1
|
Agueda-Oyarzabal M, Isidor MS, Plucińska K, Ingerslev LR, Dmytriyeva O, Petersen PSS, Laftih S, Pontoppidan AB, Henningsen JB, Rupar K, Brown EL, Schwartz TW, Barrès R, Gerhart-Hines Z, Schéele CC, Emanuelli B. Transcriptomic signatures of cold acclimated adipocytes reveal CXCL12 as a Brown autocrine and paracrine chemokine. Mol Metab 2025; 93:102102. [PMID: 39848402 PMCID: PMC11841078 DOI: 10.1016/j.molmet.2025.102102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 01/25/2025] Open
Abstract
Besides its thermogenic capacity, brown adipose tissue (BAT) performs important secretory functions that regulate metabolism. However, the BAT microenvironment and factors involved in BAT homeostasis and adaptation to cold remain poorly characterized. We therefore aimed to study brown adipocyte-derived secreted factors that may be involved in adipocyte function and/or may orchestrate intercellular communications. For this, mRNA levels in mature adipocytes from mouse adipose depots were assessed using RNA sequencing upon chronic cold acclimation, and bioinformatic analysis was used to identify secreted factors. Among 858 cold-sensitive transcripts in BAT adipocytes were 210 secreted factor-encoding genes, and Cxcl12 was the top brown adipocyte-enriched cytokine. Cxcl12 mRNA expression analysis by RT-qPCR and fluorescence in situ hybridization specified Cxcl12 distribution in various cell types, and indicated its enrichment in cold-acclimated brown adipocytes. We found that CXCL12 secretion from BAT was increased after chronic cold, yet its level in plasma remained unchanged, suggesting a local/paracrine function. Cxcl12 knockdown in mature brown adipocytes impaired thermogenesis, as assessed by norepinephrine (NE)-induced glycerol release and mitochondrial respiration. However, knockdown of Cxcl12 did not impact β-adrenergic signaling, suggesting that CXCL12 regulates adipocyte function downstream of the β-adrenergic pathway. Moreover, we provide evidence for CXCL12 to exert intercellular cross-talk via its capacity to promote macrophage chemotaxis and neurite outgrowth. Collectively, our results indicate that CXCL12 is a brown adipocyte-enriched, cold-induced secreted factor involved in adipocyte function and the BAT microenvironment communication network.
Collapse
Affiliation(s)
- Marina Agueda-Oyarzabal
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie S Isidor
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kaja Plucińska
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars R Ingerslev
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Oksana Dmytriyeva
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Patricia S S Petersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sara Laftih
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Axel B Pontoppidan
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jo B Henningsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kaja Rupar
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Erin L Brown
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thue W Schwartz
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Romain Barrès
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur & Centre National pour la Recherche Scientifique (CNRS), Valbonne, 06560, France
| | - Zachary Gerhart-Hines
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Camilla C Schéele
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Brice Emanuelli
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Zhao C, Taliento AE, Belkin EM, Fearns R, Lerou PH, Ai X, Bai Y. Infant RSV infection desensitizes β2-adrenergic receptor via CXCL11-CXCR7 signaling in airway smooth muscle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.632772. [PMID: 39868223 PMCID: PMC11761401 DOI: 10.1101/2025.01.13.632772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Rationale Airflow obstruction refractory to β2 adrenergic receptor (β2AR) agonists is an important clinical feature of infant respiratory syncytial virus (RSV) bronchiolitis, with limited treatment options. This resistance is often linked to poor drug delivery and potential viral infection of airway smooth muscle cells (ASMCs). Whether RSV inflammation causes β2AR desensitization in infant ASMCs is unknown. Objectives To investigate the interaction of RSV inflammation with the β2AR signaling pathway in infant ASMCs. Methods Infant precision-cut lung slices (PCLSs) and mouse pup models of RSV infection were subjected to airway physiological assays. Virus-free, conditioned media from RSV-infected infant bronchial epithelial cells in air-liquid interface (ALI) culture and nasopharyngeal aspirates (NPA) from infants with severe RSV bronchiolitis were collected and applied to infant PCLSs and ASMCs. Cytokines in these samples were profiled and assessed for the effects on β2AR expression, cell surface distribution, and relaxant function in ASMCs. Measurements and Main Results Conditioned media and NPA induced similar resistance to β2AR agonists in ASMCs as RSV infection. Cytokine profiling identified CXCL11 as one of the most elevated signals following RSV infection. CXCL11 activated its receptor CXCR7 in a complex with β2AR in ASMCs to promote β2AR phosphorylation, internalization, and degradation. Blockade of CXCR7 partially restored airway relaxation in response to β2AR agonists in infant PCLSs and mouse pup models of RSV infection. Conclusions The CXCL11-CXCR7 pathway plays a critical role in β2AR desensitization in ASMCs during RSV infection and represents a potential therapeutic target in alleviating airflow obstruction in infant RSV bronchiolitis.
Collapse
|
3
|
El-Shoura EAM, Mohamed AAN, Atwa AM, Salem EA, Sharkawi SMZ, Mostafa Selim H, Ibrahim Elberri A, Gawesh ES, Ahmed YH, Abd El-Ghafar OAM. Combined diosmin and bisoprolol attenuate cobalt chloride-induced cardiotoxicity and endothelial dysfunction through modulating miR-143-3P/MAPK/MCP-1, ERK5/CXCR4, Orai-1/STIM-1 signaling pathways. Int Immunopharmacol 2024; 140:112777. [PMID: 39088923 DOI: 10.1016/j.intimp.2024.112777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/05/2024] [Accepted: 07/23/2024] [Indexed: 08/03/2024]
Abstract
Even while accelerated cardiomyocyte apoptosis is one of the primary causes of cardiac damage, the underlying mechanism is still mostly unknown. In addition to examining potential protective effects of bisoprolol and diosmin against CoCl2-induced cardiac injury, the goal of this study was to identify potential mechanisms regulating the hypoxic cardiac damage caused by cobalt chloride (CoCl2). For a period of 21 days except Cocl2 14 days from the first day of the experiment, rats were split into the following groups: Normal control group, rats received vehicle only (2 ml/kg/day, p.o.), (Cocl2, 150 mg/kg/day, p.o.), bisoprolol (25 mg/kg/day, p.o.); diosmin (100 mg/kg/day, p.o.) and bisoprolol + diosmin + Cocl2 groups. At the end of the experimental period, serum was taken for estimation of cardiac function, lipid profile, and pro/anti-inflammatory cytokines. Moreover, tissue samples were collected for evaluation of oxidative stress, endothelial dysfunction, α-SMA, PKC-α, MiR-143-3P, MAPK, ERK5, MCP-1, CXCR4, Orai-1, and STIM-1. Diosmin and bisoprolol, either alone or in combination, enhance heart function by reducing abnormalities in the electrocardiogram and the hypotension brought on by CoCl2. Additionally, they significantly ameliorate endothelial dysfunction by downregulating the cardiac expressions of α-SMA, PKC-α, MiR-143-3P, MAPK, ERK5, MCP-1, CXCR4, Orai-1, and STIM-1. Bisoprolol and diosmin produced modulatory activity against inflammatory state, redox balance, and atherogenic index concurrently. Together, diosmin and bisoprolol, either alone or in combination, significantly reduced all the cardiac alterations brought on by CoCl2. The capacity to obstruct hypoxia-induced α-SMA, PKC-α, MiR-143-3P/MAPK/MCP-1, MiR-143-3P/ERK5/CXCR4, Orai-1/STIM-1 signaling activation, as well as their anti-inflammatory, antioxidant, and anti-apoptotic properties, may be responsible for these cardio-protective results.
Collapse
Affiliation(s)
- Ehab A M El-Shoura
- Clinical Pharmacy Department, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | | | - Ahmed M Atwa
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Esraa A Salem
- Department of Clinical Physiology, Faculty of Medicine, Menoufia University, Shebeen ElKom, 32511, Egypt
| | - Souty M Z Sharkawi
- Pharmacology and Toxicology Department, Beni Suef University, Beni Suef, Egypt
| | | | - Aya Ibrahim Elberri
- Genetic Engineering and Molecular Biology Division, Department of Zoology, Faculty of Science, Menoufia University, Shebeen Elkom 32511, Egypt
| | - El-Sayed Gawesh
- Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| | - Yasmine H Ahmed
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | | |
Collapse
|
4
|
Beer HN, Lacey TA, Gibbs RL, Most MS, Hicks ZM, Grijalva PC, Marks-Nelson ES, Schmidt TB, Petersen JL, Yates DT. Daily Eicosapentaenoic Acid Infusion in IUGR Fetal Lambs Reduced Systemic Inflammation, Increased Muscle ADRβ2 Content, and Improved Myoblast Function and Muscle Growth. Metabolites 2024; 14:340. [PMID: 38921474 PMCID: PMC11205652 DOI: 10.3390/metabo14060340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/07/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024] Open
Abstract
Intrauterine growth-restricted (IUGR) fetuses exhibit systemic inflammation that contributes to programmed deficits in myoblast function and muscle growth. Thus, we sought to determine if targeting fetal inflammation improves muscle growth outcomes. Heat stress-induced IUGR fetal lambs were infused with eicosapentaenoic acid (IUGR+EPA; n = 9) or saline (IUGR; n = 8) for 5 days during late gestation and compared to saline-infused controls (n = 11). Circulating eicosapentaenoic acid was 42% less (p < 0.05) for IUGR fetuses but was recovered in IUGR+EPA fetuses. The infusion did not improve placental function or fetal O2 but resolved the 67% greater (p < 0.05) circulating TNFα observed in IUGR fetuses. This improved myoblast function and muscle growth, as the 23% reduction (p < 0.05) in the ex vivo differentiation of IUGR myoblasts was resolved in IUGR+EPA myoblasts. Semitendinosus, longissimus dorsi, and flexor digitorum superficialis muscles were 24-39% lighter (p < 0.05) for IUGR but not for IUGR+EPA fetuses. Elevated (p < 0.05) IL6R and reduced (p < 0.05) β2 adrenoceptor content in IUGR muscle indicated enhanced inflammatory sensitivity and diminished β2 adrenergic sensitivity. Although IL6R remained elevated, β2 adrenoceptor deficits were resolved in IUGR+EPA muscle, demonstrating a unique underlying mechanism for muscle dysregulation. These findings show that fetal inflammation contributes to IUGR muscle growth deficits and thus may be an effective target for intervention.
Collapse
Affiliation(s)
- Haley N. Beer
- Stress Physiology Laboratory, Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Taylor A. Lacey
- Stress Physiology Laboratory, Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Rachel L. Gibbs
- Stress Physiology Laboratory, Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Micah S. Most
- Stress Physiology Laboratory, Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Zena M. Hicks
- Stress Physiology Laboratory, Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Pablo C. Grijalva
- Stress Physiology Laboratory, Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Eileen S. Marks-Nelson
- Stress Physiology Laboratory, Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Ty B. Schmidt
- Meat Science and Muscle Biology, Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Jessica L. Petersen
- Animal Breeding and Genetics, Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Dustin T. Yates
- Stress Physiology Laboratory, Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| |
Collapse
|
5
|
Liang J, Seghiri M, Singh PK, Seo HG, Lee JY, Jo Y, Song YB, Park C, Zalicki P, Jeong JY, Huh WK, Caculitan NG, Smith AW. The β2-adrenergic receptor associates with CXCR4 multimers in human cancer cells. Proc Natl Acad Sci U S A 2024; 121:e2304897121. [PMID: 38547061 PMCID: PMC10998613 DOI: 10.1073/pnas.2304897121] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 02/12/2024] [Indexed: 04/02/2024] Open
Abstract
While the existence and functional role of class C G-protein-coupled receptors (GPCR) dimers is well established, there is still a lack of consensus regarding class A and B GPCR multimerization. This lack of consensus is largely due to the inherent challenges of demonstrating the presence of multimeric receptor complexes in a physiologically relevant cellular context. The C-X-C motif chemokine receptor 4 (CXCR4) is a class A GPCR that is a promising target of anticancer therapy. Here, we investigated the potential of CXCR4 to form multimeric complexes with other GPCRs and characterized the relative size of the complexes in a live-cell environment. Using a bimolecular fluorescence complementation (BiFC) assay, we identified the β2 adrenergic receptor (β2AR) as an interaction partner. To investigate the molecular scale details of CXCR4-β2AR interactions, we used a time-resolved fluorescence spectroscopy method called pulsed-interleaved excitation fluorescence cross-correlation spectroscopy (PIE-FCCS). PIE-FCCS can resolve membrane protein density, diffusion, and multimerization state in live cells at physiological expression levels. We probed CXCR4 and β2AR homo- and heteromultimerization in model cell lines and found that CXCR4 assembles into multimeric complexes larger than dimers in MDA-MB-231 human breast cancer cells and in HCC4006 human lung cancer cells. We also found that β2AR associates with CXCR4 multimers in MDA-MB-231 and HCC4006 cells to a higher degree than in COS-7 and CHO cells and in a ligand-dependent manner. These results suggest that CXCR4-β2AR heteromers are present in human cancer cells and that GPCR multimerization is significantly affected by the plasma membrane environment.
Collapse
Affiliation(s)
- Junyi Liang
- Department of Chemistry, University of Akron, Akron, OH44325
| | - Mohamed Seghiri
- Department of Chemistry, University of Akron, Akron, OH44325
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX79409
| | - Pradeep Kumar Singh
- Department of Chemistry, University of Akron, Akron, OH44325
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX79409
| | - Hyeon Gyu Seo
- GPCR Therapeutics Inc., Gwanak-gu, Seoul08790, Republic of Korea
| | - Ji Yeong Lee
- GPCR Therapeutics Inc., Gwanak-gu, Seoul08790, Republic of Korea
| | - Yoonjung Jo
- GPCR Therapeutics Inc., Gwanak-gu, Seoul08790, Republic of Korea
| | - Yong Bhum Song
- School of Biological Sciences, Seoul National University, Seoul08826, Republic of Korea
| | - Chulo Park
- School of Biological Sciences, Seoul National University, Seoul08826, Republic of Korea
| | - Piotr Zalicki
- GPCR Therapeutics Inc., Gwanak-gu, Seoul08790, Republic of Korea
| | - Jae-Yeon Jeong
- GPCR Therapeutics Inc., Gwanak-gu, Seoul08790, Republic of Korea
| | - Won-Ki Huh
- School of Biological Sciences, Seoul National University, Seoul08826, Republic of Korea
- Institute of Microbiology, Seoul National University, Seoul08826, Republic of Korea
| | | | - Adam W. Smith
- Department of Chemistry, University of Akron, Akron, OH44325
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX79409
| |
Collapse
|
6
|
Mendoza-Salazar I, Fragozo A, González-Martínez AP, Trejo-Martínez I, Arreola R, Pavón L, Almagro JC, Vallejo-Castillo L, Aguilar-Alonso FA, Pérez-Tapia SM. Almost 50 Years of Monomeric Extracellular Ubiquitin (eUb). Pharmaceuticals (Basel) 2024; 17:185. [PMID: 38399400 PMCID: PMC10892293 DOI: 10.3390/ph17020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Monomeric ubiquitin (Ub) is a 76-amino-acid highly conserved protein found in eukaryotes. The biological activity of Ub first described in the 1970s was extracellular, but it quickly gained relevance due to its intracellular role, i.e., post-translational modification of intracellular proteins (ubiquitination) that regulate numerous eukaryotic cellular processes. In the following years, the extracellular role of Ub was relegated to the background, until a correlation between higher survival rate and increased serum Ub concentrations in patients with sepsis and burns was observed. Although the mechanism of action (MoA) of extracellular ubiquitin (eUb) is not yet well understood, further studies have shown that it may ameliorate the inflammatory response in tissue injury and multiple sclerosis diseases. These observations, compounded with the high stability and low immunogenicity of eUb due to its high conservation in eukaryotes, have made this small protein a relevant candidate for biotherapeutic development. Here, we review the in vitro and in vivo effects of eUb on immunologic, cardiovascular, and nervous systems, and discuss the potential MoAs of eUb as an anti-inflammatory, antimicrobial, and cardio- and brain-protective agent.
