Faculty of Biology, Medicine and Health, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Arnab Pain
- Pathogen Genomics Laboratory, Bioscience Program, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, KSA
| | - Alister Craig
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| |
Collapse
|
12
|
Datta D, Gopinadhan A, Soto A, Bangirana P, Opoka RO, Conroy AL, Saykin AJ, Kawata K, John CC. Blood biomarkers of neuronal injury in paediatric cerebral malaria and severe malarial anaemia. Brain Commun 2023; 5:fcad323. [PMID: 38075948 PMCID: PMC10710298 DOI: 10.1093/braincomms/fcad323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/04/2023] [Accepted: 11/25/2023] [Indexed: 02/12/2024] Open
Abstract
Persistent neurodisability is a known complication in paediatric survivors of cerebral malaria and severe malarial anaemia. Tau, ubiquitin C-terminal hydrolase-L1, neurofilament-light chain, and glial fibrillary acidic protein have proven utility as biomarkers that predict adverse neurologic outcomes in adult and paediatric disorders. In paediatric severe malaria, elevated tau is associated with mortality and neurocognitive complications. We aimed to investigate whether a multi-analyte panel including ubiquitin C-terminal hydrolase-L1, neurofilament-light chain, and glial fibrillary acidic protein can serve as biomarkers of brain injury associated with mortality and neurodisability in cerebral malaria and severe malarial anaemia. In a prospective cohort study of Ugandan children, 18 months to 12 years of age with cerebral malaria (n = 182), severe malarial anaemia (n = 158), and asymptomatic community children (n = 118), we measured admission blood levels of ubiquitin C-terminal hydrolase-L1, neurofilament-light chain, and glial fibrillary acidic protein. We investigated differences in biomarker levels, associations with mortality, blood-brain barrier integrity, neurodeficits and cognitive Z-scores in survivors up to 24-month follow-up. Admission ubiquitin C-terminal hydrolase-L1 levels were elevated >95th percentile of community children in 71 and 51%, and neurofilament-light chain levels were elevated >95th percentile of community children in 40 and 37% of children with cerebral malaria and severe malarial anaemia, respectively. Glial fibrillary acidic protein was not elevated in disease groups compared with controls. In cerebral malaria, elevated neurofilament-light chain was observed in 16 children who died in hospital compared with 166 survivors (P = 0.01); elevations in ubiquitin C-terminal hydrolase-L1 levels were associated with degree of blood-brain barrier disruption (P = 0.01); and the % predictive value for neurodeficits over follow-up (discharge, 6-, 12-, and 24 months) increased for ubiquitin C-terminal hydrolase-L1 (60, 67, 72, and 83), but not neurofilament-light chain (65, 68, 60, and 67). In cerebral malaria, elevated ubiquitin C-terminal hydrolase-L1 was associated with worse memory scores in children <5 years at malaria episode who crossed to over 5 years old during follow-up cognitive testing [β -1.13 (95% confidence interval -2.05, -0.21), P = 0.02], and elevated neurofilament-light chain was associated with worse attention in children ≥5 years at malaria episode and cognitive testing [β -1.08 (95% confidence interval -2.05, -1.05), P = 0.03]. In severe malarial anaemia, elevated ubiquitin C-terminal hydrolase-L1 was associated with worse attention in children <5 years at malaria episode and cognitive testing [β -0.42 (95% confidence interval -0.76, -0.07), P = 0.02]. Ubiquitin C-terminal hydrolase-L1 and neurofilament-light chain levels are elevated in paediatric cerebral malaria and severe malarial anaemia. In cerebral malaria, elevated neurofilament-light chain is associated with mortality whereas elevated ubiquitin C-terminal hydrolase-L1 is associated with blood-brain barrier dysfunction and neurodeficits over follow-up. In cerebral malaria, both markers are associated with worse cognition, while in severe malarial anaemia, only ubiquitin C-terminal hydrolase-L1 is associated with worse cognition.
Collapse
Affiliation(s)
- Dibyadyuti Datta
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Adnan Gopinadhan
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Alejandro Soto
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Paul Bangirana
- Department of Psychiatry, Makerere University College of Health Sciences, P.O. Box 7072, Kampala, Uganda
- Global Health Uganda, P.O. Box 33842, Kampala, Uganda
| | - Robert O Opoka
- Global Health Uganda, P.O. Box 33842, Kampala, Uganda
- Aga Khan University Medical College, P.O. Box 30270, Nairobi, Kenya
| | - Andrea L Conroy
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Andrew J Saykin
- Indiana Alzheimer’s Disease Research Center and Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Keisuke Kawata
- Department of Kinesiology, Indiana University School of Public Health-Bloomington, Bloomington, IN 47405, USA
- Program in Neuroscience, The College of Arts and Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Chandy C John
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
13
|
Wang J, Xu X, Wang C, Ye D, Chen R, Peng P, Huang H, Yan Y, Chen Y, Wang S, Chen L, Gong H. Association of acute kidney injury with the risk of cognitive impairment or dementia: a systematic review and meta-analysis. Ren Fail 2023; 45:2279647. [PMID: 37964563 PMCID: PMC10653765 DOI: 10.1080/0886022x.2023.2279647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/31/2023] [Indexed: 11/16/2023] Open
Abstract
PURPOSE Since previous studies have shown a paradoxical relationship between acute kidney injury (AKI) and risk of cognitive impairment, there is an urgent need for a meta-analysis to assess the relationship between AKI and risk of cognitive impairment or dementia. MATERIALS AND METHODS From database inception to October 2023, we searched PubMed, OVID (Medline), Embase, Web of Science, and Cochrane Library. This study examined AKI and cognitive impairment or dementia observational studies. Two authors independently assessed cohort and cross-sectional study quality using the Newcastle-Ottawa Scale and AHRQ Scale. They also used ROBINS-I to assess bias. The meta-analysis used fixed effects. Sensitivity analysis verified results stability. The funnel plot, Egger test, and Begg test determined publication bias in the results. RESULTS Seven studies with 423,876 patients were included in the meta-analysis. Patients with AKI were at higher risk of cognitive impairment or dementia compared to those who had not experienced AKI (OR = 1.87, 95% confidence interval [CI]: 1.77-1.98, I2=46.0%, p = 0.08). All subgroups showed a substantial connection between AKI and cognitive impairment. Compared to domestic research, the connection was stronger in overseas studies (OR = 2.18, 95% CI: 1.66-2.87). Both cognitive impairment and dementia outcomes showed a substantial connection between AKI and cognitive impairment, with OR values of 2.00 (95% CI: 1.44-2.76) and 2.04 (95% CI: 1.66-2.51). CONCLUSIONS We found that AKI significantly increases cognitive impairment or dementia risk. Thus, early interventions to delay cognitive impairment and prevent adverse outcomes in AKI patients are needed.
Collapse
Affiliation(s)
- Jiang Wang
- Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, Ji’an, Jiangxi Province, China
- Department of Medicine, Jinggangshan University, Ji’an, Jiangxi Province, China
- Online Collaborative Research Center for Evidence-Based Medicine Ministry of Education, Jinggangshan University Branch, Jiangxi Province, China
| | - Xiao Xu
- Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, Ji’an, Jiangxi Province, China
- Department of Medicine, Jinggangshan University, Ji’an, Jiangxi Province, China
- Online Collaborative Research Center for Evidence-Based Medicine Ministry of Education, Jinggangshan University Branch, Jiangxi Province, China
| | - Chunyan Wang
- Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, Ji’an, Jiangxi Province, China
- Department of Medicine, Jinggangshan University, Ji’an, Jiangxi Province, China
- Online Collaborative Research Center for Evidence-Based Medicine Ministry of Education, Jinggangshan University Branch, Jiangxi Province, China
| | - Dongmei Ye
- Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, Ji’an, Jiangxi Province, China
- Department of Medicine, Jinggangshan University, Ji’an, Jiangxi Province, China
- Online Collaborative Research Center for Evidence-Based Medicine Ministry of Education, Jinggangshan University Branch, Jiangxi Province, China
| | - Ruzhao Chen
- Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, Ji’an, Jiangxi Province, China
- Department of Medicine, Jinggangshan University, Ji’an, Jiangxi Province, China
- Online Collaborative Research Center for Evidence-Based Medicine Ministry of Education, Jinggangshan University Branch, Jiangxi Province, China
| | - Pai Peng
- Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, Ji’an, Jiangxi Province, China
- Department of Medicine, Jinggangshan University, Ji’an, Jiangxi Province, China
- Online Collaborative Research Center for Evidence-Based Medicine Ministry of Education, Jinggangshan University Branch, Jiangxi Province, China
| | - Huadong Huang
- Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, Ji’an, Jiangxi Province, China
- Department of Medicine, Jinggangshan University, Ji’an, Jiangxi Province, China
- Online Collaborative Research Center for Evidence-Based Medicine Ministry of Education, Jinggangshan University Branch, Jiangxi Province, China
| | - Yuxiang Yan
- Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, Ji’an, Jiangxi Province, China
- Department of Medicine, Jinggangshan University, Ji’an, Jiangxi Province, China
- Online Collaborative Research Center for Evidence-Based Medicine Ministry of Education, Jinggangshan University Branch, Jiangxi Province, China
| | - Ying Chen
- Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, Ji’an, Jiangxi Province, China
- Department of Medicine, Jinggangshan University, Ji’an, Jiangxi Province, China
- Online Collaborative Research Center for Evidence-Based Medicine Ministry of Education, Jinggangshan University Branch, Jiangxi Province, China
| | - Shixuan Wang
- Department of Philosophy, University of Jena, China
| | - Lan Chen
- Department of Neurology, Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji’an, Jiangxi Province, China
| | - Huping Gong
- College of Nursing, Gannan Medical University, Ganzhou, China
| |
Collapse
|
14
|
Ao X, Li Y, Jiang T, Li C, Lian Z, Wang L, Zhang Z, Huang M. Angiopoietin-2 Promotes Mechanical Stress-induced Extracellular Matrix Degradation in Annulus Fibrosus Via the HIF-1α/NF-κB Signaling Pathway. Orthop Surg 2023; 15:2410-2422. [PMID: 37475697 PMCID: PMC10475680 DOI: 10.1111/os.13797] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 07/22/2023] Open
Abstract
OBJECTIVE Mechanical stress is an important risk factor for intervertebral disc degeneration (IVDD). Angiopoietin-2 (ANG-2) is regulated by mechanical stress and is widely involved in the regulation of extracellular matrix metabolism. In addition, the signaling cascade between HIF-1α and NF-κB is critical in matrix degradation. This study aims to investigate the role and molecular mechanism of ANG-2 in regulating the degeneration of annulus fibrosus (AF) through the HIF-1α/NF-κB signaling pathway. METHODS The bipedal standing mice IVDD model was constructed, and histological experiments were used to evaluate the degree of IVDD and the expression of ANG-2 in the AF. Mouse primary AF cells were extracted in vitro and subjected to mechanical stretching experiments. Western blot assay was used to detect the effect of mechanical stress on ANG-2, and the role of the ANG-2-mediated HIF-1α/NF-κB pathway in matrix degradation. In addition, the effect of inhibiting ANG-2 expression by siRNA or monoclonal antibody on delaying IVDD was investigated at in vitro and in vivo levels. One-way ANOVA with the least significant difference method was used for pairwise comparison of the groups with homogeneous variance, and Dunnett's method was used to compare the groups with heterogeneous variance. RESULTS In IVDD, the expressions of catabolic biomarkers (mmp-13, ADAMTS-4) and ANG-2 were significantly increased in AF. In addition, p65 expression was increased while HIF-1α expression was significantly decreased. The results of western blot assay showed mechanical stress significantly up-regulated the expression of ANG-2 in AF cells, and promoted matrix degradation by regulating the activity of HIF-1α/NF-κB pathway. Exogenous addition of Bay117082 and CoCl2 inhibited matrix degradation caused by mechanical stress. Moreover, injection of neutralizing antibody or treatment with siRNA to inhibit the expression of ANG-2 improved the matrix metabolism of AF and inhibited IVDD progression by regulating the HIF-1α/NF-κB signaling pathway. CONCLUSION In IVDD, mechanical stress could regulate the HIF-1α/NF-κB signaling pathway and matrix degradation by mediating ANG-2 expression in AF degeneration.
