1
|
Martínez‐Augustin O, Tena‐Garitaonaindia M, Ceacero‐Heras D, Jiménez‐Ortas Á, Enguix‐Huete JJ, Álvarez‐Mercado AI, Ruiz‐Henares G, Aranda CJ, Gámez‐Belmonte R, Sánchez de Medina F. Macronutrients as Regulators of Intestinal Epithelial Permeability: Where Do We Stand? Compr Rev Food Sci Food Saf 2025; 24:e70178. [PMID: 40421830 PMCID: PMC12108046 DOI: 10.1111/1541-4337.70178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/23/2025] [Accepted: 04/04/2025] [Indexed: 05/28/2025]
Abstract
The intestinal barrier function (IBF) is essential for intestinal homeostasis. Its alterations have been linked to intestinal and systemic disease. Regulation of intestinal permeability is key in the maintenance of the IBF, in which the intestinal epithelium and tight junctions, the mucus layer, sIgA, and antimicrobial peptides are important factors. This review addresses the concept of IBF, focusing on permeability, and summarizes state-of-the-art information on how starvation and macronutrients regulate it. Novel mechanisms regulate intestinal permeability, like its induction by the normal process of nutrient absorption, the contribution of starvation-induced autophagy, or the stimulation of sIgA production by high-protein diets in a T-cell-independent fashion. In addition, observations evidence that starvation and protein restriction increase intestinal permeability, compromising mucin, antimicrobial peptides, and/or intestinal sIgA production. Regarding specific macronutrients, substantial evidence indicates that casein (compared to other protein sources), specific protein-derived peptides and glutamine reinforce IBF. Dietary carbohydrates regulate intestinal permeability in a structure- and composition-dependent fashion; fructose, glucose, and sucrose increase it, while nondigestible oligosaccharides (NDOs) decrease it. Among NDOs, human milk oligosaccharides (HMOs) stand as a promising tool. NODs effects are mediated by intestinal microbiota modulation, production of short-chain fatty acids, and direct interactions with intestinal cells. Finally, evidence supports avoiding high-fat diets for their detrimental effects on IBF. Most studies have been carried out in vitro or in animal models. More information is needed from clinical studies to substantiate beneficial effects and the use of macronutrients in the treatment and prevention of IBF-related diseases.
Collapse
Affiliation(s)
- Olga Martínez‐Augustin
- Department of Biochemistry and Molecular Biology II, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Insituto de Nutrición y Tecnología de los alimentos José Mataix and Instituto de Investigación Biosanitaria ibs.GRANADAUniversity of GranadaGranadaSpain
| | - Mireia Tena‐Garitaonaindia
- Department of Biochemistry and Molecular Biology II, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Insituto de Nutrición y Tecnología de los alimentos José Mataix and Instituto de Investigación Biosanitaria ibs.GRANADAUniversity of GranadaGranadaSpain
| | - Diego Ceacero‐Heras
- Department of Biochemistry and Molecular Biology II, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Insituto de Nutrición y Tecnología de los alimentos José Mataix and Instituto de Investigación Biosanitaria ibs.GRANADAUniversity of GranadaGranadaSpain
| | - Ángela Jiménez‐Ortas
- Department of Biochemistry and Molecular Biology II, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Insituto de Nutrición y Tecnología de los alimentos José Mataix and Instituto de Investigación Biosanitaria ibs.GRANADAUniversity of GranadaGranadaSpain
| | - Juan J. Enguix‐Huete
- Department of Pharmacology, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADAUniversity of GranadaGranadaSpain
| | - Ana I. Álvarez‐Mercado
- Department of Pharmacology, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADAUniversity of GranadaGranadaSpain
| | - Guillermo Ruiz‐Henares
- Department of Pharmacology, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADAUniversity of GranadaGranadaSpain
| | - Carlos J. Aranda
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina‐ IBIMA Plataforma BIONANDRICORS “Enfermedades inflamatorias”MálagaSpain
| | - Reyes Gámez‐Belmonte
- Department of Pharmacology, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADAUniversity of GranadaGranadaSpain
- Department of Medicine 1University of Erlangen‐NurembergErlangenGermany
| | - Fermín Sánchez de Medina
- Department of Pharmacology, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADAUniversity of GranadaGranadaSpain
| |
Collapse
|
2
|
Karin M, Kim JY. MASH as an emerging cause of hepatocellular carcinoma: current knowledge and future perspectives. Mol Oncol 2025; 19:275-294. [PMID: 38874196 PMCID: PMC11793012 DOI: 10.1002/1878-0261.13685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 04/15/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024] Open
Abstract
Hepatocellular carcinoma is one of the deadliest and fastest-growing cancers. Among HCC etiologies, metabolic dysfunction-associated fatty liver disease (MAFLD) has served as a major HCC driver due to its great potential for increasing cirrhosis. The obesogenic environment fosters a positive energy balance and results in a continuous rise of obesity and metabolic syndrome. However, it is difficult to understand how metabolic complications lead to the poor prognosis of liver diseases and which molecular mechanisms are underpinning MAFLD-driven HCC development. Thus, suitable preclinical models that recapitulate human etiologies are essentially required. Numerous preclinical models have been created but not many mimicked anthropometric measures and the course of disease progression shown in the patients. Here we review the literature on adipose tissues, liver-related HCC etiologies and recently discovered genetic mutation signatures found in MAFLD-driven HCC patients. We also critically review current rodent models suggested for MAFLD-driven HCC study.
Collapse
Affiliation(s)
- Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Ju Youn Kim
- Department of Molecular and Life ScienceHanyang University ERICAAnsanKorea
| |
Collapse
|
3
|
Shi XF, He X, Sun ZR, Duo J, Yang H. Different expression of circulating microRNA profile in tibetan OSAHS with metabolic syndrome patients. Sci Rep 2025; 15:3013. [PMID: 39849122 PMCID: PMC11758385 DOI: 10.1038/s41598-025-87662-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 01/21/2025] [Indexed: 01/25/2025] Open
Abstract
Recent empirical investigations reinforce the understanding of a profound interconnection between metabolic functions and Obstructive Sleep Apnea-hypopnea Syndrome (OSAHS). This study identifies distinctive miRNA signatures in OSAHS with Metabolic Syndrome (Mets) patients from healthy subjects, that could serve as diagnostic biomarkers or describe differential molecular mechanisms with potential therapeutic implications. In this study, OSAHS with MetS patients showed significantly higher Apnea Hyponea Index(AHI), but lower oxygen desaturation index(ODI 4/h) and minimum pulse oxygen saturation(SpO2). A total of 33 differentially expressed miRNAs by Limma method, and 31 differentially expressed miRNAs by DEseq2 method were screened. In addition, GO enrichment analysis of target genes associated with differentially expressed miRNAs revealed significant enrichment in metabolic processes, suggesting that the differential expression of OSAHS-induced miRNAs may contribute to the progression of metabolic disorders through the regulation of metabolic pathways. Furthermore, KEGG pathway enrichment analysis revealed significant enrichment in the p53 signaling pathway and several other pathways. Notably, the Wnt signaling pathway, PI3K-Akt signaling pathway, cAMP signaling pathway, and AMPK signaling pathway are implicated in the metabolic processes of glucose dysregulation and lipid homeostasis, as well as the pathogenesis of hypertension associated with OSAHS. We identified IKBKB, PIK3R1, and MAP2K1 as the target genes most associated with Mets pathogenesis in OSAHS, regulated by miR-503-5p, miR-497-5p, and miR-497-5p, respectively. Additionally, the target genes of differentially expressed miRNAs between Tibetan OSAHS patients with MetS and healthy individuals are regulated by transcription factors such as NR2C1, STAT3, STAT5a, HIF1a, ETV4, NANOG, RELA, SP1, E2F1, NFKB1, AR, and MYC. In conlusion, we found differentially expressed miRNAs in Tibetan OSAHS patients with Metabolic Syndrome for the first time. Enrichment analysis results suggest that differentially expressed miRNAs may involved in the development of OSAHS-related metabolic disorders by regulating metabolic pathways. We also revealed that IKBKB, PIK3R1, and MAP2K1 are mostly associated with metabolic disorder in OSAHS, and miR-503-5p and miR-497-5p may regulate the development of MetS associated with OSAHS by modulating IKBKB, PIK3R1, and MAP2K1.
Collapse
Affiliation(s)
- Xue-Feng Shi
- Department of Respiratory Medicine, Qinghai Provincial People's Hospital, Xining, 810007, Qinghai, People's Republic of China
| | - Xiang He
- Department of Respiratory Medicine, Qinghai Provincial People's Hospital, Xining, 810007, Qinghai, People's Republic of China
- Department of Infectious Diseases, No.988 Hospital of Joint Logistic Support Force, Zhengzhou, People's Republic of China
| | - Ze-Rui Sun
- Department of Respiratory Medicine, Qinghai Provincial People's Hospital, Xining, 810007, Qinghai, People's Republic of China
- Department of Respiratory Medicine, Henan Huanghe Science and Technology College Affiliated Hospital, Zhengzhou, 450061, People's Republic of China
| | - Jie Duo
- Department of Respiratory Medicine, Qinghai Provincial People's Hospital, Xining, 810007, Qinghai, People's Republic of China.
| | - Hao Yang
- Department of Respiratory medicine, Taian 88 Hospital, Taian, 271000, People's Republic of China.
| |
Collapse
|
4
|
Illg C, Denzinger M, Rachunek K, Farzaliyev F, Thiel JT, Daigeler A, Krauss S. Is overweight a predictor for a more severe course of disease in cases of necrotizing fasciitis? Eur J Trauma Emerg Surg 2024; 50:3319-3328. [PMID: 39190067 DOI: 10.1007/s00068-024-02638-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 08/04/2024] [Indexed: 08/28/2024]
Abstract
PURPOSE Necrotizing fasciitis is a rare but severe soft tissue infection, and its diagnosis is difficult and often delayed. Immediate treatment comprising extensive debridement, highly dosed broad-spectrum antibiotic therapy and intensive care is necessary to prevent fatal outcomes. Considering the global rise in overweight patients and the known negative effects of obesity on the immune system, the aim of this study was to analyze whether overweight results in a more severe course of necrotizing fasciitis, worse outcomes and an increased mortality rate among overweight patients compared than in normal weight patients. METHODS The present study involved a retrospective analysis of 29 patients who were treated for necrotizing fasciitis in our level one trauma center during the eight-year period between 2013 and 2020. Based on their BMIs, the patients were assigned to either the overweight group (BMI > 25) or the normal weight group. RESULTS In the study population, being overweight appeared to be a predictor for a more severe course of necrotizing fasciitis. Overweight patients suffered from sepsis significantly more often than normal weight patients (13 vs. 5; p = 0.027). Furthermore, they were dependent on invasive ventilation (26.6 ± 33.8 vs. 5.9 ± 11.9 days; p = 0.046) as well as catecholamine support (18.4 ± 23.7 vs. 3.6 ± 5.7 days; p = 0.039) for significantly longer. CONCLUSION Necrotizing fasciitis remains a challenging and potentially fatal disease. Within the patient collective, the severity of the disease and treatment effort were increased among overweight patients.
Collapse
Affiliation(s)
- Claudius Illg
- Department of Hand, Plastic, Reconstructive and Burn Surgery, BG Unfallklinik Tuebingen, Eberhard Karls University Tuebingen, Schnarrenbergstrasse 95, 72076, Tuebingen, Germany.
| | - Markus Denzinger
- Department of Pediatric Surgery, University Medical Center, Regensburg, Germany
| | - Katarzyna Rachunek
- Department of Hand, Plastic, Reconstructive and Burn Surgery, BG Unfallklinik Tuebingen, Eberhard Karls University Tuebingen, Schnarrenbergstrasse 95, 72076, Tuebingen, Germany
| | - Farhad Farzaliyev
- Department of Hand, Plastic, Reconstructive and Burn Surgery, BG Unfallklinik Tuebingen, Eberhard Karls University Tuebingen, Schnarrenbergstrasse 95, 72076, Tuebingen, Germany
| | - Johannes T Thiel
- Department of Hand, Plastic, Reconstructive and Burn Surgery, BG Unfallklinik Tuebingen, Eberhard Karls University Tuebingen, Schnarrenbergstrasse 95, 72076, Tuebingen, Germany
| | - Adrien Daigeler
- Department of Hand, Plastic, Reconstructive and Burn Surgery, BG Unfallklinik Tuebingen, Eberhard Karls University Tuebingen, Schnarrenbergstrasse 95, 72076, Tuebingen, Germany
| | - Sabrina Krauss
- Department of Hand, Plastic, Reconstructive and Burn Surgery, BG Unfallklinik Tuebingen, Eberhard Karls University Tuebingen, Schnarrenbergstrasse 95, 72076, Tuebingen, Germany
| |
Collapse
|
5
|
Kong Y, Li F, Yue X, Xu Y, Bai J, Fu W. SNPS within the SLC27A6 gene are highly associated with Hu sheep fatty acid content. Gene 2024; 927:148716. [PMID: 38914245 DOI: 10.1016/j.gene.2024.148716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/15/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024]
Abstract
Fatty acids (FA) are an important factor affecting meat quality and human health, and the important role of the solute carrier family 27 member 6 (SLC27A6) in FA metabolism has been demonstrated in several species. However, the expression profile of the SLC27A6 in different tissues and the effect of its polymorphism on FA in sheep are currently unknown. This study aimed to explore the differences in FAs in the longissimus dorsi (LD) of 1,085 Hu sheep, the expression profile of SLC27A6, and confirm the effect of single nucleotide polymorphisms (SNPs) on FA phenotypes. We found that many FA phenotypes differ significantly across different seasons, and winter promoted the deposition of polyunsaturated fatty acids (PUFA). The mRNA expression level of SLC27A6 in the lung was significantly higher than that in the heart, testis, and LD. A total of 16 SNPs were detected in the SLC27A6, and 14 SNPs were successfully genotyped by improved multiplex ligase detection reaction (iMLDR) technology. Correlation analysis showed that 7 SNPs significantly affected at least one FA phenotype. Among them, SNP14 contributes to the selection of lamb with low saturated fatty acid content and high PUFA content. Combined genotypes also significantly affected a variety of beneficial FAs such as C18:3n3, C20:4n6, C22:6n3, and monounsaturated fatty acids. This study suggests that SLC27A6 plays an important role in FA metabolism and SNPs that are significantly associated with FA phenotype could be used as potential molecular markers for later targeted regulation of FA profiles in sheep.