Collapse
Affiliation(s)
- Ivette Mendoza-Salazar
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico; (I.M.-S.); (A.F.); (A.P.G.-M.); (I.T.-M.); (J.C.A.); (L.V.-C.)
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
| | - Ana Fragozo
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico; (I.M.-S.); (A.F.); (A.P.G.-M.); (I.T.-M.); (J.C.A.); (L.V.-C.)
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
| | - Aneth P. González-Martínez
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico; (I.M.-S.); (A.F.); (A.P.G.-M.); (I.T.-M.); (J.C.A.); (L.V.-C.)
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
| | - Ismael Trejo-Martínez
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico; (I.M.-S.); (A.F.); (A.P.G.-M.); (I.T.-M.); (J.C.A.); (L.V.-C.)
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
| | - Rodrigo Arreola
- Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, Mexico City 14370, Mexico;
| | - Lenin Pavón
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico;
| | - Juan C. Almagro
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico; (I.M.-S.); (A.F.); (A.P.G.-M.); (I.T.-M.); (J.C.A.); (L.V.-C.)
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
- GlobalBio, Inc., 320 Concord Ave, Cambridge, MA 02138, USA
| | - Luis Vallejo-Castillo
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico; (I.M.-S.); (A.F.); (A.P.G.-M.); (I.T.-M.); (J.C.A.); (L.V.-C.)
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
| | - Francisco A. Aguilar-Alonso
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico; (I.M.-S.); (A.F.); (A.P.G.-M.); (I.T.-M.); (J.C.A.); (L.V.-C.)
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
| | - Sonia M. Pérez-Tapia
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico; (I.M.-S.); (A.F.); (A.P.G.-M.); (I.T.-M.); (J.C.A.); (L.V.-C.)
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
| |
Collapse
|
7
|
Sukhtankar DD, Fung JJ, Kim MN, Cayton T, Chiou V, Caculitan NG, Zalicki P, Kim S, Jo Y, Kim S, Lee JM, Choi J, Mun S, Chin A, Jang Y, Lee JY, Kim G, Kim EH, Huh WK, Jeong JY, Seen DS, Cardarelli PM. GPC-100, a novel CXCR4 antagonist, improves in vivo hematopoietic cell mobilization when combined with propranolol. PLoS One 2023; 18:e0287863. [PMID: 37878624 PMCID: PMC10599528 DOI: 10.1371/journal.pone.0287863] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/27/2023] [Indexed: 10/27/2023] Open
Abstract
Autologous Stem Cell Transplant (ASCT) is increasingly used to treat hematological malignancies. A key requisite for ASCT is mobilization of hematopoietic stem cells into peripheral blood, where they are collected by apheresis and stored for later transplantation. However, success is often hindered by poor mobilization due to factors including prior treatments. The combination of G-CSF and GPC-100, a small molecule antagonist of CXCR4, showed potential in a multiple myeloma clinical trial for sufficient and rapid collection of CD34+ stem cells, compared to the historical results from the standards of care, G-CSF alone or G-CSF with plerixafor, also a CXCR4 antagonist. In the present study, we show that GPC-100 has high affinity towards the chemokine receptor CXCR4, and it potently inhibits β-arrestin recruitment, calcium flux and cell migration mediated by its ligand CXCL12. Proximity Ligation Assay revealed that in native cell systems with endogenous receptor expression, CXCR4 co-localizes with the beta-2 adrenergic receptor (β2AR). Co-treatment with CXCL12 and the β2AR agonist epinephrine synergistically increases β-arrestin recruitment to CXCR4 and calcium flux. This increase is blocked by the co-treatment with GPC-100 and propranolol, a non-selective beta-adrenergic blocker, indicating a functional synergy. In mice, GPC-100 mobilized more white blood cells into peripheral blood compared to plerixafor. GPC-100 induced mobilization was further amplified by propranolol pretreatment and was comparable to mobilization by G-CSF. Addition of propranolol to the G-CSF and GPC-100 combination resulted in greater stem cell mobilization than the G-CSF and plerixafor combination. Together, our studies suggest that the combination of GPC-100 and propranolol is a novel strategy for stem cell mobilization and support the current clinical trial in multiple myeloma registered as NCT05561751 at www.clinicaltrials.gov.
Collapse
Affiliation(s)
- Devki D. Sukhtankar
- GPCR Therapeutics USA, Inc., Redwood City, California, United States of America
| | - Juan José Fung
- GPCR Therapeutics USA, Inc., Redwood City, California, United States of America
| | - Mi-na Kim
- GPCR Therapeutics Inc., Gwanak-gu, Seoul, Republic of Korea
| | - Thomas Cayton
- GPCR Therapeutics USA, Inc., Redwood City, California, United States of America
| | - Valerie Chiou
- GPCR Therapeutics USA, Inc., Redwood City, California, United States of America
| | - Niña G. Caculitan
- GPCR Therapeutics USA, Inc., Redwood City, California, United States of America
| | - Piotr Zalicki
- GPCR Therapeutics USA, Inc., Redwood City, California, United States of America
| | - Sujeong Kim
- GPCR Therapeutics Inc., Gwanak-gu, Seoul, Republic of Korea
| | - Yoonjung Jo
- GPCR Therapeutics Inc., Gwanak-gu, Seoul, Republic of Korea
| | - SoHui Kim
- GPCR Therapeutics Inc., Gwanak-gu, Seoul, Republic of Korea
| | - Jae Min Lee
- GPCR Therapeutics Inc., Gwanak-gu, Seoul, Republic of Korea
| | - Junhee Choi
- GPCR Therapeutics Inc., Gwanak-gu, Seoul, Republic of Korea
| | | | - Ashley Chin
- GPCR Therapeutics USA, Inc., Redwood City, California, United States of America
| | - Yongdae Jang
- GPCR Therapeutics Inc., Gwanak-gu, Seoul, Republic of Korea
| | - Ji Yeong Lee
- GPCR Therapeutics Inc., Gwanak-gu, Seoul, Republic of Korea
| | - Gowoon Kim
- GPCR Therapeutics Inc., Gwanak-gu, Seoul, Republic of Korea
| | - Eun Hee Kim
- GPCR Therapeutics Inc., Gwanak-gu, Seoul, Republic of Korea
| | - Won-Ki Huh
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Institute of Microbiology, Seoul National University, Seoul, Republic of Korea
| | - Jae-Yeon Jeong
- GPCR Therapeutics Inc., Gwanak-gu, Seoul, Republic of Korea
| | | | - Pina M. Cardarelli
- GPCR Therapeutics USA, Inc., Redwood City, California, United States of America
| |
Collapse
|
8
|
Gao X, Majetschak M. G protein activation via chemokine (C-X-C motif) receptor 4 and α 1b -adrenoceptor is ligand and heteromer-dependent. FEBS Lett 2023; 597:2017-2027. [PMID: 37395117 PMCID: PMC10530236 DOI: 10.1002/1873-3468.14692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/31/2023] [Accepted: 06/17/2023] [Indexed: 07/04/2023]
Abstract
It is unknown whether heteromerization between chemokine (C-X-C motif) receptor 4 (CXCR4), atypical chemokine receptor 3 (ACKR3) and α1b -adrenoceptor (α1b -AR) influences effects of the CXCR4/ACKR3 agonist chemokine (C-X-C motif) ligand 12 (CXCL12) and the noncognate CXCR4 agonist ubiquitin on agonist-promoted G protein activation. We provide biophysical evidence that both ligands stimulate CXCR4-mediated Gαi activation. Unlike CXCL12, ubiquitin fails to recruit β-arrestin. Both ligands differentially modulate the conformation of CXCR4:ACKR3 heterodimers and its propensity to hetero-trimerize with α1b -AR. CXCR4:ACKR3 heterodimerization reduces the potency of CXCL12, but not of ubiquitin, to activate Gαi. Ubiquitin enhances phenylephrine-stimulated α1b -AR-promoted Gαq activation from hetero-oligomers comprising CXCR4. CXCL12 enhances phenylephrine-stimulated α1b -AR-promoted Gαq activation from CXCR4:α1b -AR heterodimers and reduces phenylephrine-stimulated α1b -AR-promoted Gαq activation from ACKR3 comprising heterodimers and trimers. Our findings suggest heteromer and ligand-dependent functions of the receptor partners.
Collapse
Affiliation(s)
- Xianlong Gao
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Matthias Majetschak
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
9
|
Bilovol OM, Dunaeva IP, Kravchun PP. METABOLIC AND HORMONAL FEATURES OF CHRONIC HEART FAILURE IN PERSONS WITH POST-INFARCTION CARDIOSCLEROSIS WITH TYPE 2 DIABETES MELLITUS AND OBESITY. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2022; 75:2831-2834. [PMID: 36591775 DOI: 10.36740/wlek202211218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE The aim: To determine the role of lipid metabolism and fractalkin and clusterin in the progression of chronic heart failure in patients with postinfarction cardiosclerosis with concomitant type 2 diabetes and obesity. PATIENTS AND METHODS Materials and methods: A retrospective analysis of a comprehensive examination of 67 patients with postinfarction cardiosclerosis with concomitant type 2 diabetes and obesity. All patients were divided into 3 groups depending on the functional class (FC) of CHF: 1 group (n = 22) - patients with CHF II FC; Group 2 (n = 23) - patients with CHF III FC; Group 3 (n = 22) - patients with CHF IV FC. All patients were examined clinically, they were instrumental, biochemical and hormonal examination. RESULTS Results: With the progression of CHF from FC II to FC III there is a deterioration of lipid metabolism: a significant increase in cholesterol levels by 5.5%, TG - by 15.7%, LDL cholesterol - by 74.4%, VLDL cholesterol - by 15 , 9%, reduction of HDL cholesterol - by 27.6% (p <0,05). An analysis of the fractal equation showing that ailing on CHF is advised by FC; rіven clusterin -decrease. CONCLUSION Conclusions: Classical changes in patients with postinfarction cardiosclerosis with CHF and concomitant type 2 diabetes mellitus and obesity , which are the formation of atherogenic lipid metabolism disorders associated with body weight, as well as changes in the latest indicators such as fractalkin and clusterin , indicating the role of these molecules in the progression of CHF.
Collapse
Affiliation(s)
- Olexandr M Bilovol
- KHARKIV NATIONAL MEDICAL UNIVERSITY OF THE MINISTRY OF HEALTH OF UKRAINE, KHARKIV, UKRAINE
| | - Inna P Dunaeva
- KHARKIV NATIONAL MEDICAL UNIVERSITY OF THE MINISTRY OF HEALTH OF UKRAINE, KHARKIV, UKRAINE
| | - Pavel P Kravchun
- KHARKIV NATIONAL MEDICAL UNIVERSITY OF THE MINISTRY OF HEALTH OF UKRAINE, KHARKIV, UKRAINE
| |
Collapse
|
10
|
Profiling novel pharmacology of receptor complexes using Receptor-HIT. Biochem Soc Trans 2021; 49:1555-1565. [PMID: 34436548 PMCID: PMC8421044 DOI: 10.1042/bst20201110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 02/07/2023]
Abstract
Many receptors are able to undergo heteromerisation, leading to the formation of receptor complexes that may have pharmacological profiles distinct from those of the individual receptors. As a consequence of this, receptor heteromers can be classed as new drug targets, with the potential for achieving greater specificity and selectivity over targeting their constituent receptors. We have developed the Receptor-Heteromer Investigation Technology (Receptor-HIT), which enables the detection of receptor heteromers using a proximity-based reporter system such as bioluminescence resonance energy transfer (BRET). Receptor-HIT detects heteromers in live cells and in real time, by utilising ligand-induced signals that arise from altered interactions with specific biomolecules, such as ligands or proteins. Furthermore, monitoring the interaction between the receptors and the specific biomolecules generates functional information about the heteromer that can be pharmacologically quantified. This review will discuss various applications of Receptor-HIT, including its use with different classes of receptors (e.g. G protein-coupled receptors (GPCRs), receptor tyrosine kinases (RTKs) and others), its use to monitor receptor interactions both intracellularly and extracellularly, and also its use with genome-edited endogenous proteins.
Collapse
|
11
|
Plasticity of seven-transmembrane-helix receptor heteromers in human vascular smooth muscle cells. PLoS One 2021; 16:e0253821. [PMID: 34166476 PMCID: PMC8224933 DOI: 10.1371/journal.pone.0253821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/11/2021] [Indexed: 12/24/2022] Open
Abstract
Recently, we reported that the chemokine (C-X-C motif) receptor 4 (CXCR4) and atypical chemokine receptor 3 (ACKR3) heteromerize with α1A/B/D-adrenoceptors (ARs) and arginine vasopressin receptor 1A (AVPR1A) in recombinant systems and in rodent and human vascular smooth muscle cells (hVSMCs). In these studies, we observed that heteromerization between two receptor partners may depend on the presence and the expression levels of other partnering receptors. To test this hypothesis and to gain initial insight into the formation of these receptor heteromers in native cells, we utilized proximity ligation assays in hVSMCs to visualize receptor-receptor proximity and systematically studied how manipulation of the expression levels of individual protomers affect heteromerization patterns among other interacting receptor partners. We confirmed subtype-specific heteromerization between endogenously expressed α1A/B/D-ARs and detected that AVPR1A also heteromerizes with α1A/B/D-ARs. siRNA knockdown of CXCR4 and of ACKR3 resulted in a significant re-arrangement of the heteromerization patterns among α1-AR subtypes. Similarly, siRNA knockdown of AVPR1A significantly increased heteromerization signals for seven of the ten receptor pairs between CXCR4, ACKR3, and α1A/B/D-ARs. Our findings suggest plasticity of seven transmembrane helix (7TM) receptor heteromerization in native cells and could be explained by a supramolecular organization of these receptors within dynamic clusters in the plasma membrane. Because we previously observed that recombinant CXCR4, ACKR3, α1a-AR and AVPR1A form hetero-oligomeric complexes composed of 2–4 different protomers, which show signaling properties distinct from individual protomers, re-arrangements of receptor heteromerization patterns in native cells may contribute to the phenomenon of context-dependent GPCR signaling. Furthermore, these findings advise caution in the interpretation of functional consequences after 7TM receptor knockdown in experimental models. Alterations of the heteromerization patterns among other receptor partners may alter physiological and pathological responses, in particular in more complex systems, such as studies on the function of isolated organs or in in vivo experiments.