Collapse
Affiliation(s)
- Xiang Ao
- Division of Spine Surgery, Department of OrthopaedicsNanfang Hospital of Southern Medical UniversityGuangzhouGuangdongChina
| | - Yuan Li
- Department of Spine Surgery, Center for Orthopedic SurgeryThe Third Affiliated Hospital of Southern Medical UniversityGuangzhouGuangdongChina
- Academy of Orthopaedics·Guangdong ProvinceGuangzhouGuangdongChina
| | - Tao Jiang
- Division of Spine Surgery, Department of OrthopaedicsNanfang Hospital of Southern Medical UniversityGuangzhouGuangdongChina
| | - Chenglong Li
- Division of Spine Surgery, Department of OrthopaedicsNanfang Hospital of Southern Medical UniversityGuangzhouGuangdongChina
| | - Zhengnan Lian
- Department of Spine Surgery, Center for Orthopedic SurgeryThe Third Affiliated Hospital of Southern Medical UniversityGuangzhouGuangdongChina
- Academy of Orthopaedics·Guangdong ProvinceGuangzhouGuangdongChina
| | - Liang Wang
- Department of Spine Surgery, Center for Orthopedic SurgeryThe Third Affiliated Hospital of Southern Medical UniversityGuangzhouGuangdongChina
- Academy of Orthopaedics·Guangdong ProvinceGuangzhouGuangdongChina
| | - Zhongmin Zhang
- Division of Spine Surgery, Department of OrthopaedicsNanfang Hospital of Southern Medical UniversityGuangzhouGuangdongChina
| | - Minjun Huang
- Department of Spine Surgery, Center for Orthopedic SurgeryThe Third Affiliated Hospital of Southern Medical UniversityGuangzhouGuangdongChina
- Academy of Orthopaedics·Guangdong ProvinceGuangzhouGuangdongChina
| |
Collapse
|
15
|
Chen CC, Chu CH, Lin YC, Huang CC. Neurodevelopment After Neonatal Acute Kidney Injury in Very Preterm-Birth Children. Kidney Int Rep 2023; 8:1784-1791. [PMID: 37705902 PMCID: PMC10496073 DOI: 10.1016/j.ekir.2023.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/31/2023] [Accepted: 06/26/2023] [Indexed: 09/15/2023] Open
Abstract
Introduction This study aimed to assess head circumference (HC) growth and neurodevelopmental outcomes in very preterm-birth children after neonatal acute kidney injury (AKI). Methods This longitudinal follow-up cohort included 732 very preterm neonates of gestational age <31 weeks admitted to a tertiary center between 2008 and 2020. AKI was categorized as nonoliguric and oliguric AKI based on the urine output criteria during admission. We compared the differences in death, z scores of HC (zHC) at term-equivalent age (TEA) and at corrected ages of 6, 12, and 24 months, and the neurodevelopmental outcomes at corrected age of 24 months after neonatal nonoliguric and oliguric AKI. Results Among the 154 neonates who developed AKI, 72 had oliguric AKI and 82 had nonoliguric AKI. At TEA, oliguric AKI, but not nonoliguric AKI, was independently associated with lower zHC than non-AKI (mean differences, -0.49; 95% confidence interval [CI], -0.92 to -0.06). Although the 3 groups were comparable in zHC at corrected ages of 6, 12, and 24 months, the oliguric AKI group, but not the nonoliguric AKI group, had a higher rate of microcephaly by corrected age of 24 months. In addition, the oliguric AKI group, but not the nonoliguric AKI group, was more likely to die (61% vs. 9%) and have neurodevelopmental impairment (41% vs. 14%) compare with the non-AKI group. After adjustment, oliguric (adjusted odds ratio [aOR], 8.97; 95% CI, 2.19-36.76), but not nonoliguric, AKI was associated with neurodevelopmental impairment. Conclusion Neonatal oliguric AKI is associated with neurodevelopmental impairment in very preterm-birth children. Long-term head-size and neurodevelopmental follow-up after neonatal AKI is warranted.
Collapse
Affiliation(s)
- Chih-Chia Chen
- Graduate Institute of Clinical Medicine, College of Medicine, National Cheng-Kung University, Tainan, Taiwan
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chi-Hsiang Chu
- Department of Statistics, Tunghai University, Taichung, Taiwan
| | - Yung-Chieh Lin
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chao-Ching Huang
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Pediatrics, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
16
|
Stins MF, Mtaja A, Mulendele E, Mwimbe DW, Pinilla G, Mutengo M, Pardo CA, Chipeta J. Elevated brain derived neurotrophic factor in plasma and interleukin-6 levels in cerebrospinal fluid in meningitis compared to cerebral malaria. J Neurol Sci 2023; 450:120663. [PMID: 37182424 PMCID: PMC10330544 DOI: 10.1016/j.jns.2023.120663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/11/2023] [Accepted: 04/22/2023] [Indexed: 05/16/2023]
Abstract
Neurological infections, such as Cerebral malaria (CM) and meningitis are associated with high mortality and in survivors, particularly young children, persistent neurologic deficits often remain. As brain inflammation plays a role in the development of these neurological sequelae, multiplex assays were used to assess a select set of immune mediators in both plasma and cerebrospinal fluid (CSF) from Zambian children with neurological infections. Both CM and meningitis patients showed high levels of markers for vascular inflammation, such as soluble ICAM-1 and angiopoietins. Although high levels of angiopoietin 1 and angiopoietin 2 were found in the meningitis group, their levels in the CSF were low and did not differ. As expected, there were high levels of cytokines and notably a significantly elevated IL-6 level in the CSF of the meningitis group. Interestingly, although elevated levels BDNF were found, BDNF levels were significantly higher in plasma of the meningitis group but similar in the CSF. The striking differences in plasma BDNF and IL-6 levels in the CSF point to markedly different neuro-pathological processes. Therefore, further investigations in the role of both IL-6 and BDNF in the neurological outcomes are needed.
Collapse
Affiliation(s)
- Monique F Stins
- Johns Hopkins School of Public Health, Malaria Research Institute, 615N Wolfe Street, SPH E45141, Baltimore, MD 21205, United States of America.
| | - Agnes Mtaja
- University of Zambia School of Medicine, Department of Paediatrics and Child Health, The School of Medicine, University Teaching Hospital Malaria Research Unit (SMUTH-MRU), P.O. Box 50110, Lusaka, Zambia
| | - Evan Mulendele
- University of Zambia School of Medicine, Department of Paediatrics and Child Health, The School of Medicine, University Teaching Hospital Malaria Research Unit (SMUTH-MRU), P.O. Box 50110, Lusaka, Zambia
| | - Daniel W Mwimbe
- University of Zambia School of Medicine, Department of Paediatrics and Child Health, The School of Medicine, University Teaching Hospital Malaria Research Unit (SMUTH-MRU), P.O. Box 50110, Lusaka, Zambia
| | - Gabriel Pinilla
- Johns Hopkins School of Medicine, Department of Neurology, Division of Neuroimmunology and Neuroinfectious Diseases, 600 N Wolfe Street, Baltimore, MD 21285, United States of America; Icesi University, Department of Clinical Sciences, Calle 18 No. 122-135, Cali 760031, Colombia
| | - Mable Mutengo
- University of Zambia School of Medicine, Department of Paediatrics and Child Health, The School of Medicine, University Teaching Hospital Malaria Research Unit (SMUTH-MRU), P.O. Box 50110, Lusaka, Zambia
| | - Carlos A Pardo
- Johns Hopkins School of Medicine, Department of Neurology, Division of Neuroimmunology and Neuroinfectious Diseases, 600 N Wolfe Street, Baltimore, MD 21285, United States of America
| | - James Chipeta
- University of Zambia School of Medicine, Department of Paediatrics and Child Health, The School of Medicine, University Teaching Hospital Malaria Research Unit (SMUTH-MRU), P.O. Box 50110, Lusaka, Zambia
| |
Collapse
|
17
|
Conroy AL, Datta D, Opoka RO, Batte A, Bangirana P, Gopinadhan A, Mellencamp KA, Akcan-Arikan A, Idro R, John CC. Cerebrospinal fluid biomarkers provide evidence for kidney-brain axis involvement in cerebral malaria pathogenesis. Front Hum Neurosci 2023; 17:1177242. [PMID: 37200952 PMCID: PMC10185839 DOI: 10.3389/fnhum.2023.1177242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/14/2023] [Indexed: 05/20/2023] Open
Abstract
Introduction Cerebral malaria is one of the most severe manifestations of malaria and is a leading cause of acquired neurodisability in African children. Recent studies suggest acute kidney injury (AKI) is a risk factor for brain injury in cerebral malaria. The present study evaluates potential mechanisms of brain injury in cerebral malaria by evaluating changes in cerebrospinal fluid measures of brain injury with respect to severe malaria complications. Specifically, we attempt to delineate mechanisms of injury focusing on blood-brain-barrier integrity and acute metabolic changes that may underlie kidney-brain crosstalk in severe malaria. Methods We evaluated 30 cerebrospinal fluid (CSF) markers of inflammation, oxidative stress, and brain injury in 168 Ugandan children aged 18 months to 12 years hospitalized with cerebral malaria. Eligible children were infected with Plasmodium falciparum and had unexplained coma. Acute kidney injury (AKI) on admission was defined using the Kidney Disease: Improving Global Outcomes criteria. We further evaluated blood-brain-barrier integrity and malaria retinopathy, and electrolyte and metabolic complications in serum. Results The mean age of children was 3.8 years (SD, 1.9) and 40.5% were female. The prevalence of AKI was 46.3% and multi-organ dysfunction was common with 76.2% of children having at least one organ system affected in addition to coma. AKI and elevated blood urea nitrogen, but not other measures of disease severity (severe coma, seizures, jaundice, acidosis), were associated with increases in CSF markers of impaired blood-brain-barrier function, neuronal injury (neuron-specific enolase, tau), excitatory neurotransmission (kynurenine), as well as altered nitric oxide bioavailability and oxidative stress (p < 0.05 after adjustment for multiple testing). Further evaluation of potential mechanisms suggested that AKI may mediate or be associated with CSF changes through blood-brain-barrier disruption (p = 0.0014), ischemic injury seen by indirect ophthalmoscopy (p < 0.05), altered osmolality (p = 0.0006) and through alterations in the amino acids transported into the brain. Conclusion In children with cerebral malaria, there is evidence of kidney-brain injury with multiple potential pathways identified. These changes were specific to the kidney and not observed in the context of other clinical complications.
