1
|
González IA, Pacheco MC. What is New in Pediatric Hepatic Neoplasms. Surg Pathol Clin 2025; 18:281-300. [PMID: 40412827 DOI: 10.1016/j.path.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2025]
Abstract
The goal of this review is to provide a practical update on hepatic lesions affecting the pediatric population and is not meant to be an exhaustive summary of each entity. Hepatoblastoma is purposely not discussed as recent comprehensive reviews on this topic are available; instead, a discussion on rhabdoid tumor and the evolving concept of small cell undifferentiated hepatoblastoma and blastemal hepatoblastoma is included.
Collapse
Affiliation(s)
- Iván A González
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, 350 W 11th St., Room 4068, Indianapolis, IN 46202, USA. https://twitter.com/IvanGonzalezMD
| | - Maria C Pacheco
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle Children's Hospital, 4800 Sand Point Way NE, FB 4.521 - Pathology Lab, Seattle, WA 98105, USA.
| |
Collapse
|
2
|
Gauger AJ, Li A, Fritz M, Katona TM, Alomari AK. Use of Albumin In Situ Hybridization to Diagnose Cutaneous Metastatic Hepatocellular Carcinoma With Poorly Differentiated Features: A Case Report and Review of the Literature. Am J Dermatopathol 2025; 47:211-216. [PMID: 39481028 DOI: 10.1097/dad.0000000000002854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
ABSTRACT Hepatocellular carcinoma (HCC) rarely metastasizes to the skin. When it occurs, it is often poorly differentiated making the diagnosis challenging. There exists a male predominance, and clinical presentation usually includes papules or nodules resembling pyogenic granulomas or dermal deposits. Histopathology shows malignant dermal cells. Hepatoid features including nests or cords of cells arranged in a trabecular or pseudoglandular pattern, sinusoidal formation, or the presence of bile exist in less than 50% of cases. Limitations exist with immunohistochemical staining, particularly in poorly differentiated neoplasms. Albumin in situ hybridization is more sensitive for detecting poorly differentiated HCC. Immunostaining in conjugation with albumin in situ hybridization enhances the detection of metastatic hepatocellular carcinoma. We report the case of a 74-year-old man with a history of HCC and a stable lung metastasis who presented with painful, growing bumps on his nose for 2 months. Examination revealed multiple, pink to white, shiny dermal-based papules with telangiectasias involving the right nasal tip and naris. Alpha-fetoprotein level was markedly elevated. Computed tomography showed expanding right lower lobe lung nodules. Histopathology of the cutaneous biopsy revealed features of a poorly differentiated basaloid carcinoma. Immunohistochemical staining was diffusely positive for glypican-3, focally positive for arginase-1, and negative for hepatocyte paraffin 1. Albumin in situ hybridization was diffusely positive, clinching the diagnosis of HCC. Metastatic HCC is a rare encounter for dermatopathologists. We aim to increase awareness of its occurrence in patients with advanced HCC and highlight the importance of clinical correlation when faced with poorly differentiated or unusual-looking basaloid neoplasms.
Collapse
Affiliation(s)
- Andrew J Gauger
- Departments of Pathology, and Dermatology, Indiana University School of Medicine, Indianapolis, IN
| | | | | | | | | |
Collapse
|
3
|
Choi JH, Thung SN. Pathology and diagnostic approaches to well-differentiated hepatocellular lesions: a narrative review. JOURNAL OF YEUNGNAM MEDICAL SCIENCE 2024; 42:5. [PMID: 39442859 PMCID: PMC11812079 DOI: 10.12701/jyms.2024.00766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/09/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024]
Abstract
Well-differentiated hepatocellular lesions (WDHLs) are liver tumors or nonneoplastic lesions in which the cells closely resemble normal hepatocytes. These lesions often include focal nodular hyperplasia, hepatocellular adenoma, macroregenerative nodule, dysplastic nodule, and well-differentiated hepatocellular carcinoma. The diagnosis of these lesions remains challenging because of their morphological similarities, particularly when examined using needle biopsy. The accurate diagnosis of WDHLs is crucial for patient management and prognosis. This review addresses the histopathological characteristics and diagnostic approaches of WDHLs.
Collapse
Affiliation(s)
- Joon Hyuk Choi
- Department of Pathology, Yeungnam University College of Medicine, Daegu, Korea
| | - Swan N. Thung
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
4
|
Zamil M, Maqbool H, Mushtaq S, Hassan U, Hameed M, Sheikh U. Patterns and Clinicopathological Features of Histologically Proven Metastases in Hepatocellular Carcinoma. Cureus 2024; 16:e69385. [PMID: 39411637 PMCID: PMC11473217 DOI: 10.7759/cureus.69385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2024] [Indexed: 10/19/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver malignant neoplasm. Multiple risk factors have been identified for several decades for this overly aggressive tumor. HCC is an overly aggressive malignancy with frequent intrahepatic and extrahepatic metastasis. In our practice, we have observed that HCC has the propensity to metastasize to very unusual sites and can sometimes show variable patterns leading to diagnostic difficulty. In this study of 257 patients, we aim to discuss the unusual sites of HCC metastasis, the various patterns of metastasis, clinicopathological features, and the most common cause of HCC in our population. In the course of our research study, we systematically extracted a comprehensive dataset comprising 257 instances of metastatic HCCs from the hospital database spanning the period from 2016 to February 2022. The assessment of metastatic sites uncovered a wide range of locations, reflecting significant diversity. The most common location was bone, with 135 cases (52.5%). The vertebral column was the most common location among bony metastasis, with 63 cases (24.7%). Morphologically, the most common histological pattern observed was pure trabecular in 192 patients (74.7%). All cases were diagnosed with the help of immunohistochemical stains. Out of 257 cases, 29.18% were diagnosed using glypican-3 and HepPar1, while 26.1% relied solely on HepPar1 positivity. HepPar1 was performed in a total of 240 cases, and positivity was seen in 205 cases (85.5%). In summary, our study represents the most comprehensive investigation of clinicopathological characteristics in metastatic HCC conducted within the past 20 years. It helps understand the histological and immunohistochemical features useful for diagnosis at metastatic sites for tumors with an unknown primary.
Collapse
Affiliation(s)
- Muhammad Zamil
- Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, PAK
| | - Hina Maqbool
- Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, PAK
| | - Sajid Mushtaq
- Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, PAK
| | - Usman Hassan
- Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, PAK
| | - Maryam Hameed
- Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, PAK
| | - Umer Sheikh
- Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, PAK
| |
Collapse
|
5
|
Guo DZ, Zhang X, Zhang SQ, Zhang SY, Zhang XY, Yan JY, Dong SY, Zhu K, Yang XR, Fan J, Zhou J, Huang A. Single-cell tumor heterogeneity landscape of hepatocellular carcinoma: unraveling the pro-metastatic subtype and its interaction loop with fibroblasts. Mol Cancer 2024; 23:157. [PMID: 39095854 PMCID: PMC11295380 DOI: 10.1186/s12943-024-02062-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Tumor heterogeneity presents a formidable challenge in understanding the mechanisms driving tumor progression and metastasis. The heterogeneity of hepatocellular carcinoma (HCC) in cellular level is not clear. METHODS Integration analysis of single-cell RNA sequencing data and spatial transcriptomics data was performed. Multiple methods were applied to investigate the subtype of HCC tumor cells. The functional characteristics, translation factors, clinical implications and microenvironment associations of different subtypes of tumor cells were analyzed. The interaction of subtype and fibroblasts were analyzed. RESULTS We established a heterogeneity landscape of HCC malignant cells by integrated 52 single-cell RNA sequencing data and 5 spatial transcriptomics data. We identified three subtypes in tumor cells, including ARG1+ metabolism subtype (Metab-subtype), TOP2A+ proliferation phenotype (Prol-phenotype), and S100A6+ pro-metastatic subtype (EMT-subtype). Enrichment analysis found that the three subtypes harbored different features, that is metabolism, proliferating, and epithelial-mesenchymal transition. Trajectory analysis revealed that both Metab-subtype and EMT-subtype originated from the Prol-phenotype. Translation factor analysis found that EMT-subtype showed exclusive activation of SMAD3 and TGF-β signaling pathway. HCC dominated by EMT-subtype cells harbored an unfavorable prognosis and a deserted microenvironment. We uncovered a positive loop between tumor cells and fibroblasts mediated by SPP1-CD44 and CCN2/TGF-β-TGFBR1 interaction pairs. Inhibiting CCN2 disrupted the loop, mitigated the transformation to EMT-subtype, and suppressed metastasis. CONCLUSION By establishing a heterogeneity landscape of malignant cells, we identified a three-subtype classification in HCC. Among them, S100A6+ tumor cells play a crucial role in metastasis. Targeting the feedback loop between tumor cells and fibroblasts is a promising anti-metastatic strategy.
Collapse
Affiliation(s)
- De-Zhen Guo
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xin Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Sen-Quan Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shi-Yu Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiang-Yu Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jia-Yan Yan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - San-Yuan Dong
- Department of Radiology, Zhongshan Hospital, Shanghai Institute of Medical Imaging, Fudan University, Shanghai, 200032, China
| | - Kai Zhu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xin-Rong Yang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Institute of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, China.
