1
|
Cutilli A, Jansen SA, Paolucci F, van Hoesel M, Frederiks CL, Mulder TAM, Chalkiadakis T, Mokry M, Prekovic S, Mocholi E, Lindemans CA, Coffer PJ. Interferon-gamma induces epithelial reprogramming driving CXCL11-mediated T-cell migration. J Leukoc Biol 2025; 117:qiae205. [PMID: 39302156 DOI: 10.1093/jleuko/qiae205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/20/2024] [Accepted: 09/19/2024] [Indexed: 09/22/2024] Open
Abstract
The cytokine interferon-gamma plays a multifaceted role in intestinal immune responses ranging from anti- to proinflammatory depending on the setting. Here, using a 3D co-culture system based on human intestinal epithelial organoids, we explore the capacity of interferon-gamma exposure to reprogram intestinal epithelia and thereby directly modulate lymphocyte responses. Interferon-gamma treatment of organoids led to transcriptional reprogramming, marked by a switch to a proinflammatory gene expression profile, including transcriptional upregulation of the chemokines CXCL9, CXCL10, and CXCL11. Proteomic analysis of organoid-conditioned medium posttreatment confirmed chemokine secretion. Interferon-gamma treatment of organoids led to enhanced T-cell migration in a CXCL11-dependent manner without affecting T-cell activation status. Taken together, our results suggest a specific role for CXCL11 in T-cell recruitment that could be targeted to prevent T-cell trafficking to the inflamed intestine.
Collapse
Affiliation(s)
- Alessandro Cutilli
- Regenerative Medicine Center, University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Center of Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Suze A Jansen
- Regenerative Medicine Center, University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Division of Pediatrics, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Francesca Paolucci
- Regenerative Medicine Center, University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Center of Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Marliek van Hoesel
- Regenerative Medicine Center, University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Division of Pediatrics, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Cynthia L Frederiks
- Regenerative Medicine Center, University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Center of Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Tessa A M Mulder
- Center of Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Theofilos Chalkiadakis
- Center of Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Michal Mokry
- Division of Pediatrics, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Stefan Prekovic
- Center of Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Enric Mocholi
- Regenerative Medicine Center, University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Center of Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Caroline A Lindemans
- Regenerative Medicine Center, University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Division of Pediatrics, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Paul J Coffer
- Regenerative Medicine Center, University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Center of Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
2
|
Heredia M, Charrout M, Klomberg RCW, Aardoom MA, Jongsma MME, Kemos P, Hulleman-van Haaften DH, Tuk B, van Berkel LA, Bley Folly B, Calado B, Nugteren S, Simons-Oosterhuis Y, Doukas M, Sanders MA, van Beek G, Ruemmele FM, Croft NM, Mahfouz A, Reinders MJT, Escher JC, de Ridder L, Samsom JN. Combined plasma protein and memory T cell profiling discern IBD-patient-immunotypes related to intestinal disease and treatment outcomes. Mucosal Immunol 2025; 18:76-89. [PMID: 39332767 DOI: 10.1016/j.mucimm.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/29/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024]
Abstract
Inflammatory bowel disease (IBD) chronicity results from memory T helper cell (Tmem) reactivation. Identifying patient-specific immunotypes is crucial for tailored treatment. We conducted a comprehensive study integrating circulating immune proteins and circulating Tmem, with intestinal tissue histology and mRNA analysis, in therapy-naïve pediatric IBD (Crohn's disease, CD: n = 62; ulcerative colitis, UC: n = 20; age-matched controls n = 43), and after 10-12 weeks' induction therapy. At diagnosis, plasma protein profiles unveiled two UC and three CD clusters with distinct disease courses. UC patients displayed unchanged circulating Tmem, while CD exhibited increased frequencies of gut-homing ex-Th17, known for high IFN-γ production. UC#2 had elevated Th17/neutrophil-pathway-related proteins and severe disease, with higher endoscopic and histological damage and Th17/neutrophil infiltration. Although both UC#1 and UC#2 responded to therapy, UC#2 required earlier immunomodulation. CD#3 had lower plasma protein concentrations, especially IFN-γ pathway proteins, fewer gut-homing ex-Th17 and clinically milder disease, confirmed by intestinal gene expression. CD#1 and CD#2 had comparably high Th1-related immune profiles, but CD#1 exhibited higher concentrations of proteins previously associated with poorer prognosis. Both CD clusters responded to induction therapy, with similar one-year outcomes. This study highlights feasibility of discriminating patient-specific immunotypes in IBD, advancing our understanding of immune pathogenesis, needed for tailored treatment strategies.
Collapse
Affiliation(s)
- Maud Heredia
- Laboratory of Pediatrics, Division Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mohammed Charrout
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - Renz C W Klomberg
- Department of Pediatric Gastroenterology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Martine A Aardoom
- Department of Pediatric Gastroenterology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Maria M E Jongsma
- Department of Pediatric Gastroenterology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Polychronis Kemos
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, UK
| | - Danielle H Hulleman-van Haaften
- Laboratory of Pediatrics, Division Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Bastiaan Tuk
- Laboratory of Pediatrics, Division Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Lisette A van Berkel
- Laboratory of Pediatrics, Division Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Brenda Bley Folly
- Laboratory of Pediatrics, Division Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Beatriz Calado
- Laboratory of Pediatrics, Division Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Sandrine Nugteren
- Laboratory of Pediatrics, Division Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ytje Simons-Oosterhuis
- Laboratory of Pediatrics, Division Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Michail Doukas
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mathijs A Sanders
- Department of Hematology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Gregory van Beek
- Department of Hematology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Frank M Ruemmele
- Department of Pediatric Gastroenterology, Necker-Enfants Malades University Hospital, Institut Imagine, AP-HP, Université Paris Cité, Paris, France
| | - Nicholas M Croft
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, UK
| | - Ahmed Mahfouz
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Marcel J T Reinders
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - Johanna C Escher
- Department of Pediatric Gastroenterology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Lissy de Ridder
- Department of Pediatric Gastroenterology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Janneke N Samsom
- Laboratory of Pediatrics, Division Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
3
|
Lv J, Ibrahim YS, Yumashev A, Hjazi A, Faraz A, Alnajar MJ, Qasim MT, Ghildiyal P, Hussein Zwamel A, Fakri Mustafa Y. A comprehensive immunobiology review of IBD: With a specific glance to Th22 lymphocytes development, biology, function, and role in IBD. Int Immunopharmacol 2024; 137:112486. [PMID: 38901239 DOI: 10.1016/j.intimp.2024.112486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
The two primary forms of inflammatory disorders of the small intestine andcolon that make up inflammatory bowel disease (IBD) are ulcerative colitis (UC) and Crohn's disease (CD). While ulcerative colitis primarily affects the colon and the rectum, CD affects the small and large intestines, as well as the esophagus,mouth, anus, andstomach. Although the etiology of IBD is not completely clear, and there are many unknowns about it, the development, progression, and recurrence of IBD are significantly influenced by the activity of immune system cells, particularly lymphocytes, given that the disease is primarily caused by the immune system stimulation and activation against gastrointestinal (GI) tract components due to the inflammation caused by environmental factors such as viral or bacterial infections, etc. in genetically predisposed individuals. Maintaining homeostasis and the integrity of the mucosal barrier are critical in stopping the development of IBD. Specific immune system cells and the quantity of secretory mucus and microbiome are vital in maintaining this stability. Th22 cells are helper T lymphocyte subtypes that are particularly important for maintaining the integrity and equilibrium of the mucosal barrier. This review discusses the most recent research on these cells' biology, function, and evolution and their involvement in IBD.
Collapse
Affiliation(s)
- Jing Lv
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, PR China
| | - Yousif Saleh Ibrahim
- Department of Chemistry and Biochemistry, College of Medicine, University of Fallujah, Fallujah, Iraq
| | - Alexey Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Ali Faraz
- Department of Basic Medical Sciences, College of Medicine, Majmaah University, Majmaah 11952, Saudi Arabia.
| | | | - Maytham T Qasim
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar 64001, Iraq
| | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq; Medical Laboratory Technique College, The Islamic University of Aldiwaniyah, Aldiwaniyah, Iraq; Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| |
Collapse
|
4
|
Sacharczuk M, Mickael ME, Kubick N, Kamińska A, Horbańczuk JO, Atanasov AG, Religa P, Ławiński M. The Current Landscape of Hypotheses Describing the Contribution of CD4+ Heterogeneous Populations to ALS. Curr Issues Mol Biol 2024; 46:7846-7861. [PMID: 39194682 DOI: 10.3390/cimb46080465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a poorly understood and fatal disease. It has a low prevalence and a 2-4 year survival period. Various theories and hypotheses relating to its development process have been proposed, albeit with no breakthrough in its treatment. Recently, the role of the adaptive immune system in ALS, particularly CD4+ T cells, has begun to be investigated. CD4+ T cells are a heterogeneous group of immune cells. They include highly pro-inflammatory types such as Th1 and Th17, as well as highly anti-inflammatory cells such as Tregs. However, the landscape of the role of CD4+ T cells in ALS is still not clearly understood. This review covers current hypotheses that elucidate how various CD4+ T cells can contribute to ALS development. These hypotheses include the SWITCH model, which suggests that, in the early stages of the disease, Tregs are highly capable of regulating the immune response. However, in the later stages of the disease, it seems that pro-inflammatory cells such as Th1 and Th17 are capable of overwhelming Treg function. The reason why this occurs is not known. Several research groups have proposed that CD4+ T cells as a whole might experience aging. Others have proposed that gamma delta T cells might directly target Tregs. Additionally, other research groups have argued that less well-known CD4+ T cells, such as Emoes+ CD4+ T cells, may be directly responsible for neuron death by producing granzyme B. We propose that the ALS landscape is highly complicated and that there is more than one feasible hypothesis. However, it is critical to take into consideration the differences in the ability of different populations of CD4+ T cells to infiltrate the blood-brain barrier, taking into account the brain region and the time of infiltration. Shedding more light on these still obscure factors can help to create a personalized therapy capable of regaining the balance of power in the battle between the anti-inflammatory and pro-inflammatory cells in the central nervous system of ALS patients.
Collapse
Affiliation(s)
- Mariusz Sacharczuk
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1B, 02-091 Warsaw, Poland
| | - Michel-Edwar Mickael
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
| | - Norwin Kubick
- Department of Biology, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Agnieszka Kamińska
- Faculty of Medicine, Collegium Medicum Cardinal Stefan Wyszyński University in Warsaw, 01-938 Warsaw, Poland
| | - Jarosław Olav Horbańczuk
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
| | - Atanas G Atanasov
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
- Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, 1090 Vienna, Austria
| | - Piotr Religa
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institute, SE-141 86 Stockholm, Sweden
| | - Michał Ławiński
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
- Department of General Surgery, Gastroenterology and Oncology, Medical University of Warsaw, 02-091 Warsaw, Poland
| |
Collapse
|
5
|
Migliorisi G, Mastrorocco E, Dal Buono A, Gabbiadini R, Pellegatta G, Spaggiari P, Racca F, Heffler E, Savarino EV, Bezzio C, Repici A, Armuzzi A. Eosinophils, Eosinophilic Gastrointestinal Diseases, and Inflammatory Bowel Disease: A Critical Review. J Clin Med 2024; 13:4119. [PMID: 39064159 PMCID: PMC11278413 DOI: 10.3390/jcm13144119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Inflammatory bowel disease (IBD) and eosinophilic gastrointestinal diseases (EGIDs) are complex, multifactorial chronic inflammatory disorders affecting the gastrointestinal tract. Their epidemiology, particularly for eosinophilic esophagitis (EoE), is increasing worldwide, with a rise in the co-diagnosis of IBD and EGIDs. Both disorders share common risk factors, such as early exposure to antibiotics or specific dietary habits. Moreover, from a molecular perspective, eosinophilic infiltration is crucial in the diagnosis of eosinophilic disorders, and it also plays a pivotal role in IBD histological diagnosis. Indeed, recent evidence highlights the significant role of eosinophils in the health of the intestinal mucosal barrier and as mediators between innate and acquired immunity, even indicating a potential role in IBD pathogenesis. This narrative review aims to summarize the current evidence regarding the common clinical and molecular aspects of EGIDs and IBD and the current state of knowledge regarding overlap conditions and their pathogenesis. METHODS Pubmed was searched until May 2023 to assess relevant studies describing the epidemiology, pathophysiology, and therapy of EGIDs in IBD. RESULTS The immune pathways and mechanisms underlying both EGIDs and IBD remain partially known. An improved understanding of the role of eosinophils in overlapping conditions could lead to enhanced diagnostic precision, the development of more effective future therapeutic strategies, and a more accurate prediction of patient response. Consequently, the identification of red flags indicative of an eosinophilic disorder in IBD patients is of paramount importance and must be evaluated on a case-by-case basis.
Collapse
Affiliation(s)
- Giulia Migliorisi
- IBD Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy; (G.M.); (E.M.); (A.D.B.); (R.G.); (C.B.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy; (G.P.); (F.R.); (E.H.); (A.R.)
| | - Elisabetta Mastrorocco
- IBD Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy; (G.M.); (E.M.); (A.D.B.); (R.G.); (C.B.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy; (G.P.); (F.R.); (E.H.); (A.R.)
| | - Arianna Dal Buono
- IBD Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy; (G.M.); (E.M.); (A.D.B.); (R.G.); (C.B.)
| | - Roberto Gabbiadini
- IBD Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy; (G.M.); (E.M.); (A.D.B.); (R.G.); (C.B.)
| | - Gaia Pellegatta
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy; (G.P.); (F.R.); (E.H.); (A.R.)
