1
|
Syama KP, Blais E, Kumarathasan P. Maternal mechanisms in air pollution exposure-related adverse pregnancy outcomes: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 970:178999. [PMID: 40043646 DOI: 10.1016/j.scitotenv.2025.178999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/17/2025]
Abstract
Air pollution exposure is linked to various adverse health effects including cardiopulmonary, neurological and reproductive outcomes. Susceptible populations such as pregnant women and infants can be affected to a greater extent compared to healthy individuals. Thus, understanding air pollutant exposure-related toxicity pathways in pregnancy can provide information on developmental origin of health and diseases in both mothers and infants. The objective of this literature review was to explore maternal mechanisms underlying the association between air pollutant exposures and adverse maternal/infant health effects. A total of 209 articles published from 1996 until November 2024 were retrieved using PubMed, Scopus and Web of Science using relevant search terms (e.g. "Air Pollution" AND "Maternal" AND "Infant" AND "Health" AND "Biomarker"). After screening and removal of articles based on exclusion criteria, 36 observational studies were included for the final analysis. There were relatively fewer articles on air pollution exposure-related adverse maternal health effects compared to air-pollution-related adverse infant health effects. Of these articles selected for the final review, 32 studies compared the effects of particulate matter (PM), PM2.5, few on other (gaseous) pollutants and one study on effects of mixtures of air pollutants. Adverse maternal health effects included hypertensive disorders, gestational diabetes mellitus (GDM) and clinically recognized early pregnancy loss, while adverse infant health effects ranged from low birth weight, preterm birth, changes in fetal heart rate, crown rump length and fetal hyperinsulinism. Moreover, oxidative stress, inflammatory responses, endothelial and metabolic dysfunction were some of the mechanisms implicated in air pollution exposure-related adverse birth outcomes. These findings warrant further validation work and identification of maternal mechanism(s) constituting the causal pathway.
Collapse
Affiliation(s)
- Krishna Priya Syama
- Analytical Biochemistry and Proteomics Laboratory, Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch (HECSB), Health Canada, 251 Sir Frederick Banting Driveway, Ottawa K1A0K9, ON, Canada
| | - Erica Blais
- Analytical Biochemistry and Proteomics Laboratory, Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch (HECSB), Health Canada, 251 Sir Frederick Banting Driveway, Ottawa K1A0K9, ON, Canada
| | - Premkumari Kumarathasan
- Analytical Biochemistry and Proteomics Laboratory, Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch (HECSB), Health Canada, 251 Sir Frederick Banting Driveway, Ottawa K1A0K9, ON, Canada; Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
2
|
Carvajal V, Jorques Molla JV, Luo Y, Zhao Y, Moncunill G, Gascon M. Air pollution and systemic immune biomarkers in early life: A systematic review. ENVIRONMENTAL RESEARCH 2025; 269:120838. [PMID: 39832545 DOI: 10.1016/j.envres.2025.120838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 01/08/2025] [Accepted: 01/11/2025] [Indexed: 01/22/2025]
Abstract
INTRODUCTION Children's rapid development and immature immune systems place them at a higher risk of adverse health outcomes associated with air pollution exposure. However, the specific mechanisms in which air pollution mediates immune dysregulation in youth are poorly understood. Thus, we aimed to systematically review the available epidemiological evidence surrounding the effects of indoor and ambient air pollution exposure on systemic immune biomarkers in early life (from birth to 18 years old). METHODS based on PRISMA guidelines, we developed a systematic search strategy and defined inclusion and exclusion criteria to retrieve publications from PubMed, SCOPUS and Web of Science published up to August 10th, 2024. Quality assessment and evidence evaluation were also performed. Five independent reviewers participated in the process. RESULTS In total, 96 studies were included. We found limited evidence of a causal relationship between prenatal ambient PM2.5 and reduced T-cells (CD3+ and CD8+), as well as between postnatal PM exposure and increased IgE levels or allergic sensitization. For the rest of exposure-outcome combinations we classified the evidence as inadequate, mainly due to the limited number of studies available or the lack of consistency in the results obtained among them. This was particularly the case for indoor air pollution research, for which only 12 studies were available. CONCLUSION the present systematic review highlights the need for further research on the impacts of air pollution on youth's immune system. We provided recommendations for future studies in order to better understand the early subclinical and clinical effects of air pollution and the underlying biological pathways, and identify the dynamics of the innate and adaptive immune responses to environmental threats. Considering the significance of childhood immunity on health outcomes within all stages of life, and the globally extensive burden of air pollution exposure, further research on this topic should be prioritized.
Collapse
Affiliation(s)
- Veronica Carvajal
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| | - Juan Vicente Jorques Molla
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Yana Luo
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| | - Yu Zhao
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| | - Gemma Moncunill
- ISGlobal, Barcelona, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Mireia Gascon
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Unitat de Suport a la Recerca de la Catalunya Central, Fundació Institut Universitari per a la Recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Manresa, Spain.
| |
Collapse
|
3
|
Yount CS, Scheible K, Thurston SW, Qiu X, Ge Y, Hopke PK, Lin Y, Miller RK, Murphy SK, Brunner J, Barrett E, O'Connor TG, Zhang J, Rich DQ. Short term air pollution exposure during pregnancy and associations with maternal immune markers. ENVIRONMENTAL RESEARCH 2024; 260:119639. [PMID: 39034020 PMCID: PMC11421383 DOI: 10.1016/j.envres.2024.119639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Air pollution exposure during pregnancy has been associated with numerous adverse pregnancy, birth, and child health outcomes. One proposed mechanism underlying these associations is maternal immune activation and dysregulation. We examined associations between PM2.5 and NO2 exposure during pregnancy and immune markers within immune function groups (TH1, TH2, TH17, Innate/Early Activation, Regulatory, Homeostatic, and Proinflammatory), and examined whether those associations changed across pregnancy. METHODS In a pregnancy cohort study (n = 290) in Rochester, New York, we measured immune markers (using Luminex) in maternal plasma up to 3 times during pregnancy. We estimated ambient PM2.5 and NO2 concentrations at participants' home addresses using a spatial-temporal model. Using mixed effects models, we estimated changes in immune marker concentrations associated with interquartile range increases in PM2.5 (2.88 μg/m3) and NO2 (7.82 ppb) 0-6 days before blood collection, and assessed whether associations were different in early, mid, and late pregnancy. RESULTS Increased NO2 concentrations were associated with higher maternal immune markers, with associations observed across TH1, TH2, TH17, Regulatory, and Homeostatic groups of immune markers. Furthermore, the largest increases in immune markers associated with each 7.82 ppb increase in NO2 concentration were in late pregnancy (e.g., IL-23 = 0.26 pg/ml, 95% CI = 0.07, 0.46) compared to early pregnancy (e.g., IL-23 = 0.08 pg/ml, 95% CI = -0.11, 0.26). CONCLUSIONS Results were suggestive of NO2-related immune activation. Increases in effect sizes from early to mid to late pregnancy may be due to changes in immune function over the course of pregnancy. These findings provide a basis for immune activation as a mechanism for previously observed associations between air pollution exposure during pregnancy and reduced birthweight, fetal growth restriction, and pregnancy complications.
Collapse
Affiliation(s)
- C S Yount
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - K Scheible
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - S W Thurston
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - X Qiu
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Y Ge
- Nicholas School of the Environment & Duke Global Health Institute, Duke University, Durham, NC, USA
| | - P K Hopke
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA; Center for Air and Aquatic Resources Engineering and Sciences, Clarkson University, Potsdam, NY, USA
| | - Y Lin
- Nicholas School of the Environment & Duke Global Health Institute, Duke University, Durham, NC, USA
| | - R K Miller
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA; Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - S K Murphy
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - J Brunner
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
| | - E Barrett
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA; Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA; Department of Biostatistics and Epidemiology, Rutgers University School of Public Health, Piscataway, NJ, USA
| | - T G O'Connor
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA; Department of Psychology, University of Rochester, Rochester, NY, USA; Department of Psychiatry, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - J Zhang
- Nicholas School of the Environment & Duke Global Health Institute, Duke University, Durham, NC, USA
| | - D Q Rich
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA; Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA; Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|
4
|
Soesanti F, Hoek G, Brunekreef B, Meliefste K, Chen J, Idris NS, Putri ND, Uiterwaal CSPM, Grobbee DE, Klipstein-Grobusch K. Perinatal exposure to traffic related air pollutants and the risk of infection in the first six months of life: a cohort study from a low-middle income country. Int Arch Occup Environ Health 2024; 97:575-586. [PMID: 38632139 PMCID: PMC11129992 DOI: 10.1007/s00420-024-02064-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024]
Abstract
OBJECTIVE There is limited study from low-and-middle income countries on the effect of perinatal exposure to air pollution and the risk of infection in infant. We assessed the association between perinatal exposure to traffic related air pollution and the risk of infection in infant during their first six months of life. METHODS A prospective cohort study was performed in Jakarta, March 2016-September 2020 among 298 mother-infant pairs. PM2.5, soot, NOx, and NO2 concentrations were assessed using land use regression models (LUR) at individual level. Repeated interviewer-administered questionnaires were used to obtain data on infection at 1, 2, 4 and 6 months of age. The infections were categorized as upper respiratory tract (runny nose, cough, wheezing or shortness of breath), lower respiratory tract (pneumonia, bronchiolitis) or gastrointestinal tract infection. Logistic regression models adjusted for covariates were used to assess the association between perinatal exposure to air pollution and the risk of infection in the first six months of life. RESULTS The average concentrations of PM2.5 and NO2 were much higher than the WHO recommended levels. Upper respiratory tract infections (URTI) were much more common in the first six months of life than diagnosed lower respiratory tract or gastro-intestinal infections (35.6%, 3.5% and 5.8% respectively). Perinatal exposure to PM2.5 and soot suggested increase cumulative risk of upper respiratory tract infection (URTI) in the first 6 months of life per IQR increase with adjusted OR of 1.50 (95% CI 0.91; 2.47) and 1.14 (95% CI 0.79; 1.64), respectively. Soot was significantly associated with the risk of URTI at 4-6 months age interval (aOR of 1.45, 95%CI 1.02; 2.09). All air pollutants were also positively associated with lower respiratory tract infection, but all CIs include unity because of relatively small samples. Adjusted odds ratios for gastrointestinal infections were close to unity. CONCLUSION Our study adds to the evidence that perinatal exposure to fine particles is associated with respiratory tract infection in infants in a low-middle income country.
