1
|
Charlanne L, Bertile F, Geffroy A, Hippauf L, Chery I, Zahn S, Guinet C, Piot E, Badaut J, Ancel A, Gilbert C, Bergouignan A. Ready to dive? Early constraints help juvenile southern elephant seals (Mirounga leonina) acclimatize to aquatic life. J Exp Biol 2025; 228:jeb249813. [PMID: 39925150 DOI: 10.1242/jeb.249813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/04/2025] [Indexed: 02/11/2025]
Abstract
Breath-holding foraging implies different adaptations to limit oxygen (O2) depletion and maximize foraging time. Physiological adjustments can be mediated through O2 consumption, driven by muscle mitochondria, which can also produce reactive oxygen species during reoxygenation. Southern elephant seals spend months foraging at sea, diving for up to 1 h. Pups transition abruptly to aquatic life after a post-weaning period, during which they fast and progressively increase their activity, making this period critical for the development of an adaptive response to oxygen restriction and oxidative stress. We compared the functional capacity of a swimming muscle in 5 recently weaned and 6 adult female southern elephant seals. High-resolution respirometry was employed to examine muscle mitochondrial respiratory capacity and differences in protein and gene expression of the main regulatory pathways were determined using LC-MS/MS and RT-qPCR, respectively. Oxidative damage was measured in the plasma. We found that juveniles have higher mitochondrial coupling efficiency compared with adults, probably as a response to growth and significant physical activity reported during the post-weaning period. There were no differences in oxidative damage, but adults had a higher level of antioxidant defenses. Both hypoxia and oxidative response pathways appeared less activated in juveniles. This study highlights the differences in muscle metabolism and the likely adaptive response to hypoxia and oxidative stress between juvenile and adult south elephant seals. It also suggests that early constraints such as fasting, physical activity and short-term low O2 partial pressure exposure could contribute to immediate and long-term responses and help to acclimatize juveniles to aquatic life.
Collapse
Affiliation(s)
- Laura Charlanne
- Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Fabrice Bertile
- Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
- Proteomics French Infrastructure, FR2048, ProFI, 67000 Strasbourg, France
| | - Alexandre Geffroy
- Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
- Proteomics French Infrastructure, FR2048, ProFI, 67000 Strasbourg, France
| | - Lea Hippauf
- CNRS UMR 5536, Université de Bordeaux, 33076 Bordeaux, France
| | - Isabelle Chery
- Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Sandrine Zahn
- Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Christophe Guinet
- Centre d'Études Biologiques de Chizé, UMR 7372 CNRS/Université de La Rochelle, 79360 Villiers-en-Bois, France
| | - Erwan Piot
- CNRS UMR 5536, Université de Bordeaux, 33076 Bordeaux, France
- UMR 7179, CNRS/MNHN, Laboratoire MECADEV, 1 avenue du petit château, 91400 Brunoy, France
| | - Jérome Badaut
- CNRS UMR 5536, Université de Bordeaux, 33076 Bordeaux, France
| | - André Ancel
- Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Caroline Gilbert
- UMR 7179, CNRS/MNHN, Laboratoire MECADEV, 1 avenue du petit château, 91400 Brunoy, France
- Ecole Nationale Vétérinaire d'Alfort, 7 avenue du Général de Gaulle, 94704 Maisons-Alfort, France
| | | |
Collapse
|
2
|
Della Guardia L, Luzi L, Codella R. Muscle-UCP3 in the regulation of energy metabolism. Mitochondrion 2024; 76:101872. [PMID: 38499130 DOI: 10.1016/j.mito.2024.101872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/10/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Uncoupling protein-3 (UCP3) is a mitochondria-regulatory protein with potential energy- homeostatic functions. This study explores the role of UCP3 in the regulation of muscle- and energy metabolism. UCP3 is critical for tuning substrate utilization, favoring lipid oxidation, particularly in conditions of high-fat availability. While UCP3 is non-essential for lipid oxidation during energy excess, it proves vital during fasting, indicating an energy-homeostatic trait. Preliminary evidence indicates UCP3' promotion of glucose uptake and oxidation, at least in conditions of high glucose/low fat availability. However, the dynamics of how fats and glucose differentially influence UCP3 remain undefined. UCP3 exhibits inducible proton transport and uncoupling activity, operating in a dual manner: a resting state with no/low activity and an activated state in the presence of activators. Uncoupling may enhance thermogenesis in specific conditions and in the presence of activators such as fatty acids, thyroid hormones, and catecholamines. This energy-dissipative activity adapts to varying energy availability, balancing energy dissipation with fatty acid oxidation to optimize whole-body energy homeostasis: fasting triggers UCP3 upregulation, enhancing lipid utilization while suppressing uncoupling. Additionally, UCP3 upregulation induces glucose and lipid disposal from the bloodstream and decreases tri-/diglyceride storage in muscle. This process improves mitochondrial functionality and insulin signaling, leading to enhanced systemicgluco-metabolic balance and protection from metabolic conditions. Reviewed evidence suggests that UCP3 plays a crucial role in adapting the system to changing energy conditions. However, the precise role of UCP3 in regulating metabolism requires further elucidation.
Collapse
Affiliation(s)
- Lucio Della Guardia
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
| | - Livio Luzi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy; Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milano, Italy
| | - Roberto Codella
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy; Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milano, Italy.
| |
Collapse
|
3
|
Chen Y, Hu Q, Wang C, Wang T. The crosstalk between BAT thermogenesis and skeletal muscle dysfunction. Front Physiol 2023; 14:1132830. [PMID: 37153220 PMCID: PMC10160478 DOI: 10.3389/fphys.2023.1132830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
Metabolic defects increase the risk of skeletal muscle diseases, and muscle impairment might worsen metabolic disruption, leading to a vicious cycle. Both brown adipose tissue (BAT) and skeletal muscle play important roles in non-shivering thermogenesis to regulate energy homeostasis. BAT regulates body temperature, systemic metabolism, and seretion of batokines that have positive or negative impacts on skeletal muscle. Conversely, muscle can secrete myokines that regulate BAT function. This review explained the crosstalk between BAT and skeletal muscle, and then discussed the batokines and highlighted their impact on skeletal muscle under physiological conditions. BAT is now considered a potential therapeutic target for obesity and diabetes treatment. Moreover, manipulation of BAT may be an attractive approach for the treatment of muscle weakness by correcting metabolic deficits. Therefore, exploring BAT as a potential treatment for sarcopenia could be a promising avenue for future research.
Collapse
Affiliation(s)
- Yao Chen
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Qian Hu
- Health Management Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Changyi Wang
- Department of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Changyi Wang, ; Tiantian Wang,
| | - Tiantian Wang
- Department of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Changyi Wang, ; Tiantian Wang,
| |
Collapse
|
4
|
Normal Thermostability of p.Ser113Leu and p.Arg631Cys Variants of Mitochondrial Carnitine Palmitoyltransferase II (CPT II) in Human Muscle Homogenate. Metabolites 2022; 12:metabo12111141. [DOI: 10.3390/metabo12111141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Previous fibroblast and recombinant enzyme studies showed a markedly thermolabile p.Ser113Leu variant compared to the wild-type (WT) in muscle carnitine palmitoyltransferase II (CPT II) deficiency. Additionally, it has been shown that cardiolipin (CLP) stimulated or inhibited the p.Ser113Leu recombinant variant depending on the pre-incubation temperatures. In this study, the thermolabilities of mitochondrial enzyme CPT II in muscle homogenates of patients with the p.Ser113Leu (n = 3) and p.Arg631Cys (n = 2) variants were identified to be similar to that of WT. Pre-incubation with CLP on ice stimulated the WT enzyme more than both variants. However, CLP stimulated the variants and WT at 46 °C to about 6–18-fold. The present data indicate that the thermostability of CPT II variant in muscle homogenate is similar to that of WT. This is in contrast to the increased thermolability of enzymes derived from fibroblast and that of recombinant enzymes. Hence, it can be speculated that the disruption of the compartmentation in muscle homogenate mediates a protective effect on the thermolability of the native variant. However, the exact mechanism remains unclear. However, the activating effect of CLP on CPT II in muscle homogenate seems to align with those on recombinant enzymes.
Collapse
|
5
|
Viecelli C, Ewald CY. The non-modifiable factors age, gender, and genetics influence resistance exercise. FRONTIERS IN AGING 2022; 3:1005848. [PMID: 36172603 PMCID: PMC9510838 DOI: 10.3389/fragi.2022.1005848] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/26/2022] [Indexed: 06/13/2023]
Abstract
Muscle mass and force are key for movement, life quality, and health. It is well established that resistance exercise is a potent anabolic stimulus increasing muscle mass and force. The response of a physiological system to resistance exercise is composed of non-modifiable (i.e., age, gender, genetics) and modifiable factors (i.e., exercise, nutrition, training status, etc.). Both factors are integrated by systemic responses (i.e., molecular signaling, genetic responses, protein metabolism, etc.), consequently resulting in functional and physiological adaptations. Herein, we discuss the influence of non-modifiable factors on resistance exercise: age, gender, and genetics. A solid understanding of the role of non-modifiable factors might help to adjust training regimes towards optimal muscle mass maintenance and health.
Collapse
Affiliation(s)
- Claudio Viecelli
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Collin Y. Ewald
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, Switzerland
| |
Collapse
|
6
|
The Role and Regulatory Mechanism of Brown Adipose Tissue Activation in Diet-Induced Thermogenesis in Health and Diseases. Int J Mol Sci 2022; 23:ijms23169448. [PMID: 36012714 PMCID: PMC9408971 DOI: 10.3390/ijms23169448] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/23/2022] Open
Abstract
Brown adipose tissue (BAT) has been considered a vital organ in response to non-shivering adaptive thermogenesis, which could be activated during cold exposure through the sympathetic nervous system (SNS) or under postprandial conditions contributing to diet-induced thermogenesis (DIT). Humans prefer to live within their thermal comfort or neutral zone with minimal energy expenditure created by wearing clothing, making shelters, or using an air conditioner to regulate their ambient temperature; thereby, DIT would become an important mechanism to counter-regulate energy intake and lipid accumulation. In addition, there has been a long interest in the intriguing possibility that a defect in DIT predisposes one to obesity and other metabolic diseases. Due to the recent advances in methodology to evaluate the functional activity of BAT and DIT, this updated review will focus on the role and regulatory mechanism of BAT biology in DIT in health and diseases and whether these mechanisms are applicable to humans.