- Endoscopic Unit, Department of Gastroenterology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Paola Spaggiari
- Department of Pathology, Humanitas Research Hospital, 20089 Rozzano, Italy;
| | - Francesca Racca
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy; (G.P.); (F.R.); (E.H.); (A.R.)
- Personalized Medicine, Asthma and Allergy, IRCCS—Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Enrico Heffler
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy; (G.P.); (F.R.); (E.H.); (A.R.)
- Personalized Medicine, Asthma and Allergy, IRCCS—Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Edoardo Vincenzo Savarino
- Department of Surgery, Oncology and Gastroenterology, Department of Medical and Surgical Specialties, University of Padua, 35122 Padova, Italy;
| | - Cristina Bezzio
- IBD Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy; (G.M.); (E.M.); (A.D.B.); (R.G.); (C.B.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy; (G.P.); (F.R.); (E.H.); (A.R.)
| | - Alessandro Repici
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy; (G.P.); (F.R.); (E.H.); (A.R.)
- Endoscopic Unit, Department of Gastroenterology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Alessandro Armuzzi
- IBD Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy; (G.M.); (E.M.); (A.D.B.); (R.G.); (C.B.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy; (G.P.); (F.R.); (E.H.); (A.R.)
| |
Collapse
|
6
|
Madan U, Verma B, Awasthi A. Cenicriviroc, a CCR2/CCR5 antagonist, promotes the generation of type 1 regulatory T cells. Eur J Immunol 2024; 54:e2350847. [PMID: 38643381 DOI: 10.1002/eji.202350847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/22/2024]
Abstract
Cenicriviroc, a dual CCR2/CCR5 antagonist, initially developed as an anti-HIV drug, has shown promising results in nonalcoholic steatohepatitis phase 2 clinical trials. It inhibits the infiltration and activation of CCR2+/CCR5+ monocytes and macrophages to the site of liver injury, preventing liver fibrosis. However, the role of Cenicriviroc in the modulation of helper T cell differentiation and functions remains to be explored. In inflamed colons of Crohn's disease patients, CCR2+ and CCR5+ CD4+ T cells are enriched. Considering the role of CCR2+ and CCR5+ T cells in IBD pathogenesis, we investigated the potential role of Cenicriviroc in colitis. Our in vitro studies revealed that Cenicriviroc inhibits Th1-, Th2-, and Th17-cell differentiation while promoting the generation of type 1 regulatory T cells (Tr1), known for preventing inflammation through induction of IL-10. This study is the first to report that Cenicriviroc promotes Tr1 cell generation by up-regulating the signature of Tr1 cell transcription factors such as c-Maf, Prdm1, Irf-1, Batf, and EGR-2. Cenicriviroc displayed a protective effect in experimental colitis models by preventing body weight loss and intestinal inflammation and preserving epithelial barrier integrity. We show that Cenicriviroc induced IL-10 and inhibited the generation of pro-inflammatory cytokines IFN-γ, IL-17, IL-6, and IL-1β during colitis. Based on our data, we propose Cenicriviroc as a potential therapeutic in controlling tissue inflammation by inhibiting the generation and functions of effector T cells and promoting the induction of anti-inflammatory Tr1 cells.
Collapse
Affiliation(s)
- Upasna Madan
- Centre for Immuno-biology and Immunotherapy, NCR-Biotech Science Cluster, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Bhawna Verma
- Centre for Immuno-biology and Immunotherapy, NCR-Biotech Science Cluster, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Amit Awasthi
- Centre for Immuno-biology and Immunotherapy, NCR-Biotech Science Cluster, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- Immunology-Core Lab, NCR Biotech Science Cluster, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| |
Collapse
|
7
|
Fang M, Yao J, Zhang H, Sun J, Yin Y, Shi H, Jiang G, Shi X. Specific deletion of Mettl3 in IECs triggers the development of spontaneous colitis and dysbiosis of T lymphocytes in mice. Clin Exp Immunol 2024; 217:57-77. [PMID: 38507548 PMCID: PMC11188546 DOI: 10.1093/cei/uxae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 01/23/2024] [Accepted: 03/19/2024] [Indexed: 03/22/2024] Open
Abstract
The enzymatic core component of m6A writer complex, Mettl3, plays a crucial role in facilitating the development and progress of gastric and colorectal cancer (CRC). However, its underlying mechanism in regulating intestinal inflammation remains unclear and poorly investigated. First, the characteristics of Mettl3 expression in inflammatory bowel diseases (IBD) patients were examined. Afterward, we generated the mice line with intestinal epithelial cells (IECs)-specific deletion of Mettl3 verified by various experiments. We continuously recorded and compared the physiological status including survival rate etc. between the two groups. Subsequently, we took advantage of staining assays to analyze mucosal damage and immune infiltration of Mettl3WT and Mettl3KO primary IECs. Bulk RNA sequencing was used to pursuit the differential expression of genes (DEGs) and associated signaling pathways after losing Mettl3. Pyroptosis-related proteins were to determine whether cell death was caused by pyroptosis. Eventually, CyTOF was performed to probe the difference of CD45+ cells, especially CD3e+ T-cell clusters after losing Mettl3. In IBD patients, Mettl3 was highly expressed in the inner-nucleus of IECs while significantly decreased upon acute intestinal inflammation. IECs-specific deletion of Mettl3 KO mice triggered a wasting phenotype and developed spontaneous colitis. The survival rate, body weight, and intestinal length observed from 2 to 8 weeks of Mettl3KO mice were significantly lower than Mettl3WT mice. The degree of mucosal damage and immune infiltration in Mettl3KO were even more serious than in their WT littermate. Bulk RNA sequencing demonstrated that DEGs were dramatically enriched in NOD-signaling pathways due to the loss of Mettl3. The colonic epithelium was more prone to pyroptosis after losing Mettl3. Subsequently, CyTOF revealed that T cells have altered significantly in Mettl3KO. Furthermore, there was abnormal proliferation of CD4+ T and markedly exhaustion of CD8 + T in Mettl3KO mice. In severe IBD patients, Mettl3 is located in the inner-nucleus of IECs and declined when intestinal inflammation occurs. Subsequently, Mettl3 prevented mice from developing colitis.
Collapse
Affiliation(s)
- Miao Fang
- School of Medicine, Southeast University, Nanjing, PR China
| | - Jie Yao
- School of Medicine, Southeast University, Nanjing, PR China
- Department of General Surgery, Nantong Haimen People’s Hospital, Nantong, PR China
| | - Haifeng Zhang
- School of Medicine, Southeast University, Nanjing, PR China
| | - Jiahui Sun
- School of Public Health, Southeast University, Nanjing, PR China
| | - Yiping Yin
- School of Medicine, Southeast University, Nanjing, PR China
| | - Hongzhou Shi
- School of Medicine, Southeast University, Nanjing, PR China
| | | | - Xin Shi
- School of Medicine, Southeast University, Nanjing, PR China
| |
Collapse
|
8
|
Xin S, Liu X, He C, Gao H, Wang B, Hua R, Gao L, Shang H, Sun F, Xu J. Inflammation accelerating intestinal fibrosis: from mechanism to clinic. Eur J Med Res 2024; 29:335. [PMID: 38890719 PMCID: PMC11184829 DOI: 10.1186/s40001-024-01932-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024] Open
Abstract
Intestinal fibrosis is a prevalent complication of IBD that that can frequently be triggered by prolonged inflammation. Fibrosis in the gut can cause a number of issues, which continue as an ongoing challenge to healthcare systems worldwide. The primary causes of intestinal fibrosis are soluble molecules, G protein-coupled receptors, epithelial-to-mesenchymal or endothelial-to-mesenchymal transition, and the gut microbiota. Fresh perspectives coming from in vivo and in vitro experimental models demonstrate that fibrogenic pathways might be different, at least to some extent, independent of the ones that influence inflammation. Understanding the distinctive procedures of intestinal fibrogenesis should provide a realistic foundation for targeting and blocking specific fibrogenic pathways, estimating the risk of fibrotic consequences, detecting early fibrotic alterations, and eventually allowing therapy development. Here, we first summarize the inflammatory and non-inflammatory components of fibrosis, and then we elaborate on the underlying mechanism associated with multiple cytokines in fibrosis, providing the framework for future clinical practice. Following that, we discuss the relationship between modernization and disease, as well as the shortcomings of current studies. We outline fibrosis diagnosis and therapy, as well as our recommendations for the future treatment of intestinal fibrosis. We anticipate that the global review will provides a wealth of fresh knowledge and suggestions for future fibrosis clinical practice.
Collapse
Affiliation(s)
- Shuzi Xin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xiaohui Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Chengwei He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Han Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Department of Clinical Laboratory, Aerospace Clinical Medical College, Aerospace Central Hospital, Beijing, 100039, China
| | - Boya Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Rongxuan Hua
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Lei Gao
- Department of Intelligent Medical Engineering, School of Biomedical Engineering, Capital Medical University, Beijing, 100069, China
| | - Hongwei Shang
- Experimental Center for Morphological Research Platform, Capital Medical University, Beijing, 100069, China
| | - Fangling Sun
- Department of Laboratory Animal Research, Xuan Wu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Jingdong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
9
|
Zhen J, Li Y, Zhang Y, Zhou Y, Zhao L, Huang G, Xu A. Shaoyao Decoction reduced T lymphocyte activation by regulating of intestinal flora and 5-hydroxytryptamine metabolism in ulcerative colitis. Chin Med 2024; 19:87. [PMID: 38879471 PMCID: PMC11180410 DOI: 10.1186/s13020-024-00958-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/02/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND Shaoyao Decoction (SYD) is a widely recognized herbal formula utilized in traditional Chinese medicine for the treatment of diarrhea. Although it has demonstrated significant effectiveness in clinical practice for treating ulcerative colitis, the precise mechanisms by which it operates remain largely elusive. METHODS The active ingredients of SYD were obtained by ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS), which were used to explore the potential pharmacological mechanism based on TCMSP (Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform) and PANTHER (Protein Analysis Through Evolutionary Relationships) classification system. In a mouse model of dextran sulfate sodium (DSS)-induced colitis, mRNA sequencing, 16S rDNA sequencing and targeted metabolomics techniques were used to elucidate the mechanisms of SYD, and immunohistochemistry, immunofluorescence, enzyme linked immunosorbent assay, real time quantitative polymerase chain reaction and western blot were used to test the key targets. In addition, QGP-1 and H9 cells were performed to validate the discoveries from the animal experiments. RESULTS In the mouse model of DSS-induced colitis, SYD effectively alleviated symptoms such as bloody stool, tissue damage, inflammation, intestinal flora dysbiosis and abnormal gene expression. Analyses of both differential expressed genes in colonic tissue and predicted 16S rDNA genes, as well as the analyses of targeted genes from TCMSP based on the active ingredients in UPLC-MS/MS of SYD, uncovered the enrichment of pathways involved in the biosynthesis and degredation of 5-hydroxytryptamine (5-HT). Interestingly, SYD suppressed the relative abundance of key genes in 5-HT synthesis, Tph1(Tryptophan hydroxylase 1) and Ddc (Dopa decarboxylase), in faeces from DSS-induced mice, leading to a reduction in the concentration of fecal 5-HT. Moreover, SYD augmented the production of butyric acid. Subsequently, increasing butyric acid influenced the metabolism of 5-HT in the organism through G protein-coupled receptor 43 by impeding its synthesis, facilitating its transport and degredation. These findings were additionally corroborated in a model utilizing enterochromaffin cell (QGP-1 cells). Furthermore, reduced levels of 5-HT hindered the activation of T lymphocytes (H9 cells) via the PKC (Protein kinase C) and NF-κB (Nuclear factor kappa-B) signaling pathways, by means of HTR1A (5-HT receptor 1A) and HTR3 (5-HT receptor 3). Additionally, diminished secretion of 5-HT resulted in reduced secretion of associated cytokines, thereby alleviating inflammation in the colon. CONCLUSION Through modulation of T lymphocyte activation mediated by 5-HT metabolism in the local colon via the intestinal flora and its metabolite, SYD effectively mitigated colonic inflammation in DSS-induced mice.
Collapse
Affiliation(s)
- Jianhua Zhen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yini Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yunan Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yali Zhou
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Lu Zhao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Guangrui Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Anlong Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China.
- State Key Laboratory of Bio-Control, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
10
|
Guo J, Li L, Cai Y, Kang Y. The development of probiotics and prebiotics therapy to ulcerative colitis: a therapy that has gained considerable momentum. Cell Commun Signal 2024; 22:268. [PMID: 38745207 PMCID: PMC11094941 DOI: 10.1186/s12964-024-01611-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/10/2024] [Indexed: 05/16/2024] Open
Abstract
Ulcerative colitis (UC) is increasingly common, and it is gradually become a kind of global epidemic. UC is a type of inflammatory bowel disease (IBD), and it is a lifetime recurrent disease. UC as a common disease has become a financial burden for many people and has the potential to develop into cancer if not prevented or treated. There are multiple factors such as genetic factors, host immune system disorders, and environmental factors to cause UC. A growing body of research have suggested that intestinal microbiota as an environmental factor play an important role in the occurrence and development of UC. Meanwhile, evidence to date suggests that manipulating the gut microbiome may represent effective treatment for the prevention or management of UC. In addition, the main clinical drugs to treat UC are amino salicylate and corticosteroid. These clinical drugs always have some side effects and low success rate when treating patients with UC. Therefore, there is an urgent need for safe and efficient methods to treat UC. Based on this, probiotics and prebiotics may be a valuable treatment for UC. In order to promote the wide clinical application of probiotics and prebiotics in the treatment of UC. This review aims to summarize the recent literature as an aid to better understanding how the probiotics and prebiotics contributes to UC while evaluating and prospecting the therapeutic effect of the probiotics and prebiotics in the treatment of UC based on previous publications.
