1
|
Lotke R, Petersen M, Sauter D. Restriction of Viral Glycoprotein Maturation by Cellular Protease Inhibitors. Viruses 2024; 16:332. [PMID: 38543698 PMCID: PMC10975521 DOI: 10.3390/v16030332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 05/23/2024] Open
Abstract
The human genome is estimated to encode more than 500 proteases performing a wide range of important physiological functions. They digest proteins in our food, determine the activity of hormones, induce cell death and regulate blood clotting, for example. During viral infection, however, some proteases can switch sides and activate viral glycoproteins, allowing the entry of virions into new target cells and the spread of infection. To reduce unwanted effects, multiple protease inhibitors regulate the proteolytic processing of self and non-self proteins. This review summarizes our current knowledge of endogenous protease inhibitors, which are known to limit viral replication by interfering with the proteolytic activation of viral glycoproteins. We describe the underlying molecular mechanisms and highlight the diverse strategies by which protease inhibitors reduce virion infectivity. We also provide examples of how viruses evade the restriction imposed by protease inhibitors. Finally, we briefly outline how cellular protease inhibitors can be modified and exploited for therapeutic purposes. In summary, this review aims to summarize our current understanding of cellular protease inhibitors as components of our immune response to a variety of viral pathogens.
Collapse
Affiliation(s)
| | | | - Daniel Sauter
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
2
|
Chen CW, Saubi N, Joseph-Munné J. Design Concepts of Virus-Like Particle-Based HIV-1 Vaccines. Front Immunol 2020; 11:573157. [PMID: 33117367 PMCID: PMC7561392 DOI: 10.3389/fimmu.2020.573157] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/31/2020] [Indexed: 01/04/2023] Open
Abstract
Prophylactic vaccines remain the best approach for controlling the human immunodeficiency virus-1 (HIV-1) transmission. Despite the limited efficacy of the RV144 trial in Thailand, there is still no vaccine candidate that has been proven successful. Consequently, great efforts have been made to improve HIV-1 antigens design and discover delivery platforms for optimal immune elicitation. Owing to immunogenic, structural, and functional diversity, virus-like particles (VLPs) could act as efficient vaccine carriers to display HIV-1 immunogens and provide a variety of HIV-1 vaccine development strategies as well as prime-boost regimes. Here, we describe VLP-based HIV-1 vaccine candidates that have been enrolled in HIV-1 clinical trials and summarize current advances and challenges according to preclinical results obtained from five distinct strategies. This mini-review provides multiple perspectives to help in developing new generations of VLP-based HIV-1 vaccine candidates with better capacity to elicit specific anti-HIV immune responses.
Collapse
Affiliation(s)
- Chun-Wei Chen
- Microbiology Department, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Narcís Saubi
- Microbiology Department, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.,EAVI2020 European AIDS Vaccine Initiative H2020 Research Programme, London, United Kingdom
| | - Joan Joseph-Munné
- Microbiology Department, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.,EAVI2020 European AIDS Vaccine Initiative H2020 Research Programme, London, United Kingdom.,Microbiology Department, Hospital Universitari de la Vall d'Hebron, Barcelona, Spain
| |
Collapse
|
3
|
Bi J, Li F, Zhang M, Wang H, Lu J, Zhang Y, Ling H, Wang J, Gao F, Kong W, Yu B, Yu X. An HIV-1 vaccine based on bacterium-like particles elicits Env-specific mucosal immune responses. Immunol Lett 2020; 222:29-39. [PMID: 32173375 DOI: 10.1016/j.imlet.2020.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/12/2020] [Accepted: 03/11/2020] [Indexed: 01/26/2023]
Abstract
Although many vaccines have been designed to induce effective mucosal immune responses against HIV-1, designing an effective HIV-1 vaccine remains a challenge. Bacterium-like particles (BLPs) are a new type of vector used to induce mucosal immune responses, and have already been used for some vaccines against respiratory tract viruses. In this study, we designed a mucosal vaccine against HIV-1 based on BLPs. The vaccine was used to immunize both mice and guinea pigs via intramuscular (i.m.) injection or intranasal (i.n.) drip. We found that gp120 trimers bound to BLPs delivered via i.n. drip successfully induced Env-specific secretory IgA (sIgA) at mucosal sites in mice. Furthermore, nasal washes from guinea pigs immunized via i.n. drip showed neutralizing activity against HIV-1 tier 1 pseudoviruses. Thus, gp120 trimers bound to BLPs may be an effective vaccine strategy against HIV-1.
Collapse
Affiliation(s)
- Jinpeng Bi
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Fangshen Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Mo Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Huaiyu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jingcai Lu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Hong Ling
- Department of Parasitology, Harbin Medical University, 194 Xuefu Road, Harbin, 150081, China
| | - Jiaye Wang
- Key Lab of Heilongjiang Province for infection and Immunity, Harbin, Heilongjiang 150081, China; Key Lab of Heilongjiang Province Education Bureau for Etiology, Harbin, Heilongjiang 150081, China
| | - Feng Gao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
4
|
del Moral-Sánchez I, Sliepen K. Strategies for inducing effective neutralizing antibody responses against HIV-1. Expert Rev Vaccines 2019; 18:1127-1143. [PMID: 31791150 PMCID: PMC6961309 DOI: 10.1080/14760584.2019.1690458] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Introduction: Despite intensive research efforts, there is still no effective prophylactic vaccine available against HIV-1. Currently, substantial efforts are devoted to the development of vaccines aimed at inducing broadly neutralizing antibodies (bNAbs), which are capable of neutralizing most HIV-1 strains. All bNAbs target the HIV-1 envelope glycoprotein (Env), but Env immunizations usually only induce neutralizing antibodies (NAbs) against the sequence-matched virus and not against other strains.Areas covered: We describe the different strategies that have been explored to improve the breadth and potency of anti-HIV-1 NAb responses. The discussed strategies include the application of engineered Env immunogens, optimization of (bNAb) epitopes, different cocktail and sequential vaccination strategies, nanoparticles and nucleic acid-based vaccines.Expert opinion: A combination of the strategies described in this review and future approaches are probably needed to develop an effective HIV-1 vaccine that can induce broad, potent and long-lasting NAb responses.
Collapse
Affiliation(s)
- Iván del Moral-Sánchez
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Kwinten Sliepen
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands,CONTACT Kwinten Sliepen Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Habibi P, Daniell H, Soccol CR, Grossi‐de‐Sa MF. The potential of plant systems to break the HIV-TB link. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1868-1891. [PMID: 30908823 PMCID: PMC6737023 DOI: 10.1111/pbi.13110] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/13/2019] [Accepted: 03/21/2019] [Indexed: 06/09/2023]
Abstract
Tuberculosis (TB) and human immunodeficiency virus (HIV) can place a major burden on healthcare systems and constitute the main challenges of diagnostic and therapeutic programmes. Infection with HIV is the most common cause of Mycobacterium tuberculosis (Mtb), which can accelerate the risk of latent TB reactivation by 20-fold. Similarly, TB is considered the most relevant factor predisposing individuals to HIV infection. Thus, both pathogens can augment one another in a synergetic manner, accelerating the failure of immunological functions and resulting in subsequent death in the absence of treatment. Synergistic approaches involving the treatment of HIV as a tool to combat TB and vice versa are thus required in regions with a high burden of HIV and TB infection. In this context, plant systems are considered a promising approach for combatting HIV and TB in a resource-limited setting because plant-made drugs can be produced efficiently and inexpensively in developing countries and could be shared by the available agricultural infrastructure without the expensive requirement needed for cold chain storage and transportation. Moreover, the use of natural products from medicinal plants can eliminate the concerns associated with antiretroviral therapy (ART) and anti-TB therapy (ATT), including drug interactions, drug-related toxicity and multidrug resistance. In this review, we highlight the potential of plant system as a promising approach for the production of relevant pharmaceuticals for HIV and TB treatment. However, in the cases of HIV and TB, none of the plant-made pharmaceuticals have been approved for clinical use. Limitations in reaching these goals are discussed.
Collapse
Affiliation(s)
- Peyman Habibi
- Department of BiochemistrySchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Bioprocess Engineering and BiotechnologyFederal University of ParanáCuritibaPRBrazil
- Embrapa Genetic Resources and BiotechnologyBrasíliaDFBrazil
| | - Henry Daniell
- Department of BiochemistrySchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Maria Fatima Grossi‐de‐Sa
- Embrapa Genetic Resources and BiotechnologyBrasíliaDFBrazil
- Catholic University of BrasíliaBrasíliaDFBrazil
- Post Graduation Program in BiotechnologyUniversity PotiguarNatalRNBrazil
| |
Collapse
|
6
|
Effects of Adjuvants on HIV-1 Envelope Glycoprotein SOSIP Trimers In Vitro. J Virol 2018; 92:JVI.00381-18. [PMID: 29669838 PMCID: PMC6002727 DOI: 10.1128/jvi.00381-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 04/12/2018] [Indexed: 12/03/2022] Open
Abstract
Native-like, soluble, recombinant SOSIP trimers of various designs and based on several env genes of human immunodeficiency virus type 1 (HIV-1) are being tested as immunogens in different animal models. These experiments almost always involve coformulating the trimers with an adjuvant to boost the magnitude of the immune responses. One factor relevant to the choice of an adjuvant is that it should not physically damage the immunogen or impede its ability to present relevant epitopes. As examples, an adjuvant formulation that includes harsh detergents could disrupt the structural integrity of a trimer, and any charged compounds in the formulation could bind to countercharged regions of the trimer and physically occlude nearby epitopes. While a few adjuvants have been tested for their potential effects on SOSIP trimers in vitro, there has been no systematic study. Here, we have assessed how nine different adjuvants of various compositions affect SOSIP trimers of the BG505 and B41 genotypes. We used negative-stain electron microscopy, thermal denaturation, and gel electrophoresis to evaluate effects on trimer integrity and immunoassays to measure effects on the presentation of various epitopes. We conclude that most of the tested adjuvants are benign from these perspectives, but some raise grounds for concern. An acidified alum formulation is highly disruptive to trimer integrity, and a DNA-based polyanionic CpG oligodeoxynucleotide adjuvant binds to trimers and occludes the trimer apex epitope for the PGT145 neutralizing antibody. The methods described here should be generalizable to protein subunit vaccines targeting various pathogens. IMPORTANCE Adjuvant formulations increase the magnitude of immune responses to vaccine antigens. They are critically important for formulation of HIV-1 envelope glycoprotein (Env) vaccines intended to induce antibody production, as Env proteins are otherwise only very weakly immunogenic. The HIV-1 vaccine field now uses the well-defined structures of trimeric Env glycoproteins, like SOSIPs, to present multiple known epitopes for broad and potent neutralizing human antibodies in a native-like conformation. Successful adjuvant formulations must not disrupt how the trimers are folded, as that could adversely affect their performance as immunogens. We studied whether the various adjuvants most commonly used in animal experiments affect the integrity of two different SOSIP trimers in vitro. Most adjuvant classes are not problematic, but an aluminum sulfate formulation is highly damaging, as it exposes trimers to acidic pH and a nucleic acid-based adjuvant can bind to the trimer and block access to a key neutralizing epitope.