Collapse
Affiliation(s)
- Frida Soesanti
- Department of Child Health, Faculty of Medicine, Universitas Indonesia/Cipto Mangunkusumo General Hospital, Jakarta, Indonesia.
- Julius Global Health, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| | - Gerard Hoek
- Environmental and Occupational Health Group Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Bert Brunekreef
- Environmental and Occupational Health Group Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Kees Meliefste
- Environmental and Occupational Health Group Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Jie Chen
- Environmental and Occupational Health Group Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, USA
| | - Nikmah S Idris
- Department of Child Health, Faculty of Medicine, Universitas Indonesia/Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
- Julius Global Health, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Nina D Putri
- Department of Child Health, Faculty of Medicine, Universitas Indonesia/Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Cuno S P M Uiterwaal
- Julius Global Health, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Diederick E Grobbee
- Julius Global Health, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Kerstin Klipstein-Grobusch
- Julius Global Health, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Division of Epidemiology and Biostatistics, School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
5
|
Johnson M, Mazur L, Fisher M, Fraser WD, Sun L, Hystad P, Gandhi CK. Prenatal Exposure to Air Pollution and Respiratory Distress in Term Newborns: Results from the MIREC Prospective Pregnancy Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:17007. [PMID: 38271058 PMCID: PMC10810300 DOI: 10.1289/ehp12880] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 11/03/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024]
Abstract
BACKGROUND Respiratory distress is the leading cause of neonatal morbidity and mortality worldwide, and prenatal exposure to air pollution is associated with adverse long-term respiratory outcomes; however, the impact of prenatal air pollution exposure on neonatal respiratory distress has not been well studied. OBJECTIVES We examined associations between prenatal exposures to fine particular matter (PM 2.5 ) and nitrogen dioxide (NO 2 ) with respiratory distress and related neonatal outcomes. METHODS We used data from the Maternal-Infant Research on Environmental Chemicals (MIREC) Study, a prospective pregnancy cohort (n = 2,001 ) recruited in the first trimester from 10 Canadian cities. Prenatal exposures to PM 2.5 (n = 1,321 ) and NO 2 (n = 1,064 ) were estimated using land-use regression and satellite-derived models coupled with ground-level monitoring and linked to participants based on residential location at birth. We calculated odds ratios (ORs) and 95% confidence intervals (CIs) for associations between air pollution and physician-diagnosed respiratory distress in term neonates in hierarchical logistic regression models adjusting for detailed maternal and infant covariates. RESULTS Approximately 7 % of newborns experienced respiratory distress. Neonates received clinical interventions including oxygen therapy (6%), assisted ventilation (2%), and systemic antibiotics (3%). Two percent received multiple interventions and 4% were admitted to the neonatal intensive care unit (NICU). Median PM 2.5 and NO 2 concentrations during pregnancy were 8.81 μ g / m 3 and 18.02 ppb , respectively. Prenatal exposures to air pollution were not associated with physician-diagnosed respiratory distress, oxygen therapy, or NICU admissions. However, PM 2.5 exposures were strongly associated with assisted ventilation (OR per 1 - μ g / m 3 increase in PM 2.5 = 1.17 ; 95% CI: 1.02, 1.35), multiple clinical interventions (OR per 1 - μ g / m 3 increase in PM 2.5 = 1.16 ; 95% CI: 1.07, 1.26), and systemic antibiotics, (OR per 1 - μ g / m 3 increase in PM 2.5 = 1.12 ; 95% CI: 1.04, 1.21). These associations were consistent across exposure periods-that is, during prepregnancy, individual trimesters, and total pregnancy-and robust to model specification. NO 2 exposure was associated with administration of systemic antibiotics (OR per 1-ppb increase in NO 2 = 1.03 ; 95% CI: 1.00, 1.06). DISCUSSION Prenatal exposures to PM 2.5 increased the risk of severe respiratory distress among term newborns. These findings support the development and prioritization of public health and prenatal care strategies to increase awareness and minimize prenatal exposures to air pollution. https://doi.org/10.1289/EHP12880.
Collapse
Affiliation(s)
- Markey Johnson
- Water and Air Quality Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Lauren Mazur
- Department of Pediatrics, Penn State College of Medicine, Pennsylvania State University, Hershey, Pennsylvania, USA
| | - Mandy Fisher
- Environmental Health Sciences and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - William D. Fraser
- Department of Obstetrics and Gynecology, Centre de Recherche du CHUS, University of Sherbrooke, Sherbrooke, Québec, Canada
| | - Liu Sun
- Water and Air Quality Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Perry Hystad
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Chintan K. Gandhi
- Department of Pediatrics, Penn State College of Medicine, Pennsylvania State University, Hershey, Pennsylvania, USA
| |
Collapse
|
6
|
Ye S, Ma Y, Li S, Luo S, Wei L, Hu D, Xiao F. Ambient NO 2 hinders neutrophil extracellular trap formation in rats: Assessment of the role of neutrophil autophagy. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131755. [PMID: 37276693 DOI: 10.1016/j.jhazmat.2023.131755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/20/2023] [Accepted: 05/30/2023] [Indexed: 06/07/2023]
Abstract
NO2 has been known to impair immunity and exacerbate susceptibility to infectious diseases. However, scant notice has been taken of the effect of NO2 on neutrophils. Neutrophil extracellular traps (NETs) formation is necessary for NETosis development by neutrophils as an immune system against pathogens. By analyzing the morphology and signature components of NETs, we focused for the first time on finding that 10 ppm of NO2 exposure for 15 consecutive days can hinder the formation of NETs. Next, we used NO2 in vivo derivatives to probe the mechanism for NETs formation in vitro. Our findings showed that NO2 suppression of respiratory burst levels and mitogen-activated protein kinase (MAPK)/Phosphoinositide 3-kinase (PI3K)-protein kinase B (AKT) signaling was related to NO2 reduction in NETs formation. Inhibition of phorbol myristate acetate (PMA)-induced NETs formation by NO2 hindered autophagy, as evidenced by increased mTOR protein expression, decreased LC3 protein expression, and reduced autophagic vesicles. By activating mTOR-mediated autophagy, rapamycin (Rapa) reduced the inhibition of PMA-induced NETs by NO2. This study will provide valuable insights into the mechanisms of immunotoxicity of NO2, new insights into the etiology of diseases linked to NETs formation, and a theoretical basis for protection against such illnesses.
Collapse
Affiliation(s)
- Shuzi Ye
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Yu Ma
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Siwen Li
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Sijia Luo
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Lai Wei
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Die Hu
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Fang Xiao
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410078, China.
| |
Collapse
|
7
|
Maxwell A, Adzibolosu N, Hu A, You Y, Stemmer PM, Ruden DM, Petriello MC, Sadagurski M, Debarba LK, Koshko L, Ramadoss J, Nguyen AT, Richards D, Liao A, Mor G, Ding J. Intrinsic sexual dimorphism in the placenta determines the differential response to benzene exposure. iScience 2023; 26:106287. [PMID: 37153445 PMCID: PMC10156617 DOI: 10.1016/j.isci.2023.106287] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/09/2022] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Maternal immune activation (MIA) by environmental challenges is linked to severe developmental complications, such as neurocognitive disorders, autism, and even fetal/maternal death. Benzene is a major toxic compound in air pollution that affects the mother as well as the fetus and has been associated with reproductive complications. Our objective was to elucidate whether benzene exposure during gestation triggers MIA and its impact on fetal development. We report that benzene exposure during pregnancy leads MIA associated with increased fetal resorptions, fetal growth, and abnormal placenta development. Furthermore, we demonstrate the existence of a sexual dimorphic response to benzene exposure in male and female placentas. The sexual dimorphic response is a consequence of inherent differences between male and female placenta. These data provide crucial information on the origins or sexual dimorphism and how exposure to environmental factors can have a differential impact on the development of male and female offspring.
