1
|
Zhou Y, Fu M, Guan X, Wang C, Xiao Y, Hong S, Zhao H, Wang Y, Liu C, You Y, Zhong G, Wu T, Chen S, Zhang Y, Guo H. Targeted plasma lipidomic profiles associated with colorectal cancer risk and effect modifications by common risk factors and particulate matter exposure. Int J Cancer 2025. [PMID: 40259538 DOI: 10.1002/ijc.35449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/23/2025]
Abstract
The role of specific lipids in colorectal cancer (CRC) incidence remains unclear. We aimed to evaluate associations of plasma lipids with CRC risk and the modification effects of common risk factors and ambient particulate matter (PM) exposure. We conducted a nested case-control study within the Dongfeng-Tongji cohort, including 218 cases and 436 matched controls. Plasma levels of 155 lipids were determined by UPLC-MS/MS. The conditional logistic regression and LASSO regression identified nine lipids as potential CRC risk biomarkers. Specifically, triacylglycerol (TAG) 56:7 [20:4], cholesterol ester (CE) 20:2 (1), CE 22:5, lysophosphatidylethanolamine (LPE) 18:2, and sphingomyelin (SM) 32:2 were associated with decreased CRC risk (adjusted ORs per SD: 0.05-0.68), while LPE 18:0, diglycerol (DAG) 16:1/17:1, SM 38:1, and SM 34:0 were associated with increased CRC risk (ORs per SD: 1.60-6.19). Compared to the traditional factors, these lipids exerted improvement of 35.4% in area under the curve (AUC) discriminations for CRC (AUC = 0.972 vs. 0.618). Notably, the associations between specific lipids and CRC risk were modified by BMI (TAG 56:7 [20:4]), smoking (LPE 18:0, DAG 16:1/17:1), alcohol consumption (SM 32:2), healthy diet (TAG 56:7 [20:4]), and PM exposure (TAG 56:7 [20:4], DAG 16:1/17:1, SM 38:1, LPE 18:2) (all Pinteraction <0.05). Our study identified 9 plasma lipids with significant associations with CRC risk and underscored the effect modifications of common risk factors and PM exposure on these associations. These findings provide new insights into the links between specific lipids and CRC development.
Collapse
Affiliation(s)
- Yuhan Zhou
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Fu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Guan
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenming Wang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Xiao
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiru Hong
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Zhao
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuxi Wang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenliang Liu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingqian You
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guorong Zhong
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianhao Wu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengli Chen
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yichi Zhang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huan Guo
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Durrington PN, Bashir B, Soran H. How Does HDL Participate in Atherogenesis? Antioxidant Activity Versus Role in Reverse Cholesterol Transport. Antioxidants (Basel) 2025; 14:430. [PMID: 40298833 PMCID: PMC12023944 DOI: 10.3390/antiox14040430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/10/2025] [Accepted: 03/15/2025] [Indexed: 04/30/2025] Open
Abstract
Low-density lipoprotein (LDL) chemically modified by reactive oxygen species (ROS), for example, leaking from red blood cells in the vascular compartment, more readily crosses the vascular endothelium than does nonoxidatively modified LDL to enter tissue fluid. Oxidatively modified LDL (oxLDL) may also be created in the tissue fluid by ROS leaking from cells by design, for example, by inflammatory white cells, or simply leaking from other cells as a consequence of oxygen metabolism. As well as oxLDL, glycatively modified LDL (glycLDL) is formed in the circulation. High-density lipoprotein (HDL) appears capable of decreasing the burden of lipid peroxides formed on LDL exposed to ROS or to glucose and its metabolites. The mechanism for this that has received the most attention is the antioxidant activity of HDL, which is due in large part to the presence of paraoxonase 1 (PON1). PON1 is intimately associated with its apolipoprotein A1 component and with HDL's lipid domains into which lipid peroxides from LDL or cell membranes can be transferred. It is frequently overlooked that for PON1 to hydrolyze lipid substrates, it is essential that it remain by virtue of its hydrophobic amino acid sequences within a lipid micellar environment, for example, during its isolation from serum or genetically modified cells in tissue culture. Otherwise, it may retain its capacity to hydrolyze water-soluble substrates, such as phenyl acetate, whilst failing to hydrolyze more lipid-soluble molecules. OxLDL and probably glycLDL, once they have crossed the arterial endothelium by receptor-mediated transcytosis, are rapidly taken up by monocytes in a process that also involves scavenger receptors, leading to subendothelial foam cell formation. These are the precursors of atheroma, inducing more monocytes to cross the endothelium into the lesion and the proliferation and migration of myocytes present in the arterial wall into the developing lesion, where they transform into foam cells and fibroblasts. The atheroma progresses to have a central extracellular lake of cholesteryl ester following necrosis and apoptosis of foam cells with an overlying fibrous cap whilst continuing to grow concentrically around the arterial wall by a process involving oxLDL and glycLDL. Within the arterial wall, additional oxLDL is generated by ROS secreted by inflammatory cells and leakage from cells generally when couplet oxygen is reduced. PON1 is important for the mechanism by which HDL opposes atherogenesis, which may provide a better avenue of inquiry in the identification of vulnerable individuals and the provision of new therapies than have emerged from the emphasis placed on its role in RCT.
Collapse
Affiliation(s)
- Paul N. Durrington
- Faculty of Biology, Medicine and Health, Cardiovascular Research Group, University of Manchester, Manchester M13 9NT, UK; (B.B.); (H.S.)
| | - Bilal Bashir
- Faculty of Biology, Medicine and Health, Cardiovascular Research Group, University of Manchester, Manchester M13 9NT, UK; (B.B.); (H.S.)
- Department of Diabetes, Endocrinology and Metabolism, Peter Mount Building, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| | - Handrean Soran
- Faculty of Biology, Medicine and Health, Cardiovascular Research Group, University of Manchester, Manchester M13 9NT, UK; (B.B.); (H.S.)
- Department of Diabetes, Endocrinology and Metabolism, Peter Mount Building, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| |
Collapse
|
3
|
Fan Z, Chirinos J, Yang X, Shu J, Li Y, O’Brien JM, Witschey W, Rader DJ, Gur R, Zhao B. The landscape of plasma proteomic links to human organ imaging. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.14.25320532. [PMID: 39867388 PMCID: PMC11759249 DOI: 10.1101/2025.01.14.25320532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Plasma protein levels provide important insights into human disease, yet a comprehensive assessment of plasma proteomics across organs is lacking. Using large-scale multimodal data from the UK Biobank, we integrated plasma proteomics with organ imaging to map their phenotypic and genetic links, analyzing 2,923 proteins and 1,051 imaging traits across multiple organs. We uncovered 5,067 phenotypic protein-imaging associations, identifying both organ-specific and organ-shared proteomic relations, along with their enriched protein-protein interaction networks and biological pathways. By integrating external gene expression data, we observed that plasma proteins associated with the brain, liver, lung, pancreas, and spleen tended to be primarily produced in the corresponding organs, while proteins associated with the heart, body fat, and skeletal muscle were predominantly expressed in the liver. We also mapped key protein predictors of organ structures and showed the effective stratification capability of plasma protein-based prediction models. Furthermore, we identified 8,116 genetic-root putative causal links between proteins and imaging traits across multiple organs. Our study presents the most comprehensive pan-organ imaging proteomics map, bridging molecular and structural biology and offering a valuable resource to contextualize the complex roles of molecular pathways underlying plasma proteomics in organ systems.
Collapse
Affiliation(s)
- Zirui Fan
- Department of Statistics and Data Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julio Chirinos
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Xiaochen Yang
- Department of Statistics, Purdue University, West Lafayette, IN 47907, USA
| | - Juan Shu
- Department of Statistics and Data Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yujue Li
- Department of Statistics, Purdue University, West Lafayette, IN 47907, USA
| | - Joan M. O’Brien
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Medicine Center for Ophthalmic Genetics in Complex Diseases, Philadelphia, PA 19104, USA
| | - Walter Witschey
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel J. Rader
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ruben Gur
- Lifespan Brain Institute (LiBI), Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA 19104, USA
- Brain Behavior Laboratory, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bingxin Zhao
- Department of Statistics and Data Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA 19104, USA
- Center for AI and Data Science for Integrated Diagnostics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Population Aging Research Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Center for Eye-Brain Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Al-Masum M, Phillips B. A Novel Synthesis Process of Cholesterol Ester by the Cross-Coupling of Cholesterol and Aroyl Chlorides. INTERNATIONAL JOURNAL OF ORGANIC CHEMISTRY 2024; 14:123-127. [PMID: 39897053 PMCID: PMC11784638 DOI: 10.4236/ijoc.2024.144007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Cholesterol is a sterol with a four-membered ring structure and a single hydroxyl group attached to one of the rings. It is the active, raw form of cholesterol. Cholesteryl Ester is the inactive form in which cholesterol is esterified to be transported to target organs. The newly developed process of making bulky esters from unprecedented tertiary alcohols is applied to synthesize cholesterol esters successfully. Although cholesterol is a secondary alcohol, it is a very bulky and interesting compound due to its immense application. Usually, specific enzymes catalyze cholesterol to cholesterol ester. This project aims to develop a cross-coupling chemistry process to synthesize cholesterol esters and see the broader application of those new cholesterol esters in chemical biology. The mixture of cholesterol, sodium tert-butoxide, aroyl chloride, the catalyst PdCl2 (dtbpf) complex, and the solvent 1,4-dioxane, when microwaved at 100˚C for 2 hours, works well for the formation of cross-coupling cholesterol ester products in good to high yields.
Collapse
Affiliation(s)
- Mohammad Al-Masum
- Department of Chemistry, Tennessee State University, Nashville, TN, USA
| | - Brooklyn Phillips
- Department of Chemistry, Tennessee State University, Nashville, TN, USA
| |
Collapse
|
5
|
Zhou C, Hu Z, Liu X, Wang Y, Wei S, Liu Z. Disruption of the peripheral biological clock may play a role in sleep deprivation-induced dysregulation of lipid metabolism in both the daytime and nighttime phases. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159530. [PMID: 38964437 DOI: 10.1016/j.bbalip.2024.159530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/14/2024] [Accepted: 07/02/2024] [Indexed: 07/06/2024]
Abstract
STUDY OBJECTIVES This study aimed to examine the effect of sleep deprivation (SD) on lipid metabolism or lipid metabolism regulation in the liver and white adipose tissue (WAT) during the light and dark phases and explored the possible mechanisms underlying the diurnal effect of SD on lipid metabolism associated with clock genes. METHODS Male C57BL/6J mice aged 2 months were deprived of sleep daily for 20 h for ten consecutive days with weakly forced locomotion. The body weights and food consumption levels of the SD and control mice were recorded, and the mice were then sacrificed at ZT (zeitgeber time) 2 and ZT 14. The peripheral clock genes, enzymes involved in fat synthesis and catabolism in the WAT, and melatonin signalling pathway-mediated lipid metabolism in the liver were assessed. Untargeted metabolomics and tandem mass tag (TMT) proteomics were used to identify differential lipid metabolism pathways in the liver. RESULTS Bodyweight gain and daily food consumption were dramatically elevated after SD. Profound disruptions in the diurnal regulation of the hepatic peripheral clock and enzymes involved in fat synthesis and catabolism in the WAT were observed, with a strong emphasis on hepatic lipid metabolic pathways, while melatonin signalling pathway-mediated lipid metabolism exhibited moderate changes. CONCLUSIONS In mice, ten consecutive days of SD increased body weight gain and daily food consumption. In addition, SD profoundly disrupted lipid metabolism in the WAT and liver during the light and dark periods. These diurnal changes may be related to disorders of the peripheral biological clock.
Collapse
Affiliation(s)
- Chufan Zhou
- Yancheng No.1 People's Hospital, Affiliated Hospital of Medical School, Nanjing University, Yancheng, China; Nanjing Children's Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ziping Hu
- Yancheng No.1 People's Hospital, Affiliated Hospital of Medical School, Nanjing University, Yancheng, China.
| | - Xuan Liu
- Department of Child, Adolescent and Women's Health, School of Public Health, Capital Medical University, Beijing, China
| | - Yuefan Wang
- Department of Child, Adolescent and Women's Health, School of Public Health, Capital Medical University, Beijing, China
| | - Shougang Wei
- Department of Child, Adolescent and Women's Health, School of Public Health, Capital Medical University, Beijing, China
| | - Zhifeng Liu
- Nanjing Children's Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
6
|
Chandramouli A, Kamat SS. A Facile LC-MS Method for Profiling Cholesterol and Cholesteryl Esters in Mammalian Cells and Tissues. Biochemistry 2024; 63:2300-2309. [PMID: 38986142 DOI: 10.1021/acs.biochem.4c00160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Cholesterol is central to mammalian lipid metabolism and serves many critical functions in the regulation of diverse physiological processes. Dysregulation in cholesterol metabolism is causally linked to numerous human diseases, and therefore, in vivo, the concentrations and flux of cholesterol and cholesteryl esters (fatty acid esters of cholesterol) are tightly regulated. While mass spectrometry has been an analytical method of choice for detecting cholesterol and cholesteryl esters in biological samples, the hydrophobicity, chemically inert nature, and poor ionization of these neutral lipids have often proved a challenge in developing lipidomics compatible liquid chromatography-mass spectrometry (LC-MS) methods to study them. To overcome this problem, here, we report a reverse-phase LC-MS method that is compatible with existing high-throughput lipidomics strategies and capable of identifying and quantifying cholesterol and cholesteryl esters from mammalian cells and tissues. Using this sensitive yet robust LC-MS method, we profiled different mammalian cell lines and tissues and provide a comprehensive picture of cholesterol and cholesteryl esters content in them. Specifically, among cholesteryl esters, we find that mammalian cells and tissues largely possess monounsaturated and polyunsaturated variants. Taken together, our lipidomics compatible LC-MS method to study this lipid class opens new avenues in understanding systemic and tissue-level cholesterol metabolism under various physiological conditions.
Collapse
Affiliation(s)
- Aakash Chandramouli
- Department of Biology, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Siddhesh S Kamat
- Department of Biology, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| |
Collapse
|
7
|
Manthei KA, Tremonti GE, Chang L, Niemelä A, Giorgi L, Koivuniemi A, Tesmer JJG. Rescue of Familial Lecithin:Cholesterol Acyltranferase Deficiency Mutations with an Allosteric Activator. Mol Pharmacol 2024; 106:188-197. [PMID: 39151949 PMCID: PMC11413911 DOI: 10.1124/molpharm.124.000932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/08/2024] [Accepted: 08/01/2024] [Indexed: 08/19/2024] Open
Abstract
Lecithin:cholesterol acyltransferase (LCAT) deficiencies represent severe disorders characterized by aberrant cholesterol esterification in plasma, leading to life-threatening conditions. This study investigates the efficacy of Compound 2, a piperidinyl pyrazolopyridine allosteric activator that binds the membrane-binding domain of LCAT, in rescuing the activity of LCAT variants associated with disease. The variants K218N, N228K, and G230R, all located in the cap and lid domains of LCAT, demonstrated notable activity restoration in response to Compound 2. Molecular dynamics simulations and structural modeling indicate that these mutations disrupt the lid and membrane binding domain, with Compound 2 potentially dampening these structural alterations. Conversely, variants such as M252K and F382V in the cap and α/β-hydrolase domain, respectively, exhibited limited or no rescue by Compound 2. Future research should prioritize in vivo investigations that would validate the therapeutic potential of Compound 2 and related activators in familial LCAT deficiency patients with mutations in the cap and lid of the enzyme. SIGNIFICANCE STATEMENT: Lecithin:cholesterol acyltranferase (LCAT) catalyzes the first step of reverse cholesterol transport, namely the esterification of cholesterol in high density lipoprotein particles. Somatic mutations in LCAT lead to excess cholesterol in blood plasma and, in severe cases, kidney failure. In this study, we show that recently discovered small molecule activators can rescue function in LCAT-deficient variants when the mutations occur in the lid and cap domains of the enzyme.