Collapse
|
7
|
Gao Y, Wijewardhana C, Mann JFS. Virus-Like Particle, Liposome, and Polymeric Particle-Based Vaccines against HIV-1. Front Immunol 2018. [PMID: 29541072 PMCID: PMC5835502 DOI: 10.3389/fimmu.2018.00345] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It is acknowledged that vaccines remain the best hope for eliminating the HIV-1 epidemic. However, the failure to produce effective vaccine immunogens and the inability of conventional delivery strategies to elicit the desired immune responses remains a central theme and has ultimately led to a significant roadblock in HIV vaccine development. Consequently, significant efforts have been applied to generate novel vaccine antigens and delivery agents, which mimic viral structures for optimal immune induction. Here, we review the latest developments that have occurred in the nanoparticle vaccine field, with special emphasis on strategies that are being utilized to attain highly immunogenic, systemic, and mucosal anti-HIV humoral and cellular immune responses. This includes the design of novel immunogens, the central role of antigen-presenting cells, delivery routes, and biodistribution of nanoparticles to lymph nodes. In particular, we will focus on virus-like-particle formulations and their preclinical uses within the HIV prophylactic vaccine setting.
Collapse
Affiliation(s)
- Yong Gao
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| | - Chanuka Wijewardhana
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| | - Jamie F S Mann
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
8
|
Abstract
Purpose of review To provide an update on the latest developments in the field of HIV-1 antibody-based soluble envelope glycoprotein (Env) trimer design for vaccine use. Recent findings The development of soluble native-like HIV-1 Env trimer immunogens has moved the field of antibody-based vaccine design forward dramatically over the past few years with refinement of various stabilizing approaches. However, despite this progress, significant challenges remain. Firstly, although trimers are relatively stable in solution, they nevertheless sample different conformational states, some of which may be less relevant to binding and induction of broadly neutralizing antibodies (bNAbs). Secondly, these trimers expose unwanted immunodominant surfaces that may distract the adaptive immune response from recognizing more immunorecessive but conserved neutralization-relevant surfaces on the trimer. The availability of atomic-resolution structural information has allowed guided design of mutations that have further stabilized trimers and allowed reduced exposure of unwanted epitopes. Moreover, chemical cross-linking approaches that do not require structural information have also contributed to trimer stabilization and selection of particular conformational forms. However, current knowledge suggests that strategies additional to trimer stabilization will be required to elicit bNAb, including targeting naïve B cell receptors with specific immunogens, and guiding B cell lineages toward recognizing conserved surfaces on Env with high affinity. Summary This review will give a perspective on these challenges, and summarize current approaches to overcoming them with the aim of developing immunogens to elicit bNAb responses in humans by active vaccination.
Collapse
|
9
|
Behrens AJ, Seabright GE, Crispin M. Targeting Glycans of HIV Envelope Glycoproteins for Vaccine Design. CHEMICAL BIOLOGY OF GLYCOPROTEINS 2017. [DOI: 10.1039/9781782623823-00300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The surface of the envelope spike of the human immunodeficiency virus (HIV) is covered with a dense array of glycans, which is sufficient to impede the host antibody response while maintaining a window for receptor recognition. The glycan density significantly exceeds that typically observed on self glycoproteins and is sufficiently high to disrupt the maturation process of glycans, from oligomannose- to complex-type glycosylation, that normally occurs during glycoprotein transit through the secretory system. It is notable that this generates a degree of homogeneity not seen in the highly mutated protein moiety. The conserved, close glycan packing and divergences from default glycan processing give a window for immune recognition. Encouragingly, in a subset of individuals, broadly neutralizing antibodies (bNAbs) have been isolated that recognize these features and are protective in passive-transfer models. Here, we review the recent advances in our understanding of the glycan shield of HIV and outline the strategies that are being pursued to elicit glycan-binding bNAbs by vaccination.
Collapse
Affiliation(s)
- Anna-Janina Behrens
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford South Parks Road Oxford OX1 3QU UK
| | - Gemma E. Seabright
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford South Parks Road Oxford OX1 3QU UK
| | - Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford South Parks Road Oxford OX1 3QU UK
| |
Collapse
|
10
|
Antigenic and immunosuppressive properties of a trimeric recombinant transmembrane envelope protein gp41 of HIV-1. PLoS One 2017; 12:e0173454. [PMID: 28282446 PMCID: PMC5345815 DOI: 10.1371/journal.pone.0173454] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/22/2017] [Indexed: 02/07/2023] Open
Abstract
The transmembrane envelope (TM) protein gp41 of the human immunodeficiency virus—1 (HIV-1) plays an important role during virus infection inducing the fusion of the viral and cellular membranes. In addition, there are indications that the TM protein plays a role in the immunopathogenesis leading to the acquired immunodeficiency syndrome (AIDS). Inactivated virus particles and recombinant gp41 have been reported to inhibit lymphocyte proliferation, as well as to alter cytokine release and gene expression. The same was shown for a peptide corresponding to a highly conserved domain of all retroviral TM proteins, the immunosuppressive domain. Due to its propensity to aggregate and to be expressed at low levels, studies comprising authentic gp41 produced in eukaryotic cells are extremely rare. Here we describe the production of a secreted, soluble recombinant gp41 in 293 cells. The antigen was purified to homogeneity and characterised thoroughly by various biochemical and immunological methods. It was shown that the protein was glycosylated and assembled into trimers. Binding studies by ELISA and surface plasmon resonance using conformation-specific monoclonal antibodies implied a six-helix bundle conformation. The low binding of broadly neutralising antibodies (bnAb) directed against the membrane proximal external region (MPER) suggested that this gp41 is probably not suited as vaccine to induce such bnAb. Purified gp41 bound to monocytes and to a lesser extent to lymphocytes and triggered the production of specific cytokines when added to normal peripheral blood mononuclear cells. In addition, gp41 expressed on target cells inhibited the antigen-specific response of murine CD8+ T cells by drastically impairing their IFNγ production. To our knowledge, this is the first comprehensive analysis of a gp41 produced in eukaryotic cells including its immunosuppressive properties. Our data provide another line of evidence that gp41 might be directly involved in HIV-1 immunopathogenesis through modulation of the cytokine release and active inhibition of immune responses.
Collapse
|
11
|
Klasse PJ, LaBranche CC, Ketas TJ, Ozorowski G, Cupo A, Pugach P, Ringe RP, Golabek M, van Gils MJ, Guttman M, Lee KK, Wilson IA, Butera ST, Ward AB, Montefiori DC, Sanders RW, Moore JP. Sequential and Simultaneous Immunization of Rabbits with HIV-1 Envelope Glycoprotein SOSIP.664 Trimers from Clades A, B and C. PLoS Pathog 2016; 12:e1005864. [PMID: 27627672 PMCID: PMC5023125 DOI: 10.1371/journal.ppat.1005864] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/12/2016] [Indexed: 01/02/2023] Open
Abstract
We have investigated the immunogenicity in rabbits of native-like, soluble, recombinant SOSIP.664 trimers based on the env genes of four isolates of human immunodeficiency virus type 1 (HIV-1); specifically BG505 (clade A), B41 (clade B), CZA97 (clade C) and DU422 (clade C). The various trimers were delivered either simultaneously (as a mixture of clade A + B trimers) or sequentially over a 73-week period. Autologous, Tier-2 neutralizing antibody (NAb) responses were generated to the clade A and clade B trimers in the bivalent mixture. When delivered as boosting immunogens to rabbits immunized with the clade A and/or clade B trimers, the clade C trimers also generated autologous Tier-2 NAb responses, the CZA97 trimers doing so more strongly and consistently than the DU422 trimers. The clade C trimers also cross-boosted the pre-existing NAb responses to clade A and B trimers. We observed heterologous Tier-2 NAb responses albeit inconsistently, and with limited overall breath. However, cross-neutralization of the clade A BG505.T332N virus was consistently observed in rabbits immunized only with clade B trimers and then boosted with clade C trimers. The autologous NAbs induced by the BG505, B41 and CZA97 trimers predominantly recognized specific holes in the glycan shields of the cognate virus. The shared location of some of these holes may account for the observed cross-boosting effects and the heterologous neutralization of the BG505.T332N virus. These findings will guide the design of further experiments to determine whether and how multiple Env trimers can together induce more broadly neutralizing antibody responses.
Collapse
Affiliation(s)
- P. J. Klasse
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Celia C. LaBranche
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Thomas J. Ketas
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, California, United States of America
| | - Albert Cupo
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Pavel Pugach
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Rajesh P. Ringe
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Michael Golabek
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Marit J. van Gils
- Department of Integrative Structural and Computational Biology, International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, California, United States of America
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, United States of America
| | - Kelly K. Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, United States of America
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, California, United States of America
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, United States of America
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Salvatore T. Butera
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, United States of America
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, California, United States of America
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, United States of America
| | - David C. Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Rogier W. Sanders
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail: (RWS); (JPM)
| | - John P. Moore
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
- * E-mail: (RWS); (JPM)
| |
Collapse
|
12
|
Thermostability of Well-Ordered HIV Spikes Correlates with the Elicitation of Autologous Tier 2 Neutralizing Antibodies. PLoS Pathog 2016; 12:e1005767. [PMID: 27487086 PMCID: PMC4972253 DOI: 10.1371/journal.ppat.1005767] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/24/2016] [Indexed: 11/23/2022] Open
Abstract
In the context of HIV vaccine design and development, HIV-1 spike mimetics displaying a range of stabilities were evaluated to determine whether more stable, well-ordered trimers would more efficiently elicit neutralizing antibodies. To begin, in vitro analysis of trimers derived from the cysteine-stabilized SOSIP platform or the uncleaved, covalently linked NFL platform were evaluated. These native-like trimers, derived from HIV subtypes A, B, and C, displayed a range of thermostabilities, and were “stress-tested” at varying temperatures as a prelude to in vivo immunogenicity. Analysis was performed both in the absence and in the presence of two different adjuvants. Since partial trimer degradation was detected at 37°C before or after formulation with adjuvant, we sought to remedy such an undesirable outcome. Cross-linking (fixing) of the well-ordered trimers with glutaraldehyde increased overall thermostability, maintenance of well-ordered trimer integrity without or with adjuvant, and increased resistance to solid phase-associated trimer unfolding. Immunization of unfixed and fixed well-ordered trimers into animals revealed that the elicited tier 2 autologous neutralizing activity correlated with overall trimer thermostability, or melting temperature (Tm). Glutaraldehyde fixation also led to higher tier 2 autologous neutralization titers. These results link retention of trimer quaternary packing with elicitation of tier 2 autologous neutralizing activity, providing important insights for HIV-1 vaccine design. As the sole determinant exposed on the viral surface to the host B cells, development of native-like HIV-1 envelope glycoprotein (Env) functional spikes has been a major initial objective in HIV-1 vaccine design. As immunogens, these trimer mimetics should remain stable in a native-like conformation to preferentially present conserved neutralizing epitopes, as opposed to non-neutralizing epitopes, to better elicit neutralizing B cell responses and antibodies in vivo during the immune response. We assessed SOSIP or NFL trimers displaying a range of stabilities, including chemical fixation. We demonstrate that increased resistance to high temperature-induced unfolding correlated with enhanced elicitation of tier 2 autologous neutralizing antibodies that are capable of penetrating this well-shielded viral pathogen, an important consideration for HIV vaccine development.
