1
|
Lu M, Li W, Zhou J, Shang J, Lin L, Liu Y, Zhu X. Integrative bioinformatics analysis for identifying the mitochondrial-related gene signature associated with immune infiltration in premature ovarian insufficiency. BMC Med 2024; 22:444. [PMID: 39379953 PMCID: PMC11462806 DOI: 10.1186/s12916-024-03675-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Premature ovarian insufficiency (POI) is a reproductive disorder characterized by the cessation of ovarian function before the age of 40. Although mitochondrial dysfunction and immune disorders are believed to contribute to ovarian damage in POI, the interplay between these factors remains understudied. METHODS In this research, transcriptomic data related to POI were obtained from the NCBI GEO database. Hub biomarkers were identified through the construction of a protein‒protein interaction (PPI) network and further validated using RT‒qPCR and Western blot. Moreover, their expression across various cell types was elucidated via single-cell RNA sequencing analysis. A comprehensive investigation of the mitochondrial and immune profiles of POI was carried out through correlation analysis. Furthermore, potential therapeutic agents were predicted utilizing the cMap database. RESULTS A total of 119 mitochondria-related differentially expressed genes (MitoDEGs) were identified and shown to be significantly enriched in metabolic pathways. Among these genes, Hadhb, Cpt1a, Mrpl12, and Mrps7 were confirmed both in a POI model and in human granulosa cells (GCs), where they were found to accumulate in GCs and theca cells. Immune analysis revealed variations in macrophages, monocytes, and 15 other immune cell types between the POI and control groups. Notably, strong correlations were observed between seven hub-MitoDEGs (Hadhb, Cpt1a, Cpt2, Mrpl12, Mrps7, Mrpl51, and Eci1) and various functions, such as mitochondrial respiratory complexes, dynamics, mitophagy, mitochondrial metabolism, immune-related genes, and immunocytes. Additionally, nine potential drugs (calyculin, amodiaquine, eudesmic acid, cefotaxime, BX-912, prostratin, SCH-79797, HU-211, and pizotifen) targeting key genes were identified. CONCLUSIONS Our results highlight the crosstalk between mitochondrial function and the immune response in the development of POI. The identification of MitoDEGs could lead to reliable biomarkers for the early diagnosis, monitoring, and personalized treatment of POI.
Collapse
Affiliation(s)
- Minjun Lu
- Department of Reproductive Medical Center, Fourth Affiliated Hospital of Jiangsu University (Zhenjiang Maternity and Child Health Care Hospital), No. 20 Zhengdong Road, Zhenjiang, 212001, China
- Department of Central Laboratory, Fourth Affiliated Hospital of Jiangsu University (Zhenjiang Maternity and Child Health Care Hospital), No. 20 Zhengdong Road, Zhenjiang, 212001, China
| | - Wenxin Li
- Department of Reproductive Medical Center, Fourth Affiliated Hospital of Jiangsu University (Zhenjiang Maternity and Child Health Care Hospital), No. 20 Zhengdong Road, Zhenjiang, 212001, China
- Department of Central Laboratory, Fourth Affiliated Hospital of Jiangsu University (Zhenjiang Maternity and Child Health Care Hospital), No. 20 Zhengdong Road, Zhenjiang, 212001, China
| | - Jiamin Zhou
- Department of Reproductive Medical Center, Fourth Affiliated Hospital of Jiangsu University (Zhenjiang Maternity and Child Health Care Hospital), No. 20 Zhengdong Road, Zhenjiang, 212001, China
- Department of Central Laboratory, Fourth Affiliated Hospital of Jiangsu University (Zhenjiang Maternity and Child Health Care Hospital), No. 20 Zhengdong Road, Zhenjiang, 212001, China
| | - Junyu Shang
- Department of Reproductive Medical Center, Fourth Affiliated Hospital of Jiangsu University (Zhenjiang Maternity and Child Health Care Hospital), No. 20 Zhengdong Road, Zhenjiang, 212001, China
- Department of Central Laboratory, Fourth Affiliated Hospital of Jiangsu University (Zhenjiang Maternity and Child Health Care Hospital), No. 20 Zhengdong Road, Zhenjiang, 212001, China
| | - Li Lin
- Department of Reproductive Medical Center, Fourth Affiliated Hospital of Jiangsu University (Zhenjiang Maternity and Child Health Care Hospital), No. 20 Zhengdong Road, Zhenjiang, 212001, China
- Department of Central Laboratory, Fourth Affiliated Hospital of Jiangsu University (Zhenjiang Maternity and Child Health Care Hospital), No. 20 Zhengdong Road, Zhenjiang, 212001, China
| | - Yueqin Liu
- Department of Reproductive Medical Center, Fourth Affiliated Hospital of Jiangsu University (Zhenjiang Maternity and Child Health Care Hospital), No. 20 Zhengdong Road, Zhenjiang, 212001, China
| | - Xiaolan Zhu
- Department of Reproductive Medical Center, Fourth Affiliated Hospital of Jiangsu University (Zhenjiang Maternity and Child Health Care Hospital), No. 20 Zhengdong Road, Zhenjiang, 212001, China.
| |
Collapse
|
2
|
Zhang M, Gou Z, Qu Y, Su X. The indispensability of methyltransferase-like 3 in the immune system: from maintaining homeostasis to driving function. Front Immunol 2024; 15:1456891. [PMID: 39416774 PMCID: PMC11479892 DOI: 10.3389/fimmu.2024.1456891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
Methyltransferase-like 3(METTL3), recognized as the primary N6-methyladenosine methyltransferase, influences cellular functions such as proliferation, migration, invasion, differentiation, and fate determination by regulating gene expression post-transcriptionally. Recent studies have highlighted the indispensability of METTL3 in various immune cells such as hematopoietic stem/progenitor cells, innate immune cells (monocytes, macrophages, dendritic cells), and adaptive immune cells (thymic epithelial cell, T cells, natural killer cells). However, a comprehensive summary and analysis of these findings to elucidate the relationship between METTL3 and the immune system is yet to be undertaken. Therefore, in this review, we systematically collate reports detailing the mechanism underlying the role of METTL3 in regulating various immune processes and examine the modification of METTL3 and its potential implications. This review suggests that METTL3 plays an essential role in the immune system, ranging from maintaining homeostasis to regulating functions. Collectively, this review provides a comprehensive analysis of the relationship between METTL3 and the immune system, serving convenient researchers to understand the frontiers of immunological research and facilitate future clinical applications.
Collapse
Affiliation(s)
- Mingfu Zhang
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Zhixian Gou
- Department of Pediatrics, School of Clinical Medicine & the First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yi Qu
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
- National Health Commission Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Xiaojuan Su
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
- National Health Commission Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Yang L, Fu MF, Wang HY, Sun H. Research Advancements in the Interplay between T3 and Macrophages. Curr Med Sci 2024; 44:883-889. [PMID: 39446284 DOI: 10.1007/s11596-024-2935-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 09/03/2024] [Indexed: 10/25/2024]
Abstract
3,3',5-Triiodo-L-thyronine (T3) is a key endocrine hormone in the human body that plays crucial roles in growth, development, metabolism, and immune function. Macrophages, the key regulatory cells within the immune system, exhibit marked "heterogeneity" and "plasticity", with their phenotype and function subject to modulation by local environmental signals. The interplay between the endocrine and immune systems is well documented. Numerous studies have shown that T3 significantly target macrophages, highlighting them as key cellular components in this interaction. Through the regulation of macrophage function and phenotype, T3 influences immune function and tissue repair in the body. This review comprehensively summarizes the regulatory actions and mechanisms of T3 on macrophages, offering valuable insights into further research of the immunoregulatory effects of T3.
Collapse
Affiliation(s)
- Liu Yang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, 430022, China
| | - Meng-Fei Fu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, 430022, China
| | - Han-Yu Wang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, 430022, China
| | - Hui Sun
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, 430022, China.
| |
Collapse
|
4
|
Ozcan L, Polat EC, Baran C, Boylu A, Culha MG, Erkoc M, Danis E, Bozkurt M, Otunctemur A. Is there an association between a high monocyte/high-density lipoprotein cholesterol ratio and recurrence of urethral stricture after internal urethrotomy? THE FRENCH JOURNAL OF UROLOGY 2024; 34:102670. [PMID: 38909783 DOI: 10.1016/j.fjurol.2024.102670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/06/2024] [Accepted: 06/19/2024] [Indexed: 06/25/2024]
Abstract
INTRODUCTION Internal urethrotomy (IU) has been the most commonly used procedure for the treatment of urethral strictures (US) since it was described by Scahse in 1974. Although simple to perform and associated with a short recovery time, the main disadvantage is the high recurrence rate of stenosis. At present, there are no markers available for the prediction of recurrence after IU. The aim of this study was to evaluate the correlation between MHR and recurrence rates. METHODS The data of a total of 250 male patients who underwent IU for the first time for bulbar urethral stricture less than 2cm in our hospital between January 2011 and January 2019 were retrospectively analysed. The MHR was calculated as the ratio of monocytes to HDL-C. RESULTS In all, 78 patients experienced a recurrence while the remaining 177 did not. The stricture recurrence rate was recorded as 31.2% at the 3-year follow-up. There was a statistically significant difference in stricture length and MHR (P=0.015 and 0.001 respectively). MHR was high in the recurrent group. As a result of the Chi-square test, the positive predictive values (PPV) and negative predictive values (NPV) were 65.3% and 89.7%, respectively. ROC analysis was used to determine the optimal cut-off value. The cut-off value was found to be 1.72. CONCLUSION In our opinion, a high MHR may indicate the presence of immune inflammation and it can be used as a prognostic factor for stricture recurrence after IU. LEVEL OF EVIDENCE: 3
Collapse
Affiliation(s)
- Levent Ozcan
- University of Health Sciences, Prof. Dr. Cemil Tascioglu City Hospital, Department of Urology, Istanbul, Turkey.
| | - Emre Can Polat
- University of Health Sciences, Prof. Dr. Cemil Tascioglu City Hospital, Department of Urology, Istanbul, Turkey
| | - Caner Baran
- University of Health Sciences, Prof. Dr. Cemil Tascioglu City Hospital, Department of Urology, Istanbul, Turkey
| | - Ahmet Boylu
- University of Health Sciences, Prof. Dr. Cemil Tascioglu City Hospital, Department of Urology, Istanbul, Turkey
| | - Mehmet Gokhan Culha
- University of Health Sciences, Prof. Dr. Cemil Tascioglu City Hospital, Department of Urology, Istanbul, Turkey
| | - Mustafa Erkoc
- University of Health Sciences, Prof. Dr. Cemil Tascioglu City Hospital, Department of Urology, Istanbul, Turkey
| | - Eyyup Danis
- University of Health Sciences, Prof. Dr. Cemil Tascioglu City Hospital, Department of Urology, Istanbul, Turkey
| | - Muammer Bozkurt
- University of Health Sciences, Prof. Dr. Cemil Tascioglu City Hospital, Department of Urology, Istanbul, Turkey
| | - Alper Otunctemur
- University of Health Sciences, Prof. Dr. Cemil Tascioglu City Hospital, Department of Urology, Istanbul, Turkey
| |
Collapse
|
5
|
Choi YJ, Park JH, Cho S, Park H, Kim S, Kwon E, Cho HI, Nah EH. Reference intervals of cell population data parameters in Sysmex XN-Series and its patterns of changes from early adulthood to geriatric ages in South Korea. Int J Lab Hematol 2024; 46:466-473. [PMID: 38263481 DOI: 10.1111/ijlh.14231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/05/2024] [Indexed: 01/25/2024]
Abstract
INTRODUCTION Cell population data (CPD) parameters may be putative biomarkers for the screening of various diseases including some infections and myelodysplastic syndrome. This study aimed to establish the age- and sex-specific reference intervals (RIs) for the CPD parameters in the Korean population. METHODS The reference population for the RIs of CPD parameters comprised 124 856 subjects aged 20-99 years. CPD parameters were obtained from Sysmex XN-2000 (Kobe, Japan) datasets from 17 health promotion centers in 13 South Korean cities. We determined significant partitions for age and sex, and calculated RIs according to Clinical and Laboratory Standards Institute C28-A3 guidelines. RESULTS The side scattered light intensity in the neutrophil area and the lymphocyte area did not require sex-related partitioning except in those over the age of 50, among whom the lower limit (LL) and upper limit (UL) were lower in females. However, the side scattered light distribution width in the lymphocyte area required age- and sex-related partitioning, in which LL and UL were higher in females. The LL and UL of the fluorescent light distribution width were higher in males in the neutrophil area and higher in females in the lymphocyte area, but age-related partitioning was not required. The forward scattered light intensity in the neutrophil area, lymphocyte area, and monocyte area did not require age-related partitioning in males. CONCLUSION This study has determined comprehensive age- and sex-specific RIs for CPD parameters, which could help to prove the clinical significance of these parameters in the Sysmex XN-2000.
Collapse
Affiliation(s)
- Yong Jun Choi
- Department of Laboratory Medicine, Chonnam National University Hwasun Hospital, Hwasun, South Korea
| | - Ju-Heon Park
- Department of Laboratory Medicine, Chonnam National University Hwasun Hospital, Hwasun, South Korea
| | - Seon Cho
- Health Promotion Research Institute, Korea Association of Health Promotion, Seoul, South Korea
| | - Hyeran Park
- Health Promotion Research Institute, Korea Association of Health Promotion, Seoul, South Korea
| | - Suyoung Kim
- Health Promotion Research Institute, Korea Association of Health Promotion, Seoul, South Korea
| | - Eunjoo Kwon
- Health Promotion Research Institute, Korea Association of Health Promotion, Seoul, South Korea
| | - Han-Ik Cho
- MEDIcheck LAB, Korea Association of Health Promotion, Seoul, South Korea
| | - Eun-Hee Nah
- Department of Laboratory Medicine, Chonnam National University Hwasun Hospital, Hwasun, South Korea
| |
Collapse
|
6
|
Liu M, Gong Y, Lin M, Ma Q. Comprehensive analysis of juvenile idiopathic arthritis patients' immune characteristics based on bulk and single-cell sequencing data. Front Mol Biosci 2024; 11:1359235. [PMID: 38751447 PMCID: PMC11094213 DOI: 10.3389/fmolb.2024.1359235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/21/2024] [Indexed: 05/18/2024] Open
Abstract
Background The pathogenesis of juvenile idiopathic arthritis (JIA) is strongly influenced by an impaired immune system. However, the molecular mechanisms underlying its development and progression have not been elucidated. In this study, the computational methods TRUST4 were used to construct a T-cell receptor (TCR) and B-cell receptor (BCR) repertoire from the peripheral blood of JIA patients via bulk RNA-seq data, after which the clonality and diversity of the immune repertoire were analyzed. Results Our findings revealed significant differences in the frequency of clonotypes between the JIA and healthy control groups in terms of the TCR and BCR repertoires. This work identified specific V genes and J genes in TCRs and BCRs that could be used to expand our understanding of JIA. After single-cell RNA analysis, the relative percentages of CD14 monocytes were significantly greater in the JIA group. Cell-cell communication analysis revealed the significant role of the MIF signaling pathway in JIA. Conclusion In conclusion, this work describes the immune features of both the TCR and BCR repertoires under JIA conditions and provides novel insight into immunotherapy for JIA.