Collapse
Affiliation(s)
- Jing Guo
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Liping Li
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yue Cai
- Faculty of Life science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yongbo Kang
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
11
|
Rieder F, Mukherjee PK, Massey WJ, Wang Y, Fiocchi C. Fibrosis in IBD: from pathogenesis to therapeutic targets. Gut 2024; 73:854-866. [PMID: 38233198 PMCID: PMC10997492 DOI: 10.1136/gutjnl-2023-329963] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/29/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND Intestinal fibrosis resulting in stricture formation and obstruction in Crohn's disease (CD) and increased wall stiffness leading to symptoms in ulcerative colitis (UC) is among the largest unmet needs in inflammatory bowel disease (IBD). Fibrosis is caused by a multifactorial and complex process involving immune and non-immune cells, their soluble mediators and exposure to luminal contents, such as microbiota and environmental factors. To date, no antifibrotic therapy is available. Some progress has been made in creating consensus definitions and measurements to quantify stricture morphology for clinical practice and trials, but approaches to determine the degree of fibrosis within a stricture are still lacking. OBJECTIVE We herein describe the current state of stricture pathogenesis, measuring tools and clinical trial endpoints development. DESIGN Data presented and discussed in this review derive from the past and recent literature and the authors' own research and experience. RESULTS AND CONCLUSIONS Significant progress has been made in better understanding the pathogenesis of fibrosis, but additional studies and preclinical developments are needed to define specific therapeutic targets.
Collapse
Affiliation(s)
- Florian Rieder
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Pranab K Mukherjee
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - William J Massey
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Yan Wang
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Claudio Fiocchi
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
12
|
Jin C, Wu S, Liang Z, Zhang J, Lei X, Bai H, Liang G, Su X, Chen X, Wang P, Wang Y, Guan L, Yao J. Multi-omics reveal mechanisms of high enteral starch diet mediated colonic dysbiosis via microbiome-host interactions in young ruminant. MICROBIOME 2024; 12:38. [PMID: 38395946 PMCID: PMC10893732 DOI: 10.1186/s40168-024-01760-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 01/08/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Although rumen development is crucial, hindgut undertakes a significant role in young ruminants' physiological development. High-starch diet is usually used to accelerate rumen development for young ruminants, but always leading to the enteral starch overload and hindgut dysbiosis. However, the mechanism behind remains unclear. The combination of colonic transcriptome, colonic luminal metabolome, and metagenome together with histological analysis was conducted using a goat model, with the aim to identify the potential molecular mechanisms behind the disrupted hindgut homeostasis by overload starch in young ruminants. RESULT Compared with low enteral starch diet (LES), high enteral starch diet (HES)-fed goats had significantly higher colonic pathology scores, and serum diamine oxidase activity, and meanwhile significantly decreased colonic mucosal Mucin-2 (MUC2) protein expression and fecal scores, evidencing the HES-triggered colonic systemic inflammation. The bacterial taxa Prevotella sp. P4-67, Prevotella sp. PINT, and Bacteroides sp. CAG:927, together with fungal taxa Fusarium vanettenii, Neocallimastix californiae, Fusarium sp. AF-8, Hypoxylon sp. EC38, and Fusarium pseudograminearum, and the involved microbial immune pathways including the "T cell receptor signaling pathway" were higher in the colon of HES goats. The integrated metagenome and host transcriptome analysis revealed that these taxa were associated with enhanced pathogenic ability, antigen processing and presentation, and stimulated T helper 2 cell (TH2)-mediated cytokine secretion functions in the colon of HES goats. Further luminal metabolomics analysis showed increased relative content of chenodeoxycholic acid (CDCA) and deoxycholic acid (DCA), and decreased the relative content of hypoxanthine in colonic digesta of HES goats. These altered metabolites contributed to enhancing the expression of TH2-mediated inflammatory-related cytokine secretion including GATA Binding Protein 3 (GATA3), IL-5, and IL-13. Using the linear mixed effect model, the variation of MUC2 biosynthesis explained by the colonic bacteria, bacterial functions, fungi, fungal functions, and metabolites were 21.92, 20.76, 19.43, 12.08, and 44.22%, respectively. The variation of pathology scores explained by the colonic bacterial functions, fungal functions, and metabolites were 15.35, 17.61, and 57.06%. CONCLUSIONS Our findings revealed that enteral starch overload can trigger interrupted hindgut host-microbiome homeostasis that led to impaired mucosal, destroyed colonic water absorption, and TH2-mediated inflammatory process. Except for the colonic metabolites mostly contribute to the impaired mucosa, the nonnegligible contribution from fungi deserves more future studies focused on the fungal functions in hindgut dysbiosis of young ruminants. Video Abstract.
Collapse
Affiliation(s)
- Chunjia Jin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shengru Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Ziqi Liang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jun Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xinjian Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hanxun Bai
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Gaofeng Liang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaodong Su
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaodong Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Peiyue Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yue Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Leluo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 116 St. and 85 Ave., Edmonton, AB, T6G 2P5, Canada.
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
13
|
Cutilli A, Jansen SA, Paolucci F, Mokry M, Mocholi E, Lindemans CA, Coffer PJ. IFNγ induces epithelial reprogramming driving CXCL11-mediated T cell migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.03.578580. [PMID: 38370633 PMCID: PMC10871214 DOI: 10.1101/2024.02.03.578580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The cytokine interferon-gamma (IFNγ) plays a multifaceted role in intestinal immune responses ranging from anti-to pro-inflammatory depending on the setting. Here, using a 3D co-culture system based on human intestinal epithelial organoids, we explore the capacity of IFNγ-exposure to reprogram intestinal epithelia and thereby directly modulate lymphocyte responses. IFNγ treatment of organoids led to transcriptional reprogramming, marked by a switch to a pro-inflammatory gene expression profile, including transcriptional upregulation of the chemokines CXCL9, CXCL10, and CXCL11. Proteomic analysis of organoid-conditioned medium post-treatment confirmed chemokine secretion. Furthermore, IFNγ-treatment of organoids led to enhanced T cell migration in a CXCL11-dependent manner without affecting T cell activation status. Taken together, our results suggest a specific role for CXCL11 in T cell recruitment that can be targeted to prevent T cell trafficking to the inflamed intestine.
Collapse
|
14
|
Cantorna MT, Arora J. Vitamin D, microbiota, and inflammatory bowel disease. FELDMAN AND PIKE'S VITAMIN D 2024:1057-1073. [DOI: 10.1016/b978-0-323-91338-6.00047-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
15
|
Selvakumar B, Eladham MW, Hafezi S, Ramakrishnan R, Hachim IY, Bayram OS, Sharif-Askari NS, Sharif-Askari FS, Ibrahim SM, Halwani R. Allergic Airway Inflammation Emerges from Gut Inflammation and Leakage in Mouse Model of Asthma. Adv Biol (Weinh) 2024; 8:e2300350. [PMID: 37752729 DOI: 10.1002/adbi.202300350] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/16/2023] [Indexed: 09/28/2023]
Abstract
Asthma is an allergic airway inflammatory disease characterized by type 2 immune responses. Growing evidence suggests an association between allergic airways and intestinal diseases. However, the primary site of disease origin and initial mechanisms involved in the development of allergic airway inflammation (AAI) is not yet understood. Therefore, the initial contributing organs and mechanisms involved in the development of AAI are investigated using a mouse model of asthma. This study, without a local allergen challenge into the lungs, demonstrates a significant increase in intestinal inflammation with signature type-2 mediators including IL-4, IL-13, STAT6, eosinophils, and Th2 cells. In addition, gut leakage and mRNA expressions of gut leakage markers significantly increase in the intestine. Moreover, reduced mRNA expressions of tight junction proteins are observed in gut and interestingly, in lung tissues. Furthermore, in lung tissues, an increased pulmonary barrier permeability and IL-4 and IL-13 levels associated with significant increase of lipopolysaccharide-binding protein (LBP-gut leakage marker) and eosinophils are observed. However, with local allergen challenges into the lungs, these mechanisms are further enhanced in both gut and lungs. In conclusion, the primary gut originated inflammatory responses translocates into the lungs to orchestrate AAI in a mouse model of asthma.
Collapse
Affiliation(s)
- Balachandar Selvakumar
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, UAE
| | - Mariam Wed Eladham
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, UAE
| | - Shirin Hafezi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, UAE
| | - Rakhee Ramakrishnan
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, UAE
| | - Ibrahim Yaseen Hachim
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, UAE
| | - Ola Salam Bayram
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, UAE
| | - Narjes Saheb Sharif-Askari
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, UAE
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, UAE
| | - Fatemeh Saheb Sharif-Askari
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, UAE
- Department of Pharmacy Practice and Pharmaceutics, College of Pharmacy, University of Sharjah, Sharjah, 27272, UAE
| | - Saleh Mohamed Ibrahim
- Institute of Experimental Dermatology, University of Lübeck, 23562, Lübeck, Germany
- Deapartment of Biotechnology, Khalifa University, Abu Dhabi, 127788, UAE
| | - Rabih Halwani
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, UAE
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, UAE
- Prince Abdullah Ben Khaled Celiac Disease Research Chair, Department of Pediatrics, Faculty of Medicine, King Saud University, Riyadh, 11461, Saudi Arabia
| |
Collapse
|
16
|
Kim MK, Jo SI, Kim SY, Lim H, Kang HS, Moon SH, Ye BD, Soh JS, Hwang SW. PD-1-positive cells contribute to the diagnosis of inflammatory bowel disease and can aid in predicting response to vedolizumab. Sci Rep 2023; 13:21329. [PMID: 38044341 PMCID: PMC10694145 DOI: 10.1038/s41598-023-48651-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023] Open
Abstract
Differentiating inflammatory bowel disease (IBD) from other inflammatory diseases is often challenging. Programmed cell death protein-1 (PD-1) is expressed in T cells and is an indicator of their exhaustion. The role of PD-1 expression in diagnosing IBD and predicting the response of biologic agents remains inconclusive. In this study, endoscopic biopsy samples of 19 patients diagnosed with IBD, intestinal tuberculosis, and intestinal Behcet's disease were analyzed using multiplexed immunohistochemistry. Additionally, a separate "vedolizumab (VDZ) cohort" established in ulcerative colitis patients who underwent endoscopic biopsy before VDZ administration was analyzed to predict response to VDZ. In the immunohistochemistry analysis, the cell density of T cell subsets, including PD-1 + cells, was investigated and compared between IBD and other inflammatory diseases (OID). Cell densities of PD-1 + cells (p = 0.028), PD-1 + helper T cells (p = 0.008), and PD-1 + regulatory T cells (p = 0.024) were higher in IBD compared with OID. In the VDZ cohort, patients with a 14-week steroid-free clinical response had higher levels of PD-1 + cells (p = 0.026), PD-1 + helper T cells (p = 0.026), and PD-1 + regulatory T cells (p = 0.041) than the no response group. PD-1 + immune cells may contribute to the diagnosis of IBD and could be used to predict response to VDZ in ulcerative colitis patients.
Collapse
Affiliation(s)
- Min Kyu Kim
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Su In Jo
- PrismCDX Co., Ltd., Hwaseong-Si, Republic of Korea
| | - Sang-Yeob Kim
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Hyun Lim
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, University of Hallym College of Medicine, Anyang, Republic of Korea
| | - Ho Suk Kang
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, University of Hallym College of Medicine, Anyang, Republic of Korea
| | - Sung-Hoon Moon
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, University of Hallym College of Medicine, Anyang, Republic of Korea
| | - Byong Duk Ye
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
- Inflammatory Bowel Disease Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jae Seung Soh
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, University of Hallym College of Medicine, Anyang, Republic of Korea.
| | - Sung Wook Hwang
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea.