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Institute of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China.
| | - Ao Huang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, China.
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
6
|
Yalcin S, Lacin S, Kaseb AO, Peynircioğlu B, Cantasdemir M, Çil BE, Hurmuz P, Doğrul AB, Bozkurt MF, Abali H, Akhan O, Şimşek H, Sahin B, Aykan FN, Yücel İ, Tellioğlu G, Selçukbiricik F, Philip PA. A Post-International Gastrointestinal Cancers' Conference (IGICC) Position Statements. J Hepatocell Carcinoma 2024; 11:953-974. [PMID: 38832120 PMCID: PMC11144653 DOI: 10.2147/jhc.s449540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
Hepatocellular carcinoma (HCC), the most prevalent liver tumor, is usually linked with chronic liver diseases, particularly cirrhosis. As per the 2020 statistics, this cancer ranks 6th in the list of most common cancers worldwide and is the third primary source of cancer-related deaths. Asia holds the record for the highest occurrence of HCC. HCC is found three times more frequently in men than in women. The primary risk factors for HCC include chronic viral infections, excessive alcohol intake, steatotic liver disease conditions, as well as genetic and family predispositions. Roughly 40-50% of patients are identified in the late stages of the disease. Recently, there have been significant advancements in the treatment methods for advanced HCC. The selection of treatment for HCC hinges on the stage of the disease and the patient's medical status. Factors such as pre-existing liver conditions, etiology, portal hypertension, and portal vein thrombosis need critical evaluation, monitoring, and appropriate treatment. Depending on the patient and the characteristics of the disease, liver resection, ablation, or transplantation may be deemed potentially curative. For inoperable lesions, arterially directed therapy might be an option, or systemic treatment might be deemed more suitable. In specific cases, the recommendation might extend to external beam radiation therapy. For all individuals, a comprehensive, multidisciplinary approach should be adopted when considering HCC treatment options. The main treatment strategies for advanced HCC patients are typically combination treatments such as immunotherapy and anti-VEGFR inhibitor, or a combination of immunotherapy and immunotherapy where appropriate, as a first-line treatment. Furthermore, some TKIs and immune checkpoint inhibitors may be used as single agents in cases where patients are not fit for the combination therapies. As second-line treatments, some treatment agents have been reported and can be considered.
Collapse
Affiliation(s)
- Suayib Yalcin
- Department of Medical Oncology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Sahin Lacin
- Department of Medical Oncology, Koç University Faculty of Medicine, İstanbul, Turkey
| | - Ahmed Omar Kaseb
- Department of Gastrointestinal Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Bora Peynircioğlu
- Department of Radiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | | | - Barbaros Erhan Çil
- Department of Radiology, Koç University Faculty of Medicine, İstanbul, Turkey
| | - Pervin Hurmuz
- Department of Radiation Oncology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ahmet Bülent Doğrul
- Department of General Surgery, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Murat Fani Bozkurt
- Department of Nuclear Medicine, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Hüseyin Abali
- Department of Medical Oncology, Bahrain Oncology Center, Muharraq, Bahrain
| | - Okan Akhan
- Department of Radiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Halis Şimşek
- Department of Gastroenterology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Berksoy Sahin
- Department of Medical Oncology, Cukurova University Faculty of Medicine, Adana, Türkiye
| | - Faruk N Aykan
- Department of Medical Oncology, Istinye University Faculty of Medicine Bahçeşehir Liv Hospital, İstanbul, Turkey
| | - İdris Yücel
- Medicana International Hospital Samsun, Department of Medical Oncology, Samsun, Turkey
| | - Gürkan Tellioğlu
- Department of General Surgery, Koç University Faculty of Medicine, İstanbul, Turkey
| | - Fatih Selçukbiricik
- Department of Medical Oncology, Koç University Faculty of Medicine, İstanbul, Turkey
| | - Philip A Philip
- Department of Medicine, Division of Hematology-Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| |
Collapse
|
7
|
Knapp J, Babu H, Benjamin S, Shapiro A. Hepatocellular carcinoma metastatic to the pituitary gland without an identifiable primary lesion. Radiol Case Rep 2024; 19:1263-1267. [PMID: 38292788 PMCID: PMC10825538 DOI: 10.1016/j.radcr.2023.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/02/2023] [Accepted: 12/18/2023] [Indexed: 02/01/2024] Open
Abstract
Hepatocellular carcinoma is one of the most common malignancies worldwide. However, brain metastases from this cancer are incredibly rare. While the hepatocellular carcinoma mortality rate in the United States has been increasing, hepatocellular carcinoma is rare among patients without underlying liver disease. Here we present a patient with a history of left optic nerve meningioma treated with stereotactic radiosurgery who presented with acute vision loss. Magnetic resonance imaging revealed an enhancing mass lesion in the region of the sella turcica. Neurosurgical histopathology revealed a metastatic lesion consistent with hepatocellular carcinoma. Systemic workup failed to identify a primary liver lesion.
Collapse
Affiliation(s)
- Jacquelyn Knapp
- Department of Radiation Oncology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Harish Babu
- Department of Neurosurgery, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Sam Benjamin
- Department of Medical Oncology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Anna Shapiro
- Department of Radiation Oncology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| |
Collapse
|
8
|
Shigematsu Y, Tanaka K, Amori G, Kanda H, Takahashi Y, Takazawa Y, Takeuchi K, Inamura K. Potential involvement of oncostatin M in the immunosuppressive tumor immune microenvironment in hepatocellular carcinoma with vessels encapsulating tumor clusters. Hepatol Res 2024; 54:368-381. [PMID: 37950386 DOI: 10.1111/hepr.13988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/23/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
AIM Vessels encapsulating tumor clusters (VETC) represents an adverse prognostic morphological feature of hepatocellular carcinoma (HCC), which is associated with an immunosuppressive tumor immune microenvironment (TIM). However, the underlying factors characterizing the TIM in HCC with a VETC pattern (VETC-positive HCC) remain uncertain. Oncostatin M (OSM), a pleiotropic cytokine of the interleukin-6 family, regulates various biological processes, including inflammation, proliferation, and invasiveness of tumor cells. We aimed to test a hypothesis that OSM is associated with the immunosuppressive TIM of VETC-positive HCC. METHODS A total of 397 consecutive HCC patients with curative-intent hepatectomy were included. OSM-positive cells and inflammatory cells including CD4-, CD8-, CD163-, and FOXP3-positive cells were immunohistochemically evaluated. We compared VETC-positive and VETC-negative HCCs in terms of the number of these cells. RESULTS We found the VETC pattern in 62 patients (15.6%). Our analysis revealed a significant decrease in the expression of arginase-1, a marker associated with mature hepatocyte differentiation, in VETC-positive HCC (p = 0.046). The number of tumor-infiltrating OSM-positive cells was significantly low in VETC-positive HCC (p = 0.0057). Notably, in VETC-positive HCC, the number of OSM-positive cells was not associated with vascular invasion, whereas in VETC-negative HCC, an increase in the number of OSM-positive cells was associated with vascular invasion (p = 0.042). CONCLUSIONS We identified an association between a decrease in OSM-positive cells and the VETC pattern. Additionally, our findings indicate that VETC-positive HCC is characterized by low hepatocyte differentiation and OSM-independent vascular invasion. These findings highlight the potential interaction between VETC-positive HCC cells and their TIM through the reduction of OSM-expressing cells.
Collapse
Affiliation(s)
- Yasuyuki Shigematsu
- Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
- Division of Pathology, Cancer Institute, JFCR, Tokyo, Japan
| | - Kazuhito Tanaka
- Department of Diagnostic Pathology, Kumamoto University Hospital, Chuo-ku, Japan
| | - Gulanbar Amori
- Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
- Division of Pathology, Cancer Institute, JFCR, Tokyo, Japan
| | - Hiroaki Kanda
- Department of Pathology, Saitama Cancer Center, Ina, Japan
| | - Yu Takahashi
- Division of Hepatobiliary and Pancreatic Surgery, Cancer Institute Hospital, JFCR, Tokyo, Japan
| | | | - Kengo Takeuchi
- Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
- Division of Pathology, Cancer Institute, JFCR, Tokyo, Japan
- Pathology Project for Molecular Targets, Cancer Institute, JFCR, Tokyo, Japan
| | - Kentaro Inamura
- Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
- Division of Pathology, Cancer Institute, JFCR, Tokyo, Japan
| |
Collapse
|
9
|
Ramirez CFA, Taranto D, Ando-Kuri M, de Groot MHP, Tsouri E, Huang Z, de Groot D, Kluin RJC, Kloosterman DJ, Verheij J, Xu J, Vegna S, Akkari L. Cancer cell genetics shaping of the tumor microenvironment reveals myeloid cell-centric exploitable vulnerabilities in hepatocellular carcinoma. Nat Commun 2024; 15:2581. [PMID: 38519484 PMCID: PMC10959959 DOI: 10.1038/s41467-024-46835-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/12/2024] [Indexed: 03/25/2024] Open
Abstract
Myeloid cells are abundant and plastic immune cell subsets in the liver, to which pro-tumorigenic, inflammatory and immunosuppressive roles have been assigned in the course of tumorigenesis. Yet several aspects underlying their dynamic alterations in hepatocellular carcinoma (HCC) progression remain elusive, including the impact of distinct genetic mutations in shaping a cancer-permissive tumor microenvironment (TME). Here, in newly generated, clinically-relevant somatic female HCC mouse models, we identify cancer genetics' specific and stage-dependent alterations of the liver TME associated with distinct histopathological and malignant HCC features. Mitogen-activated protein kinase (MAPK)-activated, NrasG12D-driven tumors exhibit a mixed phenotype of prominent inflammation and immunosuppression in a T cell-excluded TME. Mechanistically, we report a NrasG12D cancer cell-driven, MEK-ERK1/2-SP1-dependent GM-CSF secretion enabling the accumulation of immunosuppressive and proinflammatory monocyte-derived Ly6Clow cells. GM-CSF blockade curbs the accumulation of these cells, reduces inflammation, induces cancer cell death and prolongs animal survival. Furthermore, GM-CSF neutralization synergizes with a vascular endothelial growth factor (VEGF) inhibitor to restrain HCC outgrowth. These findings underscore the profound alterations of the myeloid TME consequential to MAPK pathway activation intensity and the potential of GM-CSF inhibition as a myeloid-centric therapy tailored to subsets of HCC patients.