Collapse
|
7
|
Zou Y, Sun X, Wang Y, Wang Y, Ye X, Tu J, Yu R, Huang P. Integrating single-cell RNA sequencing data to genome-wide association analysis data identifies significant cell types in influenza A virus infection and COVID-19. Brief Funct Genomics 2024; 23:110-117. [PMID: 37340787 DOI: 10.1093/bfgp/elad025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 02/23/2023] [Accepted: 06/01/2023] [Indexed: 06/22/2023] Open
Abstract
With the global pandemic of COVID-19, the research on influenza virus has entered a new stage, but it is difficult to elucidate the pathogenesis of influenza disease. Genome-wide association studies (GWASs) have greatly shed light on the role of host genetic background in influenza pathogenesis and prognosis, whereas single-cell RNA sequencing (scRNA-seq) has enabled unprecedented resolution of cellular diversity and in vivo following influenza disease. Here, we performed a comprehensive analysis of influenza GWAS and scRNA-seq data to reveal cell types associated with influenza disease and provide clues to understanding pathogenesis. We downloaded two GWAS summary data, two scRNA-seq data on influenza disease. After defining cell types for each scRNA-seq data, we used RolyPoly and LDSC-cts to integrate GWAS and scRNA-seq. Furthermore, we analyzed scRNA-seq data from the peripheral blood mononuclear cells (PBMCs) of a healthy population to validate and compare our results. After processing the scRNA-seq data, we obtained approximately 70 000 cells and identified up to 13 cell types. For the European population analysis, we determined an association between neutrophils and influenza disease. For the East Asian population analysis, we identified an association between monocytes and influenza disease. In addition, we also identified monocytes as a significantly related cell type in a dataset of healthy human PBMCs. In this comprehensive analysis, we identified neutrophils and monocytes as influenza disease-associated cell types. More attention and validation should be given in future studies.
Collapse
Affiliation(s)
- Yixin Zou
- Department of Epidemiology, National Vaccine Innovation Platform, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xifang Sun
- Department of Mathematics, School of Science, Xi'an Shiyou University, Xi'an, China
| | - Yifan Wang
- Department of Infectious Disease, Jurong Hospital Affiliated to Jiangsu University, Jurong, China
| | - Yidi Wang
- Department of Epidemiology, National Vaccine Innovation Platform, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xiangyu Ye
- Department of Epidemiology, National Vaccine Innovation Platform, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Junlan Tu
- Department of Epidemiology, National Vaccine Innovation Platform, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Rongbin Yu
- Department of Epidemiology, National Vaccine Innovation Platform, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Peng Huang
- Department of Epidemiology, National Vaccine Innovation Platform, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Liu Y, Wang R, Zhong S, Qian L, Wang D. Monocyte distribution width as an early predictor of short-term outcome in adult patients with sepsis. Clin Chem Lab Med 2024; 62:562-571. [PMID: 37815315 DOI: 10.1515/cclm-2023-0577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/10/2023] [Indexed: 10/11/2023]
Abstract
OBJECTIVES Monocyte distribution width (MDW) is a quantitative measurement of monocyte anisocytosis and has been proposed as an efficient marker for early sepsis detection. This study aimed to assess the prognostic potential of MDW in septic patients. METHODS In this study, a total of 252 adult septic patients were enrolled. Demographic, clinical, and laboratory finding including MDW and traditional inflammatory biomarkers detected at three time points (day 1, day 3 and day 6) after admission were collected and compared between 28-day survivors and non-survivors. Receiver operating characteristic (ROC) curves, Kaplan-Meier survival curve and Cox regression analyses were performed to assess and compare their predictive values. Group-based trajectory modeling was applied to identify MDW trajectory endotypes. Basic characteristics and 28-day outcomes were compared between the trajectories. RESULTS ROC curve analysis showed that MDW levels measured on day 3 after admission (D3-MDW) had moderate prognostic value and was independently associated with 28-day mortality in patients with sepsis. A D3-MDW value of 26.20 allowed discrimination between survivors and non-survivors with a sensitivity of 77.8 % and a specificity of 67.6 %. However, the prognostic accuracy of D3-MDW was diminished in immune-compromised patients and patients who already received antibiotics before admission. Group-based trajectory modeling indicated that excessively elevated and delayed decreased MDW levels during the first week after admission inversely correlated with prognosis. CONCLUSIONS MDW values detected on day 3 after admission and its kinetic change might be potential markers for predicting short-term outcome in adult septic patients.
Collapse
Affiliation(s)
- Yin Liu
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Ruizhi Wang
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Shihua Zhong
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Liu Qian
- Department of Medical Affair, Danaher Diagnostic Platform, Shanghai, P.R. China
| | - Dong Wang
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
- Department of Laboratory Medicine, Guangxi Hospital Division of the First Affiliated Hospital, Sun Yat-Sen University, Nanning, P.R. China
| |
Collapse
|
9
|
Wolff CM, Singer D, Schmidt A, Bekeschus S. Immune and inflammatory responses of human macrophages, dendritic cells, and T-cells in presence of micro- and nanoplastic of different types and sizes. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132194. [PMID: 37572607 DOI: 10.1016/j.jhazmat.2023.132194] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/21/2023] [Accepted: 07/29/2023] [Indexed: 08/14/2023]
Abstract
Environmental pollution by microplastics (MPs) is a growing concern regarding their impact on aquatic and terrestrial systems and human health. Typical exposure routes of MPs are dermal contact, digestion, and inhalation. Recent in vitro and in vivo studies observed alterations in immunity after MPs exposure, but systemic studies using primary human immune cells are scarce. In our investigation, we addressed the effect of polystyrene (PS) and poly methyl methacrylate (PMMA) in three different sizes (50-1100 nm) as well as amino-modified PS (PS-NH2; 50 nm) on cells of the adaptive and innate immune system. T-cells isolated from human peripheral blood mononuclear cells (PBMCs) were least affected regarding the cytotoxicity but displayed increased activation marker expression after 72 h, and strongly modulated cytokine secretion patterns. Conversely, phagocytic dendritic cells and macrophages derived from isolated monocytes were highly sensitive to pristine MPs. Their marker expression suggested a downregulation of the inflammatory phenotypes indicative of M2 macrophage induction after MPs exposure for 24 h. Our results showed that even pristine MPs affected immune cell function and inflammatory phenotype dependent on MPs polymers, size, and immune cell type.
Collapse
Affiliation(s)
- Christina M Wolff
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Debora Singer
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Anke Schmidt
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057 Rostock, Germany.
| |
Collapse
|
10
|
Hernandez Pichardo A, Wilm B, Liptrott NJ, Murray P. Intravenous Administration of Human Umbilical Cord Mesenchymal Stromal Cells Leads to an Inflammatory Response in the Lung. Stem Cells Int 2023; 2023:7397819. [PMID: 37705699 PMCID: PMC10497368 DOI: 10.1155/2023/7397819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 06/25/2023] [Accepted: 08/04/2023] [Indexed: 09/15/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) administered intravenously (IV) have shown efficacy in preclinical models of various diseases. This is despite the cells not reaching the site of injury due to entrapment in the lungs. The immunomodulatory properties of MSCs are thought to underlie their therapeutic effects, irrespective of whether they are sourced from bone marrow, adipose tissue, or umbilical cord. To better understand how MSCs affect innate immune cell populations in the lung, we evaluated the distribution and phenotype of neutrophils, monocytes, and macrophages by flow cytometry and histological analyses after delivering human umbilical cord-derived MSCs (hUC-MSCs) IV into immunocompetent mice. After 2 hr, we observed a significant increase in neutrophils, and proinflammatory monocytes and macrophages. Moreover, these immune cells localized in close proximity to the MSCs, suggesting an active role in their clearance. By 24 hr, we detected an increase in anti-inflammatory monocytes and macrophages. These results suggest that the IV injection of hUC-MSCs leads to an initial inflammatory phase in the lung shortly after injection, followed by a resolution phase 24 hr later.
Collapse
Affiliation(s)
- Alejandra Hernandez Pichardo
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- Centre for Pre-Clinical Imaging, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Bettina Wilm
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- Centre for Pre-Clinical Imaging, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Neill J. Liptrott
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Patricia Murray
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- Centre for Pre-Clinical Imaging, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
11
|
Chang YH, Hsiao CT, Chang YC, Lai HY, Lin HH, Chen CC, Hsu LC, Wu SY, Shih HM, Hsueh PR, Cho DY. Machine learning of cell population data, complete blood count, and differential count parameters for early prediction of bacteremia among adult patients with suspected bacterial infections and blood culture sampling in emergency departments. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:782-792. [PMID: 37244761 DOI: 10.1016/j.jmii.2023.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/06/2023] [Accepted: 05/06/2023] [Indexed: 05/29/2023]
Abstract
BACKGROUND Bacteremia is a life-threatening complication of infectious diseases. Bacteremia can be predicted using machine learning (ML) models, but these models have not utilized cell population data (CPD). METHODS The derivation cohort from emergency department (ED) of China Medical University Hospital (CMUH) was used to develop the model and was prospectively validated in the same hospital. External validation was performed using cohorts from ED of Wei-Gong Memorial Hospital (WMH) and Tainan Municipal An-Nan Hospital (ANH). Adult patients who underwent complete blood count (CBC), differential count (DC), and blood culture tests were enrolled in the present study. The ML model was developed using CBC, DC, and CPD to predict bacteremia from positive blood cultures obtained within 4 h before or after the acquisition of CBC/DC blood samples. RESULTS This study included 20,636 patients from CMUH, 664 from WMH, and 1622 patients from ANH. Another 3143 patients were included in the prospective validation cohort of CMUH. The CatBoost model achieved an area under the receiver operating characteristic curve of 0.844 in the derivation cross-validation, 0.812 in the prospective validation, 0.844 in the WMH external validation, and 0.847 in the ANH external validation. The most valuable predictors of bacteremia in the CatBoost model were the mean conductivity of lymphocytes, nucleated red blood cell count, mean conductivity of monocytes, and neutrophil-to-lymphocyte ratio. CONCLUSIONS ML model that incorporated CBC, DC, and CPD showed excellent performance in predicting bacteremia among adult patients with suspected bacterial infections and blood culture sampling in emergency departments.
Collapse
Affiliation(s)
- Yu-Hsin Chang
- Department of Emergency Medicine, China Medical University Hospital, Taichung, Taiwan; School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Chiung-Tzu Hsiao
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Chang Chang
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Hsin-Yu Lai
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Hsiu-Hsien Lin
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chien-Chih Chen
- Department of Laboratory, Wei-Gong Memorial Hospital, Miaoli City, Taiwan
| | - Lin-Chen Hsu
- Department of Laboratory, An-Nan Hospital, China Medical University, Tainan, Taiwan
| | - Shih-Yun Wu
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hong-Mo Shih
- Department of Emergency Medicine, China Medical University Hospital, Taichung, Taiwan; School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan; Department of Public Health, China Medical University, Taichung, Taiwan.
| | - Po-Ren Hsueh
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan; Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan; Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| | - Der-Yang Cho
- Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
12
|
Montgomery AB, Chen SY, Wang Y, Gadhvi G, Mayr MG, Cuda CM, Dominguez S, Moradeke Makinde HK, Gurra MG, Misharin AV, Mandelin AM, Ruderman EM, Thakrar A, Brar S, Carns M, Aren K, Akbarpour M, Filer A, Nayar S, Teososio A, Major T, Bharat A, Budinger GRS, Winter DR, Perlman H. Tissue-resident, extravascular Ly6c - monocytes are critical for inflammation in the synovium. Cell Rep 2023; 42:112513. [PMID: 37204925 PMCID: PMC10697497 DOI: 10.1016/j.celrep.2023.112513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 02/17/2022] [Accepted: 05/01/2023] [Indexed: 05/21/2023] Open
Abstract
Monocytes are abundant immune cells that infiltrate inflamed organs. However, the majority of monocyte studies focus on circulating cells, rather than those in tissue. Here, we identify and characterize an intravascular synovial monocyte population resembling circulating non-classical monocytes and an extravascular tissue-resident monocyte-lineage cell (TR-MC) population distinct in surface marker and transcriptional profile from circulating monocytes, dendritic cells, and tissue macrophages that are conserved in rheumatoid arthritis (RA) patients. TR-MCs are independent of NR4A1 and CCR2, long lived, and embryonically derived. TR-MCs undergo increased proliferation and reverse diapedesis dependent on LFA1 in response to arthrogenic stimuli and are required for the development of RA-like disease. Moreover, pathways that are activated in TR-MCs at the peak of arthritis overlap with those that are downregulated in LFA1-/- TR-MCs. These findings show a facet of mononuclear cell biology that could be imperative to understanding tissue-resident myeloid cell function in RA.
Collapse
Affiliation(s)
- Anna B Montgomery
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, Chicago, IL 60611, USA
| | - Shang Yang Chen
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, Chicago, IL 60611, USA
| | - Yidan Wang
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, Chicago, IL 60611, USA
| | - Gaurav Gadhvi
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, Chicago, IL 60611, USA
| | - Maximilian G Mayr
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, Chicago, IL 60611, USA
| | - Carla M Cuda
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, Chicago, IL 60611, USA
| | - Salina Dominguez
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, Chicago, IL 60611, USA
| | - Hadijat-Kubura Moradeke Makinde
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, Chicago, IL 60611, USA
| | - Miranda G Gurra
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, Chicago, IL 60611, USA
| | - Alexander V Misharin
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Pulmonary and Critical Care, Chicago, IL 60611, USA
| | - Arthur M Mandelin
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, Chicago, IL 60611, USA
| | - Eric M Ruderman
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, Chicago, IL 60611, USA
| | - Anjali Thakrar
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, Chicago, IL 60611, USA
| | - Simran Brar
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, Chicago, IL 60611, USA
| | - Mary Carns
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, Chicago, IL 60611, USA
| | - Kathleen Aren
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, Chicago, IL 60611, USA
| | - Mahzad Akbarpour
- Northwestern University, Feinberg School of Medicine, Division of Thoracic Surgery, Chicago, IL 60611, USA
| | - Andrew Filer
- Rheumatology Research Group, Institute of Inflammation and Ageing, College of Medical & Dental Sciences, University of Birmingham, Birmingham, UK; National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK; Birmingham Tissue Analytics, Institute of Translational Medicine, University of Birmingham, Birmingham, UK
| | - Saba Nayar
- Rheumatology Research Group, Institute of Inflammation and Ageing, College of Medical & Dental Sciences, University of Birmingham, Birmingham, UK; National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK; Birmingham Tissue Analytics, Institute of Translational Medicine, University of Birmingham, Birmingham, UK
| | - Ana Teososio
- Birmingham Tissue Analytics, Institute of Translational Medicine, University of Birmingham, Birmingham, UK
| | - Triin Major
- Birmingham Tissue Analytics, Institute of Translational Medicine, University of Birmingham, Birmingham, UK
| | - Ankit Bharat
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Pulmonary and Critical Care, Chicago, IL 60611, USA; Northwestern University, Feinberg School of Medicine, Division of Thoracic Surgery, Chicago, IL 60611, USA
| | - G R Scott Budinger
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Pulmonary and Critical Care, Chicago, IL 60611, USA
| | - Deborah R Winter
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, Chicago, IL 60611, USA.
| | - Harris Perlman
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, Chicago, IL 60611, USA.
| |
Collapse
|
13
|
Contaldi E, Magistrelli L, Comi C. Disease mechanisms as subtypes: Immune dysfunction in Parkinson's disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:67-93. [PMID: 36803824 DOI: 10.1016/b978-0-323-85555-6.00008-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
In recent years, the contraposition between inflammatory and neurodegenerative processes has been increasingly challenged. Inflammation has been emphasized as a key player in the onset and progression of Parkinson disease (PD) and other neurodegenerative disorders. The strongest indicators of the involvement of the immune system derived from evidence of microglial activation, profound imbalance in phenotype and composition of peripheral immune cells, and impaired humoral immune responses. Moreover, peripheral inflammatory mechanisms (e.g., involving the gut-brain axis) and immunogenetic factors are likely to be implicated. Even though several lines of preclinical and clinical studies are supporting and defining the complex relationship between the immune system and PD, the exact mechanisms are currently unknown. Similarly, the temporal and causal connections between innate and adaptive immune responses and neurodegeneration are unsettled, challenging our ambition to define an integrated and holistic model of the disease. Despite these difficulties, current evidence is providing the unique opportunity to develop immune-targeted approaches for PD, thus enriching our therapeutic armamentarium. This chapter aims to provide an extensive overview of past and present studies that explored the implication of the immune system in neurodegeneration, thus paving the road for the concept of disease modification in PD.