Collapse
|
7
|
Čater M, Bombek LK. Protective Role of Mitochondrial Uncoupling Proteins against Age-Related Oxidative Stress in Type 2 Diabetes Mellitus. Antioxidants (Basel) 2022; 11:antiox11081473. [PMID: 36009191 PMCID: PMC9404801 DOI: 10.3390/antiox11081473] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
The accumulation of oxidative damage to DNA and other biomolecules plays an important role in the etiology of aging and age-related diseases such as type 2 diabetes mellitus (T2D), atherosclerosis, and neurodegenerative disorders. Mitochondrial DNA (mtDNA) is especially sensitive to oxidative stress. Mitochondrial dysfunction resulting from the accumulation of mtDNA damage impairs normal cellular function and leads to a bioenergetic crisis that accelerates aging and associated diseases. Age-related mitochondrial dysfunction decreases ATP production, which directly affects insulin secretion by pancreatic beta cells and triggers the gradual development of the chronic metabolic dysfunction that characterizes T2D. At the same time, decreased glucose oxidation in skeletal muscle due to mitochondrial damage leads to prolonged postprandial blood glucose rise, which further worsens glucose homeostasis. ROS are not only highly reactive by-products of mitochondrial respiration capable of oxidizing DNA, proteins, and lipids but can also function as signaling and effector molecules in cell membranes mediating signal transduction and inflammation. Mitochondrial uncoupling proteins (UCPs) located in the inner mitochondrial membrane of various tissues can be activated by ROS to protect cells from mitochondrial damage. Mitochondrial UCPs facilitate the reflux of protons from the mitochondrial intermembrane space into the matrix, thereby dissipating the proton gradient required for oxidative phosphorylation. There are five known isoforms (UCP1-UCP5) of mitochondrial UCPs. UCP1 can indirectly reduce ROS formation by increasing glutathione levels, thermogenesis, and energy expenditure. In contrast, UCP2 and UCP3 regulate fatty acid metabolism and insulin secretion by beta cells and modulate insulin sensitivity. Understanding the functions of UCPs may play a critical role in developing pharmacological strategies to combat T2D. This review summarizes the current knowledge on the protective role of various UCP homologs against age-related oxidative stress in T2D.
Collapse
Affiliation(s)
- Maša Čater
- Correspondence: (M.Č.); (L.K.B.); Tel.: +386-2-2345-847 (L.K.B.)
| | | |
Collapse
|
8
|
Križančić Bombek L, Čater M. Skeletal Muscle Uncoupling Proteins in Mice Models of Obesity. Metabolites 2022; 12:metabo12030259. [PMID: 35323702 PMCID: PMC8955650 DOI: 10.3390/metabo12030259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/01/2022] [Accepted: 03/15/2022] [Indexed: 02/05/2023] Open
Abstract
Obesity and accompanying type 2 diabetes are among major and increasing worldwide problems that occur fundamentally due to excessive energy intake during its expenditure. Endotherms continuously consume a certain amount of energy to maintain core body temperature via thermogenic processes, mainly in brown adipose tissue and skeletal muscle. Skeletal muscle glucose utilization and heat production are significant and directly linked to body glucose homeostasis at rest, and especially during physical activity. However, this glucose balance is impaired in diabetic and obese states in humans and mice, and manifests as glucose resistance and altered muscle cell metabolism. Uncoupling proteins have a significant role in converting electrochemical energy into thermal energy without ATP generation. Different homologs of uncoupling proteins were identified, and their roles were linked to antioxidative activity and boosting glucose and lipid metabolism. From this perspective, uncoupling proteins were studied in correlation to the pathogenesis of diabetes and obesity and their possible treatments. Mice were extensively used as model organisms to study the physiology and pathophysiology of energy homeostasis. However, we should be aware of interstrain differences in mice models of obesity regarding thermogenesis and insulin resistance in skeletal muscles. Therefore, in this review, we gathered up-to-date knowledge on skeletal muscle uncoupling proteins and their effect on insulin sensitivity in mouse models of obesity and diabetes.
Collapse
|
9
|
Cheung WW, Hao S, Zheng R, Wang Z, Gonzalez A, Zhou P, Hoffman HM, Mak RH. Targeting interleukin-1 for reversing fat browning and muscle wasting in infantile nephropathic cystinosis. J Cachexia Sarcopenia Muscle 2021; 12:1296-1311. [PMID: 34196133 PMCID: PMC8517356 DOI: 10.1002/jcsm.12744] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/05/2021] [Accepted: 06/08/2021] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Ctns-/- mice, a mouse model of infantile nephropathic cystinosis, exhibit hypermetabolism with adipose tissue browning and profound muscle wasting. Inflammatory cytokines such as interleukin (IL)-1 trigger inflammatory cascades and may be an important cause for cachexia. We employed genetic and pharmacological approaches to investigate the effects of IL-1 blockade in Ctns-/- mice. METHODS We generated Ctns-/- Il1β-/- mice, and we treated Ctns-/- and wild-type control mice with IL-1 receptor antagonist, anakinra (2.5 mg/kg/day, IP) or saline as vehicle for 6 weeks. In each of these mouse lines, we characterized the cachexia phenotype consisting of anorexia, loss of weight, fat mass and lean mass, elevation of metabolic rate, and reduced in vivo muscle function (rotarod activity and grip strength). We quantitated energy homeostasis by measuring the protein content of uncoupling proteins (UCPs) and adenosine triphosphate in adipose tissue and skeletal muscle. We measured skeletal muscle fiber area and intramuscular fatty infiltration. We also studied expression of molecules regulating adipose tissue browning and muscle mass metabolism. Finally, we evaluated the impact of anakinra on the muscle transcriptome in Ctns-/- mice. RESULTS Skeletal muscle expression of IL-1β was significantly elevated in Ctns-/- mice relative to wild-type control mice. Cachexia was completely normalized in Ctns-/- Il1β-/- mice relative to Ctns-/- mice. We showed that anakinra attenuated the cachexia phenotype in Ctns-/- mice. Anakinra normalized UCPs and adenosine triphosphate content of adipose tissue and muscle in Ctns-/- mice. Anakinra attenuated aberrant expression of beige adipose cell biomarkers (UCP-1, CD137, Tmem26, and Tbx1) and molecules implicated in adipocyte tissue browning (Cox2/Pgf2α, Tlr2, Myd88, and Traf6) in inguinal white adipose tissue in Ctns-/- mice. Moreover, anakinra normalized gastrocnemius weight and fiber size and attenuated muscle fat infiltration in Ctns-/- mice. This was accompanied by correction of the increased muscle wasting signalling pathways (increased protein content of ERK1/2, JNK, p38 MAPK, and nuclear factor-κB p65 and mRNA expression of Atrogin-1 and Myostatin) and the decreased myogenesis process (decreased mRNA expression of MyoD and Myogenin) in the gastrocnemius muscle of Ctns-/- mice. Previously, we identified the top 20 differentially expressed skeletal muscle genes in Ctns-/- mice by RNAseq. Aberrant expression of these 20 genes have been implicated in muscle wasting, increased energy expenditure, and lipolysis. We showed that anakinra attenuated 12 of those top 20 differentially expressed muscle genes in Ctns-/- mice. CONCLUSIONS Anakinra may provide a targeted novel therapy for patients with infantile nephropathic cystinosis.
Collapse
Affiliation(s)
- Wai W. Cheung
- Division of Pediatric Nephrology, Department of Pediatrics, Rady Children's Hospital San DiegoUniversity of California, San DiegoLa JollaCAUSA
| | - Sheng Hao
- Department of Nephrology and Rheumatology, Shanghai Children's HospitalShanghai Jiao Tong UniversityShanghaiChina
| | - Ronghao Zheng
- Department of Pediatric Nephrology, Rheumatology, and Immunology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zhen Wang
- Department of Pediatrics, Shanghai General HospitalShanghai Jiao Tong UniversityShanghaiChina
| | - Alex Gonzalez
- Division of Pediatric Nephrology, Department of Pediatrics, Rady Children's Hospital San DiegoUniversity of California, San DiegoLa JollaCAUSA
| | - Ping Zhou
- Sichuan Provincial Hospital for Women and ChildrenAffiliated Women and Children's Hospital of Chengdu Medical CollegeChengduChina
| | - Hal M. Hoffman
- Department of PediatricsUniversity of California, San DiegoLa JollaCAUSA
| | - Robert H. Mak
- Division of Pediatric Nephrology, Department of Pediatrics, Rady Children's Hospital San DiegoUniversity of California, San DiegoLa JollaCAUSA
| |
Collapse
|
10
|
Cheung WW, Zheng R, Hao S, Wang Z, Gonzalez A, Zhou P, Hoffman HM, Mak RH. The role of IL-1 in adipose browning and muscle wasting in CKD-associated cachexia. Sci Rep 2021; 11:15141. [PMID: 34302016 PMCID: PMC8302616 DOI: 10.1038/s41598-021-94565-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/29/2021] [Indexed: 10/25/2022] Open
Abstract
Cytokines such as IL-6, TNF-α and IL-1β trigger inflammatory cascades which may play a role in the pathogenesis of chronic kidney disease (CKD)-associated cachexia. CKD was induced by 5/6 nephrectomy in mice. We studied energy homeostasis in Il1β-/-/CKD, Il6-/-/CKD and Tnfα-/-/CKD mice and compared with wild type (WT)/CKD controls. Parameters of cachexia phenotype were completely normalized in Il1β-/-/CKD mice but were only partially rescued in Il6-/-/CKD and Tnfα-/-/CKD mice. We tested the effects of anakinra, an IL-1 receptor antagonist, on CKD-associated cachexia. WT/CKD mice were treated with anakinra (2.5 mg/kg/day, IP) or saline for 6 weeks and compared with WT/Sham controls. Anakinra normalized food intake and weight gain, fat and lean mass content, metabolic rate and muscle function, and also attenuated molecular perturbations of energy homeostasis in adipose tissue and muscle in WT/CKD mice. Anakinra decreased serum and muscle expression of IL-6, TNF-α and IL-1β in WT/CKD mice. Anakinra attenuated browning of white adipose tissue in WT/CKD mice. Moreover, anakinra normalized gastrocnemius weight and fiber size as well as attenuated muscle fat infiltration in WT/CKD mice. This was accompanied by correcting the increased muscle wasting signaling pathways while promoting the decreased myogenesis process in gastrocnemius of WT/CKD mice. We performed qPCR analysis for the top 20 differentially expressed muscle genes previously identified via RNAseq analysis in WT/CKD mice versus controls. Importantly, 17 differentially expressed muscle genes were attenuated in anakinra treated WT/CKD mice. In conclusion, IL-1 receptor antagonism may represent a novel targeted treatment for adipose tissue browning and muscle wasting in CKD.
Collapse
Affiliation(s)
- Wai W Cheung
- Division of Pediatric Nephrology, Rady Children's Hospital, University of California, San Diego, 9500 Gilman Drive, MC 0831, La Jolla, CA, 92093-0831, USA
| | - Ronghao Zheng
- Department of Pediatric Nephrology, Rheumatology, and Immunology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Hao
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Wang
- Department of Pediatrics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Alex Gonzalez
- Division of Pediatric Nephrology, Rady Children's Hospital, University of California, San Diego, 9500 Gilman Drive, MC 0831, La Jolla, CA, 92093-0831, USA
| | - Ping Zhou
- Sichuan Provincial Hospital for Women and Children, and Affiliated Women and Children's Hospital of Chengdu Medical College, Sichuan, China
| | - Hal M Hoffman
- Department of Pediatrics, University of California, San Diego, USA
| | - Robert H Mak
- Division of Pediatric Nephrology, Rady Children's Hospital, University of California, San Diego, 9500 Gilman Drive, MC 0831, La Jolla, CA, 92093-0831, USA.
| |
Collapse
|
11
|
Singh S, Periasamy M, Bal NC. Strain-specific differences in muscle Ca 2+ transport and mitochondrial electron transport chain proteins between FVB/N and C57BL/6J mice. ACTA ACUST UNITED AC 2021; 224:jeb.238634. [PMID: 33268531 DOI: 10.1242/jeb.238634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 11/23/2020] [Indexed: 12/23/2022]
Abstract
Genetically engineered mouse models have been used to determine the role of sarcolipin (SLN) in muscle. However, a few studies had difficulty in detecting SLN in FBV/N mice and questioned its relevance to muscle metabolism. It is known that genetic alteration of proteins in different inbred mice strains produces dissimilar functional outcomes. Therefore, here we compared the expression of SLN and key proteins involved in Ca2+ handling and mitochondrial metabolism between FVB/N and C57BL/6J mouse strains. Data suggest that SLN expression is less abundant in the skeletal muscles of FVB/N mice than in the C57BL/6J strain. The expression of Ca2+ transporters in the mitochondrial membranes was also lower in FVB/N than in C57BL/6J mice. Similarly, electron transport chain proteins in the mitochondria were less abundant in FVB/N mice, which may contribute to differences in energy metabolism. Future studies using different mouse strains should take these differences into account when interpreting their data.