Collapse
Affiliation(s)
- Christel F A Ramirez
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Daniel Taranto
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Masami Ando-Kuri
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marnix H P de Groot
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Efi Tsouri
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Zhijie Huang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Daniel de Groot
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Roelof J C Kluin
- Genomics Core facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Daan J Kloosterman
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Joanne Verheij
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Jing Xu
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Serena Vegna
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Leila Akkari
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
10
|
Gupta AC, Bhat A, Maras JS. Early hepatic proteomic signatures reveal metabolic changes in high-fat-induced obesity in rats. Br J Nutr 2024; 131:773-785. [PMID: 37886840 DOI: 10.1017/s0007114523002453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The prevalence of diet-related obesity is increasing dramatically worldwide, making it important to understand the associated metabolic alterations in the liver. It is well known that obesity is a multifactorial condition that is the result of complex integration between many gene expressions and dietary factors. Obesity alone or in conjunction with other chronic diseases such as diabetes and insulin resistance causes many health problems and is considered a major risk factor for developing non-alcoholic steatohepatitis (NASH) and cirrhosis. In this study, we aimed to understand the molecular mechanisms underlying early hepatic changes in the pathophysiology of high-fat diet (HFD)-induced abdominal obesity in rats. Hepatic protein profiles of normal diet and HFD-induced obesity for 24 weeks were analysed using two-dimensional differential gel electrophoresis (DIGE) and protein identification by MS. Fifty-two proteins were identified by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF), and computer-assisted DIGE image software analysis showed that eighteen major proteins were significantly differentially expressed between comparable groups, with 2·0–4·0-fold change/more (P < 0·01). These proteins are regulated in response to a HFD, and differentially expressed proteins are involved in key metabolic pathways such as lipid metabolism, energy metabolism, detoxification, urea cycle and hepatic Ca homoeostasis. In addition, Western blot and immunohistochemistry of liver-specific arginase-1 (Arg-1) showed significant increased expression in the liver of high-fat-fed rats (P < 0·01). Further, Arg-1 expression was correlated with NASH patients with obesity-related fibrosis (F0–F4). It is concluded that high-fat content may affect changes in liver pathways and may be a therapeutic target for obesity-related liver disease. Arg-1 expressions may be a potential pathological marker for assessing the progression of the disease.
Collapse
Affiliation(s)
- Abhishak C Gupta
- Department of Education and Research, Artemis Hospitals, Gurugram, Haryana, India
- Department of Molecular and Cellular Medicine (MCM), Institute of Liver and Biliary Sciences (ILBS), New Delhi, India
| | - Adil Bhat
- Department of Molecular and Cellular Medicine (MCM), Institute of Liver and Biliary Sciences (ILBS), New Delhi, India
| | - Jaswinder S Maras
- Department of Molecular and Cellular Medicine (MCM), Institute of Liver and Biliary Sciences (ILBS), New Delhi, India
| |
Collapse
|
11
|
Komuta M. Intrahepatic cholangiocarcinoma: histological diversity and the role of the pathologist. JOURNAL OF LIVER CANCER 2024; 24:17-22. [PMID: 38171533 PMCID: PMC10990672 DOI: 10.17998/jlc.2023.12.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024]
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is one of the primary liver cancers and presents with tumor heterogeneity. About 50% of iCCAs comprise actionable mutations, which completely change patient management. In addition, the precise diagnosis of iCCA, including subtype, has become crucial, and pathologists play an important role in this regard. This review focuses on iCCA heterogeneity; looking at different perspectives to guide diagnosis and optimal treatment choice.
Collapse
Affiliation(s)
- Mina Komuta
- Department of Pathology, International University of Health and Welfare School of Medicine, IUHW Narita Hospital, Chiba, Japan
| |
Collapse
|
12
|
Ferrell LD, Kakar S, Terracciano LM, Wee A. Tumours and Tumour-Like Lesions. MACSWEEN'S PATHOLOGY OF THE LIVER 2024:842-946. [DOI: 10.1016/b978-0-7020-8228-3.00013-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
13
|
Larson BK, Dhall D, Guindi M. Arginase-1 is More Specific Than Hepatocyte Paraffin 1 for Differentiating Hepatocellular Carcinomas With Cytoplasmic Clearing from Nonhepatocellular Clear Cell Tumors in Liver Biopsies. Appl Immunohistochem Mol Morphol 2024; 32:37-43. [PMID: 37859468 DOI: 10.1097/pai.0000000000001169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 09/25/2023] [Indexed: 10/21/2023]
Abstract
Arginase-1 (Arg1) and hepatocyte paraffin antigen 1 (HepPar1) are specific and sensitive markers of hepatocellular differentiation. HepPar1 is a granular cytoplasmic immunostain that may be negative in hepatocellular carcinoma (HCC) with cytoplasmic clearing. Arg1 shows uniform cytoplasmic positivity and frequent nuclear positivity. This study was undertaken to determine the staining pattern of Arg1 in HCC with cytoplasmic clearing and compare its use to HepPar1. Fifteen resected HCCs with cytoplasmic clearing and 31 biopsies of clear cell liver tumors (14 HCCs and 17 nonhepatocellular tumors) were identified. Resections were stained with Arg1 to characterize the pattern, intensity, and extent of Arg1 positivity. Biopsies were stained with Arg1 (n=31) and HepPar1 (n=28). In all, 13/15 resected and 11/14 biopsied HCCs with cytoplasmic clearing showed nuclear positivity for Arg1. Both Arg1 and HepPar1 stained significantly more HCCs than nonhepatocellular tumors (13/14 and 11/12, respectively, with P <0.0001 and P =0.0018, respectively). However, HepPar1 stained significantly more nonhepatocellular tumors (5/12) than Arg1 (0/17, P =0.0445). Arg1 frequently displayed nuclear positivity, and interobserver agreement was better for Arg1 ( K =0.93 vs. 0.79). Overall, Arg1 is more specific than HepPar1 for differentiating HCC with cytoplasmic clearing from nonhepatocellular clear cell tumors in the liver. Its staining characteristics, including nuclear positivity, make it easier to interpret in combination with morphology, improving interobserver variability, and it stains significantly fewer mimics than HepPar1.
Collapse
Affiliation(s)
- Brent K Larson
- Department of Pathology and Laboratory Medicine Cedars-Sinai Medical Center, Los Angeles, CA
| | - Deepti Dhall
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Maha Guindi
- Department of Pathology and Laboratory Medicine Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
14
|
Zhang SL, Wang HL. Ancillary tests for hepatobiliary neoplasms: what we know and what we need to know. Hum Pathol 2023; 141:183-200. [PMID: 36775105 DOI: 10.1016/j.humpath.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/29/2023] [Accepted: 02/04/2023] [Indexed: 02/12/2023]
Abstract
Ancillary tests are commonly used in the surgical pathology setting for diagnosing challenging neoplastic diseases of the liver and biliary tract, while histology and clinical correlation remain to be critically important. With continuous discoveries, more and more useful ancillary tests have become available, which can help distinguish between malignant and benign hepatocellular neoplasms, malignant and benign biliary tract entities, and intrahepatic and metastatic carcinomas. This review will focus on existing and emerging biomarkers (such as glutamine synthetase, organic anion transporting polypeptide 1B3, insulin-like growth factor-II mRNA binding protein-3, S100P, SMAD4, enhancer of zeste homolog 2, albumin, hepatocyte nuclear factor-1β, etc.) that can be used for the diagnosis, classification and prognostication of hepatobiliary neoplasms.
