1
|
Guo R, Zhang S, Li A, Zhang P, Peng X, Lu X, Fan X. Ginsenoside Rb1 and berberine synergistically protect against type 2 diabetes mellitus via GDF15/HAMP pathway throughout the liver lobules: Insights from spatial transcriptomics analysis. Pharmacol Res 2025; 215:107711. [PMID: 40147680 DOI: 10.1016/j.phrs.2025.107711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/24/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Type 2 diabetes mellitus (T2DM) is a significant public health issue with high morbidity and mortality. Ginsenoside Rb1 (Rb1) and berberine (BBR), the main bioactive compounds of Panax ginseng and Coptis chinensis, respectively, are known for their hypoglycemic effects. Nevertheless, the synergistic effects and underlying mechanism of Rb1 and BBR on T2DM remain unclear. In this study, we utilized a leptin receptor-deficient (db/db) mouse model to investigate the protective effects of their combination treatment. Our findings demonstrated that the combined use of Rb1 and BBR at a 1:4 ratio had more pronounced effects than the first-line anti-diabetic drug metformin on reducing the weight ratio of white adipose tissue, ameliorating insulin resistance, and improving glucose and lipid metabolism. Using spatial transcriptomics, we revealed that metformin treatment improved gluconeogenesis and lipogenesis only in the periportal zone, while the combination treatment induced improvements throughout the liver lobule, with distinct key targets across different zones, thus underscoring a more comprehensive modulation of hepatic metabolism. This may be the key reason why this combination therapy demonstrated superior protective effects against T2DM. Additionally, the reversed expression of the key callback gene hepcidin (HAMP) and its regulator growth differentiation factor 15 (GDF15) following the combination therapy across all zones, along with validation experiments, further suggested that GDF15/HAMP pathway might be a key mechanism underlying the beneficial effects of Rb1 and BBR against T2DM. This study also indicates a path toward innovative drug cocktails for treating T2DM, offering a holistic approach to regulate the entire liver lobule metabolism.
Collapse
Affiliation(s)
- Rongfang Guo
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shuying Zhang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; School of Clinical Medicine, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Anyao Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ping Zhang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xin Peng
- The Joint‑Laboratory of Clinical Multi‑Omics Research between Zhejiang University and Ningbo Municipal Hospital of TCM, Ningbo Municipal Hospital of TCM, Ningbo 315010, China
| | - Xiaoyan Lu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China; Jinhua Institute of Zhejiang University, Jinhua 321299, China.
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China; The Joint‑Laboratory of Clinical Multi‑Omics Research between Zhejiang University and Ningbo Municipal Hospital of TCM, Ningbo Municipal Hospital of TCM, Ningbo 315010, China; Jinhua Institute of Zhejiang University, Jinhua 321299, China.
| |
Collapse
|
2
|
Obakiro SB, Kiyimba K, Gavamukulya Y, Maseruka R, Nabitandikwa C, Kibuuka R, Lulenzi J, Lukwago TW, Chebijira M, Opio M, Tracy ES, Kibuule D, Oriko RO, Waako P, Makaye A, Shadrack DM, Andima M. Deciphering the the molecular mechanism of aloe-emodin in managing type II diabetes mellitus using network pharmacology, molecular docking, and molecular dynamics simulation approaches. In Silico Pharmacol 2025; 13:45. [PMID: 40098752 PMCID: PMC11910477 DOI: 10.1007/s40203-025-00337-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 03/07/2025] [Indexed: 03/19/2025] Open
Abstract
Aloe-emodin (AE) has drawn interest due to its potential activity against type II diabetes mellitus (T2DM). However, the mechanisms underlying its antidiabetic activity are not well explored. Using network pharmacology, molecular docking and molecular dynamics simulation studies, we investigated its molecular mechanisms in the management of T2DM. Potential target genes of AE were predicted using the Swiss Target Prediction (http://www.swisstargetprediction.ch/) database. The GeneCards, OMIM and DisGeNET databases were used to compile a comprehensive list of genes associated with T2DM. A compound-disease-target network was constructed, and protein-protein interaction networks were analysed to identify hub genes. Finally, molecular docking and interaction analysis between AE and the identified proteins were performed using AutoDock tools. Investigation of AE targets and genes associated with T2DM identified 32 overlapping genes. Gene ontology studies revealed that AE may exert its anti-diabetic effects by modulating glucose metabolism and enhancing cellular response to glucose. Furthermore, KEGG pathway analysis suggested that AE influences these processes by targeting pathways related to apoptosis, insulin resistance, and T2DM signaling. The core target proteins identified were TNF, ALB, TP53, PPARG, BCL2, CASP3, and EGFR. AE interaction with each of these proteins exhibited a binding energy of > - 5 kcal/mol, with TNF showing the lowest binding energy (- 7.75 kcal/mol). Molecular dynamics simulation further validated the molecular docking results with TNF and EGFR exhibiting a strong affinity for AE and forming stable interactions. AE exerts its antidiabetic activity through multiple mechanisms, with the most significant being the amelioration of pancreatic β-cell apoptosis by binding to and inhibiting the actions of TNFα. Further cellular and molecular studies are needed to validate these findings. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-025-00337-1.
Collapse
Affiliation(s)
- Samuel Baker Obakiro
- Natural Products Research and Innovation Centre, Busitema University, P.O. Box 1460, Mbale, Uganda
- Faculty of Health Sciences, Busitema University, P.O. Box 1460, Mbale, Uganda
| | - Kenedy Kiyimba
- Natural Products Research and Innovation Centre, Busitema University, P.O. Box 1460, Mbale, Uganda
- Faculty of Health Sciences, Busitema University, P.O. Box 1460, Mbale, Uganda
| | - Yahaya Gavamukulya
- Natural Products Research and Innovation Centre, Busitema University, P.O. Box 1460, Mbale, Uganda
- Faculty of Health Sciences, Busitema University, P.O. Box 1460, Mbale, Uganda
| | - Richard Maseruka
- Natural Products Research and Innovation Centre, Busitema University, P.O. Box 1460, Mbale, Uganda
- Faculty of Health Sciences, Busitema University, P.O. Box 1460, Mbale, Uganda
| | - Catherine Nabitandikwa
- Natural Products Research and Innovation Centre, Busitema University, P.O. Box 1460, Mbale, Uganda
| | - Ronald Kibuuka
- Natural Products Research and Innovation Centre, Busitema University, P.O. Box 1460, Mbale, Uganda
| | - Jalia Lulenzi
- Natural Products Research and Innovation Centre, Busitema University, P.O. Box 1460, Mbale, Uganda
- Faculty of Health Sciences, Busitema University, P.O. Box 1460, Mbale, Uganda
| | - Tonny Wotoyitide Lukwago
- Natural Products Research and Innovation Centre, Busitema University, P.O. Box 1460, Mbale, Uganda
- Faculty of Health Sciences, Busitema University, P.O. Box 1460, Mbale, Uganda
| | - Mercy Chebijira
- Natural Products Research and Innovation Centre, Busitema University, P.O. Box 1460, Mbale, Uganda
- Faculty of Science and Education, Busitema University, P.O. Box 236, Tororo, Uganda
| | - Moses Opio
- Natural Products Research and Innovation Centre, Busitema University, P.O. Box 1460, Mbale, Uganda
- Faculty of Health Sciences, Busitema University, P.O. Box 1460, Mbale, Uganda
| | - Edeya Sharon Tracy
- Natural Products Research and Innovation Centre, Busitema University, P.O. Box 1460, Mbale, Uganda
- Faculty of Health Sciences, Busitema University, P.O. Box 1460, Mbale, Uganda
| | - Dan Kibuule
- Natural Products Research and Innovation Centre, Busitema University, P.O. Box 1460, Mbale, Uganda
- Faculty of Health Sciences, Busitema University, P.O. Box 1460, Mbale, Uganda
| | - Richard Owor Oriko
- Natural Products Research and Innovation Centre, Busitema University, P.O. Box 1460, Mbale, Uganda
- Faculty of Science and Education, Busitema University, P.O. Box 236, Tororo, Uganda
| | - Paul Waako
- Natural Products Research and Innovation Centre, Busitema University, P.O. Box 1460, Mbale, Uganda
- Faculty of Health Sciences, Busitema University, P.O. Box 1460, Mbale, Uganda
| | - Angela Makaye
- The University of Dodoma, P.O. Box 259, Dodoma, Tanzania
| | - Daniel M Shadrack
- St John's University of Tanzania, P.O. Box 47, Dodoma, Tanzania
- The Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania
| | - Moses Andima
- Natural Products Research and Innovation Centre, Busitema University, P.O. Box 1460, Mbale, Uganda
- Faculty of Health Sciences, Busitema University, P.O. Box 1460, Mbale, Uganda
- Faculty of Science and Education, Busitema University, P.O. Box 236, Tororo, Uganda
- The University of Dodoma, P.O. Box 259, Dodoma, Tanzania
- St John's University of Tanzania, P.O. Box 47, Dodoma, Tanzania
- The Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania
| |
Collapse
|
3
|
Roy D, Ghosh M, Rangra NK. Herbal Approaches to Diabetes Management: Pharmacological Mechanisms and Omics-Driven Discoveries. Phytother Res 2024. [PMID: 39688013 DOI: 10.1002/ptr.8410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/23/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024]
Abstract
Diabetes mellitus is a chronic metabolic disorder marked by hyperglycemia, resistance to insulin, and impaired function of the pancreatic β-cells; it advances into more serious complications like nephropathy, neuropathy, cardiovascular disease, and retinopathy; herbal medicine has indicated promise in not just mitigating the symptoms but also in managing the complications. This review would aim to evaluate the pharmacological aspect of the botanical therapies Anacardium occidentale, Allium sativum, Urtica dioica, and Cinnamomum zeylanicum, as well as their bioactive phytochemicals, quercetin, resveratrol, berberine, and epigallocatechin gallate (EGCG). In this review, we discuss their mechanisms for secreting the insulin sensitizers, carbohydrate-hydrolyzing enzymes, reduction in oxidative stress and effectiveness against diabetic complications-all through sensitivity to insulin. Great emphasis is laid on the integration of multi-omics technologies such as genomics, proteomics, metabolomics, and transcriptomics in the discovery of bioactive compounds. The nature of the technologies can evaluate the intrinsic complexities of herbal pharmacology and even identify therapeutic candidates. Finally, the review refers to the meagre clinical trials on the efficiency of these compounds in the metabolism of humans. High-quality future research, such as human large-scale trials, would be emphasized; improvement in the clinical validity of a drug might come from improved study design, better selection of potentially usable biomarkers, and enhanced safety profiles to guarantee efficacy with lessened risks.
Collapse
Affiliation(s)
- Debajyoti Roy
- Faculty of Pharmacy, CV Raman Global University, Bhubaneswar, Odisha, India
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Maitrayee Ghosh
- Faculty of Pharmacy, CV Raman Global University, Bhubaneswar, Odisha, India
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Naresh Kumar Rangra
- Chitkara University School of Pharmacy, Chitkara University, Himachal Pradesh, India
| |
Collapse
|
4
|
Shen S, Zhong H, Zhou X, Li G, Zhang C, Zhu Y, Yang Y. Advances in Traditional Chinese Medicine research in diabetic kidney disease treatment. PHARMACEUTICAL BIOLOGY 2024; 62:222-232. [PMID: 38357845 PMCID: PMC10877659 DOI: 10.1080/13880209.2024.2314705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
CONTEXT Diabetic kidney disease (DKD) is a prominent complication arising from diabetic microangiopathy, and its prevalence and renal impact have placed it as the primary cause of end-stage renal disease. Traditional Chinese Medicine (TCM) has the distinct advantage of multifaceted and multilevel therapeutic attributes that show efficacy in improving clinical symptoms, reducing proteinuria, protecting renal function, and slowing DKD progression. Over recent decades, extensive research has explored the mechanisms of TCM for preventing and managing DKD, with substantial studies that endorse the therapeutic benefits of TCM compounds and single agents in the medical intervention of DKD. OBJECTIVE This review lays the foundation for future evidence-based research efforts and provide a reference point for DKD investigation. METHODS The relevant literature published in Chinese and English up to 30 June 2023, was sourced from PubMed, Cochrane Library, VIP Database for Chinese Technical Periodicals (VIP), Wanfang Data, CNKI, and China Biology Medicine disc (CBM). The process involved examining and summarizing research on TCM laboratory tests and clinical randomized controlled trials for DKD treatment. RESULTS AND CONCLUSIONS The TCM intervention has shown the potential to inhibit the expression of inflammatory cytokines and various growth factors, lower blood glucose levels, and significantly affect insulin resistance, lipid metabolism, and improved renal function. Furthermore, the efficacy of TCM can be optimized by tailoring personalized treatment regimens based on the unique profiles of individual patients. We anticipate further rigorous and comprehensive clinical and foundational investigations into the mechanisms underlying the role of TCM in treating DKD.
Collapse
Affiliation(s)
- Shiyi Shen
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, China
| | - Huiyun Zhong
- School of Medicine and Food, Sichuan Vocational College of Health and Rehabilitation, Zigong, China
| | - Xiaoshi Zhou
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, China
| | - Guolin Li
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Changji Zhang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yulian Zhu
- Department of Pharmacy, Ziyang People’s Hospital, Ziyang, China
| | - Yong Yang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, China
| |
Collapse
|
5
|
Ghazaee H, Raouf Sheibani A, Mahdian H, Gholami S, Askari VR, Baradaran Rahimi V. Ellagic acid as potential therapeutic compound for diabetes and its complications: a systematic review from bench to bed. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9345-9366. [PMID: 38980410 DOI: 10.1007/s00210-024-03280-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
Diabetes mellitus (DM) is a worldwide-concerning disease with a rising prevalence. There are many ongoing studies aimed at finding new and effective treatments. Ellagic acid (EA) is a natural polyphenolic compound abundant in certain fruits and vegetables. It is the objective of this investigation to assess the effectiveness and preventive mechanisms of EA on DM and associated complications. This systematic review used PubMed, Scopus, and Google Scholar as search databases using a predetermined protocol from inception to June 2024. We assessed all related English studies, including in vitro, in vivo, and clinical trials. EA counteracted DM and its complications by diminishing inflammation, oxidative stress, hyperglycemia, apoptosis, insulin resistance, obesity, lipid profile, and histopathological alterations. Several mechanisms contributed to the anti-diabetic effect of EA, the most significant being the upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), peroxisome proliferator-activated receptor gamma (PPAR-γ), protein kinase B, and downregulation of nuclear factor-kappa-B (NF-κB) gene expression. EA also revealed protective effects against diabetes complications, such as diabetic-induced hepatic damage, testicular damage, endothelial dysfunction, muscle dysfunction, retinopathy, nephropathy, cardiomyopathy, neuropathy, and behavioral deficit. Administration of EA could have various protective effects in preventing, treating, and alleviating DM and its complications. Although it could be considered a cost-effective, safe, and accessible treatment, to fully establish the effectiveness of EA as a medication for DM, it is crucial to conduct further well-designed studies.