Collapse
Affiliation(s)
- Sushant Singh
- Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL 32827, USA
| | - Muthu Periasamy
- Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL 32827, USA .,Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Naresh C Bal
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024 India
| |
Collapse
|
12
|
IDH2 Deficiency Is Critical in Myogenesis and Fatty Acid Metabolism in Mice Skeletal Muscle. Int J Mol Sci 2020; 21:ijms21165596. [PMID: 32764267 PMCID: PMC7460611 DOI: 10.3390/ijms21165596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 11/22/2022] Open
Abstract
Mitochondrial NADP+-dependent isocitrate dehydrogenase (IDH2) catalyzes the oxidative decarboxylation of isocitrate into α-ketoglutarate with concurrent reduction of NADP+ to NADPH. However, it is not fully understood how IDH2 is intertwined with muscle development and fatty acid metabolism. Here, we examined the effects of IDH2 knockout (KO) on skeletal muscle energy homeostasis. Calf skeletal muscle samples from 10-week-old male IDH2 KO and wild-type (WT; C57BL/6N) mice were harvested, and the ratio of skeletal muscle weight to body and the ratio of mitochondrial to nucleic DNA were measured. In addition, genes involved in myogenesis, mitochondria biogenesis, adipogenesis, and thermogenesis were compared. Results showed that the ratio of skeletal muscle weight to body weight was lower in IDH2 KO mice than those in WT mice. Of note, a noticeable shift in fiber size distribution was found in IDH2 KO mice. Additionally, there was a trend of a decrease in mitochondrial content in IDH2 KO mice than in WT mice (p = 0.09). Further, mRNA expressions for myogenesis and mitochondrial biogenesis were either decreased or showed a trend of decrease in IDH2 KO mice. Moreover, genes for adipogenesis pathway (Pparg, Znf423, and Fat1) were downregulated in IDH2 KO mice. Interestingly, mRNA and protein expression of uncoupling protein 1 (UCP1), a hallmark of thermogenesis, were remarkably increased in IDH2 KO mice. In line with the UCP1 expression, IDH2 KO mice showed higher rectal temperature than WT mice under cold stress. Taken together, IDH2 deficiency may affect myogenesis, possibly due to impairments of muscle generation and abnormal fatty acid oxidation as well as thermogenesis in muscle via upregulation of UCP1.
Collapse
|
13
|
Lee DH, Ahn J, Jang YJ, Seo HD, Ha TY, Kim MJ, Huh YH, Jung CH. Withania somnifera Extract Enhances Energy Expenditure via Improving Mitochondrial Function in Adipose Tissue and Skeletal Muscle. Nutrients 2020; 12:nu12020431. [PMID: 32046183 PMCID: PMC7071232 DOI: 10.3390/nu12020431] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/29/2020] [Accepted: 02/06/2020] [Indexed: 02/07/2023] Open
Abstract
Withania somnifera (WS), commonly known as ashwagandha, possesses diverse biological functions. WS root has mainly been used as an herbal medicine to treat anxiety and was recently reported to have an anti-obesity effect, however, the mechanisms underlying its action remain to be explored. We hypothesized that WS exerts its anti-obesity effect by enhancing energy expenditure through improving the mitochondrial function of brown/beige adipocytes and skeletal muscle. Male C57BL/6J mice were fed a high-fat diet (HFD) containing 0.25% or 0.5% WS 70% ethanol extract (WSE) for 10 weeks. WSE (0.5%) supplementation significantly suppressed the increases in body weight and serum lipids, and lipid accumulation in the liver and adipose tissue induced by HFD. WSE supplementation increased oxygen consumption and enhanced mitochondrial activity in brown fat and skeletal muscle in the HFD-fed mice. In addition, it promoted browning of subcutaneous fat by increasing mitochondrial uncoupling protein 1 (UCP1) expression. Withaferin A (WFA), a major compound of WS, enhanced the differentiation of pre-adipocytes into beige adipocytes and oxygen consumption in C2C12 murine myoblasts. These results suggest that WSE ameliorates diet-induced obesity by enhancing energy expenditure via promoting mitochondrial function in adipose tissue and skeletal muscle, and WFA is a key regulator in this function.
Collapse
Affiliation(s)
- Da-Hye Lee
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun, Jeonbuk 55365, Korea; (D.-H.L.); (J.A.); (Y.-J.J.); (H.-D.S.); (T.-Y.H.); (M.J.K.)
- Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Korea
| | - Jiyun Ahn
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun, Jeonbuk 55365, Korea; (D.-H.L.); (J.A.); (Y.-J.J.); (H.-D.S.); (T.-Y.H.); (M.J.K.)
- Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Korea
| | - Young-Jin Jang
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun, Jeonbuk 55365, Korea; (D.-H.L.); (J.A.); (Y.-J.J.); (H.-D.S.); (T.-Y.H.); (M.J.K.)
| | - Hyo-Deok Seo
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun, Jeonbuk 55365, Korea; (D.-H.L.); (J.A.); (Y.-J.J.); (H.-D.S.); (T.-Y.H.); (M.J.K.)
| | - Tae-Youl Ha
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun, Jeonbuk 55365, Korea; (D.-H.L.); (J.A.); (Y.-J.J.); (H.-D.S.); (T.-Y.H.); (M.J.K.)
- Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Korea
| | - Min Jung Kim
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun, Jeonbuk 55365, Korea; (D.-H.L.); (J.A.); (Y.-J.J.); (H.-D.S.); (T.-Y.H.); (M.J.K.)
| | - Yang Hoon Huh
- Center for Electron Microscopy Research, Korea Basic Science Institute, Cheongju 28119, Korea;
| | - Chang Hwa Jung
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun, Jeonbuk 55365, Korea; (D.-H.L.); (J.A.); (Y.-J.J.); (H.-D.S.); (T.-Y.H.); (M.J.K.)
- Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Korea
- Correspondence: ; Tel.: +82-63-219-9301; Fax: +82-63-219-9225
| |
Collapse
|
14
|
Wu H, Dridi S, Huang Y, Baum JI. Leucine decreases intramyocellular lipid deposition in an mTORC1-independent manner in palmitate-treated C2C12 myotubes. Am J Physiol Endocrinol Metab 2020; 318:E152-E163. [PMID: 31770014 DOI: 10.1152/ajpendo.00241.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Higher intramyocellular lipid (IMCL) deposition in skeletal muscle is commonly observed in patients with obesity, resulting in mitochondrial damage. Palmitic acid, a saturated fatty acid, has been reported to induce obesogenic conditions in C2C12 myotubes. Leucine has been shown to improve obesity-related metabolic signatures; however, evidence for the effect of leucine on IMCL and the underlying mechanisms are still lacking. The objective of this study was to determine the effect of leucine on IMCL deposition and identify the potential mechanisms. Palmitate-treated C2C12 myotubes were used as an in vitro model of obesity. Two doses of leucine were used: 0.5 mM (postprandial physiological plasma concentration) and 1.5 mM (supraphysiological plasma concentration). Rapamycin was used to determine the role of mammalian target of rapamycin complex 1 (mTORC1) in leucine's regulation of lipid deposition in C2C12 myotubes. One-way ANOVA followed by Tukey's post hoc test was used to calculate differences between treatment groups. Our results demonstrate that leucine reduces IMCL deposition in an mTORC1-independent fashion. Furthermore, leucine acts independently of mTORC1 to upregulate gene expression related to fatty acid metabolism and works through both mTORC1-dependent and mTORC1-independent pathways to regulate mitochondrial biogenesis in palmitate-treated C2C12 myotubes. In agreement with increased mitochondrial biogenesis, increased mitochondrial content, circularity, and decreased autophagy are observed in the presence of 1.5 mM leucine. Taken together, the results indicate leucine reduces IMCL potentially through an mTORC1-independent pathway in palmitate-treated C2C12 myotubes.
Collapse
Affiliation(s)
- Hexirui Wu
- Center for Human Nutrition, Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas
| | - Sami Dridi
- Department of Poultry Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas
| | - Yan Huang
- Department of Animal Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas
| | - Jamie I Baum
- Center for Human Nutrition, Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas
| |
Collapse
|
15
|
Apolipoprotein C-II Mimetic Peptide Promotes the Plasma Clearance of Triglyceride-Rich Lipid Emulsion and the Incorporation of Fatty Acids into Peripheral Tissues of Mice. J Nutr Metab 2019; 2019:7078241. [PMID: 30863636 PMCID: PMC6377985 DOI: 10.1155/2019/7078241] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/14/2018] [Accepted: 01/01/2019] [Indexed: 11/18/2022] Open
Abstract
Aim Plasma apolipoprotein C-II (apoC-II) activates lipoprotein lipase (LPL) and thus lowers plasma triglycerides (TG). We previously reported that a human apoC-II mimetic peptide (C-II-a) decreased plasma TG in apoC-II mutant mice, as well as in apoE-knockout mice. Because it is unknown what tissues take up free fatty acids (FFAs) released from TG after C-II-a peptide administration, we investigated in mice TG plasma clearance and tissue incorporation, using 3H-triolein as a tracer, with and without C-II-a treatment. Methods and Results Intralipid® fat emulsion was labeled with 3H-triolein and then mixed with or without C-II-a. Addition of the peptide did not alter mean particle size of the lipid emulsion particles (298 nm) but accelerated their plasma clearance. After intravenous injection into C57BL/6N mice, the plasma half-life of the 3H-triolein for control and C-II-a treated emulsions was 18.3 ± 2.2 min and 14.8 ± 0.1 min, respectively. In apoC-II mutant mice, the plasma half-life of 3H-triolein for injected control and C-II-a treated emulsions was 30.1 ± 0.1 min and 14.8 ± 0.1 min, respectively. C57BL/6N and apoC-II mutant mice at 120 minutes after the injection showed increased tissue incorporation of radioactivity in white adipose tissue when C-II-a treated emulsion was used. Higher radiolabeled uptake of lipids from C-II-a treated emulsion was also observed in the skeletal muscle of C57BL/6N mice only. In case of apoC-II mutant mice, decreased uptake of radioactive lipids was observed in the liver and kidney after addition of C-II-a to the lipid emulsion. Conclusions C-II-a peptide promotes the plasma clearance of TG-rich lipid emulsions in wild type and apoC-II mutant mice and promotes the incorporation of fatty acids from TG in the lipid emulsions into specific peripheral tissues.