Collapse
Affiliation(s)
- Anthony Maxwell
- C.S Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Nicholas Adzibolosu
- C.S Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Anna Hu
- C.S Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Yuan You
- C.S Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Paul M. Stemmer
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Douglas M. Ruden
- C.S Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Michael C. Petriello
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI, USA
| | - Marianna Sadagurski
- Department of Biological Sciences, Integrative Biosciences Center, Wayne State University, Detroit, MI, USA
| | - Lucas K. Debarba
- Department of Biological Sciences, Integrative Biosciences Center, Wayne State University, Detroit, MI, USA
| | - Lisa Koshko
- Department of Biological Sciences, Integrative Biosciences Center, Wayne State University, Detroit, MI, USA
| | - Jayanth Ramadoss
- C.S Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | | | - Darby Richards
- School of Medicine, Wayne State University, Detroit, MI, USA
| | - Aihua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Gil Mor
- C.S Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Jiahui Ding
- C.S Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
8
|
Ren B, He Q, Ma J, Zhang G. A preliminary analysis of global neonatal disorders burden attributable to PM 2.5 from 1990 to 2019. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161608. [PMID: 36649767 DOI: 10.1016/j.scitotenv.2023.161608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/21/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Prenatal fine particulate matter (PM2.5) exposure is related to various neonatal diseases (ND). However, data and studies assessing the neonatal disease burden caused by PM2.5 at the global level are limited, especially comparing countries with various socioeconomic development levels. We, therefore, assessed three-decades spatiotemporal changes in neonatal disease burden from 1990 at a national level, combined with the socio-demographic index (SDI). METHODS We extracted statistics from the Global Burden of Disease Study database for this retrospective study, and analyzed differences in the age-standardized mortality rate (ASMR) of ND and five sub-causes related to PM2.5 by gender, nationality, and SDI. To describe the trend of ASMR, the Joinpoint model was adopted to predict the annual percentage change (APC) and the average annual percentage changes (AAPCs). We executed the Gaussian process regression model to predict the relevance between SDI and ASMR. RESULTS The ND burden associated with PM2.5 kept rising since 1990, especially in low-middle SDI regions, South Asia, and Sub-Saharan Africa, and the sex ratio of ASMR was >1 at the global level and all five SDI regions. The leading cause of death was neonatal preterm birth. The global ASMR level of ND was 2.09 per 100,000 population in 2019 and AAPCs was 0.91 (98 % CI: 0.28, 1.55) meanwhile AAPCs decreased with rising SDI levels. The decreasing trend of ASMR in ND was detected in regions with higher SDI, such as North America, Europe, and Australasia. CONCLUSIONS In the past three decades, the global burden of ND related to PM2.5 has ascended considerably in lower SDI regions hence PM2.5 is still considered a notable environmental hazard factor for newborn diseases.
Collapse
Affiliation(s)
- Bingbing Ren
- Institute of Nutrition and Food Hygiene, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Qin He
- Institute of Nutrition and Food Hygiene, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jianhua Ma
- Institute of Nutrition and Food Hygiene, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Gexiang Zhang
- Institute of Nutrition and Food Hygiene, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China.
| |
Collapse
|
9
|
Zhang M, Yang X, Zhang Y, Dong T, Bigambo FM, Chen D, Aase H, Wang X, Xia Y. Gestational Exposure to Ambient Particulate Matter Alters Neonatal Cytokines. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2023; 10:79-85. [DOI: 10.1021/acs.estlett.2c00758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Affiliation(s)
- Mingzhi Zhang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xu Yang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yuqing Zhang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Tianyu Dong
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Francis Manyori Bigambo
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Danrong Chen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Heidi Aase
- Norwegian Institute of Public Health, Department of Child Health and Development, N-0213 Oslo, Norway
| | - Xu Wang
- Department of Endocrinology, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
10
|
García-Serna AM, Martín-Orozco E, Jiménez-Guerrero P, Hernández-Caselles T, Pérez-Fernández V, Cantero-Cano E, Muñoz-García M, Molina-Ruano MD, Rojo-Atenza E, García-Marcos L, Morales E, Garcia‐Marcos L, Gimenez‐Banon MJ, Martinez‐Torres A, Morales E, Perez‐Fernandez V, Sanchez‐Solis M, Nieto A, Prieto‐Sanchez MT, Sanchez‐Ferrer M, Fernanez‐Palacios L, Gomez‐Gomez VP, Martinez‐Gracia C, Peso‐Echarri P, Ros‐Berruezo G, Santaella‐Pacual M, Gazquez A, Larque E, Pastor‐Fajardo MT, Sanchez‐Campillo M, Serrano‐Munuera A, Zornoza‐Moreno M, Jimenez‐Guerrero P, Adomnei E, Arense‐Gonzalo JJ, Mendiola J, Navarro‐Lafuente F, Torres‐Cantero AM, Salvador‐Garcia C, Segovia‐Hernández M, Yagüe‐Guirao G, Valero‐Guillén PL, Aviles‐Plaza FV, Cabezas‐Herrera J, Martinez‐Lopez A, Martinez‐Villanueva M, Noguera‐Velasco JA, Franco‐Garcia A, Garcia‐Serna AM, Hernandez‐Caselles T, Martin‐Orozco E, Norte‐Muñoz M, Canovas M, Cantero‐Cano E, de Diego T, Pastor JM, Sola‐Martínez RA, Esteban‐Gil A, Fernández‐Breis JT, Alcántara MV, Hernández S, López‐Soler C. Cytokine profiles in cord blood in relation to prenatal traffic-related air pollution: The NELA cohort. Pediatr Allergy Immunol 2022; 33:e13732. [PMID: 35212052 DOI: 10.1111/pai.13732] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Outdoor air pollution may disturb immune system development. We investigated whether gestational exposure to traffic-related air pollutants (TRAP) is associated with unstimulated cytokine profiles in newborns. METHODS Data come from 235 newborns of the NELA cohort. Innate response-related cytokines (IL-6, IFN-α, IL1-β, and TNF-α), Th1-related (IFN-γ and IL-2), Th2-related (IL-4, IL-5, and IL-13), Th17-related (IL-17 and IL-23), and immunomodulatory cytokine IL-10 were quantified in the supernatant of unstimulated whole umbilical cord blood cells after 7 days of culture using the Luminex technology. Dispersion/chemical transport modeling was used to estimate long-term (whole pregnancy and trimesters) and short-term (15 days before delivery) residential exposures to traffic-related nitrogen dioxide (NO2 ), particulate matter (PM2.5 and PM10 ), and ozone (O3 ). We fitted multivariable logistic regression, Bayesian kernel machine regression (BKMR), and weighted quantile sum (WQS) regression models. RESULTS NO2 during the whole pregnancy increased the odds of detection of IL-1β (OR per 10 µg/m3 increase = 1.37; 95% CI, 1.02, 1.85) and IL-6 (OR per 10 µg/m3 increase = 1.32; 95% CI 1.00, 1.75). Increased odds of detected concentrations of IL-10 was found in newborns exposed during whole pregnancy to higher levels of NO2 (OR per 10 µg/m3 increase = 1.30; 95% CI 0.99, 1.69), PM10 (OR per 10 µg/m3 increase = 1.49; 95% CI 0.95, 2.33), and PM2.5 (OR per 5 µg/m3 increase = 1.56; 95% CI 0.97, 2.51). Exposure to O3 during the whole pregnancy increased the odds of detected IL-13 (OR per 10 µg/m3 increase = 1.22; 95% CI 1.01, 1.49). WQS model revealed first and third trimesters of gestation as windows of higher susceptibility. CONCLUSIONS Gestational exposure to TRAP may increase detection of pro-inflammatory, Th2-related, and T regulatory cytokines in newborns. These changes might influence immune system responses later in life.
Collapse
Affiliation(s)
- Azahara M García-Serna
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain.,Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Elena Martín-Orozco
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain.,Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Murcia, Spain.,Network of Asthma and Adverse and Allergic Reactions (ARADyAL), Madrid, Spain
| | - Pedro Jiménez-Guerrero
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain.,Regional Atmospheric Modelling Group, Department of Physics, University of Murcia, Murcia, Spain
| | - Trinidad Hernández-Caselles
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain.,Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Murcia, Spain.,Network of Asthma and Adverse and Allergic Reactions (ARADyAL), Madrid, Spain
| | - Virginia Pérez-Fernández
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain.,Department of Public Health Sciences, Faculty of Medicine, University of Murcia, Murcia, Spain
| | | | | | - María Dolores Molina-Ruano
- Obstetrics & Gynecology Service, Virgen de la Arrixaca University Clinical Hospital, University of Murcia, Murcia, Spain
| | - Encarna Rojo-Atenza
- Obstetrics & Gynecology Service, Virgen de la Arrixaca University Clinical Hospital, University of Murcia, Murcia, Spain
| | - Luis García-Marcos
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain.,Network of Asthma and Adverse and Allergic Reactions (ARADyAL), Madrid, Spain.,Pediatric Allergy and Pulmonology Units, Virgen de la Arrixaca University Children's Hospital, University of Murcia, Murcia, Spain
| | - Eva Morales
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain.,Department of Public Health Sciences, Faculty of Medicine, University of Murcia, Murcia, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Martins Costa Gomes G, Karmaus W, Murphy VE, Gibson PG, Percival E, Hansbro PM, Starkey MR, Mattes J, Collison AM. Environmental Air Pollutants Inhaled during Pregnancy Are Associated with Altered Cord Blood Immune Cell Profiles. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18147431. [PMID: 34299892 PMCID: PMC8303567 DOI: 10.3390/ijerph18147431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 12/11/2022]
Abstract
Air pollution exposure during pregnancy may be a risk factor for altered immune maturation in the offspring. We investigated the association between ambient air pollutants during pregnancy and cell populations in cord blood from babies born to mothers with asthma enrolled in the Breathing for Life Trial. For each patient (n = 91), daily mean ambient air pollutant levels were extracted during their entire pregnancy for sulfur dioxide (SO2), nitric oxide, nitrogen dioxide, carbon monoxide, ozone, particulate matter <10 μm (PM10) or <2.5 μm (PM2.5), humidity, and temperature. Ninety-one cord blood samples were collected, stained, and assessed using fluorescence-activated cell sorting (FACS). Principal Component (PC) analyses of both air pollutants and cell types with linear regression were employed to define associations. Considering risk factors and correlations between PCs, only one PC from air pollutants and two from cell types were statistically significant. PCs from air pollutants were characterized by higher PM2.5 and lower SO2 levels. PCs from cell types were characterized by high numbers of CD8 T cells, low numbers of CD4 T cells, and by high numbers of plasmacytoid dendritic cells (pDC) and low numbers of myeloid DCs (mDCs). PM2.5 levels during pregnancy were significantly associated with high numbers of pDCs (p = 0.006), and SO2 with high numbers of CD8 T cells (p = 0.002) and low numbers of CD4 T cells (p = 0.011) and mDCs (p = 4.43 × 10−6) in cord blood. These data suggest that ambient SO2 and PM2.5 exposure are associated with shifts in cord blood cell types that are known to play significant roles in inflammatory respiratory disease in childhood.