Collapse
Affiliation(s)
- Hossein Ghazaee
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Raouf Sheibani
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Haniyeh Mahdian
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shamim Gholami
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Azadi Sq, Vakil Abad Highway, Mashhad, 9177948564, Iran.
| |
Collapse
|
6
|
Karim M, Pirzad S, Shirsalimi N, Hosseini MH, Ebrahimi P, Khoshdooz S, Rashidian P. Effects of saffron (Crocus sativus L.) supplementation on cardiometabolic Indices in diabetic and prediabetic overweight patients: a systematic review and meta-analysis of RCTs. Diabetol Metab Syndr 2024; 16:286. [PMID: 39593185 PMCID: PMC11600967 DOI: 10.1186/s13098-024-01530-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND The incidence of diabetes mellitus (DM) is increasing worldwide, and there is growing interest in the potential use of natural compounds as an alternative treatment for managing DM. Several research studies have investigated the impact of saffron consumption on managing and improving metabolic profiles in patients with DM, and they have shown promising results. OBJECT The study aims to systematically review and perform a meta-analysis to evaluate the potential effects of saffron and its extract on cardiometabolic indicators in diabetic and prediabetic overweight patients. METHODS We conducted a comprehensive systematic review and meta-analysis, searching PubMed, Scopus, Web of Science, Embase, and Google Scholar for all relevant studies published before April 20, 2024. We extracted weighted (WMD) or standardized (SMD) mean differences (before-after) and 95% confidence intervals (95%CI) of the outcomes and conducted meta-analyses using R. The study protocol was registered in PROSPERO (CRD42024538380). RESULTS Out of the studies screened, 15 RCTs were selected for inclusion in the systematic review and meta-analysis. These studies collectively involved 869 participants, 438 in the intervention group and 431 in the control group. Notably, our results showed that saffron supplementation led to significant changes in FBS (MD: - 8.75 mg/dL, 95% CI [- 14.75; - 2.76], P < 0.01), HbA1C (MD: - 0.34%, 95% CI [- 0.39; - 0.9], P < 0.01), TG (MD: - 13.28 mg/dL, 95% CI [- 22.82; - 3.75], P < 0.01), SBP (MD: - 5.33 mmHg, 95% CI [- 8.99-1.67], P = 0.04), DBP (MD: - 1.02 mmHg, 95% CI [- 3.91; 1.86], P = 0.03), AST (MD: - 1.32 IU/L, 95% CI [- 1.72, - 0.93], P < 0.01) levels in T2DM patients compared to placebo or no supplementation, indicating its potential as a therapeutic intervention. However, there was no significant effect on Insulin secretion (MD: - 0.15 µU/ml, 95% CI [- 2.1763; 1.8689], P = 0.88), HOMA (MD: - 0.35%, 95% CI [- 1.34;0.63], P = 0.48), TC (MD: - 4.86 mg/dL, 95% CI [- 9.81-0.09], P = 0.54), HDL (MD: 0.18 mg/dL, 95% CI [- 0.93; 1.29], P = 0.74), LDL (MD: - 1.77 mg/dL, 95% CI [- 5.99-2.45], P = 0.41), TNF-α (MD: - 0.34 pg/mL, 95% CI [- 0.99-0.30], P = 0.29), creatinine (MD: 2.83 mg/dL, 95% CI [2.29, 3.37], P = 0.31) and BUN (MD: - 0.44 mg/dL, 95% CI [- 1.43, 0.55], P = 0.38). CONCLUSION Saffron may improve specific CMI indices in overweight patients with diabetes or prediabetes, including significant reductions in FBS, HbA1C, TG, SBP, and AST. However, it did not significantly affect HDL, TC, LDL, insulin secretion, HOMA, DBP, TNF-α, ALT, Cr, or BUN. Further research with more trials and extended follow-up periods is needed to confirm and expand these findings.
Collapse
Affiliation(s)
- Mehdi Karim
- Faculty of Medicine, Bogomolets National Medical University (NMU), Kyiv, Ukraine.
| | - Samira Pirzad
- Faculty of Medicine, Islamic Azad University, Tehran Medical Sciences Branch (IAUTMU), Tehran, Iran
| | - Niyousha Shirsalimi
- Faculty of Medicine, Hamadan University of Medical Science (UMSHA), Hamadan, Iran
| | | | - Pouya Ebrahimi
- Tehran Heart Center, Cardiovascular Disease Research Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Sara Khoshdooz
- School of Medicine, Guilan University of Medical Sciences (GUMS), Rasht, Iran
| | - Pegah Rashidian
- Reproductive Health Research Center, School of Medicine, Guilan University of Medical Sciences (GUMS), Rasht, Iran
| |
Collapse
|
7
|
Nkhumeleni Z, Phoswa WN, Mokgalaboni K. Purslane Ameliorates Inflammation and Oxidative Stress in Diabetes Mellitus: A Systematic Review. Int J Mol Sci 2024; 25:12276. [PMID: 39596339 PMCID: PMC11595026 DOI: 10.3390/ijms252212276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/04/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Type 2 diabetes (T2D) is characterised by insulin resistance and leads to hyperglycaemia. Its prevalence and associated complications continue to rise exponentially, despite the existence of pharmaceutical drugs, and this has prompted research into exploring safer herbal remedies. Portulaca oleracea (purslane) has been investigated in animal and clinical trials to explore its effects on diabetes, yielding conflicting results. This study aimed to evaluate the effects of purslane on inflammation and oxidative stress in diabetes mellitus. We conducted a comprehensive literature search on Scopus PubMed, and through a manual bibliographical search to find relevant studies from inception to 13 September 2024. The search terms included purslane, portulaca oleracea, and type 2 diabetes mellitus. Of the 38 retrieved studies, 12 were considered relevant and underwent critical review. Evidence from rodent studies showed decreased inflammatory markers such as interleukin-6 (IL-6), tumour necrosis factor-alpha (TNF-α), nuclear factor kappa-beta (NF-κβ), and C-reactive (CRP), while interleukin-10 (IL-10) was increased after intervention with purslane. The markers of oxidative stress such as superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), glutathione peroxidase (GPx), and total antioxidant capacity (TAC) levels increased, thiobarbituric acid reactive substances (TBARS), reactive oxygen species (ROS) and malondialdehyde (MDA) decreased. Notably, the evidence from clinical trials showed a significant reduction in NF-κβ and CRP after purslane treatment; however, no effect was observed on MDA and TAC. The evidence gathered in this study suggests that purslane exerts anti-inflammatory properties by downregulating NF-κβ, thus suppressing the production of associated pro-inflammatory cytokines. Therefore, purslane may be used as an antioxidant and inflammatory agent for diabetes. However, further clinical evidence with a broader population is required to validate the therapeutic properties of purslane in diabetes.
Collapse
Affiliation(s)
| | - Wendy N. Phoswa
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Florida Campus, Roodepoort 1710, South Africa; (Z.N.); (K.M.)
| | | |
Collapse
|
8
|
Wang T, Zhou D, Hong Z. Adipose tissue in older individuals: a contributing factor to sarcopenia. Metabolism 2024; 160:155998. [PMID: 39128607 DOI: 10.1016/j.metabol.2024.155998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
Sarcopenia is a geriatric syndrome characterized by a functional decline in muscle. The prevalence of sarcopenia increases with natural aging, becoming a serious health problem among elderly individuals. Therefore, understanding the pathology of sarcopenia is critical for inhibiting age-related alterations and promoting health and longevity in elderly individuals. The development of sarcopenia may be influenced by interactions between visceral and subcutaneous adipose tissue and skeletal muscle, particularly under conditions of chronic low-grade inflammation and metabolic dysfunction. This hypothesis is supported by the following observations: (i) accumulation of senescent cells in both adipose tissue and skeletal muscle with age; (ii) gut dysbiosis, characterized by an imbalance in gut microbial communities as the main trigger for inflammation, sarcopenia, and aged adipose tissue; and (iii) microbial dysbiosis, which could impact the onset or progression of a senescent state. Moreover, adipose tissue acts as an endocrine organ, releasing molecules that participate in intricate communication networks between organs. Our discussion focuses on novel adipokines and their role in regulating adipose tissue and muscle, particularly those influenced by aging and obesity, emphasizing their contributions to disease development. On the basis of these findings, we propose that age-related adipose tissue and sarcopenia are disorders characterized by chronic inflammation and metabolic dysregulation. Finally, we explore new potential therapeutic strategies involving specialized proresolving mediator (SPM) G protein-coupled receptor (GPCR) agonists, non-SPM GPCR agonists, transient receptor potential (TRP) channels, antidiabetic drugs in conjunction with probiotics and prebiotics, and compounds designed to target senescent cells and mitigate their pro-inflammatory activity.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Institute of Brain Science and Brain-inspired Technology of West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Neurology, Chengdu Shangjin Nanfu Hospital, Chengdu, Sichuan, China.
| | - Dong Zhou
- Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Institute of Brain Science and Brain-inspired Technology of West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Neurology, Chengdu Shangjin Nanfu Hospital, Chengdu, Sichuan, China
| | - Zhen Hong
- Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Institute of Brain Science and Brain-inspired Technology of West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Neurology, Chengdu Shangjin Nanfu Hospital, Chengdu, Sichuan, China.
| |
Collapse
|
9
|
Saverio S, Mohammadnezhad M, Raikanikoda F. Healthcare workers' perspectives on diabetic foot complications among type 2 diabetes mellitus patients in Fiji. PLoS One 2024; 19:e0307972. [PMID: 39312522 PMCID: PMC11419386 DOI: 10.1371/journal.pone.0307972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 07/15/2024] [Indexed: 09/25/2024] Open
Abstract
INTRODUCTION Diabetic Foot Complications (DFCs) are a growing cause of morbidity and mortality with less than one third of physicians able to discern the signs of diabetes related peripheral neuropathy. DFCs and resultant amputations account for a considerable proportion of surgeries in Fiji, with very limited literature available to verify the factors that influence these alarming figures. This study aimed to explore Health Care Workers' (HCWs) perspectives on diabetic foot complications and challenges of foot care management in Fiji. METHOD An exploratory descriptive qualitative design was used among HCWs at the Sigatoka Sub Divisional Hospital (SDH), Fiji in 2021. HCWs at the SDH were required to have a minimum work experience of at least six months in public health. All participants who met the inclusion criteria were selected through purposive sampling. Data was collected using a focus group discussion guide composed of semi-structured open-ended questions to guide the Focus Group Discussions (FGDs). Focus discussions were audio recorded and transcribed with thematic analysis applied to derive the themes and sub-themes outlined in the study. RESULTS Twenty HCWs participated in four FGDs with four major themes identified. The first theme was HCWs' perceptions and practice of foot care which revealed that all participants had adequate diabetic foot care knowledge. The second theme was factors affecting foot care which was mainly focused on identified barriers such as inadequate patient foot care knowledge, the lack of resources such as manpower, and health system challenges like the COVID-19 pandemic. The third theme is creating awareness among patients and HCWs to improve foot care practices. The fourth theme is strengthening foot care practices at the different levels of health care that is aimed at optimizing diabetic foot outcomes. CONCLUSION Various foot care barriers namely patient factors and the lack of resources is a concern depicted in this study. There is a need to address health system barriers and enforce diabetic foot education, screening and care for patients and the community.
Collapse
Affiliation(s)
- Suliana Saverio
- Sigatoka Hospital, Fiji Ministry of Health and Medical Services, Sigatoka, Fiji
| | - Masoud Mohammadnezhad
- School of Nursing and Midwifery, Birmingham City University, Birmingham, United Kingdom
- Department of Health Education and Behavioral Sciences, Faculty of Public Health, Mahidol University, Nakhon Pathom, Thailand
- Department of Public Health, Daffodil International University (DIU), Daffodil Smart City (DSC), Birulia, Savar, Dhaka, Bangladesh
| | | |
Collapse
|
10
|
Garcia-Campoy AH, Perez Gutierrez RM, Garcia Báez EV, Muñiz-Ramírez A. El extracto metanólico de <i>Tillandsia recurvata</i> reduce los niveles de glucosa, triglicéridos y colesterol en sangre. BOTANICAL SCIENCES 2024; 102:1251-1264. [DOI: 10.17129/botsci.3534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Background: Tillandsia recurvata collected in San Luis Potosí does not have studies focused on its use as an adjuvant in treating diabetes mellitus.
Questions and / or Hypotheses: Will Tillandsia recurvata L. (Bromeliaceae) have antidiabetic activity in vitro and in vivo?
Studied species: Tillandsia recurvata L. (Bromeliaceae)
Study site and dates: T. recurvata was collected in Guadalcázar municipality, San Luis Potosí, México, in December 2021.
Methods: The antidiabetic potential of Tillandsia recurvata methanol extract (TRM) was evaluated using in vitro and in vivo models, and its secondary metabolite content was analyzed using Gas chromatography-mass spectrometry.
Results: Results demonstrate that extract reduces blood glucose, triglyceride, and cholesterol levels in vivo. In addition, in vitro tests showed that extract diminished the formation of advanced glycation end products, methylglyoxal concentrations, and glycosylated hemoglobin levels. Gas chromatography-mass spectrometry analysis identified several compounds in the extract, including 2-methylbenzaldehyde, 4-hydroxy-2-methylacetophenone, 3',5' dimethoxyacetophenone, pentanoic acid, palmitic acid, linoleic acid, phytol, margaric acid, oleamide, cis-11-eicosenamide, stearic acid, 13-docosenamide, (Z), campesterol, and β-sitosterol.
Conclusions: These results highlight the potential of T. recurvata collected in San Luis Potosi as an adjuvant in treatment of diabetes mellitus.
Collapse
|
11
|
Kavya P, Theijeswini RC, Gayathri M. Phytochemical analysis, identification of bioactive compounds using GC-MS, in vitro and in silico hypoglycemic potential, in vitro antioxidant potential, and in silico ADME analysis of Chlorophytum comosum root and leaf. Front Chem 2024; 12:1458505. [PMID: 39345858 PMCID: PMC11427758 DOI: 10.3389/fchem.2024.1458505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024] Open
Abstract
Chlorophytum comosum is a plant with medicinal potential traditionally used to treat different diseases. The present study aimed to determine the bioactive compounds, hypoglycemic and antioxidant potential of C. comosum root and leaf. The ethyl acetate extracts of C. comosum root and leaf were analyzed by GC-MS to determine the bioactive compounds. The hypoglycemic potential of the extracts was evaluated by α-amylase, α-glucosidase, glucose diffusion inhibitory assays, and glucose adsorption assay. The ethyl acetate extract of C. comosum root inhibited α-amylase, α-glucosidase, and glucose diffusion in a concentration-dependent manner with IC50 values of 205.39 ± 0.15, 179.34 ± 0.3 and 535.248 μg/mL, respectively, and the leaf extract inhibited α-amylase and α-glucosidase enzymes with IC50 values of 547.99 ± 0.09, and 198.18 ± 0.25 μg/mL respectively. C. comosum root and leaf extracts also improved glucose adsorption. Heptadecanoic acid and dodecanoic acid were identified as potential compounds with hypoglycemic properties through molecular docking. The extracts were also assessed for their antioxidant activity using DPPH, ABTS, and FRAP assays. C. comosum root and leaf extracts were also able to scavenge DPPH radicals with IC50 values of 108.37 ± 0.06 and 181.79 ± 0.09 µM and ABTS radicals with IC50 values of 126.24 ± 0.13 and 264.409 ± 0.08 µM, respectively. The root and leaf extracts also reduced the ferricyanide complex to ferrocyanide with higher reducing powers of 2.24 ± 0.02 and 1.65 ± 0.03, respectively. The results showed that the ethyl acetate extract of C. comosum root has significant antioxidant and hypoglycemic potential compared to the leaf extract. Thus, it can also be studied to isolate the potential compounds with antihyperglycemic activities.
Collapse
Affiliation(s)
- P Kavya
- Department of Bio Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - R C Theijeswini
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - M Gayathri
- Department of Bio Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
12
|
Almalki T, Almalki AG, Alqarni NA, Alsudani R, Althobaiti TA, Alzahrani RE. Use of Complementary and Alternative Medicine Among Patients With Diabetes Mellitus: A Cross-Sectional Study. Cureus 2024; 16:e69288. [PMID: 39398814 PMCID: PMC11470830 DOI: 10.7759/cureus.69288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2024] [Indexed: 10/15/2024] Open
Abstract
Background Diabetes mellitus is one of the causes to use complementary and alternative medicine (CAM), which can be classified into nutritional, psychological and physical. The study's objective was to estimate the prevalence and pattern of using CAM among patients with diabetes mellitus who followed the endocrine and diabetes center in Taif. Materials and methods A cross-sectional study was carried out in Taif city from 1 June to 31 July 2023 among diabetic patients aged 14 years and above who followed the endocrine and diabetes center. A valid, reliable, English questionnaire was used in data collection. It was composed of three parts: demographic data, diabetes mellitus history and use of CAM. Patients visited the diabetic center during the study period for their regular appointments were selected randomly and interviewed by trained interns and medical students. By using the Raosoft calculator, the minimal sample size was 361. The chi-square test and independent two-sample t-test were used to investigate the association between categorical variables and continuous numerical variables, respectively. Multivariate logistic regression analysis was performed to control the confounding effect. Results A total of 361 patients were included. Their age ranged between 14 and 84 (51.2 ± 16.9 years). Females represented 57.6% of them. Overall, more than a quarter (28.3%) reported using CAM, while 22.4% used CAM for treating diabetes in the last 12 months. The majority of patients (97.1%) used herbs, mainly cinnamon (48.5%), fenugreek/helba (31.3%) and rosemary (20.2%). Their main source of information was family and friends (64.7%). A history of improvement of blood sugar reading with CAM was reported by 61.8%. Multivariate logistic regression analysis revealed that females were at doubled likelihood to use CAM compared to males (Adjusted odds ratio "AOR" = 2.40; 95% confidence interval "CI": 1.27-4.52, p=0.007). Compared to never-smokers, ex-smokers were more likely to use CAM (AOR=2.87; 95% CI: 1.28-6.43, p=0.010). Conclusion The use of CAM, particularly herbs, to treat diabetes is a relatively common practice among Saudi patients. However, the history of informing treating physicians about CAM was reported by a minority of patients.