Collapse
Affiliation(s)
- Kelly A Manthei
- Department of Molecular Pharmacology, University of Michigan, Ann Arbor, Michigan (K.A.M., G.E.T., L.C.); Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (A.N., L.G., A.K.); and Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Grace E Tremonti
- Department of Molecular Pharmacology, University of Michigan, Ann Arbor, Michigan (K.A.M., G.E.T., L.C.); Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (A.N., L.G., A.K.); and Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Louise Chang
- Department of Molecular Pharmacology, University of Michigan, Ann Arbor, Michigan (K.A.M., G.E.T., L.C.); Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (A.N., L.G., A.K.); and Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Akseli Niemelä
- Department of Molecular Pharmacology, University of Michigan, Ann Arbor, Michigan (K.A.M., G.E.T., L.C.); Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (A.N., L.G., A.K.); and Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Laura Giorgi
- Department of Molecular Pharmacology, University of Michigan, Ann Arbor, Michigan (K.A.M., G.E.T., L.C.); Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (A.N., L.G., A.K.); and Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Artturi Koivuniemi
- Department of Molecular Pharmacology, University of Michigan, Ann Arbor, Michigan (K.A.M., G.E.T., L.C.); Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (A.N., L.G., A.K.); and Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - John Joseph Grubb Tesmer
- Department of Molecular Pharmacology, University of Michigan, Ann Arbor, Michigan (K.A.M., G.E.T., L.C.); Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (A.N., L.G., A.K.); and Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| |
Collapse
|
8
|
Rigamonti AE, Polledri E, Favero C, Caroli D, Bondesan A, Grugni G, Mai S, Cella SG, Fustinoni S, Sartorio A. Metabolomic profiling of Prader-Willi syndrome compared with essential obesity. Front Endocrinol (Lausanne) 2024; 15:1386265. [PMID: 38812813 PMCID: PMC11133515 DOI: 10.3389/fendo.2024.1386265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024] Open
Abstract
Introduction Prader-Willi syndrome (PWS) is a rare disease, which shows a peculiar clinical phenotype, including obesity, which is different from essential obesity (EOB). Metabolomics might represent a valuable tool to reveal the biochemical mechanisms/pathways underlying clinical differences between PWS and EOB. The aim of the present (case-control, retrospective) study was to determine the metabolomic profile that characterizes PWS compared to EOB. Methods A validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) targeted metabolomic approach was used to measure a total of 188 endogenous metabolites in plasma samples of 32 patients with PWS (F/M = 23/9; age: 31.6 ± 9.2 years; body mass index [BMI]: 42.1 ± 7.0 kg/m2), compared to a sex-, age- and BMI-matched group of patients with EOB (F/M = 23/9; age: 31.4 ± 6.9 years; BMI: 43.5 ± 3.5 kg/m2). Results Body composition in PWS was different when compared to EOB, with increased fat mass and decreased fat-free mass. Glycemia and HDL cholesterol were higher in patients with PWS than in those with EOB, while insulinemia was lower, as well as heart rate. Resting energy expenditure was lower in the group with PWS than in the one with EOB, a difference that was missed after fat-free mass correction. Carrying out a series of Tobit multivariable linear regressions, adjusted for sex, diastolic blood pressure, and C reactive protein, a total of 28 metabolites was found to be associated with PWS (vs. non-PWS, i.e., EOB), including 9 phosphatidylcholines (PCs) ae, 5 PCs aa, all PCs aa, 7 lysoPCs a, all lysoPCs, 4 acetylcarnitines, and 1 sphingomyelin, all of which were higher in PWS than EOB. Conclusions PWS exhibits a specific metabolomic profile when compared to EOB, suggesting a different regulation of some biochemical pathways, fundamentally related to lipid metabolism.
Collapse
Affiliation(s)
| | - Elisa Polledri
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Chiara Favero
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Diana Caroli
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-endocrinological Research, Piancavallo-Verbania, Italy
| | - Adele Bondesan
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-endocrinological Research, Piancavallo-Verbania, Italy
| | - Graziano Grugni
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-endocrinological Research, Piancavallo-Verbania, Italy
| | - Stefania Mai
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Laboratory of Metabolic Research, Piancavallo-Verbania, Italy
| | - Silvano G. Cella
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Silvia Fustinoni
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessandro Sartorio
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-endocrinological Research, Piancavallo-Verbania, Italy
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-endocrinological Research, Milan, Italy
| |
Collapse
|
9
|
Barranco-Altirriba M, Alonso N, Weber RJM, Lloyd GR, Hernandez M, Yanes O, Capellades J, Jankevics A, Winder C, Falguera M, Franch-Nadal J, Dunn WB, Perera-Lluna A, Castelblanco E, Mauricio D. Lipidome characterisation and sex-specific differences in type 1 and type 2 diabetes mellitus. Cardiovasc Diabetol 2024; 23:109. [PMID: 38553758 PMCID: PMC10981308 DOI: 10.1186/s12933-024-02202-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/14/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND In this study, we evaluated the lipidome alterations caused by type 1 diabetes (T1D) and type 2 diabetes (T2D), by determining lipids significantly associated with diabetes overall and in both sexes, and lipids associated with the glycaemic state. METHODS An untargeted lipidomic analysis was performed to measure the lipid profiles of 360 subjects (91 T1D, 91 T2D, 74 with prediabetes and 104 controls (CT)) without cardiovascular and/or chronic kidney disease. Ultra-high performance liquid chromatography-electrospray ionization mass spectrometry (UHPLC-ESI-MS) was conducted in two ion modes (positive and negative). We used multiple linear regression models to (1) assess the association between each lipid feature and each condition, (2) determine sex-specific differences related to diabetes, and (3) identify lipids associated with the glycaemic state by considering the prediabetes stage. The models were adjusted by sex, age, hypertension, dyslipidaemia, body mass index, glucose, smoking, systolic blood pressure, triglycerides, HDL cholesterol, LDL cholesterol, alternate Mediterranean diet score (aMED) and estimated glomerular filtration rate (eGFR); diabetes duration and glycated haemoglobin (HbA1c) were also included in the comparison between T1D and T2D. RESULTS A total of 54 unique lipid subspecies from 15 unique lipid classes were annotated. Lysophosphatidylcholines (LPC) and ceramides (Cer) showed opposite effects in subjects with T1D and subjects with T2D, LPCs being mainly up-regulated in T1D and down-regulated in T2D, and Cer being up-regulated in T2D and down-regulated in T1D. Also, Phosphatidylcholines were clearly down-regulated in subjects with T1D. Regarding sex-specific differences, ceramides and phosphatidylcholines exhibited important diabetes-associated differences due to sex. Concerning the glycaemic state, we found a gradual increase of a panel of 1-deoxyceramides from normoglycemia to prediabetes to T2D. CONCLUSIONS Our findings revealed an extensive disruption of lipid metabolism in both T1D and T2D. Additionally, we found sex-specific lipidome changes associated with diabetes, and lipids associated with the glycaemic state that can be linked to previously described molecular mechanisms in diabetes.
Collapse
Affiliation(s)
- Maria Barranco-Altirriba
- Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial, Universitat Politècnica de Catalunya, B2SLab, Barcelona, Spain
- Networking Biomedical Research Centre in the subject area of Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN), Madrid, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Núria Alonso
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Barcelona, Spain
- Servicio de Endocrinología y Nutrición, Hospital Universitario e Instituto de Investigación en Ciencias de la Salud Germans Trias i Pujol, Badalona, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Ralf J M Weber
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Gavin R Lloyd
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Marta Hernandez
- Department of Endocrinology & Nutrition, Hospital Universitari Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Oscar Yanes
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Barcelona, Spain
- Department of Electronic Engineering, Universitat Rovira i Virgili, IISPV, Tarragona, Spain
| | - Jordi Capellades
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Barcelona, Spain
- Institut Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Andris Jankevics
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
- Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Catherine Winder
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, L69 7ZB, Liverpool, UK
| | - Mireia Falguera
- Institut d'Investigació Biomèdica, Centre Atenció Primària Cervera, Gerència d'Atenció Primària, Universitat de Lleida, Institut Català de la Salut, Lleida, Spain
| | - Josep Franch-Nadal
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Barcelona, Spain
- DAP-Cat Group, Unitat de Suport a La Recerca Barcelona Ciutat, Institut Universitari d'Investigació en Atenció Primària Jordi Gol, Barcelona, Spain
| | - Warwick B Dunn
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, L69 7ZB, Liverpool, UK
| | - Alexandre Perera-Lluna
- Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial, Universitat Politècnica de Catalunya, B2SLab, Barcelona, Spain
- Networking Biomedical Research Centre in the subject area of Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN), Madrid, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Esmeralda Castelblanco
- Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, 63110, St. Louis, MO, USA.
- Unitat de Suport a la Recerca Barcelona, Institut Universitari d'Investigació en Atenció Primària Jordi Gol i Gurina, 08007, Barcelona, Spain.
| | - Didac Mauricio
- Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Barcelona, Spain.
- Institut d'Investigació Biomèdica Sant Pau (IR Sant Pau), 08041, Barcelona, Spain.
- Faculty of Medicine, University of Vic, Vic, Spain.
| |
Collapse
|
10
|
Hong BV, Zheng JJ, Romo EZ, Agus JK, Tang X, Arnold CD, Adu-Afarwuah S, Lartey A, Okronipa H, Dewey KG, Zivkovic AM. Seasonal Factors Are Associated with Activities of Enzymes Involved in High-Density Lipoprotein Metabolism among Pregnant Females in Ghana. Curr Dev Nutr 2023; 7:102041. [PMID: 38130330 PMCID: PMC10733676 DOI: 10.1016/j.cdnut.2023.102041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/15/2023] [Accepted: 11/19/2023] [Indexed: 12/23/2023] Open
Abstract
Background Small-quantity lipid-based nutrient supplements (SQ-LNS) during pregnancy and postnatally were previously shown to improve high-density lipoprotein (HDL) cholesterol efflux capacity (CEC) and length in the children of supplemented mothers at 18 mo of age in the International Lipid-Based Nutrient Supplements (iLiNS) DYAD trial in Ghana. However, the effects of SQ-LNS on maternal HDL functionality during pregnancy are unknown. Objective The goal of this cross-sectional, secondary outcome analysis was to compare HDL function in mothers supplemented with SQ-LNS vs. iron and folic acid (IFA) during gestation. Methods HDL CEC and the activities of 3 HDL-associated enzymes were analyzed in archived plasma samples (N = 197) from a subsample of females at 36 weeks of gestation enrolled in the iLiNS-DYAD trial in Ghana. Correlations between HDL function and birth outcomes, inflammatory markers C-reactive protein (CRP) and alpha-1-acid glycoprotein (AGP), and the effects of season were explored to determine the influence of these factors on HDL function in this cohort of pregnant females. Results There were no statistically significant differences in HDL CEC, plasma lecithin-cholesterol acyltransferase (LCAT) activity, cholesteryl ester transfer protein (CETP) activity, or phospholipid transfer protein (PLTP) activity between mothers supplemented with SQ-LNS compared with IFA control, and no statistically significant relationships between maternal HDL function and childbirth outcomes. LCAT activity was negatively correlated with plasma AGP (R = -0.19, P = 0.007) and CRP (R = -0.28, P < 0.001), CETP and LCAT activity were higher during the dry season compared to the wet season, and PLTP activity was higher in the wet season compared to the dry season. Conclusions Mothers in Ghana supplemented with SQ-LNS compared with IFA during gestation did not have measurable differences in HDL functionality, and maternal HDL function was not associated with childbirth outcomes. However, seasonal factors and markers of inflammation were associated with HDL function, indicating that these factors had a stronger influence on HDL functionality than SQ-LNS supplementation during pregnancy. Clinical Trial Registry number The study was registered as NCT00970866. https://clinicaltrials.gov/study/NCT00970866.
Collapse
Affiliation(s)
- Brian V Hong
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Jack Jingyuan Zheng
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Eduardo Z Romo
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Joanne K Agus
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Xinyu Tang
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Charles D Arnold
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Seth Adu-Afarwuah
- Department of Nutrition and Food Science, University of Ghana, Legon, Ghana
| | - Anna Lartey
- Department of Nutrition and Food Science, University of Ghana, Legon, Ghana
| | - Harriet Okronipa
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Kathryn G Dewey
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Angela M Zivkovic
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| |
Collapse
|
11
|
Baylie T, Kebad A, Ayelgn T, Tiruneh M, Hunie Tesfa K. Anti-Diabetic Effects of the 80% Methanolic Extract of Datura Stramonium Linn (Solanaceae) Leaves in Streptozotocin- Induced Diabetic Mice. J Exp Pharmacol 2023; 15:375-389. [PMID: 37873553 PMCID: PMC10590592 DOI: 10.2147/jep.s426925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023] Open
Abstract
Background Managing diabetes mellitus with currently available drugs is costly, and the chances of side effects are high, leading to further studies for new and better medications from plant sources with the affordable and lower side effects. This study aimed to evaluate the anti-diabetic effects of Datura stramonium Linn (Solanaceae) Leaves Extract in Streptozotocin- Induced Diabetic Mice. Methods Male Swiss albino mice were induced into diabetes using 150mg/kg of STZ. Mice were allocated randomly into six groups, five mice per group. Group I was a normal control, Group II was Diabetic negative control, group III was Diabetic positive control, Group IV-VI were Diabetic Mice that treated with extract (100, 200 and 400 mg/kg) for 14 days. The FBG measurements were done on 0, 7th, and 14th days of treatment. After 14th day of treatment the mice were anesthetized with diethyl ether. Then, blood was drawn by cardiac puncture to assess TC, TG, LDL-C, and HDL-C. The antioxidant activity of the extract was determined using a DPPH assay. The data were entered into Epi-Data version 4.6, exported to SPSS version 26.0, and analyzed using a one-way ANOVA followed by a Tukey post hoc test. P < 0.05 was considered statistically significant. Results The extract of D. stramonium reduced the FBG level by 19.71%, 30.27%, 40.95%, and 45.67%, respectively, for D. stramonium 100, 200, 400, and GLC 5 mg/kg on the 14th day of treatment. Diabetic mice treated with D. stramonium for 14 days showed a significant decrease in serum TC, LDL, and serum TG and a significant increase in body weight, and HDL level as compared to diabetic negative control. Antioxidant activities of the leaves extract were comparable to ascorbic acid with an IC50 of 172.79 μg/mL. Conclusion These findings revealed that the D. stramonium leaves extract possesses significant Anti-diabetic activities.
Collapse
Affiliation(s)
- Temesgen Baylie
- Department of Biomedical Science, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Assefa Kebad
- Department of Pharmacology, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Tiget Ayelgn
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Markeshaw Tiruneh
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Kibur Hunie Tesfa
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
12
|
Hong BV, Zheng J, Zivkovic AM. HDL Function across the Lifespan: From Childhood, to Pregnancy, to Old Age. Int J Mol Sci 2023; 24:15305. [PMID: 37894984 PMCID: PMC10607703 DOI: 10.3390/ijms242015305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
The function of high-density lipoprotein (HDL) particles has emerged as a promising therapeutic target and the measurement of HDL function is a promising diagnostic across several disease states. The vast majority of research on HDL functional biology has focused on adult participants with underlying chronic diseases, whereas limited research has investigated the role of HDL in childhood, pregnancy, and old age. Yet, it is apparent that functional HDL is essential at all life stages for maintaining health. In this review, we discuss current data regarding the role of HDL during childhood, pregnancy and in the elderly, how disturbances in HDL may lead to adverse health outcomes, and knowledge gaps in the role of HDL across these life stages.