- Inflammatory Bowel Disease Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
17
|
Liu S, Yan W, Lv Q, Yang L, Miao Y, Hu Y, Wei Z. 3, 3'-diindolylmethane, a natural aryl hydrocarbon receptor agonist, alleviates ulcerative colitis by enhancing "glycolysis-lactate-STAT3″ and TIP60 signals-mediated Treg differentiation. Mol Immunol 2023; 163:147-162. [PMID: 37793204 DOI: 10.1016/j.molimm.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/26/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND Aryl hydrocarbon receptor (AhR) plays an important role in the occurrence and development of ulcerative colitis (UC). In this study, the effect and mechanism of 3, 3'-diindolylmethane (DIM), the classical AhR agonist, on UC was investigated from the angle of recovering the balance of Th17/Treg. METHODS The in vivo colitis model was established in mice by using dextran sulfate sodium, and CD4+ T cells were used to simulate the in vitro differentiation of Treg and Th17 cells. The proportions and related factors of Th17 and Treg cells were measured using flow cytometry, Q-PCR and western blotting. The glycolysis was evaluated by examining the glucose uptake, glucose consumption and lactate production using kits or immunofluorescence. The activation of AhR was detected by western blotting and the XRE-luciferase reporter gene. The co-immunoprecipitation, transfection or other methods were selected to investigate and identify the signaling molecular pathway. RESULTS DIM significantly attenuated symptoms of colitis mice by rebuilding the balance of Th17/Treg in anoxic colons. In hypoxia, a more potent promotion of Treg differentiation was showed by DIM relative to normoxia, and siFoxp3 prevented DIM-suppressed Th17 differentiation. DIM repressed the excessive glycolysis in hypoxia evidenced by down-regulated glucose uptake, lactate production, Glut1 and HK2 levels. Interestingly, IL-10, the function-related factor of Treg cells, showed the feedback effect of DIM-suppressed glycolysis. Besides, 2-deoxy-D-glucose, HK2 plasmid and IL-10 antibody prevented increase of DIM on the expression of Foxp3 at the transcriptional level and subsequent Treg differentiation through the lactate-STAT3 pathway, and reasons for the direct improvement of DIM on Foxp3 protein was attributed to promoting the formation of HIF-1α/TIP60 complexes as well as subsequent acetylation and protein stability. Finally, AhR dependence and mechanisms for DIM-improved Treg differentiation in vitro and in vivo were well confirmed by using plasmids or inhibitors. CONCLUSIONS DIM enhances activation of AhR and subsequent "glycolysis-lactate-STAT3″ and TIP60 signals-mediated Treg differentiation.
Collapse
Affiliation(s)
- Shukun Liu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Wenxin Yan
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Qi Lv
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Ling Yang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Yumeng Miao
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Yuxiao Hu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Zhifeng Wei
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| |
Collapse
|
18
|
Hu C, Liao S, Lv L, Li C, Mei Z. Intestinal Immune Imbalance is an Alarm in the Development of IBD. Mediators Inflamm 2023; 2023:1073984. [PMID: 37554552 PMCID: PMC10406561 DOI: 10.1155/2023/1073984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 08/10/2023] Open
Abstract
Immune regulation plays a crucial role in human health and disease. Inflammatory bowel disease (IBD) is a chronic relapse bowel disease with an increasing incidence worldwide. Clinical treatments for IBD are limited and inefficient. However, the pathogenesis of immune-mediated IBD remains unclear. This review describes the activation of innate and adaptive immune functions by intestinal immune cells to regulate intestinal immune balance and maintain intestinal mucosal integrity. Changes in susceptible genes, autophagy, energy metabolism, and other factors interact in a complex manner with the immune system, eventually leading to intestinal immune imbalance and the onset of IBD. These events indicate that intestinal immune imbalance is an alarm for IBD development, further opening new possibilities for the unprecedented development of immunotherapy for IBD.
Collapse
Affiliation(s)
- Chunli Hu
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Shengtao Liao
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Lin Lv
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Chuanfei Li
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Zhechuan Mei
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
19
|
Ionescu EM, Olteanu AO, Tieranu CG, Popa LO, Andrei SI, Preda CM, Dutescu MI, Bojinca M, Tieranu I, Popa OM. Interleukin-4 Gene Polymorphisms in Romanian Patients with Inflammatory Bowel Diseases: Association with Disease Risk and Clinical Features. Diagnostics (Basel) 2023; 13:1465. [PMID: 37189566 PMCID: PMC10137844 DOI: 10.3390/diagnostics13081465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/09/2023] [Accepted: 04/16/2023] [Indexed: 05/17/2023] Open
Abstract
1. INTRODUCTION Multiple cytokines have been studied for their role in the propagation of the inflammatory process related to inflammatory bowel diseases (IBD), but the role of interleukin-4 remains controversial. The aim of this study was to evaluate the role of two IL-4 gene single nucleotide polymorphisms (SNPs) in disease susceptibility and phenotypic expression. 2. MATERIALS AND METHODS A group of 160 patients with IBD (86CD/74UC) and 160 healthy controls were genotyped for IL-4 rs2243250/-590C/T and rs2070874/-34C/T using real-time polymerase chain reaction with TaqMan assay. 3. RESULTS The analysis of IBD patients and controls revealed a significantly reduced frequency of the minor allele T of both SNPs in CD patients (p = 0.03, OR 0.55 and p = 0.02, OR 0.52) and for the entire IBD group (p = 0.01, OR 0.57 and p = 0.01, OR 0.55). Haplotype analysis identified the most frequent haplotype (rs2243250/rs2070874 CC) associated with a high risk for developing IBD (either UC or CD) (p = 0.003). IBD patients with extraintestinal manifestations had significantly increased frequency of the minor alleles T. We also found an association between the presence of allele C of rs2070874 and response to antiTNF treatment. 4. CONCLUSIONS This is the first study to investigate the IL-4 gene's relation to IBD susceptibility conducted in Romania. Both SNPs were found to be associated with disease susceptibility and phenotypic features, such as extraintestinal manifestations and response to antiTNF agents.
Collapse
Affiliation(s)
- Elena Mirela Ionescu
- Department of Gastroenterology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Gastroenterology, “Elias” Emergency University Hospital, 011461 Bucharest, Romania
| | - Andrei Ovidiu Olteanu
- Department of Gastroenterology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Gastroenterology, “Elias” Emergency University Hospital, 011461 Bucharest, Romania
| | - Cristian George Tieranu
- Department of Gastroenterology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Gastroenterology, “Elias” Emergency University Hospital, 011461 Bucharest, Romania
| | - Luis Ovidiu Popa
- Molecular Biology Department, “Grigore Antipa” National Museum of Natural History, 011341 Bucharest, Romania
| | - Silvia Ioana Andrei
- Clinic of Internal Medicine II, Thüringen-Kliniken “Georgius Agricola“, 07318 Saalfeld, Germany
| | - Carmen Monica Preda
- Department of Gastroenterology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Monica Irina Dutescu
- “Prof. Dr. C. T. Nicolau” National Institute of Blood Transfusion, 011155 Bucharest, Romania
| | - Mihai Bojinca
- Department of Rheumatology and Internal Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Ioana Tieranu
- Department of Pediatrics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Olivia Mihaela Popa
- Department of Immunology and Pathophysiology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
20
|
Buczyńska A, Grzybowska-Chlebowczyk U, Pawlicki K. IgE-Dependent Food Sensitisation and Its Role in Clinical and Laboratory Presentation of Paediatric Inflammatory Bowel Disease. Nutrients 2023; 15:nu15081804. [PMID: 37111022 PMCID: PMC10145321 DOI: 10.3390/nu15081804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
The rising prevalence of inflammatory bowel disease (IBD) and food allergies and their partially overlapping mechanisms such as microbiome diversity reduction raise questions about the role of allergies in IBD. While data on their comorbidity are available, analysis of IgE-sensitization's influence on the clinical presentation of IBD is lacking and is the aim of this study. Histories of 292 children with newly diagnosed IBD (173 cases of ulcerative colitis, 119 cases of Crohn's disease) were analyzed. Disease age of onset, activity, location, behaviour, and anthropometric and laboratory parameters were tested for its dependence on the presence of chosen IgE sensitization markers. A.o. Chi2, OR and phi coefficient were assessed. In Crohn's disease (CD), elevated total IgE (tIgE) correlated with weight loss, rectal bleeding, ASCA IgG positivity (φ = 0.19 for all) and negatively correlated with complicated disease behaviour (φ = -0.19). TIgE > 5 × reference range correlated with being underweight (φ = 0.2), ASCA IgG positivity (φ = 0.3), ASCA double (IgA and IgG) positivity (φ = 0.25) and elevated total IgG (φ = 0.18). The presence of specific IgEs (sIgE) correlated with extraintestinal manifestations of IBD (φ = 0.19): Egg white sIgE correlated with upper GI involvement (L4b) (φ = 0.26), severe growth impairment (φ = 0.23) and colonic mucosal eosinophilia (φ = 0.19). In ulcerative colitis, decreased IgA correlated with egg white sIgE (φ = 0.3), as well as the presence of any (φ = 0.25) or multiple sIgEs (φ = 0.2); the latter correlated also with elevated IgG (φ = 0.22), fever (φ = 0.18), abdominal pain (φ = 0.16) and being underweight (φ = 0.15). Cow's milk sIgE correlated positively with growth impairment (φ = 0.15) and elevated IgG (φ = 0.17) and negatively with extensive colitis (φ = -0.15). Pancolitis correlated negatively with sIgE presence (φ = -0.15). In summary, single moderate and numerous weak but interesting relationships were observed.
Collapse
Affiliation(s)
- Anna Buczyńska
- Department of Pediatrics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Urszula Grzybowska-Chlebowczyk
- Department of Pediatrics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Krzysztof Pawlicki
- Department of Biophysics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
21
|
Atopic Dermatitis and Ulcerative Colitis Successfully Treated with Upadacitinib. Medicina (B Aires) 2023; 59:medicina59030542. [PMID: 36984542 PMCID: PMC10058499 DOI: 10.3390/medicina59030542] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Background and Objectives: JAK inhibitors entered current clinical practice as treatment for several immune-related diseases and, recently, for atopic dermatitis. These drugs target the Janus Kinase intracellular cascade, rendering them suitable for treating both Th1 and Th2 immune-mediated responses. Materials and Methods: We report the case of a 36-year-old male patient presenting an overlap of ulcerative colitis, a Th1-related disease, and atopic dermatitis, a Th2-mediated condition. Treatment with upadacitinib was initiated, and laboratory and instrumental follow-ups were carried out for 8 months. Results: The complete and persistent clinical remission of both conditions was observed at a low dose of 15 mg of upadacitinib, even though ulcerative colitis guidelines usually recommend a dosage of 45 mg. No serious adverse responses to therapy were reported. Conclusions: Upadacitinib may be the most suitable management strategy in subjects with coexisting severe conditions mediated by Th1 inflammation, such as ulcerative colitis, and by Th2 cytokines, such as atopic dermatitis.
Collapse
|
22
|
Fabian O, Klocperk A, Lerchova T, Jencova P, Stolova L, Belhajova M, Voriskova D, Kazeka D, Vicha A, Hradsky O, Bronsky J. Serum and Mucosal CD30 in Pediatric Inflammatory Bowel Diseases: Useful Biomarker for Diagnosis and Disease Activity Monitoring? Dig Dis Sci 2023; 68:460-470. [PMID: 36056999 DOI: 10.1007/s10620-022-07677-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/16/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND Inflammatory bowel diseases (IBD) frequently manifest in pediatric age, but may have atypical clinical, histological and laboratory features. Their underlying immune pathophysiology is incompletely understood, rendering quick diagnosis followed by tailored therapy difficult. The tumor necrosis factor superfamily receptor CD30 has been proposed as a potential marker of ulcerative colitis (UC) and has also been associated with elevated Th2 helper T cells. METHODS A cohort of pediatric patients with UC and Crohn's disease (CD) was evaluated for serum soluble CD30 (sCD30) using ELISA and expression of CD30 and subpopulations of Th1/Th2/Th17 lymphocytes in the gastrointestinal mucosa using flow cytometry (FCM). The dataset is supported by endoscopic and microscopic activity of the disease and basic laboratory markers of inflammation. RESULTS The cohort consisted of 102 observations from 94 patients. sCD30 levels did not differ between patients with CD or UC. However, sCD30 levels correlated with levels of CRP, ESR, fecal calprotectin and albumin and also with clinical activity of the disease in patients with both UC and CD. FCM was not helpful in evaluation of mucosal CD30, which was lowly expressed and not associated with the diagnosis or disease activity. We show augmented Th2 and Th1/17 response in terminal ileum and right-sided colon and decreased Th1/17 response in left-sided colon of UC patients. T lymphocyte subsets were also affected by anti-TNF treatment and patients' age. CONCLUSIONS Neither sCD30 nor mucosal CD30 expression was helpful in differentiating between UC and CD. sCD30 seems to reflect a degree of systemic inflammation and clinical activity in IBD.
Collapse
Affiliation(s)
- Ondrej Fabian
- Clinical and Transplant Pathology Centre, Institute for Clinical and Experimental Medicine, Videnska 1958/9, Prague 4, 140 21, Czech Republic.
- Department of Pathology and Molecular Medicine, 3Rd Faculty of Medicine, Charles University and Thomayer Hospital, Videnska 800, Prague 4, 140 59, Czech Republic.
