1
|
Wang Z, Dai Y, Zhou Y, Wang Y, Chen P, Li Y, Zhang Y, Wang X, Hu Y, Li H, Li G, Jing Y. Research progress of T cells in cholangiocarcinoma. Front Immunol 2025; 16:1453344. [PMID: 40070825 PMCID: PMC11893616 DOI: 10.3389/fimmu.2025.1453344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 02/06/2025] [Indexed: 03/14/2025] Open
Abstract
Cholangiocarcinoma (CCA), a malignant tumor, is typically challenging to detect early and often results in a poor prognosis. In recent years, research interest has grown in the potential application of immunotherapy for CCA treatment. T cells, as a crucial component of the immune system, play a significant role in immune surveillance and therapy for cholangiocarcinoma. This article provides a review of the research advancements concerning T cells in cholangiocarcinoma patients, including their distribution, functional status, and correlation with patient prognosis within the tumor microenvironment. It further discusses the potential applications and challenges of immunotherapy strategies targeting T cells in CCA treatment and anticipates future research directions. A more profound understanding of T cells' role in cholangiocarcinoma can guide the development of clinical treatment strategies, thereby enhancing patient survival rates and quality of life. Finally, we explored the potential risks and side effects of immunotherapy for T-cell cholangiocarcinoma.
Collapse
Affiliation(s)
- Zhiming Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yunyan Dai
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yunpeng Zhou
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yi Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Pinggui Chen
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yaoxuan Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yunfei Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Xiaocui Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Ying Hu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Haonan Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Gaopeng Li
- Department of Hepatobiliary Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yukai Jing
- Department of Clinical Laboratory, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
2
|
Wang Z, Ou Q, Liu Y, Liu Y, Zhu Q, Feng J, Han F, Gao L. Adipocyte-derived CXCL10 in obesity promotes the migration and invasion of ovarian cancer cells. J Ovarian Res 2024; 17:245. [PMID: 39702497 PMCID: PMC11656578 DOI: 10.1186/s13048-024-01568-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/28/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND As a widespread epidemic, obesity poses a significant risk to health and leads to physiological abnormalities, including diabetes mellitus and inflammation. Obesity-induced inflammation can accelerate the development of various cancers; however, the role of obesity in the migration of ovarian carcinoma is still unclear. RESULTS Twenty-four commonly upregulated genes were identified from single-cell RNA sequencing datasets of both ovarian carcinoma and adipose tissue of obese humans, with the chemokine CXCL10 showing a significant increase in adipose tissues associated with obesity. And CXCL10 treated primed macrophages exhibit both direct and indirect effects on the proliferation, apoptosis, migration, and invasion of ovarian adenocarcinoma cells. The treatment of CXCL10 on the SKOV3 cells enhances FAK expression and phosphorylation, thereby accelerating the migration and invasion of ovarian cancer cells. Conditioned medium-derived from CXCL10-treated THP-1 cells significantly promoted ovarian cancer cell migration and invasion, which may be attributed to the increased expression of C1QA, C1QC, CCL24, and IL4R in macrophages. CONCLUSIONS Obesity exacerbates the production of CXCL10 from adipose tissues in obese women. CXCL10 is a key hub factor between developments of ovarian cancer and adipose tissues in obese. Targeting adipose-derived CXCL10 or its downstream macrophages may be a potential strategy to alleviate ovarian cancer accompanied by obesity.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Physiology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China
| | - Qingjian Ou
- Laboratory of Clinical and Visual Sciences, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200331, China
| | - Ying Liu
- School of Life Sciences, Bengbu Medical University, Anhui, 233030, China
| | - Yuanyuan Liu
- Department of Physiology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China
| | - Qingwei Zhu
- Department of Physiology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China
| | - Jingqiu Feng
- Department of Physiology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China
| | - Fengze Han
- Department of Physiology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China
| | - Lu Gao
- Department of Physiology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200433, China.
| |
Collapse
|
3
|
Zuo X, Cheng Q, Wang Z, Liu J, Lu W, Wu G, Zhu S, Liu X, Lv T, Song Y. A novel oral TLR7 agonist orchestrates immune response and synergizes with PD-L1 blockade via type I IFN pathway in lung cancer. Int Immunopharmacol 2024; 137:112478. [PMID: 38901243 DOI: 10.1016/j.intimp.2024.112478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/21/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Despite the groundbreaking impact of immune checkpoint blockade (ICB), response rates in non-small cell lung cancer remain modest, particularly in immune-excluded or immune-desert microenvironments. Toll-like receptor 7 (TLR7) emerges as a latent target bridging innate and adaptive immunity, offering a promising avenue for combination therapies to augment ICB efficacy. Here, we explored the anti-tumor activity of the novel oral TLR7 agonist TQ-A3334 and its potential to enhance anti-programmed death ligand 1 (PD-L1) therapy through a combination strategy in a syngeneic murine lung cancer model. Oral administration of TQ-A3334 significantly alleviated tumor burden in C57BL/6J mice, modulated by type I interferon (IFN), and exhibited low toxicity. This therapy elicited activation of both innate and adaptive immune cells in tumor tissue, particularly increasing the abundance of CD8+ TILs through type I IFN pathway and subsequent CXCL10 expression. In vitro examinations validated that IFN-α-stimulated tumor cells exhibited increased secretion of CXCL10, conducive to the promoted trafficking of CD8+ T cells. Furthermore, combining TQ-A3334 with anti-PD-L1 treatment exceeded tumor control, with a further increase in CD8+ TIL frequency compared to monotherapy. These findings suggest that TQ-A3334 can mobilize innate immunity and promote T cell recruitment into the tumor microenvironment; a combination of TQ-A3334 and anti-PD-L1 antibodies can intensify the sensitivity of tumors to anti-PD-L1 therapy, which demonstrates significant potential for treating poorly immune-infiltrated lung cancer.
Collapse
Affiliation(s)
- Xueying Zuo
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu, China
| | - Qinpei Cheng
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu, China
| | - Zimu Wang
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Nanjing University School of Medicine, Nanjing 210008, Jiangsu, China
| | - Jiaxin Liu
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Nanjing University School of Medicine, Nanjing 210008, Jiangsu, China
| | - Wanjun Lu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu, China
| | - Guannan Wu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu, China
| | - Suhua Zhu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu, China
| | - Xin Liu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu, China
| | - Tangfeng Lv
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu, China.
| | - Yong Song
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu, China.
| |
Collapse
|
4
|
Albarrán Fernández V, Ballestín Martínez P, Stoltenborg Granhøj J, Borch TH, Donia M, Marie Svane I. Biomarkers for response to TIL therapy: a comprehensive review. J Immunother Cancer 2024; 12:e008640. [PMID: 38485186 PMCID: PMC10941183 DOI: 10.1136/jitc-2023-008640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2024] [Indexed: 03/17/2024] Open
Abstract
Adoptive cell therapy with tumor-infiltrating lymphocytes (TIL) has demonstrated durable clinical responses in patients with metastatic melanoma, substantiated by recent positive results of the first phase III trial on TIL therapy. Being a demanding and logistically complex treatment, extensive preclinical and clinical effort is required to optimize patient selection by identifying predictive biomarkers of response. This review aims to comprehensively summarize the current evidence regarding the potential impact of tumor-related factors (such as mutational burden, neoantigen load, immune infiltration, status of oncogenic driver genes, and epigenetic modifications), patient characteristics (including disease burden and location, baseline cytokines and lactate dehydrogenase serum levels, human leucocyte antigen haplotype, or prior exposure to immune checkpoint inhibitors and other anticancer therapies), phenotypic features of the transferred T cells (mainly the total cell count, CD8:CD4 ratio, ex vivo culture time, expression of exhaustion markers, costimulatory signals, antitumor reactivity, and scope of target tumor-associated antigens), and other treatment-related factors (such as lymphodepleting chemotherapy and postinfusion administration of interleukin-2).
Collapse
Affiliation(s)
- Víctor Albarrán Fernández
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
- Ramón y Cajal University Hospital, Department of Medical Oncology, Madrid, Spain
| | - Pablo Ballestín Martínez
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
- Clínico San Carlos University Hospital, Department of Medical Oncology, Madrid, Spain
| | - Joachim Stoltenborg Granhøj
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Troels Holz Borch
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Marco Donia
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| |
Collapse
|
5
|
Sun L, Su Y, Jiao A, Wang X, Zhang B. T cells in health and disease. Signal Transduct Target Ther 2023; 8:235. [PMID: 37332039 PMCID: PMC10277291 DOI: 10.1038/s41392-023-01471-y] [Citation(s) in RCA: 316] [Impact Index Per Article: 158.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 06/20/2023] Open
Abstract
T cells are crucial for immune functions to maintain health and prevent disease. T cell development occurs in a stepwise process in the thymus and mainly generates CD4+ and CD8+ T cell subsets. Upon antigen stimulation, naïve T cells differentiate into CD4+ helper and CD8+ cytotoxic effector and memory cells, mediating direct killing, diverse immune regulatory function, and long-term protection. In response to acute and chronic infections and tumors, T cells adopt distinct differentiation trajectories and develop into a range of heterogeneous populations with various phenotype, differentiation potential, and functionality under precise and elaborate regulations of transcriptional and epigenetic programs. Abnormal T-cell immunity can initiate and promote the pathogenesis of autoimmune diseases. In this review, we summarize the current understanding of T cell development, CD4+ and CD8+ T cell classification, and differentiation in physiological settings. We further elaborate the heterogeneity, differentiation, functionality, and regulation network of CD4+ and CD8+ T cells in infectious disease, chronic infection and tumor, and autoimmune disease, highlighting the exhausted CD8+ T cell differentiation trajectory, CD4+ T cell helper function, T cell contributions to immunotherapy and autoimmune pathogenesis. We also discuss the development and function of γδ T cells in tissue surveillance, infection, and tumor immunity. Finally, we summarized current T-cell-based immunotherapies in both cancer and autoimmune diseases, with an emphasis on their clinical applications. A better understanding of T cell immunity provides insight into developing novel prophylactic and therapeutic strategies in human diseases.
Collapse
Affiliation(s)
- Lina Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Anjun Jiao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Xin Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China.
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China.
| |
Collapse
|
6
|
Melssen MM, Sheybani ND, Leick KM, Slingluff CL. Barriers to immune cell infiltration in tumors. J Immunother Cancer 2023; 11:jitc-2022-006401. [PMID: 37072352 PMCID: PMC10124321 DOI: 10.1136/jitc-2022-006401] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2023] [Indexed: 04/20/2023] Open
Abstract
Increased immune cell infiltration into tumors is associated with improved patient survival and predicts response to immune therapies. Thus, identification of factors that determine the extent of immune infiltration is crucial, so that methods to intervene on these targets can be developed. T cells enter tumor tissues through the vasculature, and under control of interactions between homing receptors on the T cells and homing receptor ligands (HRLs) expressed by tumor vascular endothelium and tumor cell nests. HRLs are often deficient in tumors, and there also may be active barriers to infiltration. These remain understudied but may be crucial for enhancing immune-mediated cancer control. Multiple intratumoral and systemic therapeutic approaches show promise to enhance T cell infiltration, including both approved therapies and experimental therapies. This review highlights the intracellular and extracellular determinants of immune cell infiltration into tumors, barriers to infiltration, and approaches for intervention to enhance infiltration and response to immune therapies.
Collapse
Affiliation(s)
- Marit M Melssen
- Immunology, Genetics & Pathology, Uppsala University, Uppsala, Sweden
| | - Natasha D Sheybani
- Biomedical Engineering, University of Virginia Health System, Charlottesville, Virginia, USA
| | | | | |
Collapse
|
7
|
Tran CA, Lynch KT, Meneveau MO, Katyal P, Olson WC, Slingluff CL. Intratumoral IFN-γ or topical TLR7 agonist promotes infiltration of melanoma metastases by T lymphocytes expanded in the blood after cancer vaccine. J Immunother Cancer 2023; 11:e005952. [PMID: 36746511 PMCID: PMC9906378 DOI: 10.1136/jitc-2022-005952] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Immune-mediated melanoma regression relies on melanoma-reactive T cells infiltrating tumor. Cancer vaccines increase circulating melanoma-reactive T cells, but little is known about vaccine-induced circulating lymphocytes (viCLs) homing to tumor or whether interventions are needed to enhance infiltration. We hypothesized that viCLs infiltrate melanoma metastases, and intratumoral interferon (IFN)-γ or Toll-like receptor 7 (TLR7) agonism enhances infiltration. METHODS Patients on two clinical trials (Mel51 (NCT00977145), Mel53 (NCT01264731)) received vaccines containing 12 class I major histocompatibility complex-restricted melanoma peptides (12MP). In Mel51, tumor was injected with IFN-γ on day 22, and biopsied on days 1, 22, and 24. In Mel53, dermal metastases were treated with topical imiquimod, a TLR7 agonist, for 12 weeks, and biopsied on days 1, 22, and 43. For patients with circulating T-cell responses to 12MP by IFN-γ ELISpot assays, DNA was extracted from peripheral blood mononuclear cells (PBMCs) pre-vaccination and at peak T-cell response, and from tumor biopsies, which underwent T-cell receptor sequencing. This enabled identification of clonotypes induced in PBMCs post-vaccination (viCLs) and present in tumor post-vaccination, but not pre-vaccination. RESULTS Six patients with T-cell responses post-vaccination (Mel51 n = 4, Mel53 n = 2) were evaluated for viCLs and vaccine-induced tumor infiltrating lymphocytes (viTILs). All six patients had viCLs, five of whom were evaluable for viTILs in tumor post-vaccination alone. Mel51 patients had viTILs identified in day 22 tumors, post-vaccination and before IFN-γ (median = 2, range = 0-24). This increased in day 24 tumors after IFN-γ (median = 30, range = 4-74). Mel53 patients had viTILs identified in day 22 tumors, post-vaccination plus imiquimod (median = 33, range = 2-64). Three of five evaluable patients across both trials had viTILs with vaccination alone. All five had enhancement of viTILs with tumor-directed therapy. viTILs represented 0.0-2.9% of total T cells after vaccination alone, which increased to 0.6-8.7% after tumor-directed therapy. CONCLUSION Cancer vaccines induce expansion of new viCLs, which infiltrate melanoma metastases in some patients. Our findings identify opportunities to combine vaccines with tumor-directed therapies to enhance T-cell infiltration and T cell-mediated tumor control. These combinations hold promise in improving the therapeutic efficacy of antigen-specific therapies for solid malignancies.