Collapse
Affiliation(s)
- Andrea L. Conroy
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Dibyadyuti Datta
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Robert O. Opoka
- Department of Paediatrics and Child Health, Makerere University College of Health Sciences, Kampala, Uganda
- Global Health Uganda, Kampala, Uganda
- Undergraduate Medical Education, The Aga Khan University, Nairobi, Kenya
| | - Anthony Batte
- Global Health Uganda, Kampala, Uganda
- Child Health and Development Centre, Makerere University College of Health Sciences, Kampala, Uganda
| | - Paul Bangirana
- Global Health Uganda, Kampala, Uganda
- Department of Psychiatry, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Adnan Gopinadhan
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Kagan A. Mellencamp
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ayse Akcan-Arikan
- Division of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX, United States
- Division of Nephrology, Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX, United States
| | - Richard Idro
- Department of Paediatrics and Child Health, Makerere University College of Health Sciences, Kampala, Uganda
- Global Health Uganda, Kampala, Uganda
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Chandy C. John
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
18
|
Conroy AL, Datta D, Hoffmann A, Wassmer SC. The brain-kidney-retinal axis in severe falciparum malaria. Trends Parasitol 2023; 39:412-413. [PMID: 37024317 DOI: 10.1016/j.pt.2023.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 04/08/2023]
Affiliation(s)
- Andrea L Conroy
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Dibyadyuti Datta
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Angelika Hoffmann
- University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, University of Bern, Switzerland
| | - Samuel C Wassmer
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
19
|
Mitran C, Opoka RO, Conroy AL, Namasopo S, Kain KC, Hawkes MT. Pediatric Malaria with Respiratory Distress: Prognostic Significance of Point-of-Care Lactate. Microorganisms 2023; 11:microorganisms11040923. [PMID: 37110346 PMCID: PMC10145304 DOI: 10.3390/microorganisms11040923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/25/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Respiratory distress (RD) in pediatric malaria portends a grave prognosis. Lactic acidosis is a biomarker of severe disease. We investigated whether lactate, measured at admission using a handheld device among children hospitalized with malaria and RD, was predictive of subsequent mortality. We performed a pooled analysis of Ugandan children under five years of age hospitalized with malaria and RD from three past studies. In total, 1324 children with malaria and RD (median age 1.4 years, 46% female) from 21 health facilities were included. Median lactate level at admission was 4.6 mmol/L (IQR 2.6–8.5) and 586 patients (44%) had hyperlactatemia (lactate > 5 mmol/L). The mortality was 84/1324 (6.3%). In a mixed-effects Cox proportional hazard model adjusting for age, sex, clinical severity score (fixed effects), study, and site (random effects), hyperlactatemia was associated with a 3-fold increased hazard of death (aHR 3.0, 95%CI 1.8–5.3, p < 0.0001). Delayed capillary refill time (τ = 0.14, p < 0.0001), hypotension (τ = −0.10, p = 0.00049), anemia (τ = −0.25, p < 0.0001), low tissue oxygen delivery (τ = −0.19, p < 0.0001), high parasite density (τ = 0.10, p < 0.0001), and acute kidney injury (p = 0.00047) were associated with higher lactate levels. In children with malaria and RD, bedside lactate may be a useful triage tool, predictive of mortality.
Collapse
Affiliation(s)
- Catherine Mitran
- Faculty of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Robert O. Opoka
- Department of Paediatrics and Child Health, Mulago Hospital and Makerere University, Kampala P.O. Box 7062, Uganda
| | - Andrea L. Conroy
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sophie Namasopo
- Department of Paediatrics, Kabale District Hospital, Kabale P.O. Box 1102, Uganda
| | - Kevin C. Kain
- Sandra Rotman Centre for Global Health, Department of Medicine, University Health Network-Toronto General Hospital, University of Toronto, Toronto, ON M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Michael T. Hawkes
- Department of Paediatrics, Faculty of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Department of Medical Microbiology and Immunology, Faculty of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
- School of Public Health, University of Alberta, Edmonton, AB T6G 1C9, Canada
- Stollery Science Lab, Edmonton, AB T6G 1C9, Canada
- Women and Children’s Health Research Institute, Edmonton, AB T6G 1C9, Canada
| |
Collapse
|
20
|
Bensalel J, Roberts A, Hernandez K, Pina A, Prempeh W, Babalola BV, Cannata P, Lazaro A, Gallego-Delgado J. Novel Experimental Mouse Model to Study Malaria-Associated Acute Kidney Injury. Pathogens 2023; 12:pathogens12040545. [PMID: 37111431 PMCID: PMC10141210 DOI: 10.3390/pathogens12040545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
The impact of malaria-associated acute kidney injury (MAKI), one of the strongest predictors of death in children with severe malaria (SM), has been largely underestimated and research in this area has been neglected. Consequently, a standard experimental mouse model to research this pathology is still lacking. The purpose of this study was to develop an in vivo model that resembles the pathology in MAKI patients. In this study, unilateral nephrectomies were performed on wild-type mice prior to infection with Plasmodium berghei NK65. The removal of one kidney has shown to be an effective approach to replicating the most common findings in humans with MAKI. Infection of nephrectomized mice, compared to their non-nephrectomized counterparts, resulted in the development of kidney injury, evident by histopathological analysis and elevated levels of acute kidney injury (AKI) biomarkers, including urinary neutrophil gelatinase-associated lipocalin, serum Cystatin C, and blood urea nitrogen. Establishment of this in vivo model of MAKI is critical to the scientific community, as it can be used to elucidate the molecular pathways implicated in MAKI, delineate the development of the disease, identify biomarkers for early diagnosis and prognosis, and test potential adjunctive therapies.
Collapse
Affiliation(s)
- Johanna Bensalel
- Department of Biological Sciences, Bronx, Lehman College, The City University of New York, New York, NY 10468, USA
- Ph.D. Program in Biology, The Graduate Center, The City University of New York, New York, NY 10016, USA
| | - Alexandra Roberts
- Department of Biological Sciences, Bronx, Lehman College, The City University of New York, New York, NY 10468, USA
| | - Kiara Hernandez
- Department of Biological Sciences, Bronx, Lehman College, The City University of New York, New York, NY 10468, USA
| | - Angelica Pina
- Department of Biological Sciences, Bronx, Lehman College, The City University of New York, New York, NY 10468, USA
| | - Winifred Prempeh
- Department of Biological Sciences, Bronx, Lehman College, The City University of New York, New York, NY 10468, USA
| | - Blessing V. Babalola
- Department of Biological Sciences, Bronx, Lehman College, The City University of New York, New York, NY 10468, USA
| | - Pablo Cannata
- Department of Pathology, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, 28040 Madrid, Spain
| | - Alberto Lazaro
- Renal Physiopathology Laboratory, Department of Nephrology, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
- Department of Physiology, School of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Julio Gallego-Delgado
- Department of Biological Sciences, Bronx, Lehman College, The City University of New York, New York, NY 10468, USA
- Ph.D. Program in Biology, The Graduate Center, The City University of New York, New York, NY 10016, USA
| |
Collapse
|
21
|
Silva-Pedrosa R, Campos J, Fernandes AM, Silva M, Calçada C, Marote A, Martinho O, Veiga MI, Rodrigues LR, Salgado AJ, Ferreira PE. Cerebral Malaria Model Applying Human Brain Organoids. Cells 2023; 12:cells12070984. [PMID: 37048057 PMCID: PMC10093648 DOI: 10.3390/cells12070984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/28/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
Neural injuries in cerebral malaria patients are a significant cause of morbidity and mortality. Nevertheless, a comprehensive research approach to study this issue is lacking, so herein we propose an in vitro system to study human cerebral malaria using cellular approaches. Our first goal was to establish a cellular system to identify the molecular alterations in human brain vasculature cells that resemble the blood-brain barrier (BBB) in cerebral malaria (CM). Through transcriptomic analysis, we characterized specific gene expression profiles in human brain microvascular endothelial cells (HBMEC) activated by the Plasmodium falciparum parasites. We also suggest potential new genes related to parasitic activation. Then, we studied its impact at brain level after Plasmodium falciparum endothelial activation to gain a deeper understanding of the physiological mechanisms underlying CM. For that, the impact of HBMEC-P. falciparum-activated secretomes was evaluated in human brain organoids. Our results support the reliability of in vitro cellular models developed to mimic CM in several aspects. These systems can be of extreme importance to investigate the factors (parasitological and host) influencing CM, contributing to a molecular understanding of pathogenesis, brain injury, and dysfunction.