Collapse
|
12
|
Abstract
Ischemic heart disease (IHD) accounts for the majority of heart disease-related deaths worldwide. Ubiquitin (UB), found in all eukaryotic cells, is a highly conserved low molecular weight (~8.5 kDa) protein. A well-known intracellular function of UB is to regulate protein turnover via the UB-proteasome system. UB is a normal constituent of plasma, and elevated levels of UB are observed in the serum of patients under a variety of pathological conditions. Recent studies provide evidence for cardioprotective potential of exogenous UB in the remodeling process of the heart in IHD, including effects on cardiac myocyte apoptosis, inflammatory response, and reorganization of the vasculature and extracellular matrix. This review summarizes functions of UB with an emphasis on the role of exogenous UB in myocardial remodeling in IHD.
Collapse
|
13
|
Gao X, Cheng YH, Enten GA, DeSantis AJ, Gaponenko V, Majetschak M. Regulation of the thrombin/protease-activated receptor 1 axis by chemokine (C XC motif) receptor 4. J Biol Chem 2020; 295:14893-14905. [PMID: 32839271 DOI: 10.1074/jbc.ra120.015355] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/20/2020] [Indexed: 12/17/2022] Open
Abstract
The chemokine receptor CXCR4, a G protein-coupled receptor (GPCR) capable of heteromerizing with other GPCRs, is involved in many processes, including immune responses, hematopoiesis, and organogenesis. Evidence suggests that CXCR4 activation reduces thrombin/protease-activated receptor 1 (PAR1)-induced impairment of endothelial barrier function. However, the mechanisms underlying cross-talk between CXCR4 and PAR1 are not well-understood. Using intermolecular bioluminescence resonance energy transfer and proximity ligation assays, we found that CXCR4 heteromerizes with PAR1 in the HEK293T expression system and in human primary pulmonary endothelial cells (hPPECs). A peptide analog of transmembrane domain 2 (TM2) of CXCR4 interfered with PAR1:CXCR4 heteromerization. In HTLA cells, the presence of CXCR4 reduced the efficacy of thrombin to induce β-arrestin-2 recruitment to recombinant PAR1 and enhanced thrombin-induced Ca2+ mobilization. Whereas thrombin-induced extracellular signal-regulated protein kinase 1/2 (ERK1/2) phosphorylation occurred more transiently in the presence of CXCR4, peak ERK1/2 phosphorylation was increased when compared with HTLA cells expressing PAR1 alone. CXCR4-associated effects on thrombin-induced β-arrestin-2 recruitment to and signaling of PAR1 could be reversed by TM2. In hPPECs, TM2 inhibited thrombin-induced ERK1/2 phosphorylation and activation of Ras homolog gene family member A. CXCR4 siRNA knockdown inhibited thrombin-induced ERK1/2 phosphorylation. Whereas thrombin stimulation reduced surface expression of PAR1, CXCR4, and PAR1:CXCR4 heteromers, chemokine (CXC motif) ligand 12 stimulation reduced surface expression of CXCR4 and PAR1:CXCR4 heteromers, but not of PAR1. Finally, TM2 dose-dependently inhibited thrombin-induced impairment of hPPEC monolayer permeability. Our findings suggest that CXCR4:PAR1 heteromerization enhances thrombin-induced G protein signaling of PAR1 and PAR1-mediated endothelial barrier disruption.
Collapse
Affiliation(s)
- Xianlong Gao
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - You-Hong Cheng
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, USA
| | - Garrett A Enten
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA; Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Anthony J DeSantis
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, Illinois, USA
| | - Matthias Majetschak
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA; Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA.
| |
Collapse
|
14
|
Gao X, Enten GA, DeSantis AJ, Volkman BF, Gaponenko V, Majetschak M. Characterization of heteromeric complexes between chemokine (C-X-C motif) receptor 4 and α 1-adrenergic receptors utilizing intermolecular bioluminescence resonance energy transfer assays. Biochem Biophys Res Commun 2020; 528:368-375. [PMID: 32085899 DOI: 10.1016/j.bbrc.2020.02.094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/12/2020] [Indexed: 11/28/2022]
Abstract
Recently, we reported that chemokine (C-X-C motif) receptor 4 (CXCR4) heteromerizes with α1-adrenergic receptors (AR) on the cell surface of vascular smooth muscle cells, through which the receptors cross-talk. Direct biophysical evidence for CXCR4:α1-AR heteromers, however, is lacking. Here we utilized bimolecular luminescence/fluorescence complementation (BiLC/BiFC) combined with intermolecular bioluminescence resonance energy transfer (BRET) assays in HEK293T cells to evaluate CXCR4:α1a/b/d-AR heteromerization. Atypical chemokine receptor 3 (ACKR3) and metabotropic glutamate receptor 1 (mGlu1R) were utilized as controls. BRET between CXCR4-RLuc (Renilla reniformis) and enhanced yellow fluorescent protein (EYFP)-tagged ACKR3 or α1a/b/d-ARs fulfilled criteria for constitutive heteromerization. BRET between CXCR4-RLuc and EYFP or mGlu1R-EYFP were nonspecific. BRET50 for CXCR4:ACKR3 and CXCR4:α1a/b/d-AR heteromers were comparable. Stimulation of cells with phenylephrine increased BRETmax of CXCR4:α1a/b/d-AR heteromers without affecting BRET50; stimulation with CXCL12 reduced BRETmax of CXCR4:α1a-AR heteromers, but did not affect BRET50 or BRETmax/50 for CXCR4:α1b/d-AR. A peptide analogue of transmembrane domain (TM) 2 of CXCR4 reduced BRETmax of CXCR4:α1a/b/d-AR heteromers and increased BRET50 of CXCR4:α1a/b-AR interactions. A TM4 analogue of CXCR4 did not alter BRET. We observed CXCR4, α1a-AR and mGlu1R homodimerization by BiFC/BiLC, and heteromerization of homodimeric CXCR4 with proto- and homodimeric α1a-AR by BiFC/BiLC BRET. BiFC/BiLC BRET for interactions between homodimeric CXCR4 and homodimeric mGlu1R was nonspecific. Our findings suggest that the heteromerization affinity of CXCR4 for ACKR3 and α1-ARs is comparable, provide evidence for conformational changes of the receptor complexes upon agonist binding and support the concept that proto- and oligomeric CXCR4 and α1-ARs constitutively form higher-order hetero-oligomeric receptor clusters.
Collapse
Affiliation(s)
- Xianlong Gao
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Garrett A Enten
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Anthony J DeSantis
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Matthias Majetschak
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
15
|
Dalal S, Daniels CR, Li Y, Wright GL, Singh M, Singh K. Exogenous ubiquitin attenuates hypoxia/reoxygenation-induced cardiac myocyte apoptosis via the involvement of CXCR4 and modulation of mitochondrial homeostasis. Biochem Cell Biol 2020; 98:492-501. [PMID: 31967865 DOI: 10.1139/bcb-2019-0339] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Exogenous ubiquitin (UB) plays a protective role in β-adrenergic receptor-stimulated and ischemia/reperfusion (I/R)-induced myocardial remodeling. Here, we report that UB treatment inhibits hypoxia/reoxygenation (H/R)-induced apoptosis in adult rat ventricular myocytes (ARVMs). The activation of Akt was elevated, whereas the activation of glycogen synthase kinase-3β was reduced in UB-treated cells post-H/R. The level of oxidative stress was lower, whereas the number of ARVMs with polarized mitochondria was significantly greater in the UB-treated samples. ARVMs express CXCR4 with majority of CXCR4 localized in the membrane fraction. CXCR4 antagonism using AMD3100, and siRNA-mediated knockdown of CXCR4 negated the protective effects of UB. Two mutated UB proteins (unable to bind CXCR4) had no effect on H/R-induced apoptosis, activation of Akt and GSK-3β, or oxidative stress. UB treatment enhanced mitochondrial biogenesis, and inhibition of mitochondrial fission using mdivi1 inhibited H/R-induced apoptosis. Ex vivo, UB treatment significantly decreased infarct size and improved functional recovery of the heart following global I/R. Activation of caspase-9, a key player of the mitochondrial death pathway, was significantly lower in UB-treated hearts post-I/R. UB, most likely acting via CXCR4, plays a protective role in H/R-induced myocyte apoptosis and myocardial I/R injury via modulation of mitochondrial homeostasis and the mitochondrial death pathway of apoptosis.
Collapse
Affiliation(s)
- Suman Dalal
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA.,Center of Excellence for Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, TN 37614, USA
| | - Christopher R Daniels
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Ying Li
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Gary L Wright
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Mahipal Singh
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Krishna Singh
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA.,Center of Excellence for Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, TN 37614, USA.,James H Quillen Veterans Affairs Medical Center, Mountain Home, TN 37684, USA
| |
Collapse
|
16
|
Mousavi A. CXCL12/CXCR4 signal transduction in diseases and its molecular approaches in targeted-therapy. Immunol Lett 2019; 217:91-115. [PMID: 31747563 DOI: 10.1016/j.imlet.2019.11.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/01/2019] [Accepted: 11/15/2019] [Indexed: 02/08/2023]
Abstract
Chemokines are small molecules called "chemotactic cytokines" and regulate many processes like leukocyte trafficking, homing of immune cells, maturation, cytoskeletal rearrangement, physiology, migration during development, and host immune responses. These proteins bind to their corresponding 7-membrane G-protein-coupled receptors. Chemokines and their receptors are anti-inflammatory factors in autoimmune conditions, so consider as potential targets for neutralization in such diseases. They also express by cancer cells and function as angiogenic factors, and/or survival/growth factors that enhance tumor angiogenesis and development. Among chemokines, the CXCL12/CXCR4 axis has significantly been studied in numerous cancers and autoimmune diseases. CXCL12 is a homeostatic chemokine, which is acts as an anti-inflammatory chemokine during autoimmune inflammatory responses. In cancer cells, CXCL12 acts as an angiogenic, proliferative agent and regulates tumor cell apoptosis as well. CXCR4 has a role in leukocyte chemotaxis in inflammatory situations in numerous autoimmune diseases, as well as the high levels of CXCR4, observed in different types of human cancers. These findings suggest CXCL12/CXCR4 as a potential therapeutic target for therapy of autoimmune diseases and open a new approach to targeted-therapy of cancers by neutralizing CXCL12 and CXCR4. In this paper, we reviewed the current understanding of the role of the CXCL12/CXCR4 axis in disease pathology and cancer biology, and discuss its therapeutic implications in cancer and diseases.
Collapse
|
17
|
Abstract
Chemokines are small secreted proteins with chemoattractant properties that play a key role in inflammation. One such chemokine, Stromal cell-derived factor-1 (SDF-1) also known as CXCL12, and its receptor, CXCR4, are expressed and functional in cardiac myocytes. SDF-1 both stimulates and enhances the cellular signal which attracts potentially beneficial stem cells for tissue repair within the ischemic heart. Paradoxically however, this chemokine is known to act in concert with the inflammatory cytokines of the innate immune response which contributes to cellular injury through the recruitment of inflammatory cells during ischemia. In the present study, we have demonstrated that SDF-1 has dose dependent effects on freshly isolated cardiomyocytes. Using Tunnel and caspase 3-activation assays, we have demonstrated that the treatment of isolated adult rat cardiac myocyte with SDF-1 at higher concentrations (pathological concentrations) induced apoptosis. Furthermore, ELISA data demonstrated that the treatment of isolated adult rat cardiac myocyte with SDF-1 at higher concentrations upregulated TNF-α protein expression which directly correlated with subsequent apoptosis. There was a significant reduction in SDF-1 mediated apoptosis when TNF-α expression was neutralized which suggests that SDF-1 mediated apoptosis is TNF-α-dependent. The fact that certain stimuli are capable of driving cardiomyocytes into apoptosis indicates that these cells are susceptible to clinically relevant apoptotic triggers. Our findings suggest that the elevated SDF-1 levels seen in a variety of clinical conditions, including ischemic myocardial infarction, may either directly or indirectly contribute to cardiac cell death via a TNF-α mediated pathway. This highlights the importance of this receptor/ligand in regulating the cardiomyocyte response to stress conditions.
Collapse
|
18
|
LaRocca TJ, Altman P, Jarrah AA, Gordon R, Wang E, Hadri L, Burke MW, Haddad GE, Hajjar RJ, Tarzami ST. CXCR4 Cardiac Specific Knockout Mice Develop a Progressive Cardiomyopathy. Int J Mol Sci 2019; 20:ijms20092267. [PMID: 31071921 PMCID: PMC6539363 DOI: 10.3390/ijms20092267] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 12/31/2022] Open
Abstract
Activation of multiple pathways is associated with cardiac hypertrophy and heart failure. We previously published that CXCR4 negatively regulates β-adrenergic receptor (β-AR) signaling and ultimately limits β-adrenergic diastolic (Ca2+) accumulation in cardiac myocytes. In isolated adult rat cardiac myocytes; CXCL12 treatment prevented isoproterenol-induced hypertrophy and interrupted the calcineurin/NFAT pathway. Moreover; cardiac specific CXCR4 knockout mice show significant hypertrophy and develop cardiac dysfunction in response to chronic catecholamine exposure in an isoproterenol-induced (ISO) heart failure model. We set this study to determine the structural and functional consequences of CXCR4 myocardial knockout in the absence of exogenous stress. Cardiac phenotype and function were examined using (1) gated cardiac magnetic resonance imaging (MRI); (2) terminal cardiac catheterization with in vivo hemodynamics; (3) histological analysis of left ventricular (LV) cardiomyocyte dimension; fibrosis; and; (4) transition electron microscopy at 2-; 6- and 12-months of age to determine the regulatory role of CXCR4 in cardiomyopathy. Cardiomyocyte specific-CXCR4 knockout (CXCR4 cKO) mice demonstrate a progressive cardiac dysfunction leading to cardiac failure by 12-months of age. Histological assessments of CXCR4 cKO at 6-months of age revealed significant tissue fibrosis in knockout mice versus wild-type. The expression of atrial naturietic factor (ANF); a marker of cardiac hypertrophy; was also increased with a subsequent increase in gross heart weights. Furthermore, there were derangements in both the number and the size of the mitochondria within CXCR4 cKO hearts. Moreover, CXCR4 cKO mice were more sensitive to catocholamines, their response to β-AR agonist challenge via acute isoproterenol (ISO) infusion demonstrated a greater increase in ejection fraction, dp/dtmax, and contractility index. Interestingly, prior to ISO infusion, there were significant differences in baseline hemodynamics between the CXCR4 cKO compared to littermate controls. However, upon administering ISO, the CXCR4 cKO responded in a robust manner overcoming the baseline hemodynamic deficits reaching WT values supporting our previous data that CXCR4 negatively regulates β-AR signaling. This further supports that, in the absence of the physiologic negative modulation, there is an overactivation of down-stream pathways, which contribute to the development and progression of contractile dysfunction. Our results demonstrated that CXCR4 plays a non-developmental role in regulating cardiac function and that CXCR4 cKO mice develop a progressive cardiomyopathy leading to clinical heart failure.