Collapse
Affiliation(s)
- Christine A Tran
- Department of Surgery, University of Virginia Health, Charlottesville, Virginia, USA
| | - Kevin T Lynch
- Department of Surgery, University of Virginia Health, Charlottesville, Virginia, USA
| | - Max O Meneveau
- Department of Surgery, University of Virginia Health, Charlottesville, Virginia, USA
| | - Priya Katyal
- University of Virginia College and Graduate School of Arts and Sciences, Charlottesville, Virginia, USA
| | - Walter C Olson
- Department of Surgery, University of Virginia Health, Charlottesville, Virginia, USA
| | - Craig L Slingluff
- Department of Surgery, University of Virginia Health, Charlottesville, Virginia, USA
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
8
|
Roussot N, Ghiringhelli F, Rébé C. Tumor Immunogenic Cell Death as a Mediator of Intratumor CD8 T-Cell Recruitment. Cells 2022; 11:cells11223672. [PMID: 36429101 PMCID: PMC9688834 DOI: 10.3390/cells11223672] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
The success of anticancer treatments relies on a long-term response which can be mediated by the immune system. Thus, the concept of immunogenic cell death (ICD) describes the capacity of dying cancer cells, under chemotherapy or physical stress, to express or release danger-associated molecular patterns (DAMPs). These DAMPs are essential to activate dendritic cells (DCs) and to stimulate an antigen presentation to CD8 cytotoxic cells. Then, activated CD8 T cells exert their antitumor effects through cytotoxic molecules, an effect which is transitory due to the establishment of a feedback loop leading to T-cell exhaustion. This phenomenon can be reversed using immune checkpoint blockers (ICBs), such as anti-PD-1, PD-L1 or CTLA-4 Abs. However, the blockade of these checkpoints is efficient only if the CD8 T cells are recruited within the tumor. The CD8 T-cell chemoattraction is mediated by chemokines. Hence, an important question is whether the ICD can not only influence the DC activation and resulting CD8 T-cell activation but can also favor the chemokine production at the tumor site, thus triggering their recruitment. This is the aim of this review, in which we will decipher the role of some chemokines (and their specific receptors), shown to be released during ICD, on the CD8 T-cell recruitment and antitumor response. We will also analyze the clinical applications of these chemokines as predictive or prognostic markers or as new targets which should be used to improve patients' response.
Collapse
Affiliation(s)
- Nicolas Roussot
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc, F-21000 Dijon, France
- Equipe Labellisée Ligue Contre le Cancer, Centre de Recherche INSERM LNC-UMR1231, F-21000 Dijon, France
- UFR Sciences de Santé, University Bourgogne Franche-Comté, F-21000 Dijon, France
- Department of Medical Oncology, Centre Georges-François Leclerc, F-21000 Dijon, France
| | - François Ghiringhelli
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc, F-21000 Dijon, France
- Equipe Labellisée Ligue Contre le Cancer, Centre de Recherche INSERM LNC-UMR1231, F-21000 Dijon, France
- UFR Sciences de Santé, University Bourgogne Franche-Comté, F-21000 Dijon, France
- Department of Medical Oncology, Centre Georges-François Leclerc, F-21000 Dijon, France
- Genetic and Immunology Medical Institute, F-21000 Dijon, France
- Correspondence: (F.G.); (C.R.)
| | - Cédric Rébé
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc, F-21000 Dijon, France
- Equipe Labellisée Ligue Contre le Cancer, Centre de Recherche INSERM LNC-UMR1231, F-21000 Dijon, France
- UFR Sciences de Santé, University Bourgogne Franche-Comté, F-21000 Dijon, France
- Correspondence: (F.G.); (C.R.)
| |
Collapse
|
9
|
Sridaran D, Chouhan S, Mahajan K, Renganathan A, Weimholt C, Bhagwat S, Reimers M, Kim EH, Thakur MK, Saeed MA, Pachynski RK, Seeliger MA, Miller WT, Feng FY, Mahajan NP. Inhibiting ACK1-mediated phosphorylation of C-terminal Src kinase counteracts prostate cancer immune checkpoint blockade resistance. Nat Commun 2022; 13:6929. [PMID: 36376335 PMCID: PMC9663509 DOI: 10.1038/s41467-022-34724-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
Solid tumours are highly refractory to immune checkpoint blockade (ICB) therapies due to the functional impairment of effector T cells and their inefficient trafficking to tumours. T-cell activation is negatively regulated by C-terminal Src kinase (CSK); however, the exact mechanism remains unknown. Here we show that the conserved oncogenic tyrosine kinase Activated CDC42 kinase 1 (ACK1) is able to phosphorylate CSK at Tyrosine 18 (pY18), which enhances CSK function, constraining T-cell activation. Mice deficient in the Tnk2 gene encoding Ack1, are characterized by diminished CSK Y18-phosphorylation and spontaneous activation of CD8+ and CD4+ T cells, resulting in inhibited growth of transplanted ICB-resistant tumours. Furthermore, ICB treatment of castration-resistant prostate cancer (CRPC) patients results in re-activation of ACK1/pY18-CSK signalling, confirming the involvement of this pathway in ICB insensitivity. An ACK1 small-molecule inhibitor, (R)-9b, recapitulates inhibition of ICB-resistant tumours, which provides evidence for ACK1 enzymatic activity playing a pivotal role in generating ICB resistance. Overall, our study identifies an important mechanism of ICB resistance and holds potential for expanding the scope of ICB therapy to tumours that are currently unresponsive.
Collapse
Affiliation(s)
- Dhivya Sridaran
- Department of Surgery, Washington University at St Louis, St Louis, MO, 63110, USA
- Division of Urologic Surgery, Washington University at St Louis, St Louis, MO, 63110, USA
| | - Surbhi Chouhan
- Department of Surgery, Washington University at St Louis, St Louis, MO, 63110, USA
- Division of Urologic Surgery, Washington University at St Louis, St Louis, MO, 63110, USA
| | - Kiran Mahajan
- Department of Surgery, Washington University at St Louis, St Louis, MO, 63110, USA
- Division of Urologic Surgery, Washington University at St Louis, St Louis, MO, 63110, USA
- Siteman Cancer Center, Washington University at St Louis, St Louis, MO, 63110, USA
| | - Arun Renganathan
- Department of Surgery, Washington University at St Louis, St Louis, MO, 63110, USA
- Division of Urologic Surgery, Washington University at St Louis, St Louis, MO, 63110, USA
| | - Cody Weimholt
- Department of Surgery, Washington University at St Louis, St Louis, MO, 63110, USA
- Division of Oncology, Department of Medicine, Washington University at St Louis, St Louis, MO, 63110, USA
- Anatomic and Clinical Pathology, Washington University at St Louis, St Louis, MO, 63110, USA
| | - Shambhavi Bhagwat
- Department of Surgery, Washington University at St Louis, St Louis, MO, 63110, USA
- Division of Urologic Surgery, Washington University at St Louis, St Louis, MO, 63110, USA
| | - Melissa Reimers
- Siteman Cancer Center, Washington University at St Louis, St Louis, MO, 63110, USA
- Division of Oncology, Department of Medicine, Washington University at St Louis, St Louis, MO, 63110, USA
| | - Eric H Kim
- Department of Surgery, Washington University at St Louis, St Louis, MO, 63110, USA
- Division of Urologic Surgery, Washington University at St Louis, St Louis, MO, 63110, USA
| | - Manish K Thakur
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Muhammad A Saeed
- Siteman Cancer Center, Washington University at St Louis, St Louis, MO, 63110, USA
| | - Russell K Pachynski
- Siteman Cancer Center, Washington University at St Louis, St Louis, MO, 63110, USA
- Division of Oncology, Department of Medicine, Washington University at St Louis, St Louis, MO, 63110, USA
| | - Markus A Seeliger
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, 11794, USA
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - W Todd Miller
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
- Department of Veterans Affairs Medical Center, Northport, NY, 11768, USA
| | - Felix Y Feng
- Department of Radiation Oncology, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, CA, USA
| | - Nupam P Mahajan
- Department of Surgery, Washington University at St Louis, St Louis, MO, 63110, USA.
- Division of Urologic Surgery, Washington University at St Louis, St Louis, MO, 63110, USA.
- Siteman Cancer Center, Washington University at St Louis, St Louis, MO, 63110, USA.
| |
Collapse
|
10
|
Pandori WJ, Padgett LE, Alimadadi A, Gutierrez NA, Araujo DJ, Huh CJ, Olingy CE, Dinh HQ, Wu R, Vijayanand P, Chee SJ, Ottensmeier CH, Hedrick CC. Single-cell immune profiling reveals long-term changes in myeloid cells and identifies a novel subset of CD9 + monocytes associated with COVID-19 hospitalization. J Leukoc Biol 2022; 112:1053-1063. [PMID: 35866369 PMCID: PMC9350203 DOI: 10.1002/jlb.4cova0122-076r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/16/2022] [Accepted: 05/11/2022] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can result in severe immune dysfunction, hospitalization, and death. Many patients also develop long-COVID-19, experiencing symptoms months after infection. Although significant progress has been made in understanding the immune response to acute SARS-CoV-2 infection, gaps remain in our knowledge of how innate immunity influences disease kinetics and severity. We hypothesized that cytometry by time-of-flight analysis of PBMCs from healthy and infected subjects would identify novel cell surface markers and innate immune cell subsets associated with COVID-19 severity. In this pursuit, we identified monocyte and dendritic cell subsets that changed in frequency during acute SARS-CoV-2 infection and correlated with clinical parameters of disease severity. Subsets of nonclassical monocytes decreased in frequency in hospitalized subjects, yet increased in the most severe patients and positively correlated with clinical values associated with worse disease severity. CD9, CD163, PDL1, and PDL2 expression significantly increased in hospitalized subjects, and CD9 and 6-Sulfo LacNac emerged as the markers that best distinguished monocyte subsets amongst all subjects. CD9+ monocytes remained elevated, whereas nonclassical monocytes remained decreased, in the blood of hospitalized subjects at 3-4 months postinfection. Finally, we found that CD9+ monocytes functionally released more IL-8 and MCP-1 after LPS stimulation. This study identifies new monocyte subsets present in the blood of COVID-19 patients that correlate with disease severity, and links CD9+ monocytes to COVID-19 progression.