Collapse
Affiliation(s)
- Rita Silva-Pedrosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
- CEB-Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Jonas Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Aline Marie Fernandes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Miguel Silva
- Department of Experimental Biology, Section of Microbiology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic
| | - Carla Calçada
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Ana Marote
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Olga Martinho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Maria Isabel Veiga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Ligia R Rodrigues
- CEB-Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS-Associate Laboratory, 4710-057 Braga, Portugal
| | - António José Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Pedro Eduardo Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
22
|
Conroy AL, Datta D, Hoffmann A, Wassmer SC. The kidney-brain pathogenic axis in severe falciparum malaria. Trends Parasitol 2023; 39:191-199. [PMID: 36737313 PMCID: PMC11071448 DOI: 10.1016/j.pt.2023.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 02/05/2023]
Abstract
Severe falciparum malaria is a medical emergency and a leading cause of death and neurodisability in endemic areas. Common complications include acute kidney injury (AKI) and cerebral malaria, and recent studies have suggested links between kidney and brain dysfunction in Plasmodium falciparum infection. Here, we review these new findings and present the hypothesis of a pivotal pathogenic crosstalk between the kidneys and the brain in severe falciparum malaria. We highlight the evidence of a role for distant organ involvement in the development of cerebral malaria and subsequent neurocognitive impairment post-recovery, describe the challenges associated with current diagnostic shortcomings for both AKI and brain involvement in severe falciparum malaria, and explore novel potential therapeutic strategies.
Collapse
Affiliation(s)
- Andrea L Conroy
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Dibyadyuti Datta
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Angelika Hoffmann
- University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Samuel C Wassmer
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
23
|
Royo J, Vianou B, Accrombessi M, Kinkpé E, Ayédadjou L, Dossou-Dagba I, Ladipo Y, Alao MJ, Bertin GI, Cot M, Boumédiène F, Houzé S, Faucher JF, Aubouy A. Elevated plasma interleukin-8 as a risk factor for mortality in children presenting with cerebral malaria. Infect Dis Poverty 2023; 12:8. [PMID: 36759905 PMCID: PMC9909955 DOI: 10.1186/s40249-023-01059-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Cerebral malaria (CM) is a neuropathology which remains one of the deadliest forms of malaria among African children. The kinetics of the pathophysiological mechanisms leading to neuroinflammation and the death or survival of patients during CM are still poorly understood. The increasing production of cytokines, chemokines and other actors of the inflammatory and oxidative response by various local actors in response to neuroinflammation plays a major role during CM, participating in both the amplification of the neuroinflammation phenomenon and its resolution. In this study, we aimed to identify risk factors for CM death among specific variables of inflammatory and oxidative responses to improve our understanding of CM pathogenesis. METHODS Children presenting with CM (n = 70) due to P. falciparum infection were included in southern Benin and divided according to the clinical outcome into 50 children who survived and 20 who died. Clinical examination was complemented by fundoscopic examination and extensive blood biochemical analysis associated with molecular diagnosis by multiplex PCR targeting 14 pathogens in the patients' cerebrospinal fluid to rule out coinfections. Luminex technology and enzyme immunoassay kits were used to measure 17 plasma and 7 urinary biomarker levels, respectively. Data were analysed by univariate analysis using the nonparametric Mann‒Whitney U test and Pearson's Chi2 test. Adjusted and multivariate analyses were conducted separately for plasma and urinary biomarkers to identify CM mortality risk factors. RESULTS Univariate analysis revealed higher plasma levels of tumour necrosis factor (TNF), interleukin-1beta (IL-1β), IL-10, IL-8, C-X-C motif chemokine ligand 9 (CXCL9), granzyme B, and angiopoietin-2 and lower urinary levels of prostanglandine E2 metabolite (PGEM) in children who died compared to those who survived CM (Mann-Whitney U-test, P-values between 0.03 and < 0.0001). The multivariate logistic analysis highlighted elevated plasma levels of IL-8 as the main risk factor for death during CM (adjusted odd ratio = 14.2, P-value = 0.002). Values obtained during follow-up at D3 and D30 revealed immune factors associated with disease resolution, including plasma CXCL5, C-C motif chemokine ligand 17 (CCL17), CCL22, and urinary 15-F2t-isoprostane. CONCLUSIONS The main risk factor of death during CM was thus elevated plasma levels of IL-8 at inclusion. Follow-up of patients until D30 revealed marker profiles of disease aggravation and resolution for markers implicated in neutrophil activation, endothelium activation and damage, inflammatory and oxidative response. These results provide important insight into our understanding of CM pathogenesis and clinical outcome and may have important therapeutic implications.
Collapse
Affiliation(s)
- Jade Royo
- grid.508721.9UMR152 PHARMADEV, IRD, UPS, Toulouse University, 35 Chemin Des Maraichers, 31400 Toulouse, France
| | - Bertin Vianou
- grid.508721.9UMR152 PHARMADEV, IRD, UPS, Toulouse University, 35 Chemin Des Maraichers, 31400 Toulouse, France ,Clinical Research Institute of Benin (IRCB), Abomey Calavi, Benin
| | - Manfred Accrombessi
- Clinical Research Institute of Benin (IRCB), Abomey Calavi, Benin ,grid.8991.90000 0004 0425 469XFaculty of Infectious and Tropical Diseases, Disease Control Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Elisée Kinkpé
- Paediatric Department, Calavi Hospital, Calavi, Benin
| | - Linda Ayédadjou
- Paediatric Department, Mother and Child University and Hospital Center (CHU-MEL), Cotonou, Benin
| | | | - Yélé Ladipo
- Paediatric Department, Mother and Child University and Hospital Center (CHU-MEL), Cotonou, Benin
| | - Maroufou Jules Alao
- Paediatric Department, Mother and Child University and Hospital Center (CHU-MEL), Cotonou, Benin
| | | | - Michel Cot
- grid.462420.6UMR261 MERIT, IRD, Paris University, Paris, France
| | - Farid Boumédiène
- grid.9966.00000 0001 2165 4861UMR 1094 EpiMaCT, Inserm, Limoges University Hospital, Limoges University, Limoges, France
| | - Sandrine Houzé
- grid.462420.6UMR261 MERIT, IRD, Paris University, Paris, France ,grid.411119.d0000 0000 8588 831XFrench Malaria Reference Center, APHP, Bichat Hospital, Paris, France ,grid.411119.d0000 0000 8588 831XParasitology Laboratory, APHP, Bichat-Claude-Bernard Hospital, Paris, France
| | - Jean François Faucher
- grid.9966.00000 0001 2165 4861UMR 1094 EpiMaCT, Inserm, Limoges University Hospital, Limoges University, Limoges, France ,grid.411178.a0000 0001 1486 4131Infectious Diseases and Tropical Medicine Department, Limoges University Hospital, Limoges, France
| | - Agnès Aubouy
- UMR152 PHARMADEV, IRD, UPS, Toulouse University, 35 Chemin Des Maraichers, 31400, Toulouse, France. .,Clinical Research Institute of Benin (IRCB), Abomey Calavi, Benin.
| | | |
Collapse
|
24
|
Muppidi P, Wright E, Wassmer SC, Gupta H. Diagnosis of cerebral malaria: Tools to reduce Plasmodium falciparum associated mortality. Front Cell Infect Microbiol 2023; 13:1090013. [PMID: 36844403 PMCID: PMC9947298 DOI: 10.3389/fcimb.2023.1090013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023] Open
Abstract
Cerebral malaria (CM) is a major cause of mortality in Plasmodium falciparum (Pf) infection and is associated with the sequestration of parasitised erythrocytes in the microvasculature of the host's vital organs. Prompt diagnosis and treatment are key to a positive outcome in CM. However, current diagnostic tools remain inadequate to assess the degree of brain dysfunction associated with CM before the window for effective treatment closes. Several host and parasite factor-based biomarkers have been suggested as rapid diagnostic tools with potential for early CM diagnosis, however, no specific biomarker signature has been validated. Here, we provide an updated review on promising CM biomarker candidates and evaluate their applicability as point-of-care tools in malaria-endemic areas.
Collapse
Affiliation(s)
- Pranavi Muppidi
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Emily Wright
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Samuel C. Wassmer
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Himanshu Gupta
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, UP, India
| |
Collapse
|
25
|
Conroy AL, Tran TM, Bond C, Opoka RO, Datta D, Liechty EA, Bangirana P, Namazzi R, Idro R, Cusick S, Ssenkusu JM, John CC. Plasma Amino Acid Concentrations in Children With Severe Malaria Are Associated With Mortality and Worse Long-term Kidney and Cognitive Outcomes. J Infect Dis 2022; 226:2215-2225. [PMID: 36179241 PMCID: PMC10205609 DOI: 10.1093/infdis/jiac392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Global changes in amino acid levels have been described in severe malaria (SM), but the relationship between amino acids and long-term outcomes in SM has not been evaluated. METHODS We measured enrollment plasma concentrations of 20 amino acids using high-performance liquid chromatography in 500 Ugandan children aged 18 months to 12 years, including 122 community children and 378 children with SM. The Kidney Disease: Improving Global Outcomes criteria were used to define acute kidney injury (AKI) at enrollment and chronic kidney disease (CKD) at 1-year follow-up. Cognition was assessed over 2 years of follow-up. RESULTS Compared to laboratory-defined, age-specific reference ranges, there were deficiencies in sulfur-containing amino acids (methionine, cysteine) in both community children and children with SM. Among children with SM, global changes in amino acid concentrations were observed in the context of metabolic complications including acidosis and AKI. Increases in threonine, leucine, and valine were associated with in-hospital mortality, while increases in methionine, tyrosine, lysine, and phenylalanine were associated with postdischarge mortality and CKD. Increases in glycine and asparagine were associated with worse attention in children <5 years of age. CONCLUSIONS Among children with SM, unique amino acid profiles are associated with mortality, CKD, and worse attention.
Collapse
Affiliation(s)
- Andrea L Conroy
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Tuan M Tran
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Caitlin Bond
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Robert O Opoka
- Department of Paediatrics and Child Health, Makerere University College of Health Sciences, Global Health Uganda, Kampala, Uganda
| | - Dibyadyuti Datta
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Edward A Liechty
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Paul Bangirana
- Department of Psychiatry, Makerere University College of Health Sciences, Global Health Uganda, Kampala, Uganda
| | - Ruth Namazzi
- Department of Paediatrics and Child Health, Makerere University College of Health Sciences, Global Health Uganda, Kampala, Uganda
| | - Richard Idro
- Department of Paediatrics and Child Health, Makerere University College of Health Sciences, Global Health Uganda, Kampala, Uganda
| | - Sarah Cusick
- Division of Pediatric Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - John M Ssenkusu
- Department of Epidemiology and Biostatistics, Makerere University School of Public Health, Kampala, Uganda
| | - Chandy C John
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
26
|
Akide Ndunge OB, Kilian N, Salman MM. Cerebral Malaria and Neuronal Implications of Plasmodium Falciparum Infection: From Mechanisms to Advanced Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202944. [PMID: 36300890 PMCID: PMC9798991 DOI: 10.1002/advs.202202944] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/22/2022] [Indexed: 06/01/2023]
Abstract
Reorganization of host red blood cells by the malaria parasite Plasmodium falciparum enables their sequestration via attachment to the microvasculature. This artificially increases the dwelling time of the infected red blood cells within inner organs such as the brain, which can lead to cerebral malaria. Cerebral malaria is the deadliest complication patients infected with P. falciparum can experience and still remains a major public health concern despite effective antimalarial therapies. Here, the current understanding of the effect of P. falciparum cytoadherence and their secreted proteins on structural features of the human blood-brain barrier and their involvement in the pathogenesis of cerebral malaria are highlighted. Advanced 2D and 3D in vitro models are further assessed to study this devastating interaction between parasite and host. A better understanding of the molecular mechanisms leading to neuronal and cognitive deficits in cerebral malaria will be pivotal in devising new strategies to treat and prevent blood-brain barrier dysfunction and subsequent neurological damage in patients with cerebral malaria.