Collapse
Affiliation(s)
- Thomas J LaRocca
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10128, USA.
| | - Perry Altman
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10128, USA.
| | - Andrew A Jarrah
- Department of Medicine, Tufts University School of Medicine, Boston, MA 02111, USA.
| | - Ron Gordon
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10128, USA.
| | - Edward Wang
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10128, USA.
| | - Lahouaria Hadri
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10128, USA.
| | - Mark W Burke
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC 20060, USA.
| | - Georges E Haddad
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC 20060, USA.
| | - Roger J Hajjar
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10128, USA.
| | - Sima T Tarzami
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC 20060, USA.
| |
Collapse
|
19
|
Albee LJ, LaPorte HM, Gao X, Eby JM, Cheng YH, Nevins AM, Volkman BF, Gaponenko V, Majetschak M. Identification and functional characterization of arginine vasopressin receptor 1A : atypical chemokine receptor 3 heteromers in vascular smooth muscle. Open Biol 2019; 8:rsob.170207. [PMID: 29386406 PMCID: PMC5795052 DOI: 10.1098/rsob.170207] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/08/2018] [Indexed: 12/31/2022] Open
Abstract
Recent observations suggest that atypical chemokine receptor (ACKR)3 and chemokine (C-X-C motif) receptor (CXCR)4 regulate human vascular smooth muscle function through hetero-oligomerization with α1-adrenoceptors. Here, we show that ACKR3 also regulates arginine vasopressin receptor (AVPR)1A. We observed that ACKR3 agonists inhibit arginine vasopressin (aVP)-induced inositol trisphosphate (IP3) production in human vascular smooth muscle cells (hVSMCs) and antagonize aVP-mediated constriction of isolated arteries. Proximity ligation assays, co-immunoprecipitation and bioluminescence resonance energy transfer experiments suggested that recombinant and endogenous ACKR3 and AVPR1A interact on the cell surface. Interference with ACKR3 : AVPR1A heteromerization using siRNA and peptide analogues of transmembrane domains of ACKR3 abolished aVP-induced IP3 production. aVP stimulation resulted in β-arrestin 2 recruitment to AVPR1A and ACKR3. While ACKR3 activation failed to cross-recruit β-arrestin 2 to AVPR1A, the presence of ACKR3 reduced the efficacy of aVP-induced β-arrestin 2 recruitment to AVPR1A. AVPR1A and ACKR3 co-internalized upon agonist stimulation in hVSMC. These data suggest that AVPR1A : ACKR3 heteromers are constitutively expressed in hVSMC, provide insights into molecular events at the heteromeric receptor complex, and offer a mechanistic basis for interactions between the innate immune and vasoactive neurohormonal systems. Our findings suggest that ACKR3 is a regulator of vascular smooth muscle function and a possible drug target in diseases associated with impaired vascular reactivity.
Collapse
Affiliation(s)
- Lauren J Albee
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, 2160 S. 1st Avenue, Maywood, IL 60153, USA
| | - Heather M LaPorte
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, 2160 S. 1st Avenue, Maywood, IL 60153, USA
| | - Xianlong Gao
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, 2160 S. 1st Avenue, Maywood, IL 60153, USA
| | - Jonathan M Eby
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, 2160 S. 1st Avenue, Maywood, IL 60153, USA
| | - You-Hong Cheng
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, 2160 S. 1st Avenue, Maywood, IL 60153, USA
| | - Amanda M Nevins
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Matthias Majetschak
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, 2160 S. 1st Avenue, Maywood, IL 60153, USA .,Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago Stritch School of Medicine, 2160 S. 1st Avenue, Maywood, IL 60153, USA
| |
Collapse
|
20
|
Extracellular ubiquitin modulates cardiac fibroblast phenotype and function via its interaction with CXCR4. Life Sci 2018; 211:8-16. [PMID: 30195032 DOI: 10.1016/j.lfs.2018.09.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/29/2018] [Accepted: 09/04/2018] [Indexed: 12/19/2022]
Abstract
AIMS β-adrenergic receptor (β-AR) stimulation increases extracellular levels of ubiquitin (UB), and exogenous UB plays an important role in β-AR-stimulated myocardial remodeling with effects on heart function, fibrosis and myocyte apoptosis. Cardiac fibroblasts are vital for maintaining the normal function of the heart, and in the structural remodeling of the heart in response to injury. Here we hypothesized that extracellular UB modulates cardiac fibroblast phenotype and function via its interaction with CXC chemokine receptor type 4 (CXCR4). MAIN METHODS Serum starved adult cardiac fibroblasts were used to identify CXCR4 as a receptor for UB. Fluorescent microscopy, co-immunoprecipitation, western blot, proliferation, migration and collagen contraction assays were performed to investigate the role of UB/CXCR4 axis on cell signaling, and modulation of fibroblast phenotype and function. KEY FINDINGS Using fluorescent microscopy and co-immunoprecipitation assay, we provide evidence that extracellular UB interacts with CXCR4. CXCR4 antagonist, AMD3100, inhibited interaction of UB with CXCR4. UB activated ERK1/2, not Akt. It enhanced VEGF-A expression, while decreasing β3 integrins expression. Two mutated UB proteins (V70A and F4A; unable to interact with CXCR4) failed to affect the expression of VEGF-A and β3 integrins. UB treatment inhibited migration of cells into the wound and FBS-stimulated cell proliferation. UB enhanced expression of α-smooth muscle actin (marker of myofibroblast differentiation) and contraction of fibroblast-populated collagen gel pads. Most of the effects of UB were negated by AMD3100. SIGNIFICANCE The data presented here suggest that UB interacts with CXCR4, and UB/CXCR4 interaction affects intracellular signaling, and modulates fibroblast phenotype and function.
Collapse
|
21
|
Eibel B, Kristochek M, Peres TR, Dias LD, Dartora DR, Casali KR, Kalil RAK, Lehnen AM, Irigoyen MC, Markoski MM. β-blockers interfere with cell homing receptors and regulatory proteins in a model of spontaneously hypertensive rats. Cardiovasc Ther 2018; 36:e12434. [PMID: 29752864 DOI: 10.1111/1755-5922.12434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/13/2018] [Accepted: 05/07/2018] [Indexed: 12/28/2022] Open
Abstract
AIM To examine the interference of β-blockers with the chemokine stromal cell-derived factor-1 (SDF-1) found in cell homing receptors, C-X-C chemokine receptor type 4 (CXCR-4) and CXCR-7, and regulatory proteins of homing pathways, we administered atenolol, carvedilol, metoprolol, and propranolol for 30 days using an orogastric tube to hypertensive rats. METHOD We collected blood samples before and after treatment and quantified the levels of SDF-1 with enzyme-linked immunosorbent assay (ELISA). On day 30 of treatment, the spontaneously hypertensive rats (SHR) were euthanized, and heart, liver, lung, and kidney tissues were biopsied. Proteins were isolated for determining the expression of CXCR-4, CXCR-7, GRK-2 (G protein-coupled receptors kinase 2), β-arrestins (β1-AR and β2-AR), and nuclear factor kappa B (NFκB). RESULTS We found that the study drugs modulated these proteins, and metoprolol and propranolol strongly affected the expression of β1-AR (P = .0102) and β2-AR (P = .0034). CONCLUSION β-blockers modulated tissue expression of the proteins and their interactions following 30 days of treatment. It evidences that this class of drugs can interfere with proteins of cell homing pathways.
Collapse
Affiliation(s)
- Bruna Eibel
- Instituto de Cardiologia do Rio Grande do Sul/Fundação Universitária de Cardiologia (IC/FUC), Porto Alegre, Brazil
| | - Melissa Kristochek
- Instituto de Cardiologia do Rio Grande do Sul/Fundação Universitária de Cardiologia (IC/FUC), Porto Alegre, Brazil
| | - Thiago R Peres
- Instituto de Cardiologia do Rio Grande do Sul/Fundação Universitária de Cardiologia (IC/FUC), Porto Alegre, Brazil
| | - Lucinara D Dias
- Instituto de Cardiologia do Rio Grande do Sul/Fundação Universitária de Cardiologia (IC/FUC), Porto Alegre, Brazil
| | - Daniela R Dartora
- Instituto de Cardiologia do Rio Grande do Sul/Fundação Universitária de Cardiologia (IC/FUC), Porto Alegre, Brazil.,Sainte-Justine University Hospital Research Center, University of Montreal, Montreal, Canada
| | - Karina R Casali
- Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Renato A K Kalil
- Instituto de Cardiologia do Rio Grande do Sul/Fundação Universitária de Cardiologia (IC/FUC), Porto Alegre, Brazil.,Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Alexandre M Lehnen
- Instituto de Cardiologia do Rio Grande do Sul/Fundação Universitária de Cardiologia (IC/FUC), Porto Alegre, Brazil.,Faculdade Sogipa de Educação Física (SOGIPA), Porto Alegre, Brazil
| | - Maria Claudia Irigoyen
- Instituto de Cardiologia do Rio Grande do Sul/Fundação Universitária de Cardiologia (IC/FUC), Porto Alegre, Brazil.,Universidade de São Paulo (USP), Porto Alegre, Brazil
| | - Melissa M Markoski
- Instituto de Cardiologia do Rio Grande do Sul/Fundação Universitária de Cardiologia (IC/FUC), Porto Alegre, Brazil.,Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| |
Collapse
|
22
|
Hughes CE, Nibbs RJB. A guide to chemokines and their receptors. FEBS J 2018; 285:2944-2971. [PMID: 29637711 PMCID: PMC6120486 DOI: 10.1111/febs.14466] [Citation(s) in RCA: 884] [Impact Index Per Article: 126.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/25/2018] [Accepted: 04/03/2018] [Indexed: 12/12/2022]
Abstract
The chemokines (or chemotactic cytokines) are a large family of small, secreted proteins that signal through cell surface G protein-coupled heptahelical chemokine receptors. They are best known for their ability to stimulate the migration of cells, most notably white blood cells (leukocytes). Consequently, chemokines play a central role in the development and homeostasis of the immune system, and are involved in all protective or destructive immune and inflammatory responses. Classically viewed as inducers of directed chemotactic migration, it is now clear that chemokines can stimulate a variety of other types of directed and undirected migratory behavior, such as haptotaxis, chemokinesis, and haptokinesis, in addition to inducing cell arrest or adhesion. However, chemokine receptors on leukocytes can do more than just direct migration, and these molecules can also be expressed on, and regulate the biology of, many nonleukocytic cell types. Chemokines are profoundly affected by post-translational modification, by interaction with the extracellular matrix (ECM), and by binding to heptahelical 'atypical' chemokine receptors that regulate chemokine localization and abundance. This guide gives a broad overview of the chemokine and chemokine receptor families; summarizes the complex physical interactions that occur in the chemokine network; and, using specific examples, discusses general principles of chemokine function, focusing particularly on their ability to direct leukocyte migration.
Collapse
Affiliation(s)
- Catherine E Hughes
- Institute of Infection, Inflammation & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Robert J B Nibbs
- Institute of Infection, Inflammation & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| |
Collapse
|
23
|
Worsening Heart Failure During the Use of DPP-4 Inhibitors: Pathophysiological Mechanisms, Clinical Risks, and Potential Influence of Concomitant Antidiabetic Medications. JACC-HEART FAILURE 2018. [PMID: 29525332 DOI: 10.1016/j.jchf.2017.12.016] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although dipeptidyl peptidase (DPP)-4 inhibitors have been reported to have a neutral effect on thromboembolic vaso-occlusive events in large-scale trials, they act to potentiate several endogenous peptides that can exert deleterious cardiovascular effects. Experimentally, DPP-4 inhibitors may augment the ability of glucagon-like peptide-1 to stimulate cyclic adenosine monophosphate in cardiomyocytes, and potentiation of the effects of stromal cell-derived factor-1 by DPP-4 inhibitors may aggravate cardiac fibrosis. These potentially deleterious actions of DPP-4 inhibitors might not become clinically apparent if these drugs were to promote sodium excretion. However, the natriuretic effect of DPP-4 inhibitors is modest, because they act on the distal (rather than proximal) renal tubules. Accordingly, both clinical trials and observational studies have reported an increase in the risk of heart failure in patients with type 2 diabetes who were receiving DPP-4 inhibitors. This risk may be muted in trials with a high prevalence of metformin use or with low and declining background use of insulin and thiazolidinediones. Still, the most vulnerable patients (i.e., those with established heart failure) were not well represented in these studies. The only trial that specifically evaluated patients with pre-existing left ventricular dysfunction observed important drug-related adverse structural and clinical effects. In conclusion, an increased risk of worsening heart failure appears to be a class effect of DPP-4 inhibitors, even in patients without a history of heart failure. Additional clinical trials are urgently needed to elucidate the benefits and risks of DPP-4 inhibitors in patients with established left ventricular dysfunction.
Collapse
|
24
|
Obad A, Peeran A, Little JI, Haddad GE, Tarzami ST. Alcohol-Mediated Organ Damages: Heart and Brain. Front Pharmacol 2018; 9:81. [PMID: 29487525 PMCID: PMC5816804 DOI: 10.3389/fphar.2018.00081] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/24/2018] [Indexed: 12/12/2022] Open
Abstract
Alcohol is one of the most commonly abused substances in the United States. Chronic consumption of ethanol has been responsible for numerous chronic diseases and conditions globally. The underlying mechanism of liver injury has been studied in depth, however, far fewer studies have examined other organs especially the heart and the central nervous system (CNS). The authors conducted a narrative review on the relationship of alcohol with heart disease and dementia. With that in mind, a complex relationship between inflammation and cardiovascular disease and dementia has been long proposed but inflammatory biomarkers have gained more attention lately. In this review we examine some of the consequences of the altered cytokine regulation that occurs in alcoholics in organs other than the liver. The article reviews the potential role of inflammatory markers such as TNF-α in predicting dementia and/or cardiovascular disease. It was found that TNF-α could promote and accelerate local inflammation and damage through autocrine/paracrine mechanisms. Unraveling the mechanisms linking chronic alcohol consumption with proinflammatory cytokine production and subsequent inflammatory signaling pathways activation in the heart and CNS, is essential to improve our understanding of the disease and hopefully facilitate the development of new remedies.