Collapse
Affiliation(s)
- William J. Pandori
- Center for Autoimmunity and InflammationLa Jolla Institute for ImmunologyLa JollaCaliforniaUSA
| | - Lindsey E. Padgett
- Center for Autoimmunity and InflammationLa Jolla Institute for ImmunologyLa JollaCaliforniaUSA
| | - Ahmad Alimadadi
- Center for Autoimmunity and InflammationLa Jolla Institute for ImmunologyLa JollaCaliforniaUSA
| | - Norma A. Gutierrez
- Center for Autoimmunity and InflammationLa Jolla Institute for ImmunologyLa JollaCaliforniaUSA
| | - Daniel J. Araujo
- Center for Autoimmunity and InflammationLa Jolla Institute for ImmunologyLa JollaCaliforniaUSA
| | - Christine J. Huh
- Center for Autoimmunity and InflammationLa Jolla Institute for ImmunologyLa JollaCaliforniaUSA
| | - Claire E. Olingy
- Center for Autoimmunity and InflammationLa Jolla Institute for ImmunologyLa JollaCaliforniaUSA
| | - Huy Q. Dinh
- Center for Autoimmunity and InflammationLa Jolla Institute for ImmunologyLa JollaCaliforniaUSA
| | - Runpei Wu
- Center for Autoimmunity and InflammationLa Jolla Institute for ImmunologyLa JollaCaliforniaUSA
| | - Pandurangan Vijayanand
- Center for Autoimmunity and InflammationLa Jolla Institute for ImmunologyLa JollaCaliforniaUSA
| | - Serena J. Chee
- Institute of Systems, Molecular and Integrative Biology (ISMIB)University of LiverpoolLiverpoolUK
| | - Christian H. Ottensmeier
- Center for Autoimmunity and InflammationLa Jolla Institute for ImmunologyLa JollaCaliforniaUSA
- Institute of Systems, Molecular and Integrative Biology (ISMIB)University of LiverpoolLiverpoolUK
| | - Catherine C. Hedrick
- Center for Autoimmunity and InflammationLa Jolla Institute for ImmunologyLa JollaCaliforniaUSA
| |
Collapse
|
11
|
Rodriguez AB, Parriott G, Engelhard VH. Tumor necrosis factor receptor regulation of peripheral node addressin biosynthetic components in tumor endothelial cells. Front Immunol 2022; 13:1009306. [PMID: 36189308 PMCID: PMC9520236 DOI: 10.3389/fimmu.2022.1009306] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/26/2022] [Indexed: 11/21/2022] Open
Abstract
Tumor-associated tertiary lymphoid structures are ectopic lymphoid aggregates that have considerable morphological, cellular, and molecular similarity to secondary lymphoid organs, particularly lymph nodes. Tumor vessels expressing peripheral node addressin (PNAd) are hallmark features of these structures. Previous work from our laboratory demonstrated that PNAd is displayed on intratumoral vasculature of murine tumors, and its expression is controlled by the engagement of lymphotoxin-α3, secreted by effector CD8 T cells, with tumor necrosis factor receptors (TNFR) on tumor endothelial cells (TEC). The goals of the present work were: 1) to identify differences in expression of genes encoding the scaffolding proteins and glycosyl transferases associated with PNAd biosynthesis in TEC and lymph node blood endothelial cells (LN BEC); and 2) to determine which of these PNAd associated components are regulated by TNFR signaling. We found that the same genes encoding scaffolding proteins and glycosyl transferases were upregulated in PNAd+ LN BEC and PNAd+ TEC relative to their PNAdneg counterparts. The lower level of PNAd expression on TEC vs LN BEC was associated with relatively lower expression of these genes, particularly the carbohydrate sulfotransferase Chst4. Loss of PNAd on TEC in the absence of TNFR signaling was associated with lack of upregulation of these same genes. A small subset of PNAd+ TEC remaining in the absence of TNFR signaling showed normal upregulation of a subset of these genes, but reduced upregulation of genes encoding the scaffolding proteins podocalyxin and nepmucin, and carbohydrate sulfotransferase Chst2. Lastly, we found that checkpoint immunotherapy augmented both the fraction of TEC expressing PNAd and their surface level of this ligand. This work points to strong similarities in the regulation of PNAd expression on TEC by TNFR signaling and on LN BEC by lymphotoxin-β receptor signaling, and provides a platform for the development of novel strategies that manipulate PNAd expression on tumor vasculature as an element of cancer immunotherapy.
Collapse
Affiliation(s)
| | | | - Victor H. Engelhard
- Carter Immunology Center and Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
- *Correspondence: Victor H. Engelhard,
| |
Collapse
|
12
|
Harnessing Antitumor CD4 + T Cells for Cancer Immunotherapy. Cancers (Basel) 2022; 14:cancers14010260. [PMID: 35008422 PMCID: PMC8750687 DOI: 10.3390/cancers14010260] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/22/2021] [Accepted: 12/31/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Diverse evidence revealed that CD4+ T cells play an important role in antitumor immunity by promoting or suppressing cytotoxic T cell responses. This review outlines the role of CD4+ T subsets within the tumor microenvironment and summarizes the latest progress regarding their potentials in cancer immunotherapy and methods for improving outcomes in cancer strategies by modulating CD4+ T responses. Abstract Over the past decades, CD4+ T cells have been considered as a supporting actor in the fields of cancer immunotherapy. Until recently, accumulating evidence has demonstrated the critical role of CD4+ T cells during antitumor immunity. CD4+ T cells can either suppress or promote the antitumor cytotoxic CD8+ T cell responses, either in secondary lymphoid organs or in the tumor. In this review, we provide an overview of the multifaceted role of different CD4+ T cell subsets in cancer immune response and their contribution during cancer therapies. Specifically, we focus on the latest progress regarding the impact of CD4+ T cell modulation on immunotherapies and other cancer therapies and discuss the prospect for harnessing CD4+ T cells to control tumor progression and prevent recurrence in patients.
Collapse
|
13
|
Development of an immune-related gene pairs index for the prognosis analysis of metastatic melanoma. Sci Rep 2021; 11:1253. [PMID: 33441929 PMCID: PMC7806975 DOI: 10.1038/s41598-020-80858-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/28/2020] [Indexed: 11/09/2022] Open
Abstract
Melanoma is a skin cancer with great metastatic potential, which is responsible for the major deaths in skin cancer. Although the prognosis of melanoma patients has been improved with the comprehensive treatment, for patients with metastasis, the complexity and heterogeneity of diffuse diseases make prognosis prediction and systematic treatment difficult and ineffective. Therefore, we established a novel personalized immune-related gene pairs index (IRGPI) to predict the prognosis of patients with metastatic melanoma, which was conducive to provide new insights into clinical decision-making and prognostic monitoring for metastatic melanoma. Through complex analysis and filtering, we identified 24 immune-related gene pairs to build the model and obtained the optimal cut-off value from receiver operating characteristic curves, which divided the patients into high and low immune-risk groups. Meantime, the Kaplan–Meier analysis, Cox regression analysis and subgroup analysis showed that IRGPI had excellent prognostic value. Furthermore, IRGPI was shown that was closely associated with immune system in the subsequent tumor microenvironment analysis and gene set enrichment analysis. In addition, we broken through the data processing limitations of traditional researches in different platforms through the application of gene pairs, which would provide great credibility for our model. We believe that our research would provide a new perspective for clinical decision-making and prognostic monitoring in metastatic melanoma.
Collapse
|
14
|
The impaired anti-tumoral effect of immune surveillance cells in the immune microenvironment of gastric cancer. Clin Immunol 2020; 219:108551. [DOI: 10.1016/j.clim.2020.108551] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/07/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022]
|
15
|
Karin N. CXCR3 Ligands in Cancer and Autoimmunity, Chemoattraction of Effector T Cells, and Beyond. Front Immunol 2020; 11:976. [PMID: 32547545 PMCID: PMC7274023 DOI: 10.3389/fimmu.2020.00976] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/24/2020] [Indexed: 12/15/2022] Open
Abstract
CXCR3 is a chemokine receptor with three ligands; CXCL9, CXCL10, and CXCL11. CXCL11 binds CXCR3 with a higher affinity than the other ligands leading to receptor internalization. Long ago we reported that one of these chemokines, CXCL10, not only attracts CXCR3+ CD4+ and CD8+ effector T cells to sites of inflammation, but also direct their polarization into highly potent effector T cells. Later we showed that CXCL11 directs the linage development of T-regulatory-1 cells (Tr1). We also observed that CXCL11 and CXCL10 induce different signaling cascades via CXCR3. Collectively this suggests that CXCR3 ligands differentially regulate the biological function of T cells via biased signaling. It is generally accepted that tumor cells evolved to express several chemokine receptors and secrete their ligands. Vast majority of these chemokines support tumor growth by different mechanisms that are discussed. We suggest that CXCL10 and possibly CXCL9 differ from other chemokines by their ability to restrain tumor growth and enhance anti-tumor immunity. Along with this an accumulating number of studies showed in various human cancers a clear association between poor prognosis and low expression of CXCL10 at tumor sites, and vice versa. Finally, we discuss the possibility that CXCL9 and CXCL10 may differ in their biological function via biased signaling and its possible relevance to cancer immunotherapy. The current mini review focuses on exploring the role of CXCR3 ligands in directing the biological properties of CD4+ and CD8+ T cells in the context of cancer and autoimmunity. We believe that the combined role of these chemokines in attracting T cells and also directing their biological properties makes them key drivers of immune function.
Collapse
Affiliation(s)
- Nathan Karin
- Department of Immunology, Faculty of Medicine, Technion- Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
16
|
Pasquier J, Ghiabi P, Chouchane L, Razzouk K, Rafii S, Rafii A. Angiocrine endothelium: from physiology to cancer. J Transl Med 2020; 18:52. [PMID: 32014047 PMCID: PMC6998193 DOI: 10.1186/s12967-020-02244-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/28/2020] [Indexed: 02/08/2023] Open
Abstract
The concept of cancer as a cell-autonomous disease has been challenged by the wealth of knowledge gathered in the past decades on the importance of tumor microenvironment (TM) in cancer progression and metastasis. The significance of endothelial cells (ECs) in this scenario was initially attributed to their role in vasculogenesis and angiogenesis that is critical for tumor initiation and growth. Nevertheless, the identification of endothelial-derived angiocrine factors illustrated an alternative non-angiogenic function of ECs contributing to both physiological and pathological tissue development. Gene expression profiling studies have demonstrated distinctive expression patterns in tumor-associated endothelial cells that imply a bilateral crosstalk between tumor and its endothelium. Recently, some of the molecular determinants of this reciprocal interaction have been identified which are considered as potential targets for developing novel anti-angiocrine therapeutic strategies.
Collapse
Affiliation(s)
- Jennifer Pasquier
- Nice Breast Institute, 57 bld de la Californie, 06000, Nice, France.
- Stem Cell & Microenvironment Laboratory, Weill Cornell Medicine-Qatar, Doha, Qatar.
| | - Pegah Ghiabi
- Stem Cell & Microenvironment Laboratory, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Lotfi Chouchane
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, 10065, USA
- Laboratory of Genetic Medicine and Immunology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Kais Razzouk
- Nice Breast Institute, 57 bld de la Californie, 06000, Nice, France
| | - Shahin Rafii
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Arash Rafii
- Nice Breast Institute, 57 bld de la Californie, 06000, Nice, France
- Stem Cell & Microenvironment Laboratory, Weill Cornell Medicine-Qatar, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| |
Collapse
|
17
|
Paganelli A, Garbarino F, Toto P, Martino GD, D’Urbano M, Auriemma M, Giovanni PD, Panarese F, Staniscia T, Amerio P, Paganelli R. Serological landscape of cytokines in cutaneous melanoma. Cancer Biomark 2019; 26:333-342. [DOI: 10.3233/cbm-190370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Alessia Paganelli
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
| | - Federico Garbarino
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
| | - Paola Toto
- Private practice, Chieti, Italy
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
| | - Giuseppe Di Martino
- Department of Medicine and Aging Sciences, Section of Hygiene, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Marika D’Urbano
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Matteo Auriemma
- Department of Medicine and Aging Sciences, Section of Dermatology, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Pamela Di Giovanni
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Fabrizio Panarese
- Department of Medicine and Aging Sciences, Section of Dermatology, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Tommaso Staniscia
- Department of Medicine and Aging Sciences, Section of Hygiene, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Paolo Amerio
- Department of Medicine and Aging Sciences, Section of Dermatology, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Roberto Paganelli
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| |
Collapse
|
18
|
Fang S, Xu T, Xiong M, Zhou X, Wang Y, Haydu LE, Ross MI, Gershenwald JE, Prieto VG, Cormier JN, Wargo J, Sui D, Wei Q, Amos CI, Lee JE. Role of Immune Response, Inflammation, and Tumor Immune Response-Related Cytokines/Chemokines in Melanoma Progression. J Invest Dermatol 2019; 139:2352-2358.e3. [PMID: 31176707 PMCID: PMC6814532 DOI: 10.1016/j.jid.2019.03.1158] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/07/2019] [Accepted: 03/24/2019] [Indexed: 01/12/2023]
Abstract
To investigate the role of tumor cytokines/chemokines in melanoma immune response, we estimated the proportions of immune cell subsets in melanoma tumors from The Cancer Genome Atlas, followed by evaluation of the association between cytokine/chemokine expression and these subsets. We then investigated the association of immune cell subsets, chemokines, and cytokines with patient survival. Finally, we evaluated the immune cell tumor-infiltrating lymphocyte (TIL) score for correlation with melanoma patient outcome in a separate cohort. There was good agreement between RNA sequencing estimation of T-cell subset and pathologist-determined TIL score. Expression levels of cytokines IL-12A, IFNG, and IL-10, and chemokines CXCL9 and CXCL10 were positively correlated with PDCD1, CTLA-4, and CD8+ T-cell subset, but negatively correlated with tumor purity (Bonferroni-corrected P < 0.05). In multivariable analysis, higher expression levels of cytokines IFN-γ and TGFB1, but not chemokines, were associated with improved overall survival. A higher expression level of CD8+ T-cell subset was also associated with improved overall survival (hazard ratio [HR] = 0.06, 95% confidence interval [CI] = 0.01-0.35, P = 0.002). Finally, multivariable analysis showed that patients with a brisk TIL score had improved melanoma-specific survival than those with a nonbrisk score (HR = 0.51, 95% CI = 0.27-0.98, P = 0.0423). These results suggest that the expression of specific tumor cytokines represents important biomarkers of melanoma immune response.