Collapse
Affiliation(s)
- Talal Almalki
- Diabetes and Endocrinology, Endocrine and Diabetes Center, King Abdul Aziz Specialist Hospital, Taif Health Cluster, Taif, SAU
| | | | | | | | | | | |
Collapse
|
13
|
Lema GD, Gebeyaw ED, Yferu ZA, Mulatu SF, Dagnaw AB, Aydagnuhm GB, Ayicheh EA. Herbal medicine use and its impact on glycemic control among diabetes patients at governmental hospitals in Debre Berhan, Ethiopia: A cross-sectional study. Metabol Open 2024; 23:100311. [PMID: 39224191 PMCID: PMC11367640 DOI: 10.1016/j.metop.2024.100311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/10/2024] [Accepted: 08/11/2024] [Indexed: 09/04/2024] Open
Abstract
Background Diabetes mellitus (DM) is a major health concern worldwide. Diabetes patients are increasingly using herbal medicine (HM) without seeking advice from their healthcare providers. However, its impact on glycemic control is not documented in Ethiopia. Thus, this study aimed to assess herbal medicine use and its effect on glycemic control among diabetes patients at governmental hospitals in Debre Berhan town, Ethiopia. Methods A cross-sectional study involving 430 diabetic patients was conducted at two different hospitals in Debre Berhan town from January 1 to March 30, 2024. Data were gathered using a guided self-administered questionnaire to collect data including glycemic control assessed via hemoglobin A1c (HbA1c) levels. Data was analyzed using SPSS version 25. Logistic regression model was used to assess the predictors of herbal medicine usage, while an independent samples t-test was conducted to compare the mean HbA1c levels between herbal medicine users and non-users among diabetes patients. Results Of the 430 participants, 72.6 % were diagnosed with type 2 diabetes. The study revealed 48.1 % (95 % CI: 43.3-53) participants used herbal medicine. Moringa stenopetala (33.5 %), Trigonella foenumgraecum (27.4 %), and Thymus schimperi (17.9 %) were the predominant herbs utilized by diabetic patients. The use of herbal medicine was associated with the patients' diabetic knowledge (AOR: 1.59; 95 % CI: 1.01-2.49), occupation (AOR: 3.7; 95 % CI: 1.36-10.23), income (AOR: 3.58; 95 % CI: 1.22-10.55), and family history of diabetes (AOR: 1.9; 95 % CI: 1.19-3.18). Glycemic status was not controlled for 86 % of herbal users compared to 66.8 % of non-users. Participants who used herbal medicine had significantly higher mean HbA1c by a mean difference of 0.41 (95%CI: 0.04-0.78). Conclusions Herbal medicine use was common among diabetes patients in this study. Poor knowledge about diabetes, a family history of diabetes, lower income, and a farming occupation were identified as strong predictors of HM use. Patients who used herbal medicine had significantly higher mean HbA1c levels compared to non-users. Healthcare providers should engage patients in discussions about herbal medicine use, emphasizing the potential risks to glycemic management. Future research should explore specific herbs used, their mechanisms of action, and strategies to integrate herbal medicine safely into diabetes management protocols.
Collapse
Affiliation(s)
- Girma Deshimo Lema
- Department of Internal Medicine, Asrat Woldeyes Health Science Campus, Debre Berhan University, Debre Berhan, Ethiopia
| | - Enguday Demeke Gebeyaw
- School of Public Health, Asrat Woldeyes Health Science Campus, Debre Berhan University, Debre Berhan, Ethiopia
| | - Zena Admasu Yferu
- Department of Internal Medicine, Asrat Woldeyes Health Science Campus, Debre Berhan University, Debre Berhan, Ethiopia
| | - Seife Feleke Mulatu
- Department of Internal Medicine, Asrat Woldeyes Health Science Campus, Debre Berhan University, Debre Berhan, Ethiopia
| | - Asrat Berihun Dagnaw
- Department of Internal Medicine, Asrat Woldeyes Health Science Campus, Debre Berhan University, Debre Berhan, Ethiopia
| | - Getachew Bizuneh Aydagnuhm
- Department of Internal Medicine, Asrat Woldeyes Health Science Campus, Debre Berhan University, Debre Berhan, Ethiopia
| | - Esubalew Amanu Ayicheh
- Department of Internal Medicine, Asrat Woldeyes Health Science Campus, Debre Berhan University, Debre Berhan, Ethiopia
| |
Collapse
|
14
|
Farhadnejad H, Saber N, Neshatbini Tehrani A, Kazemi Jahromi M, Mokhtari E, Norouzzadeh M, Teymoori F, Asghari G, Mirmiran P, Azizi F. Herbal Products as Complementary or Alternative Medicine for the Management of Hyperglycemia and Dyslipidemia in Patients with Type 2 Diabetes: Current Evidence Based on Findings of Interventional Studies. J Nutr Metab 2024; 2024:8300428. [PMID: 39021815 PMCID: PMC11254466 DOI: 10.1155/2024/8300428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 05/18/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024] Open
Abstract
Type 2 diabetes (T2D) is known as a major public health problem with a noticeable adverse impact on quality of life and health expenditures worldwide. Despite using routine multiple pharmacological and nonpharmacological interventions, including diet therapy and increasing physical activity, controlling this chronic disease remains a challenging issue, and therapeutic goals are often not achieved. Therefore, recently, other therapeutic procedures, such as using herbal products and functional foods as complementary or alternative medicine (CAM), have received great attention as a new approach to managing T2D complications, according to the literature. We reviewed the existing evidence that supports using various fundamental medicinal herbs, including cinnamon, saffron, ginger, jujube, turmeric, and barberry, as CAM adjunctive therapeutic strategies for T2D patients. The current review addressed different aspects of the potential impact of the abovementioned herbal products in improving glycemic indices and lipid profiles, including the effect size reported in the studies, their effective dose, possible side effects, herbs-drug interactions, and their potential action mechanisms.
Collapse
Affiliation(s)
- Hossein Farhadnejad
- Nutrition and Endocrine Research CenterResearch Institute for Endocrine SciencesShahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloufar Saber
- Nutrition and Endocrine Research CenterResearch Institute for Endocrine SciencesShahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asal Neshatbini Tehrani
- Student Research CommitteeAhvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of NutritionSchool of Allied Medical SciencesAhvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mitra Kazemi Jahromi
- Endocrinology and Metabolism Research CenterHormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ebrahim Mokhtari
- Nutrition and Endocrine Research CenterResearch Institute for Endocrine SciencesShahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Norouzzadeh
- Nutrition and Endocrine Research CenterResearch Institute for Endocrine SciencesShahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of NutritionSchool of Public HealthIran University of Medical Sciences, Tehran, Iran
| | - Farshad Teymoori
- Nutrition and Endocrine Research CenterResearch Institute for Endocrine SciencesShahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of NutritionSchool of Public HealthIran University of Medical Sciences, Tehran, Iran
| | - Golaleh Asghari
- Nutrition and Endocrine Research CenterResearch Institute for Endocrine SciencesShahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Community NutritionFaculty of Nutrition Sciences and Food TechnologyNational Nutrition and Food Technology Research InstituteShahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Nutrition and Endocrine Research CenterResearch Institute for Endocrine SciencesShahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research CenterResearch Institute for Endocrine SciencesShahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Li Y, Xu Y, Zhang B, Wang Z, Ma L, Sun L, Wang X, Lin Y, Li JA, Wu C. Atractylodes macrocephala Koidz. and Cuscuta chinensis Lam. extract relieves insulin resistance via PI3K/Akt signalling in diabetic Drosophila. J Tradit Complement Med 2024; 14:424-434. [PMID: 39035690 PMCID: PMC11259714 DOI: 10.1016/j.jtcme.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 12/13/2023] [Accepted: 01/31/2024] [Indexed: 07/23/2024] Open
Abstract
Background and aim Type-2 diabetes mellitus (T2DM) is mainly characterized by insulin resistance (IR) induced by hyperglycaemia and insufficient insulin secretion. We employed a diabetic fly model to examine the effect and molecular mechanism of Atractylodes macrocephala Koidz. and Cuscuta chinensis Lam. (AMK-CCL) extract as traditional Chinese medicine in treating IR and T2DM. Experimental procedure The contents of the active ingredients (rhamnose, xylose, mannose, and hyperoside) in AMK-CCL extract were determined by high-performance liquid chromatography. Wild-type (Cg-GAL4/+) or diabetic (Cg > InRK1409A) Drosophila flies were divided into the control group or metformin group and AMK-CCL (0.0125, 0.025, 0.05, 0.1 g/ml) groups. Food intake, haemolymph glucose and trehalose, protein, weight, triglycerides (TAG), and glycogen were measured to assess glycolipid metabolism. Phosphatidylinositol-3-kinase (PI3K)/Akt signalling was detected using fluorescent reporters [tGPH, Drosophila forkhead box O (dFoxO)-green fluorescent protein (GFP), Glut1-GFP, 2-NBDG] in vivo. Glut1/3 mRNA levels and Akt phosphorylation levels were detected by quantitative polymerase chain reaction and western blotting, respectively, in vitro. Results AMK-CCL extract contained 0.038 % rhamnose, 0.017 % xylose, 0.69 % mannose, and 0.039 % hyperoside. AMK-CCL at 0.0125 g/mL significantly suppressed the increase in circulating glucose, and the decrease in body weight, TAG, and glycogen contents of diabetic flies. AMK-CCL improved PI3K activity, Akt phosphorylation, Glut1/3 expression, and glucose uptake in diabetic flies, and also rescued diabetes-induced dFoxO nuclear localisation. Conclusions These findings indicate that AMK-CCL extract ameliorates IR-induced diabetes via the PI3K/Akt signalling pathway, providing an experimental basis for clinical treatment.
Collapse
Affiliation(s)
- Yinghong Li
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| | - Ye Xu
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| | - Biwei Zhang
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
- School of Public Health, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| | - Zhigang Wang
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| | - Leilei Ma
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
- School of Public Health, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| | - Longyu Sun
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| | - Xiuping Wang
- Institute of Coastal Agriculture Hebei Academy of Agriculture and Forestry Sciences, Tangshan, 063299, China
| | - Yimin Lin
- First Hospital of Qinhuangdao, 258 Wenhua Road, Qinguangdao, 066000, China
| | - Ji-an Li
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
- School of Public Health, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| | - Chenxi Wu
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| |
Collapse
|
16
|
Akhgarjand C, Moludi J, Ebrahimi-Mousavi S, Bagheri A, Bavani NG, Beigmohammadi MT, Malekahmadi M. The effect of chamomile consumption on glycemic markers in humans and animals: a systematic review and meta-analysis. J Diabetes Metab Disord 2024; 23:189-198. [PMID: 38932814 PMCID: PMC11196442 DOI: 10.1007/s40200-023-01345-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/04/2023] [Indexed: 06/28/2024]
Abstract
Purpose The use of natural and herbal products as alternative therapies, in conjunction with blood glucose-lowering medications, is on the rise for patients with diabetes. Our objective was to conduct a systematic review and comprehensive meta-analysis of both human and animal models to investigate the impact of chamomile consumption on glycemic control. Methods A systematic search was conducted on all published papers from January 1990 up to January 2022 via Scopus, PubMed/Medline, Google Scholar, and ISI Web of Science. Human and animal articles evaluating the effect of chamomile on serum glycemic markers were included. We used the random-effects model to establish the pooled effect size. The dose-dependent effect was also assessed. Results Overall, 4 clinical trials on human and 8 studies on animals met the inclusion criteria. With regard to RCTs, a favorable effect of chamomile consumption on serum fasting blood glucose (Standardized Mean Differences (SMD): -0.65, 95% CI: -1.00, -0.29, P < 0.001; I2 = 0%) and hemoglobin A1C (HbA1C) levels (SMD: -0.90, 95% CI: -1.39, -0.40, P < 0.001; I2 = 45.4%) was observed. Considering animal studies, consumption of chamomile extracts significantly reduced serum blood glucose (SMD: -4.37, 95% CI: -5.76, -2.98, P < 0.001; I2 = 61.2%). Moreover, each 100 mg/d increase in chamomile extract intervention resulted in a significantly declined blood glucose concentrations (MD: -54.35; 95% CI: -79.77, -28.93, P < 0.001; I2 = 94.8). Conclusion The current meta-analysis revealed that chamomile consumption could exert favorable effects on serum blood glucose and HbA1C. However, additional randomized controlled trials are needed to further confirm these findings. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-023-01345-8.
Collapse
Affiliation(s)
- Camellia Akhgarjand
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Jalal Moludi
- School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sara Ebrahimi-Mousavi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Bagheri
- School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Narges Ghorbani Bavani
- Department of Community Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Taghi Beigmohammadi
- Department of Anesthesiology and Intensive Care, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Malekahmadi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
- Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, P.O. Box 14155-6117, Iran
| |
Collapse
|
17
|
Cai N, Han Y, Wang G, Huang X, Bo X, Qin H. Effectiveness of Taohong Siwu decoction in the prevention of deep vein thrombosis in hip surgery patients: A systematic review and meta-analysis of randomized controlled trials. Medicine (Baltimore) 2024; 103:e37241. [PMID: 38428876 PMCID: PMC10906615 DOI: 10.1097/md.0000000000037241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/22/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND This systematic review and meta-analysis aimed to evaluate the effects of Taohong Siwu Decoction (THSWD) combined with low molecular weight heparin (LMWH), as well as THSWD alone, on the incidence of Deep vein thrombosis (DVT), D-dimer levels, prothrombin time (PT), activated partial thromboplastin time (APTT), visual analogue scale (VAS) pain score, and calf swelling in patients undergoing hip fracture or replacement surgery, compared to LMWH. METHODS According to the predefined inclusion criteria, we conducted a comprehensive search for randomized controlled trials (RCTs) examining the efficacy of THSWD combined with LMWH or THSWD compared to LMWH in patients with hip fractures or undergoing replacement surgery. The search was performed across multiple databases including China National Knowledge Internet, WanFang, Sinomed, Duxiu, PubMed, Embase, Google Scholar, Cochrane, and Web of Science from their inception until December 2023. Additionally, relevant literature references were retrieved and hand searching of pertinent journals was conducted. The methodological quality assessment of the included trials was carried out following the guidelines outlined in the Cochrane Handbook. Review Manager 5.4 was applied in analyzing and synthesizing. RESULTS A total of 18 RCTs with 1353 patients were included. The results of meta-analysis showed that compared with the control group, the combined group had a better effect on the incidence of DVT [RR = 0.32, 95% CI(0.17, 0.58; P = .0002], D-dimer [SMD = -5.88, 95% CI(-7.66, -4.11); P < .00001], VAS [MD = -1.16, 95% CI(-1.81, -0.50); P = .0005], Calf circumference difference [MD = -0.56, 95% CI(-1.05, -0.08); P = .02]. There was no significant difference in PT and APTT between the combined group and the control group. Meta-analysis results show that the D-dimer, incidence of DVT, PT, and APTT did not significantly differ between the THSWD and the LMWH groups. CONCLUSION This meta-analysis shows that compared with LMWH, THSWD combined with LMWH has a better efficacy in the treatment of DVT after hip surgery, without a significant increase in the incidence of adverse events. Additionally, the combined therapy can also reduce D-dimer, VAS, and swelling. However, due to the limitations of the included studies (such as small sample size and low-quality evidence), the results need to be further verified in more rigorous multicenter clinical trials with a large sample size.