Collapse
Affiliation(s)
| | | | | | | | - Sima T. Tarzami
- Department of Physiology and Biophysics, Howard University, Washington, DC, United States
| |
Collapse
|
25
|
Gao X, Albee LJ, Volkman BF, Gaponenko V, Majetschak M. Asymmetrical ligand-induced cross-regulation of chemokine (C-X-C motif) receptor 4 by α 1-adrenergic receptors at the heteromeric receptor complex. Sci Rep 2018; 8:2730. [PMID: 29426850 PMCID: PMC5807542 DOI: 10.1038/s41598-018-21096-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/30/2018] [Indexed: 02/03/2023] Open
Abstract
Recently, we reported that chemokine (C-X-C motif) receptor (CXCR)4 and atypical chemokine receptor 3 regulate α1-adrenergic receptors (α1-AR) through the formation of hetero-oligomeric complexes. Whether α1-ARs also regulate chemokine receptor function within such heteromeric receptor complexes is unknown. We observed that activation of α1b-AR within the α1b-AR:CXCR4 heteromeric complex leads to cross-recruitment of β-arrestin2 to CXCR4, which could not be inhibited with AMD3100. Activation of CXCR4 did not cross-recruit β-arrestin2 to α1b-AR. A peptide analogue of transmembrane domain 2 of CXCR4 interfered with α1b-AR:CXCR4 heteromerization and inhibited α1b-AR-mediated β-arrestin2 cross-recruitment. Phenylephrine (PE) induced internalization of CXCR4 in HEK293 cells co-expressing CXCR4 and α1b-AR and of endogenous CXCR4 in human vascular smooth muscle cells (hVSMC). The latter was detectable despite blockade of CXCR4 with the neutralizing antibody 12G5. hVSMC migrated towards CXCL12 and PE, but not towards a combination of CXCL12 and PE. PE inhibited CXCL12-induced chemotaxis of hVSMC (IC50: 77 ± 30 nM). Phentolamine cross-inhibited CXCL12-induced chemotaxis of hVSMC, whereas AMD3100 did not cross-inhibit PE-induced chemotaxis. These data provide evidence for asymmetrical cross-regulation of CXCR4 by α1-adrenergic receptors within the heteromeric receptor complex. Our findings provide mechanistic insights into the function of α1-AR:CXCR4 heteromers and suggest alternative approaches to modulate CXCR4 in disease conditions.
Collapse
Affiliation(s)
- Xianlong Gao
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, 60153, USA
| | - Lauren J Albee
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, 60153, USA
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, 53226, USA
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, 60607, USA
| | - Matthias Majetschak
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, 60153, USA. .,Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, 60153, USA.
| |
Collapse
|
26
|
Packer M. Do DPP-4 Inhibitors Cause Heart Failure Events by Promoting Adrenergically Mediated Cardiotoxicity? Clues From Laboratory Models and Clinical Trials. Circ Res 2018; 122:928-932. [PMID: 29436388 DOI: 10.1161/circresaha.118.312673] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 01/30/2018] [Accepted: 02/06/2018] [Indexed: 12/22/2022]
Abstract
RATIONALE DPP-4 (dipeptidyl peptidase-4) inhibitors have increased the risk of heart failure events in both randomized clinical trials and observational studies, but the mechanisms that underlie their deleterious effect remain to be elucidated. Previous work has implicated a role of these drugs to promote cardiac fibrosis. OBJECTIVE This article postulates that DPP-4 inhibitors increase the risk of heart failure events by activating the sympathetic nervous system to stimulate cardiomyocyte cell death, and it crystallizes the findings from both experimental studies and clinical trials that support the hypothesis. METHODS AND RESULTS Inhibition of DPP-4 not only potentiates the actions of GLP-1 (glucagon-like peptide-1; which can increase myocardial cAMP) but also potentiates the actions of SDF-1 (stromal cell-derived factor 1), NPY (neuropeptide Y), and substance P to activate the sympathetic nervous system and stimulate β-adrenergic receptors to cause cardiomyocyte apoptosis, presumably through a CaMKII (Ca++/calmodulin-dependent protein kinase II) pathway. An action of SDF-1 to interfere with cAMP and protein kinase A signaling may account for the absence of a clinically overt positive chronotropic effect. This conceptual framework is supported by the apparent ability of β-blocking drugs to attenuate the increased risk of DPP-4 inhibitors in a large-scale clinical trial. CONCLUSIONS Sympathetic activation may explain the increased risk of heart failure produced by DPP-4 inhibitors. The proposed mechanism has major implications for clinical care because in the treatment of patients with type 2 diabetes mellitus, DPP-4 inhibitors are widely prescribed, but β-blockers are underutilized because of fears that they might mask hypoglycemia.
Collapse
Affiliation(s)
- Milton Packer
- From the Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, TX.
| |
Collapse
|
27
|
Packer M. Have dipeptidyl peptidase-4 inhibitors ameliorated the vascular complications of type 2 diabetes in large-scale trials? The potential confounding effect of stem-cell chemokines. Cardiovasc Diabetol 2018; 17:9. [PMID: 29310647 PMCID: PMC5759313 DOI: 10.1186/s12933-017-0648-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 12/23/2017] [Indexed: 12/11/2022] Open
Abstract
Drugs that inhibit dipeptidyl peptidase-4 (DPP-4) are conventionally regarded as incretin-based agents that signal through the glucagon-like peptide-1 (GLP-1) receptor. However, inhibition of DPP-4 also potentiates the stem cell chemokine, stromal cell-derived factor-1 (SDF-1), which can promote inflammation, proliferative responses and neovascularization. In large-scale cardiovascular outcome trials, enhanced GLP-1 signaling has reduced the risk of atherosclerotic ischemic events, potentially because GLP-1 retards the growth and increases the stability of atherosclerotic plaques. However, DPP-4 inhibitors have not reduced the risk of major adverse cardiovascular events, possibly because potentiation of SDF-1 enhances plaque growth and instability, activates deleterious neurohormonal mechanisms, and promotes cardiac inflammation and fibrosis. Similarly, trials with GLP-1 agonists and sodium-glucose cotransporter 2 inhibitors have reported favorable effects on renal function, even after only 3-4 years of treatment. In contrast, no benefits on the rate of decline in glomerular filtration rate have been seen in trials of DPP-4 inhibitors, perhaps because the renal actions of DPP-4 inhibitors are primarily mediated by potentiation of SDF-1, not GLP-1. Experimentally, SDF-1 can promote podocyte injury and glomerulosclerosis. Furthermore, the natriuretic action of SDF-1 occurs primarily in the distal tubules, where it cannot utilize tubuloglomerular feedback to modulate the deleterious effects of glomerular hyperfiltration. Potentiation of SDF-1 in experimental models may also exacerbate both retinopathy and neuropathy. Therefore, although DPP-4 inhibitors have attractive clinical features, the benefits that might be expected from GLP-1 signaling may be undermined by their actions to enhance SDF-1.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, 621 N. Hall Street, Dallas, TX, 75226, USA.
| |
Collapse
|
28
|
Albee LJ, Eby JM, Tripathi A, LaPorte HM, Gao X, Volkman BF, Gaponenko V, Majetschak M. α 1-Adrenergic Receptors Function Within Hetero-Oligomeric Complexes With Atypical Chemokine Receptor 3 and Chemokine (C-X-C motif) Receptor 4 in Vascular Smooth Muscle Cells. J Am Heart Assoc 2017; 6:JAHA.117.006575. [PMID: 28862946 PMCID: PMC5586474 DOI: 10.1161/jaha.117.006575] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Background Recently, we provided evidence that α1‐adrenergic receptors (ARs) in vascular smooth muscle are regulated by chemokine (C‐X‐C motif) receptor (CXCR) 4 and atypical chemokine receptor 3 (ACKR3). While we showed that CXCR4 controls α1‐ARs through formation of heteromeric receptor complexes in human vascular smooth muscle cells (hVSMCs), the molecular basis underlying cross‐talk between ACKR3 and α1‐ARs is unknown. Methods and Results We show that ACKR3 agonists inhibit inositol trisphosphate production in hVSMCs on stimulation with phenylephrine. In proximity ligation assays and co‐immunoprecipitation experiments, we observed that recombinant and endogenous ACKR3 form heteromeric complexes with α1A/B/D‐AR. While small interfering RNA knockdown of ACKR3 in hVSMCs reduced α1B/D‐AR:ACKR3, CXCR4:ACKR3, and α1B/D‐AR:CXCR4 complexes, small interfering RNA knockdown of CXCR4 reduced α1B/D‐AR:ACKR3 heteromers. Phenylephrine‐induced inositol trisphosphate production from hVSMCs was abolished after ACKR3 and CXCR4 small interfering RNA knockdown. Peptide analogs of transmembrane domains 2/4/7 of ACKR3 showed differential effects on heteromerization between ACKR3, α1A/B/D‐AR, and CXCR4. While the transmembrane domain 2 peptide interfered with α1B/D‐AR:ACKR3 and CXCR4:ACKR3 heteromerization, it increased heteromerization between CXCR4 and α1A/B‐AR. The transmembrane domain 2 peptide inhibited ACKR3 but did not affect α1b‐AR in β‐arrestin recruitment assays. Furthermore, the transmembrane domain 2 peptide inhibited phenylephrine‐induced inositol trisphosphate production in hVSMCs and attenuated phenylephrine‐induced constriction of mesenteric arteries. Conclusions α1‐ARs form hetero‐oligomeric complexes with the ACKR3:CXCR4 heteromer, which is required for α1B/D‐AR function, and activation of ACKR3 negatively regulates α1‐ARs. G protein–coupled receptor hetero‐oligomerization is a dynamic process, which depends on the relative abundance of available receptor partners. Endogenous α1‐ARs function within a network of hetero‐oligomeric receptor complexes.
Collapse
Affiliation(s)
- Lauren J Albee
- Department of Surgery, Burn and Shock Trauma Research Institute, Loyola University Chicago Stritch School of Medicine, Maywood, IL
| | - Jonathan M Eby
- Department of Surgery, Burn and Shock Trauma Research Institute, Loyola University Chicago Stritch School of Medicine, Maywood, IL
| | - Abhishek Tripathi
- Department of Surgery, Burn and Shock Trauma Research Institute, Loyola University Chicago Stritch School of Medicine, Maywood, IL
| | - Heather M LaPorte
- Department of Surgery, Burn and Shock Trauma Research Institute, Loyola University Chicago Stritch School of Medicine, Maywood, IL
| | - Xianlong Gao
- Department of Surgery, Burn and Shock Trauma Research Institute, Loyola University Chicago Stritch School of Medicine, Maywood, IL
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, IL
| | - Matthias Majetschak
- Department of Surgery, Burn and Shock Trauma Research Institute, Loyola University Chicago Stritch School of Medicine, Maywood, IL .,Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago Stritch School of Medicine, Maywood, IL
| |
Collapse
|
29
|
Ceholski DK, Turnbull IC, Pothula V, Lecce L, Jarrah AA, Kho C, Lee A, Hadri L, Costa KD, Hajjar RJ, Tarzami ST. CXCR4 and CXCR7 play distinct roles in cardiac lineage specification and pharmacologic β-adrenergic response. Stem Cell Res 2017; 23:77-86. [PMID: 28711757 PMCID: PMC5859259 DOI: 10.1016/j.scr.2017.06.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 06/09/2017] [Accepted: 06/30/2017] [Indexed: 12/29/2022] Open
Abstract
CXCR4 and CXCR7 are prominent G protein-coupled receptors (GPCRs) for chemokine stromal cell-derived factor-1 (SDF-1/CXCL12). This study demonstrates that CXCR4 and CXCR7 induce differential effects during cardiac lineage differentiation and β-adrenergic response in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Using lentiviral vectors to ablate CXCR4 and/or CXCR7 expression, hiPSC-CMs were tested for phenotypic and functional properties due to gene knockdown. Gene expression and flow cytometry confirmed the pluripotent and cardiomyocyte phenotype of undifferentiated and differentiated hiPSCs, respectively. Although reduction of CXCR4 and CXCR7 expression resulted in a delayed cardiac phenotype, only knockdown of CXCR4 delayed the spontaneous beating of hiPSC-CMs. Knockdown of CXCR4 and CXCR7 differentially altered calcium transients and β-adrenergic response in hiPSC-CMs. In engineered cardiac tissues, depletion of CXCR4 or CXCR7 had opposing effects on developed force and chronotropic response to β-agonists. This work demonstrates distinct roles for the SDF-1/CXCR4 or CXCR7 network in hiPSC-derived ventricular cardiomyocyte specification, maturation and function.
Collapse
Affiliation(s)
- Delaine K Ceholski
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Irene C Turnbull
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Venu Pothula
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Laura Lecce
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrew A Jarrah
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Changwon Kho
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ahyoung Lee
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lahouaria Hadri
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kevin D Costa
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Roger J Hajjar
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sima T Tarzami
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC 20060, USA.
| |
Collapse
|
30
|
Using nanoBRET and CRISPR/Cas9 to monitor proximity to a genome-edited protein in real-time. Sci Rep 2017; 7:3187. [PMID: 28600500 PMCID: PMC5466623 DOI: 10.1038/s41598-017-03486-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/28/2017] [Indexed: 12/15/2022] Open
Abstract
Bioluminescence resonance energy transfer (BRET) has been a vital tool for understanding G protein-coupled receptor (GPCR) function. It has been used to investigate GPCR-protein and/or -ligand interactions as well as GPCR oligomerisation. However the utility of BRET is limited by the requirement that the fusion proteins, and in particular the donor, need to be exogenously expressed. To address this, we have used CRISPR/Cas9-mediated homology-directed repair to generate protein-Nanoluciferase (Nluc) fusions under endogenous promotion, thus allowing investigation of proximity between the genome-edited protein and an exogenously expressed protein by BRET. Here we report BRET monitoring of GPCR-mediated β-arrestin2 recruitment and internalisation where the donor luciferase was under endogenous promotion, in live cells and in real time. We have investigated the utility of CRISPR/Cas9 genome editing to create genome-edited fusion proteins that can be used as BRET donors and propose that this strategy can be used to overcome the need for exogenous donor expression.