Collapse
|
16
|
Levy SB, Klimova TM, Zakharova RN, Federov AI, Fedorova VI, Baltakhinova ME, Leonard WR. Brown adipose tissue, energy expenditure, and biomarkers of cardio‐metabolic health among the Yakut (Sakha) of northeastern Siberia. Am J Hum Biol 2018; 30:e23175. [DOI: 10.1002/ajhb.23175] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/09/2018] [Accepted: 07/29/2018] [Indexed: 12/29/2022] Open
Affiliation(s)
- Stephanie B. Levy
- Department of Anthropology Yale University New Haven Connecticut
- Department of Anthropology CUNY Hunter College New York City New York
| | | | | | | | | | | | | |
Collapse
|
17
|
Seebacher F. The evolution of metabolic regulation in animals. Comp Biochem Physiol B Biochem Mol Biol 2017; 224:195-203. [PMID: 29128642 DOI: 10.1016/j.cbpb.2017.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 12/13/2022]
Abstract
Energy metabolism is determined by a suite of regulatory mechanism, and their increasing complexity over evolutionary time provides the key to understanding the emergence of different metabolic phenotypes. Energy metabolism is at the core of biological processes because all organisms must maintain energy balance against thermodynamic gradients. Energy metabolism is regulated by a bewildering array of interacting molecular mechanisms, and much of what is known about metabolic regulation comes from the medical literature. However, ecology and evolutionary research would gain considerably by incorporating regulatory mechanisms more explicitly in research on topics such as the evolution of endothermy, metabolic plasticity, and energy balance. The purpose of this brief review is to summarise the main regulatory pathways of energy metabolism in animals and their evolutionary origins to make these complex interactions more accessible to researchers from a broad range of backgrounds. Some of the principal regulators of energy balance, such as the AMP-stimulated protein kinase, have an ancient prokaryotic origin. Most regulatory pathways (e.g. thyroid hormone, insulin, adipokines), however, are eukaryotic in origin and diversified substantially in metazoans and vertebrates. Diversification in vertebrates is at least partly due to genome duplications early in this lineage. The interaction between regulatory mechanisms permitted an increasingly sophisticated fine-tuning of energy balance and metabolism. Hence, regulatory complexity increased over evolutionary time, and taxa differ in their potential range of metabolic phenotypes. Choice of model organism therefore becomes important, and bacteria or even invertebrates are not good models for more derived vertebrates. Different metabolic phenotypes and their evolution, such as endothermy and metabolic plasticity, should be interpreted against this regulatory background.
Collapse
Affiliation(s)
- Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
18
|
Heim AB, Chung D, Florant GL, Chicco AJ. Tissue-specific seasonal changes in mitochondrial function of a mammalian hibernator. Am J Physiol Regul Integr Comp Physiol 2017; 313:R180-R190. [DOI: 10.1152/ajpregu.00427.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 05/03/2017] [Accepted: 05/25/2017] [Indexed: 01/09/2023]
Abstract
Mammalian hibernators, such as golden-mantled ground squirrels ( Callospermophilus lateralis; GMGS), cease to feed while reducing metabolic rate and body temperature during winter months, surviving exclusively on endogenous fuels stored before hibernation. We hypothesized that mitochondria, the cellular sites of oxidative metabolism, undergo tissue-specific seasonal adjustments in carbohydrate and fatty acid utilization to facilitate or complement this remarkable phenotype. To address this, we performed high-resolution respirometry of mitochondria isolated from GMGS liver, heart, skeletal muscle, and brown adipose tissue (BAT) sampled during summer (active), fall (prehibernation), and winter (hibernation) seasons using multisubstrate titration protocols. Mitochondrial phospholipid composition was examined as a postulated intrinsic modulator of respiratory function across tissues and seasons. Respirometry revealed seasonal variations in mitochondrial oxidative phosphorylation capacity, substrate utilization, and coupling efficiency that reflected the distinct functions and metabolic demands of the tissues they support. A consistent finding across tissues was a greater influence of fatty acids (palmitoylcarnitine) on respiratory parameters during the prehibernation and hibernation seasons. In particular, fatty acids had a greater suppressive effect on pyruvate-supported oxidative phosphorylation in heart, muscle, and liver mitochondria and enhanced uncoupled respiration in BAT and muscle mitochondria in the colder seasons. Seasonal variations in the mitochondrial membrane composition reflected changes in the supply and utilization of polyunsaturated fatty acids but were generally mild and inconsistent with functional variations. In conclusion, mitochondria respond to seasonal variations in physical activity, temperature, and nutrient availability in a tissue-specific manner that complements circannual shifts in the bioenergetic and thermoregulatory demands of mammalian hibernators.
Collapse
Affiliation(s)
- Ashley B. Heim
- Department of Biology, Colorado State University, Fort Collins, Colorado
| | - Dillon Chung
- Department of Zoology, University of British Colombia, Vancouver, British Columbia, Canada; and
| | - Gregory L. Florant
- Department of Biology, Colorado State University, Fort Collins, Colorado
| | - Adam J. Chicco
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
19
|
Attenuating the Biologic Drive for Weight Regain Following Weight Loss: Must What Goes Down Always Go Back Up? Nutrients 2017; 9:nu9050468. [PMID: 28481261 PMCID: PMC5452198 DOI: 10.3390/nu9050468] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 04/26/2017] [Accepted: 04/28/2017] [Indexed: 01/01/2023] Open
Abstract
Metabolic adaptations occur with weight loss that result in increased hunger with discordant simultaneous reductions in energy requirements—producing the so-called energy gap in which more energy is desired than is required. The increased hunger is associated with elevation of the orexigenic hormone ghrelin and decrements in anorexigenic hormones. The lower total daily energy expenditure with diet-induced weight loss results from (1) a disproportionately greater decrease in circulating leptin and resting metabolic rate (RMR) than would be predicted based on the decline in body mass, (2) decreased thermic effect of food (TEF), and (3) increased energy efficiency at work intensities characteristic of activities of daily living. These metabolic adaptations can readily promote weight regain. While more experimental research is needed to identify effective strategies to narrow the energy gap and attenuate weight regain, some factors contributing to long-term weight loss maintenance have been identified. Less hunger and greater satiation have been associated with higher intakes of protein and dietary fiber, and lower glycemic load diets. High levels of physical activity are characteristic of most successful weight maintainers. A high energy flux state characterized by high daily energy expenditure and matching energy intake may attenuate the declines in RMR and TEF, and may also result in more accurate regulation of energy intake to match daily energy expenditure.
Collapse
|
20
|
Forearm to fingertip skin temperature gradients in the thermoneutral zone were significantly related to resting metabolic rate: potential implications for nutrition research. Eur J Clin Nutr 2017; 71:1074-1079. [PMID: 28378846 DOI: 10.1038/ejcn.2017.30] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 02/11/2017] [Accepted: 02/14/2017] [Indexed: 01/21/2023]
Abstract
BACKGROUND Resting metabolic rate (RMR) should be measured in the thermoneutral zone (TNZ). Forearm to fingertip skin temperature gradients (FFG) could serve as an objective measure of this pre-condition. SUBJECTS/METHODS Eighty-six adult Australians were studied at 25 °C in a temperature-controlled chamber. Measurements of overnight fasted RMR, respiratory quotient (RQ) and FFG were complemented by clinical biochemistry. McAuley's Index of insulin sensitivity (McA_ISI) and presence of metabolic syndrome was determined. Physical activity was estimated from the short version of the International Physical Activity Questionnaire. Fat mass (FM) and fat-free mass (FFM) were obtained from dual-energy x-ray absorptiometry. Twenty-nine participants were assessed for changes in RMR (ΔRMR), RQ (ΔRQ) and FFG (ΔFFG) following a 6-month free-living period. Multiple linear regression analyses of RMR and RQ on FFG, and of ΔRMR and ΔRQ on ΔFFG were conducted after controlling for 12 known determinants of energy metabolism. RESULTS There were wide between-subject variations in unadjusted FFG ranging from -4.25 to +7.8 °C. The final parsimonious model for cross-sectional observations of RMR included age, FM, FFM, McA_ISI and FFG (β=63 kJ/d (95% confidence interval (CI): 14.2, 112.1, P=0.012)). However, FFG was unrelated to RQ.In the longitudinal cohort, adjusted ΔRMR significantly associated only with ΔFFG (β=100 kJ/d (95% CI: 10.3, 189.1; P=0.030)), and adjusted ΔRQ associated with ΔFFG (-0.003 (95% CI: -0.005, 0.0002, P=0.038)), age and McA_ISI. CONCLUSIONS Sizeable between-subject variations in FFG at 25 °C were associated with RMR and RQ. Monitoring FFG may serve as an objective assessment of the TNZ during RMR measurements.
Collapse
|
21
|
Almundarij TI, Gavini CK, Novak CM. Suppressed sympathetic outflow to skeletal muscle, muscle thermogenesis, and activity energy expenditure with calorie restriction. Physiol Rep 2017; 5:5/4/e13171. [PMID: 28242830 PMCID: PMC5328781 DOI: 10.14814/phy2.13171] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 01/29/2017] [Indexed: 12/21/2022] Open
Abstract
During weight loss, adaptive thermogenesis occurs where energy expenditure (EE) is suppressed beyond that predicted for the smaller body size. Here, we investigated the contributions of resting and nonresting EE to the reduced total EE seen after 3 weeks of 50% calorie restriction (CR) in rats, focusing on activity‐associated EE, muscle thermogenesis, and sympathetic outflow. Prolonged food restriction resulted in a 42% reduction in daily EE, through a 40% decrease in resting EE, and a 48% decline in nonresting EE. These decreases in EE were significant even when the reductions in body weight and lean mass were taken into account. Along with a decreased caloric need for low‐to‐moderate‐intensity treadmill activity with 50% CR, baseline and activity‐related muscle thermogenesis were also suppressed, though the ability to increase muscle thermogenesis above baseline levels was not compromised. When sympathetic drive was measured by assessing norepinephrine turnover (NETO), 50% CR was found to decrease NETO in three of the four muscle groups examined, whereas elevated NETO was found in white adipose tissue of food‐restricted rats. Central activation of melanocortin 4 receptors in the ventromedial hypothalamus stimulated this pathway, enhancing activity EE; this was not compromised by 50% CR. These data suggest that suppressed activity EE contributes to adaptive thermogenesis during energy restriction. This may stem from decreased sympathetic drive to skeletal muscle, increasing locomotor efficiency and reducing skeletal muscle thermogenesis. The capacity to increase activity EE in response to central stimuli is retained, however, presenting a potential target for preventing weight regain.
Collapse
Affiliation(s)
- Tariq I Almundarij
- College of Agriculture and Veterinary Medicine, Al Qassim University, Buraydah, Al-Qassim Province, Saudi Arabia.,Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Chaitanya K Gavini
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois.,School of Biomedical Sciences, Kent State University, Kent, Ohio
| | - Colleen M Novak
- Department of Biological Sciences, Kent State University, Kent, Ohio .,School of Biomedical Sciences, Kent State University, Kent, Ohio
| |
Collapse
|
22
|
Abstract
The skeletal muscle phenotype is subject to considerable malleability depending on use as well as internal and external cues. In humans, low-load endurance-type exercise leads to qualitative changes of muscle tissue characterized by an increase in structures supporting oxygen delivery and consumption, such as capillaries and mitochondria. High-load strength-type exercise leads to growth of muscle fibers dominated by an increase in contractile proteins. In endurance exercise, stress-induced signaling leads to transcriptional upregulation of genes, with Ca(2+) signaling and the energy status of the muscle cells sensed through AMPK being major input determinants. Several interrelated signaling pathways converge on the transcriptional co-activator PGC-1α, perceived to be the coordinator of much of the transcriptional and post-transcriptional processes. Strength training is dominated by a translational upregulation controlled by mTORC1. mTORC1 is mainly regulated by an insulin- and/or growth-factor-dependent signaling cascade as well as mechanical and nutritional cues. Muscle growth is further supported by DNA recruitment through activation and incorporation of satellite cells. In addition, there are several negative regulators of muscle mass. We currently have a good descriptive understanding of the molecular mechanisms controlling the muscle phenotype. The topology of signaling networks seems highly conserved among species, with the signaling outcome being dependent on the particular way individual species make use of the options offered by the multi-nodal networks. As a consequence, muscle structural and functional modifications can be achieved by an almost unlimited combination of inputs and downstream signaling events.