Collapse
|
13
|
Abstract
Antibodies (Abs) are a critical component of the human immune response against viral infections. In HIV-infected patients, a robust Ab response against the virus develops within months of infection; however, due to numerous strategies, the virus usually escapes the biological effects of the various Abs. Here we provide an overview of the different viral evasion mechanisms, including glycosylation, high mutation rate, and conformational masking by the envelope glycoproteins of the virus. In response to virus infection and to its evolution within a host, "conventional Abs" are generated, and these can also be induced by immunization; generally, these Abs are limited in their neutralization breadth and potency. In contrast, "exceptional Abs" require extended exposure to virus to generate the required hypermutation in the immunoglobulin variable regions, and they occur only in rare HIV-infected individuals, but they display impressive breadth and potency. In this review, we describe the major regions of the HIV envelope spike that are targeted by conventional and exceptional Abs. These include the first, second, and third variable loops (V1, V2, and V3) located at the apex of the envelope trimer, the CD4 binding site, and the membrane-proximal external region of the gp41 ectodomain. Lastly, we discuss the challenging task of HIV immunogen design and approaches for choosing which immunogens might be used to elicit protective Abs.
Collapse
|
14
|
Dai K, Khan SN, Wang Y, He L, Guenaga J, Ingale J, Sundling C, O'Dell S, McKee K, Phad G, Corcoran M, Wilson R, Mascola JR, Zhu J, Li Y, Karlsson Hedestam GB, Wyatt RT. HIV-1 Vaccine-elicited Antibodies Reverted to Their Inferred Naive Germline Reveal Associations between Binding Affinity and in vivo Activation. Sci Rep 2016; 6:20987. [PMID: 26879974 PMCID: PMC4754655 DOI: 10.1038/srep20987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 01/14/2016] [Indexed: 11/10/2022] Open
Abstract
The elicitation of HIV-1 broadly neutralizing antibodies following envelope glycoprotein (Env) vaccination is exceedingly difficult. Suboptimal engagement of naïve B cells is suggested to limit these low frequency events, especially at the conserved CD4bs. Here, we analyzed CD4bs-directed monoclonal antibodies (mAbs) elicited by YU2 gp140-foldon trimers in a non-human primate by selective sorting using CD4bs “knock out” trimers. Following two inoculations, the CD4bs-directed mAbs efficiently recognized the eliciting immunogen in their affinity-maturing state but did not recognize CD4bs-defective probes. We reverted these mAbs to their most likely inferred germline (igL) state, leaving the HCDR3 unaltered, to establish correlates of in vitro affinity to in vivo activation. Most igL-reverted mAbs bound the eliciting gp140 immunogen, indicating that CD4bs-directed B cells possessing reasonable affinity existed in the naïve repertoire. We detected relatively high affinities for the majority of the igL mAbs to gp120 and of Fabs to gp140, which, as expected, increased when the antibodies ‘matured’ following vaccination. Affinity increases were associated with slower off-rates as well as with acquisition of neutralizing capacity. These data reveal in vitro binding properties associated with in vivo activation that result in functional archiving of antigen-specific B cells elicited by a complex glycoprotein antigen following immunization.
Collapse
Affiliation(s)
- Kaifan Dai
- IAVI Neutralizing Antibody Center at TSRI, La Jolla CA.,Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla CA
| | - Salar N Khan
- IAVI Neutralizing Antibody Center at TSRI, La Jolla CA.,Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla CA
| | - Yimeng Wang
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla CA
| | - Linling He
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla CA
| | - Javier Guenaga
- IAVI Neutralizing Antibody Center at TSRI, La Jolla CA.,Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla CA
| | - Jidnyasa Ingale
- IAVI Neutralizing Antibody Center at TSRI, La Jolla CA.,Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla CA.,The Scripps CHAVI-ID, The Scripps Research Institute, La Jolla CA
| | - Christopher Sundling
- Department of Microbiology, and Tumor Cell Biology Karolinska Institutet, Stockholm SE
| | | | | | - Ganesh Phad
- Department of Microbiology, and Tumor Cell Biology Karolinska Institutet, Stockholm SE
| | - Martin Corcoran
- Department of Microbiology, and Tumor Cell Biology Karolinska Institutet, Stockholm SE
| | - Richard Wilson
- IAVI Neutralizing Antibody Center at TSRI, La Jolla CA.,Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla CA
| | | | - Jiang Zhu
- IAVI Neutralizing Antibody Center at TSRI, La Jolla CA.,Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla CA.,The Scripps CHAVI-ID, The Scripps Research Institute, La Jolla CA
| | - Yuxing Li
- IAVI Neutralizing Antibody Center at TSRI, La Jolla CA.,Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla CA
| | | | - Richard T Wyatt
- IAVI Neutralizing Antibody Center at TSRI, La Jolla CA.,Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla CA.,The Scripps CHAVI-ID, The Scripps Research Institute, La Jolla CA
| |
Collapse
|
15
|
Sliepen K, Sanders RW. HIV-1 envelope glycoprotein immunogens to induce broadly neutralizing antibodies. Expert Rev Vaccines 2016; 15:349-65. [PMID: 26654478 DOI: 10.1586/14760584.2016.1129905] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The long pursuit for a vaccine against human immunodeficiency virus 1 (HIV-1) has recently been boosted by a number of exciting developments. An HIV-1 subunit vaccine ideally should elicit potent broadly neutralizing antibodies (bNAbs), but raising bNAbs by vaccination has proved extremely difficult because of the characteristics of the HIV-1 envelope glycoprotein complex (Env). However, the isolation of bNAbs from HIV-1-infected patients demonstrates that the human humoral immune system is capable of making such antibodies. Therefore, a focus of HIV-1 vaccinology is the elicitation of bNAbs by engineered immunogens and by using vaccination strategies aimed at mimicking the bNAb maturation pathways in HIV-infected patients. Important clues can also be taken from the successful subunit vaccines against hepatitis B virus and human papillomavirus. Here, we review the different types of HIV-1 immunogens and vaccination strategies that are being explored in the search for an HIV-1 vaccine that induces bNAbs.
Collapse
Affiliation(s)
- Kwinten Sliepen
- a Department of Medical Microbiology, Academic Medical Center , University of Amsterdam , Amsterdam , The Netherlands
| | - Rogier W Sanders
- a Department of Medical Microbiology, Academic Medical Center , University of Amsterdam , Amsterdam , The Netherlands.,b Department of Microbiology and Immunology , Weill Medical College of Cornell University , New York , NY , USA
| |
Collapse
|
16
|
Sliepen K, van Montfort T, Ozorowski G, Pritchard LK, Crispin M, Ward AB, Sanders RW. Engineering and Characterization of a Fluorescent Native-Like HIV-1 Envelope Glycoprotein Trimer. Biomolecules 2015; 5:2919-34. [PMID: 26512709 PMCID: PMC4693263 DOI: 10.3390/biom5042919] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/13/2015] [Accepted: 10/15/2015] [Indexed: 12/03/2022] Open
Abstract
Generation of a stable, soluble mimic of the HIV-1 envelope glycoprotein (Env) trimer on the virion surface has been considered an important first step for developing a successful HIV-1 vaccine. Recently, a soluble native-like Env trimer (BG505 SOSIP.664) has been described. This protein has facilitated major advances in the HIV-1 vaccine field, since it was the first Env immunogen that induced consistent neutralizing antibodies against a neutralization-resistant (tier 2) virus. Moreover, BG505 SOSIP.664 enabled elucidation of the atomic resolution structure of the Env trimer and facilitated the isolation and characterization of new broadly neutralizing antibodies against HIV-1. Here, we designed and characterized the BG505 SOSIP.664 trimer fused to fluorescent superfolder GFP (sfGFP), a GFP variant that allows efficient folding (BG505 SOSIP.664-sfGFP). Despite the presence of the sfGFP, the Env protein largely retained its morphology, antigenicity, glycan composition, and thermostability. In addition, we show that BG505 SOSIP.664-sfGFP can be used for fluorescence-based assays, such as flow cytometry.
Collapse
Affiliation(s)
- Kwinten Sliepen
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands.
| | - Thijs van Montfort
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands.
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, IAVI Neutralizing Antibody Center, Collaboration for AIDS Vaccine Discovery (CAVD), Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Laura K Pritchard
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | - Max Crispin
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, IAVI Neutralizing Antibody Center, Collaboration for AIDS Vaccine Discovery (CAVD), Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Rogier W Sanders
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands.
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10065, USA.
| |
Collapse
|
17
|
Influences on the Design and Purification of Soluble, Recombinant Native-Like HIV-1 Envelope Glycoprotein Trimers. J Virol 2015; 89:12189-210. [PMID: 26311893 DOI: 10.1128/jvi.01768-15] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 08/20/2015] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED We have investigated factors that influence the production of native-like soluble, recombinant trimers based on the env genes of two isolates of human immunodeficiency virus type 1 (HIV-1), specifically 92UG037.8 (clade A) and CZA97.012 (clade C). When the recombinant trimers based on the env genes of isolates 92UG037.8 and CZA97.012 were made according to the SOSIP.664 design and purified by affinity chromatography using broadly neutralizing antibodies (bNAbs) against quaternary epitopes (PGT145 and PGT151, respectively), the resulting trimers are highly stable and they are fully native-like when visualized by negative-stain electron microscopy. They also have a native-like (i.e., abundant) oligomannose glycan composition and display multiple bNAb epitopes while occluding those for nonneutralizing antibodies. In contrast, uncleaved, histidine-tagged Foldon (Fd) domain-containing gp140 proteins (gp140UNC-Fd-His), based on the same env genes, very rarely form native-like trimers, a finding that is consistent with their antigenic and biophysical properties and glycan composition. The addition of a 20-residue flexible linker (FL20) between the gp120 and gp41 ectodomain (gp41ECTO) subunits to make the uncleaved 92UG037.8 gp140-FL20 construct is not sufficient to create a native-like trimer, but a small percentage of native-like trimers were produced when an I559P substitution in gp41ECTO was also present. The further addition of a disulfide bond (SOS) to link the gp120 and gp41 subunits in the uncleaved gp140-FL20-SOSIP protein increases native-like trimer formation to ∼20 to 30%. Analysis of the disulfide bond content shows that misfolded gp120 subunits are abundant in uncleaved CZA97.012 gp140UNC-Fd-His proteins but very rare in native-like trimer populations. The design and stabilization method and the purification strategy are, therefore, all important influences on the quality of trimeric Env proteins and hence their suitability as vaccine components. IMPORTANCE Soluble, recombinant multimeric proteins based on the HIV-1 env gene are current candidate immunogens for vaccine trials in humans. These proteins are generally designed to mimic the native trimeric envelope glycoprotein (Env) that is the target of virus-neutralizing antibodies on the surfaces of virions. The underlying hypothesis is that an Env-mimetic protein may be able to induce antibodies that can neutralize the virus broadly and potently enough for a vaccine to be protective. Multiple different designs for Env-mimetic trimers have been put forth. Here, we used the CZA97.012 and 92UG037.8 env genes to compare some of these designs and determine which ones best mimic virus-associated Env trimers. We conclude that the most widely used versions of CZA97.012 and 92UG037.8 oligomeric Env proteins do not resemble the trimeric Env glycoprotein on HIV-1 viruses, which has implications for the design and interpretation of ongoing or proposed clinical trials of these proteins.