- Department of Pathology and Molecular Medicine, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, Prague 5, 150 06, Czech Republic.
| | - Adam Klocperk
- Department of Immunology, 2Nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, Prague 5, 150 06, Czech Republic
| | - Tereza Lerchova
- Gastroenterology and Nutrition Unit, Department of Paediatrics, 2Nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, Prague 5, 150 06, Czech Republic
| | - Pavla Jencova
- Department of Paediatric Haematology and Oncology, 2Nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, Prague 5, 150 06, Czech Republic
| | - Lucie Stolova
- Department of Paediatric Haematology and Oncology, 2Nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, Prague 5, 150 06, Czech Republic
| | - Marie Belhajova
- Department of Paediatric Haematology and Oncology, 2Nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, Prague 5, 150 06, Czech Republic
| | - Dagmar Voriskova
- Department of Paediatric Haematology and Oncology, 2Nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, Prague 5, 150 06, Czech Republic
| | - Denis Kazeka
- Gastroenterology and Nutrition Unit, Department of Paediatrics, 2Nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, Prague 5, 150 06, Czech Republic
| | - Ales Vicha
- Department of Paediatric Haematology and Oncology, 2Nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, Prague 5, 150 06, Czech Republic
| | - Ondrej Hradsky
- Gastroenterology and Nutrition Unit, Department of Paediatrics, 2Nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, Prague 5, 150 06, Czech Republic
| | - Jiri Bronsky
- Gastroenterology and Nutrition Unit, Department of Paediatrics, 2Nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, Prague 5, 150 06, Czech Republic
| |
Collapse
|
23
|
Huang J, Wu T, Zhong Y, Huang J, Kang Z, Zhou B, Zhao H, Liu D. Effect of curcumin on regulatory B cells in chronic colitis mice involving TLR/MyD88 signaling pathway. Phytother Res 2023; 37:731-742. [PMID: 36196887 DOI: 10.1002/ptr.7656] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/12/2022] [Accepted: 09/15/2022] [Indexed: 11/09/2022]
Abstract
Curcumin (Cur) is a natural active phenolic compound extracted from the root of Curcuma Longa L. It has anti-inflammatory, anti-tumor and other pharmacological activities, and is commonly used to treat ulcerative colitis (UC). However, it is not clear whether curcumin regulates the function and differentiation of Breg cells to treat UC. In this study, mice with chronic colitis were induced by dextran sulfate sodium (DSS), and treated with curcumin for 12 days. Curcumin effectively improved the body weight, colonic weight, colonic length, decreased colonic weight index and pathological injury score under colonoscopy in mice with chronic colitis, and significantly inhibited the production of IL-1β, IL-6, IL-33, CCL-2, IFN-γ, TNF-α, and promoted the secretion of IL-4, IL-10, IL-13 and IgA. Importantly, curcumin markedly upregulated CD3- CD19+ CD1d+ , CD3- CD19+ CD25+ , CD3- CD19+ Foxp3+ Breg cells level and significantly down-regulated CD3- CD19+ PD-L1+ , CD3- CD19+ tim-1+ , CD3- CD19+ CD27+ Breg cells level. In addition, our results also showed that curcumin observably inhibited TLR2, TLR4, TLR5, MyD88, IRAK4, p-IRAK4, NF-κB P65, IRAK1, TRAF6, TAB1, TAB2, TAK1, MKK3, MKK6, p38MAPK, p-p38MAPK and CREB expression in TLR/MyD88 signaling pathway. These results suggest that curcumin can regulate the differentiation and function of Breg cell to alleviate DSS-induced colitis, which may be realized by inhibiting TLR/MyD88 pathway.
Collapse
Affiliation(s)
- Jie Huang
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, People's Republic of China
| | - Tiantian Wu
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, People's Republic of China
| | - Youbao Zhong
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, People's Republic of China
- Laboratory Animal Research Center for Science and Technology, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, People's Republic of China
| | - Jiaqi Huang
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, People's Republic of China
| | - Zengping Kang
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, People's Republic of China
| | - Bugao Zhou
- Formula-Pattern Research Center, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, People's Republic of China
| | - Haimei Zhao
- College of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, People's Republic of China
| | - Duanyong Liu
- Formula-Pattern Research Center, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, People's Republic of China
| |
Collapse
|
24
|
Gomez-Bris R, Saez A, Herrero-Fernandez B, Rius C, Sanchez-Martinez H, Gonzalez-Granado JM. CD4 T-Cell Subsets and the Pathophysiology of Inflammatory Bowel Disease. Int J Mol Sci 2023; 24:2696. [PMID: 36769019 PMCID: PMC9916759 DOI: 10.3390/ijms24032696] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Inflammatory bowel disease (IBD) is an umbrella term for the chronic immune-mediated idiopathic inflammation of the gastrointestinal tract, manifesting as Crohn's disease (CD) or ulcerative colitis (UC). IBD is characterized by exacerbated innate and adaptive immunity in the gut in association with microbiota dysbiosis and the disruption of the intestinal barrier, resulting in increased bacterial exposure. In response to signals from microorganisms and damaged tissue, innate immune cells produce inflammatory cytokines and factors that stimulate T and B cells of the adaptive immune system, and a prominent characteristic of IBD patients is the accumulation of inflammatory T-cells and their proinflammatory-associated cytokines in intestinal tissue. Upon antigen recognition and activation, CD4 T-cells differentiate towards a range of distinct phenotypes: T helper(h)1, Th2, Th9, Th17, Th22, T follicular helper (Tfh), and several types of T-regulatory cells (Treg). T-cells are generated according to and adapt to microenvironmental conditions and participate in a complex network of interactions among other immune cells that modulate the further progression of IBD. This review examines the role of the CD4 T-cells most relevant to IBD, highlighting how these cells adapt to the environment and interact with other cell populations to promote or inhibit the development of IBD.
Collapse
Affiliation(s)
- Raquel Gomez-Bris
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Angela Saez
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), 28223 Pozuelo de Alarcón, Spain
| | - Beatriz Herrero-Fernandez
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Cristina Rius
- Department of History of Science and Information Science, School of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
- UISYS Research Unit, University of Valencia, 46010 Valencia, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Hector Sanchez-Martinez
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Jose M. Gonzalez-Granado
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| |
Collapse
|
25
|
Cao H, Diao J, Liu H, Liu S, Liu J, Yuan J, Lin J. The Pathogenicity and Synergistic Action of Th1 and Th17 Cells in Inflammatory Bowel Diseases. Inflamm Bowel Dis 2022; 29:818-829. [PMID: 36166586 DOI: 10.1093/ibd/izac199] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Indexed: 12/09/2022]
Abstract
Inflammatory bowel diseases (IBDs), including ulcerative colitis and Crohn's disease, are characterized by chronic idiopathic inflammation of gastrointestinal tract. Although the pathogenesis of IBD remains unknown, intestinal immune dysfunction has been considered as the core pathogenesis. In the intestinal immune system, T helper 1 (Th1) and Th17 cells are indispensable for intestine homeostasis via preventing pathogenic bacteria invasion, regulating metabolism and functions of intestinal epithelial cells (IECs), and promoting IEC self-renewal. However, during the development of IBD, Th1 and Th17 cells acquire the pathogenicity and change from the maintainer of intestinal homeostasis to the destroyer of intestinal mucosa. Because of coexpressing interferon-γ and interleukin-17A, Th17 cells with pathogenicity are named as pathogenic Th17 cells. In disease states, Th1 cells impair IEC programs by inducing IEC apoptosis, recruiting immune cells, promoting adhesion molecules expression of IECs, and differentiating to epithelial cell adhesion molecule-specific interferon γ-positive Th1 cells. Pathogenic Th17 cells induce IEC injury by triggering IBD susceptibility genes expression of IECs and specifically killing IECs. In addition, Th1 and pathogenic Th17 cells could cooperate to induce colitis. The evidences from IBD patients and animal models demonstrate that synergistic action of Th1 and pathogenic Th17 cells occurs in the diseases development and aggravates the mucosal inflammation. In this review, we focused on Th1 and Th17 cell programs in homeostasis and intestine inflammation and specifically discussed the impact of Th1 and Th17 cell pathogenicity and their synergistic action on the onset and the development of IBD. We hoped to provide some clues for treating IBD.
Collapse
Affiliation(s)
- Hui Cao
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jun Diao
- Department of Pediatrics, Yueyang Hospital of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huosheng Liu
- Department of Acupuncture and Moxibustion, Shanghai Jiading Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Suxian Liu
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jun Liu
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianye Yuan
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiang Lin
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
26
|
Moraes Holst L, Halfvarson J, Carlson M, Hedin C, Kruse R, Lindqvist CM, Bergemalm D, Almér S, Bresso F, Ling Lundström M, Repsilber D, D’Amato M, Keita Å, Hjortswang H, Söderholm J, Sundin J, Törnblom H, Simrén M, Strid H, Magnusson MK, Öhman L. Downregulated Mucosal Autophagy, Alpha Kinase-1 and IL-17 Signaling Pathways in Active and Quiescent Ulcerative Colitis. Clin Exp Gastroenterol 2022; 15:129-144. [PMID: 35928254 PMCID: PMC9343467 DOI: 10.2147/ceg.s368040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022] Open
Abstract
Background Improved mucosal immune profiling in active and quiescent colonic inflammatory bowel disease (IBD) is needed to develop therapeutic options for treating and preventing flares. This study therefore aimed to provide a comprehensive mucosal characterization with emphasis on immunological host response of patients with active ulcerative colitis (UC active), UC during remission (UC remission) and active colonic Crohn’s disease (CD active). Methods Colonic biopsies from 47 study subjects were collected for gene expression and pathway analyses using the NanoString host-response panel, including 776 genes and 56 immune-related pathways. Results The majority of mucosal gene expression and signaling pathway scores were increased in active IBD (n=27) compared to healthy subjects (n=10). However, both active IBD and UC remission (n=10) demonstrated decreased gene expression and signaling pathway scores related to autophagy, alpha kinase-1 and IL-17 signaling pathways compared to healthy subjects. Further, UC remission was characterized by decreased scores of several signaling pathways linked to homeostasis along with increased mononuclear cell migration pathway score as compared to healthy subjects. No major differences in the colonic mucosal gene expression between CD active (n=7) and UC (n=20) active were observed. Conclusion This study indicates that autophagy, alpha kinase-1 and IL-17 signaling pathways are persistently downregulated in UC irrespective of disease activity. Further, UC patients in remission present a unique mucosal environment, potentially preventing patients from reaching and sustaining true homeostasis. These findings may enable better comprehension of the remitting and relapsing pattern of colonic IBD and guide future treatment and prevention of flares.
Collapse
Affiliation(s)
- Luiza Moraes Holst
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jonas Halfvarson
- Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Marie Carlson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Charlotte Hedin
- Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
| | - Robert Kruse
- Department of Clinical Research Laboratory, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Carl Mårten Lindqvist
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Daniel Bergemalm
- Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Sven Almér
- Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
| | - Francesca Bresso
- Karolinska University Hospital, Gastroenterology Unit, Department of Gastroenterology, Dermatovenereology and Rheumatology, Stockholm, Sweden
| | | | - Dirk Repsilber
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Mauro D’Amato
- Clinical Epidemiology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Gastrointestinal Genetics Lab, CIC bioGUNE - BRTA, Derio, Spain
| | - Åsa Keita
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Henrik Hjortswang
- Department of Clinical and Experimental Science, Linköping University, Linköping, Sweden
| | - Johan Söderholm
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Johanna Sundin
- Department of Internal Medicine & Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, Gothenburg, Sweden
| | - Hans Törnblom
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Magnus Simrén
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Center for Functional Gastrointestinal and Motility Disorders, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hans Strid
- Department of Internal Medicine, Södra Älvsborg Hospital, Borås, Sweden
| | - Maria K Magnusson
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lena Öhman
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Correspondence: Lena Öhman, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden, Tel +46703616499, Email
| |
Collapse
|
27
|
Yang R, Gao G, Yang H. The Pathological Mechanism Between the Intestine and Brain in the Early Stage of Parkinson's Disease. Front Aging Neurosci 2022; 14:861035. [PMID: 35813958 PMCID: PMC9263383 DOI: 10.3389/fnagi.2022.861035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease (PD) is the second most common chronic progressive neurodegenerative disease. The main pathological features are progressive degeneration of neurons and abnormal accumulation of α-synuclein. At present, the pathogenesis of PD is not completely clear, and many changes in the intestinal tract may be the early pathogenic factors of PD. These changes affect the central nervous system (CNS) through both nervous and humoral pathways. α-Synuclein deposited in the intestinal nerve migrates upward along the vagus nerve to the brain. Inflammation and immune regulation mediated by intestinal immune cells may be involved, affecting the CNS through local blood circulation. In addition, microorganisms and their metabolites may also affect the progression of PD. Therefore, paying attention to the multiple changes in the intestinal tract may provide new insight for the early diagnosis and treatment of PD.
Collapse
|
28
|
Coman D, Coales I, Roberts LB, Neves JF. Helper-Like Type-1 Innate Lymphoid Cells in Inflammatory Bowel Disease. Front Immunol 2022; 13:903688. [PMID: 35844597 PMCID: PMC9285720 DOI: 10.3389/fimmu.2022.903688] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/17/2022] [Indexed: 12/17/2022] Open
Abstract
Inflammatory bowel disease (IBD) is an idiopathic condition characterized by chronic relapsing inflammation in the intestine. While the precise etiology of IBD remains unknown, genetics, the gut microbiome, environmental factors, and the immune system have all been shown to contribute to the disease pathophysiology. In recent years, attention has shifted towards the role that innate lymphoid cells (ILCs) may play in the dysregulation of intestinal immunity observed in IBD. ILCs are a group of heterogenous immune cells which can be found at mucosal barriers. They act as critical mediators of the regulation of intestinal homeostasis and the orchestration of its inflammatory response. Despite helper-like type 1 ILCs (ILC1s) constituting a particularly rare ILC population in the intestine, recent work has suggested that an accumulation of intestinal ILC1s in individuals with IBD may act to exacerbate its pathology. In this review, we summarize existing knowledge on helper-like ILC1 plasticity and their classification in murine and human settings. Moreover, we discuss what is currently understood about the roles that ILC1s may play in the progression of IBD pathogenesis.