Collapse
Affiliation(s)
- Sarah L Zhang
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine and Ronald Reagan Medical Center, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Hanlin L Wang
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine and Ronald Reagan Medical Center, University of California at Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
15
|
El Jabbour T, Molnar A, Lagana SM. Challenges in Diagnosing and Reporting Cholangiocarcinoma. Surg Pathol Clin 2023; 16:599-608. [PMID: 37536891 DOI: 10.1016/j.path.2023.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Intrahepatic cholangiocarcinoma is a challenge to the practicing surgical pathologist for several reasons. It is rare in many parts of the world, and thus practical exposure may be limited. Related to the fact of its rarity is the fact that more common tumors which frequently metastasize to the liver can be morphologically indistinguishable (eg, pancreatic ductal adenocarcinoma). Immunohistochemical testing is generally non-contributory in this context. Other difficulties arise from the protean morphologic manifestations of cholangiocarcinoma (ie, small duct vs. large duct) and the existence of combined cholangiocarcinoma and hepatocellular carcinoma. These, and other issues of concern to the practicing diagnostic pathologist are discussed herein.
Collapse
Affiliation(s)
| | - Attila Molnar
- Mount Sinai Morningside and Mount Sinai West, Department of Pathology, 1000 Tenth Avenue, First floor, Room G183, New York, NY 10019, USA
| | - Stephen M Lagana
- New York-Presbyterian /Columbia University, Irving Medical Center, 622 W168th St, Vc14-209, New York, NY 10032, USA.
| |
Collapse
|
16
|
Papke DJ. Mesenchymal Neoplasms of the Liver. Surg Pathol Clin 2023; 16:609-634. [PMID: 37536892 DOI: 10.1016/j.path.2023.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Mesenchymal neoplasms of the liver can be diagnostically challenging, particularly on core needle biopsies. Here, I discuss recent updates in neoplasms that are specific to the liver (mesenchymal hamartoma, undifferentiated embryonal sarcoma, calcifying nested stromal-epithelial tumor), vascular tumors of the liver (anastomosing hemangioma, hepatic small vessel neoplasm, epithelioid hemangioendothelioma, angiosarcoma), and other tumor types that can occur primarily in the liver (PEComa/angiomyolipoma, inflammatory pseudotumor-like follicular dendritic cell sarcoma, EBV-associated smooth muscle tumor, inflammatory myofibroblastic tumor, malignant rhabdoid tumor). Lastly, I discuss metastatic sarcomas to the liver, as well as pitfalls presented by metastatic melanoma and sarcomatoid carcinoma.
Collapse
Affiliation(s)
- David J Papke
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
17
|
Fang J, Singh S, Cheng C, Natarajan S, Sheppard H, Abu-Zaid A, Durbin AD, Lee HW, Wu Q, Steele J, Connelly JP, Jin H, Chen W, Fan Y, Pruett-Miller SM, Rehg JE, Koo SC, Santiago T, Emmons J, Cairo S, Wang R, Glazer ES, Murphy AJ, Chen T, Davidoff AM, Armengol C, Easton J, Chen X, Yang J. Genome-wide mapping of cancer dependency genes and genetic modifiers of chemotherapy in high-risk hepatoblastoma. Nat Commun 2023; 14:4003. [PMID: 37414763 PMCID: PMC10326052 DOI: 10.1038/s41467-023-39717-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/27/2023] [Indexed: 07/08/2023] Open
Abstract
A lack of relevant genetic models and cell lines hampers our understanding of hepatoblastoma pathogenesis and the development of new therapies for this neoplasm. Here, we report an improved MYC-driven hepatoblastoma-like murine model that recapitulates the pathological features of embryonal type of hepatoblastoma, with transcriptomics resembling the high-risk gene signatures of the human disease. Single-cell RNA-sequencing and spatial transcriptomics identify distinct subpopulations of hepatoblastoma cells. After deriving cell lines from the mouse model, we map cancer dependency genes using CRISPR-Cas9 screening and identify druggable targets shared with human hepatoblastoma (e.g., CDK7, CDK9, PRMT1, PRMT5). Our screen also reveals oncogenes and tumor suppressor genes in hepatoblastoma that engage multiple, druggable cancer signaling pathways. Chemotherapy is critical for human hepatoblastoma treatment. A genetic mapping of doxorubicin response by CRISPR-Cas9 screening identifies modifiers whose loss-of-function synergizes with (e.g., PRKDC) or antagonizes (e.g., apoptosis genes) the effect of chemotherapy. The combination of PRKDC inhibition and doxorubicin-based chemotherapy greatly enhances therapeutic efficacy. These studies provide a set of resources including disease models suitable for identifying and validating potential therapeutic targets in human high-risk hepatoblastoma.
Collapse
Affiliation(s)
- Jie Fang
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shivendra Singh
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Changde Cheng
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sivaraman Natarajan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Heather Sheppard
- Comparative Pathology Core, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ahmed Abu-Zaid
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Adam D Durbin
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ha Won Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Qiong Wu
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jacob Steele
- Center for Advanced Genome Engineering (CAGE), St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jon P Connelly
- Center for Advanced Genome Engineering (CAGE), St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hongjian Jin
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Wenan Chen
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yiping Fan
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering (CAGE), St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jerold E Rehg
- Comparative Pathology Core, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Selene C Koo
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Teresa Santiago
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Joseph Emmons
- VPC Diagnostic Laboratory, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stefano Cairo
- Champions Oncology, 1330 Piccard dr, Rockville, MD, USA
| | - Ruoning Wang
- Center for Childhood Cancer and Blood Disease, Hematology/Oncology & BMT, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Evan S Glazer
- Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, 910 Madison Ave., Suite 325, Memphis, TN, USA
| | - Andrew J Murphy
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, 910 Madison Ave., Suite 325, Memphis, TN, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Andrew M Davidoff
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, 910 Madison Ave., Suite 325, Memphis, TN, USA
- St Jude Graduate School of Biomedical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pathology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Carolina Armengol
- Childhood Liver Oncology Group, Germans Trias i Pujol Research Institute (IGTP), Translational Program in Cancer Research (CARE), Badalona, Spain
- CIBER, Hepatic and Digestive Diseases, Barcelona, Spain
- CIBERehd, Madrid, Spain
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- St Jude Graduate School of Biomedical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA.
| | - Jun Yang
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA.
- St Jude Graduate School of Biomedical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Pathology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
18
|
Ong KH, Hsieh YY, Sun DP, Huang SKH, Tian YF, Chou CL, Shiue YL, Joseph K, Chang IW. Underexpression of Carbamoyl Phosphate Synthetase I as Independent Unfavorable Prognostic Factor in Intrahepatic Cholangiocarcinoma: A Potential Theranostic Biomarker. Diagnostics (Basel) 2023; 13:2296. [PMID: 37443694 PMCID: PMC10340233 DOI: 10.3390/diagnostics13132296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/21/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Intrahepatic cholangiocarcinoma (IHCC) is the second most common malignant neoplasm of the liver. In spite of the increasing incidence worldwide, it is relatively rare in Western countries. IHCC is relatively common in Eastern and Southeastern Asia. Patients with IHCC are usually diagnosed at an advanced stage, therefore, the clinical outcome is dismal. Dysregulation of urea cycle metabolic enzyme expression is found in different types of cancers. Nevertheless, a comprehensive evaluation of genes related to the urea cycle (i.e., GO:0000050) has not been conducted in IHCC. By performing a comparative analysis of gene expression profiles, we specifically examined genes associated with the urea cycle (GO:0000050) in a publicly accessible transcriptomic dataset (GSE26566). Interestingly, CPS1 was identified as the second most prominently down-regulated gene in this context. Tumor tissues of 182 IHCC patients who underwent curative-intent hepatectomy were enrolled. The expression level of CPS1 protein in our IHCC cohort was assessed by immunohistochemical study. Subsequent to that, statistical analyses were carried out to examine the expression of CPS1 in relation to various clinicopathological factors, as well as to assess its impact on survival outcomes. We noticed that lower immunoreactivity of CPS1 in IHCC was associated with tumor progression (pT status) with statistical significance (p = 0.003). CPS1 underexpression was not only negatively correlated to overall survival (OS), disease-specific survival (DSS), local recurrence-free survival (LRFS) and metastasis-free survival (MeFS) in univariate analysis but also an independent prognosticator to forecast poorer clinical outcome for all prognostic indices (OS, DSS, LRFS and MeFs) in patients with IHCC (all p ≤ 0.001). These results support that CPS1 may play a crucial role in IHCC oncogenesis and tumor progression and serve as a novel prognostic factor and a potential diagnostic and theranostic biomarker.
Collapse
Affiliation(s)
- Khaa Hoo Ong
- Division of Gastroenterology & General Surgery, Department of Surgery, Chi Mei Medical Center, Tainan 710, Taiwan; (K.H.O.); (D.-P.S.)