Collapse
|
18
|
Sharma SK, de Val N, Bale S, Guenaga J, Tran K, Feng Y, Dubrovskaya V, Ward AB, Wyatt RT. Cleavage-independent HIV-1 Env trimers engineered as soluble native spike mimetics for vaccine design. Cell Rep 2015; 11:539-50. [PMID: 25892233 DOI: 10.1016/j.celrep.2015.03.047] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 02/11/2015] [Accepted: 03/20/2015] [Indexed: 12/22/2022] Open
Abstract
Viral glycoproteins mediate entry by pH-activated or receptor-engaged activation and exist in metastable pre-fusogenic states that may be stabilized by directed rational design. As recently reported, the conformationally fixed HIV-1 envelope glycoprotein (Env) trimers in the pre-fusion state (SOSIP) display molecular homogeneity and structural integrity at relatively high levels of resolution. However, the SOSIPs necessitate full Env precursor cleavage, which requires endogenous furin overexpression. Here, we developed an alternative strategy using flexible peptide covalent linkage of Env subdomains to produce soluble, homogeneous, and cleavage-independent Env mimics, called native flexibly linked (NFL) trimers, as vaccine candidates. This simplified design avoids the need for furin co-expression and, in one case, antibody affinity purification to accelerate trimer scale-up for preclinical and clinical applications. We have successfully translated the NFL design to multiple HIV-1 subtypes, establishing the potential to become a general method of producing native-like, well-ordered Env trimers for HIV-1 or other viruses.
Collapse
Affiliation(s)
- Shailendra Kumar Sharma
- IAVI Neutralizing Antibody Center at the Scripps Research Institute, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Natalia de Val
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Shridhar Bale
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Javier Guenaga
- IAVI Neutralizing Antibody Center at the Scripps Research Institute, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Karen Tran
- IAVI Neutralizing Antibody Center at the Scripps Research Institute, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yu Feng
- IAVI Neutralizing Antibody Center at the Scripps Research Institute, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Viktoriya Dubrovskaya
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andrew B Ward
- IAVI Neutralizing Antibody Center at the Scripps Research Institute, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Richard T Wyatt
- IAVI Neutralizing Antibody Center at the Scripps Research Institute, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
19
|
Immunogenic Display of Purified Chemically Cross-Linked HIV-1 Spikes. J Virol 2015; 89:6725-45. [PMID: 25878116 DOI: 10.1128/jvi.03738-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 04/11/2015] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED HIV-1 envelope glycoprotein (Env) spikes are prime vaccine candidates, at least in principle, but suffer from instability, molecular heterogeneity and a low copy number on virions. We anticipated that chemical cross-linking of HIV-1 would allow purification and molecular characterization of trimeric Env spikes, as well as high copy number immunization. Broadly neutralizing antibodies bound tightly to all major quaternary epitopes on cross-linked spikes. Covalent cross-linking of the trimer also stabilized broadly neutralizing epitopes, although surprisingly some individual epitopes were still somewhat sensitive to heat or reducing agent. Immunodepletion using non-neutralizing antibodies to gp120 and gp41 was an effective method for removing non-native-like Env. Cross-linked spikes, purified via an engineered C-terminal tag, were shown by negative stain EM to have well-ordered, trilobed structure. An immunization was performed comparing a boost with Env spikes on virions to spikes cross-linked and captured onto nanoparticles, each following a gp160 DNA prime. Although differences in neutralization did not reach statistical significance, cross-linked Env spikes elicited a more diverse and sporadically neutralizing antibody response against Tier 1b and 2 isolates when displayed on nanoparticles, despite attenuated binding titers to gp120 and V3 crown peptides. Our study demonstrates display of cross-linked trimeric Env spikes on nanoparticles, while showing a level of control over antigenicity, purity and density of virion-associated Env, which may have relevance for Env based vaccine strategies for HIV-1. IMPORTANCE The envelope spike (Env) is the target of HIV-1 neutralizing antibodies, which a successful vaccine will need to elicit. However, native Env on virions is innately labile, as well as heterogeneously and sparsely displayed. We therefore stabilized Env spikes using a chemical cross-linker and removed non-native Env by immunodepletion with non-neutralizing antibodies. Fixed native spikes were recognized by all classes of known broadly neutralizing antibodies but not by non-neutralizing antibodies and displayed on nanoparticles in high copy number. An immunization experiment in rabbits revealed that cross-linking Env reduced its overall immunogenicity; however, high-copy display on nanoparticles enabled boosting of antibodies that sporadically neutralized some relatively resistant HIV-1 isolates, albeit at a low titer. This study describes the purification of stable and antigenically correct Env spikes from virions that can be used as immunogens.
Collapse
|
20
|
Orellana-Escobedo L, Rosales-Mendoza S, Romero-Maldonado A, Parsons J, Decker EL, Monreal-Escalante E, Moreno-Fierros L, Reski R. An Env-derived multi-epitope HIV chimeric protein produced in the moss Physcomitrella patens is immunogenic in mice. PLANT CELL REPORTS 2015; 34:425-433. [PMID: 25477207 DOI: 10.1007/s00299-014-1720-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/20/2014] [Accepted: 11/24/2014] [Indexed: 06/04/2023]
Abstract
The first report on the recombinant production of a candidate vaccine in the moss system. The need for economical and efficient platforms for vaccine production demands the exploration of emerging host organisms. In this study, the production of an antigenic protein is reported employing the moss Physcomitrella patens as an expression host. A multi-epitope protein from the Human Immunodeficiency Virus (HIV) based on epitopes from gp120 and gp41 was designed as a candidate subunit vaccine and named poly-HIV. Transgenic moss plants were generated carrying the corresponding poly-HIV transgene under a novel moss promoter and subsequently seven positive lines were confirmed by PCR. The poly-HIV protein accumulated up to 3.7 µg g(-1) fresh weight in protonema cultures. Antigenic and immunogenic properties of the moss-produced recombinant poly-HIV are evidenced by Western blots and by mice immunization assays. The elicitation of specific antibodies in mice was observed, reflecting the immunogenic potential of this moss-derived HIV antigen. This is the first report on the production of a potential vaccine in the moss system and opens the avenue for glycoengineering approaches for the production of HIV human-like glycosylated antigens as well as other vaccine prototypes under GMP conditions in moss bioreactors.
Collapse
Affiliation(s)
- Lucía Orellana-Escobedo
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210, San Luis Potosí, SLP, Mexico,
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Singh S, Yang G, Byrareddy SN, Barry MA, Sastry KJ. Natural killer T cell and TLR9 agonists as mucosal adjuvants for sublingual vaccination with clade C HIV-1 envelope protein. Vaccine 2014; 32:6934-6940. [PMID: 25444819 DOI: 10.1016/j.vaccine.2014.10.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/22/2014] [Accepted: 10/23/2014] [Indexed: 02/06/2023]
Abstract
The vast majority of HIV-1 infections occur at mucosa during sexual contact. It may therefore be advantageous to provide mucosal barrier protection against this entry by mucosal vaccination. While a number of mucosal routes of vaccination are possible, many like enteric oral vaccines or intranasal vaccines have significant impediments that limit vaccine efficacy or pose safety risks. In contrast, immunogens applied to the sublingual region of the mouth could provide a simple route for mucosal vaccination. While sublingual immunization is appealing, this site does not always drive strong immune responses, particularly when using protein antigens. To address this issue, we have tested the ability of two mucosal adjuvants: alpha-galactosylceramide (αGalCer) that is a potent stimulator of natural killer T cells and CpG-oligodeoxynucleotide (CpG-ODN) a TLR9 agonist for their ability to amplify immune responses against clade C gp140 HIV-1 envelope protein antigen. Immunization with envelope protein alone resulted in a weak T cell and antibody responses. In contrast, CD4(+) and CD8(+) T cells responses in systemic and mucosal tissues were significantly higher in mice immunized with gp140 in the presence of either αGalCer or CpG-ODN and these responses were further augmented when the two adjuvants were used together. While both the adjuvants effectively increased gp140-specific serum IgG and vaginal IgA antibody levels, combining both significantly improved these responses. Memory T cell responses 60 days after immunization revealed αGalCer to be more potent than CpG-ODN and the combination of the αGalCer and CpG-ODN adjuvants was more effective than either alone. Serum and vaginal washes collected 60 days after immunization with gp140 with both αGalCer and CpG-ODN adjuvants had significant neutralization activity against Tier 1 and Tier 2 SHIVs. These data support the utility of the sublingual route for mucosal vaccination particularly in combination with αGalCer and CpG-ODN adjuvants.