Collapse
Affiliation(s)
- Yuanyuan Kong
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Fadi Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Xiangpeng Yue
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Yanli Xu
- Institute of Animal Husbandry Quality Standards, Xinjiang Academy of Animal Science, Urumqi 830057, China
| | - Jingjing Bai
- Animal Husbandry and Veterinary Extension Station of Wuwei City, Wuwei 733000, China
| | - Weiwei Fu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| |
Collapse
|
6
|
Dimitrov I, Stankova T, Angelova P, Boyadjiev N, Georgieva K, Dimov I, Bivolarska A, Draganova M, Gerginska F, Daskalova E, Gramatikov V, Delchev S. Diet-Induced Early Inflammatory Response of Visceral Adipose Tissue in Healthy Male Wistar Rats. Nutrients 2024; 16:1184. [PMID: 38674875 PMCID: PMC11053711 DOI: 10.3390/nu16081184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
The prolonged consumption of a high-fat diet (HFD) leads to abnormal growth of the visceral adipose tissue (VAT), increased macrophage infiltration, and altered secretion of biologically active molecules. This is considered as a precondition for the development of obesity, inflammation, and obesity-related disorders. Therefore, we studied HFD-induced changes in the tissue levels of the inflammatory markers C-reactive protein, serum amyloid-A, and interleukin-4 in healthy male Wistar rats. The animals were first divided at random into two groups subjected to either a standard or a high-fat diet. The initial effect of the diet was evaluated after fourteen weeks. In order to study the diet duration effect, the standard diet was given to twelve animals from the HFD group, while the remaining continued with the HFD for an additional four weeks. Our results showed that the HFD barely affected body mass index, conicity, relative fat mass, and Lee indices, whereas it provoked adipocyte hypertrophy and gradually increased the levels of both the pro- and anti-inflammatory markers. The switch from the high-fat to the standard diet resulted in the comparatively fast restoration of the baseline levels of the studied molecules. Although, the prolonged consumption of an HFD causes adipocyte hypertrophy in healthy male animals, the inflammatory process in VAT is well-coordinated, time-dependent, and reversible.
Collapse
Affiliation(s)
- Iliyan Dimitrov
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (T.S.); (I.D.); (A.B.)
| | - Teodora Stankova
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (T.S.); (I.D.); (A.B.)
| | - Penka Angelova
- Department of Physiology, Faculty of Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria (K.G.)
| | - Nikolay Boyadjiev
- Department of Physiology, Faculty of Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria (K.G.)
| | - Katerina Georgieva
- Department of Physiology, Faculty of Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria (K.G.)
| | - Ivica Dimov
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (T.S.); (I.D.); (A.B.)
| | - Anelia Bivolarska
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (T.S.); (I.D.); (A.B.)
| | - Milena Draganova
- Department of Medical Biology, Faculty of Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Fanka Gerginska
- Department of Human Anatomy, Histology and Embryology, Faculty of Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (F.G.); (E.D.); (S.D.)
| | - Elena Daskalova
- Department of Human Anatomy, Histology and Embryology, Faculty of Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (F.G.); (E.D.); (S.D.)
| | | | - Slavi Delchev
- Department of Human Anatomy, Histology and Embryology, Faculty of Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (F.G.); (E.D.); (S.D.)
| |
Collapse
|
7
|
Chen Y, Chen H, Wang Y, Liu F, Fan X, Shi C, Su X, Tan M, Yang Y, Lin B, Lei K, Qu L, Yang J, Zhu Z, Yuan Z, Xie S, Sun Q, Neculai D, Liu W, Yan Q, Wang X, Shao J, Liu J, Lin A. LncRNA LINK-A Remodels Tissue Inflammatory Microenvironments to Promote Obesity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303341. [PMID: 38145352 PMCID: PMC10933663 DOI: 10.1002/advs.202303341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/09/2023] [Indexed: 12/26/2023]
Abstract
High-fat diet (HFD)-induced obesity is a crucial risk factor for metabolic syndrome, mainly due to adipose tissue dysfunctions associated with it. However, the underlying mechanism remains unclear. This study has used genetic screening to identify an obesity-associated human lncRNA LINK-A as a critical molecule bridging the metabolic microenvironment and energy expenditure in vivo by establishing the HFD-induced obesity knock-in (KI) mouse model. Mechanistically, HFD LINK-A KI mice induce the infiltration of inflammatory factors, including IL-1β and CXCL16, through the LINK-A/HB-EGF/HIF1α feedback loop axis in a self-amplified manner, thereby promoting the adipose tissue microenvironment remodeling and adaptive thermogenesis disorder, ultimately leading to obesity and insulin resistance. Notably, LINK-A expression is positively correlated with inflammatory factor expression in individuals who are overweight. Of note, targeting LINK-A via nucleic acid drug antisense oligonucleotides (ASO) attenuate HFD-induced obesity and metabolic syndrome, pointing out LINK-A as a valuable and effective therapeutic target for treating HFD-induced obesity. Briefly, the results reveale the roles of lncRNAs (such as LINK-A) in remodeling tissue inflammatory microenvironments to promote HFD-induced obesity.
Collapse
Affiliation(s)
- Yu Chen
- MOE Laboratory of Biosystem Homeostasis and ProtectionCollege of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Hui Chen
- MOE Laboratory of Biosystem Homeostasis and ProtectionCollege of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Ying Wang
- MOE Laboratory of Biosystem Homeostasis and ProtectionCollege of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Fangzhou Liu
- MOE Laboratory of Biosystem Homeostasis and ProtectionCollege of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Xiao Fan
- MOE Laboratory of Biosystem Homeostasis and ProtectionCollege of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Chengyu Shi
- MOE Laboratory of Biosystem Homeostasis and ProtectionCollege of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Xinwan Su
- MOE Laboratory of Biosystem Homeostasis and ProtectionCollege of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Manman Tan
- MOE Laboratory of Biosystem Homeostasis and ProtectionCollege of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Yebin Yang
- The Fourth School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouZhejiang310053China
| | - Bangxing Lin
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouZhejiang310006China
| | - Kai Lei
- MOE Laboratory of Biosystem Homeostasis and ProtectionCollege of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Lei Qu
- MOE Laboratory of Biosystem Homeostasis and ProtectionCollege of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Jiecheng Yang
- MOE Laboratory of Biosystem Homeostasis and ProtectionCollege of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Zhipeng Zhu
- MOE Laboratory of Biosystem Homeostasis and ProtectionCollege of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Zengzhuang Yuan
- Zhejiang University‐University of Edinburgh Institute (ZJU‐UoE Institute)University School of MedicineInternational CampusZhejiang UniversityHainingZhejiang314400China
| | - Shanshan Xie
- The Children's HospitalNational Clinical Research Center for Child HealthZhejiang University School of MedicineHangzhouZhejiang310003China
- Department of Cell BiologyZhejiang University School of MedicineHangzhouZhejiang310058China
| | - Qinming Sun
- Department of BiochemistryDepartment of Cardiology of Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang313000China
- International School of MedicineInternational Institutes of MedicineThe 4th Affiliated Hospital of Zhejiang University School of MedicineYiwuZhejiang322000China
| | - Dante Neculai
- International School of MedicineInternational Institutes of MedicineThe 4th Affiliated Hospital of Zhejiang University School of MedicineYiwuZhejiang322000China
- Department of Cell BiologyDepartment of General Surgery of Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiang310016China
| | - Wei Liu
- Department of BiochemistryDepartment of Cardiology of Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang313000China
- International School of MedicineInternational Institutes of MedicineThe 4th Affiliated Hospital of Zhejiang University School of MedicineYiwuZhejiang322000China
| | - Qingfeng Yan
- MOE Laboratory of Biosystem Homeostasis and ProtectionCollege of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Xiang Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouZhejiang310006China
- Department of Central LaboratoryThe First People's Hospital of HuzhouHuzhouZhejiang313000China
| | - Jianzhong Shao
- MOE Laboratory of Biosystem Homeostasis and ProtectionCollege of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Jian Liu
- Zhejiang University‐University of Edinburgh Institute (ZJU‐UoE Institute)University School of MedicineInternational CampusZhejiang UniversityHainingZhejiang314400China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058China
- Hangzhou Cancer InstitutionAffiliated Hangzhou Cancer HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiang310002China
- College of Medicine and Veterinary MedicineThe University of EdinburghEdinburghEH16 4SBUK
| | - Aifu Lin
- MOE Laboratory of Biosystem Homeostasis and ProtectionCollege of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
- International School of MedicineInternational Institutes of MedicineThe 4th Affiliated Hospital of Zhejiang University School of MedicineYiwuZhejiang322000China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058China
- Key Laboratory for Cell and Gene Engineering of Zhejiang ProvinceHangzhouZhejiang310058China
- Future Health LaboratoryInnovation Center of Yangtze River DeltaZhejiang UniversityJiaxingZhejiang314100China
- Key Laboratory of Cancer Prevention and InterventionChina National Ministry of EducationHangzhouZhejiang310009China
| |
Collapse
|
8
|
Patlola SR, Donohoe G, McKernan DP. Counting the Toll of Inflammation on Schizophrenia-A Potential Role for Toll-like Receptors. Biomolecules 2023; 13:1188. [PMID: 37627253 PMCID: PMC10452856 DOI: 10.3390/biom13081188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Toll-like receptors (TLRs) are a family of pattern recognition receptors (PRRs) that are ubiquitously expressed in the human body. They protect the brain and central nervous system from self and foreign antigens/pathogens. The immune response elicited by these receptors culminates in the release of cytokines, chemokines, and interferons causing an inflammatory response, which can be both beneficial and harmful to neurodevelopment. In addition, the detrimental effects of TLR activation have been implicated in multiple neurodegenerative diseases such as Alzheimer's, multiple sclerosis, etc. Many studies also support the theory that cytokine imbalance may be involved in schizophrenia, and a vast amount of literature showcases the deleterious effects of this imbalance on cognitive performance in the human population. In this review, we examine the current literature on TLRs, their potential role in the pathogenesis of schizophrenia, factors affecting TLR activity that contribute towards the risk of schizophrenia, and lastly, the role of TLRs and their impact on cognitive performance in schizophrenia.
Collapse
Affiliation(s)
- Saahithh Redddi Patlola
- Department of Pharmacology & Therapeutics, School of Medicine, University of Galway, H91 TK33 Galway, Ireland;
| | - Gary Donohoe
- School of Psychology, University of Galway, H91 TK33 Galway, Ireland;
| | - Declan P. McKernan
- Department of Pharmacology & Therapeutics, School of Medicine, University of Galway, H91 TK33 Galway, Ireland;
| |
Collapse
|
9
|
Jorgensen SF, Macpherson ME, Skarpengland T, Berge RK, Fevang B, Halvorsen B, Aukrust P. Disturbed lipid profile in common variable immunodeficiency - a pathogenic loop of inflammation and metabolic disturbances. Front Immunol 2023; 14:1199727. [PMID: 37545531 PMCID: PMC10398391 DOI: 10.3389/fimmu.2023.1199727] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
The relationship between metabolic and inflammatory pathways play a pathogenic role in various cardiometabolic disorders and is potentially also involved in the pathogenesis of other disorders such as cancer, autoimmunity and infectious diseases. Common variable immunodeficiency (CVID) is the most common primary immunodeficiency in adults, characterized by increased frequency of airway infections with capsulated bacteria. In addition, a large proportion of CVID patients have autoimmune and inflammatory complications associated with systemic inflammation. We summarize the evidence that support a role of a bidirectional pathogenic interaction between inflammation and metabolic disturbances in CVID. This include low levels and function of high-density lipoprotein (HDL), high levels of triglycerides (TG) and its major lipoprotein very low-density lipoprotein (VLDL), and an unfavorable fatty acid (FA) profile. The dysregulation of TG, VLDL and FA were linked to disturbed gut microbiota profile, and TG and VLDL levels were strongly associated with lipopolysaccharides (LPS), a marker of gut leakage in blood. Of note, the disturbed lipid profile in CVID did not include total cholesterol levels or high low-density lipoprotein levels. Furthermore, increased VLDL and TG levels in blood were not associated with diet, high body mass index and liver steatosis, suggesting a different phenotype than in patients with traditional cardiovascular risk such as metabolic syndrome. We hypothesize that these metabolic disturbances are linked to inflammation in a bidirectional manner with disturbed gut microbiota as a potential contributing factor.
Collapse
Affiliation(s)
- Silje F. Jorgensen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Magnhild E. Macpherson
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Tonje Skarpengland
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Rolf K. Berge
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Børre Fevang
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
10
|
Yang H, Luo Y, Lai X. The comprehensive role of apoptosis inhibitor of macrophage (AIM) in pathological conditions. Clin Exp Immunol 2023; 212:184-198. [PMID: 36427004 PMCID: PMC10243866 DOI: 10.1093/cei/uxac095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/30/2022] [Accepted: 11/08/2022] [Indexed: 08/19/2023] Open
Abstract
CD5L/AIM (apoptosis inhibitor of macrophage), as an important component in maintaining tissue homeostasis and inflammation, is mainly produced and secreted by macrophages but partially dissociated and released from blood AIM-IgM. AIM plays a regulatory role in intracellular physiological mechanisms, including lipid metabolism and apoptosis. AIM not only increases in autoimmune diseases, directly targets liver cells in liver cancer and promotes cell clearance in acute kidney injury, but also causes arteriosclerosis and cardiovascular events, and aggravates inflammatory reactions in lung diseases and sepsis. Obviously, AIM plays a pleiotropic role in the body. However, to date, studies have failed to decipher the mechanisms behind its different roles (beneficial or harmful) in inflammatory regulation. The inflammatory response is a "double-edged sword," and maintaining balance is critical for effective host defense while minimizing the adverse side effects of acute inflammation. Enhancing the understanding of AIM function could provide the theoretical basis for new therapies in these pathological settings. In this review, we discuss recent studies on the roles of AIM in lipid metabolism, autoimmune diseases and organic tissues, such as liver cancer, myocardial infarction, and kidney disease.