Collapse
Affiliation(s)
- Diana Coman
- Centre for Host Microbiome Interactions, King’s College London, London, United Kingdom
| | - Isabelle Coales
- Centre for Host Microbiome Interactions, King’s College London, London, United Kingdom
| | - Luke B. Roberts
- School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Joana F. Neves
- Centre for Host Microbiome Interactions, King’s College London, London, United Kingdom
- *Correspondence: Joana F. Neves,
| |
Collapse
|
29
|
Lambert K, Moo KG, Arnett A, Goel G, Hu A, Flynn KJ, Speake C, Wiedeman AE, Gersuk VH, Linsley PS, Greenbaum CJ, Long SA, Partridge R, Buckner JH, Khor B. Deep immune phenotyping reveals similarities between aging, Down syndrome, and autoimmunity. Sci Transl Med 2022; 14:eabi4888. [PMID: 35020411 DOI: 10.1126/scitranslmed.abi4888] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Katharina Lambert
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101, USA
| | - Keagan G Moo
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101, USA
| | - Azlann Arnett
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101, USA
| | - Gautam Goel
- Center for Systems Immunology, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101, USA
| | - Alex Hu
- Center for Systems Immunology, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101, USA
| | - Kaitlin J Flynn
- Center for Systems Immunology, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101, USA
| | - Cate Speake
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101, USA
| | - Alice E Wiedeman
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101, USA
| | - Vivian H Gersuk
- Center for Systems Immunology, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101, USA
| | - Peter S Linsley
- Center for Systems Immunology, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101, USA
| | - Carla J Greenbaum
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101, USA
| | - S Alice Long
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101, USA
| | - Rebecca Partridge
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101, USA.,Department of Pediatrics, Virginia Mason Medical Center, 100 N.E. Gilman Blvd., Issaquah, WA 98027, USA
| | - Jane H Buckner
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101, USA
| | - Bernard Khor
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101, USA
| |
Collapse
|
30
|
Type 2 immunity in intestinal homeostasis and inflammatory bowel disease. Biochem Soc Trans 2021; 49:2371-2380. [PMID: 34581755 PMCID: PMC8589436 DOI: 10.1042/bst20210535] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 12/15/2022]
Abstract
Type 2 immune responses commonly emerge during allergic reactions or infections with helminth parasites. Most of the cytokines associated with type 2 immune responses are IL-4, IL-5, and IL13, which are mainly produced by T helper 2 cells (TH2), eosinophils, basophils, mast cells, and group 2 innate lymphoid cells (ILC2s). Over the course of evolution, humans have developed type 2 immune responses to fight infections and to protect tissues from the potential collateral damage caused by inflammation. For example, worm parasites induce potent type 2 immune responses, which are needed to simultaneously clear the pathogen and to promote tissue repair following injury. Due to the strong type 2 immune responses induced by helminths, which can promote tissue repair in the damaged epithelium, their use has been suggested as a possible treatment for inflammatory bowel disease (IBD); however, the role of type 2 immune responses in the initiation and progression of IBD is not fully understood. In this review, we discuss the molecular and cellular mechanisms that regulate type 2 immune responses during intestinal homeostasis, and we briefly discuss the scarce evidence linking type 2 immune responses with the aetiology of IBD.
Collapse
|
31
|
Smetanova J, Milota T, Rataj M, Bloomfield M, Sediva A, Klocperk A. Accelerated Maturation, Exhaustion, and Senescence of T cells in 22q11.2 Deletion Syndrome. J Clin Immunol 2021; 42:274-285. [PMID: 34716533 DOI: 10.1007/s10875-021-01154-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/13/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE 22q11.2 deletion syndrome (22q11.2DS) is a primary immunodeficiency characterized chiefly by the hypoplasia of the thymus resulting in T cell lymphopenia, increased susceptibility to infections, and higher risk of autoimmune diseases. The irregular thymic niche of T cell development may contribute to autoimmune and atopic complications, whereas the compensatory mechanism of homeostatic T cell proliferation and continuous immune stimulation may result in T cell senescence and exhaustion, further aggravating the immune system dysregulation. METHODS We used flow cytometry to investigate T cell maturation, delineation, proliferation, activation, and expression of senescence and exhaustion-associated markers (PD1, KLRG1, CD57) in 17 pediatric and adolescent patients with 22q11.2DS and age-matched healthy donors. RESULTS 22q11.2DS patients aged 0-5 years had fewer naïve but more effector memory T cells with a tendency to approach normal values with increasing age. Young patients in particular had a higher percentage of proliferating T cells and increased expression of PD1, KLRG1, and CD57, as well as cells co-expressing several exhaustion-associated molecules (PD1, KLRG1, Tbet, Eomes, Helios). Additionally, high-risk 22q11.2DS patients with very low numbers of CD4 T cells had significantly higher percentage of Th1 and Th17 T cells, driven in part by higher proportion of mature T cell forms. CONCLUSION The low thymic output and accelerated T cell differentiation remain the principal features of 22q11.2DS patient immunity, especially in young patients of < 5 years. Later in life, homeostatic proliferation drives expression of T cell exhaustion and senescence-associated markers, suggesting functional aberrations in addition to numeric T cell deficiency.
Collapse
Affiliation(s)
- Jitka Smetanova
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06, Prague, Czech Republic
| | - Tomas Milota
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06, Prague, Czech Republic.,Department of Paediatric and Adult Rheumatology, University Hospital Motol, Prague, Czech Republic
| | - Michal Rataj
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06, Prague, Czech Republic
| | - Marketa Bloomfield
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06, Prague, Czech Republic.,Department of Paediatrics, First Faculty of Medicine, Charles University and Thomayer University Hospital, Prague, Czech Republic
| | - Anna Sediva
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06, Prague, Czech Republic
| | - Adam Klocperk
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06, Prague, Czech Republic.
| |
Collapse
|
32
|
Hyun CK. Molecular and Pathophysiological Links between Metabolic Disorders and Inflammatory Bowel Diseases. Int J Mol Sci 2021; 22:ijms22179139. [PMID: 34502047 PMCID: PMC8430512 DOI: 10.3390/ijms22179139] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/21/2021] [Accepted: 08/22/2021] [Indexed: 02/07/2023] Open
Abstract
Despite considerable epidemiological evidence indicating comorbidity between metabolic disorders, such as obesity, type 2 diabetes, and non-alcoholic fatty liver disease, and inflammatory bowel diseases (IBD), such as Crohn’s disease and ulcerative colitis, as well as common pathophysiological features shared by these two categories of diseases, the relationship between their pathogenesis at molecular levels are not well described. Intestinal barrier dysfunction is a characteristic pathological feature of IBD, which also plays causal roles in the pathogenesis of chronic inflammatory metabolic disorders. Increased intestinal permeability is associated with a pro-inflammatory response of the intestinal immune system, possibly leading to the development of both diseases. In addition, dysregulated interactions between the gut microbiota and the host immunity have been found to contribute to immune-mediated disorders including the two diseases. In connection with disrupted gut microbial composition, alterations in gut microbiota-derived metabolites have also been shown to be closely related to the pathogeneses of both diseases. Focusing on these prominent pathophysiological features observed in both metabolic disorders and IBD, this review highlights and summarizes the molecular risk factors that may link between the pathogeneses of the two diseases, which is aimed at providing a comprehensive understanding of molecular mechanisms underlying their comorbidity.
Collapse
Affiliation(s)
- Chang-Kee Hyun
- School of Life Science, Handong Global University, Pohang 37554, Gyungbuk, Korea
| |
Collapse
|
33
|
Zou J, Liu C, Jiang S, Qian D, Duan J. Cross Talk between Gut Microbiota and Intestinal Mucosal Immunity in the Development of Ulcerative Colitis. Infect Immun 2021; 89:e0001421. [PMID: 33526559 PMCID: PMC8370674 DOI: 10.1128/iai.00014-21] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ulcerative colitis (UC), a nonspecific inflammatory disease, is characterized by inflammation and mucosal damage in the colon, and its prevalence in the world is increasing. Nevertheless, the exact pathogenesis of UC is still unclear. Accumulating data have suggested that its pathogenesis is multifactorial, involving genetic predisposition, environmental factors, microbial dysbiosis, and dysregulated immune responses. Generally, UC is aroused by inappropriate immune activation based on the interaction of host and intestinal microbiota. The relationship between microbiota and host immune system in the pathogenesis of UC is complicated. However, increasing evidence indicates that the shift of microbiota composition can substantially influence intestinal immunity. In this review, we primarily focus on the delicate balance between microbiota and gut mucosal immunity during UC progression.
Collapse
Affiliation(s)
- Junfeng Zou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Chen Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Dawei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| |
Collapse
|
34
|
Graham JJ, Longhi MS, Heneghan MA. T helper cell immunity in pregnancy and influence on autoimmune disease progression. J Autoimmun 2021; 121:102651. [PMID: 34020252 PMCID: PMC8221281 DOI: 10.1016/j.jaut.2021.102651] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 02/07/2023]
Abstract
Pregnancy presents the maternal immune system with a unique immunological challenge since it has to defend against pathogens while tolerating paternal allo-antigens expressed by fetal tissues. T helper (Th) cells play a central role in modulating immune responses and recent advances have defined distinct contributions of various Th cell subsets throughout each phase of human pregnancy, while dysregulation in Th responses show association with multiple obstetrical complications. In addition to localized decidual mechanisms, modulation of Th cell immunity during gestation is mediated largely by oscillations in sex hormone concentrations. Aberrant Th cell responses also underlie several autoimmune disorders while pregnancy-induced changes in the balance of Th cell immunity has been shown to exert favorable outcomes in the progression Th1 and Th17 driven autoimmune conditions only to be followed by post-partal exacerbations in disease.
Collapse
Affiliation(s)
- Jonathon J Graham
- Institute of Liver Studies, King's College Hospital, London, SE5 9RS, United Kingdom
| | - Maria Serena Longhi
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Michael A Heneghan
- Institute of Liver Studies, King's College Hospital, London, SE5 9RS, United Kingdom.
| |
Collapse
|
35
|
Wang J, Lin S, Brown JM, van Wagoner D, Fiocchi C, Rieder F. Novel mechanisms and clinical trial endpoints in intestinal fibrosis. Immunol Rev 2021; 302:211-227. [PMID: 33993489 DOI: 10.1111/imr.12974] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/18/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022]
Abstract
The incidence of inflammatory bowel diseases (IBD) worldwide has resulted in a global public health challenge. Intestinal fibrosis leading to stricture formation and bowel obstruction is a frequent complication in Crohn's disease (CD), and the lack of anti-fibrotic therapies makes elucidation of fibrosis mechanisms a priority. Progress has shown that mesenchymal cells, cytokines, microbial products, and mesenteric adipocytes are jointly implicated in the pathogenesis of intestinal fibrosis. This recent information puts prevention or reversal of intestinal strictures within reach through innovative therapies validated by reliable clinical trial endpoints. Here, we review the role of immune and non-immune components of the pathogenesis of intestinal fibrosis, including new cell clusters, cytokine networks, host-microbiome interactions, creeping fat, and their translation for endpoint development in anti-fibrotic clinical trials.
Collapse
Affiliation(s)
- Jie Wang
- Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, China.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Sinan Lin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.,Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jonathan Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - David van Wagoner
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Claudio Fiocchi
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
36
|
Abstract
The Janus kinase (JAK), signal transducer of activation (STAT) pathway, discovered by investigating interferon gene induction, is now recognized as an evolutionary conserved signaling pathway employed by diverse cytokines, interferons, growth factors, and related molecules. Since its discovery, this pathway has become a paradigm for membrane-to-nucleus signaling and explains how a broad range of soluble factors such as cytokines and hormones, mediate their diverse functions. The understanding of JAK-STAT signaling in the intestine has not only impacted basic science research, particularly in the understanding of intercellular communication and cell-extrinsic control of gene expression, but it has also become a prototype for transition of bench to bedside research, culminating in the clinical implementation of pathway-specific therapeutics.
Collapse
|
37
|
Anti-IL-4Ralpha monoclonal antibody dupilumab mimics ulcerative colitis: a case report. BMC Gastroenterol 2021; 21:207. [PMID: 33964871 PMCID: PMC8105910 DOI: 10.1186/s12876-021-01803-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/03/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Various molecular-targeted therapeutic agents that inhibit cytokines and immune checkpoints are used in clinical practice. Some of these biologics that control immunity, such as anti-interleukin-17, anti-programmed cell death protein-1, and anti-cytotoxic T-lymphocyte-associated protein antibodies, affect intestinal immune homeostasis and cause intestinal inflammation. Development of enteritis due to dupilumab (an anti-IL-4Ralpha monoclonal antibody) therapy is not yet reported in the literature. CASE PRESENTATION A 17-year-old man was administered an injection of dupilumab and continued to receive it for refractory atopic dermatitis. After 3 months of initiating dupilumab therapy, he developed intermittent abdominal pain, tenesmus, and had diarrhea. Colonoscopy examination showed decreased vascularity, mild friability, and erythema in the cecum, part of the ascending colon, sigmoid colon, and rectum without any pathogenic bacteria. Histological examination revealed moderate mixed inflammatory cell infiltration, cryptitis, destruction of the crypt, decreased goblet cells, mucosal erosions, and edema. He was diagnosed with UC and was prescribed oral mesalazine (4800 mg/day) treatment. Within a month of the treatment, his diarrhea improved and the frequency of defecation decreased. CONCLUSIONS This is a first report that dupilumab mimicked ulcerative colitis. Careful monitoring for adverse effects with the onset of an intestinal inflammation will be recommended after dupilumab administration.