Collapse
Affiliation(s)
- Gabriela Martins Costa Gomes
- Priority Research Centre GrowUpWell®, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW 2308, Australia; (G.M.C.G.); (V.E.M.); (E.P.); (J.M.)
| | - Wilfried Karmaus
- School of Public Health, University of Memphis, Memphis, TN 38152, USA;
| | - Vanessa E. Murphy
- Priority Research Centre GrowUpWell®, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW 2308, Australia; (G.M.C.G.); (V.E.M.); (E.P.); (J.M.)
| | - Peter G. Gibson
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW 2308, Australia; (P.G.G.); (P.M.H.)
- Sleep Medicine Department, John Hunter Hospital, Newcastle, NSW 2305, Australia
| | - Elizabeth Percival
- Priority Research Centre GrowUpWell®, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW 2308, Australia; (G.M.C.G.); (V.E.M.); (E.P.); (J.M.)
| | - Philip M. Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW 2308, Australia; (P.G.G.); (P.M.H.)
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW 2007, Australia
| | - Malcolm R. Starkey
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC 3800, Australia;
| | - Joerg Mattes
- Priority Research Centre GrowUpWell®, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW 2308, Australia; (G.M.C.G.); (V.E.M.); (E.P.); (J.M.)
- Paediatric Respiratory & Sleep Medicine Department, John Hunter Children’s Hospital, Newcastle, NSW 2305, Australia
| | - Adam M. Collison
- Priority Research Centre GrowUpWell®, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW 2308, Australia; (G.M.C.G.); (V.E.M.); (E.P.); (J.M.)
- Correspondence: ; Tel.: +61-2-4042-0219
| |
Collapse
|
12
|
Huang Y, Wen HJ, Guo YLL, Wei TY, Wang WC, Tsai SF, Tseng VS, Wang SLJ. Prenatal exposure to air pollutants and childhood atopic dermatitis and allergic rhinitis adopting machine learning approaches: 14-year follow-up birth cohort study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:145982. [PMID: 33684752 DOI: 10.1016/j.scitotenv.2021.145982] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
The incidence of childhood atopic dermatitis (AD) and allergic rhinitis (AR) is increasing. This warrants development of measures to predict and prevent these conditions. We aimed to investigate the predictive ability of a spectrum of data mining methods to predict childhood AD and AR using longitudinal birth cohort data. We conducted a 14-year follow-up of infants born to pregnant women who had undergone maternal examinations at nine selected maternity hospitals across Taiwan during 2000-2005. The subjects were interviewed using structured questionnaires to record data on basic demographics, socioeconomic status, lifestyle, medical history, and 24-h dietary recall. Hourly concentrations of air pollutants within 1 year before childbirth were obtained from 76 national air quality monitoring stations in Taiwan. We utilized weighted K-nearest neighbour method (k = 3) to infer the personalized air pollution exposure. Machine learning methods were performed on the heterogeneous attributes set to predict allergic diseases in children. A total of 1439 mother-infant pairs were recruited in machine learning analysis. The prevalence of AD and AR in children up to 14 years of age were 6.8% and 15.9%, respectively. Overall, tree-based models achieved higher sensitivity and specificity than other methods, with areas under receiver operating characteristic curve of 83% for AD and 84% for AR, respectively. Our findings confirmed that prenatal air quality is an important factor affecting the predictive ability. Moreover, different air quality indices were better predicted, in combination than separately. Combining heterogeneous attributes including environmental exposures, demographic information, and allergens is the key to a better prediction of children allergies in the general population. Prenatal exposure to nitrogen dioxide (NO2) and its concatenation changes with time were significant predictors for AD and AR till adolescent.
Collapse
Affiliation(s)
- Yu Huang
- Department of Computer Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Hui-Ju Wen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Yue-Liang Leon Guo
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Department of Environmental and Occupational Medicine, National Taiwan University Hospital, Taipei, Taiwan; Institute of Environmental and Occupational Health Sciences, National Taiwan University College of Public Health, Taipei, Taiwan
| | - Tzu-Yin Wei
- Department of Computer Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Wei-Cheng Wang
- Department of Computer Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Shin-Fen Tsai
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Vincent S Tseng
- Department of Computer Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
| | - Shu-Li Julie Wang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Department of Public Health, National Defence Medical Centre, Taipei, Taiwan; Department of Safety, Health, and Environmental Engineering, National United University, Miaoli, Taiwan.
| |
Collapse
|
13
|
García-Serna AM, Hernández-Caselles T, Jiménez-Guerrero P, Martín-Orozco E, Pérez-Fernández V, Cantero-Cano E, Muñoz-García M, Ballesteros-Meseguer C, Pérez de Los Cobos I, García-Marcos L, Morales E. Air pollution from traffic during pregnancy impairs newborn's cord blood immune cells: The NELA cohort. ENVIRONMENTAL RESEARCH 2021; 198:110468. [PMID: 33217431 DOI: 10.1016/j.envres.2020.110468] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Hazards of traffic-related air pollution (TRAP) on the developing immune system are poorly understood. We sought to investigate the effects of prenatal exposure to TRAP on cord blood immune cell distributions; and to identify gestational windows of susceptibility. METHODS In-depth immunophenotyping of cord blood leukocyte and lymphocyte subsets was performed by flow cytometry in 190 newborns embedded in the Nutrition in Early Life and Asthma (NELA) birth cohort (2015-2018). Long-term (whole pregnancy and trimesters) and short-term (15-days before delivery) residential exposures to traffic-related nitrogen dioxide (NO2), particulate matter (PM2.5 and PM10), and ozone (O3) were estimated using dispersion/chemical transport modelling. Associations between TRAP concentrations and cord blood immune cell counts were assessed using multivariate Poisson regression models. RESULTS Mean number of natural killer (NK) cells decreased 15% in relation to higher NO2 concentrations (≥36.4 μg/m3) during whole pregnancy (incidence relative risk (IRR), 0.85; 95% CI, 0.72, 0.99), with stronger associations in the first trimester. Higher PM2.5 concentrations (≥13.3 μg/m3) during whole pregnancy associated with a reduced mean number of cytotoxic T cells (IRR, 0.88; 95% CI, 0.78, 0.99). Newborns exposed to higher PM10 (≥23.6 μg/m3) and PM2.5 concentrations during the first and third trimester showed greater mean number of helper T type 1 (Th1) cells (P < 0.05). Decreased number of regulatory T (Treg) cells was associated with greater short-term NO2 (IRR, 0.90; 95% CI, 0.80, 1.01) and PM10 (IRR, 0.88; 95% CI, 0.77, 0.99) concentrations. CONCLUSIONS Prenatal exposure to TRAP, particularly in early and late gestation, impairs fetal immune system development through disturbances in cord blood leukocyte and lymphocyte distributions.
Collapse
Affiliation(s)
- Azahara M García-Serna
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain; University of Murcia, Murcia, Spain
| | - Trinidad Hernández-Caselles
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain; University of Murcia, Murcia, Spain; Network of Asthma and Adverse and Allergic Reactions (ARADyAL), Spain
| | - Pedro Jiménez-Guerrero
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain; University of Murcia, Murcia, Spain
| | - Elena Martín-Orozco
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain; University of Murcia, Murcia, Spain; Network of Asthma and Adverse and Allergic Reactions (ARADyAL), Spain
| | - Virginia Pérez-Fernández
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain; University of Murcia, Murcia, Spain; Network of Asthma and Adverse and Allergic Reactions (ARADyAL), Spain
| | | | - María Muñoz-García
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain; University of Murcia, Murcia, Spain
| | | | | | - Luis García-Marcos
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain; University of Murcia, Murcia, Spain; Network of Asthma and Adverse and Allergic Reactions (ARADyAL), Spain; Virgen de la Arrixaca University Clinical Hospital, Murcia, Spain
| | - Eva Morales
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain; University of Murcia, Murcia, Spain.
| |
Collapse
|
14
|
Wang B, Chan YL, Li G, Ho KF, Anwer AG, Smith BJ, Guo H, Jalaludin B, Herbert C, Thomas PS, Liao J, Chapman DG, Foster PS, Saad S, Chen H, Oliver BG. Maternal Particulate Matter Exposure Impairs Lung Health and Is Associated with Mitochondrial Damage. Antioxidants (Basel) 2021; 10:antiox10071029. [PMID: 34202305 PMCID: PMC8300816 DOI: 10.3390/antiox10071029] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 11/16/2022] Open
Abstract
Relatively little is known about the transgenerational effects of chronic maternal exposure to low-level traffic-related air pollution (TRAP) on the offspring lung health, nor are the effects of removing such exposure before pregnancy. Female BALB/c mice were exposed to PM2.5 (PM2.5, 5 µg/day) for 6 weeks before mating and during gestation and lactation; in a subgroup, PM was removed when mating started to model mothers moving to cleaner areas during pregnancy to protect their unborn child (Pre-exposure). Lung pathology was characterised in both dams and offspring. A subcohort of female offspring was also exposed to ovalbumin to model allergic airways disease. PM2.5 and Pre-exposure dams exhibited airways hyper-responsiveness (AHR) with mucus hypersecretion, increased mitochondrial reactive oxygen species (ROS) and mitochondrial dysfunction in the lungs. Female offspring from PM2.5 and Pre-exposure dams displayed AHR with increased lung inflammation and mitochondrial ROS production, while males only displayed increased lung inflammation. After the ovalbumin challenge, AHR was increased in female offspring from PM2.5 dams compared with those from control dams. Using an in vitro model, the mitochondria-targeted antioxidant MitoQ reversed mitochondrial dysfunction by PM stimulation, suggesting that the lung pathology in offspring is driven by dysfunctional mitochondria. In conclusion, chronic exposure to low doses of PM2.5 exerted transgenerational impairment on lung health.