Collapse
Affiliation(s)
- Elena Contaldi
- Movement Disorders Centre, "Maggiore della Carità" University Hospital, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Luca Magistrelli
- Movement Disorders Centre, "Maggiore della Carità" University Hospital, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Cristoforo Comi
- Neurology Unit, S.Andrea Hospital, Department of Translational Medicine, University of Piemonte Orientale, Vercelli, Italy.
| |
Collapse
|
14
|
Monocyte distribution width as a pragmatic screen for SARS-CoV-2 or influenza infection. Sci Rep 2022; 12:21528. [PMID: 36513693 PMCID: PMC9745720 DOI: 10.1038/s41598-022-24978-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
Monocyte distribution width (MDW) is a novel marker of monocyte activation, which is known to occur in the immune response to viral pathogens. Our objective was to determine the performance of MDW and other leukocyte parameters as screening tests for SARS-CoV-2 and influenza infection. This was a prospective cohort analysis of adult patients who underwent complete blood count (CBC) and SARS-CoV-2 or influenza testing in an Emergency Department (ED) between January 2020 and July 2021. The primary outcome was SARS-CoV-2 or influenza infection. Secondary outcomes were measures of severity of illness including inpatient hospitalization, critical care admission, hospital lengths of stay and mortality. Descriptive statistics and test performance measures were evaluated for monocyte percentage, MDW, white blood cell (WBC) count, and neutrophil to lymphocyte ratio (NLR). 3,425 ED patient visits were included. SARS-CoV-2 testing was performed during 1,922 visits with a positivity rate of 5.4%; influenza testing was performed during 2,090 with a positivity rate of 2.3%. MDW was elevated in patients with SARS-Cov-2 (median 23.0U; IQR 20.5-25.1) or influenza (median 24.1U; IQR 22.0-26.9) infection, as compared to those without (18.9U; IQR 17.4-20.7 and 19.1U; 17.4-21, respectively, P < 0.001). Monocyte percentage, WBC and NLR values were within normal range in patients testing positive for either virus. MDW identified SARS-CoV-2 and influenza positive patients with an area under the curve (AUC) of 0.83 (95% CI 0.79-0.86) and 0.83 (95% CI 0.77-0.88), respectively. At the accepted cut-off value of 20U for MDW, sensitivities were 83.7% (95% CI 76.5-90.8%) for SARS-CoV-2 and 89.6% (95% CI 80.9-98.2%) for influenza, compared to sensitivities below 45% for monocyte percentage, WBC and NLR. MDW negative predictive values were 98.6% (95% CI 98.0-99.3%) and 99.6% (95% CI 99.3-100.0%) respectively for SARS-CoV-2 and influenza. Monocyte Distribution Width (MDW), available as part of a routine complete blood count (CBC) with differential, may be a useful indicator of SARS-CoV-2 or influenza infection.
Collapse
|
15
|
Wang Y, Li D, Zhu X, Li J, Yue C, Wu L, Zhuan Q, Dou X, Duan W. The monocyte to high-density lipoprotein cholesterol ratio is a risk factor for frequent premature ventricular complexes: a retrospective cohort study. Lipids Health Dis 2022; 21:129. [PMID: 36463190 PMCID: PMC9719165 DOI: 10.1186/s12944-022-01742-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/18/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Little is known about the link between the monocyte to high-density lipoprotein cholesterol ratio (MHR) and frequent premature ventricular complexes (PVCs). This investigation aimed to evaluate the link between the MHR and frequent PVCs in patients, as well as their outcomes, using the axis, burden, coupling interval-ventricular tachycardia (ABC-VT) risk score (ARS). METHODS Two hundred patients with frequent PVCs and 70 controls were retrospectively enrolled, and their general data were gathered. The MHR and ARS were calculated. Then, patients developing frequent PVCs were classified into a medium-/high-risk subgroup and a low-risk subgroup according to ARS. The results were evaluated employing comparative statistical analyses, Spearman's correlation, logistic regression analyses, and receiver operating characteristic (ROC) curves. RESULTS The MHR in the controls was obviously lower than that in the frequent PVC group. In addition, the MHR was the lowest in the control group and highest in the medium-/high-risk subgroup, with that of the low-risk subgroup falling in the middle. Spearman's correlation analyses showed that the MHR was positively correlated with the ARS (ρ = 0.307, P < 0.001). Ultimately, the MHR was found to be a risk factor for frequent PVCs in the multivariate analysis. In addition, an MHR cutoff point of 254.6 featured 67.50% sensitivity and 67.14% specificity for predicting frequent PVCs, and the area under the curve (AUC) reached 0.694 (95% confidence interval: 0.623-0.766) (P < 0.001). CONCLUSIONS The MHR is positively and independently correlated with frequent PVCs and can be used as a practical, cost-saving and simple biomarker of inflammation owing to its value in predicting frequent PVCs. In addition, the MHR is crucial to risk stratification and prognosis, which may give it clinical value in the prevention and management of frequent PVCs.
Collapse
Affiliation(s)
- Yunfei Wang
- Department of Cardiology, HHCH, Hefei, Anhui China
| | - Deming Li
- Department of Cardiology, HHCH, Hefei, Anhui China
| | - Xuetao Zhu
- Department of Cardiology, FAHAMU, Hefei, Anhui China
| | - Jing Li
- Department of Cardiology, HHCH, Hefei, Anhui China
| | - Cui Yue
- Department of Cardiology, HHCH, Hefei, Anhui China
| | - Ling Wu
- Department of Medical Records, HHCH, Hefei, Anhui China
| | | | - Xiaomeng Dou
- Department of Medical Records, HHCH, Hefei, Anhui China
| | - Wei Duan
- Department of Cardiology, HHCH, Hefei, Anhui China
| |
Collapse
|
16
|
Clinical Significance of Tie-2-Expressing Monocytes/Macrophages and Angiopoietins in the Progression of Ovarian Cancer-State-of-the-Art. Cells 2022; 11:cells11233851. [PMID: 36497114 PMCID: PMC9737633 DOI: 10.3390/cells11233851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Tumour growth and metastasis are specific to advanced stages of epithelial ovarian cancer (EOC). Tumour angiogenesis is an essential part of these processes. It is responsible for providing tumours with nutrients, metabolites, and cytokines and facilitates tumour and immune cell relocation. Destabilised vasculature, a distinctive feature of tumours, is also responsible for compromising drug delivery into the bulk. Angiogenesis is a complex process that largely depends on how the tumour microenvironment (TME) is composed and how a specific organ is formed. There are contrary reports on whether Tie-2-expressing monocytes/macrophages (TEMs) reported as the proangiogenic population of monocytes have any impact on tumour development. The aim of this paper is to summarise knowledge about ovarian-cancer-specific angiogenesis and the unique role of Tie-2-expressing monocytes/macrophages in this process. The significance of this cell subpopulation for the pathophysiology of EOC remains to be investigated.
Collapse
|
17
|
Paunel-Görgülü A, Conforti A, Mierau N, Zierden M, Xiong X, Wahlers T. Peptidylarginine deiminase 4 deficiency in bone marrow cells prevents plaque progression without decreasing atherogenic inflammation in apolipoprotein E-knockout mice. Front Cardiovasc Med 2022; 9:1046273. [PMID: 36465436 PMCID: PMC9709396 DOI: 10.3389/fcvm.2022.1046273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/01/2022] [Indexed: 08/30/2023] Open
Abstract
INTRODUCTION Despite multiple studies in the past, the role of peptidylarginine deiminase 4 (PAD4) in atherosclerosis is currently insufficiently understood. In this regard, PAD4 deletion or inhibition of enzymatic activity was previously reported to ameliorate disease progression and inflammation. Besides, strong influence of neutrophil extracellular traps (NETs) on atherosclerosis burden has been proposed. Here, we studied the role of PAD4 for atherogenesis and plaque progression in a mouse model of atherosclerosis. METHODS AND RESULTS Lethally irradiated ApoE -/- mice were reconstituted with ApoE -/-/Pad4 -/- bone marrow cells and fed a high-fat diet (HFD) for 4 and 10 weeks, respectively. PAD4 deficiency did not prevent the development of atherosclerotic lesions after 4 weeks of HFD. However, after 10 weeks of HFD, mice with bone marrow cells-restricted PAD4 deficiency displayed significantly reduced lesion size, impaired lipid incorporation, decreased necrotic core area and less collagen when compared to ApoE -/- bone marrow-transplanted mice as demonstrated by histological staining. Moreover, flow cytometric analysis and quantitative real-time PCR revealed different macrophage subsets in atherosclerotic lesions and higher inflammatory response in these mice, as reflected by increased content of M1-like macrophages and upregulated aortic expression of the pro-inflammatory genes CCL2 and iNOS. Notably, diminished oxLDL uptake by in vitro-polarized M1-like macrophages was evidenced when compared to M2-like cells. CONCLUSION These results suggest that pharmacological inhibition of PAD4 may impede lipid accumulation and lesion progression despite no beneficial effects on vascular inflammation.
Collapse
Affiliation(s)
- Adnana Paunel-Görgülü
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, Cologne, Germany
| | - Andreas Conforti
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, Cologne, Germany
| | - Natalia Mierau
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, Cologne, Germany
| | - Mario Zierden
- Department of Cardiology, Heart Center, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Xiaolin Xiong
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, Cologne, Germany
| | - Thorsten Wahlers
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, Cologne, Germany
| |
Collapse
|
18
|
Li Q, Cheng Y, Zhang Z, Bi Z, Ma X, Wei Y, Wei X. Inhibition of ROCK ameliorates pulmonary fibrosis by suppressing M2 macrophage polarisation through phosphorylation of STAT3. Clin Transl Med 2022; 12:e1036. [PMID: 36178087 PMCID: PMC9523675 DOI: 10.1002/ctm2.1036] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Emerging evidence provides mechanistic insights into the pathogenesis of pulmonary fibrosis (PF), and rare anti-PF therapeutic method has promising effect in its treatment. Rho-associated coiled-coil kinases (ROCK) inhibition significantly ameliorates bleomycin-induced PF and decreases macrophage infiltration, but the mechanism remains unclear. We established bleomycin and radiation-induced PF to identify the activity of WXWH0265, a newly designed unselective ROCK inhibitor in regulating macrophages. METHODS Bleomycin-induced PF was induced by intratracheal instillation and radiation-induced PF was induced by bilateral thoracic irradiation. Histopathological techniques (haematoxylin and eosin, Masson's trichrome and immunohistochemistry) and hydroxyproline were used to evaluate PF severity. Western blot, quantitative real-time reverse transcription-polymerase chain reaction and flow cytometry were performed to explore the underlying mechanisms. Bone marrow-derived macrophages (BMDMs) were used to verify their therapeutic effect. Clodronate liposomes were applied to deplete macrophages and to identify the therapeutic effect of WXWH0265. RESULTS Therapeutic administration of ROCK inhibitor ameliorates bleomycin-induced PF by inhibiting M2 macrophages polarisation. ROCK inhibitor showed no significant anti-fibrotic effect in macrophages-depleted mice. Treatment with WXWH0265 demonstrated superior protection effect in bleomycin-induced PF compared with positive drugs. In radiation-induced PF, ROCK inhibitor effectively ameliorated PF. Fibroblasts co-cultured with supernatant from various M2 macrophages phenotypes revealed that M2 macrophages stimulated by interleukin-4 promoted extracellular matrix production. Polarisation of M2 macrophages was inhibited by ROCK inhibitor treatment in vitro. The p-signal transducer and activator of transcription 3 (STAT3) in lung tissue and BMDMs was significantly decreased in PF in vivo and vitro after treated with ROCK inhibitors. CONCLUSION Inhibiting ROCK could significantly attenuate bleomycin- and radiation-induced PF by regulating the macrophages polarisation via phosphorylation of STAT3. WXWH0265 is a kind of efficient unselective ROCK inhibitor in ameliorating PF. Furthermore, the results provide empirical evidence that ROCK inhibitor, WXWH0265 is a potential drug to prevent the development of PF.