Collapse
Affiliation(s)
- Ningning Cai
- Fuzhou Medical College of Nanchang University, Jiangxi, China
| | | | - Gang Wang
- Xi’an Physical Education University, Shanxi, China
| | - Xiongfeng Huang
- Fuzhou Medical College of Nanchang University, Jiangxi, China
| | - Xueping Bo
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, China
| | - Han Qin
- Anhui No.2 Provincial People’s Hospital, Anhui, China
| |
Collapse
|
18
|
Zhang Y, Jiao X, Liu J, Feng G, Luo X, Zhang M, Zhang B, Huang L, Long Q. A new direction in Chinese herbal medicine ameliorates for type 2 diabetes mellitus: Focus on the potential of mitochondrial respiratory chain complexes. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117484. [PMID: 38012971 DOI: 10.1016/j.jep.2023.117484] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetes is a common chronic disease. Chinese herbal medicine (CHM) has a history of several thousand years in the treatment of diabetes, and active components with hypoglycemic effects extracted from various CHM, such as polysaccharides, flavonoids, terpenes, and steroidal saponins, have been widely used in the treatment of diabetes. AIM OF THE STUDY Research exploring the potential of various CHM compounds to regulate the mitochondrial respiratory chain complex to improve type 2 diabetes mellitus (T2DM). MATERIALS AND METHODS The literature data were primarily obtained from authoritative databases such as PubMed, CNKI, Wanfang, and others within the last decade. The main keywords used include "type 2 diabetes mellitus", "Chinese medicine", "Chinese herbal medicine", "mitochondrial respiratory chain complex", and "mitochondrial dysfunction". RESULTS Chinese herbal medicine primarily regulates the activity of mitochondrial respiratory chain complexes in various tissues such as liver, adipose tissue, skeletal muscle, pancreatic islets, and small intestine. It improves cellular energy metabolism through hypoglycemic, antioxidant, anti-inflammatory and lipid-modulating effects. Different components of CHM can regulate the same mitochondrial respiratory chain complexes, while the same components of a particular CHM can regulate different complex activities. The active components of CHM target different mitochondrial respiratory chain complexes, regulate their aberrant changes and effectively improve T2DM and its complications. CONCLUSION Chinese herbal medicine can modulate the function of mitochondrial respiratory chain complexes in various cell types and exert their hypoglycemic effects through various mechanisms. CHM has significant therapeutic potential in regulating mitochondrial respiratory chain complexes to improve T2DM, but further research is needed to explore the underlying mechanisms and conduct clinical trials to assess the safety and efficacy of these medications. This provides new perspectives and opportunities for personalized improvement and innovative developments in diabetes management.
Collapse
Affiliation(s)
- Yinghui Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xinyue Jiao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jianying Liu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Gang Feng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xia Luo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Mingyue Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Binzhi Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Lizhen Huang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Qinqiang Long
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
19
|
Widjanarko ND, Tamio E, Jusni LFJ, Alvianto S, Arifin ES, Iryaningrum MR. Effects of Combination of Curcumin and Piperine Supplementation on Glycemic Profile in Patients with Prediabetes and Type 2 Diabetes Mellitus: A Systematic Review and Meta-analysis. J ASEAN Fed Endocr Soc 2024; 39:106-114. [PMID: 38863920 PMCID: PMC11163317 DOI: 10.15605/jafes.039.01.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/08/2023] [Indexed: 06/13/2024] Open
Abstract
Objective This study aimed to evaluate the effects of the combination of curcumin and piperine supplementation on Fasting Plasma Glucose (FPG), Homeostatic Model of Insulin Resistance (HOMA-IR), and Body Mass Index (BMI) in patients with prediabetes and type 2 Diabetes Mellitus (T2DM). This review was done to identify potential herbal remedies that may help improve glycemic parameters, leading to better health outcomes in combination with current antidiabetic treatment. Methodology This systematic review was based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). It was conducted in 2023 with sources and databases from MEDLINE, EBSCO-Host, ScienceDirect and ProQuest. This paper included randomized-controlled trials exploring the effects of the combination of curcumin and piperine on patients with prediabetes and T2DM. Systematic reviews, observational studies, case reports, case series, conference abstracts, book sections, commentaries/editorials, non-human studies and articles with unavailable full-text and written in non-English language, were excluded. The key terms for the literature search were "curcumin," "piperine," "prediabetes" and "Type 2 Diabetes Mellitus." We use Cochrane Risk of Bias (RoB) 2 for quality assessment of the included studies and Review Manager (RevMan) 5.4 to do the meta-analysis. Results A total of three studies were included in this systematic review. Two studies from Neta et al., and Cicero et al., showed no significant difference in HOMA-IR, BMI and FPG levels between the curcumin, piperine and placebo groups. One study from Panahi et al. demonstrated a significant difference in BMI levels between the curcumin and piperine and placebo groups (p <0.01). The meta-analysis showed that FPG levels, HOMA-IR and BMI improved among patients with diabetes given in curcumin and piperine with reported mean differences (MD) of = -7.61, 95% CI [-15.26, 0.03], p = 0.05, MD = -0.36, 95% CI [-0.77 to 0.05], p = 0.09, and MD = -0.41, 95% CI [-0.85 to 0.03], p = 0.07, respectively). Conclusions The supplementation of curcumin and piperine showed a numerical reduction in FPG, HOMA-IR and BMI, but were not statistically significant. Further research is needed as there is a paucity of studies included in the review.
Collapse
Affiliation(s)
| | - Erich Tamio
- Faculty of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia
| | | | - Steven Alvianto
- Faculty of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia
| | | | - Maria Riastuti Iryaningrum
- Department of Internal Medicine, Faculty of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia
| |
Collapse
|
20
|
Liu Y, Feng L, Yao L. Albiflorin Alleviates Sepsis-induced Acute Liver Injury through mTOR/p70S6K Pathway. Curr Mol Med 2024; 24:344-354. [PMID: 36892118 DOI: 10.2174/1566524023666230309124004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 12/10/2022] [Accepted: 01/09/2023] [Indexed: 03/10/2023]
Abstract
BACKGROUND Sepsis often induces hepatic dysfunction and inflammation, accounting for a significant increase in the incidence and mortality rates. To this end, albiflorin (AF) has garnered enormous interest due to its potent anti-inflammatory activity. However, the substantial effect of AF on sepsis-mediated acute liver injury (ALI), along with its potential mechanism of action, remains to be explored. METHODS An LPS-mediated primary hepatocyte injury cell model in vitro and a mouse model of CLP-mediated sepsis in vivo were initially built to explore the effect of AF on sepsis. Furthermore, the hepatocyte proliferation by CCK-8 assay in vitro and animal survival analyses in vivo for the survival time of mice were carried out to determine an appropriate concentration of AF. Then, flow cytometry, Western blot (WB), and TUNEL staining analyses were performed to investigate the effect of AF on the apoptosis of hepatocytes. Moreover, the expressions of various inflammatory factors by ELISA and RT-qPCR analyses and oxidative stress by ROS, MDA, and SOD assays were determined. Finally, the potential mechanism of AF alleviating the sepsis-mediated ALI via the mTOR/p70S6K pathway was explored through WB analysis. RESULTS AF treatment showed a significant increase in the viability of LPS-inhibited mouse primary hepatocytes cells. Moreover, the animal survival analyses of the CLP model mice group indicated a shorter survival time than the CLP+AF group. AF-treated groups showed significantly decreased hepatocyte apoptosis, inflammatory factors, and oxidative stress. Finally, AF exerted an effect by suppressing the mTOR/p70S6K pathway. CONCLUSION In summary, these findings demonstrated that AF could effectively alleviate sepsis-mediated ALI via the mTOR/p70S6K signaling pathway.
Collapse
Affiliation(s)
- Yanan Liu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei 430060, P.R. China
| | - Lizhi Feng
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei 430060, P.R. China
| | - Lan Yao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
21
|
Alam MJ, Kamboj P, Sarkar S, Gupta SK, Kasarla SS, Bajpai S, Kumari D, Bisht N, Barge SR, Kashyap B, Deka B, Bharadwaj S, Rahman S, Dutta PP, Borah JC, Talukdar NC, Kumar Y, Banerjee SK. Untargeted metabolomics and phenotype data indicate the therapeutic and prophylactic potential of Lysimachia candida Lindl. towards high-fat high-fructose-induced metabolic syndrome in rats. Mol Omics 2023; 19:787-799. [PMID: 37534494 DOI: 10.1039/d3mo00104k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
The present study evaluated the therapeutic potential of the medicinal plant Lysimachia candida Lindl. against metabolic syndrome in male SD rats fed with a high-fat high-fructose (HFHF) diet. Methanolic extract of Lysimachia candida Lindl. (250 mg kg-1 body weight p.o.) was administrated to the HFHF-fed rats daily for 20 weeks. Blood samples were collected, and blood glucose levels and relevant biochemical parameters were analysed and used for the assessment of metabolic disease phenotypes. In this study, Lysimachia candida decreased HFHF diet-induced phenotypes of metabolic syndrome, i.e., obesity, blood glucose level, hepatic triglycerides, free fatty acids, and insulin resistance. Liquid chromatography-mass spectrometry-based metabolomics was done to study the dynamics of metabolic changes in the serum during disease progression in the presence and absence of the treatment. Furthermore, multivariate data analysis approaches have been employed to identify metabolites responsible for disease progression. Lysimachia candida Lindl. plant extract restored the metabolites that are involved in the biosynthesis and degradation of amino acids, fatty acid metabolism and vitamin metabolism. Interestingly, the results depicted that the treatment with the plant extract restored the levels of acetylated amino acids and their derivatives, which are involved in the regulation of beta cell function, glucose homeostasis, insulin secretion, and metabolic syndrome phenotypes. Furthermore, we observed restoration in the levels of indole derivatives and N-acetylgalactosamine with the treatment, which indicates a cross-talk between the gut microbiome and the metabolic syndrome. Therefore, the present study revealed the potential mechanism of Lysimachia candida Lindl. extract to prevent metabolic syndrome in rats.
Collapse
Affiliation(s)
- Md Jahangir Alam
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati - 781101, Assam, India.
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Parul Kamboj
- Non-communicable Disease Group, Translational Health Science and Technology Institute (THSTI), Faridabad - 121001, Haryana, India.
| | - Soumalya Sarkar
- Non-communicable Disease Group, Translational Health Science and Technology Institute (THSTI), Faridabad - 121001, Haryana, India.
| | - Sonu Kumar Gupta
- Non-communicable Disease Group, Translational Health Science and Technology Institute (THSTI), Faridabad - 121001, Haryana, India.
| | - Siva Swapna Kasarla
- Non-communicable Disease Group, Translational Health Science and Technology Institute (THSTI), Faridabad - 121001, Haryana, India.
| | - Sneh Bajpai
- Non-communicable Disease Group, Translational Health Science and Technology Institute (THSTI), Faridabad - 121001, Haryana, India.
| | - Deepika Kumari
- Non-communicable Disease Group, Translational Health Science and Technology Institute (THSTI), Faridabad - 121001, Haryana, India.
| | - Neema Bisht
- Non-communicable Disease Group, Translational Health Science and Technology Institute (THSTI), Faridabad - 121001, Haryana, India.
| | - Sagar Ramrao Barge
- Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Garchuk, Guwahati - 781035, Assam, India.
| | - Bhaswati Kashyap
- Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Garchuk, Guwahati - 781035, Assam, India.
| | - Barsha Deka
- Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Garchuk, Guwahati - 781035, Assam, India.
| | - Simanta Bharadwaj
- Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Garchuk, Guwahati - 781035, Assam, India.
| | - Seydur Rahman
- Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Garchuk, Guwahati - 781035, Assam, India.
| | - Partha Pratim Dutta
- Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Garchuk, Guwahati - 781035, Assam, India.
- Assam Down Town University, Panikhaiti, Guwahati - 781006, Assam, India
| | - Jagat C Borah
- Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Garchuk, Guwahati - 781035, Assam, India.
| | - Narayan Chandra Talukdar
- Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Garchuk, Guwahati - 781035, Assam, India.
- Assam Down Town University, Panikhaiti, Guwahati - 781006, Assam, India
| | - Yashwant Kumar
- Non-communicable Disease Group, Translational Health Science and Technology Institute (THSTI), Faridabad - 121001, Haryana, India.
| | - Sanjay K Banerjee
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati - 781101, Assam, India.
- Non-communicable Disease Group, Translational Health Science and Technology Institute (THSTI), Faridabad - 121001, Haryana, India.
| |
Collapse
|
22
|
Ahmad K, Shaikh S, Lim JH, Ahmad SS, Chun HJ, Lee EJ, Choi I. Therapeutic application of natural compounds for skeletal muscle-associated metabolic disorders: A review on diabetes perspective. Biomed Pharmacother 2023; 168:115642. [PMID: 37812896 DOI: 10.1016/j.biopha.2023.115642] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/19/2023] [Accepted: 10/03/2023] [Indexed: 10/11/2023] Open
Abstract
Skeletal muscle (SM) plays a vital role in energy and glucose metabolism by regulating insulin sensitivity, glucose uptake, and blood glucose homeostasis. Impaired SM metabolism is strongly linked to several diseases, particularly type 2 diabetes (T2D). Insulin resistance in SM may result from the impaired activities of insulin receptor tyrosine kinase, insulin receptor substrate 1, phosphoinositide 3-kinase, and AKT pathways. This review briefly discusses SM myogenesis and the critical roles that SM plays in insulin resistance and T2D. The pharmacological targets of T2D which are associated with SM metabolism, such as DPP4, PTB1B, SGLT, PPARγ, and GLP-1R, and their potential modulators/inhibitors, especially natural compounds, are discussed in detail. This review highlights the significance of SM in metabolic disorders and the therapeutic potential of natural compounds in targeting SM-associated T2D targets. It may provide novel insights for the future development of anti-diabetic drug therapies. We believe that scientists working on T2D therapies will benefit from this review by enhancing their knowledge and updating their understanding of the subject.
Collapse
Affiliation(s)
- Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Jeong Ho Lim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Hee Jin Chun
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea.
| |
Collapse
|
23
|
Lira Neto JCG, Araújo MFMD, Araújo AVEC, Figueira JNR, Maranhão TA, Damasceno MMC. Effectiveness of cinnamon in the reduction of lipid levels in people with diabetes: a randomized clinical trial. Rev Gaucha Enferm 2023; 44:e20230051. [PMID: 37909519 DOI: 10.1590/1983-1447.2023.20230051.en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/01/2023] [Indexed: 11/03/2023] Open
Abstract
OBJECTIVE To evaluate the effectiveness of cinnamon in reducing lipid levels in people with diabetes. METHOD Randomized clinical trial of parallel groups, triple-blind, conducted in Basic Health Units in the state of Piauí in 2019. People with Type 2 Diabetes Mellitus, between 18 and 80 years old, using oral antidiabetics, were included, and divided into two groups. The experimental group tested 3g of cinnamon for 90 days. RESULTS 140 people participated in the study. From these, the experimental group (n= 71) showed a reduction in mean levels of total cholesterol (p= 0.316 | CI 95% -24.9-8.1), LDL (p= 0.024 | CI 95% -29.3 -2.1) and triglycerides (p= 0.969 | 95% CI -28.6-27.5), and increased HDL (p= 0.001 | 95% CI 4.2-10.2). CONCLUSION The use of 3g of cinnamon per day, for 90 days, seems to help reduce LDL values and increase HDL levels in patients with diabetes.