Collapse
|
31
|
Gondalia R, Avery CL, Napier MD, Méndez-Giráldez R, Stewart JD, Sitlani CM, Li Y, Wilhelmsen KC, Duan Q, Roach J, North KE, Reiner AP, Zhang ZM, Tinker LF, Yanosky JD, Liao D, Whitsel EA. Genome-wide Association Study of Susceptibility to Particulate Matter-Associated QT Prolongation. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:067002. [PMID: 28749367 PMCID: PMC5714283 DOI: 10.1289/ehp347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 09/07/2016] [Accepted: 09/19/2016] [Indexed: 05/02/2023]
Abstract
BACKGROUND Ambient particulate matter (PM) air pollution exposure has been associated with increases in QT interval duration (QT). However, innate susceptibility to PM-associated QT prolongation has not been characterized. OBJECTIVE To characterize genetic susceptibility to PM-associated QT prolongation in a multi-racial/ethnic, genome-wide association study (GWAS). METHODS Using repeated electrocardiograms (1986–2004), longitudinal data on PM<10 μm in diameter (PM10), and generalized estimating equations methods adapted for low-prevalence exposure, we estimated approximately 2.5×106 SNP×PM10 interactions among nine Women’s Health Initiative clinical trials and Atherosclerosis Risk in Communities Study subpopulations (n=22,158), then combined subpopulation-specific results in a fixed-effects, inverse variance-weighted meta-analysis. RESULTS A common variant (rs1619661; coded allele: T) significantly modified the QT-PM10 association (p=2.11×10−8). At PM10 concentrations >90th percentile, QT increased 7 ms across the CC and TT genotypes: 397 (95% confidence interval: 396, 399) to 404 (403, 404) ms. However, QT changed minimally across rs1619661 genotypes at lower PM10 concentrations. The rs1619661 variant is on chromosome 10, 132 kilobase (kb) downstream from CXCL12, which encodes a chemokine, stromal cell-derived factor 1, that is expressed in cardiomyocytes and decreases calcium influx across the L-type Ca2+ channel. CONCLUSIONS The findings suggest that biologically plausible genetic factors may alter susceptibility to PM10-associated QT prolongation in populations protected by the U.S. Environmental Protection Agency’s National Ambient Air Quality Standards. Independent replication and functional characterization are necessary to validate our findings. https://doi.org/10.1289/EHP347
Collapse
Affiliation(s)
- Rahul Gondalia
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Christy L Avery
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Melanie D Napier
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Raúl Méndez-Giráldez
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - James D Stewart
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA
- Carolina Population Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Colleen M Sitlani
- Cardiovascular Health Research Unit, University of Washington, Seattle, Washington, USA
| | - Yun Li
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Computer Science, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Kirk C Wilhelmsen
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA
- The Renaissance Computing Institute, Chapel Hill, North Carolina, USA
| | - Qing Duan
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jeffrey Roach
- Research Computing Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Kari E North
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA
- Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Alexander P Reiner
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Zhu-Ming Zhang
- Epidemiologic Cardiology Research Center, Dept. of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Lesley F Tinker
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jeff D Yanosky
- Division of Epidemiology, Dept. of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Duanping Liao
- Division of Epidemiology, Dept. of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Eric A Whitsel
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
32
|
Evans AE, Tripathi A, LaPorte HM, Brueggemann LI, Singh AK, Albee LJ, Byron KL, Tarasova NI, Volkman BF, Cho TY, Gaponenko V, Majetschak M. New Insights into Mechanisms and Functions of Chemokine (C-X-C Motif) Receptor 4 Heteromerization in Vascular Smooth Muscle. Int J Mol Sci 2016; 17:ijms17060971. [PMID: 27331810 PMCID: PMC4926503 DOI: 10.3390/ijms17060971] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/07/2016] [Accepted: 06/13/2016] [Indexed: 12/14/2022] Open
Abstract
Recent evidence suggests that C-X-C chemokine receptor type 4 (CXCR4) heteromerizes with α1A/B-adrenoceptors (AR) and atypical chemokine receptor 3 (ACKR3) and that CXCR4:α1A/B-AR heteromers are important for α1-AR function in vascular smooth muscle cells (VSMC). Structural determinants for CXCR4 heteromerization and functional consequences of CXCR4:α1A/B-AR heteromerization in intact arteries, however, remain unknown. Utilizing proximity ligation assays (PLA) to visualize receptor interactions in VSMC, we show that peptide analogs of transmembrane-domain (TM) 2 and TM4 of CXCR4 selectively reduce PLA signals for CXCR4:α1A-AR and CXCR4:ACKR3 interactions, respectively. While both peptides inhibit CXCL12-induced chemotaxis, only the TM2 peptide inhibits phenylephrine-induced Ca2+-fluxes, contraction of VSMC and reduces efficacy of phenylephrine to constrict isolated arteries. In a Cre-loxP mouse model to delete CXCR4 in VSMC, we observed 60% knockdown of CXCR4. PLA signals for CXCR4:α1A/B-AR and CXCR4:ACKR3 interactions in VSMC, however, remained constant. Our observations point towards TM2/4 of CXCR4 as possible contact sites for heteromerization and suggest that TM-derived peptide analogs permit selective targeting of CXCR4 heteromers. A molecular dynamics simulation of a receptor complex in which the CXCR4 homodimer interacts with α1A-AR via TM2 and with ACKR3 via TM4 is presented. Our findings further imply that CXCR4:α1A-AR heteromers are important for intrinsic α1-AR function in intact arteries and provide initial and unexpected insights into the regulation of CXCR4 heteromerization in VSMC.
Collapse
MESH Headings
- Animals
- Binding Sites
- Calcium/metabolism
- Cell Line
- Cells, Cultured
- Female
- Humans
- Male
- Mice
- Molecular Dynamics Simulation
- Muscle, Smooth, Vascular/metabolism
- Protein Binding
- Protein Multimerization
- Rats
- Rats, Sprague-Dawley
- Receptors, Adrenergic, alpha-1/metabolism
- Receptors, CXCR/genetics
- Receptors, CXCR/metabolism
- Receptors, CXCR4/chemistry
- Receptors, CXCR4/genetics
- Receptors, CXCR4/metabolism
Collapse
Affiliation(s)
- Ann E Evans
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, 2160 S. First Avenue, Maywood, IL 60153, USA.
| | - Abhishek Tripathi
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, 2160 S. First Avenue, Maywood, IL 60153, USA.
| | - Heather M LaPorte
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, 2160 S. First Avenue, Maywood, IL 60153, USA.
| | - Lioubov I Brueggemann
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago Stritch School of Medicine, 2160 S. First Avenue, Maywood, IL 60153, USA.
| | - Abhay Kumar Singh
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1100 South Grand Blvd., St. Louis, MO 63104, USA.
| | - Lauren J Albee
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, 2160 S. First Avenue, Maywood, IL 60153, USA.
| | - Kenneth L Byron
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1100 South Grand Blvd., St. Louis, MO 63104, USA.
| | - Nadya I Tarasova
- Cancer and Inflammation Program, National Cancer Institute, PO Box B, Frederick, MD 21702-1201, USA.
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | - Thomas Yoonsang Cho
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1100 South Grand Blvd., St. Louis, MO 63104, USA.
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 S Ashland, Chicago, IL 60607, USA.
| | - Matthias Majetschak
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, 2160 S. First Avenue, Maywood, IL 60153, USA.
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago Stritch School of Medicine, 2160 S. First Avenue, Maywood, IL 60153, USA.
| |
Collapse
|
33
|
Chemokines and Heart Disease: A Network Connecting Cardiovascular Biology to Immune and Autonomic Nervous Systems. Mediators Inflamm 2016; 2016:5902947. [PMID: 27242392 PMCID: PMC4868905 DOI: 10.1155/2016/5902947] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/25/2016] [Accepted: 04/03/2016] [Indexed: 02/07/2023] Open
Abstract
Among the chemokines discovered to date, nineteen are presently considered to be relevant in heart disease and are involved in all stages of cardiovascular response to injury. Chemokines are interesting as biomarkers to predict risk of cardiovascular events in apparently healthy people and as possible therapeutic targets. Moreover, they could have a role as mediators of crosstalk between immune and cardiovascular system, since they seem to act as a “working-network” in deep linkage with the autonomic nervous system. In this paper we will describe the single chemokines more involved in heart diseases; then we will present a comprehensive perspective of them as a complex network connecting the cardiovascular system to both the immune and the autonomic nervous systems. Finally, some recent evidences indicating chemokines as a possible new tool to predict cardiovascular risk will be described.
Collapse
|
34
|
Scofield SLC, Amin P, Singh M, Singh K. Extracellular Ubiquitin: Role in Myocyte Apoptosis and Myocardial Remodeling. Compr Physiol 2015; 6:527-60. [PMID: 26756642 DOI: 10.1002/cphy.c150025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ubiquitin (UB) is a highly conserved low molecular weight (8.5 kDa) protein. It consists of 76 amino acid residues and is found in all eukaryotic cells. The covalent linkage of UB to a variety of cellular proteins (ubiquitination) is one of the most common posttranslational modifications in eukaryotic cells. This modification generally regulates protein turnover and protects the cells from damaged or misfolded proteins. The polyubiquitination of proteins serves as a signal for degradation via the 26S proteasome pathway. UB is present in trace amounts in body fluids. Elevated levels of UB are described in the serum or plasma of patients under a variety of conditions. Extracellular UB is proposed to have pleiotropic roles including regulation of immune response, anti-inflammatory, and neuroprotective activities. CXCR4 is identified as receptor for extracellular UB in hematopoietic cells. Heart failure represents a major cause of morbidity and mortality in western society. Cardiac remodeling is a determinant of the clinical course of heart failure. The components involved in myocardial remodeling include-myocytes, fibroblasts, interstitium, and coronary vasculature. Increased sympathetic nerve activity in the form of norepinephrine is a common feature during heart failure. Acting via β-adrenergic receptor (β-AR), norepinephrine is shown to induce myocyte apoptosis and myocardial fibrosis. β-AR stimulation increases extracellular levels of UB in myocytes, and UB inhibits β-AR-stimulated increases in myocyte apoptosis and myocardial fibrosis. This review summarizes intracellular and extracellular functions of UB with particular emphasis on the role of extracellular UB in cardiac myocyte apoptosis and myocardial remodeling.
Collapse
Affiliation(s)
- Stephanie L C Scofield
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee, USA
| | - Parthiv Amin
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee, USA
| | - Mahipal Singh
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee, USA
| | - Krishna Singh
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee, USA; Center for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA; James H. Quillen VA Medical Center, East Tennessee State University, Johnson City, Tennessee, USA.,Department of Medicine, Albany Medical College, Albany, New York, USA.,Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, New York, USA
| |
Collapse
|
35
|
Chung ES, Miller L, Patel AN, Anderson RD, Mendelsohn FO, Traverse J, Silver KH, Shin J, Ewald G, Farr MJ, Anwaruddin S, Plat F, Fisher SJ, AuWerter AT, Pastore JM, Aras R, Penn MS. Changes in ventricular remodelling and clinical status during the year following a single administration of stromal cell-derived factor-1 non-viral gene therapy in chronic ischaemic heart failure patients: the STOP-HF randomized Phase II trial. Eur Heart J 2015; 36:2228-38. [PMID: 26056125 PMCID: PMC4554960 DOI: 10.1093/eurheartj/ehv254] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 05/20/2015] [Indexed: 12/22/2022] Open
Abstract
Background Stromal cell-derived factor-1 (SDF-1) promotes tissue repair through mechanisms of cell survival, endogenous stem cell recruitment, and vasculogenesis. Stromal Cell-Derived Factor-1 Plasmid Treatment for Patients with Heart Failure (STOP-HF) is a Phase II, double-blind, randomized, placebo-controlled trial to evaluate safety and efficacy of a single treatment of plasmid stromal cell-derived factor-1 (pSDF-1) delivered via endomyocardial injection to patients with ischaemic heart failure (IHF). Methods Ninety-three subjects with IHF on stable guideline-based medical therapy and left ventricular ejection fraction (LVEF) ≤40%, completed Minnesota Living with Heart Failure Questionnaire (MLWHFQ) and 6-min walk distance (6 MWD), were randomized 1 : 1 : 1 to receive a single treatment of either a 15 or 30 mg dose of pSDF-1 or placebo via endomyocardial injections. Safety and efficacy parameters were assessed at 4 and 12 months after injection. Left ventricular functional and structural measures were assessed by contrast echocardiography and quantified by a blinded independent core laboratory. Stromal Cell-Derived Factor-1 Plasmid Treatment for Patients with Heart Failure was powered based on change in 6 MWD and MLWHFQ at 4 months. Results Subject profiles at baseline were (mean ± SD): age 65 ± 9 years, LVEF 28 ± 7%, left ventricular end-systolic volume (LVESV) 167 ± 66 mL, N-terminal pro brain natriuretic peptide (BNP) (NTproBNP) 1120 ± 1084 pg/mL, MLWHFQ 50 ± 20 points, and 6 MWD 289 ± 99 m. Patients were 11 ± 9 years post most recent myocardial infarction. Study injections were delivered without serious adverse events in all subjects. Sixty-two patients received drug with no unanticipated serious product-related adverse events. The primary endpoint was a composite of change in 6 MWD and MLWHFQ from baseline to 4 months follow-up. The primary endpoint was not met (P = 0.89). For the patients treated with pSDF-1, there was a trend toward an improvement in LVEF at 12 months (placebo vs. 15 mg vs. 30 mg ΔLVEF: −2 vs. −0.5 vs. 1.5%, P = 0.20). A pre-specified analysis of the effects of pSDF-1 based on tertiles of LVEF at entry revealed improvements in EF and LVESV from lowest-to-highest LVEF. Patients in the first tertile of EF (<26%) that received 30 mg of pSDF-1 demonstrated a 7% increase in EF compared with a 4% decrease in placebo (ΔLVEF = 11%, P = 0.01) at 12 months. There was also a trend towards improvement in LVESV, with treated patients demonstrating an 18.5 mL decrease compared with a 15 mL increase for placebo at 12 months (ΔLVESV = 33.5 mL, P = 0.12). The change in end-diastolic and end-systolic volume equated to a 14 mL increase in stroke volume in the patients treated with 30 mg of pSDF-1 compared with a decrease of −11 mL in the placebo group (ΔSV = 25 mL, P = 0.09). In addition, the 30 mg-treated cohort exhibited a trend towards improvement in NTproBNP compared with placebo at 12 months (−784 pg/mL, P = 0.23). Conclusions The blinded placebo-controlled STOP-HF trial demonstrated the safety of a single endocardial administration of pSDF-1 but failed to demonstrate its primary endpoint of improved composite score at 4 months after treatment. Through a pre-specified analysis the STOP-HF trial demonstrates the potential for attenuating LV remodelling and improving EF in high-risk ischaemic cardiomyopathy. The safety profile supports repeat dosing with pSDF-1 and the degree of left ventricular remodelling suggests the potential for improved outcomes in larger future trials.
Collapse
Affiliation(s)
| | | | | | | | | | - Jay Traverse
- Minneapolis Heart Institute, Minneapolis, MN, USA
| | | | - Julia Shin
- Montefiore-Einstein Medical Center, New York, NY, USA
| | | | | | - Saif Anwaruddin
- Hospital of University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | - Rahul Aras
- Juventas Therapeutics, Inc., Cleveland, OH, USA
| | - Marc S Penn
- Summa Cardiovascular Institute, Akron, OH, USA Juventas Therapeutics, Inc., Cleveland, OH, USA
| |
Collapse
|
36
|
Opfermann P, Derhaschnig U, Felli A, Wenisch J, Santer D, Zuckermann A, Dworschak M, Jilma B, Steinlechner B. A pilot study on reparixin, a CXCR1/2 antagonist, to assess safety and efficacy in attenuating ischaemia-reperfusion injury and inflammation after on-pump coronary artery bypass graft surgery. Clin Exp Immunol 2015; 180:131-42. [PMID: 25402332 PMCID: PMC4367101 DOI: 10.1111/cei.12488] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2014] [Indexed: 12/15/2022] Open
Abstract
Reparixin, a CXCR 1/2 antagonist, has been shown to mitigate ischaemia-reperfusion injury (IRI) in various organ systems in animals, but data in humans are scarce. The aim of this double-blinded, placebo-controlled pilot study was to evaluate the safety and efficacy of reparixin to suppress IRI and inflammation in patients undergoing on-pump coronary artery bypass grafting (CABG). Patients received either reparixin or placebo (n = 16 in each group) after induction of anaesthesia until 8 h after cardiopulmonary bypass (CPB). We compared markers of systemic and pulmonary inflammation, surrogates of myocardial IRI and clinical outcomes using Mann-Whitney U- and Fisher's exact tests. Thirty- and 90-day mortality was 0% in both groups. No side effects were observed in the treatment group. Surgical revision, pleural and pericardial effusion, infection and atrial fibrillation rates were not different between groups. Reparixin significantly reduced the proportion of neutrophil granulocytes in blood at the beginning [49%, interquartile range (IQR) = 45-57 versus 58%, IQR = 53-66, P = 0·035], end (71%, IQR = 67-76 versus 79%, IQR = 71-83, P = 0·023) and 1 h after CPB (73%, IQR = 71-75 versus 77%, IQR = 72-80, P = 0·035). Reparixin patients required a lesser positive fluid balance during surgery (2575 ml, IQR = 2027-3080 versus 3200 ml, IQR = 2928-3778, P = 0·029) and during ICU stay (2603 ml, IQR = 1023-4288 versus 4200 ml, IQR = 2313-8160, P = 0·021). Numerically, more control patients required noradrenaline ≥ 0·11 μg/kg/min (50 versus 19%, P = 0·063) and dobutamine (50 versus 25%, P = 0·14). Therefore, administration of reparixin in CABG patients appears to be feasible and safe. It concurrently attenuated postoperative granulocytosis in peripheral blood.