Collapse
Affiliation(s)
- Shailbala Singh
- Department of Immunology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Guojun Yang
- Department of Immunology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Siddappa N Byrareddy
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Michael A Barry
- Department of Internal Medicine, Division of Infectious Diseases, Translational Immunovirology Program, Department of Immunology, Department of Molecular Medicine, Mayo Clinic, Rochester, MN, United States
| | - K Jagannadha Sastry
- Department of Immunology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States; Department of Veterinary Sciences, The University of Texas M.D. Anderson Cancer Center, Bastrop, TX, United States.
| |
Collapse
|
22
|
|
23
|
Hyperglycosylated stable core immunogens designed to present the CD4 binding site are preferentially recognized by broadly neutralizing antibodies. J Virol 2014; 88:14002-16. [PMID: 25253346 DOI: 10.1128/jvi.02614-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED The HIV-1 surface envelope glycoprotein (Env) trimer mediates entry into CD4(+) CCR5(+) host cells. Env possesses conserved antigenic determinants, such as the gp120 primary receptor CD4 binding site (CD4bs), a known neutralization target. Env also contains variable regions and protein surfaces occluded within the trimer that elicit nonneutralizing antibodies. Here we engineered additional N-linked glycans onto a cysteine-stabilized gp120 core (0G) deleted of its major variable regions to preferentially expose the conformationally fixed CD4bs. Three, 6, 7, and 10 new NXT/S glycan (G) motifs were engineered into 0G to encode 3G, 6G, 7G, and 10G cores. Following purification, most glycoproteins, except for 10G, were recognized by broadly neutralizing CD4bs-directed antibodies. Gel and glycan mass spectrometry confirmed that additional N-glycans were posttranslationally added to the redesigned cores. Binding kinetics revealed high-affinity recognition by seven broadly neutralizing CD4bs-directed antibodies and low to no binding by non-broadly neutralizing CD4bs-directed antibodies. Rabbits inoculated with the hyperglycosylated cores elicited IgM and IgG responses to each given protein that were similar in their neutralization characteristics to those elicited by parental 0G. Site-specific glycan masking effects were detected in the elicited sera, and the antisera competed with b12 for CD4bs-directed binding specificity. However, the core-elicited sera showed limited neutralization activity. Trimer priming or boosting of the core immunogens elicited tier 1-level neutralization that mapped to both the CD4bs and V3 and appeared to be trimer dependent. Fine mapping at the CD4bs indicated that conformational stabilization of the cores and addition of N-glycans altered the molecular surface of Env sites of vulnerability to neutralizing antibody, suggesting an explanation for why the elicited neutralization was not improved by this rational design strategy. IMPORTANCE Major obstacles to developing an effective HIV-1 vaccine include the variability of the envelope surface glycoproteins and its high-density glycan shield, generated by incorporation of host (human) glycosylation. HIV-1 does harbor highly conserved sites on the exposed envelope protein surface of gp120, one of which is the virus receptor (CD4) binding site. Several broadly neutralizing antibodies elicited from HIV patients do target this gp120 CD4 binding site (CD4bs); however, gp120 immunogens do not elicit broadly neutralizing antibodies. In this study, we targeted the CD4bs by conformational stabilization and additional glycan masking. We used the atomic-level structure to reengineer gp120 cores to preferentially present the cysteine-stabilized CD4bs and to mask (by glycan) nonneutralizing determinants. Importantly, glycan masking did successfully focus antibody responses to the CD4bs; however, the elicited CD4bs-directed antibodies did not neutralize HIV or bind to unmodified gp120, presumably due to the structure-guided modifications of the modified gp120 core.
Collapse
|
24
|
Cardozo T, Wang S, Jiang X, Kong XP, Hioe C, Krachmarov C. Vaccine focusing to cross-subtype HIV-1 gp120 variable loop epitopes. Vaccine 2014; 32:4916-24. [PMID: 25045827 DOI: 10.1016/j.vaccine.2014.07.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/30/2014] [Accepted: 07/08/2014] [Indexed: 10/25/2022]
Abstract
We designed synthetic, epitope-focused immunogens that preferentially display individual neutralization epitopes targeted by cross-subtype anti-HIV V3 loop neutralizing monoclonal antibodies (mAbs). Vaccination of rabbits with these immunogens resulted in the elicitation of distinct polyclonal serum Abs that exhibit cross-subtype neutralization specificities mimicking the mAbs that guided the design. Our results prove the principle that a predictable range of epitope-specific polyclonal cross-subtype HIV-1 neutralizing Abs can be intentionally elicited in mammals by vaccination. The precise boundaries of the epitopes and conformational flexibility in the presentation of the epitopes in the immunogen appeared to be important for successful elicitation. This work may serve as a starting point for translating the activities of human broadly neutralizing anti-HIV-1 monoclonal antibodies (bNAbs) into matched immunogens that can contribute to an efficacious HIV-1 vaccine.
Collapse
Affiliation(s)
- Timothy Cardozo
- New York University School of Medicine, Department of Biochemistry and Molecular Pharmacology, 550 First Avenue, New York, NY 10016, United States.
| | - Shixia Wang
- University of Massachusetts Medical School, Department of Medicine, 364 Plantation Street, Lazare Research Building, Worcester, MA 01605, United States
| | - Xunqing Jiang
- New York University School of Medicine, Department of Biochemistry and Molecular Pharmacology, 550 First Avenue, New York, NY 10016, United States
| | - Xiang-Peng Kong
- New York University School of Medicine, Department of Biochemistry and Molecular Pharmacology, 550 First Avenue, New York, NY 10016, United States
| | - Catarina Hioe
- New York University School of Medicine, Department of Pathology, 550 First Avenue, New York, NY 10016, United States; Veterans Affairs Medical Center, 423 East 23rd Street, New York, NY 10010, United States
| | - Chavdar Krachmarov
- New York University School of Medicine, Department of Biochemistry and Molecular Pharmacology, 550 First Avenue, New York, NY 10016, United States
| |
Collapse
|
25
|
Natural mannosylation of HIV-1 gp120 imposes no immunoregulatory effects in primary human plasmacytoid dendritic cells. Mol Immunol 2014; 59:180-7. [DOI: 10.1016/j.molimm.2014.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 02/09/2014] [Accepted: 02/11/2014] [Indexed: 01/15/2023]
|
26
|
Abstract
PURPOSE OF REVIEW The HIV-1 site of binding for the CD4 receptor has long attracted attention as a potential supersite of vulnerability to antibody-mediated neutralization. We review recent findings related to effective CD4-binding site antibodies isolated from HIV-1-infected individuals and discuss implications for immunogen design. RECENT FINDINGS Highly effective CD4-binding site antibodies such as antibody VRC01 have the ability to neutralize over 90% of circulating HIV-1 strains. Sequence and structural analysis of these antibodies from over half a dozen HIV-1-infected donors reveals remarkable similarity in their ontogenies and their modes of recognition, all of which involve mimicry of CD4 receptor by antibody-heavy chain. Meanwhile, other effective CD4-binding site neutralizers such as antibody CH103 have been shown to utilize a different mode of recognition, with next-generation sequencing of both virus and antibody suggesting co-evolution to drive the development of antibody-neutralization breadth. SUMMARY The nexus of information concerning the CD4-binding site and its recognition by human antibodies capable of effective neutralization has expanded remarkably in the last few years. Although barriers are substantial, new insights from donor-serum responses, atomic-level structures of antibody-Env complexes, and next-generation sequencing of B-cell transcripts are invigorating vaccine-design efforts to elicit effective CD4-binding site antibodies.
Collapse
|
27
|
Zhang X, Wallace O, Wright KJ, Backer M, Coleman JW, Koehnke R, Frenk E, Domi A, Chiuchiolo MJ, DeStefano J, Narpala S, Powell R, Morrow G, Boggiano C, Zamb TJ, Richter King C, Parks CL. Membrane-bound SIV envelope trimers are immunogenic in ferrets after intranasal vaccination with a replication-competent canine distemper virus vector. Virology 2013; 446:25-36. [DOI: 10.1016/j.virol.2013.07.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 05/09/2013] [Accepted: 07/11/2013] [Indexed: 11/15/2022]
|
28
|
Sattentau QJ. Envelope Glycoprotein Trimers as HIV-1 Vaccine Immunogens. Vaccines (Basel) 2013; 1:497-512. [PMID: 26344344 PMCID: PMC4494206 DOI: 10.3390/vaccines1040497] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/11/2013] [Accepted: 10/12/2013] [Indexed: 12/15/2022] Open
Abstract
The HIV-1 envelope glycoprotein spike is the target of neutralizing antibody attack, and hence represents the only relevant viral antigen for antibody-based vaccine design. Various approaches have been attempted to recapitulate Env in membrane-anchored and soluble forms, and these will be discussed here in the context of recent successes and challenges still to be overcome.
Collapse
Affiliation(s)
- Quentin J Sattentau
- The Sir William Dunn School of Pathology, The University of Oxford, South Parks Road, Oxford OX13RE, UK.
| |
Collapse
|
29
|
Stabilizing exposure of conserved epitopes by structure guided insertion of disulfide bond in HIV-1 envelope glycoprotein. PLoS One 2013; 8:e76139. [PMID: 24146829 PMCID: PMC3797752 DOI: 10.1371/journal.pone.0076139] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 08/26/2013] [Indexed: 11/19/2022] Open
Abstract
Entry of HIV-1 into target cells requires binding of the viral envelope glycoprotein (Env) to cellular receptors and subsequent conformational changes that culminates in fusion of viral and target cell membranes. Recent structural information has revealed that these conformational transitions are regulated by three conserved but potentially flexible layers stacked between the receptor-binding domain (gp120) and the fusion arm (gp41) of Env. We hypothesized that artificial insertion of a covalent bond will ‘snap’ Env into a conformation that is less mobile and stably expose conserved sites. Therefore, we analyzed the interface between these gp120 layers (layers 1, 2 and 3) and identified residues that may form disulfide bonds when substituted with cysteines. We subsequently probed the structures of the resultant mutant gp120 proteins by assaying their binding to a variety of ligands using Surface Plasmon Resonance (SPR) assay. We found that a single disulfide bond strategically inserted between the highly conserved layers 1 and 2 (C65-C115) is able to ‘lock’ gp120 in a CD4 receptor bound conformation (in the absence of CD4), as indicated by the lower dissociation constant (Kd) for the CD4-induced (CD4i) epitope binding 17b antibody. When disulfide-stabilized monomeric (gp120) and trimeric (gp140) Envs were used to immunize rabbits, they were found to elicit a higher proportion of antibodies directed against both CD4i and CD4 binding site epitopes than the wild-type proteins. These results demonstrate that structure-guided stabilization of inter-layer interactions within HIV-1 Env can be used to expose conserved epitopes and potentially overcome the sequence diversity of these molecules.
Collapse
|
30
|
Davenport TM, Guttman M, Guo W, Cleveland B, Kahn M, Hu SL, Lee KK. Isolate-specific differences in the conformational dynamics and antigenicity of HIV-1 gp120. J Virol 2013; 87:10855-73. [PMID: 23903848 PMCID: PMC3807424 DOI: 10.1128/jvi.01535-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 07/25/2013] [Indexed: 01/06/2023] Open
Abstract
The HIV-1 envelope glycoprotein (Env) mediates viral entry into host cells and is the sole target of neutralizing antibodies. Much of the sequence diversity in the HIV-1 genome is concentrated within Env, particularly within its gp120 surface subunit. While dramatic functional diversity exists among HIV-1 Env isolates-observable even in the context of monomeric gp120 proteins as differences in antigenicity and immunogenicity-we have little understanding of the structural features that distinguish Env isolates and lead to isolate-specific functional differences, as crystal structures of truncated gp120 "core" proteins from diverse isolates reveal a high level of structural conservation. Because gp120 proteins are used as prospective vaccine immunogens, it is critical to understand the structural factors that influence their reactivity with antibodies. Here, we studied four full-length, glycosylated gp120 monomers from diverse HIV-1 isolates by using small-angle X-ray scattering (SAXS) to probe the overall subunit morphology and hydrogen/deuterium-exchange with mass spectrometry (HDX-MS) to characterize the local structural order of each gp120. We observed that while the overall subunit architecture was similar among isolates by SAXS, dramatic isolate-specific differences in the conformational stability of gp120 were evident by HDX-MS. These differences persisted even with the CD4 receptor bound. Furthermore, surface plasmon resonance (SPR) and enzyme-linked immunosorbance assays (ELISAs) showed that disorder was associated with poorer recognition by antibodies targeting conserved conformational epitopes. These data provide additional insight into the structural determinants of gp120 antigenicity and suggest that conformational dynamics should be considered in the selection and design of optimized Env immunogens.