Collapse
Affiliation(s)
- Shenying Fang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| | - Tao Xu
- Department of Biostatistics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Momiao Xiong
- Department of Biostatistics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Xinke Zhou
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yuling Wang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lauren E Haydu
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Merrick I Ross
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jeffrey E Gershenwald
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Victor G Prieto
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Janice N Cormier
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jennifer Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Dawen Sui
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Qingyi Wei
- Department of Population Health Sciences, Duke University School of Medicine, Durham, North Carolina, USA; Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, USA
| | | | - Jeffrey E Lee
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
19
|
Varypataki EM, Hasler F, Waeckerle-Men Y, Vogel-Kindgen S, Høgset A, Kündig TM, Gander B, Halin C, Johansen P. Combined Photosensitization and Vaccination Enable CD8 T-Cell Immunity and Tumor Suppression Independent of CD4 T-Cell Help. Front Immunol 2019; 10:1548. [PMID: 31333674 PMCID: PMC6624637 DOI: 10.3389/fimmu.2019.01548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 06/21/2019] [Indexed: 12/21/2022] Open
Abstract
Cytotoxic T lymphocytes (CTLs) are key players in fighting cancer, and their induction is a major focus in the design of therapeutic vaccines. Yet, therapeutic vaccine efficacy is limited, in part due to the suboptimal vaccine processing by antigen-presenting cells (APCs). Such processing typically takes place via the MHC class II pathway for CD4 T-cell activation and MHC class I pathway for activation of CD8 CTLs. We show that a combination of skin photochemical treatment and immunization, so-called photochemical internalization (PCI) facilitated CTL activation due to the photochemical adjuvant effect induced by photosensitizer, oxygen, and light. Mice were immunized intradermally with antigen and photosensitizer, followed by controlled light exposure. PCI-treated mice showed strong activation of CD8 T cells, with improved IFN-γ production and cytotoxicity, as compared to mice immunized without parallel PCI treatment. Surprisingly, the CD8 T-cell effector functions were not impaired in MHC class II- or CD4 T-cell-deficient mice. Moreover, PCI-based vaccination caused tumor regression independent of MHC class II or CD4 T cells presence in melanoma bearing mice. Together, the data demonstrate that PCI can act as a powerful adjuvant in cancer vaccines, even in hosts with impaired T-helper functions.
Collapse
Affiliation(s)
| | - Fabio Hasler
- Department of Dermatology, University of Zurich, Zurich, Switzerland
| | | | | | | | - Thomas M Kündig
- Department of Dermatology, University of Zurich, Zurich, Switzerland.,Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Bruno Gander
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Pål Johansen
- Department of Dermatology, University of Zurich, Zurich, Switzerland.,Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Huang L, Chen J, Zhao Y, Gu L, Shao X, Li J, Xu Y, Liu Z, Xu Q. Key candidate genes of STAT1 and CXCL10 in melanoma identified by integrated bioinformatical analysis. IUBMB Life 2019; 71:1634-1644. [PMID: 31216116 DOI: 10.1002/iub.2103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/03/2019] [Indexed: 01/01/2023]
Abstract
The underlying mechanisms and gene signatures of melanoma are unknown. In this study, three expression profile data sets (GSE65568, GSE100050, GSE114445) were integrated to identify candidate genes explaining the pathways and functions of melanoma. Expression data sets including 24 melanoma tumours and 13 normal skin samples were merged and analysed in detail. The three GSE profiles shared 431 differentially expressed genes (DEGs), including 227 upregulated genes, 200 downregulated genes and 4 differentially regulated genes. Moreover, the functions and signalling pathways of the shared DEGs with significant p-values were identified. The two most significant modules were filtered from the DEGs protein-protein interaction (PPI) network, which consisted of 284 nodes. We also plotted the prognostic value of hub genes from an online database. In summary, using integrated bioinformatic analysis, we have identified candidate DEGs and pathways in melanoma that could improve our understanding of the causes and underlying molecular events of melanoma, and these candidate genes and pathways could be therapeutic targets for melanoma.
Collapse
Affiliation(s)
- Lili Huang
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji University Cancer Center, Shanghai, China.,Department of Oncology, Dermatology Hospital, Tongji University, Shanghai, China
| | - Jianhua Chen
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji University Cancer Center, Shanghai, China.,Department of Oncology, Dermatology Hospital, Tongji University, Shanghai, China
| | - Yu Zhao
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji University Cancer Center, Shanghai, China.,Department of Oncology, Dermatology Hospital, Tongji University, Shanghai, China
| | - Linaer Gu
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji University Cancer Center, Shanghai, China.,Department of Oncology, Dermatology Hospital, Tongji University, Shanghai, China
| | - Xiaoyan Shao
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji University Cancer Center, Shanghai, China.,Department of Oncology, Dermatology Hospital, Tongji University, Shanghai, China
| | - Jiyu Li
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu Xu
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhuqing Liu
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji University Cancer Center, Shanghai, China.,Department of Oncology, Dermatology Hospital, Tongji University, Shanghai, China
| | - Qing Xu
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji University Cancer Center, Shanghai, China.,Department of Oncology, Dermatology Hospital, Tongji University, Shanghai, China
| |
Collapse
|
21
|
Yam AO, Chtanova T. The Ins and Outs of Chemokine-Mediated Immune Cell Trafficking in Skin Cancer. Front Immunol 2019; 10:386. [PMID: 30899263 PMCID: PMC6416210 DOI: 10.3389/fimmu.2019.00386] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/14/2019] [Indexed: 12/14/2022] Open
Abstract
Recent studies of the patterns of chemokine-mediated immune cell recruitment into solid tumors have enhanced our understanding of the role played by various immune cell subsets both in amplifying and inhibiting tumor cell growth and spread. Here we discuss how the chemokine/chemokine receptor networks bring together immune cells within the microenvironment of skin tumors, particularly melanomas, including their effect on disease progression, prognosis and therapeutic options.
Collapse
Affiliation(s)
- Andrew O. Yam
- Immunology Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Tatyana Chtanova
- Immunology Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
22
|
Nakata J, Nakajima H, Hayashibara H, Imafuku K, Morimoto S, Fujiki F, Motooka D, Okuzaki D, Hasegawa K, Hosen N, Tsuboi A, Oka Y, Kumanogoh A, Oji Y, Sugiyama H. Extremely strong infiltration of WT1-specific CTLs into mouse tumor by the combination vaccine with WT1-specific CTL and helper peptides. Oncotarget 2018; 9:36029-36038. [PMID: 30542516 PMCID: PMC6267595 DOI: 10.18632/oncotarget.26338] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 11/01/2018] [Indexed: 11/29/2022] Open
Abstract
In immunotherapy by cancer antigen-derived peptide vaccine, vaccination of cytotoxic T lymphocyte (CTL) peptide alone is common, while it remains unclear whether the addition of helper peptide vaccine to the CTL peptide vaccine is of great advantage for the enhancement of tumor immunity. In the present study, combination vaccine of Wilms’ tumor gene 1(WT1) protein-derived CTL and helper peptides induced the strong infiltration of WT1-specific CD8+ T cells into mouse tumor at frequencies of 8.8%, resulting in the formation of multiple microscopic necrotic lesions in the tumor, whereas the frequencies of WT1-specific CD8+ T cell infiltration into the tumor in the vaccination of the CTL peptide alone were only 0.32%. The majority of the infiltrated WT1-specific CD8+ T cells was effector phenotype T cells, but importantly, WT1-specific CD8+CD44+CD62L+CD103+ resident memory T cells, which could differentiate into a lot of effector phenotype T cells, existed in the tumor of mice vaccinated with the both WT1 peptides. Furthermore, T-cell receptor repertoire analysis showed the oligoclonality of these tumor infiltrating WT1 tetramer+ CD8+ T cells, and 3 clones occupied about half of them. These results indicated that WT1-specific CD4+ T cells played an essential role not only in the priming and activation of WT1-specific CD8+ T cells, but also in trafficking and infiltration of the CD8+ T cells into tumors. These results should provide us with the concept that in the clinical setting, combination vaccine of WT1-specific CTL and helper peptides would be more advantageous than the CTL peptide vaccine alone.
Collapse
Affiliation(s)
- Jun Nakata
- Department of Biomedical Informatics, Osaka University Graduate School of Medicine, Suita City, Osaka 565-0871, Japan
| | - Hiroko Nakajima
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka 565-0871, Japan
| | - Hiromu Hayashibara
- Department of Biomedical Informatics, Osaka University Graduate School of Medicine, Suita City, Osaka 565-0871, Japan
| | - Kanako Imafuku
- Department of Biomedical Informatics, Osaka University Graduate School of Medicine, Suita City, Osaka 565-0871, Japan
| | - Soyoko Morimoto
- Department of Cancer Immunotherapy, Osaka University Graduate School of Medicine, Suita City, Osaka 565-0871, Japan
| | - Fumihiro Fujiki
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka 565-0871, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University Graduate School of Medicine, Suita City, Osaka 565-0871, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University Graduate School of Medicine, Suita City, Osaka 565-0871, Japan
| | - Kana Hasegawa
- Department of Cancer Stem Cell Biology, Osaka University Graduate School of Medicine, Suita City, Osaka 565-0871, Japan
| | - Naoki Hosen
- Department of Cancer Stem Cell Biology, Osaka University Graduate School of Medicine, Suita City, Osaka 565-0871, Japan
| | - Akihiro Tsuboi
- Department of Cancer Immunotherapy, Osaka University Graduate School of Medicine, Suita City, Osaka 565-0871, Japan
| | - Yoshihiro Oka
- Department of Cancer Stem Cell Biology, Osaka University Graduate School of Medicine, Suita City, Osaka 565-0871, Japan.,Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka 565-0871, Japan.,Department of Immunopathology, WP1 Immunology Frontier Research Center, Osaka University, Suita City, Osaka 565-0871, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka 565-0871, Japan.,Department of Immunopathology, WP1 Immunology Frontier Research Center, Osaka University, Suita City, Osaka 565-0871, Japan
| | - Yusuke Oji
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Suita City, Osaka 565-0871, Japan
| | - Haruo Sugiyama
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka 565-0871, Japan
| |
Collapse
|
23
|
Kuo PT, Zeng Z, Salim N, Mattarollo S, Wells JW, Leggatt GR. The Role of CXCR3 and Its Chemokine Ligands in Skin Disease and Cancer. Front Med (Lausanne) 2018; 5:271. [PMID: 30320116 PMCID: PMC6167486 DOI: 10.3389/fmed.2018.00271] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/04/2018] [Indexed: 12/20/2022] Open
Abstract
Chemokines and their receptors play an important role in the recruitment, activation and differentiation of immune cells. The chemokine receptor, CXCR3, and its ligands, CXCL9, CXCL10, and CXCL11 are key immune chemoattractants during interferon-induced inflammatory responses. Inflammation of the skin resulting from infections or autoimmune disease drives expression of CXCL9/10/11 and the subsequent recruitment of effector, CXCR3+ T cells from the circulation. The relative contributions of the different CXCR3 chemokines and the three variant isoforms of CXCR3 (CXCR3A, CXCR3B, CXCR3alt) to the inflammatory process in human skin requires further investigation. In skin cancers, the CXCR3 receptor can play a dual role whereby expression on tumor cells can lead to cancer metastasis to systemic sites while receptor expression on immune cells can frequently promote anti-tumor immune responses. This review will discuss the biology of CXCR3 and its associated ligands with particular emphasis on the skin during inflammation and carcinogenesis.
Collapse
Affiliation(s)
- Paula T Kuo
- Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, QLD, Australia
| | - Zhen Zeng
- Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, QLD, Australia
| | - Nazhifah Salim
- Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, QLD, Australia
| | - Stephen Mattarollo
- Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, QLD, Australia
| | - James W Wells
- Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, QLD, Australia
| | - Graham R Leggatt
- Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
24
|
Crisler WJ, Lenz LL. Crosstalk between type I and II interferons in regulation of myeloid cell responses during bacterial infection. Curr Opin Immunol 2018; 54:35-41. [PMID: 29886270 DOI: 10.1016/j.coi.2018.05.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 05/22/2018] [Accepted: 05/22/2018] [Indexed: 12/29/2022]
Abstract
Type I and type II interferons (IFNα/β and IFNγ) are cytokines that play indispensable roles in directing myeloid cell activity during inflammatory and immune responses. Each IFN type binds a distinct receptor (IFNAR or IFNGR) to transduce signals that reshape gene expression and function of myeloid and other cell types. In the context of murine models and human bacterial infections, production of IFNγ generally promotes resistance while production of IFNα/β is associated with increased host susceptibility. Here, we review mechanisms of crosstalk between type I and II IFNs in myeloid cells and their impact on myeloid cell activation and anti-microbial function.