Collapse
Affiliation(s)
- Huiqing Yang
- Department of Laboratory Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yan Luo
- Department of Laboratory Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaofei Lai
- Department of Laboratory Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
11
|
Zhang Y, Ma XZ, Zhao XY, Li JJ, Ma S, Pang ZD, Xu J, Du XJ, Deng XL, Wang JH. AGEs-RAGE-KCa3.1 pathway mediates palmitic acid-induced migration of PBMCs from patients with type 2 diabetes. Heliyon 2023; 9:e14823. [PMID: 37025887 PMCID: PMC10070889 DOI: 10.1016/j.heliyon.2023.e14823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 03/08/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by chronic low-grade systemic inflammation. Tissue infiltration by monocyte migration contributes to the pathogenesis of vascular complications in T2DM. We studied the role of intermediate-conductance Ca2+-activated K+ (KCa3.1) channels in the palmitic acid (PA)-induced migration of peripheral blood mononuclear cells (PBMCs) from T2DM patients and the influence of advanced glycation endproducts (AGEs). A total of 49 T2DM patients and 33 healthy subjects was recruited into this study. Using flow cytometry and Western blotting analysis as well as cell migration assay, we found that there was a significant decrease in frequency of T lymphocytes and monocytes in CD45+ leukocyte population. PA at 100 μM stimulated migration of PBMCs from T2DM individuals, which was inhibited by the specific KCa3.1 channel blocker TRAM-34 (1 μM). The PBMC migration was positively correlated with glycosylated hemoglobin A1 chain (HbA1c) level of T2DM patients, an indicator of AGEs, and PBMCs with higher level of HbA1c showed upregulated expression of toll-like receptor (TLR) 2/4 and KCa3.1 channels. In THP-1 cells, AGEs at 200 μg/ml increased protein expression of TLR 2/4 and KCa3.1 channels, and were synergistically involved in PA-induced migration through receptors of AGEs (RAGE)-mediated KCa3.1 upregulation. In conclusion, in PBMCs of T2DM patients, AGEs promotes PA-induced migration via upregulation of TLR2/4 and KCa3.1 channels.
Collapse
|
12
|
Calcaterra V, Magenes VC, Hruby C, Siccardo F, Mari A, Cordaro E, Fabiano V, Zuccotti G. Links between Childhood Obesity, High-Fat Diet, and Central Precocious Puberty. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10020241. [PMID: 36832370 PMCID: PMC9954755 DOI: 10.3390/children10020241] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023]
Abstract
In recent years, the existing relationship between excess overweight and central precocious puberty (CPP) has been reported, especially in girls. Different nutritional choices have been associated with different patterns of puberty. In particular, the involvement of altered biochemical and neuroendocrine pathways and a proinflammatory status has been described in connection with a high-fat diet (HFD). In this narrative review, we present an overview on the relationship between obesity and precocious pubertal development, focusing on the role of HFDs as a contributor to activating the hypothalamus-pituitary-gonadal axis. Although evidence is scarce and studies limited, especially in the paediatric field, the harm of HFDs on PP is a relevant problem that cannot be ignored. Increased knowledge about HFD effects will be useful in developing strategies preventing precocious puberty in children with obesity. Promoting HFD-avoiding behavior may be useful in preserving children's physiological development and protecting reproductive health. Controlling HFDs may represent a target for policy action to improve global health.
Collapse
Affiliation(s)
- Valeria Calcaterra
- Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy
- Correspondence:
| | | | - Chiara Hruby
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy
| | | | - Alessandra Mari
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy
| | - Erika Cordaro
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy
| | - Valentina Fabiano
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy
- Department of Biomedical and Clinical Science “L. Sacco”, University of Milano, 20157 Milano, Italy
| | - Gianvincenzo Zuccotti
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy
- Department of Biomedical and Clinical Science “L. Sacco”, University of Milano, 20157 Milano, Italy
| |
Collapse
|
13
|
Henn RE, Elzinga SE, Glass E, Parent R, Guo K, Allouch AM, Mendelson FE, Hayes J, Webber-Davis I, Murphy GG, Hur J, Feldman EL. Obesity-induced neuroinflammation and cognitive impairment in young adult versus middle-aged mice. Immun Ageing 2022; 19:67. [PMID: 36550567 PMCID: PMC9773607 DOI: 10.1186/s12979-022-00323-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Obesity rates are increasing worldwide. Obesity leads to many complications, including predisposing individuals to the development of cognitive impairment as they age. Immune dysregulation, including inflammaging (e.g., increased circulating cytokines) and immunosenescence (declining immune system function), commonly occur in obesity and aging and may impact cognitive impairment. As such, immune system changes across the lifespan may impact the effects of obesity on neuroinflammation and associated cognitive impairment. However, the role of age in obesity-induced neuroinflammation and cognitive impairment is unclear. To further define this putative relationship, the current study examined metabolic and inflammatory profiles, along with cognitive changes using a high-fat diet (HFD) mouse model of obesity. RESULTS First, HFD promoted age-related changes in hippocampal gene expression. Given this early HFD-induced aging phenotype, we fed HFD to young adult and middle-aged mice to determine the effect of age on inflammatory responses, metabolic profile, and cognitive function. As anticipated, HFD caused a dysmetabolic phenotype in both age groups. However, older age exacerbated HFD cognitive and neuroinflammatory changes, with a bi-directional regulation of hippocampal inflammatory gene expression. CONCLUSIONS Collectively, these data indicate that HFD promotes an early aging phenotype in the brain, which is suggestive of inflammaging and immunosenescence. Furthermore, age significantly compounded the impact of HFD on cognitive outcomes and on the regulation of neuroinflammatory programs in the brain.
Collapse
Affiliation(s)
- Rosemary E Henn
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sarah E Elzinga
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Emily Glass
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Molecular and Integrative Physiology, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Rachel Parent
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Molecular and Integrative Physiology, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kai Guo
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Adam M Allouch
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Faye E Mendelson
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, 48109, USA
| | - John Hayes
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ian Webber-Davis
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Geoffery G Murphy
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Molecular and Integrative Physiology, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA.
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
14
|
Emam M, Eslamloo K, Caballero-Solares A, Lorenz EK, Xue X, Umasuthan N, Gnanagobal H, Santander J, Taylor RG, Balder R, Parrish CC, Rise ML. Nutritional immunomodulation of Atlantic salmon response to Renibacterium salmoninarum bacterin. Front Mol Biosci 2022; 9:931548. [PMID: 36213116 PMCID: PMC9532746 DOI: 10.3389/fmolb.2022.931548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/12/2022] [Indexed: 11/18/2022] Open
Abstract
We investigated the immunomodulatory effect of varying levels of dietary ω6/ω3 fatty acids (FA) on Atlantic salmon (Salmo salar) antibacterial response. Two groups were fed either high-18:3ω3 or high-18:2ω6 FA diets for 8 weeks, and a third group was fed for 4 weeks on the high-18:2ω6 diet followed by 4 weeks on the high-18:3ω3 diet and termed "switched-diet". Following the second 4 weeks of feeding (i.e., at 8 weeks), head kidney tissues from all groups were sampled for FA analysis. Fish were then intraperitoneally injected with either a formalin-killed Renibacterium salmoninarum bacterin (5 × 107 cells mL-1) or phosphate-buffered saline (PBS control), and head kidney tissues for gene expression analysis were sampled at 24 h post-injection. FA analysis showed that the head kidney profile reflected the dietary FA, especially for C18 FAs. The qPCR analyses of twenty-three genes showed that both the high-ω6 and high-ω3 groups had significant bacterin-dependent induction of some transcripts involved in lipid metabolism (ch25ha and lipe), pathogen recognition (clec12b and tlr5), and immune effectors (znrf1 and cish). In contrast, these transcripts did not significantly respond to the bacterin in the "switched-diet" group. Concurrently, biomarkers encoding proteins with putative roles in biotic inflammatory response (tnfrsf6b) and dendritic cell maturation (ccl13) were upregulated, and a chemokine receptor (cxcr1) was downregulated with the bacterin injection regardless of the experimental diets. On the other hand, an inflammatory regulator biomarker, bcl3, was only significantly upregulated in the high-ω3 fed group, and a C-type lectin family member (clec3a) was only significantly downregulated in the switched-diet group with the bacterin injection (compared with diet-matched PBS-injected controls). Transcript fold-change (FC: bacterin/PBS) showed that tlr5 was significantly over 2-fold higher in the high-18:2ω6 diet group compared with other diet groups. FC and FA associations highlighted the role of DGLA (20:3ω6; anti-inflammatory) and/or EPA (20:5ω3; anti-inflammatory) vs. ARA (20:4ω6; pro-inflammatory) as representative of the anti-inflammatory/pro-inflammatory balance between eicosanoid precursors. Also, the correlations revealed associations of FA proportions (% total FA) and FA ratios with several eicosanoid and immune receptor biomarkers (e.g., DGLA/ARA significant positive correlation with pgds, 5loxa, 5loxb, tlr5, and cxcr1). In summary, dietary FA profiles and/or regimens modulated the expression of some immune-relevant genes in Atlantic salmon injected with R. salmoninarum bacterin. The modulation of Atlantic salmon responses to bacterial pathogens and their associated antigens using high-ω6/high-ω3 diets warrants further investigation.
Collapse
Affiliation(s)
- Mohamed Emam
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Khalil Eslamloo
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | | | - Evandro Kleber Lorenz
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | | | - Hajarooba Gnanagobal
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | | | - Rachel Balder
- Cargill Animal Nutrition and Health, Minneapolis, MN, United States
| | - Christopher C. Parrish
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Matthew L. Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| |
Collapse
|
15
|
Polat SHB, Dariyerli ND. A Physiological Approach to Inflammatory Markers in Obesity. Biomark Med 2022. [DOI: 10.2174/9789815040463122010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Obesity is one of the most critical health problems all over the world; it is
associated with metabolic dysfunction and overnutrition. Changes in the physiological
function of adipose tissue, leading to altered secretion of adipocytokines, inflammatory
mediators release, and chronic low-grade inflammation, are seen in obesity.
Macrophages, neutrophils, CD4+ and CD8+ T cells, B cells, natural killer T (NKT)
cells, eosinophils, mast cells, and adipocytes are involved in the inflammatory response
that occurs during obesity. Various inflammatory markers are released from these cells.
In this chapter, we will mention inflammatory mechanisms and markers of obesity.
Collapse
|
16
|
The central nervous system control of energy homeostasis: high fat diet induced hypothalamic microinflammation and obesity. Brain Res Bull 2022; 185:99-106. [PMID: 35525336 DOI: 10.1016/j.brainresbull.2022.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/27/2022] [Accepted: 04/30/2022] [Indexed: 11/22/2022]
Abstract
Obesity is believed to arise through the imbalance of energy homeostasis controlled by the central nervous system, where the hypothalamus plays the fundamental role in energy metabolism. In this review, we will provide an overview regarding the functions of POMC neurons and AgRP neurons in acute nucleus of the hypothalamus which mediated the energy metabolism, highlighting their interactions with peripheral organs derived hormones in control of energy homeostasis. Furthermore, the role of high fat diet induced hypothalamic microinflammation in the pathogenesis of obesity will be discussed. We hope this review could help researchers to understand the mechanism of hypothalamus in control of energy metabolism, and design related drugs to block the pathways involving in the impaired metabolism in obese patients.
Collapse
|
17
|
Docosahexaenoic Acid Alleviates Palmitic Acid-Induced Inflammation of Macrophages via TLR22-MAPK-PPARγ/Nrf2 Pathway in Large Yellow Croaker (Larimichthys crocea). Antioxidants (Basel) 2022; 11:antiox11040682. [PMID: 35453367 PMCID: PMC9032456 DOI: 10.3390/antiox11040682] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/23/2022] [Accepted: 03/28/2022] [Indexed: 12/14/2022] Open
Abstract
Palmitic acid (PA) is a saturated fatty acid (SFA) that can cause an inflammatory response, while docosahexaenoic acid (DHA) is always used as a nutritional modulator due to its anti-inflammatory properties. However, the potential molecular mechanism is still not completely elucidated in fish. Herein, the PA treatment induced an inflammatory response in macrophages of large yellow croaker (Larimichthys crocea). Meanwhile, the mRNA expression of Toll-like receptor (TLR)-related genes, especially tlr22, and the phosphorylation of the mitogen-activated protein kinase (MAPK) pathway were significantly upregulated by PA. Further investigation found that the PA-induced inflammatory response was suppressed by tlr22 knockdown and MAPK inhibitors. Moreover, the results of the peroxisome proliferator-activated receptor γ (PPARγ) agonist and inhibitor treatment proved that PPARγ was involved in the PA-induced inflammation. PA treatment decreased the protein expression of PPARγ, while tlr22 knockdown and MAPK inhibitors recovered the decreased expression. Besides, the PA-induced activation of Nrf2 was regulated by p38 MAPK. Furthermore, DHA-executed anti-inflammatory effects by regulating the phosphorylation of the MAPK pathway and expressions of PPARγ and Nrf2. Overall, the present study revealed that DHA alleviated PA-induced inflammation in macrophages via the TLR22-MAPK-PPARγ/Nrf2 pathway. These results could advance the understanding of the molecular mechanism of the SFA-induced inflammatory response and provide nutritional mitigative strategies.