Collapse
Affiliation(s)
| | | | - Wenjin Guo
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Brad Cleveland
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Maria Kahn
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Shiu-Lok Hu
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
- Washington National Primate Research Center, Seattle, Washington, USA
| | - Kelly K. Lee
- Department of Global Health
- Department of Medicinal Chemistry
| |
Collapse
|
31
|
Robust neutralizing antibodies elicited by HIV-1 JRFL envelope glycoprotein trimers in nonhuman primates. J Virol 2013; 87:13239-51. [PMID: 24067980 DOI: 10.1128/jvi.01247-13] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Host cell-mediated proteolytic cleavage of the human immunodeficiency virus type 1 (HIV-1) gp160 precursor glycoprotein into gp120 and gp41 subunits is required to generate fusion-competent envelope glycoprotein (Env) spikes. The gp120-directed broadly neutralizing monoclonal antibodies (bNabs) isolated from HIV-infected individuals efficiently recognize fully cleaved JRFL Env spikes; however, nonneutralizing gp120-directed monoclonal antibodies isolated from infected or vaccinated subjects recognize only uncleaved JRFL spikes. Therefore, as an immunogen, cleaved spikes that selectively present desired neutralizing epitopes to B cells may elicit cross-reactive neutralizing antibodies. Accordingly, we inoculated nonhuman primates (NHPs) with plasmid DNA encoding transmembrane-anchored, cleaved JRFL Env or by electroporation (EP). Priming with DNA expressing soluble, uncleaved gp140 trimers was included as a comparative experimental group of NHPs. DNA inoculation was followed by boosts with soluble JRFL gp140 trimers, and control NHPs were inoculated with soluble JRFL protein trimers without DNA priming. In the TZM-bl assay, elicitation of neutralizing antibodies against HIV-1 tier 1 isolates was robust following the protein boost. Neutralization of tier 2 isolates was detected, but only in animals primed with plasmid DNA and boosted with trimeric protein. Using the more sensitive A3R5 assay, consistent neutralization of both clade B and C tier 2 isolates was detected from all regimens assessed in the current study, exceeding levels achieved by our previous vaccine regimens in primates. Together, these data suggest a potential advantage of B cell priming followed by a rest interval and protein boosting to present JRFL Env spikes to the immune system to better generate HIV-1 cross-clade neutralizing antibodies.
Collapse
|
32
|
A next-generation cleaved, soluble HIV-1 Env trimer, BG505 SOSIP.664 gp140, expresses multiple epitopes for broadly neutralizing but not non-neutralizing antibodies. PLoS Pathog 2013; 9:e1003618. [PMID: 24068931 PMCID: PMC3777863 DOI: 10.1371/journal.ppat.1003618] [Citation(s) in RCA: 780] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 07/30/2013] [Indexed: 01/17/2023] Open
Abstract
A desirable but as yet unachieved property of a human immunodeficiency virus type 1 (HIV-1) vaccine candidate is the ability to induce broadly neutralizing antibodies (bNAbs). One approach to the problem is to create trimeric mimics of the native envelope glycoprotein (Env) spike that expose as many bNAb epitopes as possible, while occluding those for non-neutralizing antibodies (non-NAbs). Here, we describe the design and properties of soluble, cleaved SOSIP.664 gp140 trimers based on the subtype A transmitted/founder strain, BG505. These trimers are highly stable, more so even than the corresponding gp120 monomer, as judged by differential scanning calorimetry. They are also homogenous and closely resemble native virus spikes when visualized by negative stain electron microscopy (EM). We used several techniques, including ELISA and surface plasmon resonance (SPR), to determine the relationship between the ability of monoclonal antibodies (MAbs) to bind the soluble trimers and neutralize the corresponding virus. In general, the concordance was excellent, in that virtually all bNAbs against multiple neutralizing epitopes on HIV-1 Env were highly reactive with the BG505 SOSIP.664 gp140 trimers, including quaternary epitopes (CH01, PG9, PG16 and PGT145). Conversely, non-NAbs to the CD4-binding site, CD4-induced epitopes or gp41ECTO did not react with the trimers, even when their epitopes were present on simpler forms of Env (e.g. gp120 monomers or dissociated gp41 subunits). Three non-neutralizing MAbs to V3 epitopes did, however, react strongly with the trimers but only by ELISA, and not at all by SPR and to only a limited extent by EM. These new soluble trimers are useful for structural studies and are being assessed for their performance as immunogens.
Collapse
|
33
|
Gach JS, Quendler H, Tong T, Narayan KM, Du SX, Whalen RG, Binley JM, Forthal DN, Poignard P, Zwick MB. A human antibody to the CD4 binding site of gp120 capable of highly potent but sporadic cross clade neutralization of primary HIV-1. PLoS One 2013; 8:e72054. [PMID: 23991039 PMCID: PMC3753353 DOI: 10.1371/journal.pone.0072054] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 07/06/2013] [Indexed: 01/21/2023] Open
Abstract
Primary isolates of HIV-1 resist neutralization by most antibodies to the CD4 binding site (CD4bs) on gp120 due to occlusion of this site on the trimeric spike. We describe 1F7, a human CD4bs monoclonal antibody that was found to be exceptionally potent against the HIV-1 primary isolate JR-FL. However, 1F7 failed to neutralize a patient-matched primary isolate, JR-CSF even though the two isolates differ by <10% in gp120 at the protein level. In an HIV-1 cross clade panel (n = 157), 1F7 exhibited moderate breadth, but occasionally achieved considerable potency. In binding experiments using monomeric gp120s of select resistant isolates and domain-swap chimeras between JR-FL and JR-CSF, recognition by 1F7 was limited by sequence polymorphisms involving at least the C2 region of Env. Putative N-linked glycosylation site (PNGS) mutations, notably at position 197, allowed 1F7 to neutralize JR-CSF potently without improving binding to the cognate, monomeric gp120. In contrast, flow cytometry experiments using the same PNGS mutants revealed that 1F7 binding is enhanced on cognate trimeric Env. BN-PAGE mobility shift experiments revealed that 1F7 is sensitive to the diagnostic mutation D368R in the CD4 binding loop of gp120. Our data on 1F7 reinforce how exquisitely targeted CD4bs antibodies must be to achieve cross neutralization of two closely related primary isolates. High-resolution analyses of trimeric Env that show the orientation of glycans and polymorphic elements of the CD4bs that affect binding to antibodies like 1F7 are desirable to understand how to promote immunogenicity of more conserved elements of the CD4bs.
Collapse
Affiliation(s)
- Johannes S. Gach
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
- Division of Infectious Diseases, University of California Irvine, Irvine, California, United States of America
- * E-mail: (JSG); (MBZ)
| | - Heribert Quendler
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Tommy Tong
- Torrey Pines Institute for Molecular Studies, San Diego, California, United States of America
| | | | - Sean X. Du
- Altravax, Inc., Sunnyvale, California, United States of America
| | | | - James M. Binley
- Torrey Pines Institute for Molecular Studies, San Diego, California, United States of America
| | - Donald N. Forthal
- Division of Infectious Diseases, University of California Irvine, Irvine, California, United States of America
| | - Pascal Poignard
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
| | - Michael B. Zwick
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail: (JSG); (MBZ)
| |
Collapse
|
34
|
Ota T, Doyle-Cooper C, Cooper AB, Doores KJ, Aoki-Ota M, Le K, Schief WR, Wyatt RT, Burton DR, Nemazee D. B cells from knock-in mice expressing broadly neutralizing HIV antibody b12 carry an innocuous B cell receptor responsive to HIV vaccine candidates. THE JOURNAL OF IMMUNOLOGY 2013; 191:3179-85. [PMID: 23940273 DOI: 10.4049/jimmunol.1301283] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Broadly neutralizing Abs against HIV protect from infection, but their routine elicitation by vaccination has not been achieved. To generate small animal models to test vaccine candidates, we have generated targeted transgenic ("knock-in") mice expressing, in the physiological Ig H and L chain loci, two well-studied broadly neutralizing Abs: 4E10, which interacts with the membrane proximal external region of gp41, and b12, which binds to the CD4 binding site on gp120. 4E10HL mice are described in the companion article (Doyle-Cooper et al., J. Immunol. 191: 3186-3191). In this article, we describe b12 mice. B cells in b12HL mice, in contrast to the case in 4E10 mice, were abundant and essentially monoclonal, retaining the b12 specificity. In cell culture, b12HL B cells responded avidly to HIV envelope gp140 trimers and to BCR ligands. Upon transfer to wild-type recipients, b12HL B cells responded robustly to vaccination with gp140 trimers. Vaccinated b12H mice, although generating abundant precursors and Abs with affinity for Env, were unable to rapidly generate neutralizing Abs, highlighting the importance of developing Ag forms that better focus responses to neutralizing epitopes. The b12HL and b12H mice should be useful in optimizing HIV vaccine candidates to elicit a neutralizing response while avoiding nonprotective specificities.
Collapse
Affiliation(s)
- Takayuki Ota
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92130, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Hu K, Luo S, Tong L, Huang X, Jin W, Huang W, Du T, Yan Y, He S, Griffin GE, Shattock RJ, Hu Q. CCL19 and CCL28 Augment Mucosal and Systemic Immune Responses to HIV-1 gp140 by Mobilizing Responsive Immunocytes into Secondary Lymph Nodes and Mucosal Tissue. THE JOURNAL OF IMMUNOLOGY 2013; 191:1935-47. [DOI: 10.4049/jimmunol.1300120] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Abstract
Most neutralizing antibodies act at the earliest steps of viral infection and block interaction of the virus with cellular receptors to prevent entry into host cells. The inability to induce neutralizing antibodies to HIV has been a major obstacle to HIV vaccine research since the early days of the epidemic. However, in the past three years, the definition of a neutralizing antibody against HIV has been revolutionized by the isolation of extremely broad and potent neutralizing antibodies from HIV-infected individuals. Considerable hurdles remain for inducing neutralizing antibodies to a protective level after immunization. Meanwhile, novel technologies to bypass the induction of antibodies are being explored to provide prophylactic antibody-based interventions. This review addresses the challenge of inducing HIV neutralizing antibodies upon immunization and considers notable recent advances in the field. A greater understanding of the successes and failures for inducing a neutralizing response upon immunization is required to accelerate the development of an effective HIV vaccine.