Collapse
|
24
|
Tian Y, Pang G, Pan L. Clinical efficacy of Huanglian Wendan decoction in treating type 2 diabetes mellitus: A systematic review and meta-analysis. Medicine (Baltimore) 2023; 102:e35299. [PMID: 37800822 PMCID: PMC10553187 DOI: 10.1097/md.0000000000035299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/29/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Huanglian Wendan decoction (HLWDD) is a traditional Chinese prescription, which has been used to treat type 2 diabetes mellitus (T2DM) in recent years. However, no studies have evaluated its underlying clinical efficacy. Therefore, we used systematic review and meta-analysis to explore the clinical efficacy of HLWDD in treating T2DM. METHODS The randomized controlled trials of HLWDD on T2DM were retrieved from Chinese and foreign databases. The primary outcomes included fasting blood glucose (FBG), 2-hour postprandial blood glucose (2hPG), and glycosylated hemoglobin, type A1c (HbA1c). The secondary outcomes included fasting serum insulin, homeostasis model assessment of insulin resistance (HOMA-IR), total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-c), and high-density lipoprotein cholesterol (HDL-c). Statistical analyses were performed using Review Manager and Stata software. Mean difference (MD) with 95% confidence intervals (CI) were used to describe results. The grades of recommendation assessment, development and evaluation approach was used to rate the quality of the evidence; and trial sequential analysis was used to evaluate the required information size and treatment benefits. RESULTS Twenty-three randomized controlled trials were included in this study. We showed that HLWDD can improve FBG (MD = -0.99, 95% CI: -1.10 to -0.88), 2hPG (MD = -1.57, 95% CI: -1.97 to -1.17), HbA1c (MD = -1.11, 95% CI: -1.42 to -0.80), HOMA-IR (MD = -0.80, 95% CI: -1.80 to -0.51), TC (MD = -0.65, 95% CI: -0.88 to -0.42), TG (MD = -0.32, 95% CI: -0.38 to -0.27), LDL-c (MD = -0.54, 95% CI: -0.66 to -0.41), and HDL-c (MD = 0.08, 95% CI: 0.02-0.15) levels in T2DM patients. Trial sequential analysis suggested that the eficacy of HLWDD in improving FBG, 2hPG, HbA1c, HOMA-IR, TC, TG, LDL-c, and HDL-c was sufficient to draw a firm conclusion. Grades of recommendation assessment showed that HLWDD only has high or moderate quality of evidence in improving FBG, and TG. CONCLUSION HLWDD can improve blood glucose and blood lipid levels in T2DM patients, and may be a potential drug to treat T2DM.
Collapse
Affiliation(s)
- Yuan Tian
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Guowei Pang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Linlin Pan
- Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| |
Collapse
|
25
|
Yang C, Liu H, Xie Z, Yang Q, Du L, Xie C. The protective role of shenqi compound in type 2 diabetes: A comprehensive investigation of pancreatic β-cell function and mass. Biomed Pharmacother 2023; 166:115287. [PMID: 37572639 DOI: 10.1016/j.biopha.2023.115287] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/26/2023] [Accepted: 08/04/2023] [Indexed: 08/14/2023] Open
Abstract
Type 2 diabetes (T2D) is a prevalent metabolic disorder characterized by impaired insulin secretion and insulin resistance, resulting in elevated blood glucose levels. The dysfunction and loss of pancreatic β-cells, responsible for producing insulin, contribute to the development of T2D. Traditional Chinese medicine (TCM) has emerged as a potential source of innovative therapeutic interventions. However, limited research exists on Chinese herbal formulations specifically targeting the protection of pancreatic β-cell function and mass. One such formulation is the Shenqi compound (SQC), widely used in China and consisting of Panax Ginseng, Astragali Radix, Rhizoma Dioscoreae, Corni Fructus, Rehmanniae Radix, Salviae Miltiorrhizae Radix et Rhizoma, Radix Trichosanthis, and Rhei Radix et Rhizoma. Understanding the mechanisms underlying the therapeutic effects of SQC is crucial for developing novel treatment strategies for T2D. This study aims to comprehensively investigate the scientific evidence supporting the role of SQC in alleviating T2D by targeting the protection of pancreatic β-cell function and mass. Spontaneously diabetic GK rats were used as the animal model, receiving SQC (14.4 g/kg/d) for 8 weeks. The results demonstrate multiple beneficial effects of SQC, including significant control of blood glucose levels (P < 0.05), inhibition of insulin resistance (measured by Western Blot), reduction of hyperinsulinemia (P < 0.05), attenuation of oxidative stress (P < 0.05), suppression of inflammation (P < 0.05), protection against islet hypertrophy and beta cell proliferation (evaluated through pathological staining), and inhibition of β-cell apoptosis and senescence (also assessed through pathological staining). These findings indicate the promotion of β-cell survival and function. In vitro experiments using isolated islets further support these results, revealing improvements in insulin secretion (P < 0.05) and β-cell function following SQC therapy (P < 0.05). This represents a significant breakthrough in addressing β-cell dysfunction and preserving mass within the context of TCM. Overall, SQC shows promise as a natural therapeutic approach for T2D, with potential benefits in preserving pancreatic β-cell function and mass. This enhances the practical applicability and significance of the research by bridging the gap between experimental findings and clinical practice, thereby providing important clinical value in TCM treatment of T2D. Further research is necessary to elucidate its precise mechanisms of action and optimize its clinical application.
Collapse
Affiliation(s)
- Chan Yang
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, Sichuan, China.
| | - Hanyu Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, TCM regulating metabolic diseases key Laboratory of Sichuan Province, 610075 Chengdu, Sichuan, China
| | - Ziyan Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, TCM regulating metabolic diseases key Laboratory of Sichuan Province, 610075 Chengdu, Sichuan, China
| | - Qiangfei Yang
- Jianyang City People's Hospital, 610040 Sichuan, China
| | - Lian Du
- Chengdu University of Traditional Chinese Medicine, China
| | - Chunguang Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, TCM regulating metabolic diseases key Laboratory of Sichuan Province, 610075 Chengdu, Sichuan, China.
| |
Collapse
|
26
|
Shaukat A, Zaidi A, Anwar H, Kizilbash N. Mechanism of the antidiabetic action of Nigella sativa and Thymoquinone: a review. Front Nutr 2023; 10:1126272. [PMID: 37818339 PMCID: PMC10561288 DOI: 10.3389/fnut.2023.1126272] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 07/27/2023] [Indexed: 10/12/2023] Open
Abstract
Introduction Long used in traditional medicine, Nigella sativa (NS; Ranunculaceae) has shown significant efficacy as an adjuvant therapy for diabetes mellitus (DM) management by improving glucose tolerance, decreasing hepatic gluconeogenesis, normalizing blood sugar and lipid imbalance, and stimulating insulin secretion from pancreatic cells. In this review, the pharmacological and pharmacokinetic properties of NS as a herbal diabetes medication are examined in depth, demonstrating how it counteracts oxidative stress and the onset and progression of DM. Methods This literature review drew on databases such as Google Scholar and PubMed and various gray literature sources using search terms like the etiology of diabetes, conventional versus herbal therapy, subclinical pharmacology, pharmacokinetics, physiology, behavior, and clinical outcomes. Results The efficiency and safety of NS in diabetes, notably its thymoquinone (TQ) rich volatile oil, have drawn great attention from researchers in recent years; the specific therapeutic dose has eluded determination so far. TQ has anti-diabetic, anti-inflammatory, antioxidant, and immunomodulatory properties but has not proved druggable. DM's intimate link with oxidative stress, makes NS therapy relevant since it is a potent antioxidant that energizes the cell's endogenous arsenal of antioxidant enzymes. NS attenuates insulin resistance, enhances insulin signaling, suppresses cyclooxygenase-2, upregulates insulin-like growth factor-1, and prevents endothelial dysfunction in DM. Conclusion The interaction of NS with mainstream drugs, gut microbiota, and probiotics opens new possibilities for innovative therapies. Despite its strong potential to treat DM, NS and TQ must be examined in more inclusive clinical studies targeting underrepresented patient populations.
Collapse
Affiliation(s)
- Arslan Shaukat
- Department of Physiology, Government College University - GCU, Faisalabad, Punjab, Pakistan
| | - Arsalan Zaidi
- National Probiotic Laboratory, National Institute for Biotechnology and Genetic Engineering College - NIBGE-C, Faisalabad, Punjab, Pakistan
- Pakistan Institute of Engineering and Applied Sciences - PIEAS, Nilore, Islamabad, Pakistan
| | - Haseeb Anwar
- Department of Physiology, Government College University - GCU, Faisalabad, Punjab, Pakistan
| | - Nadeem Kizilbash
- Department Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
27
|
Faingold II, Soldatova YV, Poletaeva DA, Klimanova EN, Sanina NA. Influence of Nitrosyl Iron Complex with Thiosulfate Ligands on Therapeutically Important Targets Related to Type 2 Diabetes Mellitus. MEMBRANES 2023; 13:615. [PMID: 37504981 PMCID: PMC10384030 DOI: 10.3390/membranes13070615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/29/2023]
Abstract
The high prevalence of type 2 diabetes mellitus (T2DM), and the lack of effective therapy, determine the need for new treatment options. The present study is focused on the NO-donors drug class as effective antidiabetic agents. Since numerous biological systems are involved in the pathogenesis and progression of T2DM, the most promising approach to the development of effective drugs for the treatment of T2DM is the search for pharmacologically active compounds that are selective for a number of therapeutic targets for T2DM and its complications: oxidative stress, non-enzymatic protein glycation, polyol pathway. The nitrosyl iron complex with thiosulfate ligands was studied in this work. Binuclear iron nitrosyl complexes are synthetic analogues of [2Fe-2S] centers in the regulatory protein natural reservoirs of NO. Due to their ability to release NO without additional activation under physiological conditions, these compounds are of considerable interest for the development of potential drugs. The present study explores the effects of tetranitrosyl iron complex with thiosulfate ligands (TNIC-ThS) on T2DM and its complications regarding therapeutic targets in vitro, as well as its ability to bind liposomal membrane, inhibit lipid peroxidation (LPO), and non-enzymatic glycation of bovine serum albumin (BSA), as well as aldose reductase, the enzyme that catalyzes the reduction in glucose to sorbitol in the polyol pathway. Using the fluorescent probe method, it has been shown that TNIC-ThS molecules interact with both hydrophilic and hydrophobic regions of model membranes. TNIC-ThS inhibits lipid peroxidation, exhibiting antiradical activity due to releasing NO (IC50 = 21.5 ± 3.7 µM). TNIC-ThS was found to show non-competitive inhibition of aldose reductase with Ki value of 5.25 × 10-4 M. In addition, TNIC-ThS was shown to be an effective inhibitor of the process of non-enzymatic protein glycation in vitro (IC50 = 47.4 ± 7.6 µM). Thus, TNIC-ThS may be considered to contribute significantly to the treatment of T2DM and diabetic complications.
Collapse
Affiliation(s)
- Irina I Faingold
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov Avenue 1, Chernogolovka 142432, Russia
| | - Yuliya V Soldatova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov Avenue 1, Chernogolovka 142432, Russia
| | - Darya A Poletaeva
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov Avenue 1, Chernogolovka 142432, Russia
| | - Elena N Klimanova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov Avenue 1, Chernogolovka 142432, Russia
| | - Nataliya A Sanina
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov Avenue 1, Chernogolovka 142432, Russia
- Medicinal Chemistry Research and Education Center, Moscow Region State University, Mytishchy 142432, Russia
| |
Collapse
|
28
|
Choi Y, Kwon HK, Park S. Polygenic Variants Linked to Oxidative Stress and the Antioxidant System Are Associated with Type 2 Diabetes Risk and Interact with Lifestyle Factors. Antioxidants (Basel) 2023; 12:1280. [PMID: 37372010 PMCID: PMC10295348 DOI: 10.3390/antiox12061280] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Oxidative stress is associated with insulin resistance and secretion, and antioxidant systems are essential for preventing and managing type 2 diabetes (T2DM). This study aimed to explore the polygenic variants linked to oxidative stress and the antioxidant system among those associated with T2DM and the interaction of their polygenic risk scores (PRSs) with lifestyle factors in a large hospital-based cohort (n = 58,701). Genotyping, anthropometric, biochemical, and dietary assessments were conducted for all participants with an average body mass index of 23.9 kg/m2. Genetic variants associated with T2DM were searched through genome-wide association studies in participants with T2DM (n = 5383) and without T2DM (n = 53,318). The Gene Ontology database was searched for the antioxidant systems and oxidative stress-related genes among the genetic variants associated with T2DM risk, and the PRS was generated by summing the risk alleles of selected ones. Gene expression according to the genetic variant alleles was determined on the FUMA website. Food components with low binding energy to the GSTA5 protein generated from the wildtype and mutated GSTA5_rs7739421 (missense mutation) genes were selected using in silico analysis. Glutathione metabolism-related genes, including glutathione peroxidase (GPX)1 and GPX3, glutathione disulfide reductase (GSR), peroxiredoxin-6 (PRDX6), glutamate-cysteine ligase catalytic subunit (GCLC), glutathione S-transferase alpha-5 (GSTA5), and gamma-glutamyltransferase-1 (GGT1), were predominantly selected with a relevance score of >7. The PRS related to the antioxidant system was positively associated with T2DM (ORs = 1.423, 95% CI = 1.22-1.66). The active site of the GASTA proteins having valine or leucine at 55 due to the missense mutation (rs7739421) had a low binding energy (<-10 kcal/mol) similarly or differently to some flavonoids and anthocyanins. The PRS interacted with the intake of bioactive components (specifically dietary antioxidants, vitamin C, vitamin D, and coffee) and smoking status (p < 0.05). In conclusion, individuals with a higher PRS related to the antioxidant system may have an increased risk of T2DM, and there is a potential indication that exogenous antioxidant intake may alleviate this risk, providing insights for personalized strategies in T2DM prevention.
Collapse
Affiliation(s)
- Youngjin Choi
- Department of Food Science & Technology, Hoseo University, Asan 31499, Republic of Korea;
| | - Hyuk-Ku Kwon
- Department of Environmental Engineering, Hoseo University, Asan 31499, Republic of Korea;
| | - Sunmin Park
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan 31499, Republic of Korea
| |
Collapse
|
29
|
Zhao Y, Song P, Yin S, Fan T, Li F, Ge X, Liu T, Xu W, Xu S, Chen L. Onchidium struma polysaccharides exhibit hypoglycemic activity and modulate the gut microbiota in mice with type 2 diabetes mellitus. Food Funct 2023; 14:1937-1951. [PMID: 36691957 DOI: 10.1039/d2fo02450k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Onchidium struma polysaccharides (OsPs) are natural biologically active compounds, and our previous work showed that they can inhibit the activity of α-glucosidase in vitro, showing potential hypoglycemic activity. However, the effects of OsPs on type 2 diabetes mellitus (T2DM) in vivo remain unknown. Thus, the anti-diabetic activity of OsPs was evaluated in the present study in diabetic mice. The results showed that OsPs can significantly ameliorate the features of T2DM in mice by improving the levels of fasting blood glucose (FBG), oral glucose tolerance test (OGTT), and pro-inflammatory factors, and ameliorating insulin resistance. Furthermore, OsPs can significantly improve biochemical indicators, decrease the contents of total cholesterol (TC) and triglyceride (TG), and reduce lipid accumulation in the liver. The possible mechanism of the prevention and treatment of T2DM by OsPs may involve the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT-1) signaling pathway. OsPs can regulate the dysbiosis of gut microbiota and reverse the abundance of Lactobacillus in mice with T2DM. Moreover, OsPs significantly increased the concentration of short-chain fatty acids (SCFAs) in mice with T2DM. Our results indicate that OsPs can be used as a novel food supplement for the prevention and treatment of T2DM.