Collapse
Affiliation(s)
- William J Crisler
- Department of Microbiology and Immunology, University of Colorado School of Medicine, Aurora, CO 80045, United States
| | - Laurel L Lenz
- Department of Microbiology and Immunology, University of Colorado School of Medicine, Aurora, CO 80045, United States.
| |
Collapse
|
25
|
The heterogeneity of tumor-infiltrating CD8+ T cells in metastatic melanoma distorts their quantification: how to manage heterogeneity? Melanoma Res 2018; 27:211-217. [PMID: 28118270 DOI: 10.1097/cmr.0000000000000330] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CD8 T-cell infiltration of metastatic melanoma may be a useful biomarker for prediction of prognosis and response to therapy. The heterogeneous distribution of CD8 T cells within a single tumor, and across different tumors within a single patient, may complicate quantification of infiltration. However, the impact of heterogeneity has not been quantified sufficiently. To address this, we have assessed intratumoral heterogeneity of CD8 T-cell counts, as well as intertumoral heterogeneity for synchronous and metachronous metastases. In a tissue microarray containing 189 melanoma metastases from 147 patients, the density of CD8 T cells per sample was determined by immunohistochemistry. The mean density and coefficient of variation were calculated for each tumor and the rates of discordant values were determined. CD8 counts varied widely among different core samples of the same tumors (average coefficient of variation=0.77, 95% confidence interval: 0.70-0.85), with discordance occurring in 40% of tumors. CD8 densities were similar among pairs of simultaneous tumors; however, significant changes in CD8 densities were observed among 35 pairs of metachronous tumors. CD8 T-cell density is not well represented by a single 1 mm diameter sample. Differences in CD8 T-cell counts, observed in clinical trials, from pretreatment to post-treatment specimens may be explained by the spatial and temporal heterogeneity of CD8 distribution, especially if the assessed samples are small (i.e. 1 mm). A sufficiently large biopsy of one of several synchronous tumors may be representative of CD8 T-cell infiltration of a patient's disease.
Collapse
|
26
|
Engelhard VH, Rodriguez AB, Mauldin IS, Woods AN, Peske JD, Slingluff CL. Immune Cell Infiltration and Tertiary Lymphoid Structures as Determinants of Antitumor Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:432-442. [PMID: 29311385 PMCID: PMC5777336 DOI: 10.4049/jimmunol.1701269] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/19/2017] [Indexed: 12/22/2022]
Abstract
Limited representation of intratumoral immune cells is a major barrier to tumor control. However, simply enhancing immune responses in tumor-draining lymph nodes or through adoptive transfer may not overcome the limited ability of tumor vasculature to support effector infiltration. An alternative is to promote a sustained immune response intratumorally. This idea has gained traction with the observation that many tumors are associated with tertiary lymphoid structures (TLS), which organizationally resemble lymph nodes. These peri- and intratumoral structures are usually, but not always, associated with positive prognoses in patients. Preclinical and clinical data support a role for TLS in modulating immunity in the tumor microenvironment. However, there appear to be varied functions of TLS, potentially based on their structure or location in relation to the tumor or the origin or location of the tumor itself. Understanding more about TLS development, composition, and function may offer new therapeutic opportunities to modulate antitumor immunity.
Collapse
Affiliation(s)
- Victor H Engelhard
- Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA 22908;
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908; and
| | - Anthony B Rodriguez
- Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA 22908
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908; and
| | - Ileana S Mauldin
- Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA 22908
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Amber N Woods
- Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA 22908
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908; and
| | - J David Peske
- Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA 22908
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908; and
| | - Craig L Slingluff
- Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA 22908
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, VA 22908
| |
Collapse
|
27
|
Gunassekaran GR, Hong CM, Vadevoo SMP, Chi L, Guruprasath P, Ahn BC, Kim HJ, Kang TH, Lee B. Non-genetic engineering of cytotoxic T cells to target IL-4 receptor enhances tumor homing and therapeutic efficacy against melanoma. Biomaterials 2018; 159:161-173. [PMID: 29329051 DOI: 10.1016/j.biomaterials.2018.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/03/2018] [Accepted: 01/06/2018] [Indexed: 12/21/2022]
Abstract
Adoptive transfer of cytotoxic T lymphocytes (CTLs) has been used as an immunotherapy in melanoma. However, the tumor homing and therapeutic efficacy of transferred CTLs against melanoma remain unsatisfactory. Interleukin-4 receptor (IL-4R) is commonly up-regulated in tumors including melanoma. Here, we studied whether IL-4R-targeted CTLs exhibit enhanced tumor homing and therapeutic efficacy against melanoma. CTLs isolated from mice bearing melanomas were non-genetically engineered with IL4RPep-1, an IL-4R-binding peptide, using a membrane anchor composed of dioleylphosphatidylethanolamine. Compared to control CTLs, IL-4R-targeted CTLs showed higher binding to melanoma cells and in vivo tumor homing. They also exerted a more rapid and robust effector response, including increased cytokine secretion and cytotoxicity against melanoma cells and enhanced reprogramming of M2-type macrophages to M1-type macrophages. Moreover, IL-4R-targeted CTLs efficiently inhibited melanoma growth and reversed the immunosuppressive tumor microenvironment. These results suggest that non-genetically engineered CTLs targeting IL-4R have potential as an adoptive T cell therapy against melanoma.
Collapse
Affiliation(s)
- Gowri Rangaswamy Gunassekaran
- Department of Biochemistry and Cell Biology, Department of Biomedical Science, CMRI, School Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
| | - Chae-Moon Hong
- Department of Nuclear Medicine, School Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
| | - Sri Murugan Poongkavithai Vadevoo
- Department of Biochemistry and Cell Biology, Department of Biomedical Science, CMRI, School Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
| | - Lianhua Chi
- Department of Biochemistry and Cell Biology, Department of Biomedical Science, CMRI, School Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
| | - Padmanaban Guruprasath
- Department of Biochemistry and Cell Biology, Department of Biomedical Science, CMRI, School Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
| | - Byung-Cheol Ahn
- Department of Nuclear Medicine, School Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
| | - Ha-Jeong Kim
- Department of Physiology, School Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
| | - Tae Heung Kang
- Department of Immunology, School of Medicine, Konkuk University, 268 Chungwon-daero, Chungju, Chungcheongbuk-do 27478, Republic of Korea
| | - Byungheon Lee
- Department of Biochemistry and Cell Biology, Department of Biomedical Science, CMRI, School Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea.
| |
Collapse
|
28
|
Yarlagadda K, Hassani J, Foote IP, Markowitz J. The role of nitric oxide in melanoma. Biochim Biophys Acta Rev Cancer 2017; 1868:500-509. [PMID: 28963068 DOI: 10.1016/j.bbcan.2017.09.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 09/24/2017] [Accepted: 09/25/2017] [Indexed: 12/16/2022]
Abstract
Nitric oxide (NO) is a small gaseous signaling molecule that mediates its effects in melanoma through free radical formation and enzymatic processes. Investigations have demonstrated multiple roles for NO in melanoma pathology via immune surveillance, apoptosis, angiogenesis, melanogenesis, and on the melanoma cell itself. In general, elevated levels of NO prognosticate a poor outcome for melanoma patients. However, there are processes where the relative concentration of NO in different environments may also serve to limit melanoma proliferation. This review serves to outline the roles of NO in melanoma development and proliferation. As demonstrated by multiple in vivo murine models and observations from human tissue, NO may promote melanoma formation and proliferation through its interaction via inhibitory immune cells, inhibition of apoptosis, stimulation of pro-tumorigenic cytokines, activation of tumor associated macrophages, alteration of angiogenic processes, and stimulation of melanoma formation itself.
Collapse
Affiliation(s)
- Keerthi Yarlagadda
- Department of Cutaneous Oncology, Moffitt Cancer Center Tampa, FL 33612, United States
| | - John Hassani
- Department of Cutaneous Oncology, Moffitt Cancer Center Tampa, FL 33612, United States
| | - Isaac P Foote
- Department of Cutaneous Oncology, Moffitt Cancer Center Tampa, FL 33612, United States
| | - Joseph Markowitz
- Department of Cutaneous Oncology, Moffitt Cancer Center Tampa, FL 33612, United States.
| |
Collapse
|
29
|
Muramatsu M, Gao L, Peresie J, Balderman B, Akakura S, Gelman IH. SSeCKS/AKAP12 scaffolding functions suppress B16F10-induced peritoneal metastasis by attenuating CXCL9/10 secretion by resident fibroblasts. Oncotarget 2017; 8:70281-70298. [PMID: 29050279 PMCID: PMC5642554 DOI: 10.18632/oncotarget.20092] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 07/26/2017] [Indexed: 12/11/2022] Open
Abstract
SSeCKS/Gravin/AKAP12 (SSeCKS) is a kinase scaffolding protein known to suppress metastasis by attenuating tumor-intrinsic PKC- and Src-mediated signaling pathways [1]. In addition to downregulation in metastatic cells, in silico analyses identified SSeCKS downregulation in prostate or breast cancer-derived stroma, suggesting a microenvironmental cell role in controlling malignancy. Although orthotopic B16F10 and SM1WT1[BrafV600E] mouse melanoma tumors grew similarly in syngeneic WT or SSeCKS-null (KO) mice, KO hosts exhibited 5- to 10-fold higher levels of peritoneal metastasis, and this enhancement could be adoptively transferred by pre-injecting naïve WT mice with peritoneal fluid (PF), but not non-adherent peritoneal cells (PC), from naïve KO mice. B16F10 and SM1WT1 cells showed increased chemotaxis to KO-PF compared to WT-PF, corresponding to increased PF levels of multiple inflammatory mediators, including the Cxcr3 ligands, Cxcl9 and 10. Cxcr3 knockdown abrogated enhanced chemotaxis to KO-PF and peritoneal metastasis in KO hosts. Conditioned media from KO peritoneal membrane fibroblasts (PMF), but not from KO-PC, induced increased B16F10 chemotaxis over controls, which could be blocked with Cxcl10 neutralizing antibody. KO-PMF exhibited increased levels of the senescence markers, SA-β-galactosidase, p21waf1 and p16ink4a, and enhanced Cxcl10 secretion induced by inflammatory mediators, lipopolysaccharide, TNFα, IFNα and IFNγ. SSeCKS scaffolding-site mutants and small molecule kinase inhibitors were used to show that the loss of SSeCKS-regulated PKC, PKA and PI3K/Akt pathways are responsible for the enhanced Cxcl10 secretion. These data mark the first description of a role for stromal SSeCKS/AKAP12 in suppressing metastasis, specifically by attenuating signaling pathways that promote secretion of tumor chemoattractants in the peritoneum.
Collapse
Affiliation(s)
- Masashi Muramatsu
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan
| | - Lingqiu Gao
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo 14263, NY, USA
| | - Jennifer Peresie
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo 14263, NY, USA
| | - Benjamin Balderman
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo 14263, NY, USA
| | - Shin Akakura
- Frontiers in Bioscience Research Institute in Aging and Cancer, Irvine 92618, CA, USA
| | - Irwin H Gelman
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo 14263, NY, USA
| |
Collapse
|
30
|
Melssen M, Slingluff CL. Vaccines targeting helper T cells for cancer immunotherapy. Curr Opin Immunol 2017; 47:85-92. [PMID: 28755541 PMCID: PMC5757837 DOI: 10.1016/j.coi.2017.07.004] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/05/2017] [Indexed: 12/21/2022]
Abstract
There are compelling arguments for designing cancer vaccines specifically to induce CD4+ helper T cell responses. Recent studies highlight the crucial role of proliferating, activated effector memory Th1 CD4+ T cells in effective antitumor immunity and reveal that CD4+ T cells induce more durable immune-mediated tumor control than CD8+ T cells. CD4+ T cells promote antitumor immunity by numerous mechanisms including enhancing antigen presentation, co-stimulation, T cell homing, T cell activation, and effector function. These effects are mediated at sites of T cell priming and at the tumor microenvironment. Several cancer vaccine approaches induce durable CD4+ T cell responses and have promising clinical activity. Future work should further optimize vaccine adjuvants and combination therapies incorporating helper peptide vaccines.