- Department of Medical Technology, Chung Hwa University of Medical Technology, Tainan 717, Taiwan;
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan;
| | - Yao-Yu Hsieh
- Division of Hematology and Oncology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei 235, Taiwan;
- Division of Hematology and Oncology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Ding-Ping Sun
- Division of Gastroenterology & General Surgery, Department of Surgery, Chi Mei Medical Center, Tainan 710, Taiwan; (K.H.O.); (D.-P.S.)
| | - Steven Kuan-Hua Huang
- Division of Urology, Department of Surgery, Chi Mei Medical Center, Tainan 710, Taiwan;
- Department of Medical Science Industries, College of Health Sciences, Chang Jung Christian University, Tainan 711, Taiwan
| | - Yu-Feng Tian
- Division of Colon and Rectal Surgery, Department of Surgery, Chi Mei Medical Center, Tainan 710, Taiwan;
| | - Chia-Ling Chou
- Department of Medical Technology, Chung Hwa University of Medical Technology, Tainan 717, Taiwan;
- Division of Colon and Rectal Surgery, Department of Surgery, Chi Mei Medical Center, Tainan 710, Taiwan;
| | - Yow-Ling Shiue
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan;
- Institute of Precision Medicine, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Keva Joseph
- St. Jude Hospital, Vieux Fort LC12 201, Saint Lucia;
| | - I-Wei Chang
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Clinical Pathology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Department of Pathology, Taipei Medical University Hospital, Taipei 110, Taiwan
- Department of Pathology, Shuang Ho Hospital, Taipei Medical University, Taipei 235, Taiwan
| |
Collapse
|
19
|
Whole-Transcriptome Sequencing Combined with High-Dimensional Proteomic Technologies Reveals the Potential Value of miR-135b-5p as a Biomarker for Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2023; 2023:6517963. [PMID: 36755690 PMCID: PMC9902149 DOI: 10.1155/2023/6517963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 01/31/2023]
Abstract
Purpose Hepatocellular carcinoma (HCC) is a disease with great heterogeneity and a high mortality rate. It is crucial to identify reliable biomarkers for diagnosis, prognosis, and treatment to improve clinical outcomes in patients with HCC. Alpha-fetoprotein (AFP) is not only a widely used biomarker in clinical practice but also plays a complicated role in HCC, and it has recently been considered to be related to immunotherapy. MicroRNAs (miRNAs) are regarded as key regulators and promising biomarkers of HCC. We investigated the role of an AFP-related miRNA, miR-135b-5p, in HCC progression. Methods Identification of miR-135b-5p was performed based on a cohort of 65 HCC cases and the liver hepatocellular carcinoma cohort of The Cancer Genome Atlas (Asian people only). A combination of whole-transcriptome sequencing and high-dimensional proteomic technologies was used to study the role of miR-135b-5p in HCC. Results Upregulation of miR-135b-5p was detected in patients with HCC with high serum AFP levels (AFP > 400 ng/ml). Elevated miR-135b-5p expression was associated with adverse prognosis. We also identified the relevance between high miR-135b-5p expression and tumor-related pathological characteristics, such as Edmondson grade and vascular invasion. We revealed tyrosine kinase nonreceptor 1 as a potential target of miR-135b-5p. Additionally, the transcriptional start site of miR-135b-5p had potential binding sites for SRY-box transcription factor 9, and the stemness properties of tumor cells were more remarkable in HCC with the upregulation of miR-135b-5p. The molecular characterization of the miR-135b-5p-high group was similar to that of the HCC subclasses containing moderately and poorly differentiated tumors. Finally, gene signatures associated with improved clinical outcomes in immune checkpoint inhibitor therapy were upregulated in the miR-135b-5p-high group. Conclusion miR-135b-5p could be a biomarker for predicting the prognosis and antiprogrammed cell death protein 1 monotherapy response in HCC.
Collapse
|
20
|
Pathology of Combined Hepatocellular Carcinoma-Cholangiocarcinoma: An Update. Cancers (Basel) 2023; 15:cancers15020494. [PMID: 36672443 PMCID: PMC9856551 DOI: 10.3390/cancers15020494] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Combined hepatocellular carcinoma-cholangiocarcinoma (cHCC-CCA) is a rare primary liver cancer that is composed of both hepatocellular and cholangiocellular differentiated cells. It is slightly more common in men and among Asian and Pacific islanders. Overall, risk factors are similar to classic risk factors of hepatocellular carcinoma (HCC). The classification has significantly evolved over time. The last WHO classification (2019) mainly emphasized diagnosis on morphological basis with routine stainings, discarded previously recognized classifications with carcinomas with stem cell features, introduced intermediate cell carcinoma as a specific subtype and considered cholangiolocarcinoma as a subtype of cholangiocellular carcinoma. Immunohistochemical markers may be applied for further specification but have limited value for diagnosis. Recent discoveries in molecular pathway regulation may pioneer new therapeutic approaches for this poor prognostic and challenging diagnosis.
Collapse
|
21
|
Lee S, Karns R, Shin S. Mechanism of paracrine communications between hepatic progenitor cells and endothelial cells. Cell Signal 2022; 100:110458. [PMID: 36055565 PMCID: PMC9971365 DOI: 10.1016/j.cellsig.2022.110458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/16/2022] [Accepted: 08/25/2022] [Indexed: 11/27/2022]
Abstract
Hepatic progenitor cells (HPCs) are facultative tissue-specific stem cells lining reactive ductules, which are ubiquitously observed in chronic liver diseases and cancer. Although previous research mainly focused on their contribution to liver regeneration, it turned out that in vivo differentiation of HPCs into hepatocytes only occurs after extreme injury. While recent correlative evidence implies the association of HPCs with disease progression, their exact role in pathogenesis remains largely unknown. Our previous research demonstrated that HPCs expressing angiogenic paracrine factors accumulate in the peritumoral area and are positively correlated with the extent of intratumoral cell proliferation and angiogenesis in the livers of patients with liver cancer. Given the crucial roles of angiogenesis in liver disease progression and carcinogenesis, we aimed to test the hypothesis that HPCs secrete paracrine factors to communicate with endothelial cells, to determine molecular mechanisms mediating HPCs-endothelial interactions, and to understand how the paracrine function of HPCs is regulated. HPCs promoted viability and tubulogenesis of human umbilical vein endothelial cells (HUVECs) and upregulated genes known to be involved in angiogenesis, endothelial cell function, and disease progression in a paracrine manner. The paracrine function of HPCs as well as expression of colony stimulating factor 1 (CSF1) were inhibited upon differentiation of HPCs toward hepatocytes. Inhibition of CSF1 receptor partly suppressed the paracrine effects of HPCs on HUVECs. Taken together, our study indicates that inhibition of the paracrine function of HPCs through modulation of their differentiation status and inhibition of CSF1 signaling is a promising strategy for inhibition of angiogenesis during pathological progression.
Collapse
Affiliation(s)
- Sanghoon Lee
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Rebekah Karns
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Soona Shin
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
22
|
Mokhtari M, Safavi D, Soleimani N, Monabati A, Safaei A. Carcinoma of Unknown Primary Origin: Application of Immunohistochemistry With Emphasis to Different Cytokeratin 7 and 20 Staining Patterns. Appl Immunohistochem Mol Morphol 2022; 30:623-634. [PMID: 36036642 DOI: 10.1097/pai.0000000000001054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 07/12/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Although the primary origin of some carcinomas may be obscure to clinicians, its identification is crucial as it affects prognosis and treatment (especially novel targeted therapies). Immunohistochemistry (IHC) may be helpful in identifying the primary origin of carcinomas. This retrospective survey aimed to evaluate the frequency and accuracy of each IHC marker used to determine the origin of carcinomas. METHODS The review of pathology department archives revealed 307 cases of cancer of unknown primary origin (CUP) between 2015 and 2020, which were accessible in the department archives. Demographic information, site of biopsy, clinical and pathologic diagnoses, and IHC results of the patients were collected. RESULTS The patients included 157 (51.15%) men and 150 (48.85%) women. The age of the patients ranged from 14 to 92 years, including 106 (34.5%) expired cases. In 27% of cases, the primary origin of carcinoma remained unknown. The agreement between pathologic and clinical diagnoses was 59%. The most common pattern of cytokeratin (CK) expression in CUP was CK7+/CK20- (55.3%), followed by CK7-/CK20- (19%), CK7+/CK20+ (15%), and CK7-/CK20+ (10.7%), respectively. CONCLUSION The IHC analysis may improve the diagnosis of CUPs. However, the origin of some cases remains unknown despite an IHC analysis, thereby necessitating the use of more diagnostic procedures or gene expression studies for reaching a definitive diagnosis.