Collapse
|
18
|
Oo TT, Sumneang N, Ongnok B, Arunsak B, Chunchai T, Kerdphoo S, Apaijai N, Pratchayasakul W, Liang G, Chattipakorn N, Chattipakorn SC. L6H21 protects against cognitive impairment and brain pathologies via toll-like receptor 4-myeloid differentiation factor 2 signalling in prediabetic rats. Br J Pharmacol 2022; 179:1220-1236. [PMID: 34796473 DOI: 10.1111/bph.15741] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 10/08/2021] [Accepted: 11/05/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Chronic high-fat diet (HFD) intake instigates prediabetes and brain pathologies, which include cognitive decline and neuroinflammation. The myeloid differentiation factor 2 (MD-2)/toll-like receptor 4 (TLR4) complex plays a pivotal role in neuroinflammation. The MD-2 inhibitor (L6H21) reduces systemic inflammation and metabolic disturbances in HFD-induced prediabetes. However, the potential role of L6H21, and its comparison with metformin, on brain pathologies in HFD-induced prediabetes has never been investigated. EXPERIMENTAL APPROACH Male Wistar rats were given either a normal diet (ND) (n = 8) or a HFD (n = 104) for 16 weeks. At the 13th week, ND-fed rats were given a vehicle, whereas HFD-fed rats were randomly divided into 13 subgroups. Each subgroup was given vehicle, L6H21 (three doses) or metformin (300-mg·kg-1 ·day-1 ) for 1, 2 or 4 weeks. Metabolic parameters, cognitive function, brain mitochondrial function, brain TLR4-MD-2 signalling, microglial morphology, brain oxidative stress, brain cell death and dendritic spine density were investigated. KEY RESULTS HFD-fed rats developed prediabetes, neuroinflammation, brain pathologies and cognitive impairment. All doses of L6H21 and metformin given to HFD-fed rats at 2 and 4 weeks attenuated metabolic disturbance. CONCLUSION AND IMPLICATIONS In rats, L6H21 and metformin restored cognition and attenuated brain pathologies dose and time-dependently. These results indicate a neuroprotective role of MD-2 inhibitor in a model of prediabetes.
Collapse
Affiliation(s)
- Thura Tun Oo
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Natticha Sumneang
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Benjamin Ongnok
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Busarin Arunsak
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Titikorn Chunchai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Sasiwan Kerdphoo
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Nattayaporn Apaijai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Wasana Pratchayasakul
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
19
|
Villasanta-Gonzalez A, Alcala-Diaz JF, Vals-Delgado C, Arenas AP, Cardelo MP, Romero-Cabrera JL, Rodriguez-Cantalejo F, Delgado-Lista J, Malagon MM, Perez-Martinez P, Schulze MB, Camargo A, Lopez-Miranda J. A plasma fatty acid profile associated to type 2 diabetes development: from the CORDIOPREV study. Eur J Nutr 2022; 61:843-857. [PMID: 34609622 PMCID: PMC8854256 DOI: 10.1007/s00394-021-02676-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 06/24/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE The prevalence of type 2 diabetes mellitus (T2DM) is increasing worldwide. For this reason, it is essential to identify biomarkers for the early detection of T2DM risk and/or for a better prognosis of T2DM. We aimed to identify a plasma fatty acid (FA) profile associated with T2DM development. METHODS We included 462 coronary heart disease patients from the CORDIOPREV study without T2DM at baseline. Of these, 107 patients developed T2DM according to the American Diabetes Association (ADA) diagnosis criteria after a median follow-up of 60 months. We performed a random classification of patients in a training set, used to build a FA Score, and a Validation set, in which we tested the FA Score. RESULTS FA selection with the highest prediction power was performed by random survival forest in the Training set, which yielded 4 out of the 24 FA: myristic, petroselinic, α-linolenic and arachidonic acids. We built a FA Score with the selected FA and observed that patients with a higher score presented a greater risk of T2DM development, with an HR of 3.15 (95% CI 2.04-3.37) in the Training set, and an HR of 2.14 (95% CI 1.50-2.84) in the Validation set, per standard deviation (SD) increase. Moreover, patients with a higher FA Score presented lower insulin sensitivity and higher hepatic insulin resistance (p < 0.05). CONCLUSION Our results suggest that a detrimental FA plasma profile precedes the development of T2DM in patients with coronary heart disease, and that this FA profile can, therefore, be used as a predictive biomarker. CLINICAL TRIALS.GOV. IDENTIFIER NCT00924937.
Collapse
Affiliation(s)
- Alejandro Villasanta-Gonzalez
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, Av. Menendez Pidal, s/n., 14004, Córdoba, Spain
- Department of Medicine, University of Cordoba, Córdoba, Spain
- Instituto Maimonides de Investigación Biomedica de Cordoba (IMIBIC), Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Francisco Alcala-Diaz
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, Av. Menendez Pidal, s/n., 14004, Córdoba, Spain
- Department of Medicine, University of Cordoba, Córdoba, Spain
- Instituto Maimonides de Investigación Biomedica de Cordoba (IMIBIC), Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Vals-Delgado
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, Av. Menendez Pidal, s/n., 14004, Córdoba, Spain
- Department of Medicine, University of Cordoba, Córdoba, Spain
- Instituto Maimonides de Investigación Biomedica de Cordoba (IMIBIC), Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Pablo Arenas
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, Av. Menendez Pidal, s/n., 14004, Córdoba, Spain
- Department of Medicine, University of Cordoba, Córdoba, Spain
- Instituto Maimonides de Investigación Biomedica de Cordoba (IMIBIC), Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Magdalena P Cardelo
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, Av. Menendez Pidal, s/n., 14004, Córdoba, Spain
- Department of Medicine, University of Cordoba, Córdoba, Spain
- Instituto Maimonides de Investigación Biomedica de Cordoba (IMIBIC), Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Luis Romero-Cabrera
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, Av. Menendez Pidal, s/n., 14004, Córdoba, Spain
- Department of Medicine, University of Cordoba, Córdoba, Spain
- Instituto Maimonides de Investigación Biomedica de Cordoba (IMIBIC), Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Javier Delgado-Lista
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, Av. Menendez Pidal, s/n., 14004, Córdoba, Spain
- Department of Medicine, University of Cordoba, Córdoba, Spain
- Instituto Maimonides de Investigación Biomedica de Cordoba (IMIBIC), Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria M Malagon
- Instituto Maimonides de Investigación Biomedica de Cordoba (IMIBIC), Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Córdoba, Spain
| | - Pablo Perez-Martinez
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, Av. Menendez Pidal, s/n., 14004, Córdoba, Spain
- Department of Medicine, University of Cordoba, Córdoba, Spain
- Instituto Maimonides de Investigación Biomedica de Cordoba (IMIBIC), Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Matthias B Schulze
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
- Institute of Nutrition Science, University of Potsdam, Nuthetal, Germany
| | - Antonio Camargo
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, Av. Menendez Pidal, s/n., 14004, Córdoba, Spain.
- Department of Medicine, University of Cordoba, Córdoba, Spain.
- Instituto Maimonides de Investigación Biomedica de Cordoba (IMIBIC), Córdoba, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
| | - Jose Lopez-Miranda
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, Av. Menendez Pidal, s/n., 14004, Córdoba, Spain.
- Department of Medicine, University of Cordoba, Córdoba, Spain.
- Instituto Maimonides de Investigación Biomedica de Cordoba (IMIBIC), Córdoba, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
20
|
Nozu T, Okumura T. Pathophysiological Commonality Between Irritable Bowel Syndrome and Metabolic Syndrome: Role of Corticotropin-releasing Factor-Toll-like Receptor 4-Proinflammatory Cytokine Signaling. J Neurogastroenterol Motil 2022; 28:173-184. [PMID: 35189599 PMCID: PMC8978123 DOI: 10.5056/jnm21002] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 08/26/2021] [Accepted: 10/11/2021] [Indexed: 11/20/2022] Open
Abstract
Irritable bowel syndrome (IBS) displays chronic abdominal pain with altered defecation. Most of the patients develop visceral hypersensitivity possibly resulting from impaired gut barrier and altered gut microbiota. We previously demonstrated that colonic hyperpermeability with visceral hypersensitivity in animal IBS models, which is mediated via corticotropin-releasing factor (CRF)-Toll-like receptor 4 (TLR4)-proinflammatory cytokine signaling. CRF impairs gut barrier via TLR4. Leaky gut induces bacterial translocation resulting in dysbiosis, and increases lipopolysaccharide (LPS). Activation of TLR4 by LPS increases the production of proinflammatory cytokines, which activate visceral sensory neurons to induce visceral hypersensitivity. LPS also activates CRF receptors to further increase gut permeability. Metabolic syndrome (MS) is a cluster of cardiovascular risk factors, including insulin resistance, obesity, dyslipidemia, and hypertension, and recently several researchers suggest the possibility that impaired gut barrier and dysbiosis with low-grade systemic inflammation are involved in MS. Moreover, TLR4-proinflammatory cytokine contributes to the development of insulin resistance and obesity. Thus, the existence of pathophysiological commonality between IBS and MS is expected. This review discusses the potential mechanisms of IBS and MS with reference to gut barrier and microbiota, and explores the possibility of existence of pathophysiological link between these diseases with a focus on CRF, TLR4, and proinflammatory cytokine signaling. We also review epidemiological data supporting this possibility, and discuss the potential of therapeutic application of the drugs used for MS to IBS treatment. This notion may pave the way for exploring novel therapeutic approaches for these disorders.
Collapse
Affiliation(s)
- Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Asahikawa, Hokkaido, Japan.,Center for Medical Education, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Toshikatsu Okumura
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan.,Department of General Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| |
Collapse
|
21
|
Aghamiri SH, Komlakh K, Ghaffari M. The crosstalk among TLR2, TLR4 and pathogenic pathways; a treasure trove for treatment of diabetic neuropathy. Inflammopharmacology 2022; 30:51-60. [PMID: 35020096 DOI: 10.1007/s10787-021-00919-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/19/2021] [Indexed: 11/25/2022]
Abstract
Diabetes is correlated with organ failures as a consequence of microvascular diabetic complications, including neuropathy, nephropathy, and retinopathy. These difficulties come with serious clinical manifestations and high medical costs. Diabetic neuropathy (DN) is one of the most prevalent diabetes complications, affecting at least 50% of diabetic patients with long disease duration. DN has serious effects on patients' life since it interferes with their daily physical activities and causes psychological comorbidities. There are some potential risk factors for the development of neuropathic injuries. It has been shown that inflammatory mechanisms play a pivotal role in the progression of DN. Among inflammatory players, TLR2 and TLR4 have gained immense importance because of their ability in recognizing distinct molecular patterns of invading pathogens and also damage-associated molecular patterns (DAMPs) providing inflammatory context for the progression of a wide array of disorders. We, therefore, sought to explore the possible role of TLR2 and TLR4 in DN pathogenesis and if whether manipulating TLRs is likely to be successful in fighting off DN.
Collapse
Affiliation(s)
- Seyed Hossein Aghamiri
- Department of Neurology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khalil Komlakh
- Department of Neurosurgery, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mehran Ghaffari
- Department of Neurology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Kang Y, Kang X, Yang H, Liu H, Yang X, Liu Q, Tian H, Xue Y, Ren P, Kuang X, Cai Y, Tong M, Li L, Fan W. Lactobacillus acidophilus ameliorates obesity in mice through modulation of gut microbiota dysbiosis and intestinal permeability. Pharmacol Res 2022; 175:106020. [PMID: 34896249 DOI: 10.1016/j.phrs.2021.106020] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 02/07/2023]
Abstract
Obesity associated with low-grade chronic inflammation and intestinal dysbiosis is considered as a worldwide public health crisis. In the meanwhile, different probiotics have demonstrated beneficial effects on this condition, thus increasing the interest in the development of probiotic treatments. In this context, the aim of this study is to investigate the anti-obesity effects of potential probiotic Lactobacillus acidophilus isolated from the porcine gut. Then, it is found that L. acidophilus reduces body weight, fat mass, inflammation and insulin resistance in mice fed with a high-fat diet (HFD), accompanied by activation in brown adipose tissue (BAT) as well as improvements of energy, glucose and lipid metabolism. Besides, our data indicate that L. acidophilus not only reverses HFD-induced gut dysbiosis, as indicated by the decreased Firmicutes-to-Bacteroidetes ratios and endotoxin bearing Gram-negative bacteria levels, but also maintains intestinal barrier integrity, reduces metabolic endotoxemia, and inhibits the TLR4 / NF- κB signaling pathway. In addition, the results of microbiome phenotype prediction by BugBase and bacterial functional potential prediction using PICRUSt show that L. acidophilus treatment improves the gut microbiota functions involving metabolism, immune response, and pathopoiesia. Furthermore, the anti-obesity effect is transmissible via horizontal faeces transfer from L. acidophilus-treated mice to HFD-fed mice. According to our data, it is seen that L. acidophilus could be a good candidate for probiotic of ameliorating obesity and associated diseases such as hyperlipidemia, nonalcoholic fatty liver diseases, and insulin resistance through its anti-inflammatory properties and alleviation of endothelial dysfunction and gut dysbiosis.
Collapse
Affiliation(s)
- Yongbo Kang
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Xing Kang
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hao Yang
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Haixia Liu
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaodan Yang
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Qingqing Liu
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Haixia Tian
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yang Xue
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Peng Ren
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaoyu Kuang
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yue Cai
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Mingwei Tong
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Lin Li
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Weiping Fan
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
23
|
Nanoparticles as Antimicrobial Agents and Drug Delivery Systems - A Review. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.4.67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The world is facing major issues related to antibiotic resistance, specific drugs targeting and its side effects. Such obstacles can be rectified by nanotechnology as they have essential characteristics with smaller size, target specificity, easy deliverable with lesser side effects. The prime nature of the nanoparticles are, it can probe into the cell wall of the pathogenic microbes and even have the capacity to intrude into cellular pathways. Nanoparticles themselves are capable of destroying unwanted foreign particles or toxic cells, which enter into our bodies. Nanoparticles can be treated as carriers, in which they combine with specific drugs and deliver to target specific cells with lesser side effects. Nanoparticles are used as a drug delivery agent for various kinds of diseases related to cancer. Nanoparticles with drugs increase the antibiotic release at the different target sites and these nanoparticles have a great tendency to deliver a large number of drugs to a cell. In this current review, we discuss the bright future of NPs as drug delivery agents as it can overcome all conventional problems.