Collapse
|
38
|
Kitani T, Maddipatla SC, Madupuri R, Greco C, Hartmann J, Baraniuk JN, Vasudevan S. In Search of Newer Targets for Inflammatory Bowel Disease: A Systems and a Network Medicine Approach. NETWORK AND SYSTEMS MEDICINE 2021. [DOI: 10.1089/nsm.2020.0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Takashi Kitani
- Department of Neurology, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Sushma C. Maddipatla
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Ramya Madupuri
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Christopher Greco
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Jonathan Hartmann
- Dahlgren Memorial Library, Graduate Health and Life Sciences Research Library, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - James N. Baraniuk
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Sona Vasudevan
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia, USA
| |
Collapse
|
39
|
Xuan-Qing CHEN, Xiang-Yu LV, Shi-Jia LIU. Baitouweng decoction alleviates dextran sulfate sodium-induced ulcerative colitis by regulating intestinal microbiota and the IL-6/STAT3 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113357. [PMID: 32891820 DOI: 10.1016/j.jep.2020.113357] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/04/2020] [Accepted: 08/29/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Baitouweng (BTW) decoction, a Chinese traditional medicine prescription, has been used to treat ulcerative colitis (UC) over hundreds of years. In this study, we investigated the anti-inflammatory effects of BTW and intestinal flora of dextran sulfate sodium (DSS)-induced UC mice, and we investigated the mechanism of BTW in the preliminary treatment of UC. AIM OF STUDY The aim of this study was to elucidate the mechanism of BTW in treating UC through molecular biology and high-throughput sequencing. METHODS DSS-induced UC mice were established and randomly divided into the following four groups: control group, DSS group, BTW group and sulfasalazine (SASP) group. Except for the control group, 3% DSS drinking water was given to each group for 7 days, and the other two groups were intragastrically administered with BTW and SASP. Mice were sacrificed after gavage for 10 days. Body weight loss, disease activity index (DAI), colon length, colon histopathology and the expression of inflammatory cytokines were measured. Intestinal content samples were collected, and intestinal flora differences were analyzed by 16 S rDNA sequencing. RESULTS BTW effectively reduced the symptoms and histopathological score of UC mice, and it reduced the production of IL-6, IL-1β and TNF-α. Activation of the IL-6/STAT3 pathway was also suppressed by BTW treatment. Moreover, 16 S rDNA sequencing showed that the intestinal flora of mice in the DSS group was disordered compared to the control group. After treatment with BTW, the diversity of intestinal flora was significantly improved. At the phylum level, the proportion of Firmicutes to Bacteroidetes was decreased, and the ratio of Proteobacteria was decreased. At the genus level, the relative abundance of Escherichia-Shigella was decreased, but that of Lactobacillus and Akkermansia were increased. CONCLUSION BTW significantly improved the inflammatory symptoms of mice with acute colitis, and the latent mechanism of BTW may be related to various signaling pathways, including the modulation of intestinal microflora and inflammatory signaling pathways, such as IL-6/STAT3.
Collapse
Affiliation(s)
- C H E N Xuan-Qing
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; School of Life Science & Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - L V Xiang-Yu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; School of Life Science & Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - L I U Shi-Jia
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China.
| |
Collapse
|
40
|
Ghafouri Z, Seyyedian S, Nikbakht J, Kouhsari E, Bayat S, Zargar H, Houshmand G. Effect of Sodium Cromoglycate on Acetic Acid-induced Ulcerative Colitis in Mice. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2020; 75:39-45. [PMID: 31986572 DOI: 10.4166/kjg.2020.75.1.39] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/10/2019] [Accepted: 11/23/2019] [Indexed: 12/24/2022]
Abstract
Background/Aims Ulcerative colitis (UC) is a type of inflammatory bowel disease that mainly involves the colon. Thus far, glucocorticoids and amino-salicylate have been the main treatment. Methods To assess drugs with fewer side effects, this study evaluated the effects of sodium cromoglycate (SCG) on acetic acid-induced UC in rats. The treatment groups included SCG receivers (50 and 100 mg/kg, intra-orally) and sulfasalazine (SSZ) receivers (100 mg/kg, intra-orally). The colonic mucosal injury was assessed by clinical, macroscopic, and histopathological examinations. Results In the treatment groups with 50 and 100 mg/kg of SCG, the clinical activity score decreased to 2.67±0.18 and 1.73±0.21 (p<0.05), respectively, compared to the UC control group (3.21±0.31), and were higher than that of the group given the standard treatment of 100 mg/kg SSZ (1.10±0.09). The treatment groups with 50 and 100 mg/kg of SCG showed a lower clinical gross lesion score than the UC control group (2.91±0.28 and 2.10±0.43, vs. 4.49±0.61, p<0.05) and were higher than the standard group (0.95±0.18). Treatment with SCG (100 mg/kg) decreased the macroscopic scores significantly compared to the UC control group (p<0.05) on the 8th day. Conclusions SCG (100mg/kg) decreased significantly the clinical activity score, gross lesion, and percentage-affected area compared to the UC controls on the 8th day.
Collapse
Affiliation(s)
- Zahra Ghafouri
- Department of Biochemistry, Biophysics and Genetics, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeid Seyyedian
- Department of Internal Medicine, School of Medicine, Alimentary Tract Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Jafar Nikbakht
- Department of Pharmacology, School of Medicine, Yasuj University of Medical Science, Yasuj, Iran
| | - Ebrahim Kouhsari
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran.,Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sara Bayat
- Department of Internal Medicine, School of Medicine, Alimentary Tract Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hamidreza Zargar
- Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Gholamreza Houshmand
- Department of Pharmacology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Gut and Liver Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
41
|
Atreya R, Neurath MF, Siegmund B. Personalizing Treatment in IBD: Hype or Reality in 2020? Can We Predict Response to Anti-TNF? Front Med (Lausanne) 2020; 7:517. [PMID: 32984386 PMCID: PMC7492550 DOI: 10.3389/fmed.2020.00517] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
The advent of anti-TNF agents as the first approved targeted therapy in the treatment of inflammatory bowel disease (IBD) patients has made a major impact on our existing therapeutic algorithms. They have not only been approved for induction and maintenance treatment in IBD patients, but have also enabled us to define and achieve novel therapeutic outcomes, such as combination of clinical symptom control and endoscopic remission, as well as mucosal healing. Nevertheless, approximately one third of treated patients do not respond to initiated anti-TNF therapy and these treatments are associated with sometimes severe systemic side-effects. There is therefore the currently unmet clinical need do establish predictive markers of response to identify the subgroup of IBD patients, that have a heightened probability of response. There have so far been approaches from different fields of IBD research, to descry markers that would empower us to apply TNF-inhibitors in a more rational manner. These markers encompass findings from disease-related and clinical factors, pharmacokinetics, biochemical markers, blood and stool derived parameters, pharmacogenomics, microbial species, metabolic compounds, and mucosal factors. Furthermore, changes in the intestinal immune cell composition in response to therapeutic pressure of anti-TNF treatment have recently been implicated in the process of molecular resistance to these drugs. Insights into factors that determine resistance to anti-TNF therapy give reasonable hope, that a more targeted approach can then be utilized in these non-responders. Here, IL-23 could be identified as one of the key factors determining resistance to TNF-inhibitors. Growing insights into the molecular mechanism of action of TNF-inhibitors might also enable us to derive critical molecular markers that not only mediate the clinical effects of anti-TNF therapy, but which level of expression might also correlate with its therapeutic efficacy. In this narrative review, we present an overview of currently identified possible predictive markers for successful anti-TNF therapy and discuss identified molecular pathways that drive resistance to these substances. We will also point out the necessity and difficulty of developing and validating a diagnostic marker concerning clinically relevant outcome parameters, before they can finally enter daily clinical practice and enable a more personalized therapeutic approach.
Collapse
Affiliation(s)
- Raja Atreya
- Department of Medicine, Medical Clinic 1, University Hospital Erlangen, University of Erlangen-Nürnberg Erlangen, Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany.,The Transregio 241 IBDome Consortium, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine, Medical Clinic 1, University Hospital Erlangen, University of Erlangen-Nürnberg Erlangen, Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Britta Siegmund
- The Transregio 241 IBDome Consortium, Berlin, Germany.,Medizinische Klinik m. S. Gastroenterologie, Infektiologie und Rheumatologie, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
42
|
Jakubczyk D, Leszczyńska K, Górska S. The Effectiveness of Probiotics in the Treatment of Inflammatory Bowel Disease (IBD)-A Critical Review. Nutrients 2020; 12:nu12071973. [PMID: 32630805 PMCID: PMC7400428 DOI: 10.3390/nu12071973] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/19/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022] Open
Abstract
Inflammatory bowel disease (IBD), which affects millions of people worldwide, includes two separate diseases: Crohn's disease (CD) and ulcerative colitis (UC). Although the background (chronic inflammatory state) and some of the symptoms of CD and UC are similar, both diseases differ from each other. It is becoming clear that a combination of many factors, in particular genetic background, host immune response and microbial reduced diversity status are associated with IBD. One potential strategy to prevent/treat IBD is gut modulation by probiotics. Over the last twenty years, many publications have focused on the role of probiotics in the course of IBD. The review discusses the utility of different strains of probiotics, especially Bifidobacterium spp., in all factors potentially involved in the etiology of IBD. The probiotic modulatory properties among different study models (cell lines, animal models of colitis, clinical study) are discussed and probiotic usefulness is assessed in relation to the treatment, prevention, and remission of diseases.
Collapse
|
43
|
Zibandeh N, Genc D, Duran Y, Banzragch M, Sokwala S, Goker K, Atug O, Akkoç T. Human dental follicle mesenchymal stem cells alleviate T cell response in inflamed tissue of Crohn's patients. TURKISH JOURNAL OF GASTROENTEROLOGY 2020; 31:400-409. [PMID: 32519960 DOI: 10.5152/tjg.2020.19358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND/AIMS Crohn's Disease (CD) is a chronic inflammatory condition characterized by various abnormalities that lead to overly aggressive T-cell responses. Our in vitro experiments aimed to investigate the potential use of Dental Follicle Mesenchymal Stem Cells (DF-MSCs) to suppress the exaggerated immune response in inflamed and non-inflamed tissue of Crohn's Disease (CD). MATERIAL AND METHODS Dental follicle tissues were obtained from extracted third molar teeth of 3 healthy volunteers who have no abscess or inflammatory diseases. Eleven patients included the experiment who had been diagnosed with CD and not received steroid maintenance therapy for more than 1 month. Mononuclear Cells (MNCs) were isolated from inflamed and non-inflamed tissue of CD. Isolated cells were stimulated with anti-CD3/anti-CD28 monoclonal antibodies in the presence and absence of DF-MSCs and analyzed for lymphocytes proliferation capacity and viability, T lymphocyte subsets, CD4+IL22BP and CD4+CD25+Foxp3+ regulatory T cell (Tregs) frequencies and cytokine levels. RESULTS A significant downregulation of lymphocyte proliferation and CD4+IL22BP T cell ratio were found in inflamed cultures with DF-MSCs (p<0,005). Also, the frequency of Tregs increased with DF-MSCs (p<0,05). Pro-inflammatory cytokine levels (TNF-α and IL-6) were decreased (p<0,05) and IL-10 levels were increased (p<0,05) in the supernatant of inflamed cultures. CONCLUSION DF-MSCs reduced the inflammatory immune response, induced Tregs and downregulated CD4+IL22BP T cell ratio in inflamed samples of CD patients, which may be exploited for significant therapeutic use.
Collapse
Affiliation(s)
- Noushin Zibandeh
- Division of Pediatric Allergy and Immunology, Marmara University School of Medicine, Istanbul, Turkey
| | - Deniz Genc
- Division of Pediatric Allergy and Immunology, Marmara University School of Medicine, Istanbul, Turkey
| | - Yazgul Duran
- Division of Pediatric Allergy and Immunology, Marmara University School of Medicine, Istanbul, Turkey
| | - Munhtsetseg Banzragch
- Department of Gastroenterology, Marmara University School of Medicine, Istanbul, Turkey
| | - Sakina Sokwala
- Division of Pediatric Allergy and Immunology, Marmara University School of Medicine, Istanbul, Turkey
| | - Kamil Goker
- Department of Oral and Maxillofacial Surgery, Marmara University School of Medicine, Istanbul, Turkey
| | - Ozlen Atug
- Department of Gastroenterology, Marmara University School of Medicine, Istanbul, Turkey
| | - Tunç Akkoç
- Division of Pediatric Allergy and Immunology, Marmara University School of Medicine, Istanbul, Turkey
| |
Collapse
|
44
|
Yang B, Zhang G, Elias M, Zhu Y, Wang J. The role of cytokine and immune responses in intestinal fibrosis. J Dig Dis 2020; 21:308-314. [PMID: 32410365 DOI: 10.1111/1751-2980.12879] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/11/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022]
Abstract
The rapidly increasing incidence of inflammatory bowel disease (IBD) in South America, eastern Europe, Asia, and Africa has resulted in a global public health challenge. Intestinal fibrosis is a common complication in patients with long-term IBD, which may develop into stenosis and subsequent obstruction. Hitherto, the origin of IBD is unclear and several factors may be involved, including genetic, immune, environmental and microbial influences. Little is known about how the recurrent inflammation in patients with IBD develops into intestinal fibrosis and currently, there is no suitable treatment to reverse intestinal fibrosis in these patients. Here, we review the role of immune components in the pathogenesis of IBD and intestinal fibrosis, including cytokine networks, host-microbiome interactions, and immune cell trafficking.