Collapse
Affiliation(s)
- Baoming Wang
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (B.W.); (Y.-L.C.); (G.L.); (D.G.C.); (H.C.)
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW 2037, Australia
| | - Yik-Lung Chan
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (B.W.); (Y.-L.C.); (G.L.); (D.G.C.); (H.C.)
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW 2037, Australia
| | - Gerard Li
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (B.W.); (Y.-L.C.); (G.L.); (D.G.C.); (H.C.)
| | - Kin Fai Ho
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China;
| | - Ayad G. Anwer
- ARC Centre of Excellence for Nanoscale Biophotonics, Faculty of Engineering, Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia;
| | - Bradford J. Smith
- Department of Bioengineering, Department of Paediatric Pulmonary and Sleep Medicine, School of Medicine, University of Colorado, Boulder, CO 80309, USA;
| | - Hai Guo
- Air Quality Studies, Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong, China;
| | - Bin Jalaludin
- Ingham Institute for Applied Medical Research, University of New South Wales, Sydney, NSW 2052, Australia;
- Centre for Air Pollution, Energy and Health Research (CAR), Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW 2037, Australia
| | - Cristan Herbert
- Department of Pathology, Faculty of Medicine, School of Medical Sciences, Prince of Wales’ Clinical School, University of New South Wales, Sydney, NSW 2052, Australia; (C.H.); (P.S.T.)
| | - Paul S. Thomas
- Department of Pathology, Faculty of Medicine, School of Medical Sciences, Prince of Wales’ Clinical School, University of New South Wales, Sydney, NSW 2052, Australia; (C.H.); (P.S.T.)
| | - Jiayan Liao
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - David G. Chapman
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (B.W.); (Y.-L.C.); (G.L.); (D.G.C.); (H.C.)
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW 2037, Australia
| | - Paul S. Foster
- Priority Research Centre for Healthy Lungs, University of Newcastle, Callaghan, NSW 2308, Australia;
| | - Sonia Saad
- Renal Group, Kolling Institute of Medical Research, The University of Sydney, St Leonards, Sydney, NSW 2064, Australia;
| | - Hui Chen
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (B.W.); (Y.-L.C.); (G.L.); (D.G.C.); (H.C.)
| | - Brian G. Oliver
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (B.W.); (Y.-L.C.); (G.L.); (D.G.C.); (H.C.)
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW 2037, Australia
- Correspondence:
| |
Collapse
|
15
|
Stingone JA, Triantafillou S, Larsen A, Kitt JP, Shaw GM, Marsillach J. Interdisciplinary data science to advance environmental health research and improve birth outcomes. ENVIRONMENTAL RESEARCH 2021; 197:111019. [PMID: 33737076 PMCID: PMC8187296 DOI: 10.1016/j.envres.2021.111019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/08/2021] [Accepted: 03/10/2021] [Indexed: 05/30/2023]
Abstract
Rates of preterm birth and low birthweight continue to rise in the United States and pose a significant public health problem. Although a variety of environmental exposures are known to contribute to these and other adverse birth outcomes, there has been a limited success in developing policies to prevent these outcomes. A better characterization of the complexities between multiple exposures and their biological responses can provide the evidence needed to inform public health policy and strengthen preventative population-level interventions. In order to achieve this, we encourage the establishment of an interdisciplinary data science framework that integrates epidemiology, toxicology and bioinformatics with biomarker-based research to better define how population-level exposures contribute to these adverse birth outcomes. The proposed interdisciplinary research framework would 1) facilitate data-driven analyses using existing data from health registries and environmental monitoring programs; 2) develop novel algorithms with the ability to predict which exposures are driving, in this case, adverse birth outcomes in the context of simultaneous exposures; and 3) refine biomarker-based research, ultimately leading to new policies and interventions to reduce the incidence of adverse birth outcomes.
Collapse
Affiliation(s)
- Jeanette A Stingone
- Department of Epidemiology, Columbia University's Mailman School of Public Health, 722 West 168th St, Room 1608, New York, NY, 10032, USA.
| | - Sofia Triantafillou
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alexandra Larsen
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Jay P Kitt
- Departments of Chemistry and Biomedical Informatics, University of Utah, Salt Lake City, UT, USA
| | - Gary M Shaw
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Judit Marsillach
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
16
|
Friedman C, Dabelea D, Thomas DSK, Peel JL, Adgate JL, Magzamen S, Martenies SE, Allshouse WB, Starling AP. Exposure to ambient air pollution during pregnancy and inflammatory biomarkers in maternal and umbilical cord blood: The Healthy Start study. ENVIRONMENTAL RESEARCH 2021; 197:111165. [PMID: 33857458 PMCID: PMC8216209 DOI: 10.1016/j.envres.2021.111165] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 04/02/2021] [Accepted: 04/09/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND Air pollution exposure during pregnancy has been associated with adverse pregnancy and birth outcomes. Inflammation has been proposed as a potential link. We estimated associations between air pollution exposure during pregnancy and inflammatory biomarkers in maternal and cord blood. We evaluated whether maternal inflammation was associated with infant outcomes. METHODS Among 515 mother-infant dyads in the Healthy Start study (2009-2014), trimester-long, 7- and 30-day average concentrations of particulate matter ≤2.5 μm (PM2.5) and ozone (O3) during pregnancy were estimated, using inverse-distance-weighted interpolation. Inflammatory biomarkers were measured in maternal blood in mid-pregnancy (C-reactive protein [CRP], Interleukin [IL]-6, and tumor necrosis factor-α [TNFα]) and in cord blood at delivery (CRP, IL-6, IL-8, IL-10, monocyte chemoattractant protein-1 [MCP-1], and TNFα). We used linear regression to estimate associations between pollutants and inflammatory biomarkers and maternal inflammatory biomarkers and infant weight and body composition. RESULTS There were positive associations between PM2.5 during certain exposure periods and maternal IL-6 and TNFα. There were negative associations between recent O3 and maternal CRP, IL-6, and TNFα and positive associations between trimester-long O3 exposure and maternal inflammatory biomarkers, though some 95% confidence intervals included the null. Patterns were inconsistent for associations between PM2.5 and O3 and cord blood inflammatory biomarkers. No consistent associations between maternal inflammatory biomarkers and infant outcomes were identified. CONCLUSIONS Air pollution exposure during pregnancy may impact maternal inflammation. Further investigations should examine the health consequences for women and infants of elevated inflammatory biomarkers associated with air pollution exposure during pregnancy.
Collapse
Affiliation(s)
- Chloe Friedman
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Dana Dabelea
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Deborah S K Thomas
- Department of Geography and Earth Sciences, University of North Carolina Charlotte, NC, USA
| | - Jennifer L Peel
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - John L Adgate
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sheryl Magzamen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA; Department of Epidemiology, Colorado School of Public Health, Colorado State University, Fort Collins, CO, USA
| | - Sheena E Martenies
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - William B Allshouse
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Anne P Starling
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
17
|
Fucic A, Mantovani A, ten Tusscher GW. Immuno-Hormonal, Genetic and Metabolic Profiling of Newborns as a Basis for the Life-Long OneHealth Medical Record: A Scoping Review. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:382. [PMID: 33920921 PMCID: PMC8071263 DOI: 10.3390/medicina57040382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 11/24/2022]
Abstract
Holistic and life-long medical surveillance is the core of personalised medicine and supports an optimal implementation of both preventive and curative healthcare. Personal medical records are only partially unified by hospital or general practitioner informatics systems, but only for citizens with long-term permanent residence. Otherwise, insight into the medical history of patients greatly depends on their medical archive and memory. Additionally, occupational exposure records are not combined with clinical or general practitioner records. Environmental exposure starts preconceptionally and continues during pregnancy by transplacental exposure. Antenatal exposure is partially dependent on parental lifestyle, residence and occupation. Newborn screening (NBS) is currently being performed in developed countries and includes testing for rare genetic, hormone-related, and metabolic conditions. Transplacental exposure to substances such as endocrine disruptors, air pollutants and drugs may have life-long health consequences. However, despite the recognised impact of transplacental exposure on the increased risk of metabolic syndrome, neurobehavioral disorders as well as immunodisturbances including allergy and infertility, not a single test within NBS is geared toward detecting biomarkers of exposure (xenobiotics or their metabolites, nutrients) or effect such as oestradiol, testosterone and cytokines, known for being associated with various health risks and disturbed by transplacental xenobiotic exposures. The outcomes of ongoing exposome projects might be exploited to this purpose. Developing and using a OneHealth Medical Record (OneHealthMR) may allow the incorporated chip to harvest information from different sources, with high integration added value for health prevention and care: environmental exposures, occupational health records as well as diagnostics of chronic diseases, allergies and medication usages, from birth and throughout life. Such a concept may present legal and ethical issues pertaining to personal data protection, requiring no significant investments and exploits available technologies and algorithms, putting emphasis on the prevention and integration of environmental exposure and health data.