Collapse
Affiliation(s)
- Hans Hoppeler
- Emeritus Department of Anatomy, University of Bern, Baltzerstrasse 2, Bern 9 CH-3000, Switzerland
| |
Collapse
|
23
|
Karvinen SM, Silvennoinen M, Ma H, Törmäkangas T, Rantalainen T, Rinnankoski-Tuikka R, Lensu S, Koch LG, Britton SL, Kainulainen H. Voluntary Running Aids to Maintain High Body Temperature in Rats Bred for High Aerobic Capacity. Front Physiol 2016; 7:311. [PMID: 27504097 PMCID: PMC4958631 DOI: 10.3389/fphys.2016.00311] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/07/2016] [Indexed: 01/31/2023] Open
Abstract
The production of heat, i.e., thermogenesis, is a significant component of the metabolic rate, which in turn affects weight gain and health. Thermogenesis is linked to physical activity (PA) level. However, it is not known whether intrinsic exercise capacity, aging, and long-term voluntary running affect core body temperature. Here we use rat models selectively bred to differ in maximal treadmill endurance running capacity (Low capacity runners, LCR and High capacity Runners, HCR), that as adults are divergent for aerobic exercise capacity, aging, and metabolic disease risk to study the connection between PA and body temperature. Ten high capacity runner (HCR) and ten low capacity runner (LCR) female rats were studied between 9 and 21 months of age. Rectal body temperature of HCR and LCR rats was measured before and after 1-year voluntary running/control intervention to explore the effects of aging and PA. Also, we determined whether injected glucose and spontaneous activity affect the body temperature differently between LCR and HCR rats at 9 vs. 21 months of age. HCRs had on average 1.3°C higher body temperature than LCRs (p < 0.001). Aging decreased the body temperature level of HCRs to similar levels with LCRs. The opportunity to run voluntarily had a significant impact on the body temperature of HCRs (p < 0.001) allowing them to maintain body temperature at a similar level as when at younger age. Compared to LCRs, HCRs were spontaneously more active, had higher relative gastrocnemius muscle mass and higher UCP2, PGC-1α, cyt c, and OXPHOS levels in the skeletal muscle (p < 0.050). These results suggest that higher PA level together with greater relative muscle mass and higher mitochondrial content/function contribute to the accumulation of heat in the HCRs. Interestingly, neither aging nor voluntary training had a significant impact on core body temperature of LCRs. However, glucose injection resulted in a lowering of the body temperature of LCRs (p < 0.050), but not that of HCRs. In conclusion, rats born with high intrinsic capacity for aerobic exercise and better health have higher body temperature compared to rats born with low exercise capacity and disease risk. Voluntary running allowed HCRs to maintain high body temperature during aging, which suggests that high PA level was crucial in maintaining the high body temperature of HCRs.
Collapse
Affiliation(s)
- Sira M Karvinen
- Department of Biology of Physical Activity, Neuromuscular Research Center, University of Jyväskylä Jyväskylä, Finland
| | - Mika Silvennoinen
- Department of Biology of Physical Activity, Neuromuscular Research Center, University of Jyväskylä Jyväskylä, Finland
| | - Hongqiang Ma
- Department of Health Sciences, University of Jyväskylä Jyväskylä, Finland
| | - Timo Törmäkangas
- Gerontology Research Center and Department of Health Sciences, University of Jyväskylä Jyväskylä, Finland
| | - Timo Rantalainen
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University Melbourne, VIC, Australia
| | - Rita Rinnankoski-Tuikka
- Department of Biology of Physical Activity, Neuromuscular Research Center, University of Jyväskylä Jyväskylä, Finland
| | - Sanna Lensu
- Department of Biology of Physical Activity, Neuromuscular Research Center, University of Jyväskylä Jyväskylä, Finland
| | - Lauren G Koch
- Department of Anesthesiology, University of Michigan Medical School Ann Arbor, MI, USA
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan Medical SchoolAnn Arbor, MI, USA; Department of Molecular and Integrative Physiology, University of Michigan Medical SchoolAnn Arbor, MI, USA
| | - Heikki Kainulainen
- Department of Biology of Physical Activity, Neuromuscular Research Center, University of Jyväskylä Jyväskylä, Finland
| |
Collapse
|
24
|
Rowland LA, Maurya SK, Bal NC, Kozak L, Periasamy M. Sarcolipin and uncoupling protein 1 play distinct roles in diet-induced thermogenesis and do not compensate for one another. Obesity (Silver Spring) 2016; 24:1430-3. [PMID: 27238087 PMCID: PMC4925282 DOI: 10.1002/oby.21542] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/24/2016] [Accepted: 04/01/2016] [Indexed: 02/03/2023]
Abstract
OBJECTIVE It is well known that uncoupling protein 1 (UCP1) in brown adipose tissue plays an important role in diet-induced thermogenesis. In this study, whether sarcolipin (SLN), a regulator of sarco/endoplasmic reticulum Ca(2+) -ATPase pump in muscle, is also an important player of diet-induced thermogenesis was investigated, as well as whether loss of SLN could be compensated by increased UCP1 expression and vice versa. METHODS Age- and sex-matched UCP1(-/-) , SLN(-/-) , and double knockout for both UCP1 and SLN mice maintained in C57Bl/6J background were challenged to high-fat diet for 12 weeks and then analyzed for weight gain, alterations in serum metabolites, and changes in thermogenic protein expression. RESULTS Loss of either SLN or UCP1 alone was sufficient to cause diet-induced obesity. No compensatory upregulation of UCP1 in SLN(-/-) mice or vice versa was found. Paradoxically, loss of both mechanisms failed to exacerbate the obesity phenotype. CONCLUSIONS Data suggest that both SLN- and UCP1-based adaptive thermogenic mechanisms were essential for achieving maximal diet-induced thermogenesis. When both mechanisms were absent, less efficient thermogenic mechanisms were activated to counter energy imbalance.
Collapse
Affiliation(s)
- Leslie A Rowland
- Department of Physiology and Cell Biology, The Ohio State University, College of Medicine, Columbus, Ohio, USA
| | - Santosh K Maurya
- Sanford Burnham Prebys Medical Discovery Institute, Lake Nona, Orlando, Florida, USA
| | - Naresh C Bal
- Department of Physiology and Cell Biology, The Ohio State University, College of Medicine, Columbus, Ohio, USA
- Sanford Burnham Prebys Medical Discovery Institute, Lake Nona, Orlando, Florida, USA
| | - Leslie Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Muthu Periasamy
- Department of Physiology and Cell Biology, The Ohio State University, College of Medicine, Columbus, Ohio, USA
- Sanford Burnham Prebys Medical Discovery Institute, Lake Nona, Orlando, Florida, USA
| |
Collapse
|
25
|
Cheung WW, Cherqui S, Ding W, Esparza M, Zhou P, Shao J, Lieber RL, Mak RH. Muscle wasting and adipose tissue browning in infantile nephropathic cystinosis. J Cachexia Sarcopenia Muscle 2016; 7:152-64. [PMID: 27493869 PMCID: PMC4864942 DOI: 10.1002/jcsm.12056] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 04/21/2015] [Accepted: 06/03/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Muscle wasting is a common complication in patients with infantile nephropathic cystinosis, but its mechanism and association with energy metabolism is not known. We define the metabolic phenotype in Ctns(-/-) mice, an established murine model of infantile nephropathic cystinosis, with focus on muscle wasting and energy homeostasis. METHODS Male Ctns(-/-) mice and wild-type (WT) controls were studied at 1, 4, 9, and 12 months of age. As Ctns(-/-) mice started to develop chronic kidney disease (CKD) at 9 months of age, 9- and 12-month-old Ctns(-/-) mice were also compared with age-matched WT mice with CKD. Serum and urine chemistry and energy homeostasis parameters were measured. Skeletal muscle histomorphometry and in vivo muscle function were measured. We studied expression of genes involved in muscle mass regulation, thermogenesis, energy metabolism, adipogenesis, and adipose tissue browning in Ctns(-/-) mice. RESULTS Ctns(-/-) mice showed loss of weight and lean mass and increased energy expenditure. Ctns(-/-) mice exhibited abnormal energy homeostasis before the onset of their CKD. Food intake in Ctns(-/-) mice was comparable with age-matched WT controls. However, significantly lower total body mass starting at 1 month of age and increased energy expenditure at 4 months of age preceded the onset of CKD at 9 months of age in Ctns(-/-) mice. Muscle accept content in 1- and 4-month-old Ctns(-/-) mice was significantly lower than that in age-matched WT controls. At 12 months of age, muscle fibre area and in vivo muscle strength was reduced in Ctns(-/-) mice than that in WT or CKD controls. Muscle wasting in Ctns(-/-) mice was associated with inhibition of myogenesis, activation of muscle proteolysis pathways, and overexpression of pro-inflammatory cytokines. Increased energy expenditure was associated with elevation of thermogenesis in skeletal muscle and adipose tissues. The development of beige adipocytes in Ctns(-/-) mice is a novel finding. Expression of beige adipose cell surface markers (CD137, Tmem26, and Tbx1) and uncoupling protein-1, which is a brown adipose tissue marker, was observed in inguinal white adipose tissue of Ctns(-/-) mice. Expression of key molecules implicated in the pathogenesis of adipose tissue browning (Cox2, cytochrome c oxidase subunit II; PGF2α, prostaglandin F2α; IL-1α, interleukin 1α; IL-6, interleukin 6; TNF-α, tumor necrosis factor α) was significantly increased in inguinal white adipose tissue of Ctns(-/-) mice than that in WT controls. CONCLUSION This study describes a mouse model of nephropathic cystinosis presenting with profound muscle wasting. The mechanism for hypermetabolism in Ctns(-/-) mice may involve up-regulation of thermogenesis pathways in skeletal muscle and adipose tissues. This study demonstrates, for the first time, the development of beige adipocytes in Ctns(-/-) mice. Understanding the underlying mechanisms of adipose tissue browning in cystinosis may lead to novel therapy.
Collapse
Affiliation(s)
- Wai W Cheung
- Department of Pediatrics University of California San Diego CA USA
| | | | - Wei Ding
- Department of Pediatrics University of California San Diego CA USA; Division of Nephrology, The 5th People's Hospital of Shanghai Fudan University Shanghai China
| | - Mary Esparza
- Department of Orthopedic Surgery University of California San Diego CA USA
| | - Ping Zhou
- Department of Pediatrics University of California San Diego CA USA; Department of Pediatrics The 2nd Hospital of Harbin Medical University Harbin China
| | - Jianhua Shao
- Department of Pediatrics University of California San Diego CA USA
| | - Richard L Lieber
- Department of Orthopedic Surgery University of California San Diego CA USA; Rehabilitation Institute of Chicago Chicago
| | - Robert H Mak
- Department of Pediatrics University of California San Diego CA USA
| |
Collapse
|
26
|
Abstract
Targeting TrkB signaling could represent a good therapeutic strategy to prevent obesity. In this issue of Chemistry & Biology, Chan et al. report the efficacy of 7,8-DHT, a TrkB agonist, in preventing obesity in female mice. The underlying molecular mechanisms behind this activity seem to involve increased energy expenditure in skeletal muscle.