Collapse
Affiliation(s)
| | | | - Angela M. Zivkovic
- Department of Nutrition, University of California-Davis, Davis, CA 95616, USA; (B.V.H.); (J.Z.)
| |
Collapse
|
13
|
Yaginuma S, Omi J, Kano K, Aoki J. Lysophospholipids and their producing enzymes: Their pathological roles and potential as pathological biomarkers. Pharmacol Ther 2023; 246:108415. [PMID: 37061204 DOI: 10.1016/j.pharmthera.2023.108415] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/17/2023]
Abstract
Accumulating evidence suggests that lysophospholipids (LPL) serve as lipid mediators that exert their diverse pathophysiological functions via G protein-coupled receptors. These include lysophosphatidic acid (LPA), sphingosine 1-phosphate (S1P), lysophosphatidylserine (LysoPS) and lysophosphatidylinositol (LPI). Unlike S1P, which is produced intracellularly and secreted from various cell types, some LPLs, such as LPA, LysoPS and LPI, are produced in lesions, especially under pathological conditions, where they positively or negatively regulate disease progression through their autacoid-like actions. Although these LPLs are minor components of the cell membrane, recent developments in mass spectrometry techniques have made it possible to detect and quantify them in a variety of biological fluids, including plasma, serum, urine and cerebrospinal fluid. The synthetic enzymes of LPA and LysoPS are also present in these biological fluids, which also can be detected by antibody-based methods. Importantly, their levels have been found to dramatically increase during various pathological conditions. Thus, LPLs and their synthetic enzymes in these biological fluids are potential biomarkers. This review discusses the potential of these LPLs and LPL-related molecules as pathological biomarkers, including methods and problems in their measurement.
Collapse
Affiliation(s)
- Shun Yaginuma
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| | - Jumpei Omi
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| | - Kuniyuki Kano
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan.
| |
Collapse
|
14
|
Otsuji S, Nishio Y, Tsujita M, Rio M, Huber C, Antón-Plágaro C, Mizuno S, Kawano Y, Miyatake S, Simon M, van Binsbergen E, van Jaarsveld RH, Matsumoto N, Cormier-Daire V, J Cullen P, Saitoh S, Kato K. Clinical diversity and molecular mechanism of VPS35L-associated Ritscher-Schinzel syndrome. J Med Genet 2023; 60:359-367. [PMID: 36113987 PMCID: PMC10086474 DOI: 10.1136/jmg-2022-108602] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/12/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE The Retriever subunit VPS35L is the third responsible gene for Ritscher-Schinzel syndrome (RSS) after WASHC5 and CCDC22. To date, only one pair of siblings have been reported and their condition was significantly more severe than typical RSS. This study aimed to understand the clinical spectrum and underlying molecular mechanism in VPS35L-associated RSS. METHODS We report three new patients with biallelic VPS35L variants. Biochemical and cellular analyses were performed to elucidate disease aetiology. RESULTS In addition to typical features of RSS, we confirmed hypercholesterolaemia, hypogammaglobulinaemia and intestinal lymphangiectasia as novel complications of VPS35L-associated RSS. The latter two complications as well as proteinuria have not been reported in patients with CCDC22 and WASHC5 variants. One patient showed a severe phenotype and the other two were milder. Cells established from patients with the milder phenotypes showed relatively higher VPS35L protein expression. Cellular analysis found VPS35L ablation decreased the cell surface level of lipoprotein receptor-related protein 1 and low-density lipoprotein receptor, resulting in reduced low-density lipoprotein cellular uptake. CONCLUSION VPS35L-associated RSS is a distinct clinical entity with diverse phenotype and severity, with a possible molecular mechanism of hypercholesterolaemia. These findings provide new insight into the essential and distinctive role of Retriever in human development.
Collapse
Affiliation(s)
- Shiomi Otsuji
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Yosuke Nishio
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Maki Tsujita
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Marlene Rio
- Université Paris Cité, Génétique clinique, INSERM UMR 1163, Institut Imagine, Hôpital Necker Enfants Malades (AP-HP), Paris, France
| | - Céline Huber
- Université Paris Cité, Génétique clinique, INSERM UMR 1163, Institut Imagine, Hôpital Necker Enfants Malades (AP-HP), Paris, France
| | - Carlos Antón-Plágaro
- School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Seiji Mizuno
- Department of Pediatrics, Aichi Developmental Disability Center, Kasugai, Japan
| | - Yoshihiko Kawano
- Department of Pediatrics, Toyota Memorial Hospital, Toyota, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University School of Medicine Graduate School of Medicine, Yokohama, Japan
- Department of Clinical Genetics, Yokohama City University Hospital, Yokohama, Japan
| | - Marleen Simon
- Department of Genetics, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Ellen van Binsbergen
- Department of Genetics, University Medical Centre Utrecht, Utrecht, The Netherlands
| | | | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University School of Medicine Graduate School of Medicine, Yokohama, Japan
| | - Valerie Cormier-Daire
- Université Paris Cité, Génétique clinique, INSERM UMR 1163, Institut Imagine, Hôpital Necker Enfants Malades (AP-HP), Paris, France
| | - Peter J Cullen
- School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Kohji Kato
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
- School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol, UK
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| |
Collapse
|
15
|
Di Natale C, Monaco A, Pedone C, Trojsi F, Tedeschi G, Netti PA, Abrescia P. Levels of 24-hydroxycholesteryl esters in cerebrospinal fluid and plasma from patients with amyotrophic lateral sclerosis. J Pharm Biomed Anal 2023; 226:115244. [PMID: 36680807 DOI: 10.1016/j.jpba.2023.115244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/12/2023]
Abstract
OBJECTIVE In this context, our study aimed to ascertain whether the esterification of 24-hydroxycholesterol, a process heavily affected by oxidative stress, is altered in ALS. METHODS The study examined the level of 24-hydroxycholesteryl esters in cerebrospinal fluid and plasma of 18 ALS patients by spectroscopic technique as Ultra-high performance liquid chromatography mass spectrometry (UPLC-MS). RESULTS The level of 24-hydroxycholesteryl esters in cerebrospinal fluid was found to be lower as the brain-blood barrier was damaged. Such a level was positively correlated with the level of esters in plasma. Both cerebrospinal fluid (CSF) level and plasma level were lower in ALS patients (60.05 ± 4.24 % and 54.07 ± 20.37 % respectively) than in controls (79.51 ± 2.47 % and 80.07 ± 10.02 % respectively). CONCLUSIONS The data suggest that the level 24-hydroxycholesteryl esters might be a new biomarker of ALS and can be measured for monitoring the disease progression.
Collapse
Affiliation(s)
- Concetta Di Natale
- Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), largo barsanti e matteucci 53, 80125 Naples, Italy; Interdisciplinary Research Centre on Biomaterials (CRIB) and Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy.
| | - Alessandra Monaco
- Department of Precision Medicine, University of Campania 'L. Vanvitelli', Naples, Italy
| | - Carlo Pedone
- TRASE S.R.L., viaToledo 265, 80132 Naples, Italy
| | - Francesca Trojsi
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Gioacchino Tedeschi
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Paolo Antonio Netti
- Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), largo barsanti e matteucci 53, 80125 Naples, Italy; Interdisciplinary Research Centre on Biomaterials (CRIB) and Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
| | | |
Collapse
|
16
|
Watanabe T, Arisawa K, Nguyen TV, Ishizu M, Katsuura-Kamano S, Hishida A, Tamura T, Kato Y, Okada R, Ibusuki R, Koriyama C, Suzuki S, Otani T, Koyama T, Tomida S, Kuriki K, Takashima N, Miyagawa N, Wakai K, Matsuo K. Coffee and metabolic phenotypes: A cross-sectional analysis of the Japan multi-institutional collaborative cohort (J-MICC) study. Nutr Metab Cardiovasc Dis 2023; 33:620-630. [PMID: 36710119 DOI: 10.1016/j.numecd.2022.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/07/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND AIMS To date, the relationship between coffee consumption and metabolic phenotypes has hardly been investigated and remains controversial. Therefore, the aim of this cross-sectional study is to examine the associations between coffee consumption and metabolic phenotypes in a Japanese population. METHODS AND RESULTS We analyzed the data of 26,363 subjects (aged 35-69 years) in the baseline survey of the Japan Multi-Institutional Collaborative Cohort Study. Coffee consumption was assessed using a questionnaire. Metabolic Syndrome (MetS) was defined according to the Joint Interim Statement Criteria of 2009, using body mass index (BMI) instead of waist circumference. Subjects stratified by the presence or absence of obesity (normal weight: BMI <25 kg/m2; obesity: BMI ≥25 kg/m2) were classified by the number of MetS components (metabolically healthy: no components; metabolically unhealthy: one or more components) other than BMI. In multiple logistic regression analyses adjusted for sex, age, and other potential confounders, high coffee consumption (≥3 cups/day) was associated with a lower prevalence of MetS and metabolically unhealthy phenotypes both in normal weight (OR 0.83, 95% CI 0.76-0.90) and obese subjects (OR 0.83, 95% CI 0.69-0.99). Filtered/instant coffee consumption was inversely associated with the prevalence of MetS and metabolically unhealthy phenotypes, whereas canned/bottled/packed coffee consumption was not. CONCLUSION The present results suggest that high coffee consumption, particularly filtered/instant coffee, is inversely associated with the prevalence of metabolically unhealthy phenotypes in both normal weight and obese Japanese adults.
Collapse
Affiliation(s)
- Takeshi Watanabe
- Department of Preventive Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan.
| | - Kokichi Arisawa
- Department of Preventive Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Tien Van Nguyen
- Department of Preventive Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Masashi Ishizu
- Department of Preventive Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Sakurako Katsuura-Kamano
- Department of Preventive Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Asahi Hishida
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Tamura
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasufumi Kato
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Rieko Okada
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Rie Ibusuki
- Department of International Island and Community Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Chihaya Koriyama
- Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Sadao Suzuki
- Department of Public Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takahiro Otani
- Department of Public Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Teruhide Koyama
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satomi Tomida
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan; Department of Endocrine and Breast Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kiyonori Kuriki
- Laboratory of Public Health, Division of Nutritional Sciences, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Naoyuki Takashima
- Department of Public Health, Faculty of Medicine, Kindai University, Osaka, Japan; Department of Public Health, Shiga University of Medical Science, Otsu, Japan
| | - Naoko Miyagawa
- Department of Public Health, Shiga University of Medical Science, Otsu, Japan; Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan
| | - Kenji Wakai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan; Department of Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
17
|
Kansakar U, Trimarco V, Mone P, Varzideh F, Lombardi A, Santulli G. Choline supplements: An update. Front Endocrinol (Lausanne) 2023; 14:1148166. [PMID: 36950691 PMCID: PMC10025538 DOI: 10.3389/fendo.2023.1148166] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/07/2023] [Indexed: 03/08/2023] Open
Abstract
In this comprehensive review, we examine the main preclinical and clinical investigations assessing the effects of different forms of choline supplementation currently available, including choline alfoscerate (C8H20NO6P), also known as alpha-glycerophosphocholine (α-GPC, or GPC), choline bitartrate, lecithin, and citicoline, which are cholinergic compounds and precursors of acetylcholine. Extensively used as food supplements, they have been shown to represent an effective strategy for boosting memory and enhancing cognitive function.
Collapse
Affiliation(s)
- Urna Kansakar
- Department of Medicine, Division of Cardiology, Einstein Institute for Aging Research, Montefiore Health System, New York, NY, United States
| | | | - Pasquale Mone
- Department of Medicine, Division of Cardiology, Einstein Institute for Aging Research, Montefiore Health System, New York, NY, United States
- ASL Avellino, Montefiore Health System, New York, NY, United States
| | - Fahimeh Varzideh
- Department of Medicine, Division of Cardiology, Einstein Institute for Aging Research, Montefiore Health System, New York, NY, United States
| | - Angela Lombardi
- Department of Microbiology and Immunology, Montefiore Health System, New York, NY, United States
- *Correspondence: Angela Lombardi,
| | - Gaetano Santulli
- Department of Medicine, Division of Cardiology, Einstein Institute for Aging Research, Montefiore Health System, New York, NY, United States
- University of Naples “Federico II”, Naples, Italy
- Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center (ES-DRC), Montefiore Health System, New York, NY, United States
| |
Collapse
|
18
|
Gao H, Wu J, Sun Z, Zhang F, Shi T, Lu K, Qian D, Yin Z, Zhao Y, Qin J, Xue B. Influence of lecithin cholesterol acyltransferase alteration during different pathophysiologic conditions: A 45 years bibliometrics analysis. Front Pharmacol 2022; 13:1062249. [PMID: 36588724 PMCID: PMC9795195 DOI: 10.3389/fphar.2022.1062249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Background: Lecithin cholesterol acyltransferase (LCAT) is an important enzyme responsible for free cholesterol (FC) esterification, which is critical for high density lipoprotein (HDL) maturation and the completion of the reverse cholesterol transport (RCT) process. Plasma LCAT activity and concentration showed various patterns under different physiological and pathological conditions. Research on LCAT has grown rapidly over the past 50 years, but there are no bibliometric studies summarizing this field as a whole. This study aimed to use the bibliometric analysis to demonstrate the trends in LCAT publications, thus offering a brief perspective with regard to future developments in this field. Methods: We used the Web of Science Core Collection to retrieve LCAT-related studies published from 1975 to 2020. The data were further analyzed in the number of studies, the journal which published the most LCAT-related studies, co-authorship network, co-country network, co-institute network, co-reference and the keywords burst by CiteSpace V 5.7. Results: 2584 publications contained 55,311 references were used to analyzed. The number of included articles fluctuated in each year. We found that Journal of lipid research published the most LCAT-related studies. Among all the authors who work on LCAT, they tend to collaborate with a relatively stable group of collaborators to generate several major authors clusters which Albers, J. published the most studies (n = 53). The United States of America contributed the greatest proportion (n = 1036) of LCAT-related studies. The LCAT-related studies have been focused on the vascular disease, lecithin-cholesterol acyltransferase reaction, phospholipid, cholesterol efflux, chronic kidney disease, milk fever, nephrotic syndrome, platelet-activating factor acetylhydrolase, reconstituted lpa-i, reverse cholesterol transport. Four main research frontiers in terms of burst strength for LCAT-related studies including "transgenic mice", "oxidative stress", "risk", and "cholesterol metabolism "need more attention. Conclusion: This is the first study that demonstrated the trends and future development in LCAT publications. Further studies should focus on the accurate metabolic process of LCAT dependent or independent of RCT using metabolic marker tracking techniques. It was also well worth to further studying the possibility that LCAT may qualify as a biomarker for risk prediction and clinical treatment.
Collapse
Affiliation(s)
- Hongliang Gao
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China,School of Clinical Medicine, Wannan Medical College, Wuhu, China,Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Jing Wu
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Zhenyu Sun
- School of Health Policy and Management, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Furong Zhang
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Tianshu Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Ke Lu
- Research Center for Computer-Aided Drug Discovery, Chinese Academy of Sciences, Shenzhen, China
| | - Dongfu Qian
- School of Health Policy and Management, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Zicheng Yin
- Nanjing Foreign Language School, Nanjing, China
| | - Yinjuan Zhao
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China,*Correspondence: Bin Xue, ; Jian Qin, ; Yinjuan Zhao,
| | - Jian Qin
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China,*Correspondence: Bin Xue, ; Jian Qin, ; Yinjuan Zhao,
| | - Bin Xue
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China,*Correspondence: Bin Xue, ; Jian Qin, ; Yinjuan Zhao,
| |
Collapse
|
19
|
Foguet C, Xu Y, Ritchie SC, Lambert SA, Persyn E, Nath AP, Davenport EE, Roberts DJ, Paul DS, Di Angelantonio E, Danesh J, Butterworth AS, Yau C, Inouye M. Genetically personalised organ-specific metabolic models in health and disease. Nat Commun 2022; 13:7356. [PMID: 36446790 PMCID: PMC9708841 DOI: 10.1038/s41467-022-35017-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022] Open
Abstract
Understanding how genetic variants influence disease risk and complex traits (variant-to-function) is one of the major challenges in human genetics. Here we present a model-driven framework to leverage human genome-scale metabolic networks to define how genetic variants affect biochemical reaction fluxes across major human tissues, including skeletal muscle, adipose, liver, brain and heart. As proof of concept, we build personalised organ-specific metabolic flux models for 524,615 individuals of the INTERVAL and UK Biobank cohorts and perform a fluxome-wide association study (FWAS) to identify 4312 associations between personalised flux values and the concentration of metabolites in blood. Furthermore, we apply FWAS to identify 92 metabolic fluxes associated with the risk of developing coronary artery disease, many of which are linked to processes previously described to play in role in the disease. Our work demonstrates that genetically personalised metabolic models can elucidate the downstream effects of genetic variants on biochemical reactions involved in common human diseases.