Collapse
Affiliation(s)
- Alekandra Fucic
- Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Alberto Mantovani
- Department of Food safety, Nutrition and Veterinary Public Health Istituto to Superiore di Sanità, 00161 Roma, Italy;
| | - Gavin W. ten Tusscher
- Department of Paediatrics and Neonatology, Dijklander Hospital, 1624 NP Hoorn, The Netherlands;
- Department of General Practice, Amsterdam University Medical Center, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
18
|
García-Serna AM, Martín-Orozco E, Hernández-Caselles T, Morales E. Prenatal and Perinatal Environmental Influences Shaping the Neonatal Immune System: A Focus on Asthma and Allergy Origins. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18083962. [PMID: 33918723 PMCID: PMC8069583 DOI: 10.3390/ijerph18083962] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 01/04/2023]
Abstract
It is suggested that programming of the immune system starts before birth and is shaped by environmental influences acting during critical windows of susceptibility for human development. Prenatal and perinatal exposure to physiological, biological, physical, or chemical factors can trigger permanent, irreversible changes to the developing immune system, which may be reflected in cord blood of neonates. The aim of this narrative review is to summarize the evidence on the role of the prenatal and perinatal environment, including season of birth, mode of delivery, exposure to common allergens, a farming environment, pet ownership, and exposure to tobacco smoking and pollutants, in shaping the immune cell populations and cytokines at birth in humans. We also discuss how reported disruptions in the immune system at birth might contribute to the development of asthma and related allergic manifestations later in life.
Collapse
Affiliation(s)
- Azahara María García-Serna
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (A.M.G.-S.); (E.M.-O.); (T.H.-C.)
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain
| | - Elena Martín-Orozco
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (A.M.G.-S.); (E.M.-O.); (T.H.-C.)
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain
- Network of Asthma and Adverse and Allergic Reactions (ARADyAL), 28029 Madrid, Spain
| | - Trinidad Hernández-Caselles
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (A.M.G.-S.); (E.M.-O.); (T.H.-C.)
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain
- Network of Asthma and Adverse and Allergic Reactions (ARADyAL), 28029 Madrid, Spain
| | - Eva Morales
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (A.M.G.-S.); (E.M.-O.); (T.H.-C.)
- Department of Public Health Sciences, University of Murcia, 30100 Murcia, Spain
- Correspondence: ; Tel.: +34-868883691
| |
Collapse
|
19
|
Hazlehurst MF, Carroll KN, Loftus CT, Szpiro AA, Moore PE, Kaufman JD, Kirwa K, LeWinn KZ, Bush NR, Sathyanarayana S, Tylavsky FA, Barrett ES, Nguyen RHN, Karr CJ. Maternal exposure to PM 2.5 during pregnancy and asthma risk in early childhood: consideration of phases of fetal lung development. Environ Epidemiol 2021; 5:e130. [PMID: 33709049 PMCID: PMC7943175 DOI: 10.1097/ee9.0000000000000130] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/23/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Increasingly studies suggest prenatal exposure to air pollution may increase risk of childhood asthma. Few studies have investigated exposure during specific fetal pulmonary developmental windows. OBJECTIVE To assess associations between prenatal fine particulate matter exposure and asthma at age 4. METHODS This study included mother-child dyads from two pregnancy cohorts-CANDLE and TIDES-within the ECHO-PATHWAYS consortium (births in 2007-2013). Three child asthma outcomes were parent-reported: ever asthma, current asthma, and current wheeze. Fine particulate matter (PM2.5) exposures during the pseudoglandular (5-16 weeks gestation), canalicular (16-24 weeks gestation), saccular (24-36 weeks gestation), and alveolar (36+ weeks gestation) phases of fetal lung development were estimated using a national spatiotemporal model. We estimated associations with Poisson regression with robust standard errors, and adjusted for child, maternal, and neighborhood factors. RESULTS Children (n=1469) were on average 4.3 (standard deviation 0.5) years old, 49% were male, and 11.7% had ever asthma; 46% of women identified as black and 53% had at least a college/technical school degree. A 2 μg/m3 higher PM2.5 exposure during the saccular phase was associated with 1.29 times higher risk of ever asthma (95% CI: 1.06-1.58). A similar association was observed with current asthma (RR 1.27, 95% CI: 1.04-1.54), but not current wheeze (RR 1.11, 95% CI: 0.92-1.33). Effect estimates for associations during other developmental windows had confidence intervals that included the null. CONCLUSIONS Later phases of prenatal lung development may be particularly sensitive to the developmental toxicity of PM2.5.
Collapse
Affiliation(s)
| | - Kecia N. Carroll
- Division of General Pediatrics, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Christine T. Loftus
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Adam A. Szpiro
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Paul E. Moore
- Division of Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Joel D. Kaufman
- Department of Epidemiology, University of Washington, Seattle, Washington
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
- Department of Medicine, University of Washington, Seattle, Washington
| | - Kipruto Kirwa
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Kaja Z. LeWinn
- Department of Psychiatry, Weill Institute for the Neurosciences, University of California San Francisco, San Francisco, California
| | - Nicole R. Bush
- Department of Psychiatry, Weill Institute for the Neurosciences, University of California San Francisco, San Francisco, California
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Sheela Sathyanarayana
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
- Seattle Children’s Research Institute, Seattle, Washington
- Department of Pediatrics, University of Washington, Seattle, Washington
| | - Frances A. Tylavsky
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Emily S. Barrett
- Department of Biostatistics and Epidemiology, Environmental and Occupational Health Sciences Institute, Rutgers School of Public Health, Piscataway, New Jersey
| | - Ruby H. N. Nguyen
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, Minnesota
| | - Catherine J. Karr
- Department of Epidemiology, University of Washington, Seattle, Washington
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
- Department of Pediatrics, University of Washington, Seattle, Washington
| |
Collapse
|
20
|
Sharma J, Parsai K, Raghuwanshi P, Ali SA, Tiwari V, Bhargava A, Mishra PK. Emerging role of mitochondria in airborne particulate matter-induced immunotoxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116242. [PMID: 33321436 DOI: 10.1016/j.envpol.2020.116242] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/23/2020] [Accepted: 12/06/2020] [Indexed: 05/05/2023]
Abstract
The immune system is one of the primary targets of airborne particulate matter. Recent evidence suggests that mitochondria lie at the center of particulate matter-induced immunotoxicity. Particulate matter can directly interact with mitochondrial components (proteins, lipids, and nucleic acids) and impairs the vital mitochondrial processes including redox mechanisms, fusion-fission, autophagy, and metabolic pathways. These disturbances impede different mitochondrial functions including ATP production, which acts as an important platform to regulate immunity and inflammatory responses. Moreover, the mitochondrial DNA released into the cytosol or in the extracellular milieu acts as a danger-associated molecular pattern and triggers the signaling pathways, involving cGAS-STING, TLR9, and NLRP3. In the present review, we discuss the emerging role of mitochondria in airborne particulate matter-induced immunotoxicity and its myriad biological consequences in health and disease.
Collapse
Affiliation(s)
- Jahnavi Sharma
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Kamakshi Parsai
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Pragati Raghuwanshi
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Sophiya Anjum Ali
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Vineeta Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| |
Collapse
|
21
|
Volk HE, Park B, Hollingue C, Jones KL, Ashwood P, Windham GC, Lurman F, Alexeeff SE, Kharrazi M, Pearl M, Van de Water J, Croen LA. Maternal immune response and air pollution exposure during pregnancy: insights from the Early Markers for Autism (EMA) study. J Neurodev Disord 2020; 12:42. [PMID: 33327930 PMCID: PMC7745402 DOI: 10.1186/s11689-020-09343-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 11/13/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Perinatal exposure to air pollution and immune system dysregulation are two factors consistently associated with autism spectrum disorders (ASD) and other neurodevelopmental outcomes. However, little is known about how air pollution may influence maternal immune function during pregnancy. OBJECTIVES To assess the relationship between mid-gestational circulating levels of maternal cytokines/chemokines and previous month air pollution exposure across neurodevelopmental groups, and to assess whether cytokines/chemokines mediate the relationship between air pollution exposures and risk of ASD and/or intellectual disability (ID) in the Early Markers for Autism (EMA) study. METHODS EMA is a population-based, nested case-control study which linked archived maternal serum samples collected during weeks 15-19 of gestation for routine prenatal screening, birth records, and Department of Developmental Services (DDS) records. Children receiving DDS services for ASD without intellectual disability (ASD without ID; n = 199), ASD with ID (ASD with ID; n = 180), ID without ASD (ID; n = 164), and children from the general population (GP; n = 414) with no DDS services were included in this analysis. Serum samples were quantified for 22 cytokines/chemokines using Luminex multiplex analysis technology. Air pollution exposure for the month prior to maternal serum collection was assigned based on the Environmental Protection Agency's Air Quality System data using the maternal residential address reported during the prenatal screening visit. RESULTS Previous month air pollution exposure and mid-gestational maternal cytokine and chemokine levels were significantly correlated, though weak in magnitude (ranging from - 0.16 to 0.13). Ten pairs of mid-pregnancy immune markers and previous month air pollutants were significantly associated within one of the child neurodevelopmental groups, adjusted for covariates (p < 0.001). Mid-pregnancy air pollution was not associated with any neurodevelopmental outcome. IL-6 remained associated with ASD with ID even after adjusting for air pollution exposure. CONCLUSION This study suggests that maternal immune activation is associated with risk for neurodevelopmental disorders. Furthermore, that prenatal air pollution exposure is associated with small, but perhaps biologically relevant, effects on maternal immune system function during pregnancy. Additional studies are needed to better evaluate how prenatal exposure to air pollution affects the trajectory of maternal immune activation during pregnancy, if windows of heightened susceptibility can be identified, and how these factors influence neurodevelopment of the offspring.