Collapse
Affiliation(s)
- Oscar Bate Akide Ndunge
- Department of Internal MedicineSection of Infectious DiseasesYale University School of Medicine300 Cedar StreetNew HavenCT06510USA
| | - Nicole Kilian
- Centre for Infectious Diseases, ParasitologyHeidelberg University HospitalIm Neuenheimer Feld 32469120HeidelbergGermany
| | - Mootaz M. Salman
- Department of PhysiologyAnatomy and GeneticsUniversity of OxfordOxfordOX1 3QUUK
- Kavli Institute for NanoScience DiscoveryUniversity of OxfordOxfordUK
- Oxford Parkinson's Disease CentreUniversity of OxfordOxfordUK
| |
Collapse
|
27
|
Bi D, Lin J, Luo X, Lin L, Tang X, Luo X, Lu Y, Huang X. Biochemical characteristics of patients with imported malaria. Front Cell Infect Microbiol 2022; 12:1008430. [DOI: 10.3389/fcimb.2022.1008430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/13/2022] [Indexed: 11/11/2022] Open
Abstract
ObjectivesThis study aimed to investigate the clinical and biochemical profiles of patients with imported malaria infection between 1 January 2011 and 30 April 2022 and admitted to the Fourth People’s Hospital of Nanning.MethodsThis cohort study enrolled 170 patients with conformed imported malaria infection. The clinical and biochemical profiles of these participants were analyzed with malaria parasite clearance, and signs and symptoms related to malaria disappearance were defined as the primary outcome. A multivariable logistic regression model was used to evaluate the odds ratios (ORs) with 95% confidence intervals (CIs) for cerebral malaria. The Cox model was used to estimate the hazard ratios (HRs) with 95% CIs for parasite clearance.ResultsAdenosine deaminase and parasitemia were found to be independent risk factors for severe malaria in patients with imported malaria (OR = 1.0088, 95% CI: 1.0010–1.0167, p = 0.0272 and OR = 2.0700, 95% CI: 1.2584–3.4050, p = 0.0042, respectively). A 0.5–standard deviation (SD) increase of variation for urea (HR = 0.6714, 95% CI: 0.4911–0.9180), a 0.5-SD increase of variation for creatinine (HR = 0.4566, 95% CI: 0.2762–0.7548), a 0.25-SD increase of variation for albumin (HR = 0.4947, 95% CI: 0.3197–0.7653), a 0.25-SD increase of variation for hydroxybutyrate dehydrogenase (HR = 0.6129, 95% CI: 0.3995–0.9402), and a 1.0-SD increase of variation for ferritin (HR = 0.5887, 95% CI: 0.3799–0.9125) were associated with a higher risk for increased parasite clearance duration than a low-level change.ConclusionsAspartate aminotransferase, urea, creatinine, albumin, hydroxybutyrate dehydrogenase, and ferritin are useful biochemical indicators in routine clinical practice to evaluate prognosis for imported malaria.
Collapse
|
28
|
Sarangam ML, Namazzi R, Datta D, Bond C, Vanderpool CPB, Opoka RO, John CC, Conroy AL. Intestinal Injury Biomarkers Predict Mortality in Pediatric Severe Malaria. mBio 2022; 13:e0132522. [PMID: 36069443 PMCID: PMC9601216 DOI: 10.1128/mbio.01325-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/25/2022] [Indexed: 01/15/2023] Open
Abstract
Severe malaria (SM) increases the risk of invasive bacterial infection, and there is evidence to suggest increased gastrointestinal permeability. Studies have shown sequestration of infected erythrocytes in intestinal microvasculature, and in vivo studies of rectal mucosa have demonstrated disruption of microvascular blood flow. However, the extent of intestinal injury in pediatric malaria is not well characterized. In this study, two serum biomarkers of intestinal injury, trefoil factor 3 (TFF3) and intestinal fatty acid binding protein (I-FABP), were analyzed in 598 children with SM and 120 healthy community children (CC), 6 months to 4 years of age. Serum was collected at enrollment and 1 month for laboratory studies, and participants were monitored for 12 months. Intestinal injury biomarkers were significantly elevated in children with SM, with 18.1% having levels of TFF3 and/or I-FABP greater than the 99th percentile of CC levels. TFF3 levels continued to be elevated at 1 month, while I-FABP levels were comparable to CC levels. Both markers predicted in-hospital mortality {odds ratio (OR) (95% confidence interval [CI]), 4.4 (2.7, 7.3) and 2.3 (1.7, 3.1)} for a natural log increase in TFF3 and I-FABP, respectively. TFF3 was also associated with postdischarge mortality (OR, 2.43 [95% CI, 1.1, 4.8]). Intestinal injury was associated with acute kidney injury (AKI), acidosis (P < 0.001 for both), and angiopoietin 2, a maker of endothelial activation. In conclusion, intestinal injury is common in pediatric severe malaria and is associated with an increased mortality. It is strongly associated with AKI, acidosis, and endothelial activation. IMPORTANCE In children with severe malaria, intestinal injury is a common complication associated with increased mortality. Intestinal injury is associated with acute kidney injury, acidosis, and endothelial activation. Interventions promoting intestinal regeneration and repair represent novel approaches to improve outcomes.
Collapse
Affiliation(s)
| | - Ruth Namazzi
- Department of Paediatrics and Child Health, Makerere University College of Health Sciences, Kampala, Uganda
- Global Health Uganda, Kampala, Uganda
| | - Dibyadyuti Datta
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Caitlin Bond
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | - Robert O. Opoka
- Department of Paediatrics and Child Health, Makerere University College of Health Sciences, Kampala, Uganda
- Global Health Uganda, Kampala, Uganda
| | - Chandy C. John
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Global Health, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Andrea L. Conroy
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Global Health, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
29
|
Conroy AL, Hawkes MT, Leligdowicz A, Mufumba I, Starr MC, Zhong K, Namasopo S, John CC, Opoka RO, Kain KC. Blackwater fever and acute kidney injury in children hospitalized with an acute febrile illness: pathophysiology and prognostic significance. BMC Med 2022; 20:221. [PMID: 35773743 PMCID: PMC9248152 DOI: 10.1186/s12916-022-02410-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/17/2022] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Acute kidney injury (AKI) and blackwater fever (BWF) are related but distinct renal complications of acute febrile illness in East Africa. The pathogenesis and prognostic significance of BWF and AKI are not well understood. METHODS A prospective observational cohort study was conducted to evaluate the association between BWF and AKI in children hospitalized with an acute febrile illness. Secondary objectives were to examine the association of AKI and BWF with (i) host response biomarkers and (ii) mortality. AKI was defined using the Kidney Disease: Improving Global Outcomes criteria and BWF was based on parental report of tea-colored urine. Host markers of immune and endothelial activation were quantified on admission plasma samples. The relationships between BWF and AKI and clinical and biologic factors were evaluated using multivariable regression. RESULTS We evaluated BWF and AKI in 999 children with acute febrile illness (mean age 1.7 years (standard deviation 1.06), 55.7% male). At enrollment, 8.2% of children had a history of BWF, 49.5% had AKI, and 11.1% had severe AKI. A history of BWF was independently associated with 2.18-fold increased odds of AKI (95% CI 1.15 to 4.16). When examining host response, severe AKI was associated with increased immune and endothelial activation (increased CHI3L1, sTNFR1, sTREM-1, IL-8, Angpt-2, sFlt-1) while BWF was predominantly associated with endothelial activation (increased Angpt-2 and sFlt-1, decreased Angpt-1). The presence of severe AKI, not BWF, was associated with increased risk of in-hospital death (RR, 2.17 95% CI 1.01 to 4.64) adjusting for age, sex, and disease severity. CONCLUSIONS BWF is associated with severe AKI in children hospitalized with a severe febrile illness. Increased awareness of AKI in the setting of BWF, and improved access to AKI diagnostics, is needed to reduce disease progression and in-hospital mortality in this high-risk group of children through early implementation of kidney-protective measures.
Collapse
Affiliation(s)
- Andrea L Conroy
- Department of Pediatrics, Indiana University School of Medicine, 1044 West Walnut St., Building 4, Indianapolis, IN, 46202, USA.
| | - Michael T Hawkes
- Division of Pediatric Infectious Diseases, 3-593 Edmonton Clinic Health Academy, University of Alberta, Edmonton, AB, T6G1C9, Canada
| | - Aleksandra Leligdowicz
- Division of Critical Care Medicine, Robarts Research Institute, University of Western Ontario, 1511 Richmond St, London, ON, N6A 3K7, Canada
| | | | - Michelle C Starr
- Department of Pediatrics, Indiana University School of Medicine, 1044 West Walnut St., Building 4, Indianapolis, IN, 46202, USA
| | - Kathleen Zhong
- Sandra Rotman Centre for Global Health, Toronto General Hospital, University Health Network and University of Toronto, Toronto, ON, M5G1L7, Canada
| | | | - Chandy C John
- Department of Pediatrics, Indiana University School of Medicine, 1044 West Walnut St., Building 4, Indianapolis, IN, 46202, USA
| | - Robert O Opoka
- Global Health Uganda, Kampala, Uganda.,Department of Paediatrics and Child Health, Makerere University, Kampala, Uganda
| | - Kevin C Kain
- Sandra Rotman Centre for Global Health, Toronto General Hospital, University Health Network and University of Toronto, Toronto, ON, M5G1L7, Canada
| |
Collapse
|
30
|
Adebayo OC, Van den Heuvel LP, Olowu WA, Levtchenko EN, Labarque V. Sickle cell nephropathy: insights into the pediatric population. Pediatr Nephrol 2022; 37:1231-1243. [PMID: 34050806 DOI: 10.1007/s00467-021-05126-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/10/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022]
Abstract
The life expectancy of individuals with sickle cell disease has increased over the years, majorly due to an overall improvement in diagnosis and medical care. Nevertheless, this improved longevity has resulted in an increased prevalence of chronic complications such as sickle cell nephropathy (SCN), which poses a challenge to the medical care of the patient, shortening the lifespan of patients by 20-30 years. Clinical presentation of SCN is age-dependent, with kidney dysfunction slowly beginning to develop from childhood, progressing to chronic kidney disease and kidney failure during the third and fourth decades of life. This review explores the epidemiology, pathology, pathophysiology, clinical presentation, and management of SCN by focusing on the pediatric population. It also discusses the factors that can modify SCN susceptibility.