Collapse
Affiliation(s)
- Carles Foguet
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK.
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK.
| | - Yu Xu
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Scott C Ritchie
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Samuel A Lambert
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Elodie Persyn
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Artika P Nath
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | | | - David J Roberts
- BRC Haematology Theme, Radcliffe Department of Medicine, and NHSBT-Oxford, John Radcliffe Hospital, Oxford, UK
- National Institute for Health and Care Research Blood and Transplant Research Unit in Donor Health and Behaviour, University of Cambridge, Cambridge, UK
- NHS Blood and Transplant, John Radcliffe Hospital, Oxford, UK
| | - Dirk S Paul
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
| | - Emanuele Di Angelantonio
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- National Institute for Health and Care Research Blood and Transplant Research Unit in Donor Health and Behaviour, University of Cambridge, Cambridge, UK
- Health Data Science Centre, Human Technopole, Milan, Italy
| | - John Danesh
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Hinxton, UK
- National Institute for Health and Care Research Blood and Transplant Research Unit in Donor Health and Behaviour, University of Cambridge, Cambridge, UK
| | - Adam S Butterworth
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- National Institute for Health and Care Research Blood and Transplant Research Unit in Donor Health and Behaviour, University of Cambridge, Cambridge, UK
| | - Christopher Yau
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, OX3 9DU, UK
- Health Data Research UK, Gibbs Building, 215 Euston Road, London, NW1 2BE, UK
| | - Michael Inouye
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK.
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK.
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK.
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.
- The Alan Turing Institute, London, UK.
| |
Collapse
|
20
|
Zhang W, Dun S, Ping Y, Wang Q, Tana S, Tana A, Qin S, Bao X, Qimuge A, Baiyin T, Yang D, Bao S, Baoyin S, Qimuge W. Differentially expressed long noncoding RNAs and mRNAs in PC12 cells under lysophosphatidylcholine stimulation. Sci Rep 2022; 12:19333. [PMID: 36369435 PMCID: PMC9652419 DOI: 10.1038/s41598-022-21676-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
Lysophosphatidylcholine (LPC) was previously found to show neuroprotective effect on nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) induced signalings. Also, numerous studies reported the emerging roles of long noncoding RNAs (LncRNAs) involved in neurodegenerative disease. However, the biological mechanism of LPC and expression profile of lncRNAs has not been reported. Here, lncRNAs in PC12 cells under LPC and NGF treatment were analyzed using high throughput sequencing technology for the first time. We identified 564 annotated and 1077 novel lncRNAs in PC12 cells. Among them, 121 lncRNAs were differentially expressed in the PC12 cells under LPC stimulation. KEGG analysis showed that differentially expressed mRNAs co-expressed with lncRNAs mainly enriched in ribosome, oxidative phosphorylation, Parkinson's disease, Huntington's disease and Alzheimer's disease etc. LncRNA-mRNA network analysis showed that lncRNA ENSRNOT00000082515 had interactions with 626 different mRNAs suggesting that lncRNA ENSRNOT00000082515 probably play vital role. Finally, sequencing data were validated by qRT-PCR for ENSRNOT00000084874, ENSRNOT00000082515, LNC_001033 forward Fgf18, Vcam1, and Pck2.
Collapse
Affiliation(s)
- Wen Zhang
- grid.411643.50000 0004 1761 0411School of Life Science, Inner Mongolia University, Hohhot, 010021 China
| | - Su Dun
- Research and Development Center, HUA Cloud Intelligent Healthcare Co., Ltd, Shenzhen, 518000 China
| | - Yin Ping
- grid.411647.10000 0000 8547 6673Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao, 028000 China
| | - Qingliang Wang
- grid.410612.00000 0004 0604 6392Inner Mongolia Medical University, Hohhot, 010010 China
| | - Siqin Tana
- grid.490194.1Inner Mongolia International Mongolian Hospital, Hohhot, 010065 China
| | - Aodong Tana
- grid.490194.1Inner Mongolia International Mongolian Hospital, Hohhot, 010065 China
| | - Si Qin
- grid.490194.1Inner Mongolia International Mongolian Hospital, Hohhot, 010065 China
| | - Xilinqiqige Bao
- grid.410612.00000 0004 0604 6392Inner Mongolia Medical University, Hohhot, 010010 China
| | - Alateng Qimuge
- grid.490194.1Inner Mongolia International Mongolian Hospital, Hohhot, 010065 China
| | - Tegexi Baiyin
- grid.411647.10000 0000 8547 6673Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao, 028000 China
| | - Dezhi Yang
- grid.490194.1Inner Mongolia International Mongolian Hospital, Hohhot, 010065 China
| | - Siqin Bao
- grid.490194.1Inner Mongolia International Mongolian Hospital, Hohhot, 010065 China
| | - Seyin Baoyin
- grid.490194.1Inner Mongolia International Mongolian Hospital, Hohhot, 010065 China
| | - Wuhan Qimuge
- grid.490194.1Inner Mongolia International Mongolian Hospital, Hohhot, 010065 China ,Inner Mongolia Traditional Chinese&Mongolian Medical Research Institute, Hohhot, 010017 China
| |
Collapse
|
21
|
Modulatory effect of berberine on plasma lipoprotein (or lipid) profile: a review. Mol Biol Rep 2022; 49:10885-10893. [PMID: 35941413 DOI: 10.1007/s11033-022-07623-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/24/2022] [Accepted: 05/20/2022] [Indexed: 10/15/2022]
Abstract
Berberine is a bioactive isoquinoline alkaloid compound extracted from various medicinal plants, such as Barberry. Berberine shows various pharmacological properties that are mainly attributed to its anti-inflammatory and antioxidant effects. A growing body of evidence has shown that berberine influences cholesterol metabolism, and consequently, may ameliorate dyslipidemias and atherosclerosis. Plasma high-density lipoprotein cholesterol (HDL-C) is known to have an independent negative association with incident cardiovascular disease (CVD). However, several outcomes trials and genetic studies have failed to meet expecting the beneficial effects of elevating plasma HDL-C concentrations. Hence, investigations are currently focused on enhancing the functionality of HDL particles, independent of their plasma concentrations. HDL particles show various qualities because of a heterogeneous composition. Consistent with complex metabolism and composition, various biological functions are found for HDL, such as anti-inflammatory, antioxidant, anti-apoptotic, and anti-thrombotic activities. Protective effects of berberine may impact the functionality of HDL; therefore, the present literature review was intended to determine whether berberine can amplify HDL function. It was concluded that berberine may regulate markers of HDL activity, such as apo-AI, cholesterol efflux, LCAT, PON1, and S1P activities and levels. Consequently, berberine may recuperate conditions with dysfunctional HDL and, therefore, have the potential to emerge as a therapeutic agent. However, further human trials of berberine are warranted to evaluate its impact on HDL function and cholesterol metabolism.
Collapse
|
22
|
Mocciaro G, D’Amore S, Jenkins B, Kay R, Murgia A, Herrera-Marcos LV, Neun S, Sowton AP, Hall Z, Palma-Duran SA, Palasciano G, Reimann F, Murray A, Suppressa P, Sabbà C, Moschetta A, Koulman A, Griffin JL, Vacca M. Lipidomic Approaches to Study HDL Metabolism in Patients with Central Obesity Diagnosed with Metabolic Syndrome. Int J Mol Sci 2022; 23:6786. [PMID: 35743227 PMCID: PMC9223701 DOI: 10.3390/ijms23126786] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 12/12/2022] Open
Abstract
The metabolic syndrome (MetS) is a cluster of cardiovascular risk factors characterised by central obesity, atherogenic dyslipidaemia, and changes in the circulating lipidome; the underlying mechanisms that lead to this lipid remodelling have only been partially elucidated. This study used an integrated "omics" approach (untargeted whole serum lipidomics, targeted proteomics, and lipoprotein lipidomics) to study lipoprotein remodelling and HDL composition in subjects with central obesity diagnosed with MetS (vs. controls). Compared with healthy subjects, MetS patients showed higher free fatty acids, diglycerides, phosphatidylcholines, and triglycerides, particularly those enriched in products of de novo lipogenesis. On the other hand, the "lysophosphatidylcholines to phosphatidylcholines" and "cholesteryl ester to free cholesterol" ratios were reduced, pointing to a lower activity of lecithin cholesterol acyltransferase (LCAT) in MetS; LCAT activity (directly measured and predicted by lipidomic ratios) was positively correlated with high-density lipoprotein cholesterol (HDL-C) and negatively correlated with body mass index (BMI) and insulin resistance. Moreover, many phosphatidylcholines and sphingomyelins were significantly lower in the HDL of MetS patients and strongly correlated with BMI and clinical metabolic parameters. These results suggest that MetS is associated with an impairment of phospholipid metabolism in HDL, partially led by LCAT, and associated with obesity and underlying insulin resistance. This study proposes a candidate strategy to use integrated "omics" approaches to gain mechanistic insights into lipoprotein remodelling, thus deepening the knowledge regarding the molecular basis of the association between MetS and atherosclerosis.
Collapse
Affiliation(s)
- Gabriele Mocciaro
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1GA, UK; (G.M.); (A.M.); (S.N.); (Z.H.)
- Department of Interdisciplinary Medicine, Clinica Medica “C. Frugoni”, Aldo Moro University of Bari, 70124 Bari, Italy; (P.S.); (C.S.); (A.M.)
- Roger Williams Institute of Hepatology, Foundation for Liver Research, London SE5 9NT, UK
| | - Simona D’Amore
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK;
- Clinica Medica “A. Murri”, “Aldo Moro” University of Bari, 70124 Bari, Italy;
| | - Benjamin Jenkins
- Welcome Trust-MRC Institute of Metabolic Science Metabolic Research Laboratories, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, UK; (B.J.); (R.K.); (F.R.); (A.K.)
| | - Richard Kay
- Welcome Trust-MRC Institute of Metabolic Science Metabolic Research Laboratories, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, UK; (B.J.); (R.K.); (F.R.); (A.K.)
| | - Antonio Murgia
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1GA, UK; (G.M.); (A.M.); (S.N.); (Z.H.)
| | - Luis Vicente Herrera-Marcos
- Department of Biochemistry and Molecular and Cellular Biology, Veterinary Faculty, University of Zaragoza, 50013 Zaragoza, Spain;
| | - Stefanie Neun
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1GA, UK; (G.M.); (A.M.); (S.N.); (Z.H.)
| | - Alice P. Sowton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.P.S.); (A.M.)
| | - Zoe Hall
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1GA, UK; (G.M.); (A.M.); (S.N.); (Z.H.)
- Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK;
| | - Susana Alejandra Palma-Duran
- Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK;
| | - Giuseppe Palasciano
- Clinica Medica “A. Murri”, “Aldo Moro” University of Bari, 70124 Bari, Italy;
| | - Frank Reimann
- Welcome Trust-MRC Institute of Metabolic Science Metabolic Research Laboratories, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, UK; (B.J.); (R.K.); (F.R.); (A.K.)
| | - Andrew Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.P.S.); (A.M.)
| | - Patrizia Suppressa
- Department of Interdisciplinary Medicine, Clinica Medica “C. Frugoni”, Aldo Moro University of Bari, 70124 Bari, Italy; (P.S.); (C.S.); (A.M.)
| | - Carlo Sabbà
- Department of Interdisciplinary Medicine, Clinica Medica “C. Frugoni”, Aldo Moro University of Bari, 70124 Bari, Italy; (P.S.); (C.S.); (A.M.)
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, Clinica Medica “C. Frugoni”, Aldo Moro University of Bari, 70124 Bari, Italy; (P.S.); (C.S.); (A.M.)
| | - Albert Koulman
- Welcome Trust-MRC Institute of Metabolic Science Metabolic Research Laboratories, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, UK; (B.J.); (R.K.); (F.R.); (A.K.)
| | - Julian L. Griffin
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1GA, UK; (G.M.); (A.M.); (S.N.); (Z.H.)
- Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK;
- Rowlett Institute, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Michele Vacca
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1GA, UK; (G.M.); (A.M.); (S.N.); (Z.H.)
- Department of Interdisciplinary Medicine, Clinica Medica “C. Frugoni”, Aldo Moro University of Bari, 70124 Bari, Italy; (P.S.); (C.S.); (A.M.)
- Roger Williams Institute of Hepatology, Foundation for Liver Research, London SE5 9NT, UK
- Welcome Trust-MRC Institute of Metabolic Science Metabolic Research Laboratories, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, UK; (B.J.); (R.K.); (F.R.); (A.K.)
| |
Collapse
|
23
|
Hafiane A, Favari E, Bortnick AE. Measures of high-density lipoprotein function in men and women with severe aortic stenosis. Lipids Health Dis 2022; 21:48. [PMID: 35643498 PMCID: PMC9148512 DOI: 10.1186/s12944-022-01653-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/26/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Calcification of the aortic valve is a common heart valve disorder, in some cases leading to clinically impactful severe aortic stenosis (AS). Sex-specific differences in aortic valve calcification (ACV) exist, with women having a lower burden of calcification than men as measured by computed tomography; however, the pathophysiological mechanism that leads to these differences remains unclear. METHODS Using cultured human Tamm-Horsfall protein 1 (THP-1) macrophages and human aortic valve interstitial cells, the effects of high-density lipoprotein (HDL) particles isolated from the plasma of men and women with severe AS were studied for cholesterol efflux capacity (CEC). RESULTS HDL-CEC was assessed in 46 patients with severe AS, n = 30 men, n = 16 women. ATP-Binding Cassette A1 (ABCA1)-mediated HDL-CEC was measured from human cultured THP-1 macrophages to plasma HDL samples. Women with severe AS had more ABCA1-mediated HDL-CEC, as compared to men (8.50 ± 3.90% cpm vs. 6.80 ± 1.50% cpm, P = 0.04). HDL pre-β1 and α-particles were higher in woman than in men by spectral density, (pre-β1 HDL, 20298.29 ± 1076.15 vs. 15,661.74 ± 789.00, P = 0.002, and α-HDL, 63006.35 ± 756.81 vs. 50,447.00 ± 546.52, P = 0.03). Lecithin-cholesterol acyltransferase conversion of free cholesterol into cholesteryl esters was higher in women than men (16.44 ± 9.11%/h vs. 12.00 ± 8.07%/h, P = 0.03). CONCLUSIONS Sex-specific changes in various parameters of HDL-CEC were found in patients with severe AS. Sex-based modifications in HDL functionality by HDL-CEC might account for the reduced burden of calcification in women vs. men with severe AS. Therefore, future studies should target sex-related pathways in AS to help to improve understanding and treatment of AS. Sex specifc differences in AVC and differences associated with HDL function in men and women with severe AS. When compared to men, women had higher preβ-HDL and α-HDL migrating particles, higher cholesterol efflux to HDL, and higher lecithin cholesterol acyl transferase (LCAT) activity, possibly indicating that improved reverse cholesterol transport may be protective against worsened calcification.