Collapse
Affiliation(s)
- Qingfang Li
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduSichuanPR China
| | - Yuan Cheng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduSichuanPR China
| | - Zhe Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduSichuanPR China
| | - Zhenfei Bi
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduSichuanPR China
| | - Xuelei Ma
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduSichuanPR China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduSichuanPR China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduSichuanPR China
| |
Collapse
|
19
|
Uranga A, Urrechaga E, Aguirre U, Intxausti M, Ruiz-Martinez C, Goicoechea MJLD, Ponga C, Quintana JM, Sancho C, Sanz P, España PP, Uranga A, Artaraz A, Ballaz A, Dorado S, Pascual S, Aguirre U, Quintana JM, Villanueva A, Mar C, Ponga C, Arriaga I, Intxausti M, Fernandez D, Benito I, Ruiz-Martinez C, Ugeda J, Sanz P, Bernardo I, España PP. Utility of Differential White Cell Count and Cell Population Data for Ruling Out COVID-19 Infection in Patients With Community-Acquired Pneumonia. Arch Bronconeumol 2022; 58:802-808. [PMID: 36243636 PMCID: PMC9489980 DOI: 10.1016/j.arbres.2022.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 11/02/2022]
Abstract
INTRODUCTION The main aim of this study was to assess the utility of differential white cell count and cell population data (CPD) for the detection of COVID-19 in patients admitted for community-acquired pneumonia (CAP) of different etiologies. METHODS This was a multicenter, observational, prospective study of adults aged ≥18 years admitted to three teaching hospitals in Spain from November 2019 to November 2021 with a diagnosis of CAP. At baseline, a Sysmex XN-20 analyzer was used to obtain detailed information related to the activation status and functional activity of white cells. RESULTS The sample was split into derivation and validation cohorts of 1065 and 717 patients, respectively. In the derivation cohort, COVID-19 was confirmed in 791 patients and ruled out in 274 patients, with mean ages of 62.13 (14.37) and 65.42 (16.62) years, respectively (p<0.001). There were significant differences in all CPD parameters except MO-Y. The multivariate prediction model showed that lower NE-X, NE-WY, LY-Z, LY-WY, MO-WX, MO-WY, and MO-Z values and neutrophil-to-lymphocyte ratio were related to COVID-19 etiology with an AUC of 0.819 (0.790, 0.846). No significant differences were found comparing this model to another including biomarkers (p=0.18). CONCLUSIONS Abnormalities in white blood cell morphology based on a few cell population data values as well as NLR were able to accurately identify COVID-19 etiology. Moreover, systemic inflammation biomarkers currently used were unable to improve the predictive ability. We conclude that new peripheral blood biomarkers can help determine the etiology of CAP fast and inexpensively.
Collapse
|
20
|
Monocytes are increased in pregnancy after gestational hypertensive disease. Sci Rep 2022; 12:10358. [PMID: 35725746 PMCID: PMC9209470 DOI: 10.1038/s41598-022-13606-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 05/25/2022] [Indexed: 11/08/2022] Open
Abstract
Monocytes derive from bone marrow and circulate in the blood. They phagocytose, produce cytokines and present antigens. Individual monocyte subsets play distinct roles in the pathogenesis of cardiovascular disease, but their implications in gestational hypertensive disease are unclear. Our objective was to examine the difference in monocyte subsets between pregnant women with or without previous hypertension in pregnancy. Women were enrolled in a prospective observational study in which monoclonal antibodies against cell surface receptors were used to detect monocytes in the peripheral blood by flow cytometry. We compared 17 pregnant women with previous hypertension in pregnancy (Group 1) and 42 pregnant women without previous gestational hypertensive disease (Group 2) with 27 healthy, non-pregnant controls (Group 3). The pregnant women were studied at 13 ± 1 weeks gestation. Monocyte subsets were quantified by flow cytometry: Mon1 (CD14++CD16-CCR2+), Mon2 (CD14++CD16+CCR2+), Mon3 (CD14+CD16+CCR2-), their aggregates with platelets and expression of the surface markers. The groups were well-matched for age, body mass index and ethnicity (P > 0.05 for all). Mon1 counts were higher in women with a history of gestational hypertension or preeclampsia compared to other groups (Group 1 = 441 per µl (376-512); Group 2 = 357 (309-457); Group 3 = 323 (277-397); P < 0.001). Mon3 was higher in both groups of pregnant women compared to non-pregnant controls (Group 1 = 51 (38-62); Group 2 = 38 (29-58); Group 3 = 26 (20-40), P = 0.002). Increased monocytes in women with a previous hypertensive pregnancy generates a hypothesis that these cells may link hypertension in pregnancy, chronic inflammation and future cardiovascular risk.
Collapse
|
21
|
Yakupova EI, Maleev GV, Krivtsov AV, Plotnikov EY. Macrophage polarization in hypoxia and ischemia/reperfusion: Insights into the role of energetic metabolism. Exp Biol Med (Maywood) 2022; 247:958-971. [PMID: 35220781 PMCID: PMC9189569 DOI: 10.1177/15353702221080130] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023] Open
Abstract
Macrophages, the key cells of innate immunity, possess wide phenotypical and functional heterogeneity. In vitro studies showed that microenvironment signals could induce the so-called polarization of macrophages into two phenotypes: classically activated macrophages (M1) or alternatively activated macrophages (M2). Functionally, they are considered as proinflammatory and anti-inflammatory/pro-regenerative, respectively. However, in vivo studies into macrophage states revealed a continuum of phenotypes from M1 to M2 state instead of the clearly distinguished extreme phenotypes. An important role in determining the type of polarization of macrophages is played by energy metabolism, including the activity of oxidative phosphorylation. In this regard, hypoxia and ischemia that affect cellular energetics can modulate macrophage polarization. Here, we overview the data on macrophage polarization during metabolic shift-associated pathologies including ischemia and ischemia/reperfusion in various organs and discuss the role of energy metabolism potentially triggering the macrophage polarization.
Collapse
Affiliation(s)
- Elmira I Yakupova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Grigoriy V Maleev
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Andrei V Krivtsov
- Center for Pediatric Cancer Therapeutics, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Egor Y Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow 117997, Russia
| |
Collapse
|
22
|
Van Deren DA, De S, Xu B, Eschenbacher KM, Zhang S, Capecchi MR. Defining the Hoxb8 cell lineage during murine definitive hematopoiesis. Development 2022; 149:dev200200. [PMID: 35452096 PMCID: PMC9124572 DOI: 10.1242/dev.200200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 04/04/2022] [Indexed: 12/02/2022]
Abstract
Previously, we have demonstrated that a subpopulation of microglia, known as Hoxb8 microglia, is derived from the Hoxb8 lineage during the second wave (E8.5) of yolk sac hematopoiesis, whereas canonical non-Hoxb8 microglia arise from the first wave (E7.5). Hoxb8 microglia have an ontogeny distinct from non-Hoxb8 microglia. Dysfunctional Hoxb8 microglia cause the acquisition of chronic anxiety and an obsessive-compulsive spectrum-like behavior, trichotillomania, in mice. The nature and fate of the progenitors generated during E8.5 yolk sac hematopoiesis have been controversial. Herein, we use the Hoxb8 cell lineage reporter to define the ontogeny of hematopoietic cells arising during the definitive waves of hematopoiesis initiated in the E8.5 yolk sac and aorta-gonad-mesonephros (AGM) region. Our murine cell lineage analysis shows that the Hoxb8 cell lineage reporter robustly marks erythromyeloid progenitors, hematopoietic stem cells and their progeny, particularly monocytes. Hoxb8 progenitors and microglia require Myb function, a hallmark transcription factor for definitive hematopoiesis, for propagation and maturation. During adulthood, all immune lineages and, interestingly, resident macrophages in only hematopoietic/lymphoid tissues are derived from Hoxb8 precursors. These results illustrate that the Hoxb8 lineage exclusively mirrors murine definitive hematopoiesis.
Collapse
Affiliation(s)
- Donn A. Van Deren
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Shrutokirti De
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Ben Xu
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Kayla M. Eschenbacher
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Interdepartmental Program in Neuroscience, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Shuhua Zhang
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Mario R. Capecchi
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Interdepartmental Program in Neuroscience, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| |
Collapse
|
23
|
An L, Michaeli J, Pallavi P, Breedijk A, Xu X, Dietrich N, Sigl M, Keese M, Nitschke K, Jarczyk J, Nuhn P, Krämer BK, Yard BA, Leipe J. Concurrent stimulation of monocytes with CSF1 and polarizing cytokines reveals phenotypic and functional differences with classical polarized macrophages. J Leukoc Biol 2022; 112:437-447. [DOI: 10.1002/jlb.3a0721-383r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Liying An
- 5th Medical Department, University Hospital Mannheim Heidelberg University Mannheim Germany
| | - Julia Michaeli
- 5th Medical Department, University Hospital Mannheim Heidelberg University Mannheim Germany
| | - Prama Pallavi
- Department of Surgery, University Hospital Mannheim Heidelberg University Mannheim Germany
- European Center for Angioscience University Hospital Mannheim, Heideleberg University Mannheim Germany
| | - Annette Breedijk
- 5th Medical Department, University Hospital Mannheim Heidelberg University Mannheim Germany
| | - Xin Xu
- 5th Medical Department, University Hospital Mannheim Heidelberg University Mannheim Germany
| | - Nadine Dietrich
- 5th Medical Department, University Hospital Mannheim Heidelberg University Mannheim Germany
| | - Martin Sigl
- 1st Medical Department, Angiology, University Hospital Mannheim Heidelberg University Mannheim Germany
| | - Michael Keese
- Department of Surgery, University Hospital Mannheim Heidelberg University Mannheim Germany
- European Center for Angioscience University Hospital Mannheim, Heideleberg University Mannheim Germany
| | - Katja Nitschke
- Department of Urology, University Hospital Mannheim Heidelberg University Mannheim Germany
| | - Jonas Jarczyk
- Department of Urology, University Hospital Mannheim Heidelberg University Mannheim Germany
| | - Philipp Nuhn
- Department of Urology, University Hospital Mannheim Heidelberg University Mannheim Germany
| | - Bernhard K. Krämer
- 5th Medical Department, University Hospital Mannheim Heidelberg University Mannheim Germany
- European Center for Angioscience University Hospital Mannheim, Heideleberg University Mannheim Germany
- Center for Innate Immunoscience Mannheim Heidelberg University Mannheim Germany
| | - Benito A. Yard
- 5th Medical Department, University Hospital Mannheim Heidelberg University Mannheim Germany
- European Center for Angioscience University Hospital Mannheim, Heideleberg University Mannheim Germany
- Center for Innate Immunoscience Mannheim Heidelberg University Mannheim Germany
| | - Jan Leipe
- 5th Medical Department, University Hospital Mannheim Heidelberg University Mannheim Germany
- Center for Innate Immunoscience Mannheim Heidelberg University Mannheim Germany
| |
Collapse
|
24
|
Tang X, Tan Y, Yang Y, Li M, He X, Lu Y, Shi G, Zhu Y, Nie Y, Li H, Mu P, Chen Y. Association of the Monocyte-to-High-Density Lipoprotein Cholesterol Ratio With Diabetic Retinopathy. Front Cardiovasc Med 2021; 8:707008. [PMID: 34621797 PMCID: PMC8490616 DOI: 10.3389/fcvm.2021.707008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/27/2021] [Indexed: 01/09/2023] Open
Abstract
Background: Chronic inflammation in type 2 diabetes mellitus (T2DM) is an essential contributor to the development of diabetic retinopathy (DR). The monocyte–to–high-density lipoprotein cholesterol (HDL-C) ratio (MHR) is a novel and simple measure related to inflammatory and oxidative stress status. However, little is known regarding the role of the MHR in evaluating the development of DR. Methods: A total of 771 patients with T2DM and 607 healthy controls were enrolled in this cross-sectional study. MHR determination and eye examination were performed. The association of MHR with the prevalence of DR in T2DM patients was analyzed. Results: The MHR in patients with DR was significantly higher than that in both non-DR diabetic patients (P < 0.05) and healthy controls (P < 0.01). No significance was observed in the MHR of different DR severity grades. Moreover, the MHR was similar between patients with non-macular oedema and those with macular oedema. Logistic regression analysis demonstrated that MHR was independently associated with the prevalence of DR in diabetic patients [odds ratio (OR) = 1.438, 95% confidence interval (CI): 1.249–1.655, P < 0.01]. After additional stratification by HbA1c level and diabetic duration, the MHR was still independently associated with the prevalence of DR. Conclusions: Our study suggests that the MHR can be used as a marker to indicate the prevalence of DR in patients with T2DM.
Collapse
Affiliation(s)
- Xixiang Tang
- Department of Endocrinology & Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China.,VIP Medical Service Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ying Tan
- Department of Endocrinology & Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
| | - Yi Yang
- Department of Endocrinology & Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
| | - Mei Li
- Department of Endocrinology & Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China.,VIP Medical Service Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xuemin He
- Department of Endocrinology & Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
| | - Yan Lu
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guojun Shi
- Department of Endocrinology & Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
| | - Yanhua Zhu
- Department of Endocrinology & Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
| | - Yuanpeng Nie
- Department of Endocrinology & Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
| | - Haicheng Li
- Department of Endocrinology & Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
| | - Panwei Mu
- Department of Endocrinology & Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
| | - Yanming Chen
- Department of Endocrinology & Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
| |
Collapse
|
25
|
Dukhinova M, Kokinos E, Kuchur P, Komissarov A, Shtro A. Macrophage-derived cytokines in pneumonia: Linking cellular immunology and genetics. Cytokine Growth Factor Rev 2021; 59:46-61. [PMID: 33342718 PMCID: PMC8035975 DOI: 10.1016/j.cytogfr.2020.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/16/2022]
Abstract
Macrophages represent the first line of anti-pathogen defense - they encounter invading pathogens to perform the phagocytic activity, to deliver the plethora of pro- and anti-inflammatory cytokines, and to shape the tissue microenvironment. Throughout pneumonia course, alveolar macrophages and infiltrated blood monocytes produce increasing cytokine amounts, which activates the antiviral/antibacterial immunity but can also provoke the risk of the so-called cytokine "storm" and normal tissue damage. Subsequently, the question of how the cytokine spectrum is shaped and balanced in the pneumonia context remains a hot topic in medical immunology, particularly in the COVID19 pandemic era. The diversity in cytokine profiles, involved in pneumonia pathogenesis, is determined by the variations in cytokine-receptor interactions, which may lead to severe cytokine storm and functional decline of particular tissues and organs, for example, cardiovascular and respiratory systems. Cytokines and their receptors form unique profiles in individual patients, depending on the (a) microenvironmental context (comorbidities and associated treatment), (b) lung monocyte heterogeneity, and (c) genetic variations. These multidisciplinary strategies can be proactively considered beforehand and during the pneumonia course and potentially allow the new age of personalized immunotherapy.