Collapse
Affiliation(s)
- Ji Youn Youn
- Divisions of Molecular Medicine and Cardiology, Departments of Anesthesiology and Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Hua Cai
- Divisions of Molecular Medicine and Cardiology, Departments of Anesthesiology and Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
27
|
Motlagh L, Golbik R, Sippl W, Zierz S. Stabilization of the thermolabile variant S113L of carnitine palmitoyltransferase II. NEUROLOGY-GENETICS 2016; 2:e53. [PMID: 27123472 PMCID: PMC4830186 DOI: 10.1212/nxg.0000000000000053] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 01/04/2016] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Muscle carnitine palmitoyltransferase (CPT) II deficiency, the most common defect of lipid metabolism in muscle, is characterized by attacks of myoglobinuria without persistent muscle weakness. METHODS His6-N-hCPT2 (wild-type) and His6-N-hCPT2/S113L (variant) were produced recombinantly in prokaryotic host and characterized according to their functional and regulatory properties. RESULTS The wild-type and the variant S113L showed the same enzymatic activity and thermostability at 30°C. The mutated enzyme, however, revealed an abnormal thermal destabilization at 40°C and 45°C. This was consistent with an increased flexibility (B-factor) of the variant at 40°C compared with that of the wild-type shown by molecular dynamics analysis. Preincubation of the enzymes with l-carnitine and acyl-l-carnitines containing more than 10 carbons in the acyl side-chain stabilized the mutated enzyme against thermal inactivation. In contrast, palmitoyl-CoA destabilized both enzymes. CONCLUSIONS The problems in CPT II deficiency originating from the S113L mutation are not caused by the loss of catalytically active enzyme. They might be at least partially related to an impaired thermal stability of the protein. The lower thermodynamic stability of the variant might explain why fever and prolonged exertion provoke attacks of myoglobinuria in CPT II deficiency. The stabilization by acyl-l-carnitines might provide the basis for possible preventive therapy of CPT II deficiency.
Collapse
Affiliation(s)
- Leila Motlagh
- Department of Neurology (L.M., S.Z.), Institute of Biochemistry and Biotechnology (R.G.), and Institute of Pharmacy (W.S.), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Ralph Golbik
- Department of Neurology (L.M., S.Z.), Institute of Biochemistry and Biotechnology (R.G.), and Institute of Pharmacy (W.S.), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Wolfgang Sippl
- Department of Neurology (L.M., S.Z.), Institute of Biochemistry and Biotechnology (R.G.), and Institute of Pharmacy (W.S.), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Stephan Zierz
- Department of Neurology (L.M., S.Z.), Institute of Biochemistry and Biotechnology (R.G.), and Institute of Pharmacy (W.S.), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
28
|
Morton TL, Galior K, McGrath C, Wu X, Uzer G, Uzer GB, Sen B, Xie Z, Tyson D, Rubin J, Styner M. Exercise Increases and Browns Muscle Lipid in High-Fat Diet-Fed Mice. Front Endocrinol (Lausanne) 2016; 7:80. [PMID: 27445983 PMCID: PMC4928595 DOI: 10.3389/fendo.2016.00080] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 06/20/2016] [Indexed: 12/25/2022] Open
Abstract
Muscle lipid increases with high-fat feeding and diabetes. In trained athletes, increased muscle lipid is not associated with insulin resistance, a phenomenon known as the athlete's paradox. To understand if exercise altered the phenotype of muscle lipid, female C57BL/6 mice fed CTL or high-fat diet (HFD for 6 or 18 weeks) were further divided into sedentary or exercising groups (CTL-E or HFD-E) with voluntary access to running wheels for the last 6 weeks of experiments, running 6 h/night. Diet did not affect running time or distance. HFD mice weighed more than CTL after 18 weeks (p < 0.01). Quadriceps muscle TG was increased in running animals and in sedentary mice fed HFD for 18 weeks (p < 0.05). In exercised animals, markers of fat, Plin1, aP2, FSP27, and Fasn, were increased significantly in HFD groups. Ucp1 and Pgc1a, markers for brown fat, increased with exercise in the setting of high fat feeding. Fndc5, which encodes irisin, and CytC were sensitive to exercise regardless of diet. Plin5 was increased with HFD and unaffected by exercise; the respiratory exchange ratio was 15% lower in the 18-week HFD group compared with CTL (p < 0.001) and 10% lower in 18 weeks HFD-E compared with CTL-E (p < 0.001). Increased Ucp1 and Pgc1a in exercised muscle of running mice suggests that a beige/brown fat phenotype develops, which differs from the fat phenotype that induces insulin resistance in high fat feeding. This suggests that increased muscle lipid may develop a "brown" phenotype in the setting of endurance exercise training, a shift that is further promoted by HFD.
Collapse
Affiliation(s)
- Tiffany L. Morton
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kornelia Galior
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Cody McGrath
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xin Wu
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gunes Uzer
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Guniz Bas Uzer
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Buer Sen
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zhihui Xie
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David Tyson
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Janet Rubin
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Maya Styner
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- *Correspondence: Maya Styner,
| |
Collapse
|
29
|
Maurya SK, Periasamy M. Sarcolipin is a novel regulator of muscle metabolism and obesity. Pharmacol Res 2015; 102:270-5. [PMID: 26521759 DOI: 10.1016/j.phrs.2015.10.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 10/13/2015] [Indexed: 02/07/2023]
Abstract
Obesity is increasing at an alarming rate, both in adults and adolescents, across the globe due to increased consumption of caloric rich diet. Obesity and its associated complications appear to be major contributing factors not only to diabetes/heart disease but also to cancer, and neurological diseases causing a huge burden on the health care system. To date, there are no effective treatments to reduce weight gain, other than caloric restriction and exercise which are often difficult to enforce. There are very few drugs available for treating obesity and those that are available only reduce obesity by ∼ 10%. Identifying mechanisms to increase energy expenditure, on top of the increase elicited by exercise, would be more beneficial to control weight gain. The purpose of this review is to highlight the role of sarcolipin (SLN), a regulator of SERCA pump, in muscle thermogenesis and metabolism. We will further discuss if enhancing SLN activity could be an effective mechanism to increase energy expenditure and control weight gain. We will also discuss the merits of adaptive thermogenesis in muscle and brown fat as potential mechanisms to increase energy expenditure during caloric overload. That said, there is still a great need for further research into the mechanism of diet induced thermogenesis and its relevance to overall metabolism and obesity.
Collapse
Affiliation(s)
- Santosh Kumar Maurya
- Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL, USA
| | - Muthu Periasamy
- Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL, USA.
| |
Collapse
|
30
|
Fernström M, Bakkman L, Loogna P, Rooyackers O, Svensson M, Jakobsson T, Brandt L, Lagerros YT. Improved Muscle Mitochondrial Capacity Following Gastric Bypass Surgery in Obese Subjects. Obes Surg 2015; 26:1391-7. [DOI: 10.1007/s11695-015-1932-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
31
|
Roman S, Agil A, Peran M, Alvaro-Galue E, Ruiz-Ojeda FJ, Fernández-Vázquez G, Marchal JA. Brown adipose tissue and novel therapeutic approaches to treat metabolic disorders. Transl Res 2015; 165:464-79. [PMID: 25433289 DOI: 10.1016/j.trsl.2014.11.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 10/16/2014] [Accepted: 11/04/2014] [Indexed: 01/08/2023]
Abstract
In humans, 2 functionally different types of adipose tissue coexist: white adipose tissue (WAT) and brown adipose tissue (BAT). WAT is involved in energy storage, whereas BAT is involved in energy expenditure. Increased amounts of WAT may contribute to the development of metabolic disorders, such as obesity-associated type 2 diabetes mellitus and cardiovascular diseases. In contrast, the thermogenic function of BAT allows high consumption of fatty acids because of the activity of uncoupling protein 1 in the internal mitochondrial membrane. Interestingly, obesity reduction and insulin sensitization have been achieved by BAT activation-regeneration in animal models. This review describes the origin, function, and differentiation mechanisms of BAT to identify new therapeutic strategies for the treatment of metabolic disorders related to obesity. On the basis of the animal studies, novel approaches for BAT regeneration combining stem cells from the adipose tissue with active components, such as melatonin, may have potential for the treatment of metabolic disorders in humans.
Collapse
Affiliation(s)
- Sabiniano Roman
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada, Spain; Tissue Engineering Group, Kroto Research Institute, University of Sheffield, Sheffield, UK
| | - Ahmad Agil
- Department of Pharmacology and Neurosciences Institute, Faculty of Medicine, Biosanitary Institute of Granada (ibs.GRANADA), Hospitals Unversity/University of Granada, Granada, Spain
| | - Macarena Peran
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada, Spain; Department of Health Sciences, University of Jaén, Jaén, Spain
| | - Eduardo Alvaro-Galue
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada, Spain; Wake Forest Institute for Regenerative Medicine Wake Forest School of Medicine, Winston Salem, NC
| | - Francisco J Ruiz-Ojeda
- Institute of Nutrition and Food Technology, Centre for Biomedical Research, University of Granada, Granada, Spain
| | | | - Juan A Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada, Spain; Department of Human Anatomy and Embryology, Biosanitary Institute of Granada (ibs.GRANADA), Hospitals Unversity/University of Granada, Granada, Spain.
| |
Collapse
|
32
|
Maurya SK, Bal NC, Sopariwala DH, Pant M, Rowland LA, Shaikh SA, Periasamy M. Sarcolipin Is a Key Determinant of the Basal Metabolic Rate, and Its Overexpression Enhances Energy Expenditure and Resistance against Diet-induced Obesity. J Biol Chem 2015; 290:10840-9. [PMID: 25713078 DOI: 10.1074/jbc.m115.636878] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Indexed: 11/06/2022] Open
Abstract
Sarcolipin (SLN) is a novel regulator of sarcoplasmic reticulum Ca(2+) ATPase (SERCA) in muscle. SLN binding to SERCA uncouples Ca(2+) transport from ATP hydrolysis. By this mechanism, SLN promotes the futile cycling of SERCA, contributing to muscle heat production. We recently showed that SLN plays an important role in cold- and diet-induced thermogenesis. However, the detailed mechanism of how SLN regulates muscle metabolism remains unclear. In this study, we used both SLN knockout (Sln(-/-)) and skeletal muscle-specific SLN overexpression (Sln(OE)) mice to explore energy metabolism by pair feeding (fixed calories) and high-fat diet feeding (ad libitum). Our results show that, upon pair feeding, Sln(OE) mice lost weight compared with the WT, but Sln(-/-) mice gained weight. Interestingly, when fed with a high-fat diet, Sln(OE) mice consumed more calories but gained less weight and maintained a normal metabolic profile in comparison with WT and Sln(-/-) mice. We found that oxygen consumption and fatty acid oxidation were increased markedly in Sln(OE) mice. There was also an increase in both mitochondrial number and size in Sln(OE) muscle, together with increased expression of peroxisome proliferator-activated receptor δ (PPARδ) and PPAR γ coactivator 1 α (PGC1α), key transcriptional activators of mitochondrial biogenesis and enzymes involved in oxidative metabolism. These results, taken together, establish an important role for SLN in muscle metabolism and energy expenditure. On the basis of these data we propose that SLN is a novel target for enhancing whole-body energy expenditure.