Collapse
Affiliation(s)
- P Opfermann
- Division of Cardiothoracic and Vascular Anesthesia and Intensive Care, Medical University of ViennaVienna, Austria
| | - U Derhaschnig
- Department of Clinical Pharmacology, Medical University of ViennaVienna, Austria
| | - A Felli
- Division of Cardiothoracic and Vascular Anesthesia and Intensive Care, Medical University of ViennaVienna, Austria
| | - J Wenisch
- Department of Internal Medicine I, Department of Clinical Pharmacology, Medical University of ViennaVienna, Austria
| | - D Santer
- Division of Cardiovascular Surgery, Hietzing HospitalVienna, Austria
| | - A Zuckermann
- Division of Cardiac Surgery, Medical University of ViennaVienna, Austria
| | - M Dworschak
- Division of Cardiothoracic and Vascular Anesthesia and Intensive Care, Medical University of ViennaVienna, Austria
| | - B Jilma
- Department of Clinical Pharmacology, Medical University of ViennaVienna, Austria
| | - B Steinlechner
- Division of Cardiothoracic and Vascular Anesthesia and Intensive Care, Medical University of ViennaVienna, Austria
| |
Collapse
|
37
|
Tripathi A, Vana PG, Chavan TS, Brueggemann LI, Byron KL, Tarasova NI, Volkman BF, Gaponenko V, Majetschak M. Heteromerization of chemokine (C-X-C motif) receptor 4 with α1A/B-adrenergic receptors controls α1-adrenergic receptor function. Proc Natl Acad Sci U S A 2015; 112:E1659-68. [PMID: 25775528 PMCID: PMC4386352 DOI: 10.1073/pnas.1417564112] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Recent evidence suggests that chemokine (C-X-C motif) receptor 4 (CXCR4) contributes to the regulation of blood pressure through interactions with α1-adrenergic receptors (ARs) in vascular smooth muscle. The underlying molecular mechanisms, however, are unknown. Using proximity ligation assays to visualize single-molecule interactions, we detected that α1A/B-ARs associate with CXCR4 on the cell surface of rat and human vascular smooth muscle cells (VSMC). Furthermore, α1A/B-AR could be coimmunoprecipitated with CXCR4 in a HeLa expression system and in human VSMC. A peptide derived from the second transmembrane helix of CXCR4 induced chemical shift changes in the NMR spectrum of CXCR4 in membranes, disturbed the association between α1A/B-AR and CXCR4, and inhibited Ca(2+) mobilization, myosin light chain (MLC) 2 phosphorylation, and contraction of VSMC upon α1-AR activation. CXCR4 silencing reduced α1A/B-AR:CXCR4 heteromeric complexes in VSMC and abolished phenylephrine-induced Ca(2+) fluxes and MLC2 phosphorylation. Treatment of rats with CXCR4 agonists (CXCL12, ubiquitin) reduced the EC50 of the phenylephrine-induced blood pressure response three- to fourfold. These observations suggest that disruption of the quaternary structure of α1A/B-AR:CXCR4 heteromeric complexes by targeting transmembrane helix 2 of CXCR4 and depletion of the heteromeric receptor complexes by CXCR4 knockdown inhibit α1-AR-mediated function in VSMC and that activation of CXCR4 enhances the potency of α1-AR agonists. Our findings extend the current understanding of the molecular mechanisms regulating α1-AR and provide an example of the importance of G protein-coupled receptor (GPCR) heteromerization for GPCR function. Compounds targeting the α1A/B-AR:CXCR4 interaction could provide an alternative pharmacological approach to modulate blood pressure.
Collapse
Affiliation(s)
- Abhishek Tripathi
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60153
| | - P Geoff Vana
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60153
| | - Tanmay S Chavan
- Department of Medicinal Chemistry, University of Illinois, Chicago, IL 60607
| | - Lioubov I Brueggemann
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60153
| | - Kenneth L Byron
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60153
| | - Nadya I Tarasova
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702-1201
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226; and
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, IL 60607
| | - Matthias Majetschak
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60153; Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60153;
| |
Collapse
|
38
|
Cai WF, Kang K, Huang W, Liang JL, Feng YL, Liu GS, Chang DH, Wen ZL, Paul C, Xu M, Millard RW, Wang Y. CXCR4 attenuates cardiomyocytes mitochondrial dysfunction to resist ischaemia-reperfusion injury. J Cell Mol Med 2015; 19:1825-35. [PMID: 25824297 PMCID: PMC4549033 DOI: 10.1111/jcmm.12554] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 01/08/2015] [Indexed: 12/25/2022] Open
Abstract
The chemokine (C-X-C motif) receptor 4 (CXCR4) is expressed on native cardiomyocytes and can modulate isolated cardiomyocyte contractility. This study examines the role of CXCR4 in cardiomyocyte response to ischaemia-reperfusion (I/R) injury. Isolated adult rat ventricular cardiomyocytes were subjected to hypoxia/reoxygenation (H/R) to simulate I/R injury. In response to H/R injury, the decrease in CXCR4 expression was associated with dysfunctional energy metabolism indicated by an increased adenosine diphosphate/adenosine triphosphate (ADP/ATP) ratio. CXCR4-overexpressing cardiomyocytes were used to determine whether such overexpression (OE) can prevent bio-energetic disruption-associated cell death. CXCR4 OE was performed with adenoviral infection with CXCR4 encoding-gene or non-translated nucleotide sequence (Control). The increased CXCR4 expression was observed in cardiomyocytes post CXCR4-adenovirus transduction and this OE significantly reduced the cardiomyocyte contractility under basal conditions. Although the same extent of H/R-provoked cytosolic calcium overload was measured, the hydrogen peroxide-induced decay of mitochondrial membrane potential was suppressed in CXCR4 OE group compared with control group, and the mitochondrial swelling was significantly attenuated in CXCR4 group, implicating that CXCR4 OE prevents permeability transition pore opening exposure to overload calcium. Interestingly, this CXCR4-induced mitochondrial protective effect is associated with the enhanced signal transducer and activator of transcription 3 (expression in mitochondria. Consequently, in the presence of H/R, mitochondrial dysfunction was mitigated and cardiomyocyte death was decreased to 65% in the CXCR4 OE group as compared with the control group. I/R injury leads to the reduction in CXCR4 in cardiomyocytes associated with the dysfunctional energy metabolism, and CXCR4 OE can alleviate mitochondrial dysfunction to improve cardiomyocyte survival.
Collapse
Affiliation(s)
- Wen-Feng Cai
- Department of Pathology & Lab Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Kai Kang
- Department of Pathology & Lab Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Wei Huang
- Department of Pathology & Lab Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Jia-Liang Liang
- Department of Pathology & Lab Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Yu-Liang Feng
- Department of Pathology & Lab Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Guan-Sheng Liu
- Department of Pharmacology & Cell Biophysics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - De-Hua Chang
- Department of Pathology & Lab Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Zhi-Li Wen
- Department of Pathology & Lab Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Christian Paul
- Department of Pathology & Lab Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Meifeng Xu
- Department of Pathology & Lab Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Ronald W Millard
- Department of Pharmacology & Cell Biophysics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Yigang Wang
- Department of Pathology & Lab Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
39
|
Bach HH, Wong YM, Tripathi A, Nevins AM, Gamelli RL, Volkman BF, Byron KL, Majetschak M. Chemokine (C-X-C motif) receptor 4 and atypical chemokine receptor 3 regulate vascular α₁-adrenergic receptor function. Mol Med 2014; 20:435-47. [PMID: 25032954 DOI: 10.2119/molmed.2014.00101] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 07/14/2014] [Indexed: 12/23/2022] Open
Abstract
Chemokine (C-X-C motif) receptor (CXCR) 4 and atypical chemokine receptor (ACKR) 3 ligands have been reported to modulate cardiovascular function in various disease models. The underlying mechanisms, however, remain unknown. Thus, it was the aim of the present study to determine how pharmacological modulation of CXCR4 and ACKR3 regulate cardiovascular function. In vivo administration of TC14012, a CXCR4 antagonist and ACKR3 agonist, caused cardiovascular collapse in normal animals. During the cardiovascular stress response to hemorrhagic shock, ubiquitin, a CXCR4 agonist, stabilized blood pressure, whereas coactivation of CXCR4 and ACKR3 with CXC chemokine ligand 12 (CXCL12), or blockade of CXCR4 with AMD3100 showed opposite effects. While CXCR4 and ACKR3 ligands did not affect myocardial function, they selectively altered vascular reactivity upon α1-adrenergic receptor (AR) activation in pressure myography experiments. CXCR4 activation with ubiquitin enhanced α1-AR-mediated vasoconstriction, whereas ACKR3 activation with various natural and synthetic ligands antagonized α1-AR-mediated vasoconstriction. The opposing effects of CXCR4 and ACKR3 activation by CXCL12 could be dissected pharmacologically. CXCR4 and ACKR3 ligands did not affect vasoconstriction upon activation of voltage-operated Ca(2+) channels or endothelin receptors. Effects of CXCR4 and ACKR3 agonists on vascular α1-AR responsiveness were independent of the endothelium. These findings suggest that CXCR4 and ACKR3 modulate α1-AR reactivity in vascular smooth muscle and regulate hemodynamics in normal and pathological conditions. Our observations point toward CXCR4 and ACKR3 as new pharmacological targets to control vasoreactivity and blood pressure.
Collapse
Affiliation(s)
- Harold H Bach
- Department of Surgery, Loyola University Chicago, Maywood, Illinois, United States of America Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Yee M Wong
- Department of Surgery, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Abhishek Tripathi
- Department of Surgery, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Amanda M Nevins
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Richard L Gamelli
- Department of Surgery, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Kenneth L Byron
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Matthias Majetschak
- Department of Surgery, Loyola University Chicago, Maywood, Illinois, United States of America Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Maywood, Illinois, United States of America
| |
Collapse
|
40
|
Abstract
Recent advances in our understanding of the pathophysiology of myocardial dysfunction in the setting of congestive heart failure have created a new opportunity in developing nonpharmacological approaches to treatment. Gene therapy has emerged as a powerful tool in targeting the molecular mechanisms of disease by preventing the ventricular remodeling and improving bioenergetics in heart failure. Refinements in vector technology, including the creation of recombinant adeno-associated viruses, have allowed for safe and efficient gene transfer. These advancements have been coupled with evolving delivery methods that include vascular, pericardial, and direct myocardial approaches. One of the most promising targets, SERCA2a, is currently being used in clinical trials. The recent success of the Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease phase 2 trials using adeno-associated virus 1-SERCA2a in improving outcomes highlights the importance of gene therapy as a future tool in treating congestive heart failure.
Collapse
|
41
|
Wnorowski A, Jozwiak K. Homo- and hetero-oligomerization of β2-adrenergic receptor in receptor trafficking, signaling pathways and receptor pharmacology. Cell Signal 2014; 26:2259-65. [PMID: 25049076 DOI: 10.1016/j.cellsig.2014.06.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 06/27/2014] [Indexed: 10/25/2022]
Abstract
The β2-adrenergic receptor (β2AR) is the prototypic member of G protein-coupled receptors (GPCRs) involved in the production of physiological responses to adrenaline and noradrenaline. Research done in the past few years vastly demonstrated that β2AR can form homo- and hetero-oligomers. Despite the fact that currently this phenomenon is widely accepted, the spread and relevance of β2AR oligomerization are still a matter of debate. This review considers the progress achieved in the field of β2AR oligomerization with focus on the implications of the receptor-receptor interactions to β2AR trafficking, pharmacology and downstream signal transduction pathways.
Collapse
Affiliation(s)
- Artur Wnorowski
- Laboratory of Medicinal Chemistry and Neuroengineering, Department of Chemistry, Medical University of Lublin, 20-093 Lublin, Poland.
| | - Krzysztof Jozwiak
- Laboratory of Medicinal Chemistry and Neuroengineering, Department of Chemistry, Medical University of Lublin, 20-093 Lublin, Poland.
| |
Collapse
|
42
|
Döring Y, Pawig L, Weber C, Noels H. The CXCL12/CXCR4 chemokine ligand/receptor axis in cardiovascular disease. Front Physiol 2014; 5:212. [PMID: 24966838 PMCID: PMC4052746 DOI: 10.3389/fphys.2014.00212] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/15/2014] [Indexed: 12/18/2022] Open
Abstract
The chemokine receptor CXCR4 and its ligand CXCL12 play an important homeostatic function by mediating the homing of progenitor cells in the bone marrow and regulating their mobilization into peripheral tissues upon injury or stress. Although the CXCL12/CXCR4 interaction has long been regarded as a monogamous relation, the identification of the pro-inflammatory chemokine macrophage migration inhibitory factor (MIF) as an important second ligand for CXCR4, and of CXCR7 as an alternative receptor for CXCL12, has undermined this interpretation and has considerably complicated the understanding of CXCL12/CXCR4 signaling and associated biological functions. This review aims to provide insight into the current concept of the CXCL12/CXCR4 axis in myocardial infarction (MI) and its underlying pathologies such as atherosclerosis and injury-induced vascular restenosis. It will discuss main findings from in vitro studies, animal experiments and large-scale genome-wide association studies. The importance of the CXCL12/CXCR4 axis in progenitor cell homing and mobilization will be addressed, as will be the function of CXCR4 in different cell types involved in atherosclerosis. Finally, a potential translation of current knowledge on CXCR4 into future therapeutical application will be discussed.