Collapse
Affiliation(s)
- Marina Dukhinova
- International Institute "Solution Chemistry of Advanced Materials and Technology", ITMO University, St. Petersburg, Russia.
| | - Elena Kokinos
- International Institute "Solution Chemistry of Advanced Materials and Technology", ITMO University, St. Petersburg, Russia
| | - Polina Kuchur
- International Institute "Solution Chemistry of Advanced Materials and Technology", ITMO University, St. Petersburg, Russia
| | - Alexey Komissarov
- International Institute "Solution Chemistry of Advanced Materials and Technology", ITMO University, St. Petersburg, Russia
| | - Anna Shtro
- International Institute "Solution Chemistry of Advanced Materials and Technology", ITMO University, St. Petersburg, Russia; Department of Chemotherapy, Smorodintsev Research Institute of Influenza, St. Petersburg, Russia
| |
Collapse
|
26
|
Zhao Y, Ting KK, Coleman P, Qi Y, Chen J, Vadas M, Gamble J. The Tumour Vasculature as a Target to Modulate Leucocyte Trafficking. Cancers (Basel) 2021; 13:cancers13071724. [PMID: 33917287 PMCID: PMC8038724 DOI: 10.3390/cancers13071724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/29/2021] [Accepted: 04/03/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Tumour blood vessels, characterised by abnormal morphology and function, create an immunosuppressive tumour microenvironment via restricting the appropriate leucocyte subsets trafficking. Strategies to trigger phenotypic alteration in tumour vascular system to resemble normal vascular system, named vascular normalisation, promote effective trafficking of leucocytes into tumours through enhancing the interactions between leucocytes and endothelial cells. This review specifically demonstrates how targeting tumour blood vessels modulates the critical steps of leucocyte trafficking. Furthermore, selective regulation of leucocyte subsets trafficking in tumours can be achieved by vasculature-targeting strategies, contributing to improved immunotherapy and thereby delayed tumour progression. Abstract The effectiveness of immunotherapy against solid tumours is dependent on the appropriate leucocyte subsets trafficking and accumulating in the tumour microenvironment (TME) with recruitment occurring at the endothelium. Such recruitment involves interactions between the leucocytes and the endothelial cells (ECs) of the vessel and occurs through a series of steps including leucocyte capture, their rolling, adhesion, and intraluminal crawling, and finally leucocyte transendothelial migration across the endothelium. The tumour vasculature can curb the trafficking of leucocytes through influencing each step of the leucocyte recruitment process, ultimately producing an immunoresistant microenvironment. Modulation of the tumour vasculature by strategies such as vascular normalisation have proven to be efficient in facilitating leucocyte trafficking into tumours and enhancing immunotherapy. In this review, we discuss the underlying mechanisms of abnormal tumour vasculature and its impact on leucocyte trafficking, and potential strategies for overcoming the tumour vascular abnormalities to boost immunotherapy via increasing leucocyte recruitment.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Correspondence: (Y.Z.); (J.G.); Tel.: +86-025-85811237 (Y.Z.); +61-02-95656225 (J.G.)
| | - Ka Ka Ting
- Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney 2050, Australia; (K.K.T.); (P.C.); (Y.Q.); (M.V.)
| | - Paul Coleman
- Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney 2050, Australia; (K.K.T.); (P.C.); (Y.Q.); (M.V.)
| | - Yanfei Qi
- Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney 2050, Australia; (K.K.T.); (P.C.); (Y.Q.); (M.V.)
| | - Jinbiao Chen
- Liver Injury and Cancer Program, Centenary Institute, The University of Sydney, Sydney 2050, Australia;
| | - Mathew Vadas
- Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney 2050, Australia; (K.K.T.); (P.C.); (Y.Q.); (M.V.)
| | - Jennifer Gamble
- Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney 2050, Australia; (K.K.T.); (P.C.); (Y.Q.); (M.V.)
- Correspondence: (Y.Z.); (J.G.); Tel.: +86-025-85811237 (Y.Z.); +61-02-95656225 (J.G.)
| |
Collapse
|
27
|
Rudnik M, Rolski F, Jordan S, Mertelj T, Stellato M, Distler O, Blyszczuk P, Kania G. Regulation of Monocyte Adhesion and Type I Interferon Signaling by CD52 in Patients With Systemic Sclerosis. Arthritis Rheumatol 2021; 73:1720-1730. [PMID: 33760395 DOI: 10.1002/art.41737] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/11/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Systemic sclerosis (SSc) is characterized by dysregulation of type I interferon (IFN) signaling. CD52 is known for its immunosuppressive functions in T cells. This study was undertaken to investigate the role of CD52 in monocyte adhesion and type I IFN signaling in patients with SSc. METHODS Transcriptome profiles of circulating CD14+ monocytes from patients with limited cutaneous SSc (lcSSc), patients with diffuse cutaneous SSc (dcSSs), and healthy controls were analyzed by RNA sequencing. Levels of CD52, CD11b/integrin αΜ, and CD18/integrin β2 in whole blood were assessed by flow cytometry. CD52 expression was analyzed in relation to disease phenotype (early, lcSSc, dcSSc) and autoantibody profiles. The impact of overexpression, knockdown, and antibody blocking of CD52 was analyzed by gene and protein expression assays and functional assays. RESULTS Pathway enrichment analysis indicated an increase in adhesion- and type I IFN-related genes in monocytes from SSc patients. These cells displayed up-regulated expression of CD11b/CD18, reduced expression of CD52, and enhanced adhesion to intercellular adhesion molecule 1 and endothelial cells. Changes in CD52 expression were consistent with the SSc subtypes, as well as with immunosuppressive treatments, autoantibody profiles, and monocyte adhesion properties in patients with SSc. Overexpression of CD52 led to decreased levels of CD18 and monocyte adhesion, while knockdown of CD52 increased monocyte adhesion. Experiments with the humanized anti-CD52 monoclonal antibody alemtuzumab in blood samples from healthy controls increased monocyte adhesion and CD11b/CD18 expression, and enhanced type I IFN responses. Monocytic CD52 expression was up-regulated by interleukin-4 (IL-4)/IL-13 via the STAT6 pathway, and was down-regulated by lipopolysaccharide and IFNs α, β, and γ in a JAK1 and histone deacetylase IIa (HDAC IIa)-dependent manner. CONCLUSION Down-regulation of the antiadhesion CD52 antigen in CD14+ monocytes represents a novel mechanism in the pathogenesis of SSc. Targeting of the IFN-HDAC-CD52 axis in monocytes might represent a new therapeutic option for patients with early SSc.
Collapse
Affiliation(s)
- Michał Rudnik
- University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Filip Rolski
- Jagiellonian University Medical College, Krakow, Poland
| | - Suzana Jordan
- University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Tonja Mertelj
- University Hospital Zurich and University of Zurich, Zurich, Switzerland, and University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Mara Stellato
- University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Oliver Distler
- University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Przemysław Blyszczuk
- University Hospital Zurich and University of Zurich, Zurich, Switzerland, and Jagiellonian University Medical College, Krakow, Poland
| | - Gabriela Kania
- University Hospital Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
28
|
One Brain-All Cells: A Comprehensive Protocol to Isolate All Principal CNS-Resident Cell Types from Brain and Spinal Cord of Adult Healthy and EAE Mice. Cells 2021; 10:cells10030651. [PMID: 33804060 PMCID: PMC7999839 DOI: 10.3390/cells10030651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/11/2022] Open
Abstract
In experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis, the role of each central nervous system (CNS)-resident cell type during inflammation, neurodegeneration, and remission has been frequently addressed. Although protocols for the isolation of different individual CNS-resident cell types exist, none can harvest all of them within a single experiment. In addition, isolation of individual cells is more demanding in adult mice and even more so from the inflamed CNS. Here, we present a protocol for the simultaneous purification of viable single-cell suspensions of all principal CNS-resident cell types (microglia, oligodendrocytes, astrocytes, and neurons) from adult mice-applicable in healthy mice as well as in EAE. After dissociation of the brain and spinal cord from adult mice, microglia, oligodendrocytes, astrocytes and, neurons were isolated via magnetic-activated cell sorting (MACS). Validations comprised flow cytometry, immunocytochemistry, as well as functional analyses (immunoassay and Sholl analysis). The purity of each cell isolation averaged 90%. All cells displayed cell-type-specific morphologies and expressed specific surface markers. In conclusion, this new protocol for the simultaneous isolation of all major CNS-resident cell types from one CNS offers a sophisticated and comprehensive way to investigate complex cellular networks ex vivo and simultaneously reduce mice numbers to be sacrificed.
Collapse
|
29
|
Lee JG, Jaeger KE, Seki Y, Wei Lim Y, Cunha C, Vuchkovska A, Nelson AJ, Nikolai A, Kim D, Nishimura M, Knight KL, White P, Iwashima M. Human CD36 hi monocytes induce Foxp3 + CD25 + T cells with regulatory functions from CD4 and CD8 subsets. Immunology 2021; 163:293-309. [PMID: 33524161 DOI: 10.1111/imm.13316] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 12/31/2020] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
The fetal and neonatal immune systems are uniquely poised to generate tolerance to self, maternal and environmental antigens encountered in the womb and shortly after birth. However, the tolerogenic nature of fetal and neonatal immunity can be detrimental in the context of pathogens, leading to overwhelming bacterial infections or chronic viral infections. A variety of mechanisms contribute to fetal and neonatal tolerance, including a propensity to generate Foxp3+ regulatory T cells (Treg cells). However, the mechanism(s) of fetal Foxp3+ T-cell differentiation, the specific antigen-presenting cells required and factors that inhibit Treg generation after the neonatal period are poorly understood. Here, we demonstrate that a subset of CD14+ monocytes expressing the scavenger molecule, CD36, can generate CD4+ and CD8+ T cells that coexpress Foxp3 and T-bet from both umbilical cord blood. These Foxp3+ T-bet+ T cells potently suppress T-cell proliferation and ameliorate xenogeneic graft-versus-host disease. CD14+ CD36+ monocytes provide known Treg-inducing signals: membrane-bound transforming growth factor-beta and retinoic acid. Unexpectedly, adult peripheral blood monocytes are also capable of inducing Foxp3+ T cells from both cord blood and adult peripheral naïve T cells. The induction of Foxp3+ T cells in umbilical cord blood by monocytes was inhibited by the lymphoid fraction of adult peripheral blood cells. These studies highlight a novel immunoregulatory role of monocytes and suggest that antigen presentation by CD36hi monocytes may contribute to the peripheral development of Foxp3+ T-bet+ T cells with regulatory functions in both neonates and adults.
Collapse
Affiliation(s)
- Jessica G Lee
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA.,Van Kampen Cardio-Pulmonary Research Laboratory, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Kathleen E Jaeger
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA.,Van Kampen Cardio-Pulmonary Research Laboratory, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Yoichi Seki
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Yi Wei Lim
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA.,Van Kampen Cardio-Pulmonary Research Laboratory, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Christina Cunha
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA.,Van Kampen Cardio-Pulmonary Research Laboratory, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Aleksandra Vuchkovska
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA.,Van Kampen Cardio-Pulmonary Research Laboratory, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Alexander J Nelson
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA.,Van Kampen Cardio-Pulmonary Research Laboratory, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Anya Nikolai
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA.,Van Kampen Cardio-Pulmonary Research Laboratory, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Dan Kim
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Michael Nishimura
- Department of Surgery, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Katherine L Knight
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Paula White
- Department of Obstetrics and Gynecology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Makio Iwashima
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA.,Van Kampen Cardio-Pulmonary Research Laboratory, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
30
|
Biban P, Teggi M, Gaffuri M, Santuz P, Onorato D, Carpenè G, Gregori D, Lippi G. Cell Population Data (CPD) for Early Recognition of Sepsis and Septic Shock in Children: A Pilot Study. Front Pediatr 2021; 9:642377. [PMID: 33777867 PMCID: PMC7989813 DOI: 10.3389/fped.2021.642377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/11/2021] [Indexed: 01/30/2023] Open
Abstract
Objectives: Innovative Cell Population Data (CPD) have been used as early biomarkers for diagnosing sepsis in adults. We assessed the usefulness of CPD in pediatric patients with sepsis/septic shock, in terms of early recognition and outcome prediction. We revised 54 patients (0-15 y) admitted to our Pediatric Intensive Care Unit (PICU) for sepsis/septic shock during a 4-year period. Twenty-eight patients were excluded, 26 septic patients were enrolled (G1). Forty children admitted for elective surgery served as controls (G2). Data on five selected CPD parameters, namely neutrophils fluorescence intensity (NE-SFL), monocytes cells complexity (MO-X), monocytes fluorescence intensity (MO-Y), monocytes complexity and width of dispersion of events measured (MO-WX), and monocytes cells size and width dispersion (MO-WZ), were obtained at time of PICU admission (t0) by a hematological analyzer (Sysmex XN 9000®). As the primary outcome we evaluated the relevance of CPD for diagnosing sepsis/septic shock on PICU admission. Furthermore, we investigated if CPD at t0 were correlated with C-reactive protein (CRP), patient survival, or complicated sepsis course. Results: On PICU admission (t0), NE-SFL, MO-WX, and MO-Y were higher in sepsis/septic shock patients compared to controls. NE-SFL values were correlated with CRP values in G1 patients (r = 0.83). None of the five CPD parameters was correlated with survival or complicated sepsis course. Conclusion: We found higher values of NE-SFL, MO-WX, and MO-Y in children with sepsis/septic shock upon PICU admission. These parameters may be a promising adjunct for early sepsis diagnosis in pediatric populations. Larger, prospective studies are needed to confirm our preliminary observations.
Collapse
Affiliation(s)
- Paolo Biban
- Pediatric Intensive Care Unit, Division of Pediatric Critical and Emergency Care, Verona University Hospital, Verona, Italy
| | - Martina Teggi
- Pediatric Intensive Care Unit, Division of Pediatric Critical and Emergency Care, Verona University Hospital, Verona, Italy
| | - Marcella Gaffuri
- Pediatric Intensive Care Unit, Division of Pediatric Critical and Emergency Care, Verona University Hospital, Verona, Italy
| | - Pierantonio Santuz
- Pediatric Intensive Care Unit, Division of Pediatric Critical and Emergency Care, Verona University Hospital, Verona, Italy
| | - Diletta Onorato
- Section of Clinical Biochemistry, University of Verona, Verona, Italy
| | - Giovanni Carpenè
- Section of Clinical Biochemistry, University of Verona, Verona, Italy
| | - Dario Gregori
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University Hospital of Padua, Padova, Italy
| | - Giuseppe Lippi
- Section of Clinical Biochemistry, University of Verona, Verona, Italy
| |
Collapse
|
31
|
Valtierra-Alvarado MA, Castañeda Delgado JE, Ramírez-Talavera SI, Lugo-Villarino G, Dueñas-Arteaga F, Lugo-Sánchez A, Adame-Villalpando MS, Rivas-Santiago B, Enciso-Moreno J, Serrano CJ. Type 2 diabetes mellitus metabolic control correlates with the phenotype of human monocytes and monocyte-derived macrophages. J Diabetes Complications 2020; 34:107708. [PMID: 32843282 DOI: 10.1016/j.jdiacomp.2020.107708] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/31/2020] [Accepted: 08/08/2020] [Indexed: 12/24/2022]
Abstract
AIMS Monocytes and macrophages express cell-surface markers indicative of their inflammatory and activation status. In this study, we investigated whether these markers are affected or correlated in non-obese T2D subjects, or glycemic/metabolic control variables. METHODS Clinical data was recorded, and peripheral blood drawn from T2D patients (n = 28) and control subjects (n = 27). Isolated monocytes were evaluated by flow cytometry for the expression of CD14, CD16, and the phenotypic markers for the different states of activation spectrum, such as pro-inflammatory (M1) (HLA-DR, CD86), anti-inflammatory/pro-resolving (M2) (CD163, CD206, MERTK, PD-L1) and metabolically-activated (MMe) (CD36, ABCA-1). From a subset of individuals, monocytes-derived macrophages (MDM) were obtained and evaluated for phenotypic markers. A correlation analysis was performed between the clinical variables and the marker expression. RESULTS The frequency of CD14++CD16- monocytes was lower in T2D patients and it correlates negatively with poor control in glycemic and metabolic variables. T2D monocytes expressed lower levels of HLA-DR, CD86, PD-L1, and CD163, which correlated negatively with poor metabolic control. In MDM from T2D patients, HLA-DR, CD86 and CD163 expression was lower and it inversely correlated with deficient glycemic or metabolic control parameters. CONCLUSION The glycemic/metabolic control associated with T2D influences monocyte and MDM phenotypes toward an immune-suppressive phenotype.