Collapse
Affiliation(s)
- Marit Melssen
- University of Virginia, Department of Surgery and University of Virginia Cancer Center, PO Box 800709, Charlottesville, VA, USA
| | - Craig L Slingluff
- University of Virginia, Department of Surgery and University of Virginia Cancer Center, PO Box 800709, Charlottesville, VA, USA.
| |
Collapse
|
31
|
Fujii K, Miyahara Y, Harada N, Muraoka D, Komura M, Yamaguchi R, Yagita H, Nakamura J, Sugino S, Okumura S, Imoto S, Miyano S, Shiku H. Identification of an immunogenic neo-epitope encoded by mouse sarcoma using CXCR3 ligand mRNAs as sensors. Oncoimmunology 2017. [PMID: 28638727 PMCID: PMC5467990 DOI: 10.1080/2162402x.2017.1306617] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The CXCR3 ligands CXCL9, 10, and 11 play critical roles in the amplification of immune responses by recruiting CXCR3+ immune effector cells to the tumor site. Taking advantage of this property of CXCR3 ligands, we aimed to establish a novel approach to identify immunogenic mutated-antigens. We examined the feasibility of using CXCR3 ligand mRNAs as sensors for detection of specific immune responses in human and murine systems. We further investigated whether this approach is applicable for the identification of immunogenic mutated-antigens by using murine sarcoma lines. Rapid synthesis of CXCR3 ligand mRNAs occurred shortly after specific immune responses in both human and murine immune systems. Particularly, in CMS5 tumor-bearing mice, we detected specific immune responses to mutated mitogen-activated protein kinase 2 (ERK2), which has previously been identified as an immunogenic mutated-antigen. Furthermore, by combining this approach with whole-exome and transcriptome sequencing analyses, we identified an immunogenic neo-epitope derived from mutated staphylococcal nuclease domain-containing protein 1 (Snd1) in CMS7 tumor-bearing mice. Most importantly, we successfully detected the specific immune response to this neo-epitope even without co-administration of anti-cytotoxic T-lymphocyte protein-4 (CTLA-4), anti-programmed cell death-1 (PD-1) and anti-glucocorticoid-induced TNFR-related protein (GITR) antibodies, which vigorously augmented the immune response and consequently enabled us to detect the specific immune response to this neo-epitope by conventional IFNγ intracellular staining method. Our data indicate the potential usefulness of this strategy for the identification of immunogenic mutated-antigens. We propose that this approach would be of great help for the development of personalized cancer vaccine therapies in future.
Collapse
Affiliation(s)
- Keisuke Fujii
- Department of Immuno-Gene Therapy, Graduate School of Medicine, Mie University, Mie, Japan
| | - Yoshihiro Miyahara
- Department of Immuno-Gene Therapy, Graduate School of Medicine, Mie University, Mie, Japan
| | - Naozumi Harada
- Department of Immuno-Gene Therapy, Graduate School of Medicine, Mie University, Mie, Japan
| | - Daisuke Muraoka
- Department of Immuno-Gene Therapy, Graduate School of Medicine, Mie University, Mie, Japan.,Center for Drug Discovery, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Mitsuhiro Komura
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Rui Yamaguchi
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Junko Nakamura
- Department of Immuno-Gene Therapy, Graduate School of Medicine, Mie University, Mie, Japan
| | - Sahoko Sugino
- Department of Immuno-Gene Therapy, Graduate School of Medicine, Mie University, Mie, Japan
| | - Satoshi Okumura
- Department of Immuno-Gene Therapy, Graduate School of Medicine, Mie University, Mie, Japan
| | - Seiya Imoto
- Division of Health Medical Data Science, Health Intelligence Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Satoru Miyano
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Hiroshi Shiku
- Department of Immuno-Gene Therapy, Graduate School of Medicine, Mie University, Mie, Japan
| |
Collapse
|
32
|
Melzer MK, Lopez-Martinez A, Altomonte J. Oncolytic Vesicular Stomatitis Virus as a Viro-Immunotherapy: Defeating Cancer with a "Hammer" and "Anvil". Biomedicines 2017; 5:E8. [PMID: 28536351 PMCID: PMC5423493 DOI: 10.3390/biomedicines5010008] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/26/2017] [Accepted: 02/03/2017] [Indexed: 12/17/2022] Open
Abstract
Oncolytic viruses have gained much attention in recent years, due, not only to their ability to selectively replicate in and lyse tumor cells, but to their potential to stimulate antitumor immune responses directed against the tumor. Vesicular stomatitis virus (VSV), a negative-strand RNA virus, is under intense development as an oncolytic virus due to a variety of favorable properties, including its rapid replication kinetics, inherent tumor specificity, and its potential to elicit a broad range of immunomodulatory responses to break immune tolerance in the tumor microenvironment. Based on this powerful platform, a multitude of strategies have been applied to further improve the immune-stimulating potential of VSV and synergize these responses with the direct oncolytic effect. These strategies include: 1. modification of endogenous virus genes to stimulate interferon induction; 2. virus-mediated expression of cytokines or immune-stimulatory molecules to enhance anti-tumor immune responses; 3. vaccination approaches to stimulate adaptive immune responses against a tumor antigen; 4. combination with adoptive immune cell therapy for potentially synergistic therapeutic responses. A summary of these approaches will be presented in this review.
Collapse
Affiliation(s)
- Michael Karl Melzer
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany.
| | - Arturo Lopez-Martinez
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany.
| | - Jennifer Altomonte
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany.
| |
Collapse
|
33
|
Klarquist J, Tobin K, Farhangi Oskuei P, Henning SW, Fernandez MF, Dellacecca ER, Navarro FC, Eby JM, Chatterjee S, Mehrotra S, Clark JI, Le Poole IC. Ccl22 Diverts T Regulatory Cells and Controls the Growth of Melanoma. Cancer Res 2016; 76:6230-6240. [PMID: 27634754 DOI: 10.1158/0008-5472.can-16-0618] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 08/30/2016] [Indexed: 11/16/2022]
Abstract
T regulatory cells (Treg) avert autoimmunity, but their increased levels in melanoma confer a poor prognosis. To explore the basis for Treg accumulation in melanoma, we evaluated chemokine expression in patients. A 5-fold increase was documented in the Treg chemoattractants CCL22 and CCL1 in melanoma-affected skin versus unaffected skin, as accompanied by infiltrating FoxP3+ T cells. In parallel, there was an approximately two-fold enhancement in expression of CCR4 in circulating Treg but not T effector cells. We hypothesized that redirecting Treg away from tumors might suppress autoimmune side effects caused by immune checkpoint therapeutics now used widely in the clinic. In assessing this hypothesis, we observed a marked increase in skin Treg in mice vaccinated with Ccl22, with repetitive vaccination sufficient to limit Treg accumulation and melanoma growth in the lungs of animals challenged by tumor cell injection, whether using a prevention or treatment protocol design. The observed change in Treg accumulation in this setting could not be explained by Treg conversion. Overall, our findings offered a preclinical proof of concept for the potential use of CCL22 delivered by local injection as a strategy to enhance the efficacious response to immune checkpoint therapy while suppressing its autoimmune side effects. Cancer Res; 76(21); 6230-40. ©2016 AACR.
Collapse
Affiliation(s)
- Jared Klarquist
- Oncology Research Institute, Loyola University Chicago, Maywood, Illinois
| | - Kristen Tobin
- Department of Medicine, Loyola University Chicago, Maywood, Illinois
| | | | - Steven W Henning
- Oncology Research Institute, Loyola University Chicago, Maywood, Illinois
| | - Manuel F Fernandez
- Oncology Research Institute, Loyola University Chicago, Maywood, Illinois
| | | | - Flor C Navarro
- Oncology Research Institute, Loyola University Chicago, Maywood, Illinois
| | - Jonathan M Eby
- Oncology Research Institute, Loyola University Chicago, Maywood, Illinois
| | - Shilpak Chatterjee
- Department of Surgery/Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| | - Shikhar Mehrotra
- Department of Surgery/Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| | - Joseph I Clark
- Oncology Research Institute, Loyola University Chicago, Maywood, Illinois.,Department of Medicine, Loyola University Chicago, Maywood, Illinois
| | - I Caroline Le Poole
- Oncology Research Institute, Loyola University Chicago, Maywood, Illinois. .,Departments of Pathology, Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois
| |
Collapse
|
34
|
Intratumoral interferon-gamma increases chemokine production but fails to increase T cell infiltration of human melanoma metastases. Cancer Immunol Immunother 2016; 65:1189-99. [PMID: 27522581 DOI: 10.1007/s00262-016-1881-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/11/2016] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Optimal approaches to induce T cell infiltration of tumors are not known. Chemokines CXCL9, CXCL10, and CXCL11 support effector T cell recruitment and may be induced by IFN. This study tests the hypothesis that intratumoral administration of IFNγ will induce CXCL9-11 and will induce T cell recruitment and anti-tumor immune signatures in melanoma metastases. PATIENTS AND METHODS Nine eligible patients were immunized with a vaccine comprised of 12 class I MHC-restricted melanoma peptides and received IFNγ intratumorally. Effects on the tumor microenvironment were evaluated in sequential tumor biopsies. Adverse events (AEs) were recorded. T cell responses to vaccination were assessed in PBMC by IFNγ ELISPOT assay. Tumor biopsies were evaluated for immune cell infiltration, chemokine protein expression, and gene expression. RESULTS Vaccination and intratumoral administration of IFNγ were well tolerated. Circulating T cell responses to vaccine were detected in six of nine patients. IFNγ increased production of chemokines CXCL10, CXCL11, and CCL5 in patient tumors. Neither vaccination alone, nor the addition of IFNγ promoted immune cell infiltration or induced anti-tumor immune gene signatures. CONCLUSION The melanoma vaccine induced circulating T cell responses, but it failed to infiltrate metastases, thus highlighting the need for combination strategies to support T cell infiltration. A single intratumoral injection of IFNγ induced T cell-attracting chemokines; however, it also induced secondary immune regulation that may paradoxically limit immune infiltration and effector functions. Alternate dosing strategies or additional combinatorial treatments may be needed to promote trafficking and retention of tumor-reactive T cells in melanoma metastases.
Collapse
|
35
|
Chheda ZS, Sharma RK, Jala VR, Luster AD, Haribabu B. Chemoattractant Receptors BLT1 and CXCR3 Regulate Antitumor Immunity by Facilitating CD8+ T Cell Migration into Tumors. THE JOURNAL OF IMMUNOLOGY 2016; 197:2016-26. [PMID: 27465528 DOI: 10.4049/jimmunol.1502376] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 06/26/2016] [Indexed: 12/29/2022]
Abstract
Immunotherapies have shown considerable efficacy for the treatment of various cancers, but a multitude of patients remain unresponsive for various reasons, including poor homing of T cells into tumors. In this study, we investigated the roles of the leukotriene B4 receptor, BLT1, and CXCR3, the receptor for CXCL9, CXCL10, and CXCL11, under endogenous as well as vaccine-induced antitumor immune response in a syngeneic murine model of B16 melanoma. Significant accelerations in tumor growth and reduced survival were observed in both BLT1(-/-) and CXCR3(-/-) mice as compared with wild-type (WT) mice. Analysis of tumor-infiltrating leukocytes revealed significant reduction of CD8(+) T cells in the tumors of BLT1(-/-) and CXCR3(-/-) mice as compared with WT tumors, despite their similar frequencies in the periphery. Adoptive transfer of WT but not BLT1(-/-) or CXCR3(-/-) CTLs significantly reduced tumor growth in Rag2(-/-) mice, a function attributed to reduced infiltration of knockout CTLs into tumors. Cotransfer experiments suggested that WT CTLs do not facilitate the infiltration of knockout CTLs to tumors. Anti-programmed cell death-1 (PD-1) treatment reduced the tumor growth rate in WT mice but not in BLT1(-/-), CXCR3(-/-), or BLT1(-/-)CXCR3(-/-) mice. The loss of efficacy correlated with failure of the knockout CTLs to infiltrate into tumors upon anti-PD-1 treatment, suggesting an obligate requirement for both BLT1 and CXCR3 in mediating anti-PD-1 based antitumor immune response. These results demonstrate a critical role for both BLT1 and CXCR3 in CTL migration to tumors and thus may be targeted to enhance efficacy of CTL-based immunotherapies.