Collapse
Affiliation(s)
- Maral Mokhtari
- Department of Pathology, Shiraz Medical School
- Department of Pathology, Shahid Faghihi Hospital
| | | | - Neda Soleimani
- Department of Pathology, Shiraz Medical School
- Department of pathology, Shiraz Transplant Center, Abu Ali Sina Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Monabati
- Department of Pathology, Shiraz Medical School
- Department of Pathology, Shahid Faghihi Hospital
| | - Akbar Safaei
- Department of Pathology, Shiraz Medical School
- Department of Pathology, Shahid Faghihi Hospital
| |
Collapse
|
23
|
Solitary extrahepatic hepatocellular carcinoma in vertebrae without a primary lesion in the liver might originate from bone marrow: a case report and new hypothesis based on a review of the literature and the latest findings. Clin J Gastroenterol 2022; 15:1115-1123. [DOI: 10.1007/s12328-022-01701-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/06/2022] [Indexed: 02/07/2023]
|
24
|
Xie Y, Zhou X, Zhang J, Yu H, Song Z. Immunomodulatory responses of differentially polarized macrophages to fungal infections. Int Immunopharmacol 2022; 111:109089. [PMID: 35964406 DOI: 10.1016/j.intimp.2022.109089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/16/2022] [Accepted: 07/22/2022] [Indexed: 11/05/2022]
Abstract
Macrophages, the first line of defense against invasive fungi in the innate immune system, are widely distributed in the blood and tissues of the body. In response to various internal and external stimulators, macrophages can polarize into classically activated macrophages (M1) and alternatively activated macrophages (M2). These two types of polarized macrophages play different roles in antifungal activity and in maintaining the steady-state balance between inflammation and tissue repair. However, the antifungal mechanisms of M1- and M2-type macrophages have not been fully described. In this review, the immune regulatory mechanisms against pathogenic fungi of these two classical types of macrophages in various tissues are summarized. The effects of antifungal factors on macrophage differentiation are also highlighted. The description of these data, on the one hand provides valuable insight for future investigations and also highlights new strategies for the treatment of pathogenic fungal infections.
Collapse
Affiliation(s)
- Yuxin Xie
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, PR China.
| | - Xue Zhou
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, PR China.
| | - Jinping Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, PR China; The Public Platform of Molecular Biotechnology, Public Center of Experimental Technology, Southwest Medical University, Luzhou 646000, People's Republic of China.
| | - Hong Yu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, PR China; The Public Platform of Cell Biotechnology, Public Center of Experimental Technology, Southwest Medical University, Luzhou 646000, PR China.
| | - Zhangyong Song
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, PR China; The Public Platform of Molecular Biotechnology, Public Center of Experimental Technology, Southwest Medical University, Luzhou 646000, People's Republic of China.
| |
Collapse
|
25
|
Pourfarrokh N, Carreon CK, Zreik R, Asirvatham JR. Heterotopic Hepatic Tissue in the Placenta: A Case Report. Int J Surg Pathol 2022:10668969221116543. [PMID: 35929104 DOI: 10.1177/10668969221116543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Heterotopic hepatic tissue in placenta or umbilical cord is rare. The exact mechanism by which this heterotopia occurs has not been fully understood but is thought to be related to yolk sac primordia. To date, a handful of such cases have been reported. We present a case of heterotopic liver tissue within a chorionic stem villus of a 37 week-growth restricted neonate and describe the tissue morphology and its immunohistochemistry workup.
Collapse
Affiliation(s)
- Niloufar Pourfarrokh
- Department of Pathology, 7866Baylor Scott & White Medical Center - Temple, Temple, TX, USA
| | - Chrystalle Katte Carreon
- Department of Pathology, 1862Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.,Division of Women's and Perinatal Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Riyam Zreik
- Department of Pathology, 7866Baylor Scott & White Medical Center - Temple, Temple, TX, USA
| | - Jaya Ruth Asirvatham
- Department of Pathology, 7866Baylor Scott & White Medical Center - Temple, Temple, TX, USA
| |
Collapse
|
26
|
Shigematsu Y, Amori G, Kanda H, Takahashi Y, Takazawa Y, Takeuchi K, Inamura K. Decreased ARG1 expression as an adverse prognostic phenotype in non-alcoholic non-virus-related hepatocellular carcinoma. Virchows Arch 2022; 481:253-263. [PMID: 35459975 DOI: 10.1007/s00428-022-03318-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/21/2022] [Accepted: 03/26/2022] [Indexed: 11/29/2022]
Abstract
The incidence of non-alcoholic non-virus-related hepatocellular carcinoma (NANV-HCC) is increasing along with the growing prevalence of metabolic disorders. In this subset, few useful biomarkers are available to narrow down the high-risk group for recurrence. This study aimed to evaluate the prognostic impact of decreased ARG1 (arginase-1), which is pathologically known as a marker reflecting hepatocyte differentiation, in NANV-HCC. Besides, its relationship with biliary/progenitor cell markers, whose expressions are associated with poor prognosis, was also assessed. To reveal the clinicopathological association of decreased ARG1 expression in NANV-HCC, we investigated 99 patients who underwent curative-intent hepatectomy for NANV-HCC. Tissue microarrays were employed for immunohistochemical analysis. A total of 21 NANV-HCC cases (21%; 21/99) showed decreased ARG1 expression. Decreased ARG1 expression was an independent prognostic factor for both poor DFS (hazard ratio 2.17; 95% confidence interval 1.15-4.09; p = 0.02) and OS (hazard ratio 4.09; 95% confidence interval 1.71-9.80; p = 0.002). In addition, decreased ARG1 expression was significantly associated with expressions of biliary/progenitor cell markers, CK19 and CD56 (p < 0.01). As cytologic features of tumor cells, decreased ARG1 expression was significantly associated with lipid-less cytologic morphology (p = 0.045). These findings indicate that decreased ARG1 expression is a predictive phenotype of postoperative recurrence with poor prognosis in patients with NANV-HCC. Decreased ARG1 expression may be a precursor or overlapping feature with biliary/progenitor cell marker expressions in NANV-HCC.
Collapse
Affiliation(s)
- Yasuyuki Shigematsu
- Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research (JFCR), 3-8-31 Ariake, Koto, Tokyo, 135-8550, Japan.,Division of Pathology, Cancer Institute, JFCR, 3-8-31 Ariake, Koto, Tokyo, 135-8550, Japan
| | - Gulanbar Amori
- Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research (JFCR), 3-8-31 Ariake, Koto, Tokyo, 135-8550, Japan.,Division of Pathology, Cancer Institute, JFCR, 3-8-31 Ariake, Koto, Tokyo, 135-8550, Japan
| | - Hiroaki Kanda
- Department of Pathology, Saitama Cancer Center, 780 Omuro Kitaadachi-gun, Ina-machi, Saitama, 362-0806, Japan
| | - Yu Takahashi
- Division of Hepatobiliary and Pancreatic Surgery, Cancer Institute Hospital, JFCR, 3-8-31 Ariake, Koto, Tokyo, 135-8550, Japan
| | - Yutaka Takazawa
- Department of Pathology, Toranomon Hospital, 2-2-2 Toranomon, Minato, Tokyo, 105-8470, Japan
| | - Kengo Takeuchi
- Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research (JFCR), 3-8-31 Ariake, Koto, Tokyo, 135-8550, Japan.,Division of Pathology, Cancer Institute, JFCR, 3-8-31 Ariake, Koto, Tokyo, 135-8550, Japan.,Pathology Project for Molecular Targets, Cancer Institute, JFCR, 3-8-31 Ariake, Koto, Tokyo, 135-8550, Japan
| | - Kentaro Inamura
- Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research (JFCR), 3-8-31 Ariake, Koto, Tokyo, 135-8550, Japan. .,Division of Pathology, Cancer Institute, JFCR, 3-8-31 Ariake, Koto, Tokyo, 135-8550, Japan.
| |
Collapse
|
27
|
Ageing related thyroid deficiency increases brain-targeted transport of liver-derived ApoE4-laden exosomes leading to cognitive impairment. Cell Death Dis 2022; 13:406. [PMID: 35468877 PMCID: PMC9039072 DOI: 10.1038/s41419-022-04858-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022]
Abstract
Alzheimer’s disease (AD) is the prevalent cause of dementia in the ageing world population. Apolipoprotein E4 (ApoE4) allele is the key genetic risk factor for AD, although the mechanisms linking ApoE4 with neurocognitive impairments and aberrant metabolism remains to be fully characterised. We discovered a significant increase in the ApoE4 content of serum exosomes in old healthy subjects and AD patients carrying ApoE4 allele as compared with healthy adults. Elevated exosomal ApoE4 demonstrated significant inverse correlation with serum level of thyroid hormones and cognitive function. We analysed effects of ApoE4-containing peripheral exosomes on neural cells and neurological outputs in aged or thyroidectomised young mice. Ageing-associated hypothyroidism as well as acute thyroidectomy augmented transport of liver-derived ApoE4 reach exosomes into the brain, where ApoE4 activated nucleotide-binding oligomerisation domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome by increasing cholesterol level in neural cells. This, in turn, affected cognition, locomotion and mood. Our study reveals pathological potential of exosomes-mediated relocation of ApoE4 from the periphery to the brain, this process can represent potential therapeutic target.