Collapse
Affiliation(s)
- M A Valtierra-Alvarado
- Unidad de Investigación Biomédica Zacatecas, Instituto Mexicano del Seguro Social, Mexico; Departamento de Inmunología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí (UASLP), Mexico
| | - J E Castañeda Delgado
- Cátedras CONACyT, Consejo Nacional de Ciencia y Tecnología (CONACyT-México), Unidad de Investigación Biomédica Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas, Mexico
| | - S I Ramírez-Talavera
- Unidad de Investigación Biomédica Zacatecas, Instituto Mexicano del Seguro Social, Mexico; Departamento de Inmunología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí (UASLP), Mexico
| | - G Lugo-Villarino
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - F Dueñas-Arteaga
- Universidad Autónoma de Zacatecas, Unidad Académica de Medicina Humana y Ciencias de la Salud, Zacatecas, Mexico
| | - A Lugo-Sánchez
- Unidad de Investigación Biomédica Zacatecas, Instituto Mexicano del Seguro Social, Mexico; Universidad Autónoma de Zacatecas, Unidad Académica de Ciencias Químicas, Zacatecas, Mexico
| | - M S Adame-Villalpando
- Unidad de Investigación Biomédica Zacatecas, Instituto Mexicano del Seguro Social, Mexico; Universidad Autónoma de Zacatecas, Unidad Académica de Ciencias Químicas, Zacatecas, Mexico
| | - B Rivas-Santiago
- Unidad de Investigación Biomédica Zacatecas, Instituto Mexicano del Seguro Social, Mexico
| | - J Enciso-Moreno
- Unidad de Investigación Biomédica Zacatecas, Instituto Mexicano del Seguro Social, Mexico
| | - C J Serrano
- Unidad de Investigación Biomédica Zacatecas, Instituto Mexicano del Seguro Social, Mexico.
| |
Collapse
|
32
|
Zhang K, Xu Y. Suppressing BRD4 exhibits protective effects against vincristine-induced peripheral neuropathy by alleviating inflammation and oxidative stress. Biochem Biophys Res Commun 2020; 532:271-279. [PMID: 32868081 DOI: 10.1016/j.bbrc.2020.06.142] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 06/26/2020] [Indexed: 12/18/2022]
Abstract
Vincristine (VCR) is a well-known anticancer drug, and frequently causes painful neuropathy and impairs the quality of life of patients. However, the molecular mechanisms revealing VCR-induced neuropathy are still unclear, and effectively therapeutic strategy is still necessary. Bromodomain-containing protein 4 (BRD4) has long been implicated in many different pathological processes, in particular, the development of oxidative stress and inflammation. In the present study, we showed that BRD4 played a mechanistic role in VCR-induced peripheral neuropathy. Using the in vivo transfection of BRD4 siRNA, we found that BRD4 suppression markedly alleviated VCR-induced neuropathic pain. Macrophage infiltration in sciatic nerve was effectively inhibited in VCR-challenged mice with BRD4 knockdown, as evidenced by the markedly reduced expression of F4/80. In the VCR-induced sciatic nerve tissues, we found that the mRNA and protein expression levels of C-X3-C motif chemokine receptor 1 (CX3CR1) and C-C chemokine receptor type 2 (CCR2) were greatly elevated, which were, however, mitigated by siBRD4 injection. In addition, oxidative stress induced by VCR was markedly restrained in sciatic nerve from mice with BRD4 knockdown, which was closely associated with the improved activation of nuclear factor erythroid 2-related factor 2 (Nrf-2) signaling. The in vitro studies indicated that in H2O2-stimulated primary neurons, BRD4 silence markedly reduced reactive oxygen species (ROS) production and improved Nrf-2 activation, exhibiting anti-oxidant effects. Finally, BRD4 selective inhibitor JQ1 was subjected to mice challenged with VCR. The results confirmed that reducing BRD4 expression by JQ1 effectively ameliorated VCR-induced peripheral neuropathy also through repressing macrophage infiltration, inflammatory response and oxidative stress. Taken together, these findings demonstrated that BRD4 played a critical role in VCR-induced neuropathy, and developing novel and new therapies might be effective for the treatment of VCR-induced neuropathic pain.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Painless Endoscopy, People's Hospital of Linzi District, Zibo City, Affiliated Hospital of Binzhou Medical University, Shandong Province, 255400, China
| | - Yanbing Xu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, China.
| |
Collapse
|
33
|
Weidensdorfer M, Ishikawa M, Hori K, Linke D, Djahanschiri B, Iruegas R, Ebersberger I, Riedel-Christ S, Enders G, Leukert L, Kraiczy P, Rothweiler F, Cinatl J, Berger J, Hipp K, Kempf VAJ, Göttig S. The Acinetobacter trimeric autotransporter adhesin Ata controls key virulence traits of Acinetobacter baumannii. Virulence 2020; 10:68-81. [PMID: 31874074 PMCID: PMC6363060 DOI: 10.1080/21505594.2018.1558693] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Acinetobacter baumannii is a Gram-negative pathogen that causes a multitude of nosocomial infections. The Acinetobacter trimeric autotransporter adhesin (Ata) belongs to the superfamily of trimeric autotransporter adhesins which are important virulence factors in many Gram-negative species. Phylogenetic profiling revealed that ata is present in 78% of all sequenced A. baumannii isolates but only in 2% of the closely related species A. calcoaceticus and A. pittii. Employing a markerless ata deletion mutant of A. baumannii ATCC 19606 we show that adhesion to and invasion into human endothelial and epithelial cells depend on Ata. Infection of primary human umbilical cord vein endothelial cells (HUVECs) with A. baumannii led to the secretion of interleukin (IL)-6 and IL-8 in a time- and Ata-dependent manner. Furthermore, infection of HUVECs by WT A. baumannii was associated with higher rates of apoptosis via activation of caspases-3 and caspase-7, but not necrosis, in comparison to ∆ata. Ata deletion mutants were furthermore attenuated in their ability to kill larvae of Galleria mellonella and to survive in larvae when injected at sublethal doses. This indicates that Ata is an important multifunctional virulence factor in A. baumannii that mediates adhesion and invasion, induces apoptosis and contributes to pathogenicity in vivo.
Collapse
Affiliation(s)
- Marko Weidensdorfer
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt, Germany
| | - Masahito Ishikawa
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Katsutoshi Hori
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Dirk Linke
- Department of Biosciences, Section for Genetics and Evolutionary Biology, University of Oslo, Oslo, Norway
| | - Bardya Djahanschiri
- Department for Applied Bioinformatics, Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt, Germany
| | - Ruben Iruegas
- Department for Applied Bioinformatics, Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt, Germany
| | - Ingo Ebersberger
- Department for Applied Bioinformatics, Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt, Germany.,Senckenberg Biodiversity and Climate Research Centre Frankfurt (BIK-F), Frankfurt, Germany
| | - Sara Riedel-Christ
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt, Germany
| | - Giulia Enders
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt, Germany
| | - Laura Leukert
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt, Germany
| | - Peter Kraiczy
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt, Germany
| | - Florian Rothweiler
- Institute of Medical Virology, University Hospital, Goethe University, Frankfurt, Germany
| | - Jindrich Cinatl
- Institute of Medical Virology, University Hospital, Goethe University, Frankfurt, Germany
| | - Jürgen Berger
- Electron Microscopy Facility, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Katharina Hipp
- Electron Microscopy Facility, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Volkhard A J Kempf
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt, Germany
| | - Stephan Göttig
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt, Germany
| |
Collapse
|
34
|
Urrechaga E. Reviewing the value of leukocytes cell population data (CPD) in the management of sepsis. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:953. [PMID: 32953753 PMCID: PMC7475430 DOI: 10.21037/atm-19-3173] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Sepsis is a medical emergency that describes the body's systemic immune response to an infection and can lead to end-stage organic dysfunction and death. Despite the advances in understanding the pathophysiology of this syndrome and therapies, sepsis remains one of the leading causes of morbidity and mortality in critically ill patients. Early diagnosis and rapid intervention are essential to improve outcomes, which inspired the concept "golden hour," during which the correction of shock and organic dysfunction can improve the patients' outcomes. But the initial presentation of sepsis is often nonspecific and its severity is difficult to assess. Anomalies in temperature, heart and respiratory rates and leukocyte counts are manifestations of systemic inflammatory response syndrome (SIRS). Diagnosis, management and follow-up of patients with sepsis remains a challenge, and diverse biomarkers have been proposed for the timely diagnosis and prognosis of septic patients: lactic acid, procalcitonin (PCT), C-reactive protein, immature granulocytes. The host's initial response to infection is a humoral, cellular and neuroendocrine reaction to infection, and leukocytes interact with endothelial cells. The new generation of hematological analyzers incorporates technological innovations allowing to expand the information derived from the complete blood count: new leukocyte derived parameters are emerging as potentially useful markers in different clinical situations. Additional research parameters cell population data (CPD), characterizing different leukocyte populations have become available, and preliminary observations suggest their utility in the diagnosis of sepsis. This review emphasizes the value of CPD, reported by modern cellular counters for early recognition of sepsis, and therefore the potential improvement in patient outcomes.
Collapse
Affiliation(s)
- Eloísa Urrechaga
- Biocruces Bizkaia Health Research Institute, Cruces Plaza, Bizkaia, Spain
| |
Collapse
|
35
|
Italiani P, Mosca E, Della Camera G, Melillo D, Migliorini P, Milanesi L, Boraschi D. Profiling the Course of Resolving vs. Persistent Inflammation in Human Monocytes: The Role of IL-1 Family Molecules. Front Immunol 2020; 11:1426. [PMID: 32754155 PMCID: PMC7365847 DOI: 10.3389/fimmu.2020.01426] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 06/03/2020] [Indexed: 12/18/2022] Open
Abstract
Monocytes and macrophages have a central role in all phases of an inflammatory reaction. To understanding the regulation of monocyte activation during a physiological or pathological inflammation, we propose two in vitro models that recapitulate the different phases of the reaction (recruitment, initiation, development, and resolution vs. persistence of inflammation), based on human primary blood monocytes exposed to sequential modifications of microenvironmental conditions. These models exclusively describe the functional development of blood-derived monocytes that first enter an inflammatory site. All reaction phases were profiled by RNA-Seq, and the two models were validated by studying the modulation of IL-1 family members. Genes were differentially modulated, and distinct clusters were identified during the various phases of inflammation. Pathway analysis revealed that both models were enriched in pathways involved in innate immune activation. We observe that monocytes acquire an M1-like profile during early inflammation, and switch to a deactivated M2-like profile during both the resolving and persistent phases. However, during persistent inflammation they partially maintain an M1 profile, although they lose the ability to produce inflammatory cytokines compared to M1 cells. The production of IL-1 family molecules by ELISA reflected the transcriptomic profiles in the distinct phases of the two inflammatory reactions. Based on the results, we hypothesize that persistence of inflammatory stimuli cannot maintain the M1 activated phenotype of incoming monocytes for long, suggesting that the persistent presence of M1 cells and effects in a chronically inflamed tissue is mainly due to activation of newly incoming cells. Moreover, being IL-1 family molecules mainly expressed and secreted by monocytes during the early stages of the inflammatory response (within 4-14 h), and the rate of their production decreasing during the late phase of both resolving and persistent inflammation, we suppose that IL-1 factors are key regulators of the acute defensive innate inflammatory reaction that precedes establishment of longer-term adaptive immunity, and are mainly related to the presence of recently recruited blood monocytes. The well-described role of IL-1 family cytokines and receptors in chronic inflammation is therefore most likely dependent on the continuous influx of blood monocytes into a chronically inflamed site.
Collapse
Affiliation(s)
- Paola Italiani
- Institute of Protein Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Ettore Mosca
- Institute of Biomedical Technologies, National Research Council, Segrate, Italy
| | - Giacomo Della Camera
- Institute of Protein Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Daniela Melillo
- Institute of Protein Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Paola Migliorini
- Clinical Immunology Unit, Department Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Luciano Milanesi
- Institute of Biomedical Technologies, National Research Council, Segrate, Italy
| | - Diana Boraschi
- Institute of Protein Biochemistry and Cell Biology, National Research Council, Naples, Italy
| |
Collapse
|
36
|
Domingo-Gonzalez R, Zanini F, Che X, Liu M, Jones RC, Swift MA, Quake SR, Cornfield DN, Alvira CM. Diverse homeostatic and immunomodulatory roles of immune cells in the developing mouse lung at single cell resolution. eLife 2020; 9:e56890. [PMID: 32484158 PMCID: PMC7358008 DOI: 10.7554/elife.56890] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/13/2020] [Indexed: 12/20/2022] Open
Abstract
At birth, the lungs rapidly transition from a pathogen-free, hypoxic environment to a pathogen-rich, rhythmically distended air-liquid interface. Although many studies have focused on the adult lung, the perinatal lung remains unexplored. Here, we present an atlas of the murine lung immune compartment during early postnatal development. We show that the late embryonic lung is dominated by specialized proliferative macrophages with a surprising physical interaction with the developing vasculature. These macrophages disappear after birth and are replaced by a dynamic mixture of macrophage subtypes, dendritic cells, granulocytes, and lymphocytes. Detailed characterization of macrophage diversity revealed an orchestration of distinct subpopulations across postnatal development to fill context-specific functions in tissue remodeling, angiogenesis, and immunity. These data both broaden the putative roles for immune cells in the developing lung and provide a framework for understanding how external insults alter immune cell phenotype during a period of rapid lung growth and heightened vulnerability.