Collapse
|
24
|
Circulating CD5L is associated with cardiovascular events and all-cause mortality in individuals with chronic kidney disease. Aging (Albany NY) 2021; 13:22690-22709. [PMID: 34629330 PMCID: PMC8544330 DOI: 10.18632/aging.203615] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/29/2021] [Indexed: 12/31/2022]
Abstract
This study assessed the association of CD5L and soluble CD36 (sCD36) with the risk of a cardiovascular event (CVE), including CV death and all-cause mortality in CKD. We evaluated the association of CD5L and sCD36 with a predefined composite CV endpoint (unstable angina, myocardial infarction, transient ischemic attack, cerebrovascular accident, congestive heart failure, arrhythmia, peripheral arterial disease [PAD] or amputation by PAD, aortic aneurysm, or death from CV causes) and all-cause mortality using Cox proportional hazards regression, adjusted for CV risk factors. The analysis included 1,516 participants free from pre-existing CV disease followed up for 4 years. The median age was 62 years, 38.8% were female, and 26.8% had diabetes. There were 98 (6.5%) CVEs and 72 (4.8%) deaths, of which 26 (36.1%) were of CV origin. Higher baseline CD5L concentration was associated with increased risk of CVE (HR, 95% CI, 1.17, 1.0–1.36), and all-cause mortality (1.22, 1.01–1.48) after adjusting for age, sex, diabetes, systolic blood pressure, dyslipidemia, waist circumference, smoking, and CKD stage. sCD36 showed no association with adverse CV outcomes or mortality. Our study showed for the first time that higher concentrations of CD5L are associated with future CVE and all-cause mortality in individuals with CKD.
Collapse
|
25
|
Ullah R, Rauf N, Nabi G, Yi S, Yu-Dong Z, Fu J. Mechanistic insight into high-fat diet-induced metabolic inflammation in the arcuate nucleus of the hypothalamus. Biomed Pharmacother 2021; 142:112012. [PMID: 34388531 DOI: 10.1016/j.biopha.2021.112012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 12/16/2022] Open
Abstract
A high-fat diet (HFD) is linked with cytokines production by non-neuronal cells within the hypothalamus, which mediates metabolic inflammation. These cytokines then activate different inflammatory mediators in the arcuate nucleus of the hypothalamus (ARC), a primary hypothalamic area accommodating proopiomelanocortin (POMC) and agouti-related peptide (AGRP) neurons, first-order neurons that sense and integrate peripheral metabolic signals and then respond accordingly. These mediators, such as inhibitor of κB kinase-β (IKKβ), suppression of cytokine signaling 3 (SOCS3), c-Jun N-terminal kinases (JNKs), protein kinase C (PKC), etc., cause insulin and leptin resistance in POMC and AGRP neurons and support obesity and related metabolic complications. On the other hand, inhibition of these mediators has been shown to counteract the impaired metabolism. Therefore, it is important to discuss the contribution of neuronal and non-neuronal cells in HFD-induced hypothalamic inflammation. Furthermore, understanding few other questions, such as the diets causing hypothalamic inflammation, the gender disparity in response to HFD feeding, and how hypothalamic inflammation affects ARC neurons to cause impaired metabolism, will be helpful for the development of therapeutic approaches to prevent or treat HFD-induced obesity.
Collapse
Affiliation(s)
- Rahim Ullah
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China; Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Naveed Rauf
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Ghulam Nabi
- Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei Province, China; Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, Pakistan
| | - Shen Yi
- Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.
| | - Zhou Yu-Dong
- Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.
| | - Junfen Fu
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China; National Clinical Research Center for Child Health, Hangzhou 310052, China; National Children's Regional Medical Center, Hangzhou 310052, China.
| |
Collapse
|
26
|
White Button Mushroom Extracts Modulate Hepatic Fibrosis Progression, Inflammation, and Oxidative Stress In Vitro and in LDLR-/- Mice. Foods 2021; 10:foods10081788. [PMID: 34441565 PMCID: PMC8392037 DOI: 10.3390/foods10081788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/09/2021] [Accepted: 07/30/2021] [Indexed: 11/16/2022] Open
Abstract
Liver fibrosis can be caused by non-alcoholic steatohepatitis (NASH), among other conditions. We performed a study to analyze the effects of a nontoxic, water-soluble extract of the edible mushroom Agaricus bisporus (AB) as a potential inhibitor of fibrosis progression in vitro using human hepatic stellate cell (LX2) cultures and in vivo in LDLR-/- mice. Treatment of LX2 cells with the AB extract reduced the levels of fibrotic and oxidative-related markers and increased the levels of GATA4 expression. In LDLR-/- mice with high-fat diet (HFD)-induced liver fibrosis and inflammation, the progression of fibrosis, oxidative stress, inflammation, and apoptosis were prevented by AB extract treatment. Moreover, in the mouse model, AB extract could exert an antiatherogenic effect. These data suggest that AB mushroom extract seems to exert protective effects by alleviating inflammation and oxidative stress during the progression of liver fibrosis, possibly due to a decrease in Toll-like receptor 4 (TLR4) expression and a reduction in Nod-like receptor protein 3 (NLRP3) inflammasome activation. In addition, we observed a potential atheroprotective effect in our mouse model.
Collapse
|
27
|
Abstract
The prevalence of obesity has increased substantially over the last several decades and several environmental factors have accelerated this trend. Poly-methoxy flavones (PMFs) exist abundantly in the peels of citrus, and their biological activities have been broadly examined in recent years. Several studies have examined the effects of PMFs on obesity and its-related diseases. This systematic review conducted to focus on the effect of PMFs on obesity and its related conditions management. The PubMed, Google Scholar, Scopus, and Science Direct databases were searched for relevant studies published before November 2020. Out of 1,615 records screened, 16 studies met the study criteria. The range of dosage of PMFs was varied from 10 to 200 mg/kg (5-26 weeks) and 1-100 μmol (2h-8 days) across selected animal and in vitro studies, respectively. The literature reviewed shows that PMFs modulate several biological processes associated with obesity such as lipid and glucose metabolism, inflammation, energy balance, and oxidative stress by different mechanisms. All of the animal studies showed significant positive effects of PMFs on obesity by reducing body weight (e.g. reduced weight gain by 21.04%), insulin resistance, energy expenditure, inhibiting lipogenesis and reduced blood lipids (e.g. reduced total cholesterol by 23.10%, TG by 44.35% and LDL by 34.41%). The results of the reviewed in vitro studies have revealed that treatment with PMFs significantly inhibits lipid accumulation in adipocytes (e.g. reduced lipid accumulation by 55-60%) and 3T3-L1 pre-adipocyte differentiation as well by decreasing the expression of PPARγ and C/EBPα and also reduces the number and size of fat cells and reduced TG content in adipocytes by 45.67% and 23.10% and 16.08% for nobiletin, tangeretin and hesperetin, respectively. Although current evidence supports the use of PMFs as a complementary treatment in obesity, future research is needed to validate this promising treatment modality.
Collapse
Affiliation(s)
- Mahdi Vajdi
- Department of Community Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
28
|
Ye S, Matthan NR, Lamon-Fava S, Aguilar GS, Turner JR, Walker ME, Chai Z, Lakshman S, Urban JF, Lichtenstein AH. Western and heart healthy dietary patterns differentially affect the expression of genes associated with lipid metabolism, interferon signaling and inflammation in the jejunum of Ossabaw pigs. J Nutr Biochem 2020; 90:108577. [PMID: 33388349 PMCID: PMC8982565 DOI: 10.1016/j.jnutbio.2020.108577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022]
Abstract
Diet quality and statin therapy are established modulators of coronary artery disease (CAD) progression, but their effect on the gastrointestinal tract and subsequent sequelae that could affect CAD progression are relatively unexplored. To address this gap, Ossabaw pigs (N = 32) were randomly assigned to receive isocaloric amounts of a Western-type diet (WD; high in saturated fat, refined carbohydrate, and cholesterol, and low in fiber) or a heart healthy-type diet (HHD; high in unsaturated fat, whole grains, fruits and vegetables, supplemented with fish oil, and low in cholesterol), with or without atorvastatin, for 6 months. At the end of the study, RNA sequencing with 100 base pair single end reads on NextSeq 500 platform was conducted in isolated pig jejunal mucosa. A two-factor edgeR analysis revealed that the dietary patterns resulted in three differentially expressed genes related to lipid metabolism (SCD, FADS1, and SQLE). The expression of these genes was associated with cardiometabolic risk factors and atherosclerotic lesion severity. Subsequent gene enrichment analysis indicated the WD, compared to the HHD, resulted in higher interferon signaling and inflammation, with some of these genes being significantly associated with serum TNF-α and/or hsCRP concentrations, but not atherosclerotic lesion severity. No significant effect of atorvastatin therapy on gene expression, nor its interaction with dietary patterns, was identified. In conclusion, Western and heart healthy-type dietary patterns differentially affect the expression of genes associated with lipid metabolism, interferon signaling, and inflammation in the jejunum of Ossabaw pigs.
Collapse
Affiliation(s)
- Shumao Ye
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Nirupa R Matthan
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Stefania Lamon-Fava
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Gloria Solano Aguilar
- USDA, ARS, Beltsville Human Nutrition Research Center, Diet Genomics and Immunology Laboratory, Beltsville, MD, USA
| | - Jerrold R Turner
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Woman's Hospital and Harvard Medical School, Boston, MA, USA
| | - Maura E Walker
- Section of Preventive Medicine and Epidemiology, Boston University School of Medicine, Boston, MA, USA
| | - Zhi Chai
- Intercollege Graduate Degree Program in Physiology, Department of Nutritional Science, Pennsylvania State University, University Park, PA, USA
| | - Sukla Lakshman
- USDA, ARS, Beltsville Human Nutrition Research Center, Diet Genomics and Immunology Laboratory, Beltsville, MD, USA
| | - Joseph F Urban
- USDA, ARS, Beltsville Human Nutrition Research Center, Diet Genomics and Immunology Laboratory, Beltsville, MD, USA
| | - Alice H Lichtenstein
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA.
| |
Collapse
|
29
|
Ibraheem ZO, Farhan SS, Al Sumaidaee A, Al Sufi L, Bashir A, Balwa A, Basir R. Liver functions in combined models of the gentamicin induced nephrotoxicity and metabolic syndrome induced by high fat or fructose diets: a comparative study. Toxicol Res 2020; 37:221-235. [PMID: 33868979 DOI: 10.1007/s43188-020-00059-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 07/03/2020] [Accepted: 07/24/2020] [Indexed: 01/23/2023] Open
Abstract
Metabolic syndrome is one of the major risk factors that lead to various serious complications like cardiovascular abnormalities, hyperlipidemia and diabetes. Its co-incidence with other organs dysfunction results in further deterioration of the condition or precipitation of other dysfunctions. This study aimed at studying the changes in the hepatic functions after the co-incidence of the high fat or fructose diets induced metabolic syndrome along with the gentamicin induced nephrotoxicity. Briefly, six groups of male Sprague Daley rats (n = 10-12) were fed with different feeding protocols; viz; standard rodent's chow, an experimental high fat or high fructose diets feedings. For each, two groups were allocated that one of them was injected with normal saline and the other with 80 mg/kg/day I.P gentamicin during the last 24 days of the feeding period. The rats were monitored for changes in the metabolic data, glycemic control, lipid profile, renal and hepatic functions, oxidative stress and the inflammatory response. The study revealed stronger hepatic changes in the renal failure groups fed with the high fat diet rather than that in the groups fed with the high fructose diet. Although, the latter experienced a stronger deterioration in the glycemic control. The study suggests that the incidence of the hepatic changes is more linked to the incidence of the deterioration in the lipids profile that was observed after the high fat diet feeding. Overall, the co-incidence of the high fat diet induced metabolic syndrome along with the renal failure constitutes a risk factor for the hepatic dysfunction.
Collapse
Affiliation(s)
- Zaid O Ibraheem
- Pharmacology and Toxicology Unit, Department of Pharmacy, Al Rafidain University College, Al Mustansyria, Baghdad, Iraq
| | - Sinan Subhi Farhan
- Basic Sciences Unit, Department of Pharmacy, Al Rafidain University College, Al Mustansyria, Baghdad, Iraq
| | - Ajwad Al Sumaidaee
- Department of Laboratory Sciences, Faculty of Pharmacy, Baghdad University, Baghdad, Iraq
| | - Layth Al Sufi
- Departmentof Pathology, Faculty of Veterinary Medicine, Baghdad University, Abu Grabe, Baghdad, Iraq
| | - Anas Bashir
- Quality Control Unit, Ministry of Trade, Baghdad, Iraq.,Department of Laboratory Sciences, Al Rafidain University College, Al Binook, Baghdad, Iraq
| | - Anmar Balwa
- Department of Laboratory Sciences, Al Rafidain University College, Al Binook, Baghdad, Iraq
| | - Rusliza Basir
- Pharmacology Unit, Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43400 Selangor, Malaysia
| |
Collapse
|
30
|
Yang X, Chatterjee V, Ma Y, Zheng E, Yuan SY. Protein Palmitoylation in Leukocyte Signaling and Function. Front Cell Dev Biol 2020; 8:600368. [PMID: 33195285 PMCID: PMC7655920 DOI: 10.3389/fcell.2020.600368] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Palmitoylation is a post-translational modification (PTM) based on thioester-linkage between palmitic acid and the cysteine residue of a protein. This covalent attachment of palmitate is reversibly and dynamically regulated by two opposing sets of enzymes: palmitoyl acyltransferases containing a zinc finger aspartate-histidine-histidine-cysteine motif (PAT-DHHCs) and thioesterases. The reversible nature of palmitoylation enables fine-tuned regulation of protein conformation, stability, and ability to interact with other proteins. More importantly, the proper function of many surface receptors and signaling proteins requires palmitoylation-meditated partitioning into lipid rafts. A growing number of leukocyte proteins have been reported to undergo palmitoylation, including cytokine/chemokine receptors, adhesion molecules, pattern recognition receptors, scavenger receptors, T cell co-receptors, transmembrane adaptor proteins, and signaling effectors including the Src family of protein kinases. This review provides the latest findings of palmitoylated proteins in leukocytes and focuses on the functional impact of palmitoylation in leukocyte function related to adhesion, transmigration, chemotaxis, phagocytosis, pathogen recognition, signaling activation, cytotoxicity, and cytokine production.