Collapse
Affiliation(s)
- Oyindamola C Adebayo
- Department of Development and Regeneration, Katholieke Universiteit Leuven, Leuven, Belgium.,Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Lambertus P Van den Heuvel
- Department of Development and Regeneration, Katholieke Universiteit Leuven, Leuven, Belgium.,Department of Pediatric Nephrology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Wasiu A Olowu
- Pediatric Nephrology and Hypertension Unit, Obafemi Awolowo University Teaching Hospitals Complex, Ile-Ife, Nigeria
| | - Elena N Levtchenko
- Department of Development and Regeneration, Katholieke Universiteit Leuven, Leuven, Belgium. .,Department of Pediatric Nephrology, University Hospital Leuven, Herestraat 49, Bus 817, 3000, Leuven, Belgium.
| | - Veerle Labarque
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Katholieke Universiteit Leuven, Leuven, Belgium.,Department of Pediatric Hematology, University Hospital Leuven, Leuven, Belgium
| |
Collapse
|
31
|
Pathophysiology of Acute Kidney Injury in Malaria and Non-Malarial Febrile Illness: A Prospective Cohort Study. Pathogens 2022; 11:pathogens11040436. [PMID: 35456111 PMCID: PMC9031196 DOI: 10.3390/pathogens11040436] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/24/2022] [Accepted: 03/31/2022] [Indexed: 01/06/2023] Open
Abstract
Acute kidney injury (AKI) is a life-threatening complication. Malaria and sepsis are leading causes of AKI in low-and-middle-income countries, but its etiology and pathogenesis are poorly understood. A prospective observational cohort study was conducted to evaluate pathways of immune and endothelial activation in children hospitalized with an acute febrile illness in Uganda. The relationship between clinical outcome and AKI, defined using the Kidney Disease: Improving Global Outcomes criteria, was investigated. The study included 967 participants (mean age 1.67 years, 44.7% female) with 687 (71.0%) positive for malaria by rapid diagnostic test and 280 (29.1%) children had a non-malarial febrile illness (NMFI). The frequency of AKI was higher in children with NMFI compared to malaria (AKI, 55.0% vs. 46.7%, p = 0.02). However, the frequency of severe AKI (stage 2 or 3 AKI) was comparable (12.1% vs. 10.5%, p = 0.45). Circulating markers of both immune and endothelial activation were associated with severe AKI. Children who had malaria and AKI had increased mortality (no AKI, 0.8% vs. AKI, 4.1%, p = 0.005), while there was no difference in mortality among children with NMFI (no AKI, 4.0% vs. AKI, 4.6%, p = 0.81). AKI is a common complication in children hospitalized with acute infections. Immune and endothelial activation appear to play central roles in the pathogenesis of AKI.
Collapse
|
32
|
Pande CK, Noll L, Afonso N, Serrano F, Monteiro S, Guffey D, Puri K, Achuff BJ, Akcan-Arikan A, Shekerdemian L. Neurodevelopmental Outcomes in Infants with Cardiac Surgery Associated Acute Kidney Injury. Ann Thorac Surg 2022; 114:2347-2354. [PMID: 35346625 DOI: 10.1016/j.athoracsur.2022.03.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 02/28/2022] [Accepted: 03/12/2022] [Indexed: 11/01/2022]
Abstract
BACKGROUND Infants who undergo surgery for congenital heart disease (CHD) are at risk of neurodevelopmental delay. Cardiac surgery associated acute kidney injury (CS-AKI) is common but its association with neurodevelopment has not been explored. METHODS Single center retrospective observational study of infants who underwent cardiac surgery in the first year of life who had neurodevelopmental testing using the Bayley Scale for Infant Development version 3. Single and recurrent episodes of Stage 2 and 3 CS-AKI were determined. RESULTS 203 children with median age at first surgery of 12 days. 31% had ≥ 1 episode of severe CS-AKI; of those, 16% had recurrent CS-AKI. Median age at neurodevelopmental assessment was 20 months. The incidence of delay was similar in patients with and without CS-AKI but all children with recurrent CS-AKI had a delay in ≥1 domain and had significantly lower scores in all 3 domains (cognitive, language, motor). CONCLUSIONS This is the first study to assess the association of CS-AKI with neurodevelopmental delay after surgery for CHD in infancy. Infants who develop recurrent CS-AKI in the first year of life were more likely to be delayed and have lower neurodevelopmental scores.
Collapse
Affiliation(s)
- Chetna K Pande
- Division of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine
| | - Lisa Noll
- Division of Psychology, Department of Pediatrics, Baylor College of Medicine
| | - Natasha Afonso
- Division of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine
| | - Faridis Serrano
- Division of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine
| | - Sonia Monteiro
- Division of Developmental Pediatrics, Department of Pediatrics, Baylor College of Medicine
| | - Danielle Guffey
- Institute for Clinical and Translational Research, Baylor College of Medicine
| | - Kriti Puri
- Division of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine
| | - Barbara-Jo Achuff
- Division of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine
| | - Ayse Akcan-Arikan
- Division of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine; Division of Nephrology, Department of Pediatrics, Baylor College of Medicine
| | - Lara Shekerdemian
- Division of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine.
| |
Collapse
|
33
|
Namazzi R, Batte A, Opoka RO, Bangirana P, Schwaderer AL, Berrens Z, Datta D, Goings M, Ssenkusu JM, Goldstein SL, John CC, Conroy AL. Acute kidney injury, persistent kidney disease, and post-discharge morbidity and mortality in severe malaria in children: A prospective cohort study. EClinicalMedicine 2022; 44:101292. [PMID: 35198918 PMCID: PMC8850340 DOI: 10.1016/j.eclinm.2022.101292] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Globally, 85% of acute kidney injury (AKI) cases occur in low-and-middle-income countries. There is limited information on persistent kidney disease (acute kidney disease [AKD]) following severe malaria-associated AKI. METHODS Between March 28, 2014, and April 18, 2017, 598 children with severe malaria and 118 community children were enrolled in a two-site prospective cohort study in Uganda and followed up for 12 months. The Kidney Disease: Improving Global Outcomes (KDIGO) criteria were used to define AKI (primary exposure) and AKD at 1-month follow-up (primary outcome). Plasma neutrophil gelatinase-associated lipocalin (NGAL) was assessed as a structural biomarker of AKI. FINDINGS The prevalence of AKI was 45·3% with 21·5% of children having unresolved AKI at 24 h. AKI was more common in Eastern Uganda. In-hospital mortality increased across AKI stages from 1·8% in children without AKI to 26·5% with Stage 3 AKI (p < 0·0001). Children with a high-risk plasma NGAL test were more likely to have unresolved AKI (OR, 7·00 95% CI 4·16 to 11·76) and die in hospital (OR, 6·02 95% CI 2·83 to 12·81). AKD prevalence was 15·6% at 1-month follow-up with most AKD occurring in Eastern Uganda. Risk factors for AKD included severe/unresolved AKI, blackwater fever, and a high-risk NGAL test (adjusted p < 0·05). Paracetamol use during hospitalization was associated with reduced AKD (p < 0·0001). Survivors with AKD post-AKI had higher post-discharge mortality (17·5%) compared with children without AKD (3·7%). INTERPRETATION Children with severe malaria-associated AKI are at risk of AKD and post-discharge mortality. FUNDING This work was supported by the National Institutes of Health National Institute of Neurological Disorders and Stroke (R01NS055349 to CCJ) and the Fogarty International Center (D43 TW010928 to CCJ), and a Ralph W. and Grace M. Showalter Young Investigator Award to ALC.
Collapse
Affiliation(s)
- Ruth Namazzi
- Department of Paediatrics and Child Health, Makerere University College of Health Sciences, Kampala, Uganda
- Global Health Uganda, Kampala, Uganda
| | - Anthony Batte
- Child Health and Development Center, Makerere University College of Health Sciences, Kampala, Uganda
| | - Robert O. Opoka
- Department of Paediatrics and Child Health, Makerere University College of Health Sciences, Kampala, Uganda
- Global Health Uganda, Kampala, Uganda
| | - Paul Bangirana
- Global Health Uganda, Kampala, Uganda
- Department of Psychiatry, Makerere University College of Health Sciences, Kampala, Uganda
| | - Andrew L. Schwaderer
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Zachary Berrens
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Dibyadyuti Datta
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN, USA
| | - Michael Goings
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN, USA
| | - John M. Ssenkusu
- Department of Epidemiology and Biostatistics, Makerere University School of Public Health, Kampala, Uganda
| | | | - Chandy C. John
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN, USA
- Center for Global Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrea L. Conroy
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN, USA
- Center for Global Health, Indiana University School of Medicine, Indianapolis, IN, USA
- Corresponding author at: Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202, USA.
| |
Collapse
|
34
|
Pande CK, Smith MB, Soranno DE, Gist KM, Fuhrman DY, Dolan K, Conroy AL, Akcan-Arikan A. The Neglected Price of Pediatric Acute Kidney Injury: Non-renal Implications. Front Pediatr 2022; 10:893993. [PMID: 35844733 PMCID: PMC9279899 DOI: 10.3389/fped.2022.893993] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/23/2022] [Indexed: 01/03/2023] Open
Abstract
Preclinical models and emerging translational data suggest that acute kidney injury (AKI) has far reaching effects on all other major organ systems in the body. Common in critically ill children and adults, AKI is independently associated with worse short and long term morbidity, as well as mortality, in these vulnerable populations. Evidence exists in adult populations regarding the impact AKI has on life course. Recently, non-renal organ effects of AKI have been highlighted in pediatric AKI survivors. Given the unique pediatric considerations related to somatic growth and neurodevelopmental consequences, pediatric AKI has the potential to fundamentally alter life course outcomes. In this article, we highlight the challenging and complex interplay between AKI and the brain, heart, lungs, immune system, growth, functional status, and longitudinal outcomes. Specifically, we discuss the biologic basis for how AKI may contribute to neurologic injury and neurodevelopment, cardiac dysfunction, acute lung injury, immunoparalysis and increased risk of infections, diminished somatic growth, worsened functional status and health related quality of life, and finally the impact on young adult health and life course outcomes.