Collapse
Affiliation(s)
- Heather E Volk
- Department of Mental Health, Wendy Klag Center for Autism and Developmental Disabilities, Bloomberg School of Public Health, Johns Hopkins University, Kennedy Krieger Institute Intellectual and Developmental Disabilities Research Center, 624 N. Broadway, HH833, Baltimore, MD, 21205, USA.
| | - Bo Park
- Department of Public Health, California State University, Fullerton, CA, USA
| | - Calliope Hollingue
- Department of Mental Health, Wendy Klag Center for Autism and Developmental Disabilities, Bloomberg School of Public Health, Johns Hopkins University, Kennedy Krieger Institute Intellectual and Developmental Disabilities Research Center, 624 N. Broadway, HH833, Baltimore, MD, 21205, USA
| | - Karen L Jones
- UC Davis MIND Institute, University of California Davis, Davis, CA, USA
| | - Paul Ashwood
- UC Davis MIND Institute, University of California Davis, Davis, CA, USA
| | - Gayle C Windham
- Environmental Health Investigations Branch, California Department of Public Health, Richmond, CA, USA
| | | | - Stacey E Alexeeff
- Division of Research, Kaiser Permanente of Northern California, Oakland, CA, USA
| | - Martin Kharrazi
- Environmental Health Investigations Branch, California Department of Public Health, Richmond, CA, USA
| | - Michelle Pearl
- Environmental Health Investigations Branch, California Department of Public Health, Richmond, CA, USA
| | - Judy Van de Water
- UC Davis MIND Institute, University of California Davis, Davis, CA, USA
| | - Lisa A Croen
- Division of Research, Kaiser Permanente of Northern California, Oakland, CA, USA
| |
Collapse
|
22
|
Laine JE, Bodinier B, Robinson O, Plusquin M, Scalbert A, Keski-Rahkonen P, Robinot N, Vermeulen R, Pizzi C, Asta F, Nawrot T, Gulliver J, Chatzi L, Kogevinas M, Nieuwenhuijsen M, Sunyer J, Vrijheid M, Chadeau-Hyam M, Vineis P. Prenatal Exposure to Multiple Air Pollutants, Mediating Molecular Mechanisms, and Shifts in Birthweight. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:14502-14513. [PMID: 33124810 DOI: 10.1021/acs.est.0c02657] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Mechanisms underlying adverse birth and later in life health effects from exposure to air pollution during the prenatal period have not been not fully elucidated, especially in the context of mixtures. We assessed the effects of prenatal exposure to mixtures of air pollutants of particulate matter (PM), PM2.5, PM10, nitrogen oxides, NO2, NOx, ultrafine particles (UFP), and oxidative potential (OP) of PM2.5 on infant birthweight in four European birth cohorts and the mechanistic underpinnings through cross-omics of metabolites and inflammatory proteins. The association between mixtures of air pollutants and birthweight z-scores (standardized for gestational age) was assessed for three different mixture models, using Bayesian machine kernel regression (BKMR). We determined the direct effect for PM2.5, PM10, NO2, and mediation by cross-omic signatures (identified using sparse partial least-squares regression) using causal mediation BKMR models. There was a negative association with birthweight z-scores and exposure to mixtures of air pollutants, where up to -0.21 or approximately a 96 g decrease in birthweight, comparing the 75th percentile to the median level of exposure to the air pollutant mixture could occur. Shifts in birthweight z-scores from prenatal exposure to PM2.5, PM10, and NO2 were mediated by molecular mechanisms, represented by cross-omics scores. Interleukin-17 and epidermal growth factor were identified as important inflammatory responses underlyingair pollution-associated shifts in birthweight. Our results signify that by identifying mechanisms through which mixtures of air pollutants operate, the causality of air pollution-associated shifts in birthweight is better supported, substantiating the need for reducing exposure in vulnerable populations.
Collapse
Affiliation(s)
- Jessica E Laine
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, Imperial College London, London SW7 2BU, United Kingdom
| | - Barbara Bodinier
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, Imperial College London, London SW7 2BU, United Kingdom
| | - Oliver Robinson
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, Imperial College London, London SW7 2BU, United Kingdom
| | - Michelle Plusquin
- Center for Environmental Sciences, Hasselt University, Hasselt 3500, Belgium
| | - Augustin Scalbert
- Nutrition and Metabolism Section, Biomarkers Group, International Agency for Research on Cancer (IARC), Lyon 69372, France
| | - Pekka Keski-Rahkonen
- Nutrition and Metabolism Section, Biomarkers Group, International Agency for Research on Cancer (IARC), Lyon 69372, France
| | - Nivonirina Robinot
- Nutrition and Metabolism Section, Biomarkers Group, International Agency for Research on Cancer (IARC), Lyon 69372, France
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Environmental Epidemiology Division, Utrecht University, Utrecht 3584 CS, Netherlands
| | - Costanza Pizzi
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin and CPO-Piemonte, Turin 10126, Italy
| | - Federica Asta
- Department of Epidemiology, Lazio Regional Health Service, ASL Roma 1, Rome 00147, Italy
| | - Tim Nawrot
- Center for Environmental Sciences, Hasselt University, Hasselt 3500, Belgium
- Department of Public Health, Environment and Health Unit, Leuven University (KU Leuven), Leuven 3000, Belgium
| | - John Gulliver
- Centre for Environmental Health and Sustainability & School of Geography, Geology and the Environment, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Leda Chatzi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion 700 13, Crete, Greece
| | - Manolis Kogevinas
- ISGlobal, Barcelona Institute for Global Health, Barcelona 08003, Spain
- CIBER Epidemiologia y Salud Pública (CIBERESP), Madrid 28029, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona 08003, Spain
| | | | - Jordi Sunyer
- ISGlobal, Barcelona Institute for Global Health, Barcelona 08003, Spain
- CIBER Epidemiologia y Salud Pública (CIBERESP), Madrid 28029, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona 08003, Spain
| | - Martine Vrijheid
- ISGlobal, Barcelona Institute for Global Health, Barcelona 08003, Spain
- CIBER Epidemiologia y Salud Pública (CIBERESP), Madrid 28029, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain
| | - Marc Chadeau-Hyam
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, Imperial College London, London SW7 2BU, United Kingdom
| | - Paolo Vineis
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, Imperial College London, London SW7 2BU, United Kingdom
- Italian Institute of Technology, Genova 16163, Italy
| |
Collapse
|
23
|
Zhang J, Zeng X, Du X, Pan K, Song L, Song W, Xie Y, Zhao J. Parental PM2.5 Exposure-Promoted Development of Metabolic Syndrome in Offspring Is Associated With the Changes of Immune Microenvironment. Toxicol Sci 2020; 170:415-426. [PMID: 31086988 DOI: 10.1093/toxsci/kfz109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Parental exposure to ambient fine particulate matter (PM2.5) has been associated with some of adverse health outcomes in offspring. The association between parental PM2.5 exposure and the development of metabolic syndrome (MetS) in offspring, and the effects of parental PM2.5 exposure on the susceptibility of offspring mice to PM2.5, has not been evaluated. The C57BL/6 parental mice (male and female mice) were exposed to filtered air (FA) or concentrated PM2.5 (PM) using Shanghai-METAS for a total of 16 weeks. At week 12 during the exposure, we allowed the parental male and female mice to breed offspring mice. The male offspring mice were divided into 4 groups and exposed to PM and FA again. The results showed that whether the parental mice were exposed to PM2.5 or not, the offspring mice exposure to PM2.5 appeared the elevation of blood pressure, insulin resistance, impairment of glucose tolerance, and dyslipidemia when compared to the offspring mice exposure to FA. More importantly, no matter what the offspring mice were exposed to, parental PM exposure overwhelmingly impacted the fasting blood insulin, homeostasis model assessment-insulin resistance, serous low-density lipoprotein cholesterol, and total cholesterol, splenic T helper cell 17 (Th17) and Treg cells, serous interleukin (IL)-17A, IL-6, and IL-10 in offspring mice. The results suggested that the parental exposure to air pollution might induce the development of MetS in offspring and might enhance the susceptibility of offspring to environmental hazards. The effects of parental PM exposure on offspring might be related to the changes of immune microenvironment.
Collapse
Affiliation(s)
- Jia Zhang
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China
| | - Xuejiao Zeng
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China
| | - Xihao Du
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China
| | - Kun Pan
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China
| | - Liying Song
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China
| | - Weimin Song
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China
| | - Yuquan Xie
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200092, China
| | - Jinzhuo Zhao
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Meteorology and Health, Shanghai 200030, China
| |
Collapse
|
24
|
Herting MM, Younan D, Campbell CE, Chen JC. Outdoor Air Pollution and Brain Structure and Function From Across Childhood to Young Adulthood: A Methodological Review of Brain MRI Studies. Front Public Health 2019; 7:332. [PMID: 31867298 PMCID: PMC6908886 DOI: 10.3389/fpubh.2019.00332] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 10/25/2019] [Indexed: 12/19/2022] Open
Abstract
Outdoor air pollution has been recognized as a novel environmental neurotoxin. Studies have begun to use brain Magnetic Resonance Imaging (MRI) to investigate how air pollution may adversely impact developing brains. A systematic review was conducted to evaluate and synthesize the reported evidence from MRI studies on how early-life exposure to outdoor air pollution affects neurodevelopment. Using PubMed and Web of Knowledge, we conducted a systematic search, followed by structural review of original articles with individual-level exposure data and that met other inclusion criteria. Six studies were identified, each sampled from 3 cohorts of children in Spain, The Netherlands, and the United States. All studies included a one-time assessment of brain MRI when children were 6–12 years old. Air pollutants from traffic and/or regional sources, including polycyclic aromatic hydrocarbons (PAHs), nitrogen dioxide, elemental carbon, particulate matter (<2.5 or <10 μm), and copper, were estimated prenatally (n = 1), during childhood (n = 3), or both (n = 2), using personal monitoring and urinary biomarkers (n = 1), air sampling at schools (n = 4), or a land-use regression (LUR) modeling based on residences (n = 2). Associations between exposure and brain were noted, including: smaller white matter surface area (n = 1) and microstructure (n = 1); region-specific patterns of cortical thinness (n = 1) and smaller volumes and/or less density within the caudate (n = 3); altered resting-state functional connectivity (n = 2) and brain activity to sensory stimuli (n = 1). Preliminary findings suggest that outdoor air pollutants may impact MRI brain structure and function, but limitations highlight that the design of future air pollution-neuroimaging studies needs to incorporate a developmental neurosciences perspective, considering the exposure timing, age of study population, and the most appropriate neurodevelopmental milestones.