Collapse
Affiliation(s)
- Yvonne Döring
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Germany
| | - Lukas Pawig
- Institute for Molecular Cardiovascular Research, RWTH Aachen University Aachen, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Germany ; German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance Munich, Germany ; Cardiovascular Research Institute Maastricht, University of Maastricht Maastricht, Netherlands
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research, RWTH Aachen University Aachen, Germany
| |
Collapse
|
43
|
Okumura S, Fujita T, Cai W, Jin M, Namekata I, Mototani Y, Jin H, Ohnuki Y, Tsuneoka Y, Kurotani R, Suita K, Kawakami Y, Hamaguchi S, Abe T, Kiyonari H, Tsunematsu T, Bai Y, Suzuki S, Hidaka Y, Umemura M, Ichikawa Y, Yokoyama U, Sato M, Ishikawa F, Izumi-Nakaseko H, Adachi-Akahane S, Tanaka H, Ishikawa Y. Epac1-dependent phospholamban phosphorylation mediates the cardiac response to stresses. J Clin Invest 2014; 124:2785-801. [PMID: 24892712 DOI: 10.1172/jci64784] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PKA phosphorylates multiple molecules involved in calcium (Ca2+) handling in cardiac myocytes and is considered to be the predominant regulator of β-adrenergic receptor-mediated enhancement of cardiac contractility; however, recent identification of exchange protein activated by cAMP (EPAC), which is independently activated by cAMP, has challenged this paradigm. Mice lacking Epac1 (Epac1 KO) exhibited decreased cardiac contractility with reduced phospholamban (PLN) phosphorylation at serine-16, the major PKA-mediated phosphorylation site. In Epac1 KO mice, intracellular Ca2+ storage and the magnitude of Ca2+ movement were decreased; however, PKA expression remained unchanged, and activation of PKA with isoproterenol improved cardiac contractility. In contrast, direct activation of EPAC in cardiomyocytes led to increased PLN phosphorylation at serine-16, which was dependent on PLC and PKCε. Importantly, Epac1 deletion protected the heart from various stresses, while Epac2 deletion was not protective. Compared with WT mice, aortic banding induced a similar degree of cardiac hypertrophy in Epac1 KO; however, lack of Epac1 prevented subsequent cardiac dysfunction as a result of decreased cardiac myocyte apoptosis and fibrosis. Similarly, Epac1 KO animals showed resistance to isoproterenol- and aging-induced cardiomyopathy and attenuation of arrhythmogenic activity. These data support Epac1 as an important regulator of PKA-independent PLN phosphorylation and indicate that Epac1 regulates cardiac responsiveness to various stresses.
Collapse
|
44
|
Steel E, Murray VL, Liu AP. Multiplex detection of homo- and heterodimerization of g protein-coupled receptors by proximity biotinylation. PLoS One 2014; 9:e93646. [PMID: 24691126 PMCID: PMC3972117 DOI: 10.1371/journal.pone.0093646] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 03/08/2014] [Indexed: 11/30/2022] Open
Abstract
Dimerization of G protein-coupled receptors (GPCRs) represents a potential mechanism by which GPCR functions are regulated. Several resonance energy transfer (RET)-based methods have revealed GPCR homo- and heterodimerization. However, interpretation of an increase in FRET efficiency could be attributed to either dimerization/oligomerization events or conformational changes within an already dimerized/oligomerized receptor complex. Furthermore, RET-based methods can only measure pairwise dimerization, and cannot easily achieve multiplex detection. In this study, we applied proximity-based biotinylation for detecting receptor dimerization by utilizing a specific enzyme-substrate pair that are fused to GPCRs. The biotin ligase BirA is fused to CXCR4 and site-specifically biotinylates an acceptor peptide (AP) in the presence of biotin. As a test case for our newly developed assay, we have characterized the homo-dimerization of chemokine receptor CXCR4 and heterodimerization of CXCR4 with CCR2 or CCR5. The degree of biotinylation varies with the amount of GPCR-AP as well as biotinylation time. Using enzyme/substrate receptor pairs and measuring receptor biotinylation, we demonstrate that CXCR4 can homo-dimerize and hetero-dimerize with CCR2 and CCR5. The effect of CXCL12, agonist for CXCR4, was found to decrease surface biotinylation of CXCR4-AP. This effect is due to a combination of CXCR4 endocytosis and stabilization of CXCR4 homodimers. Finally, when CXCR4-AP, CCR2-AP, and CCR5-AP were expressed together, we observed CXCR4-CXCR4 homodimers and CXCR4-CCR2 and CXCR4-CCR5 heterodimers. The newly developed assay opens new opportunity for multiplex detection for GPCR homo- and heterodimerization within the same cellular context.
Collapse
Affiliation(s)
- Elisabeth Steel
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Victoria L. Murray
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Allen P. Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, United States of America
- Biophysics Program, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
45
|
Deletion of CXCR4 in cardiomyocytes exacerbates cardiac dysfunction following isoproterenol administration. Gene Ther 2014; 21:496-506. [PMID: 24646609 PMCID: PMC4016112 DOI: 10.1038/gt.2014.23] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 01/30/2014] [Accepted: 02/03/2014] [Indexed: 11/08/2022]
Abstract
Altered alpha- and beta-adrenergic receptor signaling is associated with cardiac hypertrophy and failure. Stromal cell-derived factor-1α (SDF-1α) and its cognate receptor CXCR4 have been reported to mediate cardioprotection after injury through the mobilization of stem cells into injured tissue. However, little is known regarding whether SDF-1/CXCR4 induces acute protection following pathological hypertrophy and if so, by what molecular mechanism. We have previously reported that CXCR4 physically interacts with the beta-2 adrenergic receptor and modulates its down stream signaling. Here we have shown that CXCR4 expression prevents beta-adrenergic receptor induced hypertrophy. Cardiac beta-adrenergic receptors were stimulated with the implantation of a subcutaneous osmotic pump administrating isoproterenol and CXCR4 expression was selectively abrogated in cardiomyocytes using Cre-loxP-mediated gene recombination. CXCR4 knockout mice showed worsened fractional shortening and ejection fraction. CXCR4 ablation increased susceptibility to isoproterenol-induced heart failure, by upregulating apoptotic markers and reducing mitochondrial function; cardiac function decreases while fibrosis increases. Additionally, CXCR4 expression was rescued with the use of cardiotropic Adeno-associated viral-9 (AAV9) vectors. CXCR4 gene transfer reduced cardiac apoptotic signaling, improved mitochondrial function and resulted in a recovered cardiac function. Our results represent the first evidence that SDF-1/CXCR4 signaling mediates acute cardioprotection through modulating beta-adrenergic receptor signaling in vivo.
Collapse
|
46
|
Taube D, Xu J, Yang XP, Undrovinas A, Peterson E, Harding P. Fractalkine depresses cardiomyocyte contractility. PLoS One 2013; 8:e69832. [PMID: 23936109 PMCID: PMC3728327 DOI: 10.1371/journal.pone.0069832] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 06/14/2013] [Indexed: 12/02/2022] Open
Abstract
Background Our laboratory reported that male mice with cardiomyocyte-selective knockout of the prostaglandin E2 EP4 receptor sub-type (EP4 KO) exhibit reduced cardiac function. Gene array on left ventricles (LV) showed increased fractalkine, a chemokine implicated in heart failure. We therefore hypothesized that fractalkine is regulated by PGE2 and contributes to depressed contractility via alterations in intracellular calcium. Methods Fractalkine was measured in LV of 28–32 week old male EP4 KO and wild type controls (WT) by ELISA and the effect of PGE2 on fractalkine secretion was measured in cultured neonatal cardiomyocytes and fibroblasts. The effect of fractalkine on contractility and intracellular calcium was determined in Fura-2 AM-loaded, electrical field-paced cardiomyocytes. Cardiomyocytes (AVM) from male C57Bl/6 mice were treated with fractalkine and responses measured under basal conditions and after isoproterenol (Iso) stimulation. Results LV fractalkine was increased in EP4 KO mice but surprisingly, PGE2 regulated fractalkine secretion only in fibroblasts. Fractalkine treatment of AVM decreased both the speed of contraction and relaxation under basal conditions and after Iso stimulation. Despite reducing contractility after Iso stimulation, fractalkine increased the Ca2+ transient amplitude but decreased phosphorylation of cardiac troponin I, suggesting direct effects on the contractile machinery. Conclusions Fractalkine depresses myocyte contractility by mechanisms downstream of intracellular calcium.
Collapse
Affiliation(s)
- David Taube
- Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Jiang Xu
- Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Xiao-Ping Yang
- Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Albertas Undrovinas
- Cardiovascular Research Division, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Edward Peterson
- Department of Internal Medicine and Department of Public Health Sciences, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Pamela Harding
- Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
47
|
Kepka M, Verburg-van Kemenade BML, Chadzinska M. Neuroendocrine modulation of the inflammatory response in common carp: adrenaline regulates leukocyte profile and activity. Gen Comp Endocrinol 2013; 188:102-9. [PMID: 23211751 DOI: 10.1016/j.ygcen.2012.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 11/06/2012] [Accepted: 11/09/2012] [Indexed: 02/07/2023]
Abstract
Inflammatory responses have to be carefully controlled, as high concentrations and/or prolonged action of inflammation-related molecules (e.g. reactive oxygen species, nitric oxide and pro-inflammatory cytokines) can be detrimental to host tissue and organs. One of the potential regulators of the inflammatory process are stress mediators including adrenaline. In vivo effects of adrenaline were studied during zymosan-induced (Z) peritoneal inflammation in the common carp Cyprinus carpio L. Adrenaline injected together with zymosan (ZA) did not change the number of inflammatory leukocytes in the peritoneal cavity, however at 24h post-injection it significantly reduced the percentage of monocytes/macrophages. Moreover, compared to cells retrieved from fish treated with PBS or zymosan only, adrenaline increased the percentage of apoptotic leukocytes in the focus of inflammation. Furthermore, adrenaline significantly reduced the expression of chemokine CXCL8_L1 (a functional homolog of mammalian IL-8) and its receptors (CXCR1 and CXCR2), indicating changes in leukocyte recruitment after stress. We conclude that adrenaline may contribute to a coordinated reaction by influencing the inflammatory response via direct regulation of leukocyte migration and/or apoptosis.
Collapse
Affiliation(s)
- M Kepka
- Department of Evolutionary Immunology, Jagiellonian University, Gronostajowa 9, PL30-387, Krakow, Poland
| | | | | |
Collapse
|
48
|
Liu X, Tan W, Liu Y, Lin G, Xie C. The role of the β2 adrenergic receptor on endothelial progenitor cells dysfunction of proliferation and migration in chronic obstructive pulmonary disease patients. Expert Opin Ther Targets 2013; 17:485-500. [PMID: 23448263 DOI: 10.1517/14728222.2013.773975] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in patients with moderate-to-severe chronic obstructive pulmonary disease (COPD), with > 44% of these patients presenting with generalized atherosclerosis at autopsy. It is accepted that endothelial progenitor cells (EPCs) participate in the repair of dysfunctional endothelium, thereby, protecting against atherosclerosis. The β2 adrenergic receptor (β2AR) expressed on mononuclear cells in peripheral blood and CD34(+) cells in bone has been shown to regulate T-cell traffic and proliferation. At present, there have been few systematic studies evaluating β2AR expression on EPCs in the peripheral blood of COPD patients and its role in EPCs migration and proliferation. Therefore, the objective of this study was to determine the role of β2ARs in EPCs function and, if this role is altered, in the COPD population. METHODS EPCs from 25 COPD and 16 control patients were isolated by Ficoll density-gradient centrifugation and identified using fluorescence-activated cell sorting. β2AR expression on EPCs was determined by western blotting and real-time PCR. The transwell migration assay was performed to determine the migration capacity of EPCs treated with a β2AR agonist, antagonist and β2AR monoclonal antibody. EPCs proliferation was assayed throughout the cell cycle. Following arterial damage in NOD/SCID mice, the number of EPCs treated with siRNA-β2AR incorporated at the injured vascular site was determined by fluorescence microscopy. RESULTS Data showed a significant increase in the total number of β2ARs in addition to an increased expression on early EPCs in COPD patients. COPD EPCs treated with β2AR antagonist (ICI 118551) increased migration to SDF-1α when compared to treatment with the β2AR agonist, norepinephrine. These changes were directly correlated to increase CXCR4 on EPCs. The proliferation of early EPCs treated with β2AR antagonist was improved and was correlated to an intercellular decrease in reactive oxygen species. CONCLUSION Changes in β2AR in COPD patients alter EPCs migration and proliferation, contributing to altered EPC repair capacity in this patient population.
Collapse
Affiliation(s)
- Xiaoran Liu
- First Affiliated Hospital of Sun Yat-sen University, Respiratory Department , Zhongshan Road, Guangzhou City, Guangdong Province 58, 51008 , People's Republic of China.
| | | | | | | | | |
Collapse
|
49
|
Stroma cell-derived factor-1α signaling enhances calcium transients and beating frequency in rat neonatal cardiomyocytes. PLoS One 2013; 8:e56007. [PMID: 23460790 PMCID: PMC3584107 DOI: 10.1371/journal.pone.0056007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 01/03/2013] [Indexed: 11/19/2022] Open
Abstract
Stroma cell-derived factor-1α (SDF-1α) is a cardioprotective chemokine, acting through its G-protein coupled receptor CXCR4. In experimental acute myocardial infarction, administration of SDF-1α induces an early improvement of systolic function which is difficult to explain solely by an anti-apoptotic and angiogenic effect. We wondered whether SDF-1α signaling might have direct effects on calcium transients and beating frequency. Primary rat neonatal cardiomyocytes were culture-expanded and characterized by immunofluorescence staining. Calcium sparks were studied by fluorescence microscopy after calcium loading with the Fluo-4 acetoxymethyl ester sensor. The cardiomyocyte enriched cellular suspension expressed troponin I and CXCR4 but was vimentin negative. Addition of SDF-1α in the medium increased cytoplasmic calcium release. The calcium response was completely abolished by using a neutralizing anti-CXCR4 antibody and partially suppressed and delayed by preincubation with an inositol triphosphate receptor (IP3R) blocker, but not with a ryanodine receptor (RyR) antagonist. Calcium fluxes induced by caffeine, a RyR agonist, were decreased by an IP3R blocker. Treatment with forskolin or SDF-1α increased cardiomyocyte beating frequency and their effects were additive. In vivo, treatment with SDF-1α increased left ventricular dP/dtmax. These results suggest that in rat neonatal cardiomyocytes, the SDF-1α/CXCR4 signaling increases calcium transients in an IP3-gated fashion leading to a positive chronotropic and inotropic effect.
Collapse
|
50
|
Abstract
Advances in understanding of the molecular basis of myocardial dysfunction, together with the development of increasingly efficient gene transfer technology, has placed heart failure within reach of gene-based therapy. Multiple components of cardiac contractility, including the Beta-adrenergic system, the calcium channel cycling pathway, and cytokine mediated cell proliferation, have been identified as appropriate targets for gene therapy. The development of efficient and safe vectors such as adeno-associated viruses and polymer nanoparticles has provided an opportunity for clinical application for gene therapy. The recent successful and safe completion of a phase 2 trial targeting the sarcoplasmic reticulum calcium ATPase pump (SERCA2a) has the potential to open a new era for gene therapy in the treatment of heart failure.
Collapse
Affiliation(s)
- Charbel Naim
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|