Collapse
Affiliation(s)
- Racquel Domingo-Gonzalez
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of MedicineStanfordUnited States
- Center for Excellence in Pulmonary Biology, Stanford University School of MedicineStanfordUnited States
| | - Fabio Zanini
- Department of Bioengineering, Stanford UniversityStanfordUnited States
- Prince of Wales Clinical School, Lowy Cancer Research Centre, University of New South WalesSydneyAustralia
| | - Xibing Che
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of MedicineStanfordUnited States
- Center for Excellence in Pulmonary Biology, Stanford University School of MedicineStanfordUnited States
- Division of Pulmonary, Asthma and Sleep Medicine, Department of Pediatrics, Stanford University School of MedicineStanfordUnited States
| | - Min Liu
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of MedicineStanfordUnited States
- Center for Excellence in Pulmonary Biology, Stanford University School of MedicineStanfordUnited States
| | - Robert C Jones
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| | - Michael A Swift
- Department of Chemical and Systems Biology, Stanford UniversityStanfordUnited States
| | - Stephen R Quake
- Department of Bioengineering, Stanford UniversityStanfordUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
- Department of Applied Physics, Stanford UniversityStanfordUnited States
| | - David N Cornfield
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of MedicineStanfordUnited States
- Center for Excellence in Pulmonary Biology, Stanford University School of MedicineStanfordUnited States
- Division of Pulmonary, Asthma and Sleep Medicine, Department of Pediatrics, Stanford University School of MedicineStanfordUnited States
| | - Cristina M Alvira
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of MedicineStanfordUnited States
- Center for Excellence in Pulmonary Biology, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
37
|
Neosaxitoxin Inhibits the Expression of Inflammation Markers of the M1 Phenotype in Macrophages. Mar Drugs 2020; 18:md18060283. [PMID: 32471037 PMCID: PMC7345530 DOI: 10.3390/md18060283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 12/19/2022] Open
Abstract
(1) Background: Neosaxitoxin (NeoSTX) has been used as a local anesthetic, but its anti-inflammatory effects have not been well defined. In the present study, we investigate the effects of NeoSTX on lipopolysaccharide (LPS)-activated macrophages. (2) Methods: Raw 264.7 and equine PBMC cells were incubated with or without 100 ng/mL LPS in the presence or absence of NeoSTX (1µM). The expression of inflammatory mediators was assessed: nitric oxide (NO) content using the Griess assay, TNF-α content using the ELISA assay, and mRNA of inducible nitric oxide synthase (iNOS), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) using a real-time polymerase chain reaction. (3) Results: NeoSTX (1 μM) significantly inhibited the release of NO, TNF-α, and expression of iNOS, IL-1β, and TNF-α in LPS-activated macrophages of both species studied. Furthermore, our study shows that the LPS-induced release of inflammatory mediators was suppressed by NeoSTX. Additionally, NeoSTX deactivated polarized macrophages to M1 by LPS without compromising its polarization towards M2. (4) Conclusions: NeoSTX inhibits LPS-induced release of inflammatory mediators from macrophages, and these effects may be mediated by the blockade of voltage-gated sodium channels (VGSC).
Collapse
|
38
|
Ożańska A, Szymczak D, Rybka J. Pattern of human monocyte subpopulations in health and disease. Scand J Immunol 2020; 92:e12883. [PMID: 32243617 DOI: 10.1111/sji.12883] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 12/13/2022]
Abstract
Monocytes are important cells of the innate system. They are a heterogeneous type of cells consisting of phenotypically and functionally distinct subpopulations, which play a specific role in the control, development and escalation of the immunological processes. Based on the expression of superficial CD14 and CD16 in flow cytometry, they can be divided into three subsets: classical, intermediate and non-classical. Variation in the levels of human monocyte subsets in the blood can be observed in patients in numerous pathological states, such as infections, cardiovascular and inflammatory diseases, cancer and autoimmune diseases. The aim of this review is to summarize current knowledge of human monocyte subsets and their significance in homeostasis and in pathological conditions.
Collapse
|
39
|
Lung Transplantation Has a Strong Impact on the Distribution and Phenotype of Monocyte Subsets. Transplant Proc 2020; 52:958-966. [PMID: 32146023 DOI: 10.1016/j.transproceed.2020.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 01/23/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Lung transplantation (LTx) is a last treatment option for patients with an end-stage pulmonary disease. Chronic lung allograft dysfunction, which generally manifests as bronchiolitis obliterans syndrome (BOS), is a major long-term survival limitation. During injury, inflammation and BOS monocytes are recruited. We determined whether changes in count, subset distribution, and functionality by surface marker expression coincided with BOS development. METHODS Fresh whole-blood samples were analyzed from 44 LTx patients, including 17 patients diagnosed with BOS, and compared with 10 age-matched healthy controls and 9 sarcoidosis patients as positive controls. Monocytes were quantified and analyzed using flow cytometry. Based on surface marker expression, classical, intermediate, and nonclassical subsets were determined, and functional phenotypes were investigated. RESULTS The absolute count of monocytes was decreased in LTx and slightly increased in BOS patients. The relative count shifted toward classical monocytes at the expense of nonclassical monocytes in LTx and BOS. Surface marker expression was highest on intermediate monocytes. The expression of both CD36 and CD163 was significantly increased in the LTx and BOS cohort. The difference between the BOS cohort and the LTx cohort was only subtle, with a significant decrease in HLA-DR expression on nonclassical monocytes in BOS. CONCLUSIONS Monocyte subsets and surface marker expression changed significantly in transplantation patients, while BOS-specific changes were understated. More research is needed to determine whether and how monocytes influence the disease process and how current immunosuppressants affect their normal function in vivo.
Collapse
|
40
|
Figueroa-Vega N, Marín-Aragón CI, López-Aguilar I, Ibarra-Reynoso L, Pérez-Luque E, Malacara JM. Analysis of the percentages of monocyte subsets and ILC2s, their relationships with metabolic variables and response to hypocaloric restriction in obesity. PLoS One 2020; 15:e0228637. [PMID: 32074122 PMCID: PMC7029876 DOI: 10.1371/journal.pone.0228637] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/21/2020] [Indexed: 01/17/2023] Open
Abstract
PURPOSE Obesity results from excess energy intake over expenditure and is characterized by chronic low-grade inflammation involving circulating monocytes (Mo) and group 2 innate lymphoid cells (ILC2s) imbalance. We analyzed circulating Mo subsets and ILC2s percentages and β2-adrenergic receptor (β2AR) expression in lean and obese subjects, and the possible effect of hypocaloric restriction on these innate immune cells. METHODS In 139 individuals aged 45 to 57 years, classified in 74 lean individuals (>18.9kg/m2 BMI <24.9kg/m2) and 65 with obesity (n = 65), we collected fasting blood samples to detect Mo subsets, ILC2s number, and β2AR expression by flow cytometry. Lipids, insulin, leptin, and acylated-ghrelin concentrations were quantified. Resting energy expenditure (REE) was estimated by indirect calorimetry. These measurements were repeated in obese subjects after 7-weeks of hypocaloric restriction. RESULTS Non-classical monocytes (NCM) and β2AR expression on intermediate Mo (IM) were increased in obese individuals (p<0.001, in both cases), whereas the percent of ILC2s was decreased (p<0.0001). Stepwise regression analysis showed significantly negative associations of ILC2s with caloric intake, β2AR expression on IM with REE, but a positive relationship between NCM and HOMA-IR. Caloric restriction allowed a significant diminution of NCM and the β2AR expression on IM, as well as, an increase in the percent of classical Mo (CM), and ILC2s. ΔREE was related to ΔCD16+/CD16- ratio. CONCLUSIONS These findings show that in obesity occur changes in NCM, ILC2s and β2AR expression, which contribute to the low-grade inflammation linked to obesity and might revert with caloric restriction.
Collapse
Affiliation(s)
- Nicté Figueroa-Vega
- Department of Medical Sciences, University of Guanajuato, León Campus, León, Gto., México
| | | | - Itzel López-Aguilar
- Department of Medical Sciences, University of Guanajuato, León Campus, León, Gto., México
| | - Lorena Ibarra-Reynoso
- Department of Medical Sciences, University of Guanajuato, León Campus, León, Gto., México
| | - Elva Pérez-Luque
- Department of Medical Sciences, University of Guanajuato, León Campus, León, Gto., México
| | - Juan Manuel Malacara
- Department of Medical Sciences, University of Guanajuato, León Campus, León, Gto., México
| |
Collapse
|
41
|
Beach TA, Groves AM, Williams JP, Finkelstein JN. Modeling radiation-induced lung injury: lessons learned from whole thorax irradiation. Int J Radiat Biol 2020; 96:129-144. [PMID: 30359147 PMCID: PMC6483900 DOI: 10.1080/09553002.2018.1532619] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/12/2018] [Accepted: 09/13/2018] [Indexed: 12/25/2022]
Abstract
Models of thoracic irradiation have been developed as clinicians and scientists have attempted to decipher the events that led up to the pulmonary toxicity seen in human subjects following radiation treatment. The most common model is that of whole thorax irradiation (WTI), applied in a single dose. Mice, particularly the C57BL/6J strain, has been frequently used in these investigations, and has greatly informed our current understanding of the initiation and progression of radiation-induced lung injury (RILI). In this review, we highlight the sequential progression and dynamic nature of RILI, focusing primarily on the vast array of information that has been gleaned from the murine model. Ample evidence indicates a wide array of biological responses that can be seen following irradiation, including DNA damage, oxidative stress, cellular senescence and inflammation, all triggered by the initial exposure to ionizing radiation (IR) and heterogeneously maintained throughout the temporal progression of injury, which manifests as acute pneumonitis and later fibrosis. It appears that the early responses of specific cell types may promote further injury, disrupting the microenvironment and preventing a return to homeostasis, although the exact mechanisms driving these responses remains somewhat unclear. Attempts to either prevent or treat RILI in preclinical models have shown some success by targeting these disparate radiobiological processes. As our understanding of the dynamic cellular responses to radiation improves through the use of such models, so does the likelihood of preventing or treating RILI.
Collapse
Affiliation(s)
- Tyler A. Beach
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642
- These authors contributed equally to this publication
| | - Angela M. Groves
- Department of Pediatrics and Neonatology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
- These authors contributed equally to this publication
| | - Jacqueline P. Williams
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY 14642
| | - Jacob N. Finkelstein
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642
- Department of Pediatrics and Neonatology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| |
Collapse
|
42
|
Luong VH, Utsunomiya A, Chino T, Doanh LH, Matsushita T, Obara T, Kuboi Y, Ishii N, Machinaga A, Ogasawara H, Ikeda W, Kawano T, Imai T, Oyama N, Hasegawa M. Inhibition of the Progression of Skin Inflammation, Fibrosis, and Vascular Injury by Blockade of the CX 3 CL1/CX 3 CR1 Pathway in Experimental Mouse Models of Systemic Sclerosis. Arthritis Rheumatol 2019; 71:1923-1934. [PMID: 31173491 DOI: 10.1002/art.41009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/04/2019] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To assess the preclinical efficacy and mechanism of action of an anti-CX3 CL1 monoclonal antibody (mAb) in systemic sclerosis (SSc). METHODS Cultured human dermal fibroblasts were used to evaluate the direct effect of anti-CX3 CL1 mAb on fibroblasts. In addition, bleomycin-induced and growth factor-induced models of SSc were used to investigate the effect of anti-CX3 CL1 mAb on leukocyte infiltration, collagen deposition, and vascular damage in the skin. RESULTS Anti-CX3 CL1 mAb treatment significantly inhibited Smad3 phosphorylation (P < 0.05) and expression of type I collagen and fibronectin 1 (P < 0.01) in dermal fibroblasts stimulated with transforming growth factor β1 (TGFβ1). In the bleomycin model, daily subcutaneous bleomycin injection increased serum CX3 CL1 levels (P < 0.05) and augmented lesional CX3 CL1 expression. Simultaneous administration of anti-CX3 CL1 mAb or CX3 CR1 deficiency significantly suppressed the dermal thickness, collagen content, and capillary loss caused by bleomycin (P < 0.05). Injection of bleomycin induced expression of pSmad3 and TGFβ1 in the skin, which was inhibited by anti-CX3 CL1 mAb. Further, the dermal infiltration of CX3 CR1+ cells, macrophages (inflammatory and alternatively activated [M2-like] subsets), and CD3+ cells significantly decreased following anti-CX3 CL1 mAb therapy (P < 0.05), as did the enhanced skin expression of fibrogenic molecules, such as thymic stromal lymphopoietin and secreted phosphoprotein 1 (P < 0.05). However, the treatment did not significantly reduce established skin fibrosis. In the second model, simultaneous anti-mCX3 CL1 mAb therapy significantly diminished the skin fibrosis induced by serial subcutaneous injection of TGFβ and connective tissue growth factor (P < 0.01). CONCLUSION Anti-CX3 CL1 mAb therapy may be a novel approach for treating early skin fibrosis in inflammation-driven fibrotic skin disorders such as SSc.
Collapse
Affiliation(s)
- Vu H Luong
- University of Fukui, Fukui, Japan, and Hanoi Medical University, Hanoi, Vietnam
| | | | | | - Le H Doanh
- Hanoi Medical University, Hanoi, Vietnam
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Yanan W, Wenyong Z, Ze L, Jingxia G, Lei M, Shengjie O, Bingjie Z, Xiaohu D, Weidong L, Guoyang L. Identification of genes and pathways in human antigen-presenting cell subsets in response to polio vaccine by bioinformatical analysis. J Med Virol 2019; 91:1729-1736. [PMID: 31187886 DOI: 10.1002/jmv.25514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 04/11/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Polio eradication has been achieved in the world except for three countries due to the widespread use of the inactivated poliovirus vaccine (IPV) and the live-attenuated oral poliovirus vaccine. Following polio eradication, the IPV would be the only polio vaccine available. However, the mechanisms of the interactions between IPV and human antigen-presenting cells (APCs) remain largely unclear. METHODS To investigate the involvement of the IPV in human monocytes, we downloaded the gene chip GSE44721 from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were identified using the GEO2R analysis tool. Functional and pathway enrichment analyses were performed for DEGs using the Metascape database. DEG-associated protein-protein-interactions (PPIs) were established by the Search Tool for the Retrieval of Interacting Genes website and visualized by Cytoscape. RESULTS There were 240 DEGs (51 upregulated and 189 downregulated genes) identified from the GSE44721 data set, and they were significantly enriched in several biological processes, including antigen processing and presentation of lipid antigen via MHC class Ib, adaptive immune response, and response to interferon-gamma. One hundred thirty-six nodes were screened from the DEG PPI network. There were six significant hub proteins (WDR36, MRTO4, RPF2, PPAN, CD40, and BMS1) that regulated the IPV in human monocytes. CONCLUSIONS In summary, using bioinformatical analysis, we have information for the immunization activated by the IPV in monocytes. Moreover, hormones and cytokines regulate the activation of APCs.
Collapse
Affiliation(s)
- Wu Yanan
- The Fifth Department of Biological Products, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Zhu Wenyong
- The Fifth Department of Biological Products, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Liu Ze
- The Fifth Department of Biological Products, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Gao Jingxia
- The Fifth Department of Biological Products, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Ma Lei
- The Fifth Department of Biological Products, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Ouyang Shengjie
- The Fifth Department of Biological Products, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Zhang Bingjie
- The Fifth Department of Biological Products, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Dai Xiaohu
- The Fifth Department of Biological Products, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Li Weidong
- The Department of Production Administration, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Liao Guoyang
- The Fifth Department of Biological Products, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| |
Collapse
|
44
|
Naranjo-Gómez JS, Castillo-Ramírez JA, Velilla-Hernández PA, Castaño-Monsalve DM. Inmunopatología del dengue: importancia y participación de los monocitos y sus subpoblaciones. IATREIA 2019. [DOI: 10.17533/udea.iatreia.09] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
El dengue es una infección viral aguda transmitida por la picadura de mosquitos del género Aedes, la cual produce hasta 100 millones de infecciones anuales en el mundo. Una gran proporción de individuos infectados con el virus presentan infecciones asintomáticas. Sin embargo, de los individuos que desarrollan la enfermedad, el 95 % presentan signos y síntomas similares a una virosis común, que por lo general se autoresuelven (dengue con y sin signos de alarma). El 5 % restante puede evolucionar a manifestaciones graves, caracterizadas por hemorragias, daño orgánico, choque hipovolémico e incluso la muerte (dengue grave).Los monocitos son uno de los blancos principales de la infección producida por el virus del dengue (DENV), los cuales participan en la replicación del mismo y en la producción de una gran variedad de citoquinas que contribuyen con el daño de diferentes tejidos y órganos en respuesta a la infección. Los monocitos se dividen en tres subpoblaciones: clásica (CD14++CD16-), no clásica (CD14+CD16++) e intermedia (CD14++CD16+), las cuales poseen respuestas funcionales contrastantes en diferentes procesos inflamatorios, en cuanto a la producción de mediadores solubles e interacción con el endotelio. Los monocitos no clásicos parecen ser los principales productores de mediadores inflamatorios como el TNF-α y la IL-1β en respuesta a la infección por DENV. Por lo tanto, se propone que cada subpoblación de monocitos debe tener un papel diferencial en la inmunopatología de la enfermedad.En esta revisión se recopilan los principales aspectos de la replicación viral y la inmunopatología del dengue, así como los principales hallazgos referentes al papel de los monocitos en esta infección y además, se propone un papel potencial y diferencial de las subpoblaciones de monocitos.