Collapse
Affiliation(s)
- Santosh K Maurya
- the Sanford Burnham Medical Research Institute at Lake Nona, Orlando, Florida 32827
| | - Naresh C Bal
- From the Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio 43210 and
| | - Danesh H Sopariwala
- From the Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio 43210 and
| | - Meghna Pant
- From the Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio 43210 and
| | - Leslie A Rowland
- From the Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio 43210 and
| | - Sana A Shaikh
- From the Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio 43210 and
| | - Muthu Periasamy
- the Sanford Burnham Medical Research Institute at Lake Nona, Orlando, Florida 32827
| |
Collapse
|
33
|
Wong HS, Chen J, Leong PK, Leung HY, Chan WM, Ko KM. A Cistanches Herba Fraction/ β -Sitosterol Causes a Redox-Sensitive Induction of Mitochondrial Uncoupling and Activation of Adenosine Monophosphate-Dependent Protein Kinase/Peroxisome Proliferator-Activated Receptor γ Coactivator-1 in C2C12 Myotubes: A Possible Mechanism Underlying the Weight Reduction Effect. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2015; 2015:142059. [PMID: 25709708 PMCID: PMC4332982 DOI: 10.1155/2015/142059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 01/14/2015] [Indexed: 12/25/2022]
Abstract
Previous studies have demonstrated that HCF1, a semipurified fraction of Cistanches Herba, causes weight reduction in normal diet- and high fat diet-fed mice. The weight reduction was associated with the induction of mitochondrial uncoupling and changes in metabolic enzyme activities in mouse skeletal muscle. To further investigate the biochemical mechanism underlying the HCF1-induced weight reduction, the effect of HCF1 and its active component, β-sitosterol (BSS), on C2C12 myotubes was examined. Incubation with HCF1/BSS caused a transient increase in mitochondrial membrane potential (MMP), possibly by fluidizing the mitochondrial inner membrane. The increase in MMP was paralleled to an increase in mitochondrial reactive oxygen species (ROS) production. Mitochondrial ROS, in turn, triggered a redox-sensitive induction of mitochondrial uncoupling by uncoupling protein 3 (UCP3). Biochemical analysis indicated that HCF1 was capable of activating an adenosine monophosphate-dependent protein kinase/peroxisome proliferator-activated receptor γ coactivator-1 pathway and thereby increased the expression of cytochrome c oxidase and UCP3. Animal studies using mitochondrial recoupler also confirmed the role of mitochondrial uncoupling in the HCF1-induced weight reduction. In conclusion, a HCF1/BSS causes the redox-sensitive induction of mitochondrial uncoupling and activation of AMPK/PGC-1 in C2C12 myotubes, with resultant reductions in body weight and adiposity by increased energy consumption.
Collapse
Affiliation(s)
- Hoi Shan Wong
- Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Jihang Chen
- Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Pou Kuan Leong
- Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Hoi Yan Leung
- Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Wing Man Chan
- Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Kam Ming Ko
- Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong
| |
Collapse
|
34
|
Little AG, Seebacher F. The evolution of endothermy is explained by thyroid hormone-mediated responses to cold in early vertebrates. ACTA ACUST UNITED AC 2015; 217:1642-8. [PMID: 24829322 DOI: 10.1242/jeb.088880] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The evolution of endothermy is one of the most intriguing and consistently debated topics in vertebrate biology, but the proximate mechanisms that mediated its evolution are unknown. Here, we suggest that the function of thyroid hormone in regulating physiological processes in response to cold is key to understanding the evolution of endothermy. We argue that the capacity of early chordates to produce thyroid hormone internally was the first step in this evolutionary process. Selection could then act on the capacity of thyroid hormone to regulate metabolism, muscle force production and cardiac performance to maintain their function against the negative thermodynamic effects of decreasing temperature. Thyroid-mediated cold acclimation would have been the principal selective advantage. The actions of thyroid hormone during cold acclimation in zebrafish are very similar to its role during endothermic thermogenesis. The thyroid-mediated increases in metabolism and locomotor performance in ectotherms eventually resulted in sufficient heat production to affect body temperature. From this point onwards, increased body temperature per se could be of selective advantage and reinforce thyroid-induced increases in physiological rates. Selection for increased body temperature would promote those mechanisms that maximise heat production, such as increased Na(+)/K(+)-ATPase activity, futile cycling by SERCA, and mitochondrial uncoupling, all of which are regulated by thyroid hormone. The specific end point of this broader evolutionary process would be endothermic thermoregulation. However, considering the evolution of endothermy in isolation is misleading because the selective advantages that drove the evolutionary process were independent from endothermy. In other words, without the selective advantages of thyroid-mediated cold acclimation in fish, there would be no endotherms.
Collapse
Affiliation(s)
- Alexander G Little
- School of Biological Sciences A08, University of Sydney, NSW 2006, Australia
| | - Frank Seebacher
- School of Biological Sciences A08, University of Sydney, NSW 2006, Australia
| |
Collapse
|
35
|
Lee B, Qiao L, Lu M, Yoo HS, Cheung W, Mak R, Schaack J, Feng GS, Chi NW, Olefsky JM, Shao J. C/EBPα regulates macrophage activation and systemic metabolism. Am J Physiol Endocrinol Metab 2014; 306:E1144-54. [PMID: 24691027 PMCID: PMC4025063 DOI: 10.1152/ajpendo.00002.2014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Macrophage infiltration plays an important role in obesity-induced insulin resistance. CCAAT enhancer-binding protein-α (C/EBPα) is a transcription factor that is highly expressed in macrophages. To examine the roles of C/EBPα in regulating macrophage functions and energy homeostasis, macrophage-specific C/EBPα knockout (MαKO) mice were created. Chow-fed MαKO mice exhibited higher body fat mass and decreased energy expenditure despite no change in food intake. However, the obese phenotype disappeared after high-fat (HF) diet feeding. Although there was a transient decrease in insulin sensitivity of chow-fed young MαKO mice, systemic insulin sensitivity was protected during HF-feeding due to preserved insulin sensitivity in skeletal muscle. We also found that C/EBPα-deficient macrophages exhibited a blunted response of cytokine-induced expression of M1 and M2 macrophage markers, suggesting that C/EBPα controls both M1 and M2 polarization. Consistent with decreased exercise capacity, mitochondrial respiration rates and signal pathways for fatty acid oxidation were remarkably reduced in the skeletal muscle of chow-fed MαKO mice. Furthermore, expression levels of inflammatory cytokines were reduced in skeletal muscle of HF-fed MαKO mice. Together, these results imply that C/EBPα is required for macrophage activation, which plays an important role in maintaining skeletal muscle energy metabolism.
Collapse
Affiliation(s)
- Bonggi Lee
- Department of Pediatrics, University of California San Diego, La Jolla, California
| | - Liping Qiao
- Department of Pediatrics, University of California San Diego, La Jolla, California
| | - Min Lu
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Hyung Sun Yoo
- Department of Pediatrics, University of California San Diego, La Jolla, California
| | - Wai Cheung
- Department of Pediatrics, University of California San Diego, La Jolla, California
| | - Robert Mak
- Department of Pediatrics, University of California San Diego, La Jolla, California
| | - Jerome Schaack
- Department of Microbiology, University of Colorado at Denver and Health Sciences Center, Aurora, Colorado
| | - Gen-Sheng Feng
- Department of Pathology, University of California San Diego, La Jolla, California
| | - Nai-Wen Chi
- Veterans Affairs San Diego Healthcare system, and Department of Medicine, University of California San Diego, La Jolla, California
| | - Jerrold M Olefsky
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Jianhua Shao
- Department of Pediatrics, University of California San Diego, La Jolla, California;
| |
Collapse
|
36
|
Chicco AJ, Le CH, Schlater AE, Nguyen AD, Kaye SD, Beals JW, Scalzo RL, Bell C, Gnaiger E, Costa DP, Crocker DE, Kanatous SB. High fatty acid oxidation capacity and phosphorylation control despite elevated leak and reduced respiratory capacity in northern elephant seal muscle mitochondria. J Exp Biol 2014; 217:2947-55. [DOI: 10.1242/jeb.105916] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abstract
Northern elephant seals (Mirounga angustirostris) are extreme, hypoxia-adapted endotherms that rely largely on aerobic metabolism during extended breath-hold dives in near freezing water temperatures. While many aspects of their physiology have been characterized to account for these remarkable feats, the contribution of adaptations in the aerobic powerhouses of muscle cells, the mitochondria, are unknown. In the present study, the ontogeny and comparative physiology of elephant seal muscle mitochondrial respiratory function was investigated under a variety of substrate conditions and respiratory states. Intact mitochondrial networks were studied by high-resolution respirometry in saponin-permeabilized fiber bundles obtained from primary swimming muscles of pup, juvenile, and adult seals, and compared to fibers from adult human vastus laterais. Results indicate that seal muscle maintains a high capacity for fatty acid oxidation despite a progressive decrease in total respiratory capacity as animals mature from pups to adults. This is explained by a progressive increase in phosphorylation control and fatty acid utilization over pyruvate in adult seals compared to humans and seal pups. Interestingly, despite higher indices of oxidative phosphorylation efficiency, juvenile and adult seals also exhibit a ~50% greater capacity for respiratory leak compared to humans and pups. The ontogeny of this phenotype suggests it is an adaptation of muscle to the prolonged breath-hold exercise and highly variable ambient temperatures experienced by mature elephant seals. These studies highlight the remarkable plasticity of mammalian mitochondria to meet the demands for both efficient ATP production and endothermy in a cold, oxygen-limited environment.
Collapse
|
37
|
Segalés J, Paz JC, Hernández-Alvarez MI, Sala D, Muñoz JP, Noguera E, Pich S, Palacín M, Enríquez JA, Zorzano A. A form of mitofusin 2 (Mfn2) lacking the transmembrane domains and the COOH-terminal end stimulates metabolism in muscle and liver cells. Am J Physiol Endocrinol Metab 2013; 305:E1208-21. [PMID: 23941871 DOI: 10.1152/ajpendo.00546.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitofusin 2 (Mfn2), a protein that participates in mitochondrial fusion, is required to maintain normal mitochondrial metabolism in skeletal muscle and liver. Given that muscle Mfn2 is repressed in obese or type 2 diabetic subjects, this protein may have a potential pathophysiological role in these conditions. To evaluate whether the metabolic effects of Mfn2 can be dissociated from its function in mitochondrial dynamics, we studied a form of human Mfn2, lacking the two transmembrane domains and the COOH-terminal coiled coil (ΔMfn2). This form localized in mitochondria but did not alter mitochondrial morphology in cells or in skeletal muscle fibers. The expression of ΔMfn2 in mouse skeletal muscle stimulated glucose oxidation and enhanced respiratory control ratio, which occurred in the absence of changes in mitochondrial mass. ΔMfn2 did not stimulate mitochondrial respiration in Mfn2-deficient muscle cells. The expression of ΔMfn2 in mouse liver or in hepatoma cells stimulated gluconeogenesis. In addition, ΔMfn2 activated basal and maximal respiration both in muscle and liver cells. In all, we show that a form of Mfn2 lacking mitochondrial fusion activity stimulates mitochondrial function and enhances glucose metabolism in muscle and liver tissues. This study suggests that Mfn2 regulates metabolism independently of changes in mitochondrial morphology.