Collapse
Affiliation(s)
- Zinal S Chheda
- James Graham Brown Cancer Center, University of Louisville Health Sciences, Louisville, KY 40202; Department of Microbiology and Immunology, University of Louisville Health Sciences, Louisville, KY 40202
| | - Rajesh K Sharma
- James Graham Brown Cancer Center, University of Louisville Health Sciences, Louisville, KY 40202; Division of Medical Oncology, Department of Medicine, University of Louisville Health Sciences, Louisville, KY 40202; and
| | - Venkatakrishna R Jala
- James Graham Brown Cancer Center, University of Louisville Health Sciences, Louisville, KY 40202; Department of Microbiology and Immunology, University of Louisville Health Sciences, Louisville, KY 40202
| | - Andrew D Luster
- Division of Rheumatology, Allergy and Immunology, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02139
| | - Bodduluri Haribabu
- James Graham Brown Cancer Center, University of Louisville Health Sciences, Louisville, KY 40202; Department of Microbiology and Immunology, University of Louisville Health Sciences, Louisville, KY 40202;
| |
Collapse
|
36
|
Jacquelot N, Enot DP, Flament C, Vimond N, Blattner C, Pitt JM, Yamazaki T, Roberti MP, Daillère R, Vétizou M, Poirier-Colame V, Semeraro M, Caignard A, Slingluff CL, Sallusto F, Rusakiewicz S, Weide B, Marabelle A, Kohrt H, Dalle S, Cavalcanti A, Kroemer G, Di Giacomo AM, Maio M, Wong P, Yuan J, Wolchok J, Umansky V, Eggermont A, Zitvogel L. Chemokine receptor patterns in lymphocytes mirror metastatic spreading in melanoma. J Clin Invest 2016; 126:921-37. [PMID: 26854930 DOI: 10.1172/jci80071] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 12/17/2015] [Indexed: 01/01/2023] Open
Abstract
Melanoma prognosis is dictated by tumor-infiltrating lymphocytes, the migratory and functional behavior of which is guided by chemokine or cytokine gradients. Here, we retrospectively analyzed the expression patterns of 9 homing receptors (CCR/CXCR) in naive and memory CD4+ and CD8+ T lymphocytes in 57 patients with metastatic melanoma (MMel) with various sites of metastases to evaluate whether T cell CCR/CXCR expression correlates with intratumoral accumulation, metastatic progression, and/or overall survival (OS). Homing receptor expression on lymphocytes strongly correlated with MMel dissemination. Loss of CCR6 or CXCR3, but not cutaneous lymphocyte antigen (CLA), on circulating T cell subsets was associated with skin or lymph node metastases, loss of CXCR4, CXCR5, and CCR9 corresponded with lung involvement, and a rise in CCR10 or CD103 was associated with widespread dissemination. High frequencies of CD8+CCR9+ naive T cells correlated with prolonged OS, while neutralizing the CCR9/CCL25 axis in mice stimulated tumor progression. The expansion of CLA-expressing effector memory CD8+ T cells in response to a single administration of CTLA4 blockade predicted disease control at 3 months in 47 patients with MMel. Thus, specific CCR/CXCR expression patterns on circulating T lymphocytes may guide potential diagnostic and therapeutic approaches.
Collapse
|
37
|
Cancer immunotherapy: Strategies for personalization and combinatorial approaches. Mol Oncol 2015; 9:2043-53. [PMID: 26548534 DOI: 10.1016/j.molonc.2015.10.009] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 10/09/2015] [Accepted: 10/12/2015] [Indexed: 12/30/2022] Open
Abstract
The results of recent clinical trials using novel immunotherapy strategies such as immune checkpoint blockade and adoptive T-cell therapy approaches including CAR T-cell therapy have clearly established immunotherapy as an important modality for the treatment of cancer besides the traditional approaches of surgery, radiotherapy, and chemotherapy or targeted therapy. However, to date immunotherapy has been shown to induce durable clinical benefit in only a fraction of the patients. The use of combination strategies is likely to increase the number of patients that might benefit from immunotherapy. Indeed, over the last decade, the characterization of multiple immune resistance mechanisms used by the tumor to evade the immune system and the development of agents that target those mechanisms has generated a lot of enthusiasm for cancer immunotherapy. But a critical issue is to determine how best to combine such agents. This review will focus on novel immunotherapy agents currently in development and discuss strategies to develop and personalize combination cancer immunotherapy strategies.
Collapse
|
38
|
Leignadier J, Favre S, Luther SA, Luescher IF. CD8 engineered cytotoxic T cells reprogram melanoma tumor environment. Oncoimmunology 2015; 5:e1086861. [PMID: 27141342 DOI: 10.1080/2162402x.2015.1086861] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/18/2015] [Accepted: 08/20/2015] [Indexed: 10/23/2022] Open
Abstract
Cytotoxic T lymphocytes (CTL) from CD8β-deficient mice have powerful FasL-mediated cytotoxicity and IFNγ responses, but ablated Ca2+ and NFAT signaling, which can be restored by transduction with CD8β. Upon infection with lymphocytic choriomeningitis virus (LCMV), these cells yielded GP33-specific CTL (CD8βR) that exhibited high FasL/Fas-mediated cytotoxicity, IFNγ CXCL9 and 10 chemokine responses. Transfer of these cells in B16-GP33 tumor bearing mice resulted in (i) massive T cell tumor infiltration, (ii) strong reduction of myeloid-derived suppressor cells (MDSCs), regulatory T cells (Treg) and IL-17-expressing T helper cells, (iii) maturation of tumor-associated antigen-presenting cells and (iv) production of endogenous, B16 melanoma-specific CTL that eradicated the tumor long after the transferred CD8βR CTL perished. Our study demonstrates that the synergistic combination of strong Fas/FasL mediated cytotoxicity, IFNγ and CXCL9 and 10 responses endows adoptively transferred CTL to reprogram the tumor environment and to thus enable the generation of endogenous, tumoricidal immunity.
Collapse
Affiliation(s)
- Julie Leignadier
- Ludwig Center for Cancer Research, University of Lausanne , Epalinges, Switzerland
| | - Stephanie Favre
- Department of Biochemistry, University of Lausanne , Epalinges, Switzerland
| | - Sanjiv A Luther
- Department of Biochemistry, University of Lausanne , Epalinges, Switzerland
| | - Immanuel F Luescher
- Ludwig Center for Cancer Research, University of Lausanne , Epalinges, Switzerland
| |
Collapse
|
39
|
Tumor-suppressive effects of natural-type interferon-β through CXCL10 in melanoma. Biochem Biophys Res Commun 2015; 464:416-21. [DOI: 10.1016/j.bbrc.2015.06.122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 06/18/2015] [Indexed: 11/19/2022]
|
40
|
Clancy-Thompson E, Perekslis TJ, Croteau W, Alexander MP, Chabanet TB, Turk MJ, Huang YH, Mullins DW. Melanoma Induces, and Adenosine Suppresses, CXCR3-Cognate Chemokine Production and T-cell Infiltration of Lungs Bearing Metastatic-like Disease. Cancer Immunol Res 2015; 3:956-67. [PMID: 26048575 DOI: 10.1158/2326-6066.cir-15-0015] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 05/27/2015] [Indexed: 11/16/2022]
Abstract
Despite immunogenicity, melanoma-specific vaccines have demonstrated minimal clinical efficacy in patients with established disease but enhanced survival when administered in the adjuvant setting. Therefore, we hypothesized that organs bearing metastatic-like melanoma may differentially produce T-cell chemotactic proteins over the course of tumor development. Using an established model of metastatic-like melanoma in lungs, we assessed the production of specific cytokines and chemokines over a time course of tumor growth, and we correlated chemokine production with chemokine receptor-specific T-cell infiltration. We observed that the interferon (IFN)-inducible CXCR3-cognate chemokines (CXCL9 and CXCL10) were significantly increased in lungs bearing minimal metastatic lesions, but chemokine production was at or below basal levels in lungs with substantial disease. Chemokine production was correlated with infiltration of the organ compartment by adoptively transferred CD8(+) tumor antigen-specific T cells in a CXCR3- and host IFNγ-dependent manner. Adenosine signaling in the tumor microenvironment (TME) suppressed chemokine production and T-cell infiltration in the advanced metastatic lesions, and this suppression could be partially reversed by administration of the adenosine receptor antagonist aminophylline. Collectively, our data demonstrate that CXCR3-cognate ligand expression is required for efficient T-cell access of tumor-infiltrated lungs, and these ligands are expressed in a temporally restricted pattern that is governed, in part, by adenosine. Therefore, pharmacologic modulation of adenosine activity in the TME could impart therapeutic efficacy to immunogenic but clinically ineffective vaccine platforms.
Collapse
Affiliation(s)
- Eleanor Clancy-Thompson
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire. Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Thomas J Perekslis
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire. Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Walburga Croteau
- Department of Pathology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Matthew P Alexander
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire. Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Tamer B Chabanet
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire. Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Mary Jo Turk
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire. Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Yina H Huang
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire. Department of Pathology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - David W Mullins
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire. Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire.
| |
Collapse
|
41
|
Wightman SC, Uppal A, Pitroda SP, Ganai S, Burnette B, Stack M, Oshima G, Khan S, Huang X, Posner MC, Weichselbaum RR, Khodarev NN. Oncogenic CXCL10 signalling drives metastasis development and poor clinical outcome. Br J Cancer 2015; 113:327-35. [PMID: 26042934 PMCID: PMC4506383 DOI: 10.1038/bjc.2015.193] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 04/30/2015] [Accepted: 05/06/2015] [Indexed: 01/01/2023] Open
Abstract
Background: The CXCL10/CXCR3 signalling mediates paracrine interactions between tumour and stromal cells that govern leukocyte trafficking and angiogenesis. Emerging data implicate noncanonical CXCL10/CXCR3 signalling in tumourigenesis and metastasis. However, little is known regarding the role for autocrine CXCL10/CXCR3 signalling in regulating the metastatic potential of individual tumour clones. Methods: We performed transcriptomic and cytokine profiling to characterise the functions of CXCL10 and CXCR3 in tumour cells with different metastatic abilities. We modulated the expression of the CXCL10/CXCR3 pathway using shRNA-mediated silencing in both in vitro and in vivo models of B16F1 melanoma. In addition, we examined the expression of CXCL10 and CXCR3 and their associations with clinical outcomes in clinical data sets derived from over 670 patients with melanoma and colon and renal cell carcinomas. Results: We identified a critical role for autocrine CXCL10/CXCR3 signalling in promoting tumour cell growth, motility and metastasis. Analysis of publicly available clinical data sets demonstrated that coexpression of CXCL10 and CXCR3 predicted an increased metastatic potential and was associated with early metastatic disease progression and poor overall survival. Conclusion: These findings support the potential for CXCL10/CXCR3 coexpression as a predictor of metastatic recurrence and point towards a role for targeting of this oncogenic axis in the treatment of metastatic disease.
Collapse
Affiliation(s)
- S C Wightman
- Department of Surgery, University of Chicago, Chicago, IL 60637, USA
| | - A Uppal
- Department of Surgery, University of Chicago, Chicago, IL 60637, USA
| | - S P Pitroda
- 1] Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637, USA [2] Ludwig Center for Metastasis Research, University of Chicago, 5841 South Maryland Avenue, MC 9006, Chicago, IL 60637, USA
| | - S Ganai
- Department of Surgery, University of Chicago, Chicago, IL 60637, USA
| | - B Burnette
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637, USA
| | - M Stack
- Department of Surgery, University of Chicago, Chicago, IL 60637, USA
| | - G Oshima
- Department of Surgery, University of Chicago, Chicago, IL 60637, USA
| | - S Khan
- Department of Surgery, University of Chicago, Chicago, IL 60637, USA
| | - X Huang
- 1] Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637, USA [2] Ludwig Center for Metastasis Research, University of Chicago, 5841 South Maryland Avenue, MC 9006, Chicago, IL 60637, USA
| | - M C Posner
- 1] Department of Surgery, University of Chicago, Chicago, IL 60637, USA [2] Ludwig Center for Metastasis Research, University of Chicago, 5841 South Maryland Avenue, MC 9006, Chicago, IL 60637, USA
| | - R R Weichselbaum
- 1] Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637, USA [2] Ludwig Center for Metastasis Research, University of Chicago, 5841 South Maryland Avenue, MC 9006, Chicago, IL 60637, USA
| | - N N Khodarev
- 1] Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637, USA [2] Ludwig Center for Metastasis Research, University of Chicago, 5841 South Maryland Avenue, MC 9006, Chicago, IL 60637, USA
| |
Collapse
|
42
|
Mauldin IS, Wang E, Deacon DH, Olson WC, Bao Y, Slingluff CL. TLR2/6 agonists and interferon-gamma induce human melanoma cells to produce CXCL10. Int J Cancer 2015; 137:1386-96. [PMID: 25765738 DOI: 10.1002/ijc.29515] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 02/02/2015] [Accepted: 03/04/2015] [Indexed: 01/25/2023]
Abstract
Clinical approaches to treat advanced melanoma include immune therapies, whose benefits depend on tumor-reactive T-cell infiltration of metastases. However, most tumors lack significant immune infiltration prior to therapy. Selected chemokines promote T-cell migration into tumors; thus, agents that induce these chemokines in the tumor microenvironment (TME) may improve responses to systemic immune therapy. CXCL10 has been implicated as a critical chemokine supporting T-cell infiltration into the TME. Here, we show that toll-like receptor (TLR) agonists can induce chemokine production directly from melanoma cells when combined with IFNγ treatment. We find that TLR2 and TLR6 are widely expressed on human melanoma cells, and that TLR2/6 agonists (MALP-2 or FSL-1) synergize with interferon-gamma (IFNγ) to induce production of CXCL10 from melanoma cells. Furthermore, melanoma cells and immune cells from surgical specimens also respond to TLR2/6 agonists and IFNγ by upregulating CXCL10 production, compared to treatment with either agent alone. Collectively, these data identify a novel mechanism for inducing CXCL10 production directly from melanoma cells, with TLR2/6 agonists +IFNγ and raise the possibility that intratumoral administration of these agents may improve immune signatures in melanoma and have value in combination with other immune therapies, by supporting T-cell migration into melanoma metastases.