Collapse
Affiliation(s)
- Anouar Hafiane
- Department of Medicine, Faculty of Medicine, Research Institute of the McGill University Health Centre, 1001 Boulevard Decarie, Montreal, Québec, H3A 1A1, Canada.
| | - Elda Favari
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Anna E Bortnick
- Department of Medicine, Division of Cardiology, Bronx, New York, USA
- Division of Geriatrics, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
24
|
Hu K, Perez-Matos MC, Argemi J, Vilar-Gomez E, Shalaurova I, Bullitt E, Landeen L, Sugahara G, Deng H, Mathur K, Tran S, Cai H, He H, Yalcin Y, Vieira Barbosa J, Ventura-Cots M, Marx K, Gad AP, Niezen S, Izunza Barba S, Ang LH, Popov YV, Fricker Z, Lai M, Curry M, Afdhal N, Szabo G, Mukamal KJ, Sanyal AJ, Otvos JD, Malik R, Saito T, Connelly MA, Chalasani NP, Bataller R, Jiang ZG. Lipoprotein Z, a hepatotoxic lipoprotein, predicts outcome in alcohol-associated hepatitis. Hepatology 2022; 75:968-982. [PMID: 34662439 PMCID: PMC9299888 DOI: 10.1002/hep.32203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/01/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIMS Lipoprotein Z (LP-Z) is an abnormal free cholesterol (FC)-enriched LDL-like particle discovered from patients with cholestatic liver disease. This study aims to define the diagnostic value of LP-Z in alcohol-associated hepatitis (AH) and interrogate the biology behind its formation. APPROACH AND RESULTS We measured serum levels of LP-Z using nuclear magnetic resonance spectroscopy, a well-established clinical assay. Serum levels of LP-Z were significantly elevated in four AH cohorts compared with control groups, including heavy drinkers and patients with cirrhosis. We defined a Z-index, calculated by the ratio of LP-Z to total apolipoprotein B-containing lipoproteins, representing the degree of deviation from normal VLDL metabolism. A high Z-index was associated with 90-day mortality independent from the Model for End-Stage Liver Disease (MELD) and provided added prognosticative value. Both a Z-index ≤ 0.6 and a decline of Z-index by ≥0.1 in 2 weeks predicted 90-day survival. RNA-sequencing analyses of liver tissues demonstrated an inverse association in the expression of enzymes responsible for the extrahepatic conversion of VLDL to LDL and AH disease severity, which was further confirmed by the measurement of serum enzyme activity. To evaluate whether the FC in LP-Z could contribute to the pathogenesis of AH, we found significantly altered FC levels in liver explant of patients with AH. Furthermore, FC in reconstituted LP-Z particles caused direct toxicity to human hepatocytes in a concentration-dependent manner, supporting a pathogenic role of FC in LP-Z. CONCLUSIONS Impaired lipoprotein metabolism in AH leads to the accumulation of LP-Z in the circulation, which is hepatotoxic from excessive FC. A Z-index ≤ 0.6 predicts 90-day survival independent from conventional biomarkers for disease prognostication.
Collapse
Affiliation(s)
- Kunpeng Hu
- Division of Gastroenterology, Hepatology, and NutritionDepartment of MedicineBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA.,Division of General SurgeryThe Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhouChina
| | - Maria C Perez-Matos
- Division of Gastroenterology, Hepatology, and NutritionDepartment of MedicineBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Josepmaria Argemi
- Division of Gastroenterology, Hepatology, and NutritionUniversity of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA.,Hepatology ProgramCentro de Investigacion Medica Aplicada, Liver UnitClinica Universidad de NavarraInstituto de Investigacion de NavarraUniversity of NavarraPamplonaSpain
| | - Eduardo Vilar-Gomez
- Division of Gastroenterology and HepatologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Irina Shalaurova
- Laboratory Corporation of America HoldingsMorrisvilleNorth CarolinaUSA
| | - Esther Bullitt
- Department of Physiology and BiophysicsBoston University School of MedicineBostonMassachusettsUSA
| | | | - Go Sugahara
- Division of Gastrointestinal and Liver DiseasesKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA.,Research and Development DepartmentPhoenixBio, Co., LtdHigashi-Hiroshima, HiroshimaJapan
| | - Huiyan Deng
- Division of Gastroenterology, Hepatology, and NutritionDepartment of MedicineBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Karan Mathur
- Division of Gastroenterology and HepatologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Stephanie Tran
- Division of Gastroenterology, Hepatology, and NutritionDepartment of MedicineBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Huimei Cai
- Division of Gastroenterology, Hepatology, and NutritionDepartment of MedicineBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Hanchang He
- Division of Gastroenterology, Hepatology, and NutritionDepartment of MedicineBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Yusuf Yalcin
- Division of Gastroenterology, Hepatology, and NutritionDepartment of MedicineBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Joana Vieira Barbosa
- Division of Gastroenterology, Hepatology, and NutritionDepartment of MedicineBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA.,Division of Gastroenterology and HepatologyLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Meritxell Ventura-Cots
- Division of Gastroenterology, Hepatology, and NutritionUniversity of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| | - Katherine Marx
- Transplant InstituteDepartment of SurgeryBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Aniket P Gad
- Confocal Imaging Core facilityBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Sebastian Niezen
- Division of Gastroenterology, Hepatology, and NutritionDepartment of MedicineBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Sofia Izunza Barba
- Division of Gastroenterology, Hepatology, and NutritionDepartment of MedicineBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Lay-Hong Ang
- Confocal Imaging Core facilityBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Yury V Popov
- Division of Gastroenterology, Hepatology, and NutritionDepartment of MedicineBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Zachary Fricker
- Division of Gastroenterology, Hepatology, and NutritionDepartment of MedicineBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Michelle Lai
- Division of Gastroenterology, Hepatology, and NutritionDepartment of MedicineBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Michael Curry
- Division of Gastroenterology, Hepatology, and NutritionDepartment of MedicineBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Nezam Afdhal
- Division of Gastroenterology, Hepatology, and NutritionDepartment of MedicineBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Gyongyi Szabo
- Division of Gastroenterology, Hepatology, and NutritionDepartment of MedicineBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Kenneth J Mukamal
- Division of General MedicineDepartment of MedicineBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Arun J Sanyal
- Division of Gastroenterology, Hepatology and NutritionVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - James D Otvos
- Laboratory Corporation of America HoldingsMorrisvilleNorth CarolinaUSA
| | - Raza Malik
- Liver CenterDivision of GastroenterologyTufts Medical CenterBostonMassachusettsUSA
| | - Takeshi Saito
- Division of Gastrointestinal and Liver DiseasesKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | | | - Naga P Chalasani
- Division of Gastroenterology and HepatologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Ramon Bataller
- Division of Gastroenterology, Hepatology, and NutritionUniversity of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| | - Z Gordon Jiang
- Division of Gastroenterology, Hepatology, and NutritionDepartment of MedicineBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
25
|
Arnaboldi L, Corsini A, Bellosta S. Artichoke and bergamot extracts: a new opportunity for the management of dyslipidemia and related risk factors. Minerva Med 2022; 113:141-157. [PMID: 35313442 DOI: 10.23736/s0026-4806.21.07950-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The relationship between low LDL-C (cholesterol associated with low-density lipoprotein) and a lower relative risk of developing cardiovascular disease (CVD) has been widely demonstrated. Although from a pharmacological point of view, statins, ezetimibe and PCSK inhibitors, alone or in combination are the front and center of the therapeutic approaches for reducing LDL-C and its CV consequences, in recent years nutraceuticals and functional foods have increasingly been considered as a valid support in the reduction of LDL-C, especially in patients with mild/moderate hyperlipidemia - therefore not requiring pharmacological treatment - or in patients intolerant to statins or other drugs. An approach also shared by the European Atherosclerosis Society (EAS). Of the various active ingredients with hypolipidemic properties, we include the artichoke (Cynara cardunculus, Cynara scolymus) and the bergamot (Citrus bergamia) which, thanks essentially to the significant presence of polyphenols in their extracts, can exert this action associated with a number of other complementary inflammation and oxidation benefits. In light of these evidence, this review aimed to describe the effects of artichoke and bergamot in modifying the lipid and inflammatory parameters described in in vitro, in vivo and clinical studies. The available data support the use of standardized compositions of artichoke and bergamot extracts, alone or in combination, in the treatment of mild to moderate dyslipidemia, in patients suffering from metabolic syndrome, hepatic steatosis, or intolerant to common hypolipidemic treatments.
Collapse
|
26
|
Environmental and Lifestyle Risk Factors in the Carcinogenesis of Gallbladder Cancer. J Pers Med 2022; 12:jpm12020234. [PMID: 35207722 PMCID: PMC8877116 DOI: 10.3390/jpm12020234] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/08/2021] [Accepted: 12/23/2021] [Indexed: 02/01/2023] Open
Abstract
Gallbladder cancer (GBC) is an aggressive neoplasm that in an early stage is generally asymptomatic and, in most cases, is diagnosed in advanced stages with a very low life expectancy because there is no curative treatment. Therefore, understanding the early carcinogenic mechanisms of this pathology is crucial to proposing preventive strategies for this cancer. The main risk factor is the presence of gallstones, which are associated with some environmental factors such as a sedentary lifestyle and a high-fat diet. Other risk factors such as autoimmune disorders and bacterial, parasitic and fungal infections have also been described. All these factors can generate a long-term inflammatory state characterized by the persistent activation of the immune system, the frequent release of pro-inflammatory cytokines, and the constant production of reactive oxygen species that result in a chronic damage/repair cycle, subsequently inducing the loss of the normal architecture of the gallbladder mucosa that leads to the development of GBC. This review addresses how the different risk factors could promote a chronic inflammatory state essential to the development of gallbladder carcinogenesis, which will make it possible to define some strategies such as anti-inflammatory drugs or public health proposals in the prevention of GBC.
Collapse
|
27
|
Reisinger AC, Schuller M, Sourij H, Stadler JT, Hackl G, Eller P, Marsche G. Impact of Sepsis on High-Density Lipoprotein Metabolism. Front Cell Dev Biol 2022; 9:795460. [PMID: 35071235 PMCID: PMC8766710 DOI: 10.3389/fcell.2021.795460] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/13/2021] [Indexed: 12/29/2022] Open
Abstract
Background: High-density lipoproteins (HDL) are thought to play a protective role in sepsis through several mechanisms, such as promotion of steroid synthesis, clearing bacterial toxins, protection of the endothelial barrier, and antioxidant/inflammatory activities. However, HDL levels decline rapidly during sepsis, but the contributing mechanisms are poorly understood. Methods/Aim: In the present study, we investigated enzymes involved in lipoprotein metabolism in sepsis and non-sepsis patients admitted to the intensive care unit (ICU). Results: In 53 ICU sepsis and 25 ICU non-sepsis patients, we observed significant differences in several enzymes involved in lipoprotein metabolism. Lecithin-cholesterol acyl transferase (LCAT) activity, LCAT concentration, and cholesteryl transfer protein (CETP) activity were significantly lower, whereas phospholipid transfer activity protein (PLTP) and endothelial lipase (EL) were significantly higher in sepsis patients compared to non-sepsis patients. In addition, serum amyloid A (SAA) levels were increased 10-fold in sepsis patients compared with non-sepsis patients. Furthermore, we found that LCAT activity was significantly associated with ICU and 28-day mortality whereas SAA levels, representing a strong inflammatory marker, did not associate with mortality outcomes. Conclusion: We provide novel data on the rapid and robust changes in HDL metabolism during sepsis. Our results clearly highlight the critical role of specific metabolic pathways and enzymes in sepsis pathophysiology that may lead to novel therapeutics.
Collapse
Affiliation(s)
- Alexander C Reisinger
- Department of Internal Medicine, Intensive Care Unit, Medical University of Graz, Graz, Austria
| | - Max Schuller
- Department of Internal Medicine, Division of Nephrology, Medical University of Graz, Graz, Austria
| | - Harald Sourij
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria
| | - Julia T Stadler
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Gerald Hackl
- Department of Internal Medicine, Intensive Care Unit, Medical University of Graz, Graz, Austria
| | - Philipp Eller
- Department of Internal Medicine, Intensive Care Unit, Medical University of Graz, Graz, Austria
| | - Gunther Marsche
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| |
Collapse
|
28
|
Molecular Mechanisms of Sphingolipid Transport on Plasma Lipoproteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1372:57-65. [DOI: 10.1007/978-981-19-0394-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Metabolomics prospect of obesity and metabolic syndrome; a systematic review. J Diabetes Metab Disord 2021; 21:889-917. [DOI: 10.1007/s40200-021-00917-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/06/2021] [Indexed: 02/06/2023]
|
30
|
Stadler JT, Marsche G. Dietary Strategies to Improve Cardiovascular Health: Focus on Increasing High-Density Lipoprotein Functionality. Front Nutr 2021; 8:761170. [PMID: 34881279 PMCID: PMC8646038 DOI: 10.3389/fnut.2021.761170] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease is one of the leading causes of morbidity and mortality worldwide, with increasing incidence. A cornerstone of cardiovascular disease prevention is lifestyle modification through dietary changes to influence various risk factors such as obesity, hypertension and diabetes. The effects of diet on cardiovascular health are complex. Some dietary components and metabolites directly affect the composition and structure of high-density lipoproteins (HDL) and increase anti-inflammatory and vasoprotective properties. HDLs are composed of distinct subpopulations of particles of varying size and composition that have several dynamic and context-dependent functions. The identification of potential dietary components that improve HDL functionality is currently an important research goal. One of the best-studied diets for cardiovascular health is the Mediterranean diet, consisting of fish, olive oil, fruits, vegetables, whole grains, legumes/nuts, and moderate consumption of alcohol, most commonly red wine. The Mediterranean diet, especially when supplemented with extra virgin olive oil rich in phenolic compounds, has been shown to markedly improve metrics of HDL functionality and reduce the burden, or even prevent the development of cardiovascular disease. Particularly, the phenolic compounds of extra virgin olive oil seem to exert the significant positive effects on HDL function. Moreover, supplementation of anthocyanins as well as antioxidants such as lycopene or the omega-3 fatty acid eicosapentaenoic acid improve parameters of HDL function. In this review, we aim to highlight recent discoveries on beneficial dietary patterns as well as nutritional components and their effects on cardiovascular health, focusing on HDL function.
Collapse
Affiliation(s)
- Julia T. Stadler
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| |
Collapse
|
31
|
De Spiegeleer M, De Paepe E, Van Meulebroek L, Gies I, De Schepper J, Vanhaecke L. Paediatric obesity: a systematic review and pathway mapping of metabolic alterations underlying early disease processes. Mol Med 2021; 27:145. [PMID: 34742239 PMCID: PMC8571978 DOI: 10.1186/s10020-021-00394-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/02/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The alarming trend of paediatric obesity deserves our greatest awareness to hinder the early onset of metabolic complications impacting growth and functionality. Presently, insight into molecular mechanisms of childhood obesity and associated metabolic comorbidities is limited. This systematic review aimed at scrutinising what has been reported on putative metabolites distinctive for metabolic abnormalities manifesting at young age by searching three literature databases (Web of Science, Pubmed and EMBASE) during the last 6 years (January 2015-January 2021). Global metabolomic profiling of paediatric obesity was performed (multiple biological matrices: blood, urine, saliva and adipose tissue) to enable overarching pathway analysis and network mapping. Among 2792 screened Q1 articles, 40 met the eligibility criteria and were included to build a database on metabolite markers involved in the spectrum of childhood obesity. Differential alterations in multiple pathways linked to lipid, carbohydrate and amino acid metabolisms were observed. High levels of lactate, pyruvate, alanine and acetate marked a pronounced shift towards hypoxic conditions in children with obesity, and, together with distinct alterations in lipid metabolism, pointed towards dysbiosis and immunometabolism occurring early in life. Additionally, aberrant levels of several amino acids, most notably belonging to tryptophan metabolism including the kynurenine pathway and its relation to histidine, phenylalanine and purine metabolism were displayed. Moreover, branched-chain amino acids were linked to lipid, carbohydrate, amino acid and microbial metabolism, inferring a key role in obesity-associated insulin resistance. CONCLUSIONS This systematic review revealed that the main metabolites at the crossroad of dysregulated metabolic pathways underlying childhood obesity could be tracked down to one central disturbance, i.e. impending insulin resistance for which reference values and standardised measures still are lacking. In essence, glycolytic metabolism was evinced as driving energy source, coupled to impaired Krebs cycle flux and ß-oxidation. Applying metabolomics enabled to retrieve distinct metabolite alterations in childhood obesity(-related insulin resistance) and associated pathways at early age and thus could provide a timely indication of risk by elucidating early-stage biomarkers as hallmarks of future metabolically unhealthy phenotypes.