Collapse
Affiliation(s)
- Megan M Herting
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States.,Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Diana Younan
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States
| | - Claire E Campbell
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States
| | - Jiu-Chiuan Chen
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States.,Department of Neurology, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
25
|
Rychlik KA, Sillé FCM. Environmental exposures during pregnancy: Mechanistic effects on immunity. Birth Defects Res 2019; 111:178-196. [PMID: 30708400 DOI: 10.1002/bdr2.1469] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 01/16/2019] [Indexed: 12/21/2022]
Abstract
In human studies, it is well established that exposures during embryonic and fetal development periods can influence immune health. Coupled with genetic predisposition, these exposures can alter lifetime chronic and infectious disease trajectory, and, ultimately, life expectancy. Fortunately, as research advances, mechanisms governing long-term effects of prenatal exposures are coming to light and providing the opportunity for intervention and risk reduction. For instance, human association studies have provided a foundation for the association of prenatal exposure to particulate matter with early immunosuppression and later allergic disease in the offspring. Only recently, the mechanisms mediating this response have been revealed and there is much we have yet to discover. Although cellular immune response is understood for many exposure scenarios, molecular pathways are still unidentified. This review will provide commentary and synthesis of the current literature regarding environmental exposures during pregnancy and mechanisms determining immune outcomes. Shared mechanistic features and current gaps in the state of the science are identified and discussed. To such purpose, we address exposures by their immune effect type: immunosuppression, autoimmunity, inflammation and tissue damage, hypersensitivity, and general immunomodulation.
Collapse
Affiliation(s)
- Kristal A Rychlik
- Department of Environmental Health and Engineering, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Fenna C M Sillé
- Department of Environmental Health and Engineering, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
26
|
Giovannini N, Cetera GE, Signorelli V, Parazzini F, Baini I, Cipriani S, Cetin I. Carbon monoxide (CO) and nitric dioxide (NO 2) exposure during fetal life: impact on neonatal and placental weight, a prospective study. J Matern Fetal Neonatal Med 2019; 33:2137-2141. [PMID: 30409092 DOI: 10.1080/14767058.2018.1542425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Objective: This prospective study aims to analyze how CO and NO2 exposure during pregnancy affects birth and placental weight as well as umbilical arterial pH.Study design: The population in study includes 3614 women born in Italy, living in Lombardia Region, consecutively admitted to the Clinica Mangiagalli for an elective cesarean section from January 2004 to December 2006. Outdoor air quality data was provided by the Department of the Regional Environmental Protection Agency and obtained by a network of fixed monitoring stations distributed in eight geographical areas across the region.Results: A positive association was found between birth weight and the concentration of CO to whom women were exposed during the last 10 d of pregnancy (mean change g + 28, 95% CI +1 to +55, p .04). Conversely, placental weight was not influenced by exposure to CO while a statistically significant weight reduction was related to an increase in NO2 exposure during the last trimester of pregnancy.Conclusion: Fetal weight was positively associated with an increased exposure to CO during the last 10 d of pregnancy. NO2 exposure was associated to a placental weight reduction. These findings underline the existence of a complex biological role of such pollutants, especially of CO, in cell oxygenation at a placental level.
Collapse
Affiliation(s)
- Niccolò Giovannini
- Dipartimento Materno-Infantile, Clinica Ostetrica Ginecologica, IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giulia Emily Cetera
- Dipartimento Materno-Infantile, Clinica Ostetrica Ginecologica, IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valentina Signorelli
- Dipartimento Materno Infantile, Clinica Ostetrica, ASST Fatebenefratelli Sacco, Ospdeale dei Bambini V. Buzzi, Milan, Italy
| | - Fabio Parazzini
- Dipartimento Materno-Infantile, Clinica Ostetrica Ginecologica, IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Milan, Italy.,Istituto Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Ilaria Baini
- Dipartimento Materno-Infantile, Clinica Ostetrica Ginecologica, IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sonia Cipriani
- Dipartimento Materno-Infantile, Clinica Ostetrica Ginecologica, IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Milan, Italy.,Istituto Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Irene Cetin
- Dipartimento Materno Infantile, Clinica Ostetrica, ASST Fatebenefratelli Sacco, Ospdeale dei Bambini V. Buzzi, Milan, Italy
| |
Collapse
|
27
|
Chen L, Bennett E, Wheeler AJ, Lyons AB, Woods GM, Johnston F, Zosky GR. Maternal exposure to particulate matter alters early post-natal lung function and immune cell development. ENVIRONMENTAL RESEARCH 2018; 164:625-635. [PMID: 29627759 DOI: 10.1016/j.envres.2018.03.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND In utero exposure to particulate matter (PM) from a range of sources is associated with adverse post-natal health; however, the effect of maternal exposure to community-sampled PM on early post-natal lung and immune development is poorly understood. OBJECTIVES Using a mouse model, we aimed to determine whether in utero exposure to PM alters early post-natal lung function and immune cell populations. We used PM collected from ceiling voids in suburban houses as a proxy for community PM exposure. METHODS Pregnant C57BL/6 mice were intranasally exposed to ceiling derived PM, or saline alone, at gestational day (E) 13.5, 15.5, and 17.5. When mice were two weeks old, we assessed lung function by the forced oscillation technique, and enumerated T and B cell populations in the spleen and thymus by flow cytometry. RESULTS Maternal exposure to PM impaired somatic growth of male offspring resulting in reduced lung volume and deficits in lung function. There was no effect on thymic T cell populations in dams and their male offspring but PM decreased the CD4 +CD25 + T cell population in the female offspring. In contrast, maternal exposure to PM increased splenic CD3 +CD4 + and CD3 +CD8 + T cells in dams, and there was some evidence to suggest inhibition of splenic T cell maturation in male but not female offspring. CONCLUSIONS Our findings suggested that maternal exposure to ceiling void PM has the capacity to impair early somatic growth and alter early life immune development in a sex specific manner.
Collapse
Affiliation(s)
- Ling Chen
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle and Hunter Medical Research Institute, Newcastle, New South Wales 2308, Australia; School of Medicine, Faculty of Health, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Ellen Bennett
- School of Medicine, Faculty of Health, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Amanda J Wheeler
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - A Bruce Lyons
- School of Medicine, Faculty of Health, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Gregory M Woods
- Cancer and Immunology Research Group, Menzies Research Institute, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Fay Johnston
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Graeme R Zosky
- School of Medicine, Faculty of Health, University of Tasmania, Hobart, Tasmania 7000, Australia.
| |
Collapse
|
28
|
Matz CJ, Stieb DM, Egyed M, Brion O, Johnson M. Evaluation of daily time spent in transportation and traffic-influenced microenvironments by urban Canadians. AIR QUALITY, ATMOSPHERE, & HEALTH 2018; 11:209-220. [PMID: 29568337 PMCID: PMC5847121 DOI: 10.1007/s11869-017-0532-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/22/2017] [Indexed: 05/06/2023]
Abstract
Exposure to traffic and traffic-related air pollution is associated with a wide array of health effects. Time spent in a vehicle, in active transportation, along roadsides, and in close proximity to traffic can substantially contribute to daily exposure to air pollutants. For this study, we evaluated daily time spent in transportation and traffic-influenced microenvironments by urban Canadians using the Canadian Human Activity Pattern Survey (CHAPS) 2 results. Approximately 4-7% of daily time was spent in on- or near-road locations, mainly associated with being in a vehicle and smaller contributions from active transportation. Indoor microenvironments can be impacted by traffic emissions, especially when located near major roadways. Over 60% of the target population reported living within one block of a roadway with moderate to heavy traffic, which was variable with income level and city, and confirmed based on elevated NO2 exposure estimated using land use regression. Furthermore, over 55% of the target population ≤ 18 years reported attending a school or daycare in close proximity to moderate to heavy traffic, and little variation was observed based on income or city. The results underline the importance of traffic emissions as a major source of exposure in Canadian urban centers, given the time spent in traffic-influenced microenvironments.
Collapse
Affiliation(s)
- Carlyn J. Matz
- Air Health Effects Assessment Division, Health Canada, 269 Laurier Ave W, PL 4903C, Ottawa, ON K1A 0K9 Canada
| | - David M. Stieb
- Population Studies Division, Health Canada, 445-757 West Hasting St., Federal Tower, Vancouver, BC V6C 1A1 Canada
| | - Marika Egyed
- Air Health Effects Assessment Division, Health Canada, 269 Laurier Ave W, PL 4903C, Ottawa, ON K1A 0K9 Canada
| | - Orly Brion
- Population Studies Division, Health Canada, 101 Tunney’s Pasture Dr., PL 0201A, Ottawa, ON K1A 0K9 Canada
| | - Markey Johnson
- Air Health Science Division, Health Canada, 269 Laurier Ave W, PL 4903C, Ottawa, ON K1A 0K9 Canada
| |
Collapse
|