Collapse
Affiliation(s)
- Chetna K Pande
- Division of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Mallory B Smith
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Washington, Seattle, WA, United States.,Harborview Injury Prevention and Research Center, University of Washington, Seattle, WA, United States
| | - Danielle E Soranno
- Section of Nephrology, Departments of Pediatrics, Bioengineering and Medicine, University of Colorado, Aurora, CO, United States
| | - Katja M Gist
- Division of Cardiology, Department of Pediatrics, Cioncinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH, United States
| | - Dana Y Fuhrman
- Division of Critical Care Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States.,Division of Nephrology, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Kristin Dolan
- Division of Critical Care Medicine, Department of Pediatrics, University of Missouri Kansas City, Children's Mercy Hospital, Kansas City, MO, United States
| | - Andrea L Conroy
- Ryan White Center for Pediatric Infectious Disease and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ayse Akcan-Arikan
- Division of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States.,Division of Nephrology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| |
Collapse
|
35
|
Datta D, Bangirana P, Opoka RO, Conroy AL, Co K, Bond C, Zhao Y, Kawata K, Saykin AJ, John CC. Association of Plasma Tau With Mortality and Long-term Neurocognitive Impairment in Survivors of Pediatric Cerebral Malaria and Severe Malarial Anemia. JAMA Netw Open 2021; 4:e2138515. [PMID: 34889945 PMCID: PMC8665370 DOI: 10.1001/jamanetworkopen.2021.38515] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
IMPORTANCE Cerebral malaria (CM) and severe malarial anemia (SMA) are associated with persistent neurocognitive impairment (NCI) among children in Africa. Identifying blood biomarkers of acute brain injury that are associated with future NCI could allow early interventions to prevent or reduce NCI in survivors of severe malaria. OBJECTIVE To investigate whether acutely elevated tau levels are associated with future NCI in children after CM or SMA. DESIGN, SETTING, AND PARTICIPANTS This prospective cohort study was conducted at Mulago National Referral Hospital in Kampala, Uganda, from March 2008 to October 2015. Children aged 1.5 to 12 years with CM (n = 182) or SMA (n = 162) as well as community children (CC; n = 123) were enrolled in the study. Data analysis was conducted from January 2020 to May 2021. EXPOSURE CM or SMA. MAIN OUTCOMES AND MEASURES Enrollment plasma tau levels were measured using single-molecule array detection technology. Overall cognition (primary) and attention and memory (secondary) z scores were measured at 1 week and 6, 12, and 24 months after discharge using tools validated in Ugandan children younger than 5 years or 5 years and older. RESULTS A total of 467 children were enrolled. In the CM group, 75 (41%) were girls, and the mean (SD) age was 4.02 (1.92) years. In the SMA group, 59 (36%) were girls, and the mean (SD) age was 3.45 (1.60) years. In the CC group, 65 (53%) were girls, and the mean (SD) age was 3.94 (1.92) years. Elevated plasma tau levels (>95th percentile in CC group; >6.43 pg/mL) were observed in 100 children (55%) with CM and 69 children (43%) with SMA (P < .001). In children with CM who were younger than 5 years, elevated plasma tau levels were associated with increased mortality (odds ratio [OR], 3.06; 95% CI, 1.01-9.26; P = .048). In children with CM who were younger than 5 years at both CM episode and follow-up neurocognitive testing, plasma tau levels (log10 transformed) were associated with worse overall cognition scores over 24-month follow-up (β = -0.80; 95% CI, -1.32 to -0.27; P = .003). In children with CM who were younger than 5 years at CM episode and 5 years or older at follow-up neurocognitive testing, plasma tau was associated with worse scores in attention (β = -1.08; 95% CI, -1.79 to -0.38; P = .003) and working memory (β = -1.39; 95% CI, -2.18 to -0.60; P = .001). CONCLUSIONS AND RELEVANCE In this study, plasma tau, a marker of injury to neuronal axons, was elevated in children with CM or SMA and was associated with mortality and persistent NCI in children with CM younger than 5 years.
Collapse
Affiliation(s)
- Dibyadyuti Datta
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis
| | - Paul Bangirana
- Department of Psychiatry, Makerere University College of Health Sciences, Kampala, Uganda
| | - Robert O Opoka
- Department of Paediatrics and Child Health, Makerere University College of Health Sciences, Kampala, Uganda
| | - Andrea L Conroy
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis
| | - Katrina Co
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis
| | - Caitlin Bond
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis
| | - Yi Zhao
- Department of Biostatistics and Health Sciences, Indiana University School of Medicine, Indianapolis
| | - Keisuke Kawata
- Department of Kinesiology, Indiana University School of Public Health-Bloomington, Bloomington
- Program in Neuroscience, The College of Arts and Sciences, Indiana University, Bloomington
| | - Andrew J Saykin
- Indiana Alzheimer's Disease Research Center and Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis
| | - Chandy C John
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis
- Division of Global Pediatrics, University of Minnesota Medical School, Minneapolis
| |
Collapse
|
36
|
Decreased parasite burden and altered host response in children with sickle cell anemia and severe anemia with malaria. Blood Adv 2021; 5:4710-4720. [PMID: 34470050 PMCID: PMC8759120 DOI: 10.1182/bloodadvances.2021004704] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/21/2021] [Indexed: 11/20/2022] Open
Abstract
Plasmodium falciparum malaria causes morbidity and mortality in African children with sickle cell anemia (SCA), but comparisons of host responses to P falciparum between children with SCA (homozygous sickle cell disease/hemoglobin SS [HbSS]) and normal hemoglobin genotype/hemoglobin AA (HbAA) are limited. We assessed parasite biomass and plasma markers of inflammation and endothelial activation in children with HbAA (n = 208) or HbSS (n = 22) who presented with severe anemia and P falciparum parasitemia to Mulago Hospital in Kampala, Uganda. Genotyping was performed at study completion. No child had known SCA at enrollment. Children with HbSS did not differ from children with HbAA in peripheral parasite density, but had significantly lower sequestered parasite biomass. Children with HbSS had greater leukocytosis but significantly lower concentrations of several plasma inflammatory cytokines, including tumor necrosis factor α (TNF-α). In contrast, children with HbSS had threefold greater concentrations of angiopoietin-2 (Angpt-2), a marker of endothelial dysregulation associated with mortality in severe malaria. Lower TNF-α concentrations were associated with increased risk of postdischarge mortality or readmission, whereas higher Angpt-2 concentrations were associated with increased risk of recurrent clinical malaria. Children with SCA have decreased parasite sequestration and inflammation but increased endothelial dysregulation during severe anemia with P falciparum parasitemia, which may ameliorate acute infectious complications but predispose to harmful long-term sequelae.
Collapse
|
37
|
Alteration of Blood Lactate Levels in Severe Falciparum Malaria: A Systematic Review and Meta-Analysis. BIOLOGY 2021; 10:biology10111085. [PMID: 34827078 PMCID: PMC8614809 DOI: 10.3390/biology10111085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 12/26/2022]
Abstract
Simple Summary Alteration of blood lactate levels in patients with severe falciparum malaria is well recognized. However, data on blood lactate in literatures were based on a limited number of participants. The present systematic review aimed to collate the blood lactate levels recorded in the literature and used a metaanalysis approach to pool the evidence in a larger sample size than that used in the individual studies to determine the trend. Results from this study will provide the pooled evidence of blood lactate levels in patients with severe malaria for further studies that identifying patients with a high risk of developing severe malaria or death. Abstract Metabolic acidosis in severe malaria usually occurs in the form of lactic acidosis. The present study aimed to collate articles from the literature that have reported blood lactate levels in patients with severe malaria and tested the hypothesis that blood lactate levels are elevated in patients with malaria compared to those with uncomplicated malaria. Moreover, the difference in lactate levels between patients who died and those who survived was estimated using a meta-analytic approach. Potentially relevant studies were searched for in PubMed, Web of Science, and Scopus. The quality of the included studies was assessed using the Jadad scale and strengthening the reporting of observational studies in epidemiology (STROBE). The pooled mean blood lactate in patients with severe malaria, the pooled weighted mean difference (WMD) of blood lactate between patients with severe malaria and those with uncomplicated malaria, and the pooled WMD and 95% CI of blood lactate between patients who died from and those who survived severe malaria were estimated using the random-effects model. Heterogeneity among the outcomes of the included studies was assessed using Cochran’s Q and I2 statistics. A meta-regression analysis was performed to identify the source(s) of heterogeneity of outcomes among the included studies. A subgroup analysis was further performed to separately analyze the outcomes stratified by the probable source(s) of heterogeneity. Publication bias was assessed by the visual inspection of the funnel plot asymmetry. Of 793 studies retrieved from the searches, 30 studies were included in qualitative and quantitative syntheses. The pooled mean lactate in patients with severe malaria was 5.04 mM (95% CI: 4.44–5.64; I2: 99.9%; n = 30,202 cases from 30 studies). The mean lactate in patients with severe malaria (1568 cases) was higher than in those with uncomplicated malaria (1693 cases) (p = 0.003; MD: 2.46; 95% CI: 0.85–4.07; I2: 100%; nine studies). The mean lactate in patients with severe malaria who died (272 cases) was higher than in those with severe malaria who survived (1370 cases) (p < 0.001; MD: 2.74; 95% CI: 1.74–3.75; I2: 95.8%; six studies). In conclusion, the present study showed a high mean difference in blood lactate level between patients with severe malaria and patients with uncomplicated malaria. In addition, there was a high mean difference in blood lactate level between patients with severe malaria who died compared to those with severe malaria who survived. Further studies are needed to investigate the prognostic value of blood lactate levels to identify patients who are at high risk of developing severe malaria or dying.
Collapse
|
38
|
Batte A, Berrens Z, Murphy K, Mufumba I, Sarangam ML, Hawkes MT, Conroy AL. Malaria-Associated Acute Kidney Injury in African Children: Prevalence, Pathophysiology, Impact, and Management Challenges. Int J Nephrol Renovasc Dis 2021; 14:235-253. [PMID: 34267538 PMCID: PMC8276826 DOI: 10.2147/ijnrd.s239157] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/26/2021] [Indexed: 01/02/2023] Open
Abstract
Acute kidney injury (AKI) is emerging as a complication of increasing clinical importance associated with substantial morbidity and mortality in African children with severe malaria. Using the Kidney Disease: Improving Global Outcomes (KDIGO) criteria to define AKI, an estimated 24–59% of African children with severe malaria have AKI with most AKI community-acquired. AKI is a risk factor for mortality in pediatric severe malaria with a stepwise increase in mortality across AKI stages. AKI is also a risk factor for post-discharge mortality and is associated with increased long-term risk of neurocognitive impairment and behavioral problems in survivors. Following injury, the kidney undergoes a process of recovery and repair. AKI is an established risk factor for chronic kidney disease and hypertension in survivors and is associated with an increased risk of chronic kidney disease in severe malaria survivors. The magnitude of the risk and contribution of malaria-associated AKI to chronic kidney disease in malaria-endemic areas remains undetermined. Pathways associated with AKI pathogenesis in the context of pediatric severe malaria are not well understood, but there is emerging evidence that immune activation, endothelial dysfunction, and hemolysis-mediated oxidative stress all directly contribute to kidney injury. In this review, we outline the KDIGO bundle of care and highlight how this could be applied in the context of severe malaria to improve kidney perfusion, reduce AKI progression, and improve survival. With increased recognition that AKI in severe malaria is associated with substantial post-discharge morbidity and long-term risk of chronic kidney disease, there is a need to increase AKI recognition through enhanced access to creatinine-based and next-generation biomarker diagnostics. Long-term studies to assess severe malaria-associated AKI’s impact on long-term health in malaria-endemic areas are urgently needed.