Collapse
Affiliation(s)
- Xiaoyuan Yang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Victor Chatterjee
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Yonggang Ma
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Ethan Zheng
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Sarah Y Yuan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
31
|
Scandiffio R, Geddo F, Cottone E, Querio G, Antoniotti S, Gallo MP, Maffei ME, Bovolin P. Protective Effects of ( E)-β-Caryophyllene (BCP) in Chronic Inflammation. Nutrients 2020; 12:nu12113273. [PMID: 33114564 PMCID: PMC7692661 DOI: 10.3390/nu12113273] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
(E)-β-caryophyllene (BCP) is a bicyclic sesquiterpene widely distributed in the plant kingdom, where it contributes a unique aroma to essential oils and has a pivotal role in the survival and evolution of higher plants. Recent studies provided evidence for protective roles of BCP in animal cells, highlighting its possible use as a novel therapeutic tool. Experimental results show the ability of BCP to reduce pro-inflammatory mediators such as tumor necrosis factor-alfa (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), thus ameliorating chronic pathologies characterized by inflammation and oxidative stress, in particular metabolic and neurological diseases. Through the binding to CB2 cannabinoid receptors and the interaction with members of the family of peroxisome proliferator-activated receptors (PPARs), BCP shows beneficial effects on obesity, non-alcoholic fatty liver disease/nonalcoholic steatohepatitis (NAFLD/NASH) liver diseases, diabetes, cardiovascular diseases, pain and other nervous system disorders. This review describes the current knowledge on the biosynthesis and natural sources of BCP, and reviews its role and mechanisms of action in different inflammation-related metabolic and neurologic disorders.
Collapse
Affiliation(s)
- Rosaria Scandiffio
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; (R.S.); (F.G.); (E.C.); (G.Q.); (S.A.); (M.P.G.)
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy;
| | - Federica Geddo
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; (R.S.); (F.G.); (E.C.); (G.Q.); (S.A.); (M.P.G.)
| | - Erika Cottone
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; (R.S.); (F.G.); (E.C.); (G.Q.); (S.A.); (M.P.G.)
| | - Giulia Querio
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; (R.S.); (F.G.); (E.C.); (G.Q.); (S.A.); (M.P.G.)
| | - Susanna Antoniotti
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; (R.S.); (F.G.); (E.C.); (G.Q.); (S.A.); (M.P.G.)
| | - Maria Pia Gallo
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; (R.S.); (F.G.); (E.C.); (G.Q.); (S.A.); (M.P.G.)
| | - Massimo E. Maffei
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy;
| | - Patrizia Bovolin
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; (R.S.); (F.G.); (E.C.); (G.Q.); (S.A.); (M.P.G.)
- Correspondence:
| |
Collapse
|
32
|
Yi L, Zheng C. The emerging roles of ZDHHCs-mediated protein palmitoylation in the antiviral innate immune responses. Crit Rev Microbiol 2020; 47:34-43. [PMID: 33100085 DOI: 10.1080/1040841x.2020.1835821] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Post-translational modifications (PTMs) play a pivotal role in expanding functional protein diversity. During viral infection, pathogen-associated molecular patterns derived from viruses are recognized by pattern recognition receptors present in the membrane surface and the cytoplasm of infected cells, which subsequently induces the antiviral innate immunity to protect the host from the invading viruses. Fatty acylation modification is identified as a post-translation lipid modification process. Mounting evidence is presented that lipid modification functions as a novel regulatory mechanism of antiviral innate immunity. In mammalian cells, DHHC (Asp-His-His-Cys) domain is indispensable for most of the palmitoylation modification, which belongs to fatty acylation. ZDHHC family proteins are composed of 23 members in human cells. In this review, we will summarize the recent findings of the regulatory mechanism of the palmitoylation in the process of host antiviral innate immunity against viruses.
Collapse
Affiliation(s)
- Li Yi
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
33
|
Petrovic I, Pejnovic N, Ljujic B, Pavlovic S, Miletic Kovacevic M, Jeftic I, Djukic A, Draginic N, Andjic M, Arsenijevic N, Lukic ML, Jovicic N. Overexpression of Galectin 3 in Pancreatic β Cells Amplifies β-Cell Apoptosis and Islet Inflammation in Type-2 Diabetes in Mice. Front Endocrinol (Lausanne) 2020; 11:30. [PMID: 32117058 PMCID: PMC7018709 DOI: 10.3389/fendo.2020.00030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 01/15/2020] [Indexed: 12/23/2022] Open
Abstract
Aims/Hypothesis: Galectin 3 appears to play a proinflammatory role in several inflammatory and autoimmune diseases. Also, there is evidence that galectin 3 plays a role in both type-1 and type-2 diabetes. During obesity, hematopoietic cell-derived galectin 3 induces insulin resistance. While the role of galectin 3 expressed in islet-invading immune cells in both type-1 and type-2 diabetes has been studied, the importance of the expression of this molecule on the target pancreatic β cells has not been defined. Methods: To clarify the role of galectin 3 expression in β cells during obesity-induced diabetogenesis, we developed transgenic mice selectively overexpressing galectin 3 in β cells and tested their susceptibility to obesity-induced type-2 diabetes. Obesity was induced with a 16-week high-fat diet regime. Pancreatic β cells were tested for susceptibility to apoptosis induced by non-esterified fatty acids and cytokines as well as parameters of oxidative stress. Results: Our results demonstrated that overexpression of galectin 3 increases β-cell apoptosis in HFD conditions and increases the percentage of proinflammatory F4/80+ macrophages in islets that express galectin 3 and TLR4. In isolated islets, we have shown that galectin 3 overexpression increases cytokine and palmitate-triggered β-cell apoptosis and also increases NO2--induced oxidative stress of β cells. Also, in pancreatic lymph nodes, macrophages were shifted toward a proinflammatory TNF-α-producing phenotype. Conclusions/Interpretation: By complementary in vivo and in vitro approaches, we have shown that galectin 3-overexpression facilitates β-cell damage, enhances cytokine and palmitate-triggered β-cell apoptosis, and increases NO2--induced oxidative stress in β cells. Further, the results suggest that increased expression of galectin 3 in the pancreatic β cells affects the metabolism of glucose and glycoregulation in mice on a high-fat diet, affecting both fasting glycemic values and glycemia after glucose loading.
Collapse
Affiliation(s)
- Ivica Petrovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nada Pejnovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Biljana Ljujic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Sladjana Pavlovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Marina Miletic Kovacevic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Ilija Jeftic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Aleksandar Djukic
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nevena Draginic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Marijana Andjic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Miodrag L. Lukic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nemanja Jovicic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
34
|
Obesity-associated inflammation induces androgenic to estrogenic switch in the prostate gland. Prostate Cancer Prostatic Dis 2020; 23:465-474. [PMID: 32029929 DOI: 10.1038/s41391-020-0208-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/14/2020] [Accepted: 01/28/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVE Our patient cohort revealed that obesity is strongly associated with steroid-5α reductase type 2 (SRD5A2) promoter methylation and reduced protein expression. The underlying mechanism of prostatic growth in this population is poorly understood. Here we addressed the question of how obesity, inflammation, and steroid hormones affect the development of benign prostatic hyperplasia (BPH). MATERIAL AND METHODS We used preadipocytes, macrophages, primary human prostatic stromal cells, prostate tissues from high-fat diet-induced obese mice, and 35 prostate specimens that were collected from patients who underwent transurethral resection of the prostate (TURP). RNA was isolated and quantified with RT-PCR. Genome DNA was extracted and SRD5A2 promoter methylation was determined. Sex hormones were determined by high-performance liquid chromatography-tandem mass spectrometry. Protein was extracted and determined by ELISA test. RESULTS In prostatic tissues with obesity, the levels of inflammatory mediators were elevated. SRD5A2 promoter methylation was promoted, but SRD5A2 expression was inhibited. Inflammatory mediators and saturated fatty acid synergistically regulated aromatase activity. Obesity promoted an androgenic to estrogenic switch in the prostate. CONCLUSIONS Our findings suggest that obesity-associated inflammation induces androgenic to estrogenic switch in the prostate gland, which may serve as an effective strategy for alternative therapies for management of lower urinary tract symptoms associated with BPH in select individuals.
Collapse
|
35
|
Qin L, Zhang X, Zhou X, Wu X, Huang X, Chen M, Wu Y, Lu S, Zhang H, Xu X, Wei X, Zhang S, Huang R. Protective Effect of Benzoquinone Isolated from the Roots of Averrhoa carambola L. on Streptozotocin-Induced Diabetic Mice by Inhibiting the TLR4/NF-κB Signaling Pathway. Diabetes Metab Syndr Obes 2020; 13:2129-2138. [PMID: 32606871 PMCID: PMC7319517 DOI: 10.2147/dmso.s241998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Studies have demonstrated that the roots of Averrhoa carambola L. (Oxalidaceae), a traditional Chinese medicine, can be used to treat diabetes and diabetes-related diseases. Nevertheless, the potential beneficial effects and mechanism of benzoquinone isolated from the roots of Averrhoa carambola L. (BACR) on diabetes remain unclear. METHODS Diabetic Kunming mice were injected with STZ (120 mgkg-1) in the tail vein. Fasting blood glucose (FBG) and the change of body weight were measured after oral administration of BACR (120, 60, 30 mg/kg/d) every week. The levels of the total cholesterol (TC), triglyceride (TG), free fatty acids (FFA), glucosylated hemoglobin (GHb), fasting insulin (FINS), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were measured. The histological examination of pancreatic tissues and the TLR4/NF-κB pathway was analyzed by RT-PCR, immunohistochemistry and Western blot. RESULTS The study found that clearly the BACR obviously reduced the blood glucose, serum lipids, GHb and FINS. In addition, BACR treatment markedly reduced the release of inflammatory factors, including IL-6 and TNF-α, and down-regulated the expression of the TLR4/NF-κB pathway. CONCLUSION BACR has potential benefits for the treatment of diabetes by ameliorating metabolic functions and attenuating the inflammatory response via inhibition of the activation of theTLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Luhui Qin
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Center for Translational Medicine, Key Laboratory of Longevity and Aging-Related Diseases, Ministry of Education, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Xiaolin Zhang
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Xing Zhou
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Xingchun Wu
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Xiang Huang
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Ming Chen
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Yani Wu
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Shunyu Lu
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Hongliang Zhang
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Xiaohui Xu
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Xiaojie Wei
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Shijun Zhang
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Renbin Huang
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Correspondence: Renbin Huang; Shijun Zhang Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region530021, People’s Republic of ChinaTel +86 771 533 9805Fax +86 771 535 8272 Email ;
| |
Collapse
|
36
|
Tillman EJ, Rolph T. FGF21: An Emerging Therapeutic Target for Non-Alcoholic Steatohepatitis and Related Metabolic Diseases. Front Endocrinol (Lausanne) 2020; 11:601290. [PMID: 33381084 PMCID: PMC7767990 DOI: 10.3389/fendo.2020.601290] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
The rising global prevalence of obesity, metabolic syndrome, and type 2 diabetes has driven a sharp increase in non-alcoholic fatty liver disease (NAFLD), characterized by excessive fat accumulation in the liver. Approximately one-sixth of the NAFLD population progresses to non-alcoholic steatohepatitis (NASH) with liver inflammation, hepatocyte injury and cell death, liver fibrosis and cirrhosis. NASH is one of the leading causes of liver transplant, and an increasingly common cause of hepatocellular carcinoma (HCC), underscoring the need for intervention. The complex pathophysiology of NASH, and a predicted prevalence of 3-5% of the adult population worldwide, has prompted drug development programs aimed at multiple targets across all stages of the disease. Currently, there are no approved therapeutics. Liver-related morbidity and mortality are highest in more advanced fibrotic NASH, which has led to an early focus on anti-fibrotic approaches to prevent progression to cirrhosis and HCC. Due to limited clinical efficacy, anti-fibrotic approaches have been superseded by mechanisms that target the underlying driver of NASH pathogenesis, namely steatosis, which drives hepatocyte injury and downstream inflammation and fibrosis. Among this wave of therapeutic mechanisms targeting the underlying pathogenesis of NASH, the hormone fibroblast growth factor 21 (FGF21) holds considerable promise; it decreases liver fat and hepatocyte injury while suppressing inflammation and fibrosis across multiple preclinical studies. In this review, we summarize preclinical and clinical data from studies with FGF21 and FGF21 analogs, in the context of the pathophysiology of NASH and underlying metabolic diseases.