Collapse
Affiliation(s)
- Laura E McCoy
- Wohl Virion Centre, Division of Infection and Immunity, University College London, London WC1E 6BT, England, UK
| | | |
Collapse
|
37
|
Burton DR, Ahmed R, Barouch DH, Butera ST, Crotty S, Godzik A, Kaufmann DE, McElrath MJ, Nussenzweig MC, Pulendran B, Scanlan CN, Schief WR, Silvestri G, Streeck H, Walker BD, Walker LM, Ward AB, Wilson IA, Wyatt R. A Blueprint for HIV Vaccine Discovery. Cell Host Microbe 2013; 12:396-407. [PMID: 23084910 DOI: 10.1016/j.chom.2012.09.008] [Citation(s) in RCA: 300] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Despite numerous attempts over many years to develop an HIV vaccine based on classical strategies, none has convincingly succeeded to date. A number of approaches are being pursued in the field, including building upon possible efficacy indicated by the recent RV144 clinical trial, which combined two HIV vaccines. Here, we argue for an approach based, in part, on understanding the HIV envelope spike and its interaction with broadly neutralizing antibodies (bnAbs) at the molecular level and using this understanding to design immunogens as possible vaccines. BnAbs can protect against virus challenge in animal models, and many such antibodies have been isolated recently. We further propose that studies focused on how best to provide T cell help to B cells that produce bnAbs are crucial for optimal immunization strategies. The synthesis of rational immunogen design and immunization strategies, together with iterative improvements, offers great promise for advancing toward an HIV vaccine.
Collapse
Affiliation(s)
- Dennis R Burton
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Leaman DP, Zwick MB. Increased functional stability and homogeneity of viral envelope spikes through directed evolution. PLoS Pathog 2013; 9:e1003184. [PMID: 23468626 PMCID: PMC3585149 DOI: 10.1371/journal.ppat.1003184] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 12/21/2012] [Indexed: 11/19/2022] Open
Abstract
The functional HIV-1 envelope glycoprotein (Env) trimer, the target of anti-HIV-1 neutralizing antibodies (Abs), is innately labile and coexists with non-native forms of Env. This lability and heterogeneity in Env has been associated with its tendency to elicit non-neutralizing Abs. Here, we use directed evolution to overcome instability and heterogeneity of a primary Env spike. HIV-1 virions were subjected to iterative cycles of destabilization followed by replication to select for Envs with enhanced stability. Two separate pools of stable Env variants with distinct sequence changes were selected using this method. Clones isolated from these viral pools could withstand heat, denaturants and other destabilizing conditions. Seven mutations in Env were associated with increased trimer stability, primarily in the heptad repeat regions of gp41, but also in V1 of gp120. Combining the seven mutations generated a variant Env with superior homogeneity and stability. This variant spike moreover showed resistance to proteolysis and to dissociation by detergent. Heterogeneity within the functional population of hyper-stable Envs was also reduced, as evidenced by a relative decrease in a proportion of virus that is resistant to the neutralizing Ab, PG9. The latter result may reflect a change in glycans on the stabilized Envs. The stabilizing mutations also increased the proportion of secreted gp140 existing in a trimeric conformation. Finally, several Env-stabilizing substitutions could stabilize Env spikes from HIV-1 clades A, B and C. Spike stabilizing mutations may be useful in the development of Env immunogens that stably retain native, trimeric structure. A vaccine is needed to prevent HIV/AIDS but eliciting potent neutralizing antibodies (Abs) against primary isolates has been a major stumbling block. The target of HIV-1 neutralizing antibodies is the native envelope glycoprotein (Env) trimer that is displayed on the surface of the virus. Virion associated Env typically elicits antibodies that cannot neutralize primary viruses. However, because native Env trimers can dissociate and coexist with non-fusogenic forms of Env interpreting these results are difficult. Here, we used directed evolution to select for virions that display native Env with increased stability and homogeneity. HIV-1 virions were subjected to increasingly harsh treatments that destabilize Env trimers, and the variants that survived each treatment were expanded. We could identify seven different mutations in Env that increased its stability of function in the face of multiple destabilizing treatments. When these mutations were combined, the resulting mutant Env trimers were far more stable than the original Env protein. Incorporating trimer-stabilizing mutations into Env-based immunogens should facilitate vaccine research by mitigating the confounding effects of non-native byproducts of Env decay. A similar approach may be used on other pathogens with potential vaccine targets that are difficult to isolate and maintain in a native form.
Collapse
Affiliation(s)
- Daniel P. Leaman
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Michael B. Zwick
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
39
|
van Gils MJ, Sanders RW. Broadly neutralizing antibodies against HIV-1: templates for a vaccine. Virology 2013; 435:46-56. [PMID: 23217615 DOI: 10.1016/j.virol.2012.10.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 10/01/2012] [Indexed: 11/30/2022]
Abstract
The need for an effective vaccine to prevent the global spread of human immunodeficiency virus type 1 (HIV-1) is well recognized. Passive immunization and challenge studies in non-human primates testify that broadly neutralizing antibodies (BrNAbs) can accomplish protection against infection. In recent years, the introduction of new techniques has facilitated the discovery of an unprecedented number of new human BrNAbs that target and delineate diverse conserved epitopes on the envelope glycoprotein spike (Env). The epitopes of these BrNAbs can serve as templates for immunogen design aimed to induce similar antibodies. Here we will review the characteristics of the different classes of BrNAbs and their target epitopes, as well as factors associated with their development and implications for vaccine design.
Collapse
Affiliation(s)
- Marit J van Gils
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, The Netherlands
| | | |
Collapse
|
40
|
|
41
|
Abstract
INTRODUCTION An effective vaccine that can protect people against infection of the human immunodeficiency virus type 1 (HIV-1) remains elusive. HIV-1 vaccine research has encountered several false starts and a few causes for hope over the last 28 years, but no real success stories. Thus, it is time to think out of the box and design and test unorthodox vaccination strategies. AREAS COVERED Recent studies in mice and monkeys have revealed the potential of a gene therapy that provides vaccine-like protection against HIV-1 infection by producing a potent vector-encoded antibody that neutralizes the invading viruses. This novel strategy is called Vectored Immuno Prophylaxis or VIP, and it circumvents the sometimes difficult phases of regular vaccination protocols, that is, antigen design and induction of protective immune responses. EXPERT OPINION VIP is a prolonged form of passive immunization by means of a gene therapy. We will discuss the ins and outs of VIP and the therapeutic possibilities and challenges.
Collapse
Affiliation(s)
- Ben Berkhout
- University of Amsterdam, Center for Infection and Immunity Amsterdam, Academic Medical Center, Department of Medical Microbiology, Laboratory of Experimental Virology, Meibergdreef 15, K3-110, 1105 AZ Amsterdam, The Netherlands.
| | | |
Collapse
|
42
|
Garg H, Viard M, Jacobs A, Blumenthal R. Targeting HIV-1 gp41-induced fusion and pathogenesis for anti-viral therapy. Curr Top Med Chem 2012; 11:2947-58. [PMID: 22044225 DOI: 10.2174/156802611798808479] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 02/28/2011] [Accepted: 12/01/2011] [Indexed: 11/22/2022]
Abstract
HIV gp41 is a metastable protein whose native conformation is maintained in the form of a heterodimer with gp120. The non-covalently associated gp41/gp120 complex forms a trimer on the virus surface. As gp120 engages with HIV's receptor, CD4, and coreceptor, CXCR4 or CCR5, gp41 undergoes several conformational changes resulting in fusion between the viral and cellular membranes. Several lipophilic and amphiphilic domains have been shown to be critical in that process. While the obvious function of gp41 in viral entry is well-established its role in cellular membrane fusion and the link with pathogenesis are only now beginning to appear. Recent targeting of gp41 via fusion inhibitors has revealed an important role of this protein not only in viral entry but also in bystander apoptosis and HIV pathogenesis. Studies by our group and others have shown that the phenomenon of gp41-mediated hemifusion initiates apoptosis in bystander cells and correlates with virus pathogenesis. More interestingly, recent clinical evidence suggests that gp41 mutants arising after Enfuvirtide therapy are associated with CD4 cell increase and immunological benefits. This has in turn been correlated to a decrease in bystander apoptosis in our in vitro as well as in vivo assays. Although a great deal of work has been done to unravel HIV-1 gp41-mediated fusion mechanisms, the factors that regulate gp41-mediated fusion versus hemifusion and the mechanism by which hemifusion initiates bystander apoptosis are not fully understood. Further insight into these issues will open new avenues for drug development making gp41 a critical anti-HIV target both for neutralization and virus attenuation.
Collapse
Affiliation(s)
- Himanshu Garg
- Center of Excellence for Infectious Disease, Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA
| | | | | | | |
Collapse
|
43
|
McCoy LE, Quigley AF, Strokappe NM, Bulmer-Thomas B, Seaman MS, Mortier D, Rutten L, Chander N, Edwards CJ, Ketteler R, Davis D, Verrips T, Weiss RA. Potent and broad neutralization of HIV-1 by a llama antibody elicited by immunization. ACTA ACUST UNITED AC 2012; 209:1091-103. [PMID: 22641382 PMCID: PMC3371729 DOI: 10.1084/jem.20112655] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A heavy chain–only antibody isolated from a llama repeatedly immunized with trimeric HIV-1 Env neutralizes 96% of tested HIV-1 strains. Llamas (Lama glama) naturally produce heavy chain–only antibodies (Abs) in addition to conventional Abs. The variable regions (VHH) in these heavy chain–only Abs demonstrate comparable affinity and specificity for antigens to conventional immunoglobulins despite their much smaller size. To date, immunizations in humans and animal models have yielded only Abs with limited ability to neutralize HIV-1. In this study, a VHH phagemid library generated from a llama that was multiply immunized with recombinant trimeric HIV-1 envelope proteins (Envs) was screened directly for HIV-1 neutralization. One VHH, L8CJ3 (J3), neutralized 96 of 100 tested HIV-1 strains, encompassing subtypes A, B, C, D, BC, AE, AG, AC, ACD, CD, and G. J3 also potently neutralized chimeric simian-HIV strains with HIV subtypes B and C Env. The sequence of J3 is highly divergent from previous anti–HIV-1 VHH and its own germline sequence. J3 achieves broad and potent neutralization of HIV-1 via interaction with the CD4-binding site of HIV-1 Env. This study may represent a new benchmark for immunogens to be included in B cell–based vaccines and supports the development of VHH as anti–HIV-1 microbicides.
Collapse
Affiliation(s)
- Laura E McCoy
- Wohl Virion Centre, University College London, London WC1E 6BT, England, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kong L, Sattentau QJ. Antigenicity and Immunogenicity in HIV-1 Antibody-Based Vaccine Design. JOURNAL OF AIDS & CLINICAL RESEARCH 2012; S8:3. [PMID: 23227445 PMCID: PMC3515071 DOI: 10.4172/2155-6113] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Neutralizing antibodies can protect from infection by immunodeficiency viruses. However, the induction by active vaccination of antibodies that can potently neutralize a broad range of circulating virus strains is a goal not yet achieved, despite more than 2 decades of research. Here we review progress made in the field, from early empirical studies to today's rational structure-based vaccine antigen design. We discuss the existence of broadly neutralizing antibodies, their implications for epitope discovery and recent progress made in antigen design. Finally, we consider the relationship between antigenicity and immunogenicity for B cell recognition and antibody production, a major hurdle for rational vaccine design to overcome.