Collapse
Affiliation(s)
- Bo Yang
- School of Laboratory Medicine, Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Ge Zhang
- School of Laboratory Medicine, Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Michael Elias
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Yijun Zhu
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA.,Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jie Wang
- School of Laboratory Medicine, Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, Henan Province, China.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
45
|
Xie F, Zhang H, Zheng C, Shen XF. Costunolide improved dextran sulfate sodium-induced acute ulcerative colitis in mice through NF-κB, STAT1/3, and Akt signaling pathways. Int Immunopharmacol 2020; 84:106567. [PMID: 32413737 DOI: 10.1016/j.intimp.2020.106567] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/24/2020] [Accepted: 05/03/2020] [Indexed: 12/22/2022]
Abstract
Costunolide (CTL) is the major sesquiterpene lactone from Radix Aucklandiae, which is widely used on the treatment of gastrointestinal diseases. However, the therapeutic effect of costunolide in ulcerative colitis (UC) is still unknown. Herein, we sought to evaluate the therapeutic effects and underlying mechanisms of costunolide on UC. ICR mice were intraperitoneally administered with costunolide (10 mg/kg) for 10 days. Beginning on the 4th day of drug administration, acute colitis was induced by feeding 4% dextran sulfate sodium (DSS) for additional 7 days. Costunolide markedly attenuated DSS-induced body weight loss, colonic shortening, elevation in disease activity index, and pathological damage of colon, and decreased the number of CD4+ T cells in colon tissues. Furthermore, costunolide significantly inhibited myeloperoxidase (MPO) activity and nitric oxide (NO) level in colon tissues in DSS-exposed mice. Meanwhile, costunolide also suppressed DSS-induced expression of induced nitric oxide synthase (iNOS), interleukin-1β (IL-1β), IL-6, tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ) in both mRNA and protein levels. Mechanistically, costunolide repressed the phosphorylation of nuclear factor kappa-B (NF-κB) p65 and degradation of inhibitor of NF-κB (IκB), as well as the excessive activation of signal transducers and activators of transcription 1/3 (STAT1/3) and serine/threonine protein kinase Akt (Akt) in colon tissues in DSS-challenged mice. These findings successfully demonstrated that costunolide ameliorated DSS-induced murine acute colitis by suppressing inflammation through inactivation of NF-κB, STAT1/3, and Akt pathways. These results also suggested that costunolide may be a potential therapeutic agent for the treatment of acute UC.
Collapse
Affiliation(s)
- Fan Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hai Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuan Zheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xiao-Fei Shen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
46
|
Interplay between Cytokine Circuitry and Transcriptional Regulation Shaping Helper T Cell Pathogenicity and Plasticity in Inflammatory Bowel Disease. Int J Mol Sci 2020; 21:ijms21093379. [PMID: 32403220 PMCID: PMC7247009 DOI: 10.3390/ijms21093379] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic disorder manifested as Crohn’s disease (CD) and ulcerative colitis (UC) characterized by intestinal inflammation and involves a dysregulated immune response against commensal microbiota through the activation of CD4 T helper cells. T helper cell differentiation to effector or regulatory phenotypes is controlled by cytokine networks and transcriptional regulators. Distinct polarized T helper cells are able to alter their phenotypes to adapt to diverse and fluctuating physiological environments. T helper cells exhibit intrinsic instability and flexibility to express cytokines of other lineages or transdifferentiate from one T helper cell type to another in response to various perturbations from physiological cytokine milieu as a means of promoting local immunity in response to injury or ensure tissue homeostasis. Furthermore, functional plasticity and diversity of T helper cells are associated with pathogenicity and are critical for immune homeostasis and prevention of autoimmunity. In this review, we provide deeper insights into the combinatorial extrinsic and intrinsic signals that control plasticity and transdifferentiation of T helper cells and also highlight the potential of exploiting the genetic reprogramming plasticity of T helper cells in the treatment of IBD.
Collapse
|
47
|
Butera A, Di Paola M, Vitali F, De Nitto D, Covotta F, Borrini F, Pica R, De Filippo C, Cavalieri D, Giuliani A, Pronio A, Boirivant M. IL-13 mRNA Tissue Content Identifies Two Subsets of Adult Ulcerative Colitis Patients With Different Clinical and Mucosa-Associated Microbiota Profiles. J Crohns Colitis 2020; 14:369-380. [PMID: 31501882 DOI: 10.1093/ecco-jcc/jjz154] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS A personalized approach to therapy hold great promise to improve disease outcomes. To this end, the identification of different subsets of patients according to the prevalent pathogenic process might guide the choice of therapeutic strategy. We hypothesize that ulcerative colitis [UC] patients might be stratified according to distinctive cytokine profiles and/or to a specific mucosa-associated microbiota. METHODS In a cohort of clinically and endoscopic active UC patients and controls, we used quantitative PCR to analyse the mucosal cytokine mRNA content and 16S rRNA gene sequencing to assess the mucosa-associated microbiota composition. RESULTS We demonstrate, by means of data-driven approach, the existence of a specific UC patient subgroup characterized by elevated IL-13 mRNA tissue content separate from patients with low IL-13 mRNA tissue content. The two subsets differ in clinical-pathological characteristics. High IL-13 mRNA patients are younger at diagnosis and have a higher prevalence of extensive colitis than low IL-13 mRNA patients. They also show more frequent use of steroid/immunosuppressant/anti-tumour necrosis factor α therapy during 1 year of follow-up. The two subgroups show differential enrichment of mucosa-associated microbiota genera with a prevalence of Prevotella in patients with high IL-13 mRNA tissue content and Sutterella and Acidaminococcus in patients with low IL-13 mRNA tissue content. CONCLUSION Assessment of mucosal IL-13 mRNA might help in the identification of a patient subgroup that might benefit from a therapeutic approach modulating IL-13. PODCAST This article has an associated podcast which can be accessed at https://academic.oup.com/ecco-jcc/pages/podcast.
Collapse
Affiliation(s)
- Alessia Butera
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, Rome, Italy
| | - Monica Di Paola
- Department of Biology, University of Florence, Firenze, Italy
| | - Francesco Vitali
- Institute of Agricultural Biology and Biotechnology, National Research Council, Pisa, Italy
| | | | - Francesco Covotta
- University "Sapienza", Dept General Surgery, "P. Stefanini", Rome, Italy
| | | | - Roberta Pica
- Sandro Pertini Hospital, IBD, GE Unit, Rome, Italy
| | - Carlotta De Filippo
- Institute of Agricultural Biology and Biotechnology, National Research Council, Pisa, Italy
| | | | | | - Annamaria Pronio
- University "Sapienza", Dept General Surgery, "P. Stefanini", Rome, Italy
| | - Monica Boirivant
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, Rome, Italy
| |
Collapse
|
48
|
Qin Z, Wang PY, Wan JJ, Zhang Y, Wei J, Sun Y, Liu X. MicroRNA124-IL6R Mediates the Effect of Nicotine in Inflammatory Bowel Disease by Shifting Th1/Th2 Balance Toward Th1. Front Immunol 2020; 11:235. [PMID: 32153570 PMCID: PMC7050625 DOI: 10.3389/fimmu.2020.00235] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/28/2020] [Indexed: 12/20/2022] Open
Abstract
Epidemiological investigations have shown that smoking ameliorates ulcerative colitis (UC) but exacerbates Crohn's disease (CD), diseases that feature a Th2-mediated and Th1-mediated response, respectively. Cigarette extracts, especially nicotine, affect the Th1/Th2 balance. We previously reported that nicotine protects against mouse DSS colitis (similar to UC) by enhancing microRNA-124 (miR-124) expression. Intriguingly, elevation of miR-124 in CD is reported to aggravate the disease. Here we investigate the dual regulation of miR-124 in inflammatory bowel diseases (IBDs), which may explain the similar bidirectional regulation of tobacco. We found that overexpressed miR-124 protected against mouse DSS-induced colitis with a Th1 polarization in peripheral blood lymphocytes and colon tissues, which was also found in human peripheral blood lymphocytes. Conversely, miR-124 knockdown worsened DSS murine colitis with a Th2 polarization. Moreover, knockdown of miR-124 could eliminate the polarization toward Th1 after nicotine treatment, suggesting that miR-124 mediates the effect of nicotine on the Th1/Th2 balance. In addition, interference of IL-6R, which is a downstream target of miR-124, could remarkably weaken the Th1 polarization induced by miR-124. Taken together, these results suggest that nicotine shifts the balance of Th1/Th2 toward Th1 via a miR-124-mediated IL-6R pathway, which might explain its dual role in IBDs.
Collapse
Affiliation(s)
- Zhen Qin
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Peng-Yuan Wang
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China.,Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Jing-Jing Wan
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China.,Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Yu Zhang
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China.,Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Jie Wei
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Yang Sun
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Xia Liu
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
49
|
Tindemans I, Joosse ME, Samsom JN. Dissecting the Heterogeneity in T-Cell Mediated Inflammation in IBD. Cells 2020; 9:E110. [PMID: 31906479 PMCID: PMC7016883 DOI: 10.3390/cells9010110] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/20/2019] [Accepted: 12/26/2019] [Indexed: 12/12/2022] Open
Abstract
Infiltration of the lamina propria by inflammatory CD4+ T-cell populations is a key characteristic of chronic intestinal inflammation. Memory-phenotype CD4+ T-cell frequencies are increased in inflamed intestinal tissue of IBD patients compared to tissue of healthy controls and are associated with disease flares and a more complicated disease course. Therefore, a tightly controlled balance between regulatory and inflammatory CD4+ T-cell populations is crucial to prevent uncontrolled CD4+ T-cell responses and subsequent intestinal tissue damage. While at steady state, T-cells display mainly a regulatory phenotype, increased in Th1, Th2, Th9, Th17, and Th17.1 responses, and reduced Treg and Tr1 responses have all been suggested to play a role in IBD pathophysiology. However, it is highly unlikely that all these responses are altered in each individual patient. With the rapidly expanding plethora of therapeutic options to inhibit inflammatory T-cell responses and stimulate regulatory T-cell responses, a crucial need is emerging for a robust set of immunological assays to predict and monitor therapeutic success at an individual level. Consequently, it is crucial to differentiate dominant inflammatory and regulatory CD4+ T helper responses in patients and relate these to disease course and therapy response. In this review, we provide an overview of how intestinal CD4+ T-cell responses arise, discuss the main phenotypes of CD4+ T helper responses, and review how they are implicated in IBD.
Collapse
Affiliation(s)
| | | | - Janneke N. Samsom
- Laboratory of Pediatrics, Division Gastroenterology and Nutrition, Erasmus MC-Sophia Children’s Hospital, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
50
|
Singh SP, Chand HS, Banerjee S, Agarwal H, Raizada V, Roy S, Sopori M. Acetylcholinesterase Inhibitor Pyridostigmine Bromide Attenuates Gut Pathology and Bacterial Dysbiosis in a Murine Model of Ulcerative Colitis. Dig Dis Sci 2020; 65:141-149. [PMID: 31643033 PMCID: PMC6943409 DOI: 10.1007/s10620-019-05838-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 09/10/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Ulcerative colitis (UC) is a Th2 inflammatory bowel disease characterized by increased IL-5 and IL-13 expression, eosinophilic/neutrophilic infiltration, decreased mucus production, impaired epithelial barrier, and bacterial dysbiosis of the colon. Acetylcholine and nicotine stimulate mucus production and suppress Th2 inflammation through nicotinic receptors in lungs but UC is rarely observed in smokers and the mechanism of the protection is unclear. METHODS In order to evaluate whether acetylcholine can ameliorate UC-associated pathologies, we employed a mouse model of dextran sodium sulfate (DSS)-induced UC-like conditions, and a group of mice were treated with Pyridostigmine bromide (PB) to increase acetylcholine availability. The effects on colonic tissue morphology, Th2 inflammatory factors, MUC2 mucin, and gut microbiota were analyzed. RESULTS DSS challenge damaged the murine colonic architecture, reduced the MUC2 mucin and the tight-junction protein ZO-1. The PB treatment significantly attenuated these DSS-induced responses along with the eosinophilic infiltration and the pro-Th2 inflammatory factors. Moreover, PB inhibited the DSS-induced loss of commensal Clostridia and Flavobacteria, and the gain of pathogenic Erysipelotrichia and Fusobacteria. CONCLUSIONS Together, these data suggest that in colons of a murine model, PB promotes MUC2 synthesis, suppresses Th2 inflammation and attenuates bacterial dysbiosis therefore, PB has a therapeutic potential in UC.
Collapse
Affiliation(s)
- Shashi P Singh
- Lovelace Respiratory Research Institute, 2425 Ridgecrest Dr SE, Albuquerque, NM, 87108, USA
| | - Hitendra S Chand
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Santanu Banerjee
- Department of Surgery and Sylvester Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33101, USA
| | - Hemant Agarwal
- University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Veena Raizada
- University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Sabita Roy
- Department of Surgery and Sylvester Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33101, USA
| | - Mohan Sopori
- Lovelace Respiratory Research Institute, 2425 Ridgecrest Dr SE, Albuquerque, NM, 87108, USA.
| |
Collapse
|