Collapse
|
37
|
A global perspective on the crosstalk between saturated fatty acids and Toll-like receptor 4 in the etiology of inflammation and insulin resistance. Prog Lipid Res 2019; 77:101020. [PMID: 31870728 DOI: 10.1016/j.plipres.2019.101020] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 11/15/2019] [Accepted: 11/25/2019] [Indexed: 12/16/2022]
Abstract
Obesity is featured by chronic systemic low-grade inflammation that eventually contributes to the development of insulin resistance. Toll-like receptor 4 (TLR4) is an important mediator that triggers the innate immune response by activating inflammatory signaling cascades. Human, animal and cell culture studies identified saturated fatty acids (SFAs), the dominant non-esterified fatty acid (NEFA) in the circulation of obese subjects, as non-microbial agonists that trigger the inflammatory response via activating TLR4 signaling, which acts as an important causative link between fatty acid overload, chronic low-grade inflammation and the related metabolic aberrations. The interaction between SFAs and TLR4 may be modulated through the myeloid differentiation primary response gene 88-dependent and independent signaling pathway. Greater understanding of the crosstalk between dietary SFAs and TLR4 signaling in the pathogenesis of metabolic imbalance may facilitate the design of a more efficient pharmacological strategy to alleviate the risk of developing chronic diseases elicited in part by fatty acid overload. The current review discusses recent advances in the impact of crosstalk between SFAs and TLR4 on inflammation and insulin resistance in multiple cell types, tissues and organs in the context of metabolic dysregulation.
Collapse
|
38
|
Yang XN, Wang YK, Zhu X, Xiao XR, Dai MY, Zhang T, Qu Y, Yang XW, Qin HB, Gonzalez FJ, Li F. Metabolic Activation of Elemicin Leads to the Inhibition of Stearoyl-CoA Desaturase 1. Chem Res Toxicol 2019; 32:1965-1976. [PMID: 31468958 DOI: 10.1021/acs.chemrestox.9b00112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Elemicin is a constituent of natural aromatic phenylpropanoids present in many herbs and spices. However, its potential to cause toxicity remains unclear. To examine the potential toxicity and associated mechanism, elemicin was administered to mice for 3 weeks and serum metabolites were examined. Enlarged livers were observed in elemicin-treated mice, which were accompanied by lower ratios of unsaturated- and saturated-lysophosphatidylcholines in plasma, and inhibition of stearoyl-CoA desaturase 1 (Scd1) mRNA expression in liver. Administration of the unsaturated fatty acid oleic acid reduced the toxicity of 1'-hydroxylelemicin, the primary oxidative metabolite of elemicin, while treatment with the SCD1 inhibitor A939572 potentiated its toxicity. Furthermore, the in vitro use of recombinant human CYPs and chemical inhibition of CYPs in human liver microsomes revealed that CYP1A1 and CYP1A2 were the primary CYPs responsible for elemicin bioactivation. Notably, the CYP1A2 inhibitor α-naphthoflavone could attenuate the susceptibility of mice to elemicin-induced hepatomegaly. This study revealed that metabolic activation of elemicin leads to SCD1 inhibition in liver, suggesting that upregulation of SCD1 may serve as potential intervention strategy for elemicin-induced toxicity.
Collapse
Affiliation(s)
- Xiao-Nan Yang
- States Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany , Chinese Academy of Sciences , Kunming 650201 , China.,Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement , Guangxi Botanical Garden of Medicinal Plant , Nanning 530023 , China
| | - Yi-Kun Wang
- States Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany , Chinese Academy of Sciences , Kunming 650201 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xu Zhu
- States Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany , Chinese Academy of Sciences , Kunming 650201 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xue-Rong Xiao
- States Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany , Chinese Academy of Sciences , Kunming 650201 , China
| | - Man-Yun Dai
- States Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany , Chinese Academy of Sciences , Kunming 650201 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Ting Zhang
- States Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany , Chinese Academy of Sciences , Kunming 650201 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yan Qu
- States Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany , Chinese Academy of Sciences , Kunming 650201 , China
| | - Xiu-Wei Yang
- School of Pharmaceutical Sciences, Peking University Health Science Center , Peking University , Beijing 100191 , China
| | - Hong-Bo Qin
- States Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany , Chinese Academy of Sciences , Kunming 650201 , China
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research , National Cancer Institute , National Institutes of Health, Bethesda , Maryland 20892 , United States
| | - Fei Li
- States Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany , Chinese Academy of Sciences , Kunming 650201 , China
| |
Collapse
|
39
|
McCarty MF, Iloki-Assanga S, Lujany LML. Nutraceutical targeting of TLR4 signaling has potential for prevention of cancer cachexia. Med Hypotheses 2019; 132:109326. [PMID: 31421423 DOI: 10.1016/j.mehy.2019.109326] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/23/2019] [Indexed: 12/25/2022]
Abstract
The mechanisms underlying cancer cachexia - the proximate cause of at least 20% of cancer-related deaths - have until recently remained rather obscure. New research, however, clarifies that cancers evoking cachexia release microvesicles rich in heat shock proteins 70 and 90, and that these extracellular heat shock proteins induce cachexia by serving as agonists for toll-like receptor 4 (TLR4) in skeletal muscle, macrophages, and adipocytes. Hence, safe nutraceutical measures which can down-regulate TLR4 signaling can be expected to aid prevention and control of cancer cachexia. There is reason to suspect that phycocyanobilin, ferulic acid, glycine, long-chain omega-3s, green tea catechins, β-hydroxy-β-methylbutyrate, carnitine, and high-dose biotin may have some utility in this regard.
Collapse
|
40
|
Kim YC, Lee SE, Kim SK, Jang HD, Hwang I, Jin S, Hong EB, Jang KS, Kim HS. Toll-like receptor mediated inflammation requires FASN-dependent MYD88 palmitoylation. Nat Chem Biol 2019; 15:907-916. [PMID: 31427815 DOI: 10.1038/s41589-019-0344-0] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 07/11/2019] [Indexed: 12/24/2022]
Abstract
Toll-like receptor (TLR)/myeloid differentiation primary response protein (MYD88) signaling aggravates sepsis by impairing neutrophil migration to infection sites. However, the role of intracellular fatty acids in TLR/MYD88 signaling is unclear. Here, inhibition of fatty acid synthase by C75 improved neutrophil chemotaxis and increased the survival of mice with sepsis in cecal ligation puncture and lipopolysaccharide-induced septic shock models. C75 specifically blocked TLR/MYD88 signaling in neutrophils. Treatment with GSK2194069 that targets a different domain of fatty acid synthase, did not block TLR signaling or MYD88 palmitoylation. De novo fatty acid synthesis and CD36-mediated exogenous fatty acid incorporation contributed to MYD88 palmitoylation. The binding of IRAK4 to the MYD88 intermediate domain and downstream signal activation required MYD88 palmitoylation at cysteine 113. MYD88 was palmitoylated by ZDHHC6, and ZDHHC6 knockdown decreased MYD88 palmitoylation and TLR/MYD88 activation upon lipopolysaccharide stimulus. Thus, intracellular saturated fatty acid-dependent palmitoylation of MYD88 by ZDHHC6 is a therapeutic target of sepsis.
Collapse
Affiliation(s)
- Young-Chan Kim
- Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, Seoul, Korea.,Korea Research-Driven Hospital, Seoul National University Hospital, Seoul, Korea
| | - Sang Eun Lee
- Cardiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Somi K Kim
- Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, Seoul, Korea.,Korea Research-Driven Hospital, Seoul National University Hospital, Seoul, Korea
| | - Hyun-Duk Jang
- Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, Seoul, Korea.,Korea Research-Driven Hospital, Seoul National University Hospital, Seoul, Korea
| | - Injoo Hwang
- Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, Seoul, Korea.,Korea Research-Driven Hospital, Seoul National University Hospital, Seoul, Korea
| | - Sooryeonhwa Jin
- Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, Seoul, Korea.,Korea Research-Driven Hospital, Seoul National University Hospital, Seoul, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Eun-Byeol Hong
- Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, Seoul, Korea.,Korea Research-Driven Hospital, Seoul National University Hospital, Seoul, Korea
| | - Kyoung-Soon Jang
- Biomedical Omics Center, Korea Basic Science Institute, Cheongju, South Korea
| | - Hyo-Soo Kim
- Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, Seoul, Korea. .,Korea Research-Driven Hospital, Seoul National University Hospital, Seoul, Korea. .,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea. .,World Class University Program, Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Korea.
| |
Collapse
|
41
|
Walker ME, Matthan NR, Goldbaum A, Meng H, Lamon-Fava S, Lakshman S, Jang S, Molokin A, Solano-Aguilar G, Urban JF, Lichtenstein AH. Dietary patterns influence epicardial adipose tissue fatty acid composition and inflammatory gene expression in the Ossabaw pig. J Nutr Biochem 2019; 70:138-146. [PMID: 31202119 PMCID: PMC6958552 DOI: 10.1016/j.jnutbio.2019.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/26/2019] [Accepted: 04/25/2019] [Indexed: 12/15/2022]
Abstract
Epicardial adipose tissue (EAT) inflammation is implicated in the development and progression of coronary atherosclerosis. Dietary saturated and polyunsaturated fatty acids (SFAs and PUFA) can influence adipose tissue inflammation. We investigated the influence of dietary patterns, with emphasis on dietary fat type, and statin therapy, on EAT fatty acid (FA) composition and inflammatory gene expression. Thirty-two Ossabaw pigs were fed isocaloric amounts of a Heart Healthy (high in unsaturated fat) or Western (high in saturated fat) diets +/- atorvastatin for 6 months. EAT FA composition reflected dietary fat composition. There was no significant effect of atorvastatin on EAT FA composition. Total and long-chain SFAs were positively associated with inflammatory signaling (TLR2) and a gene involved in lipid mediator biosynthesis (PTGS2) (P<.0003). Medium-chain SFAs capric and lauric acids were negatively associated with IL-6 (all P<.0003). N-6 and n-3 PUFAs were positively associated with anti-inflammatory signaling genes (PPARG, FFAR4 and ADIPOQ) and long-chain n-3 PUFAs were positively associated with a gene involved in lipid mediator biosynthesis (ALOX5) (all P<.0003). These data indicate that dietary patterns, differing in fat type, influence EAT FA composition. Associations between EAT SFAs, PUFAs, and expression of genes related to inflammation provide a link between dietary quality and EAT inflammation.
Collapse
Affiliation(s)
- Maura E Walker
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington Street, Boston, MA 02111.
| | - Nirupa R Matthan
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington Street, Boston, MA 02111.
| | - Audrey Goldbaum
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington Street, Boston, MA 02111.
| | - Huicui Meng
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington Street, Boston, MA 02111.
| | - Stefania Lamon-Fava
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington Street, Boston, MA 02111.
| | - Sukla Lakshman
- USDA, ARS, Beltsville Human Nutrition Research Center, Diet Genomics and Immunology Laboratory, 10300 Baltimore Avenue, Beltsville, MD 20705.
| | - Saebyeol Jang
- USDA, ARS, Beltsville Human Nutrition Research Center, Diet Genomics and Immunology Laboratory, 10300 Baltimore Avenue, Beltsville, MD 20705.
| | - Aleksey Molokin
- USDA, ARS, Beltsville Human Nutrition Research Center, Diet Genomics and Immunology Laboratory, 10300 Baltimore Avenue, Beltsville, MD 20705.
| | - Gloria Solano-Aguilar
- USDA, ARS, Beltsville Human Nutrition Research Center, Diet Genomics and Immunology Laboratory, 10300 Baltimore Avenue, Beltsville, MD 20705.
| | - Joseph F Urban
- USDA, ARS, Beltsville Human Nutrition Research Center, Diet Genomics and Immunology Laboratory, 10300 Baltimore Avenue, Beltsville, MD 20705.
| | - Alice H Lichtenstein
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington Street, Boston, MA 02111.
| |
Collapse
|
42
|
RNA-Sequencing Analysis of Paternal Low-Protein Diet-Induced Gene Expression Change in Mouse Offspring Adipocytes. G3-GENES GENOMES GENETICS 2019; 9:2161-2170. [PMID: 31289120 PMCID: PMC6643888 DOI: 10.1534/g3.119.400181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Increasing evidence indicates that parental diet affects the metabolism and health of offspring. It is reported that paternal low-protein diet (pLPD) induces glucose intolerance and the expression of genes involved in cholesterol biosynthesis in mouse offspring liver. The aim of the present study was to determine the effect of a pLPD on gene expression in offspring white adipose tissue (WAT), another important tissue for the regulation of metabolism. RNA-seq analysis indicated that pLPD up- and down-regulated 54 and 274 genes, respectively, in offspring WAT. The mRNA expression of many genes involved in lipogenesis was down-regulated by pLPD feeding, which may contribute to metabolic disorder. The expression of carbohydrate response element-binding protein β (ChREBP-β), an important lipogenic transcription factor, was also significantly lower in the WAT of pLPD offspring, which may have mediated the down-regulation of the lipogenic genes. By contrast, the LPD did not affect the expression of lipogenic genes in the WAT of the male progenitor, but increased the expression of lipid oxidation genes, suggesting that a LPD may reduce lipogenesis using different mechanisms in parents and offspring. These findings add to our understanding of how paternal diet can regulate metabolism in their offspring.