Collapse
Affiliation(s)
- Leopold Kong
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Quentin J Sattentau
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| |
Collapse
|
45
|
Dey AK, Burke B, Sun Y, Sirokman K, Nandi A, Hartog K, Lian Y, Geonnotti AR, Montefiori D, Franti M, Martin G, Carfi A, Kessler P, Martin L, Srivastava IK, Barnett SW. Elicitation of neutralizing antibodies directed against CD4-induced epitope(s) using a CD4 mimetic cross-linked to a HIV-1 envelope glycoprotein. PLoS One 2012; 7:e30233. [PMID: 22291921 PMCID: PMC3265465 DOI: 10.1371/journal.pone.0030233] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 12/12/2011] [Indexed: 11/19/2022] Open
Abstract
The identification of HIV-1 envelope glycoprotein (Env) structures that can generate broadly neutralizing antibodies (BNAbs) is pivotal to the development of a successful vaccine against HIV-1 aimed at eliciting effective humoral immune responses. To that end, the production of novel Env structure(s) that might induce BNAbs by presentation of conserved epitopes, which are otherwise occluded, is critical. Here, we focus on a structure that stabilizes Env in a conformation representative of its primary (CD4) receptor-bound state, thereby exposing highly conserved "CD4 induced" (CD4i) epitope(s) known to be important for co-receptor binding and subsequent virus infection. A CD4-mimetic miniprotein, miniCD4 (M64U1-SH), was produced and covalently complexed to recombinant, trimeric gp140 envelope glycoprotein (gp140) using site-specific disulfide linkages. The resulting gp140-miniCD4 (gp140-S-S-M64U1) complex was recognized by CD4i antibodies and the HIV-1 co-receptor, CCR5. The gp140-miniCD4 complex elicited the highest titers of CD4i binding antibodies as well as enhanced neutralizing antibodies against Tier 1 viruses as compared to gp140 protein alone following immunization of rabbits. Neutralization against HIV-2(7312/V434M) and additional serum mapping confirm the specific elicitation of antibodies directed to the CD4i epitope(s). These results demonstrate the utility of structure-based approach in improving immunogenic response against specific region, such as the CD4i epitope(s) here, and its potential role in vaccine application.
Collapse
Affiliation(s)
- Antu K. Dey
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts, United States of America
| | - Brian Burke
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts, United States of America
| | - Yide Sun
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts, United States of America
| | - Klara Sirokman
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts, United States of America
| | - Avishek Nandi
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts, United States of America
| | - Karin Hartog
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts, United States of America
| | - Ying Lian
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts, United States of America
| | - Anthony R. Geonnotti
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - David Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Michael Franti
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts, United States of America
| | - Grégoire Martin
- CEA, iBiTecS, Service d'Ingénierie Moléculaire des Protéines, Gif sur Yvette, France
| | - Andrea Carfi
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts, United States of America
| | - Pascal Kessler
- CEA, iBiTecS, Service d'Ingénierie Moléculaire des Protéines, Gif sur Yvette, France
| | - Loïc Martin
- CEA, iBiTecS, Service d'Ingénierie Moléculaire des Protéines, Gif sur Yvette, France
| | - Indresh K. Srivastava
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts, United States of America
| | - Susan W. Barnett
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts, United States of America
| |
Collapse
|
46
|
Targeting HIV-1 envelope glycoprotein trimers to B cells by using APRIL improves antibody responses. J Virol 2011; 86:2488-500. [PMID: 22205734 DOI: 10.1128/jvi.06259-11] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An HIV-1 vaccine remains elusive, in part because various factors limit the quantity and quality of the antibodies raised against the viral envelope glycoprotein complex (Env). We hypothesized that targeting Env vaccines directly to B cells, by fusing them to molecules that bind and activate these cells, would improve Env-specific antibody responses. Therefore, we fused trimeric Env gp140 to A PRoliferation-Inducing Ligand (APRIL), B-cell Activating Factor (BAFF), and CD40 Ligand (CD40L). The Env-APRIL, Env-BAFF, and Env-CD40L gp140 trimers all enhanced the expression of activation-induced cytidine deaminase (AID), the enzyme responsible for inducing somatic hypermutation, antibody affinity maturation, and antibody class switching. They also triggered IgM, IgG, and IgA secretion from human B cells in vitro. The Env-APRIL trimers induced higher anti-Env antibody responses in rabbits, including neutralizing antibodies against tier 1 viruses. The enhanced Env-specific responses were not associated with a general increase in total plasma antibody concentrations, indicating that the effect of APRIL was specific for Env. All the rabbit sera raised against gp140 trimers, irrespective of the presence of CD40L, BAFF, or APRIL, recognized trimeric Env efficiently, whereas sera raised against gp120 monomers did not. The levels of trimer-binding and virus-neutralizing antibodies were strongly correlated, suggesting that gp140 trimers are superior to gp120 monomers as immunogens. Targeting and activating B cells with a trimeric HIV-1 Env-APRIL fusion protein may therefore improve the induction of humoral immunity against HIV-1.
Collapse
|
47
|
Lannergård J, Gustafsson MCU, Waldemarsson J, Norrby-Teglund A, Stålhammar-Carlemalm M, Lindahl G. The Hypervariable region of Streptococcus pyogenes M protein escapes antibody attack by antigenic variation and weak immunogenicity. Cell Host Microbe 2011; 10:147-57. [PMID: 21843871 DOI: 10.1016/j.chom.2011.06.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 03/24/2011] [Accepted: 06/28/2011] [Indexed: 10/17/2022]
Abstract
Sequence variation of antigenic proteins allows pathogens to evade antibody attack. The variable protein commonly includes a hypervariable region (HVR), which represents a key target for antibodies and is therefore predicted to be immunodominant. To understand the mechanism(s) of antibody evasion, we analyzed the clinically important HVR-containing M proteins of the human pathogen Streptococcus pyogenes. Antibodies elicited by M proteins were directed almost exclusively against the C-terminal part and not against the N-terminal HVR. Similar results were obtained for mice and humans with invasive S. pyogenes infection. Nevertheless, only anti-HVR antibodies protected efficiently against infection, as shown by passive immunizations. The HVR fused to an unrelated protein elicited no antibodies, implying that it is inherently weakly immunogenic. These data indicate that the M protein HVR evades antibody attack not only through antigenic variation but also by weak immunogenicity, a paradoxical observation that may apply to other HVR-containing proteins.
Collapse
Affiliation(s)
- Jonas Lannergård
- Division of Medical Microbiology, Department of Laboratory Medicine, Lund University, Sweden
| | | | | | | | | | | |
Collapse
|
48
|
Noninfectious retrovirus particles drive the APOBEC3/Rfv3 dependent neutralizing antibody response. PLoS Pathog 2011; 7:e1002284. [PMID: 21998583 PMCID: PMC3188525 DOI: 10.1371/journal.ppat.1002284] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Accepted: 08/07/2011] [Indexed: 12/31/2022] Open
Abstract
Members of the APOBEC3 family of deoxycytidine deaminases counteract a broad range of retroviruses in vitro through an indirect mechanism that requires virion incorporation and inhibition of reverse transcription and/or hypermutation of minus strand transcripts in the next target cell. The selective advantage to the host of this indirect restriction mechanism remains unclear, but valuable insights may be gained by studying APOBEC3 function in vivo. Apobec3 was previously shown to encode Rfv3, a classical resistance gene that controls the recovery of mice from pathogenic Friend retrovirus (FV) infection by promoting a more potent neutralizing antibody (NAb) response. The underlying mechanism does not involve a direct effect of Apobec3 on B cell function. Here we show that while Apobec3 decreased titers of infectious virus during acute FV infection, plasma viral RNA loads were maintained, indicating substantial release of noninfectious particles in vivo. The lack of plasma virion infectivity was associated with a significant post-entry block during early reverse transcription rather than G-to-A hypermutation. The Apobec3-dependent NAb response correlated with IgG binding titers against native, but not detergent-lysed virions. These findings indicate that innate Apobec3 restriction promotes NAb responses by maintaining high concentrations of virions with native B cell epitopes, but in the context of low virion infectivity. Finally, Apobec3 restriction was found to be saturable in vivo, since increasing FV inoculum doses resulted in decreased Apobec3 inhibition. By analogy, maximizing the release of noninfectious particles by modulating APOBEC3 expression may improve humoral immunity against pathogenic human retroviral infections.
Collapse
|
49
|
HIV-2 A-subtype gp125c₂-v₃-c₃ mutations and their association with CCR5 and CXCR4 tropism. Arch Virol 2011; 156:1943-51. [PMID: 21814863 DOI: 10.1007/s00705-011-1075-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 07/11/2011] [Indexed: 10/17/2022]
Abstract
The early events of the HIV replication cycle involve the interaction between viral envelope glycoproteins and their cellular CD4-chemokine (CCR5/CXCR4) receptor complex. In this study, for the first time, the HIV-2 A-subtype gp125(C2-V3-C3) mutations and their tropism association were characterized by analyzing 149 HIV-2 sequences from the Los Alamos database. The analysis has strengthened the importance of C2-V3-C3 region as a determinant factor for co-receptor selection. Moreover, statistically significant correlations were observed between C2-V3-C3 mutations, and several correlated mutations were associated with CXCR4 and CCR5 co-receptor usage. A dendrogram showed two distinct clusters, with numerous associated mutations grouped, thus dividing CCR5- and CXCR4-tropic viruses. Fourteen X4-tropic virus mutations, all in V3 and C3 domains and forming highly significant subclusters, were found. Finally, R5 associations, two strong subclusters were observed, grouping several C2-V3-C3 mutated positions. These data indicate the possible contribution of C2-V3-C3 mutational patterns in regulating HIV-2 tropism.
Collapse
|
50
|
Yahav T, Maimon T, Grossman E, Dahan I, Medalia O. Cryo-electron tomography: gaining insight into cellular processes by structural approaches. Curr Opin Struct Biol 2011; 21:670-7. [PMID: 21813274 DOI: 10.1016/j.sbi.2011.07.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 06/23/2011] [Accepted: 07/11/2011] [Indexed: 11/18/2022]
Abstract
Visualization of cellular processes at a resolution of the individual protein should involve integrative and complementary approaches that can eventually draw realistic functional and cellular landscapes. Electron tomography of vitrified but otherwise unaltered cells emerges as a central method for three-dimensional reconstruction of cellular architecture at a resolution of 2-6 nm. While a combination of correlative light-based microscopy with cryo-electron tomography (cryo-ET) provides medium-resolution insight into pivotal cellular processes, fitting high-resolution structural approaches, for example, X-ray crystallography, into reconstructed macromolecular assemblies provides unprecedented information on native protein assemblies. Thus, cryo-ET bridges the resolution gap between cellular and structural biology. In this article, we focus on the study of eukaryotic cells and macromolecular complexes in a close-to-life-state. We discuss recent developments and structural findings enabling major strides to be made in understanding complex physiological functions.
Collapse
Affiliation(s)
- Tal Yahav
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | | | | | | | |
Collapse
|