Collapse
Affiliation(s)
- Jessica Segalés
- Institute for Research in Biomedicine (IRB Barcelona Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Minvaleev RS, Bogdanov AR, Bogdanov RR, Bahner DP, Marik PE. Hemodynamic observations of tumo yoga practitioners in a Himalayan environment. J Altern Complement Med 2013; 20:295-9. [PMID: 24156771 DOI: 10.1089/acm.2013.0159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Few attempts have been made to evaluate the physiology of traditional Eastern health practices. The goal of this study was to evaluate the hemodynamic effects of the mysterious Buddhist practice of tumo. Tumo is a meditative practice that produces inner heat through the alleged cultivation of body energy-channels. METHODS This study was performed by members of an international expedition to the Himalayan Mountains in the Republic of India. The study was performed in an unpopulated outdoor mountainous area at an altitude of 16,400 ft with ambient temperatures between -10 and -15(°)C. Two (2) cohorts of subjects were studied: healthy non-yogi volunteers and tumo practitioners. All of the subjects were stripped down to their underclothes and exposed to the subzero atmospheric temperatures for 5 minutes. The volunteers were then passively rewarmed while the tumo practitioners performed tumo for up to 10 minutes. Blood pressure, heart rate, and stroke volume index (SVI) and cardiac index were measured noninvasively using a NICOM™ hemodynamic monitor, while carotid blood flow and biventricular performance were determined echocardiographically at each stage of the experiment. The total peripheral resistance index (TPRI), left ventricular ejection fraction (LVEF), and tricuspid annular plane systolic excursion (TAPSE) were determined using standard formula. RESULTS Fourteen (14) subjects (six volunteers and eight tumo practitioners) completed the study. There was one female subject in each group. With cold exposure, the SVI and carotid blood flow decreased while the TPRI increased significantly in both groups. In the volunteer group, these changes retuned to baseline with rewarming. Following tumo, the cardiac index (4.8±0.6 versus 4.0±0.5 l/m(2); p<0.01), carotid blood flow (445±127 versus 325±100 mL/min/m(2), p<0.01), LVEF (68±5 versus 64±7%; p<0.05) and TAPSE (2.9±0.4 versus 2.4±0.5 cm; p<0.01) were significantly higher when compared with baseline, while the TPRI was significantly lower (1786±189 versus 2173±281; p<0.01). CONCLUSIONS Tumo was associated with a hyperdynamic vasodilated state with increased biventricular performance. We postulate that tumo results in a massive increase in sympathetic activity with activation of brown adipose tissue and marked heat production. The increased heat production may explain the paradoxical vasodilatation in tumo practitioners exposed to subzero temperatures.
Collapse
|
39
|
Autophagy in Myf5+ progenitors regulates energy and glucose homeostasis through control of brown fat and skeletal muscle development. EMBO Rep 2013; 14:795-803. [PMID: 23907538 PMCID: PMC3790054 DOI: 10.1038/embor.2013.111] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 06/26/2013] [Accepted: 06/28/2013] [Indexed: 12/17/2022] Open
Abstract
Macroautophagy (MA) regulates cellular quality control and energy balance. For example, loss of MA in aP2-positive adipocytes converts white adipose tissue (WAT) into brown adipose tissue (BAT)-like, enhancing BAT function and thereby insulin sensitivity. However, whether MA regulates early BAT development is unknown. We report that deleting Atg7 in myogenic Myf5+ progenitors inhibits MA in Myf5-cell-derived BAT and muscle. Knock out (KO) mice have defective BAT differentiation and function. Surprisingly, their body temperature is higher due to WAT lipolysis-driven increases in fatty acid oxidation in 'Beige' cells in inguinal WAT, BAT and muscle. KO mice also present impaired muscle differentiation, reduced muscle mass and glucose intolerance. Our studies show that ATG7 in Myf5+ progenitors is required to maintain energy and glucose homeostasis through effects on BAT and muscle development. Decreased MA in myogenic progenitors with age and/or overnutrition might contribute to the metabolic defects and sarcopenia observed in these conditions.
Collapse
|
40
|
López M, Alvarez CV, Nogueiras R, Diéguez C. Energy balance regulation by thyroid hormones at central level. Trends Mol Med 2013; 19:418-27. [PMID: 23707189 DOI: 10.1016/j.molmed.2013.04.004] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 04/23/2013] [Accepted: 04/25/2013] [Indexed: 12/21/2022]
Abstract
Classically, medical textbooks taught that most effects of thyroid hormones (THs) on energy homeostasis are directly exerted in peripheral tissues. However, current evidence is changing (and challenging) our perspective about the role of THs from a 'peripheral' to a 'central' vision, implying that they affect food intake, energy expenditure, and metabolism by acting, to a large extent, at the central level. Interestingly, effects of THs are interrelated with global energy sensors in the central nervous system (CNS), such as uncoupling protein 2 (UCP2), AMP-activated protein kinase (AMPK; the 'AMPK-BAT axis'), and mechanistic target of rapamycin (mTOR). Here, we review what is currently known about THs and their regulation of energy balance and metabolism in both peripheral and central tissues.
Collapse
Affiliation(s)
- Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain.
| | | | | | | |
Collapse
|
41
|
Abstract
The alarming prevalence of obesity has led to a better understanding of the molecular mechanisms controlling energy homeostasis. Regulation of energy intake and expenditure is more complex than previously thought, being influenced by signals from many peripheral tissues. In this sense, a wide variety of peripheral signals derived from different organs contributes to the regulation of body weight and energy expenditure. Besides the well-known role of insulin and adipokines, such as leptin and adiponectin, in the regulation of energy homeostasis, signals from other tissues not previously thought to play a role in body weight regulation have emerged in recent years. The role of fibroblast growth factor 21 (FGF21), insulin-like growth factor 1 (IGF-I), and sex hormone-binding globulin (SHBG) produced by the liver in the regulation of body weight and insulin sensitivity has been recently described. Moreover, molecules expressed by skeletal muscle such as myostatin have also been involved in adipose tissue regulation. Better known is the involvement of ghrelin, cholecystokinin, glucagon-like peptide 1 (GLP-1) and PYY(3-36), produced by the gut, in energy homeostasis. Even the kidney, through the production of renin, appears to regulate body weight, with mice lacking this hormone exhibiting resistance to diet-induced obesity. In addition, the skeleton has recently emerged as an endocrine organ, with effects on body weight control and glucose homeostasis through the actions of bone-derived factors such as osteocalcin and osteopontin. The comprehension of these signals will help in a better understanding of the aetiopathology of obesity, contributing to the potential development of new therapeutic targets aimed at tackling excess body fat accumulation.
Collapse
|
42
|
Ortega-Molina A, Serrano M. PTEN in cancer, metabolism, and aging. Trends Endocrinol Metab 2013; 24:184-9. [PMID: 23245767 PMCID: PMC3836169 DOI: 10.1016/j.tem.2012.11.002] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 11/11/2012] [Accepted: 11/13/2012] [Indexed: 11/30/2022]
Abstract
Recent reports on mice with systemic overexpression of the tumor-suppressor PTEN (phosphatase and tensin homolog) have expanded our understanding of its physiological functions. Pten transgenic mice present increased energy expenditure, decreased adiposity, improved insulin sensitivity upon high-fat feeding or with aging, and extended lifespan. This has led to new mechanistic insights about the role of PTEN in metabolism. Interestingly, PTEN promotes oxidative phosphorylation and decreases glycolysis, thus preventing the metabolic reprogramming characteristic of cancer cells, which might be relevant to PTEN-mediated cancer protection. PTEN also upregulates UCP1 expression in brown adipocytes, which enhances their nutrient burning capacity and decreases adiposity and associated pathologies. The newly discovered effects of PTEN on metabolism open new avenues for exploration relevant to cancer, obesity, diabetes, and aging.
Collapse
Affiliation(s)
- Ana Ortega-Molina
- Spanish National Cancer Research Centre (CNIO); Madrid, E28029 Spain
| | - Manuel Serrano
- Spanish National Cancer Research Centre (CNIO); Madrid, E28029 Spain
- Corresponding author: Serrano, M. ()
| |
Collapse
|
43
|
|
44
|
Abstract
Objective: A better understanding of the processes influencing energy expenditure could provide new therapeutic strategies for reducing obesity. As the metabolic activity of the brown adipose tissue (BAT) and skeletal muscle is an important determinant of overall energy expenditure and adiposity, we investigated the role of genes that could influence cellular bioenergetics in these two tissues. Design: We screened for genes that are induced in both the BAT and skeletal muscle during acute adaptive thermogenesis in the mouse by microarray. We used C57BL/6J mice as well as the primary and immortalized brown adipocytes and C2C12 myocytes to validate the microarray data. Further characterization included gene expression, mitochondrial density, cellular respiration and substrate utilization. We also used a Hybrid Mouse Diversity Panel to assess in vivo effects on obesity and body fat content. Results: We identified the transcription factor Zbtb16 (also known as Plzf and Zfp14) as being induced in both the BAT and skeletal muscle during acute adaptive thermogenesis. Zbtb16 overexpression in brown adipocytes led to the induction of components of the thermogenic program, including genes involved in fatty acid oxidation, glycolysis and mitochondrial function. Enhanced Zbtb16 expression also increased mitochondrial number, as well as the respiratory capacity and uncoupling. These effects were accompanied by decreased triglyceride content and increased carbohydrate utilization in brown adipocytes. Natural variation in Zbtb16 mRNA levels in multiple tissues across a panel of >100 mouse strains was inversely correlated with body weight and body fat content. Conclusion: Our results implicate Zbtb16 as a novel determinant of substrate utilization in brown adipocytes and of adiposity in vivo.
Collapse
|
45
|
Lin W, Huang X, Zhang L, Chen D, Wang D, Peng Q, Xu L, Li J, Liu X, Li K, Ding K, Jin S, Li J, Wu D. BMS309403 stimulates glucose uptake in myotubes through activation of AMP-activated protein kinase. PLoS One 2012; 7:e44570. [PMID: 22952994 PMCID: PMC3432117 DOI: 10.1371/journal.pone.0044570] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 08/09/2012] [Indexed: 11/18/2022] Open
Abstract
BMS309403 is a biphenyl azole inhibitor against fatty acid binding protein 4 (FABP4) and regarded as a lead compound for effective treatment of obesity related cardio-metabolic diseases. Here we discovered an off-target activity of BMS309403 in that it stimulates glucose uptake in C2C12 myotubes in a temporal and dose dependent manner via activation of AMP-activated protein kinase (AMPK) signaling pathway but independent of FABPs. Further analysis indicated that BMS309403 activates AMPK through increasing the ratio of intracellular AMP:ATP while decreasing mitochondrial membrane potential. These findings provide mechanistic insights on the action of BMS309403.
Collapse
Affiliation(s)
- Wanhua Lin
- The Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaoli Huang
- The Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Lina Zhang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Dongmei Chen
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Dongye Wang
- The Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qilong Peng
- Institute of Chemical Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Lei Xu
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jingya Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiujie Liu
- Institute of Chemical Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Kuai Li
- The Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ke Ding
- Institute of Chemical Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Shouguang Jin
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- * E-mail: (JL); (DW)
| | - Donghai Wu
- The Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- * E-mail: (JL); (DW)
| |
Collapse
|