Collapse
|
45
|
Kim SH, Park BB, Hong SE, Ryu SR, Lee JH, Kim SH, Lee P, Cho EK, Moon C. Effects of 2-methoxy-1,4-naphthoquinone (MQ) on MCP-1 Induced THP-1 Migration. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2019. [DOI: 10.15324/kjcls.2019.51.2.245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Si Hyun Kim
- Department of Clinical Laboratory Science, Semyung University, Jecheon, Korea
| | - Bo Bin Park
- Department of Clinical Laboratory Science, Semyung University, Jecheon, Korea
| | - Sung Eun Hong
- Department of Clinical Laboratory Science, Semyung University, Jecheon, Korea
| | - Sung Ryul Ryu
- Department of Clinical Laboratory Science, Semyung University, Jecheon, Korea
| | - Jang Ho Lee
- Department of Clinical Laboratory Science, Semyung University, Jecheon, Korea
| | - Sa Hyun Kim
- Department of Clinical Laboratory Science, Semyung University, Jecheon, Korea
| | - Pyeongjae Lee
- School of Industrial Bio-Pharmaceutical Science, Semyung University, Jecheon, Korea
| | - Eun-Kyung Cho
- Department of Biomedical Laboratory Science, Kyungwoon University, Gumi, Korea
| | - Cheol Moon
- Department of Clinical Laboratory Science, Semyung University, Jecheon, Korea
| |
Collapse
|
46
|
Ronchi G, Morano M, Fregnan F, Pugliese P, Crosio A, Tos P, Geuna S, Haastert-Talini K, Gambarotta G. The Median Nerve Injury Model in Pre-clinical Research - A Critical Review on Benefits and Limitations. Front Cell Neurosci 2019; 13:288. [PMID: 31316355 PMCID: PMC6609919 DOI: 10.3389/fncel.2019.00288] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 06/13/2019] [Indexed: 12/21/2022] Open
Abstract
The successful introduction of innovative treatment strategies into clinical practise strongly depends on the availability of effective experimental models and their reliable pre-clinical assessment. Considering pre-clinical research for peripheral nerve repair and reconstruction, the far most used nerve regeneration model in the last decades is the sciatic nerve injury and repair model. More recently, the use of the median nerve injury and repair model has gained increasing attention due to some significant advantages it provides compared to sciatic nerve injury. Outstanding advantages are the availability of reliable behavioural tests for assessing posttraumatic voluntary motor recovery and a much lower impact on the animal wellbeing. In this article, the potential application of the median nerve injury and repair model in pre-clinical research is reviewed. In addition, we provide a synthetic overview of a variety of methods that can be applied in this model for nerve regeneration assessment. This article is aimed at helping researchers in adequately adopting this in vivo model for pre-clinical evaluation of peripheral nerve reconstruction as well as for interpreting the results in a translational perspective.
Collapse
Affiliation(s)
- Giulia Ronchi
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi Foundation (NICO), University of Turin, Turin, Italy
| | - Michela Morano
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi Foundation (NICO), University of Turin, Turin, Italy
| | - Federica Fregnan
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi Foundation (NICO), University of Turin, Turin, Italy
| | - Pierfrancesco Pugliese
- Dipartimento di Chirurgia Generale e Specialistica, Azienda Ospedaliera Universitaria, Ancona, Italy
| | - Alessandro Crosio
- UO Microchirurgia e Chirurgia della Mano, Ospedale Gaetano Pini, Milan, Italy
| | - Pierluigi Tos
- UO Microchirurgia e Chirurgia della Mano, Ospedale Gaetano Pini, Milan, Italy
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi Foundation (NICO), University of Turin, Turin, Italy
| | - Kirsten Haastert-Talini
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hanover, Germany.,Center for Systems Neuroscience (ZSN) Hannover, Hanover, Germany
| | - Giovanna Gambarotta
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| |
Collapse
|
47
|
Differential expression of Plg-R KT and its effects on migration of proinflammatory monocyte and macrophage subsets. Blood 2019; 134:561-567. [PMID: 31221672 DOI: 10.1182/blood.2018850420] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 06/05/2019] [Indexed: 12/11/2022] Open
Abstract
Membrane-bound plasmin is used by immune cells to degrade extracellular matrices, which facilitates migration. The plasminogen receptor Plg-RKT is expressed by immune cells, including monocytes and macrophages. Among monocytes and macrophages, distinct subsets can be distinguished based on cell surface markers and pathophysiological function. We investigated expression of Plg-RKT by monocyte and macrophage subsets and whether potential differential expression might have functional consequences for cell migration. Proinflammatory CD14++CD16+ human monocytes and Ly6Chigh mouse monocytes expressed the highest levels of Plg-RKT and bound significantly more plasminogen compared with the other respective subsets. Proinflammatory human macrophages, generated by polarization with lipopolysaccharide and interferon-γ, showed significantly higher expression of Plg-RKT compared with alternatively activated macrophages, polarized with interleukin-4 and interleukin-13. Directional migration of proinflammatory monocytes was plasmin dependent and was abolished by anti-Plg-RKT monoclonal antibody, ε-amino-caproic acid, aprotinin, and the aminoterminal fragment of urokinase-type plasminogen activator. In an in vivo peritonitis model, significantly less Ly6Chigh monocyte recruitment was observed in Plg-RKT -/- compared with Plg-RKT +/+ mice. Immunohistochemical analysis of human carotid plaques and adipose tissue showed that proinflammatory macrophages also exhibited high levels of Plg-RKT in vivo. Our data demonstrate higher expression of Plg-RKT on proinflammatory monocyte and macrophage subsets that impacts their migratory capacity.
Collapse
|
48
|
Michalson KT, Macintyre AN, Sempowski GD, Bourland JD, Howard TD, Hawkins GA, Dugan GO, Cline JM, Register TC. Monocyte Polarization is Altered by Total-Body Irradiation in Male Rhesus Macaques: Implications for Delayed Effects of Acute Radiation Exposure. Radiat Res 2019; 192:121-134. [PMID: 31161966 DOI: 10.1667/rr15310.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Radiation-induced fibrosis (RIF) is a common delayed effect of acute ionizing radiation exposure (DEARE) affecting diverse tissues including the heart, lungs, liver and skin, leading to reduced tissue function and increased morbidity. Monocytes, which may be classified into classical (CD14++, CD16-), intermediate (CD14++, CD16+) and non-classical (CD14+/low, CD16++) subtypes in humans and non-human primates (NHPs), and monocyte-derived macrophages may play an integral role in the pathogenesis of RIF. We tested the hypothesis that moderate to high levels of total-body exposure to radiation would alter monocyte polarization and produce phenotypes that could promote multi-organ fibrosis in a wellestablished NHP model of DEARE. Subjects were 16 young adult male rhesus macaques, ten of which were exposed to high-energy, 4 Gy X-ray total-body irradiation (TBI) and six that received sham irradiation (control). Total monocytes assessed by complete blood counts were 89% depleted in TBI animals by day 9 postirradiation (P < 0.05), but recovered by day 30 postirradiation and did not differ from control levels thereafter. Monocytes were isolated from peripheral blood mononuclear cells (PBMCs) and sorted into classical, intermediate and non-classical subsets using fluorescence-activated cell sorting (FACS) prior to and at 6 months post-TBI. At 6 months postirradiation, monocyte polarization shifted towards lower classical (92% → 86%) and higher intermediate (7% → 12%) and non-classical monocyte subsets (0.6% → 2%) (all P < 0.05) in TBI animals compared to baseline. No change in monocyte subsets was observed in control animals. Transcriptional profiles in classical and intermediate monocyte subsets were assessed using RNAseq. Classical monocyte gene expression did not change significantly over time or differ cross-sectionally between TBI and control groups. In contrast, significant numbers of differentially expressed genes (DEGs) were detected in intermediate monocyte comparisons between the TBI animals and all animals at baseline (304 DEGs), and in the TBI versus control animals at 6 months postirradiation (67 DEGs). Intermediate monocytes also differed between baseline and 6 months in control animals (147 DEGs). Pathway analysis was used to identify genes within significant canonical pathways, yielding 52 DEGs that were specific to irradiated intermediate monocytes. These DEGs and significant canonical pathways were associated with pro-fibrotic and anti-inflammatory signaling pathways that have been noted to induce M2 macrophage polarization. These findings support the hypothesis that TBI may alter monocyte programming and polarization towards a profibrotic phenotype, providing a novel target opportunity for therapies to inhibit or prevent RIF.
Collapse
Affiliation(s)
- Kristofer T Michalson
- Department of a Pathology/Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Andrew N Macintyre
- d Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina
| | - Gregory D Sempowski
- d Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina
| | - J Daniel Bourland
- b Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Timothy D Howard
- c Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Gregory A Hawkins
- c Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Gregory O Dugan
- Department of a Pathology/Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - J Mark Cline
- Department of a Pathology/Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Thomas C Register
- Department of a Pathology/Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
49
|
Meng L, Almeida LN, Clauder AK, Lindemann T, Luther J, Link C, Hofmann K, Kulkarni U, Wong DM, David JP, Manz RA. Bone Marrow Plasma Cells Modulate Local Myeloid-Lineage Differentiation via IL-10. Front Immunol 2019; 10:1183. [PMID: 31214168 PMCID: PMC6555095 DOI: 10.3389/fimmu.2019.01183] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 05/09/2019] [Indexed: 12/16/2022] Open
Abstract
Bone marrow plasma cells have been reported to represent a major source of IL-10; however, the impact of plasma cell derived IL-10 in that tissue remains poorly understood. We confirm in this study that even in the absence of acute immune reactions, mature plasma cells represent the dominant IL-10+ cell population in the bone marrow, and identify myeloid-lineage cells as a main local target for plasma cell derived IL-10. Using Vert-X IL-10 transcriptional reporter mice, we found that more than 50% of all IL-10+ cells in bone marrow were CD138+ plasma cells, while other IL-10+ B lineage cells were nearly absent in this organ. Accordingly, IL-10 was found in the supernatants of short-term cultures of FACS-sorted bone marrow plasma cells, confirming IL-10 secretion from these cells. IL-10+ bone marrow plasma cells showed a B220-/CD19-/MHCII low phenotype suggesting that these cells represent a mature differentiation stage. Approximately 5% of bone marrow leucocytes expressed the IL-10 receptor (IL-10R), most of them being CD115+/Ly6C+/CD11c- monocytes. Compared to littermate controls, young B lineage specific IL-10 KO mice showed increased numbers of CD115+ cells but normal populations of other myeloid cell types in bone marrow. However, at 7 months of age B lineage specific IL-10 KO mice exhibited increased populations of CD115+ myeloid and CD11c+ dendritic cells (DCs), and showed reduced F4/80 expression in this tissue; hence, indicating that bone marrow plasma cells modulate the differentiation of local myeloid lineage cells via IL-10, and that this effect increases with age. The effects of B cell/plasma cell derived IL-10 on the differentiation of CD115+, CD11c+, and F4/80+ myeloid cells were confirmed in co-culture experiments. Together, these data support the idea that IL-10 production is not limited to early plasma cell stages in peripheral tissues but is also an important feature of mature plasma cells in the bone marrow. Moreover, we provide evidence that already under homeostatic conditions in the absence of acute immune reactions, bone marrow plasma cells represent a non-redundant source for IL-10 that modulates local myeloid lineage differentiation. This is particularly relevant in older individuals.
Collapse
Affiliation(s)
- Lingzhang Meng
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.,Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | | | - Ann-Katrin Clauder
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Timo Lindemann
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Julia Luther
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christopher Link
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Katharina Hofmann
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Upasana Kulkarni
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - David Ming Wong
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Jean-Pierre David
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rudolf Armin Manz
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| |
Collapse
|
50
|
Ring S, Eggers L, Behrends J, Wutkowski A, Schwudke D, Kröger A, Hierweger AM, Hölscher C, Gabriel G, Schneider BE. Blocking IL-10 receptor signaling ameliorates Mycobacterium tuberculosis infection during influenza-induced exacerbation. JCI Insight 2019; 5:126533. [PMID: 30998505 PMCID: PMC6542649 DOI: 10.1172/jci.insight.126533] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Epidemiological findings indicate that coinfection with influenza viruses is associated with an increased risk of death in patients suffering from tuberculosis, but the underlying pathomechanisms are not well understood. In this study, we demonstrate that influenza A virus (IAV) coinfection rapidly impairs control of Mycobacterium tuberculosis (Mtb) in C57BL/6 mice. IAV coinfection was associated with significantly increased bacterial loads, reduced survival, and a substantial modulation of innate and adaptive immune defenses including an impaired onset and development of Mtb-specific CD4+ T cell responses and the accumulation of macrophages with increased arginase-1 production in the lungs. Our findings strongly indicate that IAV coinfection compromises the host’s ability to control Mtb infection via the production of IL-10, which was rapidly induced upon viral infection. The blockade of IL-10 receptor signaling reduced the bacterial load in coinfected mice to a level comparable to that in Mtb-only-infected animals. Taken together, our data suggest that IL-10 signaling constitutes a major pathway that enhances susceptibility to Mtb during concurrent IAV infection. IL-10R signaling constitutes a major pathway that impairs control of Mycobacterium tuberculosis during influenza co-infection.
Collapse
Affiliation(s)
- Sarah Ring
- Junior Research Group Coinfection, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Lars Eggers
- Junior Research Group Coinfection, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Jochen Behrends
- Core Facility Fluorescence Cytometry, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Adam Wutkowski
- Bioanalytical Chemistry, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Dominik Schwudke
- Bioanalytical Chemistry, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Andrea Kröger
- Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke-University Magdeburg, and Innate Immunity and Infection, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Alexandra Maximiliane Hierweger
- Department of Obstetrics and Fetal Medicine, Laboratory for Experimental Feto-Maternal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute for Immunology, Center for Diagnostics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Hölscher
- Infection Immunology, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Gülsah Gabriel
- Research Department Viral Zoonoses - One Health, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany.,Institute of Virology, University of Veterinary Medicine, Hannover, Germany
| | - Bianca E Schneider
- Junior Research Group Coinfection, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| |
Collapse
|