Collapse
|
28
|
Shidham VB, Janikowski B. Immunocytochemistry of effusions: Processing and commonly used immunomarkers. Cytojournal 2022; 19:6. [PMID: 35541029 PMCID: PMC9079319 DOI: 10.25259/cmas_02_15_2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 11/29/2022] Open
Abstract
Definitive cytopathological interpretation of some of the effusion fluids may not be possible based on cytomorphological evaluation alone. As discussed in other reviews, this is due to various reasons specifically applicable to effusion fluids including remarkably wide morphologic spectrum of reactive mesothelial cells overlapping with some well to moderately differentiated metastatic carcinoma. The challenge is subject to various factors including level of interpreter training or experience, institutional demographics (such as type of prevalent diseases, predominant sex and age group), technical advances in ancillary support, and expertise in cytopreparatory processing. In such cases immunohistochemistry performed on cell-block sections is simple objective adjunct with or without other ancillary techniques. Ongoing increase in number of immunomarkers along with rabbit monoclonal antibodies with relatively higher affinity is further refining this field. SCIP (subtractive coordinate immunoreactivity pattern) approach, discussed as separate dedicated review article, facilitates refined interpretation of immunoreactivity pattern in coordinate manner on various serial sections of cell-blocks. However, many variables such as delay after specimen collection, specimen processing related factors including fixation and storage; ambient conditions under which paraffin blocks are archived (for retrospective testing); antigen retrieval method; duration of antigen retrieval step; antibody clone and dilution; and antibody application time are common with application of immunohistochemistry in other areas. This review is dedicated to highlight technical aspects including processing of effusion specimens for optimum immunocytochemical evaluation along with commonly used immunomarkers in effusion cytopathology. This review focuses on the technical and general information about various immunomarkers.
Collapse
Affiliation(s)
- Vinod B. Shidham
- Department of Pathology, Wayne State University School of Medicine, Karmanos Cancer Center, and Detroit Medical Center, Detroit, Michigan, United States,
| | - Beata Janikowski
- Technical Specialist-IHC, DMC University Laboratories, Detroit Medical Center, Detroit, Michigan, United States,
| |
Collapse
|
29
|
Patil PA, Taddei T, Jain D, Zhang X. HNF-1β is a More Sensitive and Specific Marker Than C-Reactive Protein for Identifying Biliary Differentiation in Primary Hepatic Carcinomas. Arch Pathol Lab Med 2022; 146:220-226. [PMID: 34086854 DOI: 10.5858/arpa.2020-0725-oa] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2021] [Indexed: 02/05/2023]
Abstract
CONTEXT.— Intrahepatic cholangiocarcinoma (iCCA) needs to be distinguished from hepatocellular carcinoma (HCC) and metastasis, and in the absence of any specific biliary markers, is often a diagnosis of exclusion. Hepatocyte nuclear factor (HNF)-1β is a transcription factor that plays a critical role in bile duct system morphogenesis. OBJECTIVE.— To investigate the diagnostic value of HNF-1β to differentiate iCCA from HCC by immunohistochemistry and compare HNF-1β with C-reactive protein (CRP), a previously identified marker for iCCA. DESIGN.— Cases of iCCA (n = 75), combined hepatocellular-cholangiocarcinoma (cHCC-CCA) (n = 13) and HCC (n = 65) were included in the study. RESULTS.— All cases of iCCA (74 of 74, 100%) expressed HNF-1β compared with CRP expressed in 72.60% (53 of 73). The sensitivity and specificity of HNF-1β to differentiate iCCA from HCC was 100% and 92.31%, whereas the sensitivity and specificity for CRP was 75.58% and 7.79%. The expression of HNF-1β was greater in iCCA and the CCA component of cHCC-CCA compared with CRP (87 of 87, 100% versus 65 of 86, 75.58%; P < .001). On the contrary, CRP was more frequently expressed compared with HNF-1β in HCC and HCC component of cHCC-CCA (71 of 77, 92.21% versus 6 of 78, 7.69%; P < .001). CONCLUSIONS.— Our data indicate that HNF-1β is a more sensitive and specific marker than CRP for the diagnosis of iCCA and to identify the CCA component in cHCC-CCA. Lack of HNF-1β expression may be used to exclude iCCA from consideration in cases of adenocarcinomas of unknown primary.
Collapse
Affiliation(s)
- Pallavi A Patil
- From the Department of Pathology (Patil, Jain, Zhang)
- Patil is currently located in the Department of Pathology at the University of South Alabama, Mobile, Alabama
| | - Tamar Taddei
- Section of Digestive Diseases (Taddei), Yale University School of Medicine, New Haven, Connecticut
| | - Dhanpat Jain
- From the Department of Pathology (Patil, Jain, Zhang)
| | - Xuchen Zhang
- From the Department of Pathology (Patil, Jain, Zhang)
| |
Collapse
|
30
|
Wang AJ, Allen A, Sofman M, Sphabmixay P, Yildiz E, Griffith LG. Engineering Modular 3D Liver Culture Microenvironments In Vitro to Parse the Interplay between Biophysical and Biochemical Microenvironment Cues on Hepatic Phenotypes. ADVANCED NANOBIOMED RESEARCH 2022; 2:2100049. [PMID: 35872804 PMCID: PMC9307216 DOI: 10.1002/anbr.202100049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In vitro models of human liver functions are used across a diverse range of applications in preclinical drug development and disease modeling, with particular increasing interest in models that capture facets of liver inflammatory status. This study investigates how the interplay between biophysical and biochemical microenvironment cues influence phenotypic responses, including inflammation signatures, of primary human hepatocytes (PHH) cultured in a commercially available perfused bioreactor. A 3D printing-based alginate microwell system was designed to form thousands of hepatic spheroids in a scalable manner as a comparator 3D culture modality to the bioreactor. Soft, synthetic extracellular matrix (ECM) hydrogel scaffolds with biophysical properties mimicking features of liver were engineered to replace polystyrene scaffolds, and the biochemical microenvironment was modulated with a defined set of growth factors and signaling modulators. The supplemented media significantly increased tissue density, albumin secretion, and CYP3A4 activity but also upregulated inflammatory markers. Basal inflammatory markers were lower for cells maintained in ECM hydrogel scaffolds or spheroid formats than polystyrene scaffolds, while hydrogel scaffolds exhibited the most sensitive response to inflammation as assessed by multiplexed cytokine and RNA-seq analyses. Together, these engineered 3D liver microenvironments provide insights for probing human liver functions and inflammatory response in vitro.
Collapse
Affiliation(s)
- Alex J Wang
- Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Allysa Allen
- Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Marianna Sofman
- Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Pierre Sphabmixay
- Mechanical Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA; Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA, 02142, USA
| | - Ece Yildiz
- Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA; Institute of Bioengineering, School of Life Science, École Polytechnique Fédérale de Lausanne, Route Cantonale, 1015 Lausanne, Switzerland
| | - Linda G. Griffith
- Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA; Center for Gynepathology Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| |
Collapse
|
31
|
Lennartz M, Gehrig E, Weidemann S, Gorbokon N, Menz A, Büscheck F, Hube-Magg C, Hinsch A, Reiswich V, Höflmayer D, Fraune C, Jacobsen F, Bernreuther C, Lebok P, Sauter G, Wilczak W, Steurer S, Burandt E, Marx AH, Simon R, Krech T, Clauditz TS, Minner S, Dum D, Uhlig R. Large-Scale Tissue Microarray Evaluation Corroborates High Specificity of High-Level Arginase-1 Immunostaining for Hepatocellular Carcinoma. Diagnostics (Basel) 2021; 11:diagnostics11122351. [PMID: 34943588 PMCID: PMC8699869 DOI: 10.3390/diagnostics11122351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 12/19/2022] Open
Abstract
Arginase-1 catalyzes the conversion of arginine to ornithine and urea. Because of its predominant expression in hepatocytes, it serves as a marker for hepatocellular carcinoma, although other tumor entities can also express arginase-1. To comprehensively determine arginase-1 expression in normal and neoplastic tissues, tissue microarrays containing 14,912 samples from 117 different tumor types and 608 samples of 76 different normal tissue types were analyzed by immunohistochemistry. In normal tissues, arginase-1 was expressed in the liver, the granular layer of the epidermis, and in granulocytes. Among tumors, a nuclear and cytoplasmic arginase-1 immunostaining was predominantly observed in hepatocellular carcinoma, where 96% of 49 cancers were at least moderately positive. Although 22 additional tumor categories showed occasional arginase immunostaining, strong staining was exceedingly rare in these entities. Staining of a few tumor cells was observed in squamous cell carcinomas of various sites. Staining typically involved maturing cells with the beginning of keratinization in these tumors and was significantly associated with a low grade in 635 squamous cell carcinomas of various sites (p = 0.003). Teratoma, urothelial carcinoma and pleomorphic adenomas sometimes also showed arginase expression in areas with squamous differentiation. In summary, arginase-1 immunohistochemistry is highly sensitive and specific for hepatocellular carcinoma if weak and focal staining is disregarded.