Collapse
Affiliation(s)
- Margot De Spiegeleer
- Laboratory of Chemical Analysis, Department of Translational Physiology, Infectiology and Public Health, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Ellen De Paepe
- Laboratory of Chemical Analysis, Department of Translational Physiology, Infectiology and Public Health, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Lieven Van Meulebroek
- Laboratory of Chemical Analysis, Department of Translational Physiology, Infectiology and Public Health, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Inge Gies
- KidZ Health Castle, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090, Brussel, Belgium
| | - Jean De Schepper
- KidZ Health Castle, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090, Brussel, Belgium.,Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Lynn Vanhaecke
- Laboratory of Chemical Analysis, Department of Translational Physiology, Infectiology and Public Health, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium. .,Institute for Global Food Security, School of Biological Sciences, Queen's University, University Road, Belfast, BT7 1NN, UK.
| |
Collapse
|
32
|
Zvintzou E, Karampela DS, Vakka A, Xepapadaki E, Karavia EA, Hatziri A, Giannopoulou PC, Kypreos KE. High density lipoprotein in atherosclerosis and coronary heart disease: Where do we stand today? Vascul Pharmacol 2021; 141:106928. [PMID: 34695591 DOI: 10.1016/j.vph.2021.106928] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/28/2021] [Accepted: 10/18/2021] [Indexed: 01/23/2023]
Abstract
Epidemiological studies during the last five years suggest that a relation between high density lipoprotein cholesterol (HDL-C) levels and the risk for cardiovascular disease (CVD) does exist but follows rather a "U-shaped" curve with an optimal range of HDL-C concentration between 40 and 70 mg/dl for men and 50-70 mg/dl for women. Moreover, as research in the field of lipoproteins progresses it becomes increasingly apparent that HDL particles possess different attributes and depending on their structural and functional characteristics, they may be "antiatherogenic" or "proatherogenic". In light of this information, it is highly doubtful that the choice of experimental drugs and the design of respective clinical trials that put the HDL-C raising hypothesis at test, were the most suitable. Here, we compile the existing literature on HDL, providing a critical up-to-date view that focuses on key data from the biochemistry, epidemiology and pharmacology of HDL, including data from clinical trials. We also discuss the most up-to-date information on the contribution of HDL structure and function to the prevention of atherosclerosis. We conclude by summarizing important differences between mouse models and humans, that may explain why pharmacological successes in mice turn out to be failures in humans.
Collapse
Affiliation(s)
- Evangelia Zvintzou
- University of Patras, School of Medicine, Department of Pharmacology, Rio Achaias, TK 26500, Greece
| | | | - Aggeliki Vakka
- University of Patras, School of Medicine, Department of Pharmacology, Rio Achaias, TK 26500, Greece
| | - Eva Xepapadaki
- University of Patras, School of Medicine, Department of Pharmacology, Rio Achaias, TK 26500, Greece
| | - Eleni A Karavia
- University of Patras, School of Medicine, Department of Pharmacology, Rio Achaias, TK 26500, Greece
| | - Aikaterini Hatziri
- University of Patras, School of Medicine, Department of Pharmacology, Rio Achaias, TK 26500, Greece
| | - Panagiota C Giannopoulou
- University of Patras, School of Medicine, Department of Pharmacology, Rio Achaias, TK 26500, Greece
| | - Kyriakos E Kypreos
- University of Patras, School of Medicine, Department of Pharmacology, Rio Achaias, TK 26500, Greece; European University Cyprus, Department of Life Sciences, School of Sciences, Nicosia, Cyprus.
| |
Collapse
|
33
|
Kane JP, Pullinger CR, Goldfine ID, Malloy MJ. Dyslipidemia and diabetes mellitus: Role of lipoprotein species and interrelated pathways of lipid metabolism in diabetes mellitus. Curr Opin Pharmacol 2021; 61:21-27. [PMID: 34562838 DOI: 10.1016/j.coph.2021.08.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 12/16/2022]
Abstract
Diabetes mellitus is a complex disease. We are increasingly gaining a better understanding of its mechanisms at the molecular level. From these new insights, better therapeutic approaches should emerge. Diabetes mellitus is a syndrome with many associated subphenotypes. These include mitochondrial disorders, lipodystrophies, and inflammatory disorders involving cytokines. Levels of sphingosine-1-phosphate, which has recently been shown to play a role in glucose homeostasis, are low in diabetics, whereas levels of ceramides are increased. Major phenotypes associated with diabetes mellitus are dyslipidemias, notably hypertriglyceridemia and low high-density lipoprotein cholesterol levels. Both diabetes and dyslipidemia are strongly associated with increased risk for atherosclerotic vascular disease.
Collapse
Affiliation(s)
- John P Kane
- Cardiovascular Research Institute, University of California, San Francisco, United States; Department of Medicine, University of California, San Francisco, United States; Department of Biochemistry and Biophysics, University of California, San Francisco, United States
| | - Clive R Pullinger
- Cardiovascular Research Institute, University of California, San Francisco, United States; Department of Physiological Nursing, University of California, San Francisco, United States.
| | - Ira D Goldfine
- Cardiovascular Research Institute, University of California, San Francisco, United States; Department of Medicine, University of California, San Francisco, United States
| | - Mary J Malloy
- Cardiovascular Research Institute, University of California, San Francisco, United States; Department of Medicine, University of California, San Francisco, United States
| |
Collapse
|
34
|
Effects of Elaidic Acid on HDL Cholesterol Uptake Capacity. Nutrients 2021; 13:nu13093112. [PMID: 34578988 PMCID: PMC8464738 DOI: 10.3390/nu13093112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022] Open
Abstract
Recently we established a cell-free assay to evaluate “cholesterol uptake capacity (CUC)” as a novel concept for high-density lipoprotein (HDL) functionality and demonstrated the feasibility of CUC for coronary risk stratification, although its regulatory mechanism remains unclear. HDL fluidity affects cholesterol efflux, and trans fatty acids (TFA) reduce lipid membrane fluidity when incorporated into phospholipids (PL). This study aimed to clarify the effect of TFA in HDL-PL on CUC. Serum was collected from 264 patients after coronary angiography or percutaneous coronary intervention to measure CUC and elaidic acid levels in HDL-PL, and in vitro analysis using reconstituted HDL (rHDL) was used to determine the HDL-PL mechanism affecting CUC. CUC was positively associated with HDL-PL levels but negatively associated with the proportion of elaidic acid in HDL-PL (elaidic acid in HDL-PL/HDL-PL ratio). Increased elaidic acid-phosphatidylcholine (PC) content in rHDL exhibited no change in particle size or CUC compared to rHDL containing oleic acid in PC. Recombinant human lecithin-cholesterol acyltransferase (LCAT) enhanced CUC, and LCAT-dependent enhancement of CUC and LCAT-dependent cholesterol esterification were suppressed in rHDL containing elaidic acid in PC. Therefore, CUC is affected by HDL-PL concentration, HDL-PL acyl group composition, and LCAT-dependent cholesterol esterification. Elaidic acid precipitated an inhibition of cholesterol uptake and maturation of HDL; therefore, modulation of HDL-PL acyl groups could improve CUC.
Collapse
|
35
|
Syed T, Siddiqui MS. Atherogenic Dyslipidemia After Liver Transplantation: Mechanisms and Clinical Implications. Liver Transpl 2021; 27:1326-1333. [PMID: 33837670 DOI: 10.1002/lt.26069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/17/2021] [Accepted: 04/01/2021] [Indexed: 12/21/2022]
Abstract
Cardiovascular disease (CVD), particularly atherosclerosis-associated CVD, is a major cause of long-term mortality after liver transplantation (LT). The liver is central in lipid homeostasis, and changes associated with insulin resistance, weight gain, adipose tissue inflammation, and development of nonalcoholic fatty liver disease (NAFLD) after LT promote atherogenesis. These factors synergistically alter lipid homeostasis, thereby leading to the production of proatherogenic lipoproteins, which contribute to the heighted risk of CVD-associated events observed in LT recipients. Although the exact mechanism promoting this shift of a proatherogenic lipoprotein profile is currently not known, the choice of immunosuppression and preexisting metabolic risk factors (ie, NAFLD) are likely contributors. This shift in proatherogenic lipoprotein subparticles presents clinical challenges as the traditional lipid profile employed in clinical practice may not fully capture this atherogenic risk. This review focuses on lipoprotein metabolism and atherogenesis in LT recipients.
Collapse
Affiliation(s)
- Taseen Syed
- Department of Gastroenterology, Nutrition and Transplant Hepatology, Virginia Commonwealth University, Richmond, VA.,Department of Gastroenterology, Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, VA
| | - Mohammad S Siddiqui
- Department of Gastroenterology, Nutrition and Transplant Hepatology, Virginia Commonwealth University, Richmond, VA.,Hume-Lee Transplant Center, Virginia Commonwealth University, Richmond, VA
| |
Collapse
|
36
|
Franczyk B, Rysz J, Ławiński J, Rysz-Górzyńska M, Gluba-Brzózka A. Is a High HDL-Cholesterol Level Always Beneficial? Biomedicines 2021; 9:1083. [PMID: 34572269 PMCID: PMC8466913 DOI: 10.3390/biomedicines9091083] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 01/02/2023] Open
Abstract
The specific interest concerning HDL cholesterol (HDL-C) is related to its ability to uptake and return surplus cholesterol from peripheral tissues back to the liver and, therefore, to its role in the prevention of cardiovascular diseases, such as atherosclerosis and myocardial infarction, but also transient ischemic attack and stroke. Previous epidemiological studies have indicated that HDL-C concentration is inversely associated with the risk of cardiovascular disease and that it can be used for risk prediction. Some genetic disorders are characterized by markedly elevated levels of HDL-C; however, they do not translate into diminished cardiovascular risk. The search of the potential causative relationship between HDL-C and adverse events has shifted the attention of researchers towards the composition and function of the HDL molecule/subfractions. HDL possesses various cardioprotective properties. However, currently, it appears that higher HDL-C is not necessarily protective against cardiovascular disease, but it can even be harmful in extremely high quantities.
Collapse
Affiliation(s)
- Beata Franczyk
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland; (B.F.); (J.R.)
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland; (B.F.); (J.R.)
| | - Janusz Ławiński
- Department of Urology, Institute of Medical Sciences, Medical College of Rzeszow University, 35-549 Rzeszow, Poland;
| | - Magdalena Rysz-Górzyńska
- Department of Ophthalmology and Visual Rehabilitation, Medical University of Lodz, 90-549 Lodz, Poland;
| | - Anna Gluba-Brzózka
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland; (B.F.); (J.R.)
| |
Collapse
|
37
|
Websdale A, Kiew Y, Chalmers P, Chen X, Cioccoloni G, Hughes TA, Luo X, Mwarzi R, Poirot M, Røberg-Larsen H, Wu R, Xu M, Zulyniak MA, Thorne JL. Pharmacologic and genetic inhibition of cholesterol esterification enzymes reduces tumour burden: A systematic review and meta-analysis of preclinical models. Biochem Pharmacol 2021; 196:114731. [PMID: 34407453 DOI: 10.1016/j.bcp.2021.114731] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/09/2022]
Abstract
Cholesterol esterification proteins Sterol-O acyltransferases (SOAT) 1 and 2 are emerging prognostic markers in many cancers. These enzymes utilise fatty acids conjugated to coenzyme A to esterify cholesterol. Cholesterol esterification is tightly regulated and enables formation of lipid droplets that act as storage organelles for lipid soluble vitamins and minerals, and as cholesterol reservoirs. In cancer, this provides rapid access to cholesterol to maintain continual synthesis of the plasma membrane. In this systematic review and meta-analysis, we summarise the current depth of understanding of the role of this metabolic pathway in pan-cancer development. A systematic search of PubMed, Scopus, Web of Science, and Cochrane Library for preclinical studies identified eight studies where cholesteryl ester concentrations were compared between tumour and adjacent-normal tissue, and 24 studies where cholesterol esterification was blocked by pharmacological or genetic approaches. Tumour tissue had a significantly greater concentration of cholesteryl esters than non-tumour tissue (p < 0.0001). Pharmacological or genetic inhibition of SOAT was associated with significantly smaller tumours of all types (p ≤ 0.002). SOAT inhibition increased tumour apoptosis (p = 0.007), CD8 + lymphocyte infiltration and cytotoxicity (p ≤ 0.05), and reduced proliferation (p = 0.0003) and metastasis (p < 0.0001). Significant risk of publication bias was found and may have contributed to a 32% overestimation of the meta-analysed effect size. Avasimibe, the most frequently used SOAT inhibitor, was effective at doses equivalent to those previously reported to be safe and tolerable in humans. This work indicates that SOAT inhibition should be explored in clinical trials as an adjunct to existing anti-neoplastic agents.
Collapse
Affiliation(s)
- Alex Websdale
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Yi Kiew
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Philip Chalmers
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Xinyu Chen
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Giorgia Cioccoloni
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | | | - Xinyu Luo
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Rufaro Mwarzi
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Marc Poirot
- Cancer Research Center of Toulouse, Inserm, CNRS, University of Toulouse, Toulouse, France
| | | | - Ruoying Wu
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Mengfan Xu
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Michael A Zulyniak
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - James L Thorne
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
38
|
Quantitative Proteomic Analysis of Plasma after Remote Ischemic Conditioning in a Rhesus Monkey Ischemic Stroke Model. Biomolecules 2021; 11:biom11081164. [PMID: 34439830 PMCID: PMC8393806 DOI: 10.3390/biom11081164] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 11/28/2022] Open
Abstract
Background: Animal and clinical studies have shown that remote ischemic conditioning (RIC) has protective effects for cerebral vascular diseases, with induced humoral factor changes in the peripheral blood. However, many findings are heterogeneous, perhaps due to differences in the RIC intervention schemes, enrolled populations, and sample times. This study aimed to examine the RIC-induced changes in the plasma proteome using rhesus monkey models of strokes. Methods: Two adult rhesus monkeys with autologous blood clot-induced middle cerebral artery (MCA) occlusion underwent RIC interventions twice a week for five consecutive weeks. Each RIC treatment included five cycles of five minutes of ischemia alternating with five minutes of reperfusion of the forearm. The blood samples were taken from the median cubital vein of the monkeys at baseline and immediately after each week’s RIC stimulus. The plasma samples were isolated for a proteomic analysis using mass spectrometry (MS). Results: Several proteins related to lipid metabolism (Apolipoprotein A-II and Apolipoprotein C-II), coagulation (Fibrinogen alpha chain and serpin), immunoinflammatory responses (complement C3 and C1), and endovascular hemostasis (basement membrane-specific heparan sulfate proteoglycan) were significantly modulated after the RIC intervention. Many of these induced changes, such as in the lipid metabolism regulation and anticoagulation responses, starting as early as two weeks following the RIC intervention. The complementary activation and protection of the endovascular cells occurred more than three weeks postintervention. Conclusions: Multiple protective effects were induced by RIC and involved lipid metabolism regulation (anti-atherogenesis), anticoagulation (antithrombosis), complement activation, and endovascular homeostasis (anti-inflammation). In conclusion, this study indicates that RIC results in significant modulations of the plasma proteome. It also provides ideas for future research and screening targets.
Collapse
|
39
|
Guadagnin AR, Velasco-Acosta DA, Stella SL, Luchini D, Cardoso FC. Methionine supply during the peripartum period and early lactation alter immunometabolic gene expression in cytological smear and endometrial tissue of holstein cows. Theriogenology 2021; 173:102-111. [PMID: 34365138 DOI: 10.1016/j.theriogenology.2021.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 10/20/2022]
Abstract
The objective of the present study was to evaluate the effect of feeding rumen-protected methionine (RPM) during the peripartal period and early lactation on mRNA gene expression profiles of uterine cytological smear and endometrial samples of Holstein cows (n = 20). Treatments consisted of a supplementation with RPM [MET; n = 11; RPM at a rate of 0.08 % of DM: Lys:Met = 2.8:1, (Smartamine® M Adisseo, Alpharetta, GA, USA)] and no supplementation (CON; n = 9; Lys:Met = 3.5:1). Uterine cytology smears and endometrial samples were collected at 15, 30, and 73 days in milk (DIM) and analyzed for expression of genes related with metabolism, inflammation, and methionine metabolism. Regarding the cytological smear samples, RPM supplementation tended to increase mRNA expression of methionine adenosyltransferase 1 alpha (MAT1A) and increased the mRNA expression of fibroblast growth factor 7 (FGF7), with an effect of time for the latter. On the other hand, RPM decreased mRNA expression for glucose transporter 4 (GLUT4), interleukin 1 beta (IL-1β), interleukin 6 (IL-6), interleukin 8 (IL-8), prostaglandin E synthase 3 (PTGES3), translocator protein 18 kDa (TSPO), mucin 1 (MUC1) and superoxide dismutase (SOD1) in cytological smear samples. There was an effect of time for all variables except MAT1A, with decreasing expression over time. There was a TRT × TIME interaction for GLUT4 mRNA expression, with higher GLUT4 mRNA expression for cows fed CON than for cows fed RPM at time 15 and a tendency to higher expression for cows fed CON on time 30 when compared with cows fed RPM. For uterine tissue samples, feeding RPM increased the mRNA expression of lecithin-cholesterol acyltransferase (LCAT), S-adenosyl-l-homocysteine hydrolase (SAAH), FGF7, GLUT4, and apolipoproteins 3 (APOL3), with an effect of time for APOL3 where its expression increased over time. There was a tendency for cows fed RPM to have decreased IL1β mRNA expression. In conclusion, feeding RPM during transition period and early lactation is beneficial for uterine immune response and metabolism in early lactation as indicated by the favorable expressions of genes affecting the uterine immunometabolism during such a challenging period.