Collapse
Affiliation(s)
- Yunfeng Zhao
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Peilin Song
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China. .,Public Analysis Department, Pharmaceutical Research Institute of Jumpcan Pharmaceutical Group Co., Ltd, Taizhou, Jiangsu 225300, China
| | - Shuai Yin
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Tianyong Fan
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Fengwei Li
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Xiaodong Ge
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Tingting Liu
- Clinical Pharmacy Department, Yancheng Second People's Hospital, Yancheng 224051, China
| | - Wei Xu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China. .,Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng 224051, China
| | - Su Xu
- Department of Anorectal Surgery, Yancheng Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu 224001, China.
| | - Ligen Chen
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China. .,Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng 224051, China
| |
Collapse
|
30
|
Sajadimajd S, Deravi N, Forouhar K, Rahimi R, Kheirandish A, Bahramsoltani R. Endoplasmic reticulum as a therapeutic target in type 2 diabetes: Role of phytochemicals. Int Immunopharmacol 2023; 114:109508. [PMID: 36495694 DOI: 10.1016/j.intimp.2022.109508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorders characterized by insulin resistance and β-cell dysfunction with an increasing worldwide incidence. Several studies have revealed that long-term glucotoxicity results in β-cell failure and death through induction of endoplasmic reticulum (ER) stress. Owing to the chronic progression of T2DM and the low effectiveness of antidiabetic drugs in long-term use, medicinal plants and their secondary metabolites seem to be the promising alternatives. Here we have provided a comprehensive review regarding the role of phytochemicals to alleviate ER stress in T2DM. Ginsenoside compound K, baicalein, quercetin, isopulegol, kaempferol, liquiritigenin, aspalathin, and tyrosol have demonstrated remarkable improvement of T2DM via modulation of ER stress. Arctigenin and total glycosides of peony have been shown to be effective in the treatment of diabetic retinopathy through modulation of ER stress. The effectiveness of grape seed proanthocyanidins and wolfberry is also shown in the relief of diabetic neuropathy and retinopathy. Resveratrol is involved in the prevention of atherosclerosis via ER stress modulation. Taken together, the data described herein revealed the capability of herbal constituents to prevent different complications of T2DM via a decrease in ER stress which open new doors to the treatment of diabetes.
Collapse
Affiliation(s)
- Soraya Sajadimajd
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Forouhar
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Roja Rahimi
- Derpartment of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran; PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Ali Kheirandish
- Department of Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Roodabeh Bahramsoltani
- Derpartment of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran; PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
31
|
YILDIRIM G, RASHİDİ M. The Effect of Herbal Product Use on BMI and HbA1c in Patients with Diabetes. İSTANBUL GELIŞIM ÜNIVERSITESI SAĞLIK BILIMLERI DERGISI 2022. [DOI: 10.38079/igusabder.1169051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Aim: Patients with diabetes can use herbal products to better manage the disease. The aim of this study is to examine the rate of herbal product use and the effect of herbal product use on Body Mass Index (BMI) and hemoglobin A1c (HbA1c) values in patients with diabetes.Method: The descriptive and cross-sectional study was conducted in the diabetes outpatient clinic of a hospital in Istanbul with a total of 104 patients with diabetes. The data were collected using a data collection form, which questioned the patients' socio-demographic characteristics, disease information and herbal product use. Data analysis was performed using Chi-square, One-Sample Kolmogorov-Smirnov test and Mann Whitney U test in computer environment.Results: The mean age of patients with diabetes was 61,08±9,3 years, the mean BMI was 26,3±5,4kg/m², and the mean HbA1c value was 6,9%±1,8%. The BMI and HbA1c values of the patients using herbal products were lower than the patients not using herbal products (respectively; p=,002; p=,047). It was determined that the duration of herbal product use did not affect BMI and HbA1c values (p>,05).Conclusion: The use of herbal products was high in patients with diabetes. It was determined that olive leaf, cinnamon leaf, thyme juice, garlic, black sesame, blueberry, fenugreek seeds, French lavender and bitter almond were used as herbal products. Herbal product use decreased BMI and HbA1c values.
Collapse
Affiliation(s)
- Gülay YILDIRIM
- TRAKYA ÜNİVERSİTESİ, KEŞAN HAKKI YÖRÜK SAĞLIK YÜKSEKOKULU
| | - Mahruk RASHİDİ
- İSTANBUL GELİŞİM ÜNİVERSİTESİ, SAĞLIK BİLİMLERİ YÜKSEKOKULU, HEMŞİRELİK BÖLÜMÜ
| |
Collapse
|
32
|
Prakash C, Tyagi J, Rabidas SS, Kumar V, Sharma D. Therapeutic Potential of Quercetin and its Derivatives in Epilepsy: Evidence from Preclinical Studies. Neuromolecular Med 2022:10.1007/s12017-022-08724-z. [PMID: 35951285 DOI: 10.1007/s12017-022-08724-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 07/18/2022] [Indexed: 10/15/2022]
Abstract
Quercetin is a polyphenolic bioactive compound highly enriched in dietary fruits, vegetables, nuts, and berries. Quercetin and its derivatives like rutin and hyperoside are known for their beneficial effects in various neurological conditions including epilepsy. The clinical studies of quercetin and its derivatives in relation to epilepsy are limited. This review provides the evidence of most recent knowledge of anticonvulsant properties of quercetin and its derivatives on preclinical studies. Additionally, the studies demonstrating antiseizure potential of various plants extracts enriched with quercetin and its derivatives has been included in this review. Herein, we have also discussed neuroprotective effect of these bioactive compound and presented underlying mechanisms responsible for anticonvulsant properties in brief. Finally, limitations of quercetin and its derivatives as antiseizure compounds as well as possible strategies to enhance efficacy have also been discussed.
Collapse
Affiliation(s)
- Chandra Prakash
- Neurobiology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Jyoti Tyagi
- Neurobiology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Shyam Sunder Rabidas
- Neurobiology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Vijay Kumar
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Deepak Sharma
- Neurobiology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
33
|
Sani A, Tajik A, Seiiedi SS, Khadem R, Tootooni H, Taherynejad M, Sabet Eqlidi N, Alavi dana SMM, Deravi N. A review of the anti-diabetic potential of saffron. Nutr Metab Insights 2022; 15:11786388221095223. [PMID: 35911474 PMCID: PMC9335478 DOI: 10.1177/11786388221095223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 03/30/2022] [Indexed: 11/15/2022] Open
Abstract
Diabetes mellitus is one of the most prevalent metabolic disorders that affect people of all genders, ages, and races. Medicinal herbs have gained attention from researchers and have been widely investigated for their antidiabetic potential. Saffron (Crocus sativus L.) and its main constituents, that is, crocin and crocetin, are natural carotenoid compounds, widely known to possess a wide spectrum of properties and induce pleiotropic anti-inflammatory, anti-oxidative, and neuro-protective effects. An increasing number of experimental, animal and human studies have investigated the effects and mechanism of action of these compounds and their potential therapeutic use in the treatment of diabetes. This narrative review presents the key findings of published clinical studies that examined the effects of saffron and/or its constituents in the context of diabetes mellitus. Moreover, an overview of the proposed underlying mechanisms mediating these effects, the medicinal applications of saffron, and the new findings regarding its effect on diabetes and various cellular and molecular mechanisms of action will be debated.
Collapse
Affiliation(s)
- Anis Sani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Tajik
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seiied Sina Seiiedi
- Student Research Committee, Department of Medicine, Ardabil branch, Islamic Azad University, Ardabil, Iran
| | - Razieh Khadem
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Haniye Tootooni
- Student Research Committee, Varastegan Institute for Medical Sciences, Mashhad, Iran
| | | | - Nasim Sabet Eqlidi
- Student Research Committee, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | - Niloofar Deravi
- Student Research committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Niloofar Deravi, Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Arabi Ave, Daneshjoo Blvd, Velenjak, Tehran 19839-63113, Iran.
| |
Collapse
|
34
|
Yusuf AP, Zhang JY, Li JQ, Muhammad A, Abubakar MB. Herbal medications and natural products for patients with covid-19 and diabetes mellitus: Potentials and challenges. PHYTOMEDICINE PLUS : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 2:100280. [PMID: 35463625 PMCID: PMC9014648 DOI: 10.1016/j.phyplu.2022.100280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/25/2022] [Accepted: 04/12/2022] [Indexed: 04/21/2023]
Abstract
BACKGROUND The presence of diabetes mellitus (DM) among COVID-19 patients is associated with increased hospitalization, morbidity, and mortality. Evidence has shown that hyperglycemia potentiates SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection and plays a central role in severe COVID-19 and diabetes comorbidity. In this review, we explore the therapeutic potentials of herbal medications and natural products in the management of COVID-19 and DM comorbidity and the challenges associated with the preexisting or concurrent use of these substances. METHODS Research papers that were published from January 2016 to December 2021 were retrieved from PubMed, ScienceDirect, and Google Scholar databases. Papers reporting clinical evidence of antidiabetic activities and any available evidence of the anti-COVID-19 potential of ten selected natural products were retrieved and analyzed for discussion in this review. RESULTS A total of 548 papers (73 clinical trials on the antidiabetic activities of the selected natural products and 475 research and review articles on their anti-COVID-19 potential) were retrieved from the literature search for further analysis. A total of 517 articles (reviews and less relevant research papers) were excluded. A cumulative sum of thirty-one (31) research papers (20 clinical trials and 10 others) met the criteria and have been discussed in this review. CONCLUSION The findings of this review suggest that phenolic compounds are the most promising phytochemicals in the management of COVID-19 and DM comorbidity. Curcumin and propolis have shown substantial evidence against COVID-19 and DM in humans and are thus, considered the best potential therapeutic options.
Collapse
Key Words
- 8-OHDG, 8-hydroxy-2’-deoxyguanosine
- ACE2
- ACE2, Angiotensin-converting enzyme 2
- ADMA, asymmetric de-methyl-arginine
- ARDS, acute respiratory distress syndrome
- COVID-19
- Comorbidity
- DM, diabetes mellitus
- Diabetes
- FBS, fasting blood sugar
- GLUT-4, glucose transporter-4
- GSK-3β, glycogen synthase kinase-3β
- HDL, high-density lipoprotein
- HOMA, homeostasis model assessment
- Herbal medication
- IAPP, islet amyloid polypeptide
- IFN, interferon
- IFNAR2, interferon-alpha receptor 2
- IL-6, interleukin-6
- LDL, low-density lipoprotein
- MDA, malondialdehyde
- Mpro, main protease
- Natural products
- PLpro, papain-like protease
- PON1, paraoxonase-1
- RBD, receptor-binding domain
- RCT, randomized control trial
- RdRp, RNA-dependent RNA polymerase
- SARS-CoV-2, severe acute respiratory syndrome coronavirus-2
- SFJDC, Shufeng Jiedu Capsule
- T1D, type 1 diabetes
- T2D, type 2 diabetes
- TAC, total antioxidant capacity
- TMPRSS2, transmembrane protease serine 2
- hs-CRP, high-sensitivity C-reactive protein
Collapse
Affiliation(s)
- Abdurrahman Pharmacy Yusuf
- Department of Biochemistry, School of Life Sciences, Federal University of Technology, P.M.B 65, Minna, Niger State, Nigeria
| | - Jian-Ye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Jing-Quan Li
- The first Affiliated Hospital, Hainan Medical University, Haikou, P.R. China
| | - Aliyu Muhammad
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University Zaria, 810107, Kaduna State, Nigeria
| | - Murtala Bello Abubakar
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, P.M.B. 2254, Sokoto, Nigeria
| |
Collapse
|
35
|
Computational Study of Asian Propolis Compounds as Potential Anti-Type 2 Diabetes Mellitus Agents by Using Inverse Virtual Screening with the DIA-DB Web Server, Tanimoto Similarity Analysis, and Molecular Dynamic Simulation. Molecules 2022; 27:molecules27133972. [PMID: 35807241 PMCID: PMC9268573 DOI: 10.3390/molecules27133972] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 02/01/2023] Open
Abstract
Propolis contains a wide range of pharmacological activities because of their various bioactive compounds. The beneficial effect of propolis is interesting for treating type-2 diabetes mellitus (T2DM) owing to dysregulation of multiple metabolic processes. In this study, 275 of 658 Asian propolis compounds were evaluated as potential anti-T2DM agents using the DIA-DB web server towards 18 known anti-diabetes protein targets. More than 20% of all compounds could bind to more than five diabetes targets with high binding affinity (<−9.0 kcal/mol). Filtering with physicochemical and pharmacokinetic properties, including ADMET parameters, 12 compounds were identified as potential anti-T2DM with favorable ADMET properties. Six of those compounds, (2R)-7,4′-dihydroxy-5-methoxy-8-methylflavone; (RR)-(+)-3′-senecioylkhellactone; 2′,4′,6′-trihydroxy chalcone; alpinetin; pinobanksin-3-O-butyrate; and pinocembrin-5-methyl ether were first reported as anti-T2DM agents. We identified the significant T2DM targets of Asian propolis, namely retinol-binding protein-4 (RBP4) and aldose reductase (AKR1B1) that have important roles in insulin sensitivity and diabetes complication, respectively. Molecular dynamic simulations showed stable interaction of selected propolis compounds in the active site of RBP4 and AKR1B1. These findings suggest that Asian propolis compound may be effective for treatment of T2DM by targeting RBP4 and AKR1B1.
Collapse
|
36
|
Cao Z, Huang D, Tang C, Lu Y, Huang S, Peng C, Hu X. Pyroptosis in diabetes and diabetic nephropathy. Clin Chim Acta 2022; 531:188-196. [DOI: 10.1016/j.cca.2022.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/14/2022]
|
37
|
Ebrahimzadeh A, Ebrahimzadeh A, Mirghazanfari SM, Hazrati E, Hadi S, Milajerdi A. The effect of ginger supplementation on metabolic profiles in patients with type 2 diabetes mellitus: A systematic review and meta-analysis of randomized controlled trials. Complement Ther Med 2022; 65:102802. [PMID: 35031435 DOI: 10.1016/j.ctim.2022.102802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND There is some evidence regarding the positive effects of ginger supplementation on metabolic profile in patients with type 2 diabetes (T2DM). However, they are conflicting. The present systematic review and meta-analysis aimed to summarize earlier findings for the effect of ginger supplementation on metabolic profile in patients with T2DM. METHODS Scopus, PubMed and Google Scholar databases were systematically searched up until September 2021 to collect all randomized clinical trials that evaluated the effect of ginger supplementation on FBS, HbA1c, TC, TG, LDL, HDL, SBP and DBP in patients with T2DM. We conducted our study according to the 2020 PRISMA guidelines. We included only English language publications. Pooled effect sizes were measured using a random-effects model and were reported as the weighted mean difference (WMD) and 95% CI. In addition, the Cochrane Collaboration's risk of bias tool was used to evaluate quality of the trials. RESULTS In overall, 10 articles were included in this systematic review and meta-analysis. Our pooled meta-analysis indicated a significant reduction in FBS following ginger supplementation by polling 8 effect sizes [weighted mean difference (WMD): - 18.81; 95% CI: - 28.70, - 8.92), I2 = 77.4%] and in HbA1C through 7 effect sizes (WMD: -0.57; 95% CI: -0.93, -0.20, I2 =88.6%). Pooling 5 effect sizes, we found a significant reduction in SBP (WMD: -4.20; 95% CI: -7.64, -0.77, I2 =97%) and DBP [WMD: - 1.61; 95% CI: - 3.04, - 0.18), I2 = 93.2%] after supplementation with ginger. However, our pooled meta-analysis indicated that ginger supplementation had no significant influence on lipid profile involving TG, TC, LDL and HDL. CONCLUSIONS We found significant reductions in FBS, HbA1C, SBP and DBP after supplementation with ginger in patients with T2DM compared to control group, with no significant changes in serum lipids. Further large RCTs are required to shed light on this issue.