Collapse
|
43
|
Singh M, Benencia F. Inflammatory processes in obesity: focus on endothelial dysfunction and the role of adipokines as inflammatory mediators. Int Rev Immunol 2019; 38:157-171. [DOI: 10.1080/08830185.2019.1638921] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Manindra Singh
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, USA
| | - Fabian Benencia
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, USA
- Biomedical Engineering Program, Russ College of Engineering and Technology, Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- The Diabetes Institute, Ohio University, Athens, OH, USA
| |
Collapse
|
44
|
Elzinga S, Murdock BJ, Guo K, Hayes JM, Tabbey MA, Hur J, Feldman EL. Toll-like receptors and inflammation in metabolic neuropathy; a role in early versus late disease? Exp Neurol 2019; 320:112967. [PMID: 31145897 DOI: 10.1016/j.expneurol.2019.112967] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/24/2019] [Accepted: 05/26/2019] [Indexed: 02/07/2023]
Abstract
Neuropathy is a common, morbid complication of the metabolic syndrome, prediabetes, and diabetes. Recent studies have indicated a potential role for the immune system in the development of neuropathy. In particular, toll-like receptors (TLR) 2 and 4 have been linked to metabolic dysfunction, and blocking TLR4 is proposed as a treatment for neuropathic pain. In the current study, we investigated the role of the immune system, particularly TLRs 2 and 4, in the pathogenesis and progression of neuropathy. Sural or sciatic nerve gene expression arrays from humans and murine neuropathy models of prediabetes and diabetes were first analyzed to identify differentially expressed TLR2- and TLR4-associated genes within the KEGG (Kyoto Encyclopedia of Genes and Genomes) database. We observed that genes associated with TLRs 2 and 4, particularly lipopolysaccharide binding protein (LPB) and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit beta (PIK3CB), were dysregulated across species and across multiple murine models of prediabetic and diabetic neuropathy. To further understand the role of these pathways in vivo, TLR 2 and 4 global knockout mice placed on a 60% high fat diet (HFD-TLR2/4-/-) were compared with wild type (WT) mice on a high fat diet (HFD-WT) and WT controls on a standard diet (CON). Mice then underwent metabolic, neuropathic, and immunological phenotyping at two time points to assess the impact of TLR signaling on neuropathy and immunity during metabolic dysfunction over time. We found that HFD-TLR2/4-/- and HFD-WT mice weighed more than CON mice but did not have increased fasting blood glucose levels. Despite normal blood glucose levels, HFD-TLR2/4-/- mice eventually developed neuropathy at the later time point (28 wks of age) but were somewhat protected from neuropathy at the early time point (16 wks of age) as measured by shorter hind paw withdraw latencies. This is in contrast to HFD-WT mice which developed neuropathy within 11 wks of being placed on a high fat diet and were neuropathic by all measures at both the early and late time points. Finally, we immunophenotyped all three mouse groups at the later time point and found differences in the number of peripheral blood Ly6C-myeloid cells as well as F4/80+ expression. These results indicate that TLR signaling influences early development of neuropathy in sensory neurons, potentially via immune modulation and recruitment.
Collapse
Affiliation(s)
- S Elzinga
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - B J Murdock
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - K Guo
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - J M Hayes
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - M A Tabbey
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - J Hur
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - E L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
45
|
Melo HM, Santos LE, Ferreira ST. Diet-Derived Fatty Acids, Brain Inflammation, and Mental Health. Front Neurosci 2019; 13:265. [PMID: 30983955 PMCID: PMC6448040 DOI: 10.3389/fnins.2019.00265] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/06/2019] [Indexed: 12/21/2022] Open
Abstract
Western societies experienced drastic changes in eating habits during the past century. The modern nutritional profile, typically rich in saturated fats and refined sugars, is recognized as a major contributing factor, along with reduced physical activity, to the current epidemics of metabolic disorders, notably obesity and diabetes. Alongside these conditions, recent years have witnessed a gradual and significant increase in prevalence of brain diseases, particularly mood disorders. While substantial clinical/epidemiological evidence supports a correlation between metabolic and neuropsychiatric disorders, the mechanisms of pathogenesis in the latter are often multifactorial and causal links have been hard to establish. Neuroinflammation stands out as a hallmark feature of brain disorders that may be linked to peripheral metabolic dyshomeostasis caused by an unhealthy diet. Dietary fatty acids are of particular interest, as they may play a dual role, both as a component of high-calorie obesogenic diets and as signaling molecules involved in inflammatory responses. Here, we review current literature connecting diet-related nutritional imbalance and neuropsychiatric disorders, focusing on the role of dietary fatty acids as signaling molecules directly relevant to inflammatory processes and to neuronal function.
Collapse
Affiliation(s)
- Helen M. Melo
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luís Eduardo Santos
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sergio T. Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
46
|
Shi X, Wang S, Luan H, Tuerhong D, Lin Y, Liang J, Xiong Y, Rui L, Wu F. Clinopodium chinense Attenuates Palmitic Acid-Induced Vascular Endothelial Inflammation and Insulin Resistance through TLR4-Mediated NF- κ B and MAPK Pathways. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:97-117. [PMID: 30776912 DOI: 10.1142/s0192415x19500058] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Elevated palmitic acid (PA) levels are associated with the development of inflammation, insulin resistance (IR) and endothelial dysfunction. Clinopodium chinense (Benth.) O. Kuntze has been shown to lower blood glucose and attenuate high glucose-induced vascular endothelial cells injury. In the present study we investigated the effects of ethyl acetate extract of C. chinense (CCE) on PA-induced inflammation and IR in the vascular endothelium and its molecular mechanism. We found that CCE significantly inhibited PA-induced toll-like receptor 4 (TLR4) expression in human umbilical vein endothelial cells (HUVECs). Consequently, this led to the inhibition of the following downstream adapted proteins myeloid differentiation primary response gene 88, Toll/interleukin-1 receptor domain-containing adaptor-inducing interferon- β and TNF receptor-associated factor 6. Moreover, CCE inhibited the phosphorylation of Ikappa B kinase β , nuclear factor kappa-B (NF- κ B), c-Jun N-terminal kinase, extracellular regulated protein kinases, p38-mitogen-activated protein kinase (MAPK) and subsequently suppressed the release of tumor necrosis factor- α , interleukin-1 β (IL-1 β ) and IL-6. CCE also inhibited IRS-1 serine phosphorylation and ameliorated insulin-mediated tyrosine phosphorylation of IRS-1. Moreover, CCE restored serine/threonine kinase and endothelial nitric oxide synthase (eNOS) activation and thus increased insulin-mediated nitric oxide (NO) production in PA-treated HUVECs. This led to reverse insulin mediated endothelium-dependent relaxation, eNOS phosphorylation and NO production in PA-treated rat thoracic aortas. These results suggest that CCE can significantly inhibit the inflammatory response and alleviate impaired insulin signaling in the vascular endothelium by suppressing TLR4-mediated NF- κ B and MAPK pathways. Therefore, CCE can be considered as a potential therapeutic candidate for endothelial dysfunction associated with IR and diabetes.
Collapse
Affiliation(s)
- Xiaoji Shi
- * Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China.,† Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Shanshan Wang
- * Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China.,† Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Huiling Luan
- * Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China.,† Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Dina Tuerhong
- * Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China.,† Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Yining Lin
- † Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Jingyu Liang
- ‡ Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Yi Xiong
- § Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, USA
| | - Liangyou Rui
- § Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, USA
| | - Feihua Wu
- * Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China.,† Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China.,§ Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, USA
| |
Collapse
|
47
|
de Oliveira AA, Davis D, Nunes KP. Pattern recognition receptors as potential therapeutic targets in metabolic syndrome: From bench to bedside. Diabetes Metab Syndr 2019; 13:1117-1122. [PMID: 31336453 DOI: 10.1016/j.dsx.2019.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/14/2019] [Indexed: 02/08/2023]
Abstract
Pattern recognition receptors (PRRs) such as Toll-like receptors (TLRs) and NOD-like receptors (NLRs) play crucial roles in the underlying mechanisms of metabolic syndrome (MetS). Mainly, these receptors have been suggested to participate in the pathophysiological processes involved in the complications associated with this condition. Therefore, to evolve therapeutic strategies targeting PRRs might be an imperative approach to avoid the development of further complications in human subjects. In this work, we discuss the understanding regarding the roles of PRRs in the pathways of MetS to further describe potential advancements made to target these receptors within this pathology.
Collapse
Affiliation(s)
- Amanda Almeida de Oliveira
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, USA.
| | - Destiny Davis
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, USA
| | - Kenia Pedrosa Nunes
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, USA.
| |
Collapse
|
48
|
Walker ME, Matthan NR, Solano-Aguilar G, Jang S, Lakshman S, Molokin A, Faits T, Urban JF, Johnson WE, Lamon-Fava S, Lichtenstein AH. A Western-type dietary pattern and atorvastatin induce epicardial adipose tissue interferon signaling in the Ossabaw pig. J Nutr Biochem 2019; 67:212-218. [PMID: 30981985 DOI: 10.1016/j.jnutbio.2019.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/17/2019] [Accepted: 02/11/2019] [Indexed: 12/17/2022]
Abstract
Epicardial adipose tissue (EAT) inflammation is thought to potentiate the development of coronary artery disease (CAD). Overall diet quality and statin therapy are important modulators of inflammation and CAD progression. Our objective was to examine the effects and interaction of dietary patterns and statin therapy on EAT gene expression in the Ossabaw pig. Pigs were randomized to 1 of 4 groups; Heart Healthy diet (high in unsaturated fat, unrefined grain, fruits/vegetables [HHD]) or Western diet (high in saturated fat, cholesterol, refined grain [WD]), with or without atorvastatin. Diets were fed in isocaloric amounts for 6 months. A two-factor edge R analysis identified the differential expression of 21 genes. Relative to the HHD, the WD resulted in a significant 12-fold increase of radical s-adenosyl methionine domain containing 2 (RSAD2), a gene induced by interferon signaling. Atorvastatin led to the significant differential expression of 17 genes predominately involved in interferon signaling. Results were similar using the Porcine Translational Research Database. Pathway analysis confirmed the up-regulation of interferon signaling in response to the WD and atorvastatin independently. An expression signature of the largely interferon related differentially expressed genes had no predictive capability on a histological assessment of atherosclerosis in the underlying coronary artery. These results suggest that a WD and atorvastatin evoke an interferon mediated immune response in EAT of the Ossabaw pig, which is not associated with the presence of atherosclerosis.
Collapse
Affiliation(s)
- Maura E Walker
- Cardiovascular Nutrition Laboratory, JM USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | - Nirupa R Matthan
- Cardiovascular Nutrition Laboratory, JM USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | - Gloria Solano-Aguilar
- USDA, ARS, Beltsville Human Nutrition Research Center, Diet Genomics and Immunology Laboratory, Beltsville, MD
| | - Saebyeol Jang
- USDA, ARS, Beltsville Human Nutrition Research Center, Diet Genomics and Immunology Laboratory, Beltsville, MD
| | - Sukla Lakshman
- USDA, ARS, Beltsville Human Nutrition Research Center, Diet Genomics and Immunology Laboratory, Beltsville, MD
| | - Aleksey Molokin
- USDA, ARS, Beltsville Human Nutrition Research Center, Diet Genomics and Immunology Laboratory, Beltsville, MD
| | - Tyler Faits
- Division of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Joseph F Urban
- USDA, ARS, Beltsville Human Nutrition Research Center, Diet Genomics and Immunology Laboratory, Beltsville, MD
| | - W Evan Johnson
- Division of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Stefania Lamon-Fava
- Cardiovascular Nutrition Laboratory, JM USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | - Alice H Lichtenstein
- Cardiovascular Nutrition Laboratory, JM USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA.
| |
Collapse
|
49
|
Jabalie G, Ahmadi M, Koushaeian L, Eghbal‐Fard S, Mehdizadeh A, Kamrani A, Abdollahi‐Fard S, Farzadi L, Hojjat‐ Farsangi M, Nouri M, Yousefi M. Metabolic syndrome mediates proinflammatory responses of inflammatory cells in preeclampsia. Am J Reprod Immunol 2019; 81:e13086. [DOI: 10.1111/aji.13086] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/17/2018] [Accepted: 12/28/2018] [Indexed: 01/21/2023] Open
Affiliation(s)
- Gisoo Jabalie
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Majid Ahmadi
- Student’s Research CommitteeTabriz University of Medical Sciences Tabriz Iran
- Reproductive Biology Department Tabriz University of Medical Sciences Tabriz Iran
| | - Ladan Koushaeian
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Shadi Eghbal‐Fard
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Amir Mehdizadeh
- Endocrine Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Amin Kamrani
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Sedigheh Abdollahi‐Fard
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Laya Farzadi
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Hojjat‐ Farsangi
- Department of Oncology‐Pathology, Immune and Gene Therapy Lab, Cancer Center Karolinska (CCK)Karolinska University Hospital Solna and Karolinska Institute Stockholm Sweden
| | - Mohammad Nouri
- Reproductive Biology Department Tabriz University of Medical Sciences Tabriz Iran
| | - Mehdi Yousefi
- Drug Applied Research CenterTabriz University of Medical Sciences Tabriz Iran
- Aging Research Institute Tabriz University of Medical Sciences Tabriz Iran
- Department of Immunology Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
50
|
Trained immunity and diabetic vascular disease. Clin Sci (Lond) 2019; 133:195-203. [PMID: 30659160 DOI: 10.1042/cs20180905] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/17/2018] [Accepted: 12/21/2018] [Indexed: 01/08/2023]
Abstract
Trained immunity is a recently described phenomenon whereby innate immune cells undergo functional reprogramming in response to microbial products, vaccines, or other stimuli, leading them to mount a sensitized nonspecific response to subsequent stimulation. While it is essential for the host response to pathogens, many diseases are the product of excessive or chronic inflammation. Atherosclerosis is a disease characterized by chronic low-grade inflammation of the arterial wall leading to plaque formation, where macrophages are the most abundant cell regulating plaque progression and stability. Recent studies have revealed a role for endogenous compounds related to atherosclerosis in the induction of trained immunity, which can enhance the expression of genes implicated in atherosclerosis and associated cardiovascular disease. Accelerated atherosclerosis remains the principal cause of morbidity and premature mortality in patients with diabetes, and the burden of vascular complications is greatly enhanced by prior periods of inadequate control of blood glucose. Recent findings suggest that long-term changes in bone marrow myeloid progenitors, similar to those induced by microbial products or high cholesterol diets in mice, may help to explain the chronic inflammatory state driving atherosclerosis and cardiovascular risk that exists for patients with diabetes despite improved metabolic control. From an immunometabolic perspective, we speculate that changes supporting the trained macrophage phenotype, such as up-regulation of glycolysis, indicate that a high glucose environment could enhance the pro-inflammatory consequences of trained immunity thereby contributing to the accelerated progression of atherosclerosis in patients with diabetes.
Collapse
|