Collapse
Affiliation(s)
- A R Guadagnin
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - D A Velasco-Acosta
- The Colombian Corporation for Agricultural Research (AGROSAVIA), Mosquera, Colombia
| | - S L Stella
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | | | - F C Cardoso
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA.
| |
Collapse
|
40
|
Mehta R, Elías-López D, Martagón AJ, Pérez-Méndez OA, Sánchez MLO, Segura Y, Tusié MT, Aguilar-Salinas CA. LCAT deficiency: a systematic review with the clinical and genetic description of Mexican kindred. Lipids Health Dis 2021; 20:70. [PMID: 34256778 PMCID: PMC8276382 DOI: 10.1186/s12944-021-01498-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/01/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND LCAT (lecithin-cholesterol acyltransferase) deficiency is characterized by two distinct phenotypes, familial LCAT deficiency (FLD) and Fish Eye disease (FED). This is the first systematic review evaluating the ethnic distribution of LCAT deficiency, with particular emphasis on Latin America and the discussion of three Mexican-Mestizo probands. METHODS A systematic review was conducted following the PRISMA (Preferred Reporting Items for Systematic review and Meta-Analysis) Statement in Pubmed and SciELO. Articles which described subjects with LCAT deficiency syndromes and an assessment of the ethnic group to which the subject pertained, were included. RESULTS The systematic review revealed 215 cases (154 FLD, 41 FED and 20 unclassified) pertaining to 33 ethnic/racial groups. There was no association between genetic alteration and ethnicity. The mean age of diagnosis was 42 ± 16.5 years, with fish eye disease identified later than familial LCAT deficiency (55 ± 13.8 vs. 41 ± 14.7 years respectively). The prevalence of premature coronary heart disease was significantly greater in FED vs. FLD. In Latin America, 48 cases of LCAT deficiency have been published from six countries (Argentina (1 unclassified), Brazil (38 FLD), Chile (1 FLD), Columbia (1 FLD), Ecuador (1 FLD) and Mexico (4 FLD, 1 FED and 1 unclassified). Of the Mexican probands, one showed a novel LCAT mutation. CONCLUSIONS The systematic review shows that LCAT deficiency syndromes are clinically and genetically heterogeneous. No association was confirmed between ethnicity and LCAT mutation. There was a significantly greater risk of premature coronary artery disease in fish eye disease compared to familial LCAT deficiency. In FLD, the emphasis should be in preventing both cardiovascular disease and the progression of renal disease, while in FED, cardiovascular risk management should be the priority. The LCAT mutations discussed in this article are the only ones reported in the Mexican- Amerindian population.
Collapse
Affiliation(s)
- Roopa Mehta
- Department of Endocrinology and Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Av. Vasco de Quiroga 15, Belisario Domínguez Secc. 16, , Tlalpan, 14080, México City, México
| | - Daniel Elías-López
- Department of Endocrinology and Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Av. Vasco de Quiroga 15, Belisario Domínguez Secc. 16, , Tlalpan, 14080, México City, México
| | - Alexandro J Martagón
- Department of Endocrinology and Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Av. Vasco de Quiroga 15, Belisario Domínguez Secc. 16, , Tlalpan, 14080, México City, México.,Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, N.L, México
| | - Oscar A Pérez-Méndez
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, México City, México
| | - Maria Luisa Ordóñez Sánchez
- Department of Molecular Biology, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, México City, México
| | - Yayoi Segura
- Department of Molecular Biology, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, México City, México
| | - Maria Teresa Tusié
- Department of Molecular Biology, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, México City, México
| | - Carlos A Aguilar-Salinas
- Department of Endocrinology and Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Av. Vasco de Quiroga 15, Belisario Domínguez Secc. 16, , Tlalpan, 14080, México City, México. .,Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, N.L, México.
| |
Collapse
|
41
|
Lian J, van der Veen JN, Watts R, Jacobs RL, Lehner R. Carboxylesterase 1d (Ces1d) does not contribute to cholesteryl ester hydrolysis in the liver. J Lipid Res 2021; 62:100093. [PMID: 34153284 PMCID: PMC8287225 DOI: 10.1016/j.jlr.2021.100093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 06/09/2021] [Indexed: 01/19/2023] Open
Abstract
The liver is the central organ regulating cholesterol synthesis, storage, transport, and elimination. Mouse carboxylesterase 1d (Ces1d) and its human ortholog CES1 have been described to possess lipase activity and play roles in hepatic triacylglycerol metabolism and VLDL assembly. It has been proposed that Ces1d/CES1 might also catalyze cholesteryl ester (CE) hydrolysis in the liver and thus be responsible for the hydrolysis of HDL-derived CE; this could contribute to the final step in the reverse cholesterol transport (RCT) pathway, wherein cholesterol is secreted from the liver into bile and feces, either directly or after conversion to water-soluble bile salts. However, the proposed function of Ces1d/CES1 as a CE hydrolase is controversial. In this study, we interrogated the role hepatic Ces1d plays in cholesterol homeostasis using liver-specific Ces1d-deficient mice. We rationalized that if Ces1d is a major hepatic CE hydrolase, its absence would (1) reduce in vivo RCT flux and (2) provoke liver CE accumulation after a high-cholesterol diet challenge. We found that liver-specific Ces1d-deficient mice did not show any difference in the flux of in vivo HDL-to-feces RCT nor did it cause additional liver CE accumulation after high-fat, high-cholesterol Western-type diet feeding. These findings challenge the importance of Ces1d as a major hepatic CE hydrolase.
Collapse
Affiliation(s)
- Jihong Lian
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.
| | - Jelske N van der Veen
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Russell Watts
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - René L Jacobs
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Richard Lehner
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada; Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
42
|
Loss of hepatic miR-33 improves metabolic homeostasis and liver function without altering body weight or atherosclerosis. Proc Natl Acad Sci U S A 2021; 118:2006478118. [PMID: 33495342 DOI: 10.1073/pnas.2006478118] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
miR-33 is an intronic microRNA within the gene encoding the SREBP2 transcription factor. Like its host gene, miR-33 has been shown to be an important regulator of lipid metabolism. Inhibition of miR-33 has been shown to promote cholesterol efflux in macrophages by targeting the cholesterol transporter ABCA1, thus reducing atherosclerotic plaque burden. Inhibition of miR-33 has also been shown to improve high-density lipoprotein (HDL) biogenesis in the liver and increase circulating HDL-C levels in both rodents and nonhuman primates. However, evaluating the extent to which these changes in HDL metabolism contribute to atherogenesis has been hindered by the obesity and metabolic dysfunction observed in whole-body miR-33-knockout mice. To determine the impact of hepatic miR-33 deficiency on obesity, metabolic function, and atherosclerosis, we have generated a conditional knockout mouse model that lacks miR-33 only in the liver. Characterization of this model demonstrates that loss of miR-33 in the liver does not lead to increased body weight or adiposity. Hepatic miR-33 deficiency actually improves regulation of glucose homeostasis and impedes the development of fibrosis and inflammation. We further demonstrate that hepatic miR-33 deficiency increases circulating HDL-C levels and reverse cholesterol transport capacity in mice fed a chow diet, but these changes are not sufficient to reduce atherosclerotic plaque size under hyperlipidemic conditions. By elucidating the role of miR-33 in the liver and the impact of hepatic miR-33 deficiency on obesity and atherosclerosis, this work will help inform ongoing efforts to develop novel targeted therapies against cardiometabolic diseases.
Collapse
|
43
|
Barker G, Leeuwenburgh C, Brusko T, Moldawer L, Reddy ST, Guirgis FW. Lipid and Lipoprotein Dysregulation in Sepsis: Clinical and Mechanistic Insights into Chronic Critical Illness. J Clin Med 2021; 10:1693. [PMID: 33920038 PMCID: PMC8071007 DOI: 10.3390/jcm10081693] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/05/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
In addition to their well-characterized roles in metabolism, lipids and lipoproteins have pleiotropic effects on the innate immune system. These undergo clinically relevant alterations during sepsis and acute inflammatory responses. High-density lipoprotein (HDL) plays an important role in regulating the immune response by clearing bacterial toxins, supporting corticosteroid release, decreasing platelet aggregation, inhibiting endothelial cell apoptosis, reducing the monocyte inflammatory response, and inhibiting expression of endothelial cell adhesion molecules. It undergoes quantitative as well as qualitative changes which can be measured using the HDL inflammatory index (HII). Pro-inflammatory, or dysfunctional HDL (dysHDL) lacks the ability to perform these functions, and we have also found it to independently predict adverse outcomes and organ failure in sepsis. Another important class of lipids known as specialized pro-resolving mediators (SPMs) positively affect the escalation and resolution of inflammation in a temporal fashion. These undergo phenotypic changes in sepsis and differ significantly between survivors and non-survivors. Certain subsets of sepsis survivors go on to have perilous post-hospitalization courses where this inflammation continues in a low grade fashion. This is associated with immunosuppression in a syndrome of persistent inflammation, immunosuppression, and catabolism syndrome (PICS). The continuous release of tissue damage-related patterns and viral reactivation secondary to immunosuppression feed this chronic cycle of inflammation. Animal data indicate that dysregulation of endogenous lipids and SPMs play important roles in this process. Lipids and their associated pathways have been the target of many clinical trials in recent years which have not shown mortality benefit. These results are limited by patient heterogeneity and poor animal models. Considerations of sepsis phenotypes and novel biomarkers in future trials are important factors to be considered in future research. Further characterization of lipid dysregulation and chronic inflammation during sepsis will aid mortality risk stratification, detection of sepsis, and inform individualized pharmacologic therapies.
Collapse
Affiliation(s)
- Grant Barker
- Department of Emergency Medicine, College of Medicine-Jacksonville, University of Florida, 655 West 8th Street, Jacksonville, FL 32209, USA;
| | - Christiaan Leeuwenburgh
- Department of Aging and Geriatric Research, College of Medicine, University of Florida, Gainesville, FL 32603, USA;
| | - Todd Brusko
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL 32610, USA;
| | - Lyle Moldawer
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL 32608, USA;
| | - Srinivasa T. Reddy
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA;
| | - Faheem W. Guirgis
- Department of Emergency Medicine, College of Medicine-Jacksonville, University of Florida, 655 West 8th Street, Jacksonville, FL 32209, USA;
| |
Collapse
|
44
|
Grabrijan K, Strašek N, Gobec S. Monocyclic beta-lactams for therapeutic uses: a patent overview (2010-2020). Expert Opin Ther Pat 2021; 31:247-266. [PMID: 33327805 DOI: 10.1080/13543776.2021.1865919] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Monocyclic beta-lactams are four-membered cyclic amides with various structural modifications of the nucleus that determine their chemical reactivity and target specificity. Their historical use is based on their antibacterial activity, but they have recently appeared in other areas as well. AREAS COVERED This review summarizes the relevant patent development on monocyclic beta-lactams in various therapeutic areas over the last 10 years. The majority of patents describe compounds with antibacterial activity, while there are some recent patents describing the neuroprotective, anti-inflammatory, anti-cancer, anticoagulant and antihyperlipidemic effects of 2-azetidinones. EXPERT OPINION Monocyclic beta-lactams can be considered safe and nontoxic drugs, as they have been used in the clinic for almost half of the century. Recently, monocyclic beta-lactams have been increasingly recognized for their non-antibiotic activity, which has led to some promising new clinical candidates in the field of neurodegenerative diseases and coagulation therapy. With regard to their antibacterial activity, there is still room for improvement of their activity and broadening of their spectrum of action, especially in Gram-positive bacteria and on drug-insensitive penicillin-binding proteins, and in increasing their beta-lactamase stability.
Collapse
Affiliation(s)
| | - Nika Strašek
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
45
|
Sasaki M, Delawary M, Sakurai H, Kobayashi H, Nakao N, Tsuru H, Fukushima Y, Honzumi S, Moriyama S, Wada N, Kaneko T, Yamada K, Terasaka N, Kubota K. Novel LCAT (Lecithin:Cholesterol Acyltransferase) Activator DS-8190a Prevents the Progression of Plaque Accumulation in Atherosclerosis Models. Arterioscler Thromb Vasc Biol 2021; 41:360-376. [PMID: 33086872 DOI: 10.1161/atvbaha.120.314516] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Enhancement of LCAT (lecithin:cholesterol acyltransferase) activity has possibility to be beneficial for atherosclerosis. To evaluate this concept, we characterized our novel, orally administered, small-molecule LCAT activator DS-8190a, which was created from high-throughput screening and subsequent derivatization. We also focused on its mechanism of LCAT activation and the therapeutic activity with improvement of HDL (high-density lipoprotein) functionality. Approach and Results: DS-8190a activated human and cynomolgus monkey but not mouse LCAT enzymes in vitro. DS-8190a was orally administered to cynomolgus monkeys and dose dependently increased LCAT activity (2.0-fold in 3 mg/kg group on day 7), resulting in HDL cholesterol elevation without drastic changes of non-HDL cholesterol. Atheroprotective effects were then evaluated using Ldl-r KO×hLcat Tg mice fed a Western diet for 8 weeks. DS-8190a treatment achieved significant reduction of atherosclerotic lesion area (48.3% reduction in 10 mg/kg treatment group). Furthermore, we conducted reverse cholesterol transport study using Ldl-r KO×hLcat Tg mice intraperitoneally injected with J774A.1 cells loaded with [3H]-cholesterol and confirmed significant increases of [3H] count in plasma (1.4-fold) and feces (1.4-fold on day 2 and 1.5-fold on day3) in the DS-8190a-treated group. With regard to the molecular mechanism involved, direct binding of DS-8190a to human LCAT protein was confirmed by 2 different approaches: affinity purification by DS-8190a-immobilized beads and thermal shift assay. In addition, the candidate binding site of DS-8190a in human LCAT protein was identified by photoaffinity labeling. CONCLUSIONS This study demonstrates the potential of DS-8190a as a novel therapeutic for atherosclerosis. In addition, this compound proves that a small-molecule direct LCAT activator can achieve HDL-C elevation in monkey and reduction of atherosclerotic lesion area with enhanced HDL function in rodent.