Collapse
Affiliation(s)
- Ileana S Mauldin
- Department of Surgery, University of Virginia, Charlottesville, VA
| | - Ena Wang
- Department of Transfusion Medicine, National Institutes of Health, Bethesda, MD
| | - Donna H Deacon
- Department of Surgery, University of Virginia, Charlottesville, VA
| | - Walter C Olson
- Department of Surgery, University of Virginia, Charlottesville, VA
| | - Yongde Bao
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA
| | | |
Collapse
|
43
|
Gorbachev AV, Fairchild RL. Regulation of chemokine expression in the tumor microenvironment. Crit Rev Immunol 2015; 34:103-20. [PMID: 24940911 DOI: 10.1615/critrevimmunol.2014010062] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Chemokines are chemotactic cytokines critical for homeostatic and inflammation-induced trafficking of leukocytes during immune responses, hematopoesis, wound healing, and tumorigenesis. Despite three decades of intensive study of the chemokine network, the molecular mechanisms regulating chemokine expression during tumor growth are not well understood. In this review, we focus on the role of chemokines in both tumor growth and anti-tumor immune responses and on molecular mechanisms employed by tumor cells to regulate chemokine expression in the tumor microenvironment. Multiple mechanisms used by tumors to regulate chemokine production, including those revealed by very recent studies (such as DNA methylation or post-translational nitrosylation of chemokines) are discussed. Concluding the review, we discuss how understanding of these regulatory mechanisms can be used in cancer therapy to suppress tumor growth and/or to promote immune-mediated eradication of tumors.
Collapse
Affiliation(s)
| | - Robert L Fairchild
- Department of Immunology and Urological Institute, Cleveland Clinic Foundation, Cleveland, OH 44195 and Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| |
Collapse
|
44
|
Clancy-Thompson E, King LK, Nunnley LD, Mullins IM, Slingluff CL, Mullins DW. Peptide vaccination in Montanide adjuvant induces and GM-CSF increases CXCR3 and cutaneous lymphocyte antigen expression by tumor antigen-specific CD8 T cells. Cancer Immunol Res 2015; 1:332-9. [PMID: 24377099 DOI: 10.1158/2326-6066.cir-13-0084] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
T cell infiltration of melanoma is associated with enhanced clinical efficacy and is a desirable endpoint of immunotherapeutic vaccination. Infiltration is regulated, in part, by chemokine receptors and selectin ligands on the surface of tumor-specific lymphocytes. Therefore, we investigated the expression of two homing molecules--CXCR3 and CLA - on vaccine-induced CD8 T cells, in the context of a clinical trial of a melanoma-specific peptide vaccine. Both CXCR3 and CLA have been associated with T cell infiltration of melanoma. We demonstrate that a single subcutaneous/intradermal administration of peptide vaccine in Montanide adjuvant induces tumor-specific CD8 T cells that are predominantly positive for CXCR3, with a subpopulation of CXCR3(+)CLA(+) cells. Addition of GM-CSF significantly enhances CXCR3 expression and increases the proportion of CLA-expressing cells. Concurrent with CXCR3 and CLA expression, vaccine-induced CD8 cells express high levels of Tbet, IFN-γ, and IL-12Rβ1. Collectively, these studies demonstrate that peptide vaccination in adjuvant induces CD8 T cells with a phenotype that may support infiltration of melanoma.
Collapse
Affiliation(s)
- Eleanor Clancy-Thompson
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756 ; Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - Laura K King
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Lenora D Nunnley
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Irene M Mullins
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - Craig L Slingluff
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - David W Mullins
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756 ; Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| |
Collapse
|
45
|
Sharma RK, Chheda ZS, Jala VR, Haribabu B. Regulation of cytotoxic T-Lymphocyte trafficking to tumors by chemoattractants: implications for immunotherapy. Expert Rev Vaccines 2014; 14:537-49. [PMID: 25482400 DOI: 10.1586/14760584.2015.982101] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cancer immunotherapy has recently emerged as an important treatment modality. FDA approval of provenge, ipilimumab and pembrolizumab has started to deliver on the long awaited promise of cancer immunotherapy. Many new modalities of immunotherapies targeting cytotoxic T lymphocytes (CTLs) responses, such as adoptive cell therapies and vaccines, are in advanced clinical trials. In all these immunotherapies, migration of CTLs to the tumor site is a critical step for achieving therapeutic efficacy. However, inefficient infiltration of activated CTLs into established tumors is increasingly being recognized as one of the major hurdles limiting efficacy. Mechanisms that control migration of CTLs to tumors are poorly defined. In this review, the authors discuss the chemoattractants and their receptors that have been implicated in endogenous- or immunotherapy-induced CTL recruitment to tumors and the potential for targeting these pathways for therapeutic efficacy.
Collapse
Affiliation(s)
- Rajesh K Sharma
- James Graham Brown Cancer Center, University of Louisville Health Sciences, Louisville, KY 40202, USA
| | | | | | | |
Collapse
|
46
|
Salerno EP, Olson WC, McSkimming C, Shea S, Slingluff CL. T cells in the human metastatic melanoma microenvironment express site-specific homing receptors and retention integrins. Int J Cancer 2014; 134:563-74. [PMID: 23873187 DOI: 10.1002/ijc.28391] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 06/20/2013] [Indexed: 01/09/2023]
Abstract
T-cell infiltration into the metastatic melanoma microenvironment (MME) correlates with improved patient survival. However, diffuse infiltration into tumor occurs in only 8% of melanoma metastases. Little is known about mechanisms governing T-cell infiltration into human melanoma metastases or about how those mechanisms may be altered therapeutically. We hypothesized that T cells in the MME would be enriched for chemokine receptors CCR4, CCR5, CXCR3 and homing receptors relevant to the tissue site. Viably cryopreserved single cell suspensions from nineteen melanoma metastases representing three metastatic sites (tumor-infiltrated lymph node, skin and small bowel) were evaluated by multiparameter flow cytometry and compared to benign lymph nodes and peripheral blood mononuclear cells from patients with Stage IIB-IV melanoma. T cells in the melanoma metastases contained large effector memory populations, high proportions of activated, moderately differentiated cells and few regulatory T cells. Site-specific homing was suggested in bowel, with high expression of CCR9. We neither encounter the anticipated enrichment of integrin α4β7 in bowel, cutaneous leukocyte antigen (CLA) in skin, nor integrin α4β1 or receptor CXCR3 in metastatic sites. Retention integrins αEβ7, α1β1 and α2β1 were significantly elevated in metastases. These data suggest limited tissue site-specific homing to human melanoma metastases, but a significant role for retention integrins in maintaining intratumoral T cells. Our findings also raise the possibility that T-cell homing, infiltration, and retention in melanoma metastases may be increased by increasing expression of ligands for CLA, α4β1 and CXCR3 on intratumoral endothelium.
Collapse
Affiliation(s)
- Elise P Salerno
- Division of Surgical Oncology, Department of Surgery, University of Virginia, Charlottesville, VA
| | | | | | | | | |
Collapse
|
47
|
Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol 2013; 14:1014-22. [PMID: 24048123 DOI: 10.1038/ni.2703] [Citation(s) in RCA: 3029] [Impact Index Per Article: 252.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 08/06/2013] [Indexed: 02/06/2023]
Abstract
Most tumor cells express antigens that can mediate recognition by host CD8(+) T cells. Cancers that are detected clinically must have evaded antitumor immune responses to grow progressively. Recent work has suggested two broad categories of tumor escape based on cellular and molecular characteristics of the tumor microenvironment. One major subset shows a T cell-inflamed phenotype consisting of infiltrating T cells, a broad chemokine profile and a type I interferon signature indicative of innate immune activation. These tumors appear to resist immune attack through the dominant inhibitory effects of immune system-suppressive pathways. The other major phenotype lacks this T cell-inflamed phenotype and appears to resist immune attack through immune system exclusion or ignorance. These two major phenotypes of tumor microenvironment may require distinct immunotherapeutic interventions for maximal therapeutic effect.
Collapse
|
48
|
Pan H, Ma Y, Wang D, Wang J, Jiang H, Pan S, Zhao B, Wu Y, Xu D, Sun X, Liu L, Xu Z. Effect of IFN-α on KC and LIX expression: role of STAT1 and its effect on neutrophil recruitment to the spleen after lipopolysaccharide stimulation. Mol Immunol 2013; 56:12-22. [PMID: 23644631 DOI: 10.1016/j.molimm.2013.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/28/2013] [Accepted: 04/04/2013] [Indexed: 01/11/2023]
Abstract
The spleen is a crucial lymphoid organ. It is involved in the recruitment of various immunocytes to their correct locations using specific chemokines, but little is known concerning the role of type-I interferon (IFN) in the regulation of chemokines. In this study, we first used protein microarrays to assess the expression of keratinocyte-derived chemokine (KC) and lipopolysaccharide-induced CXC chemokine (LIX) in murine spleens. Both expressions were smoothly enhanced by IFN-α pretreatment after LPS injection. Then, we focused on the IFN-α regulation of KC, LIX, and their target cells, neutrophils, using an IFN-α neutralizing antibody and fludarabine (specific signal transducers and activators of transcription 1 - STAT1 inhibitor). Next, LPS was found to attenuate the production of KC and LIX in spleen. Even the elevated production of chemokines caused by exogenous IFN-α was found to be attenuated by fludarabine pretreatment. We later determined that the marginal zone and red pulp are the main sites of KC and LIX production. Last, we determined that the number of neutrophils was slightly increased by IFN-α treatment and diminished by IFN-α neutralization or fludarabine treatment. Further, the elevated neutrophils due to exogenous IFN-α were partially reversed by fludarabine pretreatment. In this way, these results indicate that IFN-α facilitates KC and LIX expression in mouse spleens after an LPS challenge. This effect was found to be mainly dependent upon the activation of STAT1, it may be involved in the recruitment of neutrophils to the spleen for the clearance of pathogens.
Collapse
Affiliation(s)
- Huayang Pan
- Key Laboratory of Hepatosplenic Surgery, Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Gajewski TF, Schreiber H, Fu YX. Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol 2013. [PMID: 24048123 DOI: 10.1038/ni.2703.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most tumor cells express antigens that can mediate recognition by host CD8(+) T cells. Cancers that are detected clinically must have evaded antitumor immune responses to grow progressively. Recent work has suggested two broad categories of tumor escape based on cellular and molecular characteristics of the tumor microenvironment. One major subset shows a T cell-inflamed phenotype consisting of infiltrating T cells, a broad chemokine profile and a type I interferon signature indicative of innate immune activation. These tumors appear to resist immune attack through the dominant inhibitory effects of immune system-suppressive pathways. The other major phenotype lacks this T cell-inflamed phenotype and appears to resist immune attack through immune system exclusion or ignorance. These two major phenotypes of tumor microenvironment may require distinct immunotherapeutic interventions for maximal therapeutic effect.
Collapse
|
50
|
Brinkman CC, Peske JD, Engelhard VH. Peripheral tissue homing receptor control of naïve, effector, and memory CD8 T cell localization in lymphoid and non-lymphoid tissues. Front Immunol 2013; 4:241. [PMID: 23966998 PMCID: PMC3746678 DOI: 10.3389/fimmu.2013.00241] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 08/03/2013] [Indexed: 01/13/2023] Open
Abstract
T cell activation induces homing receptors that bind ligands on peripheral tissue vasculature, programing movement to sites of infection and injury. There are three major types of CD8 effector T cells based on homing receptor expression, which arise in distinct lymphoid organs. Recent publications indicate that naïve, effector, and memory T cell migration is more complex than once thought; while many effectors enter peripheral tissues, some re-enter lymph nodes (LN), and contain central memory precursors. LN re-entry can depend on CD62L or peripheral tissue homing receptors. Memory T cells in LN tend to express the same homing receptors as their forebears, but often are CD62Lneg. Homing receptors also control CD8 T cell tumor entry. Tumor vasculature has low levels of many peripheral tissue homing receptor ligands, but portions of it resemble high endothelial venules (HEV), enabling naïve T cell entry, activation, and subsequent effector activity. This vasculature is associated with positive prognoses in humans, suggesting it may sustain ongoing anti-tumor responses. These findings reveal new roles for homing receptors expressed by naïve, effector, and memory CD8 T cells in controlling entry into lymphoid and non-lymphoid tissues.
Collapse
Affiliation(s)
- C Colin Brinkman
- Department of Microbiology, Immunology, and Cancer Biology, Carter Immunology Center, University of Virginia School of Medicine , Charlottesville, VA , USA
| | | | | |
Collapse
|