Collapse
Affiliation(s)
- Armin Ebrahimzadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Anahita Ebrahimzadeh
- Homaijan health care center, deputy of health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sayid Mahdi Mirghazanfari
- Department of Physiology and Iranian Medicine, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Ebrahim Hazrati
- Trauma Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Saeid Hadi
- Department of Health, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Alireza Milajerdi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran; Department of Health, School of Medicine, AJA University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
38
|
Jiang J, Huang Y, Wang W, Sun C, Liu Q, Chen Y, Hu T, Ma X, Peng C, Ma Y, Liu S, Rao C. Activation of ATM/Chk2 by Zanthoxylum armatum DC extract induces DNA damage and G1/S phase arrest in BRL 3A cells. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114832. [PMID: 34775036 DOI: 10.1016/j.jep.2021.114832] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zanthoxylum armatum DC is a traditional medicinal plant. It is widely used in clinical treatment and disease prevention in China, India and other regions. Modern studies have reported the phytotoxicity, cytotoxicity and the animal toxicity of Zanthoxylum armatum DC, and the damage of genetic material has been observed in plants, but the detailed mechanism has not been explored. Besides, the toxicity of normal mammalian cells has not been evaluated. AIM OF THE STUDY To evaluate the effects and underlying mechanism of genetic material damage in BRL 3A cells induced by Zanthoxylum armatum DC. MATERIALS AND METHODS Ultra-High Performance Liquid Chromatography and Orbitrap High-Resolution Mass Spectrometry was used for identification of compounds in methanol extract of Zanthoxylum armatum DC. BRL 3A cells were incubated with different concentrations of methanol extract of Zanthoxylum armatum DC (24 h). The cytotoxicity of extract was assessed with cell viability, LDH release rate, and ROS production. The damage of genetic material was assessed with OTM value of comet cells, cell cycle and the expression levels of p-ATM, p- Chk2, Cdc25A, and CDK2. RESULTS Ultra-High Performance Liquid Chromatography and Orbitrap High-Resolution Mass Spectrometry investigation revealed the presence of compounds belonging to flavonoid, fatty acid and alkaloid groups. The viability of BRL 3A cells was reduced in a time-dose dependent manner treated by methanol extract of Zanthoxylum armatum DC. It increased LDH release rate and ROS production, activated the DNA double strand damage marker of γH2AX and produced comet cells. In addition, methanol extract of Zanthoxylum armatum DC caused ATM-mediated DNA damage, further phosphorylated Chk2, inhibited cell cycle related proteins, and arrested the G1/S cycle. CONCLUSIONS Methanol extract of Zanthoxylum armatum DC induces DNA damage and further leads G1/S cell cycle arrest by triggering oxidative stress in the BRL 3A cells. This study provides some useful evidences for its development as an antitumor drug via activation of ATM/Chk2.
Collapse
Affiliation(s)
- Jialuo Jiang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Yan Huang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Wenlin Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Chen Sun
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Qiuyan Liu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Yan Chen
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Tingting Hu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Xiaoju Ma
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Cheng Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Yuntong Ma
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Shukun Liu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China.
| | - Chaolong Rao
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China.
| |
Collapse
|
39
|
Sharma M, Haye A, Ansari M, Saini A, Ahmed Z, Munjal K, Shamsi Y. Polyherbal formulation improves glucose-lipid metabolism and prevent hepatotoxicity in streptozotocin-induced diabetic rats: Plausible role of IRS-PI3K-Akt-GLUT2 signaling. Pharmacogn Mag 2022. [DOI: 10.4103/pm.pm_318_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
40
|
Nkono Ya Nkono B, Rouamba A, Kinyok M, Stéphane J, Tcheudi B, Tigui B, Djomeni Dzeufiet P, Sokeng S, Kamtchouing P. Antidiabetic and antiradical effects of Garcinia kola seeds in dexamethasone-induced hyperglycemic rats. Int J Appl Basic Med Res 2022; 12:203-210. [PMID: 36131856 PMCID: PMC9484509 DOI: 10.4103/ijabmr.ijabmr_199_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/02/2022] [Accepted: 06/10/2022] [Indexed: 11/21/2022] Open
Abstract
Background In traditional medicine, the maceration of seeds of Garcinia kola (GK) is used to treat various diseases including diabetes. In traditional pharmacopoeia, GK seeds are used to strengthen the immune system and as a stimulant and aphrodisiac. Aims This study aimed to evaluate the antidiabetic free radical scavenging effects of the hydroalcoholic extract of GK seeds (HAEGS) in a dexamethasone-induced hyperglycemic (DexIH) rat model. Settings and Design This study was an interventional study. Subjects and Methods Here using in vivo model, we assessed some pharmacological properties of HAEGS in DexIH rat. Hypoglycemia, antihyperglycemia, spasmolytic and laxative activities were also evaluated in DexIH. In vitro study assessed antiradical activity. The HAEGS was obtained by decoction introducing 250 g with water–ethanol mixture (30:70). The plant extract was administered to the animals at doses of 50 (GK50) and 100 (GK100) mg/kg body weight. All animal experiments were in accordance with ARRIVE guidelines and were performed in accordance with the scientific procedures of UK Animals. Antiradical activity of GK was assessed in vitro by inhibition of the activity of 2,2-diphenyl-1-picrylhydrazyl. Statistical Analysis Used Statistical analysis was performed using GraphPad Prism 5.03 software, and P values less than 0.05 were considered statistically significant. Results At doses 50 and 100 mg/kg, GK significantly (P < 0.001) regulated DexIH after two weeks of treatment compared to the normoglycemic control and hyperglycemic rats. The extract at both doses significantly (P < 0.001) inhibited the spasmolytic activity in both normoglycemic and hyperglycemic rats compared to Imodium®. In rats DexIH rats, only dose 100 mg/kg significantly (P < 0.05) increased laxative effects when compared to the negative control. In vitro antiradical activity of GK revealed vitamin C-like antiradical activity. Conclusions This study justifies the traditional use of GK seeds as an antidiabetic.
Collapse
|
41
|
Bai Y, Mu Q, Bao X, Zuo J, Fang X, Hua J, Zhang D, Jiang G, Li P, Gao S, Zhao D. Targeting NLRP3 Inflammasome in the Treatment Of Diabetes and Diabetic Complications: Role of Natural Compounds from Herbal Medicine. Aging Dis 2021; 12:1587-1604. [PMID: 34631209 PMCID: PMC8460305 DOI: 10.14336/ad.2021.0318] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/18/2021] [Indexed: 12/11/2022] Open
Abstract
Diabetes, a common metabolic disease with various complications, is becoming a serious global health pandemic. So far there are many approaches in the management of diabetes; however, it still remains irreversible due to its complicated pathogenesis. Recent studies have revealed that nucleotide-binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome plays a vital role in the progression of diabetes and many of its complications, making it a promising therapeutic target in pharmaceutical design. Natural derived herbal medicine, known for its utilization of natural products such as herbs or its bioactive ingredients, is shown to be able to ameliorate hyperglycemia-associated symptoms and to postpone the progression of diabetic complications due to its anti-inflammatory and anti-oxidative properties. In this review, we summarized the role of NLRP3 inflammasome in diabetes and several diabetic complications, as well as 31 active compounds that exert therapeutic effect on diabetic complications via inhibiting NLRP3 inflammasome. Improving our understanding of these promising candidates from natural compounds in herbal medicine targeting NLRP3 inflammasome inspires us the relationship between inflammation and metabolic disorders, and also sheds light on searching potential agents or therapies in the treatment of diabetes and diabetic complications.
Collapse
Affiliation(s)
- Ying Bai
- 1College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qianqian Mu
- 2Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xueli Bao
- 3Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jiacheng Zuo
- 1College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xin Fang
- 3Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Hua
- 3Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Dongwei Zhang
- 1College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Guangjian Jiang
- 1College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ping Li
- 3Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Sihua Gao
- 1College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Dandan Zhao
- 1College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
42
|
YiQi YangYin Decoction Attenuates Nonalcoholic Fatty Liver Disease in Type 2 Diabetes Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5511019. [PMID: 34621322 PMCID: PMC8492297 DOI: 10.1155/2021/5511019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/16/2021] [Accepted: 08/31/2021] [Indexed: 01/09/2023]
Abstract
Background YiQi YangYin Decoction (YQ) is a modern Chinese formula composed by the guidance of traditional Chinese medicine theory, which consists of nine traditional Chinese medicines and is applied to treat type 2 diabetes mellitus (T2DM) with nonalcoholic fatty liver in clinic in China for more than a decade. This study aims to evaluate the antidiabetes and lipid-lowering effect of YQ and explore the possible mechanisms of this action. Methods T2DM rat models were established and given YQ at three different doses for three weeks. Tissues, including pancreas islet and liver, and blood serum were collected. The levels of fasting blood glucose (FBG), fasting insulin (Fins), lipid index, such as total cholesterol (TC), triglyceride (TG), high-density lipoprotein (HDL), and low-density lipoprotein (LDL), and hepatic function index such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) in serum were measured. Pancreas islet damage and liver damage were observed by hematoxylin and eosin staining. The glycogen content and lipid accumulation in liver were determined by periodic acid-Schiff (PAS) staining and Oil Red O staining. The expression levels of insulin receptor substrate 2 (IRS-2), phosphatidylinositol 3 kinase-associated p85alpha (PI3K p85α), AKT, and Glucose Transporter 2 (Glut4) in pancreas islet and AMP-activated protein kinase alpha (AMPKα), sterol regulatory element-binding protein 1c (SREBP1c), acetyl-CoA carboxylase (ACC1), and peroxisome proliferator-activated receptor-α (PPARα) in liver were determined by western blotting. The relative expressions of ACC1, fatty acid synthase (FAS), stearoyl-CoA desaturase 1 (SCD1), carnitine palmityl transferase-1 (CPT-1), and SREBP-1 mRNA were detected by qRT-PCR. Results After administering YiQi for three weeks, the levels of fast blood glucose, fasting insulin, TC, TG, LDL, ALT, AST, and ALP were significantly decreased, while HDL significantly increased compared with the model group. YQ could obviously attenuate pancreatic damage and improve islet α- and ß-cell survival compared with the model group. Furthermore, YQ could attenuate hepatic damage caused by lipid accumulation, decrease the content of lipid, and increase the hepatic glycogen content, compared with the model group. In addition, YQ remarkably elevated the proteins expression of p-PI3K, p-AKT, and GLUT4 in pancreas islet and elevated the proteins expression of p-PI3K, p-AKT, GLUT4, p-AMPK, SREBP1, and PPARα and inhibited the expression of p-ACC1 in liver. Besides, YQ reduced the relative expression of ACC1, FAS, SERBP-1c, and SCD mRNA along with the decreased production of CPT-1 mRNA. Conclusions YQ could attenuate type 2 diabetes mellitus by improving islet α- and ß-cells via IRS-2/AKT/GLUT4 pathway and nonalcoholic fatty liver by ameliorating lipid accumulation via AMPK/PPARα/SREBP1/ACC1 pathway.
Collapse
|
43
|
Anti-Osteoporotic Effect of Morroniside on Osteoblast and Osteoclast Differentiation In Vitro and Ovariectomized Mice In Vivo. Int J Mol Sci 2021; 22:ijms221910642. [PMID: 34638983 PMCID: PMC8508973 DOI: 10.3390/ijms221910642] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 12/18/2022] Open
Abstract
Bone remodeling is a continuous process of bone synthesis and destruction that is regulated by osteoblasts and osteoclasts. Here, we investigated the anti-osteoporotic effects of morroniside in mouse preosteoblast MC3T3-E1 cells and mouse primary cultured osteoblasts and osteoclasts in vitro and ovariectomy (OVX)-induced mouse osteoporosis in vivo. Morroniside treatment enhanced alkaline phosphatase activity and positively stained cells via upregulation of osteoblastogenesis-associated genes in MC3T3-E1 cell lines and primary cultured osteoblasts. However, morroniside inhibited tartrate-resistant acid phosphatase activity and TRAP-stained multinucleated positive cells via downregulation of osteoclast-mediated genes in primary cultured monocytes. In the osteoporotic animal model, ovariectomized (OVX) mice were administered morroniside (2 or 10 mg/kg/day) for 12 weeks. Morroniside prevented OVX-induced bone mineral density (BMD) loss and reduced bone structural compartment loss in the micro-CT images. Taken together, morroniside promoted increased osteoblast differentiation and decreased osteoclast differentiation in cells, and consequently inhibited OVX-induced osteoporotic pathogenesis in mice. This study suggests that morroniside may be a potent therapeutic single compound for the prevention of osteoporosis.
Collapse
|
44
|
Nwafor EO, Lu P, Liu Y, Peng H, Qin H, Zhang K, Ma Z, Xing B, Zhang Y, Li J, Liu Z. Active Components from Traditional Herbal Medicine for the Potential Therapeutics of Idiopathic Pulmonary Fibrosis: A Systemic Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:1093-1114. [PMID: 34107859 DOI: 10.1142/s0192415x2150052x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF), a tumor-like disease, is a serious and fatal pulmonary inflammatory condition usually characterized by irreversible destruction of the lung parenchyma, excessive matrix accumulation, and decline in lung function. IPF still remains a great burden to the universe. At the moment, the available therapeutic regimens utilized for IPF such as non-pharmacological therapies (lung transplantation) and pharmacological therapies (drugs, nintedanib, pirfenidone, etc.) are normally accompanied by significant limitations, such as adverse reactions, low bioavailability, poor selectivity, low-tissue distribution, in vivo instability, systemic toxicity, inconveniency and unsafe usage. There is a need for the exploration and discovery of new novel remedies by researchers and scientists globally. Recent numerous preliminary studies have laid significant emphasis and demonstrated the antifibrotic importance, good curative actions (little or no adverse reactions), and multiple target sites of the active components from traditional herbal medicine (THM) against IPF, which could serve as a modern, alternative and potential therapeutics or drug candidates in treating IPF. This paper extensively summarizes the pharmacological actions and signaling pathways or mechanisms of active components obtained from THM for treating IPF. Moreover, the sources and modernization, markets, relevant FDA and CFDA studies (the USA and China), preclinical analysis, and various compositions of THM currently under clinical trials are also highlighted. Additionally, this present analytical data would be instrumental towards further drug progression or advancement of active components from THM for the potential therapeutics of IPF in the future.
Collapse
Affiliation(s)
- Ebuka-Olisaemeka Nwafor
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin 301617, P. R. China.,Engineering Research Center of Modern Chinese Medicine, Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, P. R. China
| | - Peng Lu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin 301617, P. R. China.,Engineering Research Center of Modern Chinese Medicine, Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, P. R. China
| | - Yiting Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin 301617, P. R. China.,Engineering Research Center of Modern Chinese Medicine, Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, P. R. China
| | - Hui Peng
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin 301617, P. R. China.,Engineering Research Center of Modern Chinese Medicine, Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, P. R. China
| | - Huan Qin
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin 301617, P. R. China.,Engineering Research Center of Modern Chinese Medicine, Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, P. R. China
| | - Kuibin Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin 301617, P. R. China.,Engineering Research Center of Modern Chinese Medicine, Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, P. R. China
| | - Zhe Ma
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin 301617, P. R. China.,Engineering Research Center of Modern Chinese Medicine, Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, P. R. China
| | - Bin Xing
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin 301617, P. R. China.,Engineering Research Center of Modern Chinese Medicine, Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, P. R. China
| | - Yukun Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin 301617, P. R. China.,Engineering Research Center of Modern Chinese Medicine, Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, P. R. China
| | - Jiawei Li
- College of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Zhidong Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin 301617, P. R. China.,Engineering Research Center of Modern Chinese Medicine, Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, P. R. China
| |
Collapse
|
45
|
Qu L, Liang X, Tian G, Zhang G, Wu Q, Huang X, Cui Y, Liu Y, Shen Z, Xiao C, Qin Y, Miao H, Zhang Y, Li Z, Ye S, Zhang X, Yang J, Cao G, Li Y, Yang G, Hu J, Wang X, Li Z, Li Y, Zhang X, Zhang G, Chen L, Hua W, Yu M, Lu C, Zhang X, Jiang H. Efficacy and Safety of Mulberry Twig Alkaloids Tablet for the Treatment of Type 2 Diabetes: A Multicenter, Randomized, Double-Blind, Double-Dummy, and Parallel Controlled Clinical Trial. Diabetes Care 2021; 44:1324-1333. [PMID: 33832957 PMCID: PMC8247493 DOI: 10.2337/dc20-2109] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 02/17/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVE This study aimed to evaluate the efficacy and safety of mulberry twig alkaloids (Sangzhi alkaloids [SZ-A]) in the treatment of type 2 diabetes (T2D). RESEARCH DESIGN AND METHODS This was a multicenter, randomized, double-blind, double-dummy, and parallel controlled noninferiority clinical trial that was conducted for 24 weeks. A total of 600 patients were randomly allocated to the SZ-A group (n = 360) or acarbose group (n = 240). The primary efficacy end point was the change of glycosylated hemoglobin (HbA1c) compared with baseline. In addition, adverse events (AEs), severe AEs (SAEs), treatment-related AEs (TAEs), and gastrointestinal disorders (GDs) were monitored. RESULTS After treatment for 24 weeks, the change in HbA1c was -0.93% (95% CI -1.03 to -0.83) (-10.2 mmol/mol [-11.3 to -9.1]) and -0.87% (-0.99 to -0.76) (-9.5 mmol/mol [-10.8 to -8.3]) in the SZ-A and acarbose groups, respectively, and the least squares mean difference was -0.05% (95% CI -0.18 to 0.07) (-0.5 mmol/mol [-2.0 to 0.8]) between the two groups, with no significant difference on the basis of covariance analysis (P > 0.05). The incidence of TAEs and GDs was significantly lower in the SZ-A group than the acarbose group (P < 0.01), but no differences for AEs or SAEs between the two groups were observed (P > 0.05). CONCLUSIONS SZ-A exhibited equivalent hypoglycemic effects to acarbose in patients with T2D. Nevertheless, the incidence of TAEs and GDs was lower following SZ-A treatment than acarbose treatment, suggesting good safety.