Collapse
Affiliation(s)
- Anthony Batte
- Child Health and Development Centre, Makerere University College of Health Sciences, Kampala, Uganda
| | - Zachary Berrens
- Department of Pediatrics, Pediatric Critical Care Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kristin Murphy
- Department of Pediatrics, Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ivan Mufumba
- CHILD Research Laboratory, Global Health Uganda, Kampala, Uganda
| | | | - Michael T Hawkes
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Andrea L Conroy
- Department of Pediatrics, Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
39
|
Whole blood transfusion improves vascular integrity and increases survival in artemether-treated experimental cerebral malaria. Sci Rep 2021; 11:12077. [PMID: 34103601 PMCID: PMC8187502 DOI: 10.1038/s41598-021-91499-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/25/2021] [Indexed: 01/28/2023] Open
Abstract
Pathological features observed in both human and experimental cerebral malaria (ECM) are endothelial dysfunction and changes in blood components. Blood transfusion has been routinely used in patients with severe malarial anemia and can also benefit comatose and acidotic malaria patients. In the present study Plasmodium berghei-infected mice were transfused intraperitoneally with 200 μL of whole blood along with 20 mg/kg of artemether. ECM mice showed severe thrombocytopenia and decreases in hematocrit. Artemether treatment markedly aggravated anemia within 24 h. Whole blood administration significantly prevented further drop in hematocrit and partially restored the platelet count. Increased levels of plasma angiopoietin-2 (Ang-2) remained high 24 h after artemether treatment but returned to normal levels 24 h after blood transfusion, indicating reversal to quiescence. Ang-1 was depleted in ECM mice and levels were not restored by any treatment. Blood transfusion prevented the aggravation of the breakdown of blood brain barrier after artemether treatment and decreased spleen congestion without affecting splenic lymphocyte populations. Critically, blood transfusion resulted in markedly improved survival of mice with ECM (75.9% compared to 50.9% receiving artemether only). These findings indicate that whole blood transfusion can be an effective adjuvant therapy for cerebral malaria.
Collapse
|
40
|
Katsoulis O, Georgiadou A, Cunnington AJ. Immunopathology of Acute Kidney Injury in Severe Malaria. Front Immunol 2021; 12:651739. [PMID: 33968051 PMCID: PMC8102819 DOI: 10.3389/fimmu.2021.651739] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Acute kidney injury (AKI) is a common feature of severe malaria, and an independent risk factor for death. Previous research has suggested that an overactivation of the host inflammatory response is at least partly involved in mediating the kidney damage observed in P. falciparum patients with AKI, however the exact pathophysiology of AKI in severe malaria remains unknown. The purpose of this mini-review is to describe how different aspects of malaria pathology, including parasite sequestration, microvascular obstruction and extensive intravascular hemolysis, may interact with each other and contribute to the development of AKI in severe malaria, by amplifying the damaging effects of the host inflammatory response. Here, we highlight the importance of considering how the systemic effects and multi-organ involvement of malaria are intertwined with the localized effects on the kidney.
Collapse
Affiliation(s)
- Orestis Katsoulis
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Athina Georgiadou
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, United Kingdom
- Centre for Paediatrics and Child Health, Imperial College London, London, United Kingdom
| | - Aubrey J. Cunnington
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, United Kingdom
- Centre for Paediatrics and Child Health, Imperial College London, London, United Kingdom
| |
Collapse
|
41
|
Ouma BJ, Bangirana P, Ssenkusu JM, Datta D, Opoka RO, Idro R, Kain KC, John CC, Conroy AL. Plasma angiopoietin-2 is associated with age-related deficits in cognitive sub-scales in Ugandan children following severe malaria. Malar J 2021; 20:17. [PMID: 33407493 PMCID: PMC7789657 DOI: 10.1186/s12936-020-03545-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/11/2020] [Indexed: 12/27/2022] Open
Abstract
Background Elevated angiopoietin-2 (Angpt-2) concentrations are associated with worse overall neurocognitive function in severe malaria survivors, but the specific domains affected have not been elucidated. Methods Ugandan children with severe malaria underwent neurocognitive evaluation a week after hospital discharge and at 6, 12 and 24 months follow-up. The relationship between Angpt-2 concentrations and age-adjusted, cognitive sub-scale z-scores over time were evaluated using linear mixed effects models, adjusting for disease severity (coma, acute kidney injury, number of seizures in hospital) and sociodemographic factors (age, gender, height-for-age z-score, socio-economic status, enrichment in the home environment, parental education, and any preschool education of the child). The Mullen Scales of Early Learning was used in children < 5 years and the Kaufman Assessment Battery for Children 2nd edition was used in children ≥ 5 years of age. Angpt-2 levels were measured on admission plasma samples by enzyme-linked immunosorbent assay. Adjustment for multiple comparisons was conducted using the Benjamini–Hochberg Procedure of False Discovery Rate. Results Increased admission Angpt-2 concentration was associated with worse outcomes in all domains (fine and gross motor, visual reception, receptive and expressive language) in children < 5 years of age at the time of severe malaria episode, and worse simultaneous processing and learning in children < 5 years of age at the time of severe malaria who were tested when ≥ 5 years of age. No association was seen between Angpt-2 levels and cognitive outcomes in children ≥ 5 years at the time of severe malaria episode, but numbers of children and testing time points were lower for children ≥ 5 years at the time of severe malaria episode. Conclusion Elevated Angpt-2 concentration in children with severe malaria is associated with worse outcomes in multiple neurocognitive domains. The relationship between Angpt-2 and worse cognition is evident in children < 5 years of age at the time of severe malaria presentation and in selected domains in older years.
Collapse
Affiliation(s)
- Benson J Ouma
- Department of Medical Microbiology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Paul Bangirana
- Department of Psychiatry, College of Health Sciences, Makerere University, Kampala, Uganda
| | - John M Ssenkusu
- Department of Epidemiology and Biostatistics, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Dibyadyuti Datta
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Robert O Opoka
- Department of Paediatrics and Child Health, Makerere University College of Health Sciences, Kampala, Uganda
| | - Richard Idro
- Department of Paediatrics and Child Health, Makerere University College of Health Sciences, Kampala, Uganda.,Centre of Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Kevin C Kain
- Department of Medicine, University of Toronto and University Health Network, Toronto, Canada
| | - Chandy C John
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrea L Conroy
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
42
|
Dabrowski W, Siwicka-Gieroba D, Gasinska-Blotniak M, Zaid S, Jezierska M, Pakulski C, Williams Roberson S, Wesley Ely E, Kotfis K. Pathomechanisms of Non-Traumatic Acute Brain Injury in Critically Ill Patients. ACTA ACUST UNITED AC 2020; 56:medicina56090469. [PMID: 32933176 PMCID: PMC7560040 DOI: 10.3390/medicina56090469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/27/2022]
Abstract
Delirium, an acute alteration in mental status characterized by confusion, inattention and a fluctuating level of arousal, is a common problem in critically ill patients. Delirium prolongs hospital stay and is associated with higher mortality. The pathophysiology of delirium has not been fully elucidated. Neuroinflammation and neurotransmitter imbalance seem to be the most important factors for delirium development. In this review, we present the most important pathomechanisms of delirium in critically ill patients, such as neuroinflammation, neurotransmitter imbalance, hypoxia and hyperoxia, tryptophan pathway disorders, and gut microbiota imbalance. A thorough understanding of delirium pathomechanisms is essential for effective prevention and treatment of this underestimated pathology in critically ill patients.
Collapse
Affiliation(s)
- Wojciech Dabrowski
- Department of Anaesthesiology and Intensive Care, Medical University of Lublin, 20-954 Lublin, Poland; (D.S.-G.); (M.G.-B.); (M.J.)
- Correspondence: or (W.D.); (K.K.)
| | - Dorota Siwicka-Gieroba
- Department of Anaesthesiology and Intensive Care, Medical University of Lublin, 20-954 Lublin, Poland; (D.S.-G.); (M.G.-B.); (M.J.)
| | - Malgorzata Gasinska-Blotniak
- Department of Anaesthesiology and Intensive Care, Medical University of Lublin, 20-954 Lublin, Poland; (D.S.-G.); (M.G.-B.); (M.J.)
| | - Sami Zaid
- Department of Anaesthesia, Al-Emadi-Hospital Doha, P.O. Box 5804 Doha, Qatar;
| | - Maja Jezierska
- Department of Anaesthesiology and Intensive Care, Medical University of Lublin, 20-954 Lublin, Poland; (D.S.-G.); (M.G.-B.); (M.J.)
| | - Cezary Pakulski
- Department of Anaesthesiology, Intensive Therapy and Emergency Medicine, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland;
| | - Shawniqua Williams Roberson
- Critical Illness, Brain Dysfunction, and Survivorship (CIBS) Center, Vanderbilt University Medical Center, 1211, Nashville, TN 37232, USA; (S.W.R.); (E.W.E.)
- Department of Neurology, Vanderbilt University Medical Center, 1211, Nashville, TN 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, 1211, Nashville, TN 37232, USA
| | - Eugene Wesley Ely
- Critical Illness, Brain Dysfunction, and Survivorship (CIBS) Center, Vanderbilt University Medical Center, 1211, Nashville, TN 37232, USA; (S.W.R.); (E.W.E.)
- Geriatric Research, Education and Clinical Center (GRECC), Tennessee Valley Veterans Affairs Healthcare System, 1310, Nashville, TN 37212, USA
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, 1211, Nashville, TN 37232, USA
| | - Katarzyna Kotfis
- Department of Anaesthesiology, Intensive Therapy and Acute Intoxications, Pomeranian Medical University, 70-111 Szczecin, Poland
- Correspondence: or (W.D.); (K.K.)
| |
Collapse
|