Collapse
Affiliation(s)
- Masato Sasaki
- Organic Synthesis Department (M.S., N.N.), Daiichi Sankyo RD Novare, Co, Ltd, Tokyo, Japan
| | - Mina Delawary
- Biological Research Laboratories (M.D., H.T., S.H., S.M., K.Y., N.T.), Daiichi Sankyo, Co, Ltd, Tokyo, Japan
| | - Hidetaka Sakurai
- Discovery Science and Technology Department (H.S., Y.F., N.W., K.K.), Daiichi Sankyo RD Novare, Co, Ltd, Tokyo, Japan
| | - Hideki Kobayashi
- Medicinal Chemistry Research Laboratories (H.K., T.K.), Daiichi Sankyo, Co, Ltd, Tokyo, Japan
| | - Naoki Nakao
- Organic Synthesis Department (M.S., N.N.), Daiichi Sankyo RD Novare, Co, Ltd, Tokyo, Japan
| | - Hiromi Tsuru
- Biological Research Laboratories (M.D., H.T., S.H., S.M., K.Y., N.T.), Daiichi Sankyo, Co, Ltd, Tokyo, Japan
| | - Yumiko Fukushima
- Discovery Science and Technology Department (H.S., Y.F., N.W., K.K.), Daiichi Sankyo RD Novare, Co, Ltd, Tokyo, Japan
| | - Shoko Honzumi
- Biological Research Laboratories (M.D., H.T., S.H., S.M., K.Y., N.T.), Daiichi Sankyo, Co, Ltd, Tokyo, Japan
| | - Sachiko Moriyama
- Biological Research Laboratories (M.D., H.T., S.H., S.M., K.Y., N.T.), Daiichi Sankyo, Co, Ltd, Tokyo, Japan
| | - Naoya Wada
- Discovery Science and Technology Department (H.S., Y.F., N.W., K.K.), Daiichi Sankyo RD Novare, Co, Ltd, Tokyo, Japan
| | - Toshio Kaneko
- Medicinal Chemistry Research Laboratories (H.K., T.K.), Daiichi Sankyo, Co, Ltd, Tokyo, Japan
| | - Keisuke Yamada
- Biological Research Laboratories (M.D., H.T., S.H., S.M., K.Y., N.T.), Daiichi Sankyo, Co, Ltd, Tokyo, Japan
| | - Naoki Terasaka
- Biological Research Laboratories (M.D., H.T., S.H., S.M., K.Y., N.T.), Daiichi Sankyo, Co, Ltd, Tokyo, Japan
| | - Kazuishi Kubota
- Discovery Science and Technology Department (H.S., Y.F., N.W., K.K.), Daiichi Sankyo RD Novare, Co, Ltd, Tokyo, Japan
| |
Collapse
|
46
|
Vitali C, Cuchel M. Controversial Role of Lecithin:Cholesterol Acyltransferase in the Development of Atherosclerosis: New Insights From an LCAT Activator. Arterioscler Thromb Vasc Biol 2021; 41:377-379. [PMID: 33356367 PMCID: PMC7901727 DOI: 10.1161/atvbaha.120.315496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Cecilia Vitali
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marina Cuchel
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
47
|
Márquez AB, Nazir S, van der Vorst EP. High-Density Lipoprotein Modifications: A Pathological Consequence or Cause of Disease Progression? Biomedicines 2020; 8:biomedicines8120549. [PMID: 33260660 PMCID: PMC7759904 DOI: 10.3390/biomedicines8120549] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/17/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
High-density lipoprotein (HDL) is well-known for its cardioprotective effects, as it possesses anti-inflammatory, anti-oxidative, anti-thrombotic, and cytoprotective properties. Traditionally, studies and therapeutic approaches have focused on raising HDL cholesterol levels. Recently, it became evident that, not HDL cholesterol, but HDL composition and functionality, is probably a more fruitful target. In disorders, such as chronic kidney disease or cardiovascular diseases, it has been observed that HDL is modified and becomes dysfunctional. There are different modification that can occur, such as serum amyloid, an enrichment and oxidation, carbamylation, and glycation of key proteins. Additionally, the composition of HDL can be affected by changes to enzymes such as cholesterol ester transfer protein (CETP), lecithin-cholesterol acyltransferase (LCAT), and phospholipid transfer protein (PLTP) or by modification to other important components. This review will highlight some main modifications to HDL and discuss whether these modifications are purely a consequential result of pathology or are actually involved in the pathology itself and have a causal role. Therefore, HDL composition may present a molecular target for the amelioration of certain diseases, but more information is needed to determine to what extent HDL modifications play a causal role in disease development.
Collapse
Affiliation(s)
- Andrea Bonnin Márquez
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany; (A.B.M.); (S.N.)
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
| | - Sumra Nazir
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany; (A.B.M.); (S.N.)
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
| | - Emiel P.C. van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany; (A.B.M.); (S.N.)
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, 80336 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, 80336 Munich, Germany
- Correspondence: ; Tel.: +49-241-80-36914
| |
Collapse
|
48
|
Hang D, Zeleznik OA, He X, Guasch-Ferre M, Jiang X, Li J, Liang L, Eliassen AH, Clish CB, Chan AT, Hu Z, Shen H, Wilson KM, Mucci LA, Sun Q, Hu FB, Willett WC, Giovannucci EL, Song M. Metabolomic Signatures of Long-term Coffee Consumption and Risk of Type 2 Diabetes in Women. Diabetes Care 2020; 43:2588-2596. [PMID: 32788283 PMCID: PMC7510042 DOI: 10.2337/dc20-0800] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/12/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Coffee may protect against multiple chronic diseases, particularly type 2 diabetes, but the mechanisms remain unclear. RESEARCH DESIGN AND METHODS Leveraging dietary and metabolomic data in two large cohorts of women (the Nurses' Health Study [NHS] and NHSII), we identified and validated plasma metabolites associated with coffee intake in 1,595 women. We then evaluated the prospective association of coffee-related metabolites with diabetes risk and the added predictivity of these metabolites for diabetes in two nested case-control studies (n = 457 case and 1,371 control subjects). RESULTS Of 461 metabolites, 34 were identified and validated to be associated with total coffee intake, including 13 positive associations (primarily trigonelline, polyphenol metabolites, and caffeine metabolites) and 21 inverse associations (primarily triacylglycerols [TAGs] and diacylglycerols [DAGs]). These associations were generally consistent for caffeinated and decaffeinated coffee, except for caffeine and its metabolites that were only associated with caffeinated coffee intake. The three cholesteryl esters positively associated with coffee intake showed inverse associations with diabetes risk, whereas the 12 metabolites negatively associated with coffee (5 DAGs and 7 TAGs) showed positive associations with diabetes. Adding the 15 diabetes-associated metabolites to a classical risk factor-based prediction model increased the C-statistic from 0.79 (95% CI 0.76, 0.83) to 0.83 (95% CI 0.80, 0.86) (P < 0.001). Similar improvement was observed in the validation set. CONCLUSIONS Coffee consumption is associated with widespread metabolic changes, among which lipid metabolites may be critical for the antidiabetes benefit of coffee. Coffee-related metabolites might help improve prediction of diabetes, but further validation studies are needed.
Collapse
Affiliation(s)
- Dong Hang
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Oana A Zeleznik
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Xiaosheng He
- Clinical and Translational Epidemiology Unit and Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA.,Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Marta Guasch-Ferre
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Xia Jiang
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Jun Li
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - A Heather Eliassen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Clary B Clish
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | - Andrew T Chan
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.,Clinical and Translational Epidemiology Unit and Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | - Zhibin Hu
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hongbing Shen
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Kathryn M Wilson
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Lorelei A Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Qi Sun
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Frank B Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Walter C Willett
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Edward L Giovannucci
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Mingyang Song
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA .,Clinical and Translational Epidemiology Unit and Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| |
Collapse
|
49
|
Knuplez E, Marsche G. An Updated Review of Pro- and Anti-Inflammatory Properties of Plasma Lysophosphatidylcholines in the Vascular System. Int J Mol Sci 2020; 21:E4501. [PMID: 32599910 PMCID: PMC7350010 DOI: 10.3390/ijms21124501] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022] Open
Abstract
Lysophosphatidylcholines are a group of bioactive lipids heavily investigated in the context of inflammation and atherosclerosis development. While present in plasma during physiological conditions, their concentration can drastically increase in certain inflammatory states. Lysophosphatidylcholines are widely regarded as potent pro-inflammatory and deleterious mediators, but an increasing number of more recent studies show multiple beneficial properties under various pathological conditions. Many of the discrepancies in the published studies are due to the investigation of different species or mixtures of lysophatidylcholines and the use of supra-physiological concentrations in the absence of serum or other carrier proteins. Furthermore, interpretation of the results is complicated by the rapid metabolism of lysophosphatidylcholine (LPC) in cells and tissues to pro-inflammatory lysophosphatidic acid. Interestingly, most of the recent studies, in contrast to older studies, found lower LPC plasma levels associated with unfavorable disease outcomes. Being the most abundant lysophospholipid in plasma, it is of utmost importance to understand its physiological functions and shed light on the discordant literature connected to its research. LPCs should be recognized as important homeostatic mediators involved in all stages of vascular inflammation. In this review, we want to point out potential pro- and anti-inflammatory activities of lysophospholipids in the vascular system and highlight recent discoveries about the effect of lysophosphatidylcholines on immune cells at the endothelial vascular interface. We will also look at their potential clinical application as biomarkers.
Collapse
Affiliation(s)
- Eva Knuplez
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| |
Collapse
|
50
|
Carresi C, Gliozzi M, Musolino V, Scicchitano M, Scarano F, Bosco F, Nucera S, Maiuolo J, Macrì R, Ruga S, Oppedisano F, Zito MC, Guarnieri L, Mollace R, Tavernese A, Palma E, Bombardelli E, Fini M, Mollace V. The Effect of Natural Antioxidants in the Development of Metabolic Syndrome: Focus on Bergamot Polyphenolic Fraction. Nutrients 2020; 12:E1504. [PMID: 32455840 PMCID: PMC7284500 DOI: 10.3390/nu12051504] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/17/2022] Open
Abstract
Metabolic syndrome (MetS) represents a set of clinical findings that include visceral adiposity, insulin-resistance, high triglycerides (TG), low high-density lipoprotein cholesterol (HDL-C) levels and hypertension, which is linked to an increased risk of developing type 2 diabetes mellitus (T2DM) and atherosclerotic cardiovascular disease (ASCVD). The pathogenesis of MetS involves both genetic and acquired factors triggering oxidative stress, cellular dysfunction and systemic inflammation process mainly responsible for the pathophysiological mechanism. In recent years, MetS has gained importance due to the exponential increase in obesity worldwide. However, at present, it remains underdiagnosed and undertreated. The present review will summarize the pathogenesis of MetS and the existing pharmacological therapies currently used and focus attention on the beneficial effects of natural compounds to reduce the risk and progression of MetS. In this regard, emerging evidence suggests a potential protective role of bergamot extracts, in particular bergamot flavonoids, in the management of different features of MetS, due to their pleiotropic anti-oxidative, anti-inflammatory and lipid-lowering effects.
Collapse
Affiliation(s)
- Cristina Carresi
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (V.M.); (M.S.); (F.S.); (F.B.); (S.N.); (J.M.); (Roberta Macrì); (S.R.); (F.O.); (M.C.Z.); (L.G.); (Rocco Mollace); (A.T.); (E.P.); (E.B.); (V.M.)
| | - Micaela Gliozzi
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (V.M.); (M.S.); (F.S.); (F.B.); (S.N.); (J.M.); (Roberta Macrì); (S.R.); (F.O.); (M.C.Z.); (L.G.); (Rocco Mollace); (A.T.); (E.P.); (E.B.); (V.M.)
| | - Vincenzo Musolino
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (V.M.); (M.S.); (F.S.); (F.B.); (S.N.); (J.M.); (Roberta Macrì); (S.R.); (F.O.); (M.C.Z.); (L.G.); (Rocco Mollace); (A.T.); (E.P.); (E.B.); (V.M.)
| | - Miriam Scicchitano
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (V.M.); (M.S.); (F.S.); (F.B.); (S.N.); (J.M.); (Roberta Macrì); (S.R.); (F.O.); (M.C.Z.); (L.G.); (Rocco Mollace); (A.T.); (E.P.); (E.B.); (V.M.)
| | - Federica Scarano
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (V.M.); (M.S.); (F.S.); (F.B.); (S.N.); (J.M.); (Roberta Macrì); (S.R.); (F.O.); (M.C.Z.); (L.G.); (Rocco Mollace); (A.T.); (E.P.); (E.B.); (V.M.)
| | - Francesca Bosco
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (V.M.); (M.S.); (F.S.); (F.B.); (S.N.); (J.M.); (Roberta Macrì); (S.R.); (F.O.); (M.C.Z.); (L.G.); (Rocco Mollace); (A.T.); (E.P.); (E.B.); (V.M.)
| | - Saverio Nucera
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (V.M.); (M.S.); (F.S.); (F.B.); (S.N.); (J.M.); (Roberta Macrì); (S.R.); (F.O.); (M.C.Z.); (L.G.); (Rocco Mollace); (A.T.); (E.P.); (E.B.); (V.M.)
| | - Jessica Maiuolo
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (V.M.); (M.S.); (F.S.); (F.B.); (S.N.); (J.M.); (Roberta Macrì); (S.R.); (F.O.); (M.C.Z.); (L.G.); (Rocco Mollace); (A.T.); (E.P.); (E.B.); (V.M.)
| | - Roberta Macrì
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (V.M.); (M.S.); (F.S.); (F.B.); (S.N.); (J.M.); (Roberta Macrì); (S.R.); (F.O.); (M.C.Z.); (L.G.); (Rocco Mollace); (A.T.); (E.P.); (E.B.); (V.M.)
| | - Stefano Ruga
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (V.M.); (M.S.); (F.S.); (F.B.); (S.N.); (J.M.); (Roberta Macrì); (S.R.); (F.O.); (M.C.Z.); (L.G.); (Rocco Mollace); (A.T.); (E.P.); (E.B.); (V.M.)
| | - Francesca Oppedisano
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (V.M.); (M.S.); (F.S.); (F.B.); (S.N.); (J.M.); (Roberta Macrì); (S.R.); (F.O.); (M.C.Z.); (L.G.); (Rocco Mollace); (A.T.); (E.P.); (E.B.); (V.M.)
| | - Maria Caterina Zito
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (V.M.); (M.S.); (F.S.); (F.B.); (S.N.); (J.M.); (Roberta Macrì); (S.R.); (F.O.); (M.C.Z.); (L.G.); (Rocco Mollace); (A.T.); (E.P.); (E.B.); (V.M.)
| | - Lorenza Guarnieri
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (V.M.); (M.S.); (F.S.); (F.B.); (S.N.); (J.M.); (Roberta Macrì); (S.R.); (F.O.); (M.C.Z.); (L.G.); (Rocco Mollace); (A.T.); (E.P.); (E.B.); (V.M.)
| | - Rocco Mollace
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (V.M.); (M.S.); (F.S.); (F.B.); (S.N.); (J.M.); (Roberta Macrì); (S.R.); (F.O.); (M.C.Z.); (L.G.); (Rocco Mollace); (A.T.); (E.P.); (E.B.); (V.M.)
- Department of Medicine, Chair of Cardiology, University of Rome Tor Vergata, 00133 Roma, Italy
| | - Annamaria Tavernese
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (V.M.); (M.S.); (F.S.); (F.B.); (S.N.); (J.M.); (Roberta Macrì); (S.R.); (F.O.); (M.C.Z.); (L.G.); (Rocco Mollace); (A.T.); (E.P.); (E.B.); (V.M.)
- Department of Medicine, Chair of Cardiology, University of Rome Tor Vergata, 00133 Roma, Italy
| | - Ernesto Palma
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (V.M.); (M.S.); (F.S.); (F.B.); (S.N.); (J.M.); (Roberta Macrì); (S.R.); (F.O.); (M.C.Z.); (L.G.); (Rocco Mollace); (A.T.); (E.P.); (E.B.); (V.M.)
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy;
| | - Ezio Bombardelli
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (V.M.); (M.S.); (F.S.); (F.B.); (S.N.); (J.M.); (Roberta Macrì); (S.R.); (F.O.); (M.C.Z.); (L.G.); (Rocco Mollace); (A.T.); (E.P.); (E.B.); (V.M.)
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy;
| | - Massimo Fini
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy;
- IRCCS San Raffaele Pisana, 00163 Roma, Italy
| | - Vincenzo Mollace
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (V.M.); (M.S.); (F.S.); (F.B.); (S.N.); (J.M.); (Roberta Macrì); (S.R.); (F.O.); (M.C.Z.); (L.G.); (Rocco Mollace); (A.T.); (E.P.); (E.B.); (V.M.)
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy;
| |
Collapse
|