Collapse
Affiliation(s)
- Ling Qu
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaochun Liang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guoqing Tian
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gaili Zhang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qunli Wu
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiumei Huang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yazhong Cui
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuling Liu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhufang Shen
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Changqing Xiao
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Guangxi Medical University, Guangxi, China
| | - Yingfen Qin
- Department of Endocrinology, The First Affiliated Hospital, Guangxi Medical University, Guangxi, China
| | - Heng Miao
- Department of Endocrinology, The Second Affiliated Hospital, Nan Jing Medical University, Jiangsu, China
| | - Yongyan Zhang
- Department of Endocrinology, Shengjing Hospital of China Medical University, Liaoning, China
| | - Ziling Li
- Department of Endocrinology, Inner Mongolia Baogang Hospital, Baotou, Inner Mongolia Autonomous Region, China
| | - Shandong Ye
- Department of Endocrinology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, USTC, Hefei, Anhui, China
| | - Xuezhi Zhang
- Traditional Chinese Medicine and Integrative Medicine Department, Peking University First Hospital, Beijing, China
| | - Jing Yang
- Department of Endocrinology, The First Affiliated Hospital, Shanxi Medical University, Shanxi, China
| | - Guiwen Cao
- Department of Endocrinology, The Fourth Affiliated Hospital, Jilin University, Jilin, China
| | - Yi Li
- Department of Traditional Chinese Medicine, Beijing Hospital, Beijing, China
| | - Gangyi Yang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ji Hu
- Department of Endocrinology, The Second Affiliated Hospital, Suzhou University, Jiangsu, China
| | - Xiaoyue Wang
- Department of Endocrinology, The First People's Hospital of Yueyang, Hunan, China
| | - Zhengfang Li
- Department of Endocrinology, The Second Affiliated Hospital, Kunming Medical University, Yunnan, China
| | - Yukun Li
- Department of Endocrinology, The Third Affiliated Hospital, Hebei Medical University, Hebei, China
| | - Xiuzhen Zhang
- Department of Endocrinology, Tongji Hospital, Tongji University, Shanghai, China
| | - Guangde Zhang
- Department of Endocrinology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Li Chen
- Department of Endocrinology, Qilu Hospital, Shandong University, Shandong, China
| | - Wenjin Hua
- Department of Endocrinology, The Third People's Hospital of Wuxi, Jiangsu, China
| | - Ming Yu
- Department of Endocrinology, Central Hospital of Putuo District, Shanghai, China
| | - Chunyan Lu
- Department of Endocrinology, West China Hospital, Sichuan University, Sichuan, China
| | - Xiaomei Zhang
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Anhui, China
| | - Hong Jiang
- Department of Endocrinology, The Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Liaoning, China
| |
Collapse
|
46
|
Li T, Li H, Wu Y, Wu Q, Zhao G, Cai Z, Pu F, Li B. Efficacy and safety of Shenqi Jiangtang Granules plus oral hypoglycemic agent in patients with type 2 diabetes mellitus: A protocol for systematic review and meta-analysis of 15 RCTs. Medicine (Baltimore) 2021; 100:e23578. [PMID: 33592826 PMCID: PMC7870258 DOI: 10.1097/md.0000000000023578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE Shenqi Jiangtang Granules (SQJTG) has been widely used to treat patients with type 2 diabetes mellitus (T2DM). But whether there exists sufficient evidence on the efficacy of SQJTG in the treatment of T2DM is unclear. In order to assess the effects of SQJTG for T2DM, a systematic review and meta-analysis of randomized controlled trials (RCTs) were carried out. METHODS Eight databases, namely, PubMed, The Cochrane Library, EMBASE, Web of Science, Chinese National Knowledge Infrastructure, Chinese Scientific Journals Full-Text Database, CBM, and Wanfang database were searched up to May 2020. According to the Cochrane standards, the selection of study, the extraction of data, the assessment of study quality, and the analyses of data were carried out strictly. Then a fixed or random effects model was applied to analyze the outcomes. RESULTS Fifteen studies (N = 1392) in total conformed the inclusion criteria to this meta-analysis. Two subgroups were identified, based on different dose of SQJTG: oral hypoglycemic agent (OHA) vs OHA plus SQJTG (1 g); OHA vs. OHA plus SQJTG (1.5-3 g). The pooled results showed that, in comparison with OHA, OHA plus SQJTG significantly reduced fasting plasma glucose in both 1 g subgroup and 1.5-3 g subgroup; 2-hour post-meal blood glucose was also greatly reduced in the SQJTG 1 g subgroup and the SQJTG 1.5-3 g subgroup. Compared with OHA, SQJTG 1 g subgroup significantly reduced levels of glycated hemoglobin A1c, as well as the SQJTG 1.5-3 g subgroup. Homeostasis model-insulin resistance index was also reduced in both SQJTG 1 g subgroup and SQJTG 1.5-3 g subgroup; SQJTG group can also significantly reduce the total adverse events especially in reducing the incidence of hypoglycemia. CONCLUSIONS SQJTG is an effective and safe complementary treatment for T2DM patients. This meta-analysis provides an evidence for the treatment in patients with T2DM. While owing to the high heterogeneity and the trials' small sample size, it's crucial to perform large-scale and strict designed studies.
Collapse
Affiliation(s)
- Tianli Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Dongcheng District
- Beijing University of Chinese medicine, Chaoyang District
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Dongcheng District
| | - Hongzheng Li
- Beijing University of Chinese medicine, Chaoyang District
- Department of Cardiology, Guang’an men hospital, China Academy of Chinese Medical Sciences, Xicheng District, Beijing
| | - Yang Wu
- Beijing University of Chinese medicine, Chaoyang District
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Dongcheng District
| | - Qian Wu
- Department of Cardiology, Guang’an men hospital, China Academy of Chinese Medical Sciences, Xicheng District, Beijing
| | - Guozhen Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Dongcheng District
- Beijing University of Chinese medicine, Chaoyang District
| | - Zhaolun Cai
- Department of Gastroenterology, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Fenglan Pu
- Beijing University of Chinese medicine, Chaoyang District
| | - Bo Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Dongcheng District
| |
Collapse
|
47
|
Xu X, Li L, Zhang Y, Lu X, Lin W, Wu S, Qin X, Xu R, Lin W. Hypolipidemic effect of Alisma orientale (Sam.) Juzep on gut microecology and liver transcriptome in diabetic rats. PLoS One 2020; 15:e0240616. [PMID: 33035272 PMCID: PMC7546448 DOI: 10.1371/journal.pone.0240616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/29/2020] [Indexed: 02/06/2023] Open
Abstract
Alisma orientale (Sam.) Juzep (A. orientale) is a traditional herb that is often used to treat disease including edema and hyperlipidemia. However, the molecular mechanism by which Alisma orientale (Sam.) Juzep exerts its hypolipidemic effects remains unclear. In this study, a diabetic rat model was established by feeding a high-fat and high-sugar diet combined with a low-dose streptozotocin injection (HFS). Then the rats were treated with an A. orientale water extract (AOW), an A. orientale ethanolic extract (AOE) or metform (MET). The gut microflora and liver transcriptome were analyzed by high-throughput next-generation sequencing. Ultra-performance liquid chromatography-triple quadrupole-mass spectrometry was employed to analyze the major compounds in the AOE. The results showed that the serum total cholesterol (TC) and low density lipoprotein cholesterol (LDL-C) levels in rats of the AOE group (2.10 g/kg/day, 14 days) were significantly lower than those in the HFS group (p<0.01). Moreover, AOE treatment altered the gut microecology, particularly modulating the relative abundance of gut microflora involved in lipid metabolism compared with the HFS group. Furthermore, compared with the HFS group, the mRNA expression levels of Fam13a, Mapk7, Mpp7, Chac1, Insig1, Mcpt10, Noct, Greb1l, Fabp12 and Hba-a3 were upregulated after the administration of AOE. In contrast, the mRNA expression levels of Lox, Mybl1, Arrdc3, Cyp4a2, Krt20, Vxn, Ggt1, Nr1d1 and S100a9 were downregulated. Moreover, AOE treatment for two weeks markedly promoted the relative abundance of Lachnospiraceae (p = 0.0013). The triterpenoids contents in AOE were alisol A, alisol A 24-acetate, alisol B, alisol B 23-acetate, alisol C 23-acetate, alisol F, alisol F 24-acetate, and alisol G. Our findings above illustrated that the hypolipidemic effect of the triterpenoids of A. orientale is mediated mainly through alteration of the gut microecology and the regulation of genes involved in cholesterol metabolism, especially Insig1.
Collapse
Affiliation(s)
- Xiaomei Xu
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou, China
| | - Lisha Li
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou, China
| | - Yamin Zhang
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou, China
| | - Xuehua Lu
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou, China
| | - Wei Lin
- Department of Endocrinology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Shuangshuang Wu
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou, China
| | - Xia Qin
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou, China
| | - Rongqing Xu
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou, China
| | - Wenjin Lin
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou, China
- * E-mail:
| |
Collapse
|
48
|
Bao S, Wu YL, Wang X, Han S, Cho S, Ao W, Nan JX. Agriophyllum oligosaccharides ameliorate hepatic injury in type 2 diabetic db/db mice targeting INS-R/IRS-2/PI3K/AKT/PPAR-γ/Glut4 signal pathway. JOURNAL OF ETHNOPHARMACOLOGY 2020; 257:112863. [PMID: 32302715 DOI: 10.1016/j.jep.2020.112863] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/04/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Agriophyllum squarrosum (L.) Moq. is a traditional Mongol medicine generally used to treat diabetes. OBJECTIVE To investigate the protective effects and potential mechanisms of Agriophyllum oligosaccharides (AOS) on liver injury in type 2 diabetic db/db mice. MATERIALS AND METHODS The db/db mice were divided into the model group (Model), metformin group (MET), high-dose AOS group (HAOS), and low-dose AOS group (LAOS). Nondiabetic littermate control db/m mice were used as the normal control group (Control). Mice in AOS groups were treated with AOS (380 or 750 mg/kg) daily, for 8 weeks. At 8 weeks, blood samples were collected to detect lipid and enzyme parameters concerning hepatic function, including alanine aminotransferase (ALT), aspartate aminotransferase (AST), total protein (TP), albumin (ALB), globulin (GLB), triglyceride (TG), total cholesterol (TC), and high-density lipoprotein cholesterol (HDL-C). Random blood glucose (RBG) test, oral glucose tolerance test (OGTT), and oral maltose tolerance test (OMTT) were also conducted. Microscopy was used to observe morphological changes in the liver of AOS-treated groups. Real-time PCR was used to detect the mRNA expression, including insulin receptor substrate 2 (IRS-2), phosphatidylinositol 3 kinase (PI3K), protein kinase B (AKT), peroxisome proliferator-activated receptor (PPAR)-γ, insulin receptor (INS-R), and Glut4. Furthermore, western blotting was performed to identify proteins, including phosphorylation of IRS-2 (p-IRS-2), PI3K, p-AKT, PPAR-γ, INS-R, and Glut4. Hepatic protein expression of p-IRS-2, PI3K, p-AKT, PPAR-γ, INS-R, and Glut4 was observed using immunohistochemical staining. RESULTS AOS treatment significantly decreased RBG, OGTT, and OMTT in mice, as well as serum ALT and AST activities. AOS groups demonstrated significantly higher expressions of p-IRS-2, PI3K, PPAR-γ, p-AKT, INS-R, and Glut4 protein and IRS-2, PI3K, AKT, PPAR-γ, INS-R, and Glut4 mRNA in the liver tissue of db/db mice; the degeneration and necrosis of hepatocytes and formation of collagen fibres markedly reduced, improving the structural disorder in the liver. CONCLUSION The results suggest that AOS could protect the liver in type 2 diabetes, in part by activating insulin in the INS-R/IRS2/PI3K/AKT/Glut4/PPAR-γ signal pathway, facilitating hepatocyte proliferation, and further reducing the blood glucose levels.
Collapse
Affiliation(s)
- Shuyin Bao
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, PR China; Medical College, Inner Mongolia University for Nationalities, Tongliao, 028000, PR China
| | - Yan-Ling Wu
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, PR China
| | - Xiuzhi Wang
- Department of Medicines and Foods, Tongliao Vocational College, Tongliao, 028000, PR China
| | - Shuying Han
- Basic Medical College, North China University of Science and Technology, Tangshan, 063210, PR China
| | - SungBo Cho
- College of Traditional Mongolian Medicine, Inner Mongolia University for Nationalities, Tongliao, 028000, PR China
| | - Wuliji Ao
- College of Traditional Mongolian Medicine, Inner Mongolia University for Nationalities, Tongliao, 028000, PR China.
| | - Ji-Xing Nan
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, PR China; Clinical Research Center, Yanbian University Hospital, Yanji, Jilin Province, 133002, PR China.
| |
Collapse
|
49
|
Zheng Y, Gou X, Zhang L, Gao H, Wei Y, Yu X, Pang B, Tian J, Tong X, Li M. Interactions Between Gut Microbiota, Host, and Herbal Medicines: A Review of New Insights Into the Pathogenesis and Treatment of Type 2 Diabetes. Front Cell Infect Microbiol 2020; 10:360. [PMID: 32766169 PMCID: PMC7379170 DOI: 10.3389/fcimb.2020.00360] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/10/2020] [Indexed: 12/12/2022] Open
Abstract
Herbal medicines (HMs) are a major subset of complementary and alternative medicine. They have been employed for the efficient clinical management of type 2 diabetes mellitus (T2DM) for centuries. However, the related underlying mechanisms still remain to be elucidated. It has been found out that microbiota is implicated in the pathogenesis and treatment of T2DM. An interplay between gut microbiota and host occurs mainly at the gastrointestinal mucosal barrier. The host movements influence the composition and abundance of gut microbiota, whereas gut microbiota in turn modulate the metabolic and immunological activities of the host. Intestinal dysbiosis, endotoxin-induced metabolic inflammation, immune response disorder, bacterial components and metabolites, and decreased production of short-chain fatty acids are considered significant pathogenic mechanisms underlying T2DM. The interaction between gut microbiota and HMs during T2DM treatment has been investigated in human, animal, and in vitro studies. HMs regulate the composition of beneficial and harmful bacteria and decrease the inflammation caused by gut microbiota. Furthermore, the metabolism of gut microbiota modulates HM biotransformation. In this review, we have summarized such research findings, with the aim to improve our understanding of the pathogenesis and potential therapeutic mechanisms of HMs in T2DM and to provide new insights into specific targeted HM-based therapies and drug discovery.
Collapse
Affiliation(s)
- Yujiao Zheng
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaowen Gou
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Lili Zhang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hanjia Gao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Wei
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaotong Yu
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bing Pang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiaxing Tian
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Jiaxing Tian
| | - Xiaolin Tong
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Xiaolin Tong
| | - Min Li
- Molecular Biology Laboratory, Guang'anmen Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
- Min Li
| |
Collapse
|