Collapse
Affiliation(s)
- Maximilian Lennartz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
| | - Eva Gehrig
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
| | - Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
| | - Natalia Gorbokon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
| | - Anne Menz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
| | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
| | - Viktor Reiswich
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
| | - Andreas H. Marx
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
- Department of Pathology, Academic Hospital Fuerth, 90766 Fuerth, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
- Correspondence: ; Tel.: +49-40-74105-7214
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
- Institute of Pathology, Clinical Center Osnabrueck, 49076 Osnabrueck, Germany
| | - Till S. Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
| | - Ria Uhlig
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
| |
Collapse
|
32
|
Subramanian S, Mallia MB, Shinto AS, Mathew AS. Clinical Management of Liver Cancer in India and Other Developing Nations: A Focus on Radiation Based Strategies. Oncol Ther 2021; 9:273-295. [PMID: 34046873 PMCID: PMC8593115 DOI: 10.1007/s40487-021-00154-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/12/2021] [Indexed: 11/28/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a global killer with preponderance in Asian and African countries. It poses a challenge for successful management in less affluent or developing nations like India, with large populations and limited infrastructures. This review aims to assess the available options and future directions for management of HCC applicable to such countries. While summarizing current and emerging clinical strategies for detection, staging and therapy of the disease, it highlights radioisotope- and radioactivity-based strategies as part of an overall program. Using the widely accepted Barcelona Clinic Liver Cancer (BCLC) staging system as a base, it evaluates the applicability of different therapeutic approaches and their synergistic combination(s) in the context of a patient-specific dynamic results-based strategy. It distills the conclusions of multiple HCC management-focused consensus recommendations to provide a picture of clinical strategies, especially radiation-related approaches. Additionally, it discusses the logistical and economic feasibility of these approaches in the context of the limitations of the burdened public health infrastructure in India (and like nations) and highlights possible strategies both at the clinical level and in terms of an administrative health policy on HCC to provide the maximum possible benefit to the widest swathe of the affected population.
Collapse
Affiliation(s)
- Suresh Subramanian
- Radiopharmaceuticals Division, RLG Building, Bhabha Atomic Research Centre, Trombay, Mumbai, Maharashtra, 400085, India.
| | - Madhava B Mallia
- Radiopharmaceuticals Division, RLG Building, Bhabha Atomic Research Centre, Trombay, Mumbai, Maharashtra, 400085, India
| | - Ajit S Shinto
- Apollo Proton Cancer Centre, Chennai, 600096, Tamil Nadu, India
| | | |
Collapse
|
33
|
Kim SH, Seung BJ, Cho SH, Lim HY, Bae MK, Sur JH. Arginase-1 and P-glycoprotein are downregulated in canine hepatocellular carcinoma. J Vet Sci 2021; 22:e61. [PMID: 34423599 PMCID: PMC8460467 DOI: 10.4142/jvs.2021.22.e61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/24/2021] [Accepted: 06/20/2021] [Indexed: 11/29/2022] Open
Abstract
Background Hepatocellular carcinoma is the most common primary hepatic malignancy in humans and dogs. Several differentially expressed molecules have been studied and reported in human hepatocellular carcinoma and non-neoplastic liver lesions. However, studies on the features of canine hepatocellular carcinoma are limited, especially related to the differential characteristics of neoplastic and non-neoplastic lesions. Objectives The study's objective was 1) to examine and evaluate the expression of arginase-1, P-glycoprotein, and cytokeratin 19 in canine liver tissues and 2) to investigate the differential features of hepatocellular carcinomas, liver tissue with non-neoplastic lesions, and paracancerous liver tissues in dogs. Methods The expression levels of three markers underwent immunohistochemical analysis in 40 non-neoplastic liver tissues, 32 hepatocellular carcinoma tissues, and 11 paracancerous liver tissues. Scoring of each marker was performed semi-quantitatively. Results Arginase-1 and P-glycoprotein were significantly downregulated in hepatocellular carcinoma, compared with hepatic tissues with non-neoplastic diseases (p < 0.001). Expression levels of arginase-1 and P-glycoprotein were also significantly lower in hepatocellular carcinoma than in paracancerous liver tissues (arginase-1, p = 0.0195; P-glycoprotein, p = 0.047). Few cytokeratin 19-positive hepatocytes were detected and only in one hepatocellular carcinoma and one cirrhotic liver sample. Conclusions The results of this study suggest that downregulation of arginase-1 and P-glycoprotein is a feature of canine hepatocellular carcinoma; thus, those markers are potential candidates for use in differentiating hepatocellular carcinomas from non-neoplastic liver lesions in dogs.
Collapse
Affiliation(s)
- Soo-Hyeon Kim
- Department of Veterinary Pathology, Small Animal Diagnostic Center, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Byung-Joon Seung
- Department of Veterinary Pathology, Small Animal Diagnostic Center, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Seung-Hee Cho
- Department of Veterinary Pathology, Small Animal Diagnostic Center, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Ha-Young Lim
- Department of Veterinary Pathology, Small Animal Diagnostic Center, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Min-Kyung Bae
- Department of Veterinary Pathology, Small Animal Diagnostic Center, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Jung-Hyang Sur
- Department of Veterinary Pathology, Small Animal Diagnostic Center, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
34
|
Ziol M. [Liver tumor pathology seminar. Case 7]. Ann Pathol 2021; 41:449-453. [PMID: 34420807 DOI: 10.1016/j.annpat.2021.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 02/18/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Marianne Ziol
- Service d'anatomie pathologique, Hôpitaux Universitaires Paris-Seine-Saint-Denis, AP-HP, Hôpital Avicenne, 125 rue de Stalingrad, 93000 Bobigny; Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Paris, France.
| |
Collapse
|
35
|
Wen KW, Joseph NM, Srivastava A, Saunders TA, Jain D, Rank J, Feely M, Zarrinpar A, Al Diffalha S, Shyn PB, Graham RP, Drage MG, Kakar S. Inhibin-positive hepatic carcinoma: proposal for a solid-tubulocystic variant of intrahepatic cholangiocarcinoma. Hum Pathol 2021; 116:82-93. [PMID: 34298064 DOI: 10.1016/j.humpath.2021.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/02/2021] [Accepted: 07/10/2021] [Indexed: 01/13/2023]
Abstract
Inhibin-positive hepatic carcinoma is a rare primary liver neoplasm that resembles sex cord-stromal tumor and thyroid follicular tumors. The term "cholangioblastic variant of intrahepatic cholangiocarcinoma" has been proposed. This study describes the clinicopathologic, immunophenotypic, and molecular features of a small series (n = 6) of this rare tumor. Albumin in situ hybridization (ISH) and capture-based next-generation sequencing (NGS) were also performed. All tumors occurred in young women (mean age 32.5 years, range 19-44 years) as a solitary large mass (mean 15.8 cm, range 6.9-23.5 cm). All tumors showed a highly distinctive morphology with sheets and large nests of tumor cells alternating with tubular and cystic areas imparting a sex cord-like or thyroid follicle-like morphology. Cytologic atypia was mild, and mitotic activity was low. All cases were positive for inhibin, as well as pancytokeratin, CK7, CK19, and albumin ISH. Synaptophysin and chromogranin showed focal or patchy staining, whereas INSM1 was negative. Markers for hepatocellular differentiation, thyroid origin, and sex cord-stromal tumor were negative. There were no recurrent genomic changes based on capture-based NGS of ∼500 cancer genes. Recurrence and/or metastasis was seen in three (50%) cases (follow-up time range for all cases: 5 months to 2 years). In conclusion, this series describes the distinctive morphology, immunophenotypic features, and diffuse albumin staining in six cases of a rare inhibin-positive primary liver carcinoma that runs an aggressive course similar to intrahepatic cholangiocarcinoma. Genomic changes typical of cholangiocarcinoma or hepatocellular carcinoma were not identified, and there were no recurrent genetic abnormalities. We propose the term "solid-tubulocystic variant of intrahepatic cholangiocarcinoma" to reflect the spectrum of morphologic patterns observed in this tumor.
Collapse
Affiliation(s)
- Kwun Wah Wen
- Department of Pathology, University of California, San Francisco, San Francisco, CA 91343, United States
| | - Nancy M Joseph
- Department of Pathology, University of California, San Francisco, San Francisco, CA 91343, United States
| | - Amitabh Srivastava
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Tara A Saunders
- Department of Pathology, University of California, San Francisco, San Francisco, CA 91343, United States
| | - Dhanpat Jain
- Department of Pathology, Yale University, New Haven, CT 06520, United States
| | - Joseph Rank
- Cellnetix Pathology & Laboratories, Seattle, WA 98104, United States
| | - Michael Feely
- Department of Pathology, University of Florida, Gainesville, FL 32610, United States
| | - Ali Zarrinpar
- Department of Surgery, University of Florida, Gainesville, FL 32610, United States
| | - Sameer Al Diffalha
- Department of Pathology, University of Alabama, Birmingham, AL 35294, United States
| | - Paul B Shyn
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Rondell P Graham
- Department of Pathology, Mayo Medical Laboratories, Rochester, MN 55901, United States
| | - Michael G Drage
- Department of Pathology and Laboratory Medicine, University of Rochester, Rochester, NY 14642, United States
| | - Sanjay Kakar
- Department of Pathology, University of California, San Francisco, San Francisco, CA 91343, United States.
| |
Collapse
|
36
|
Rossi R, Falzarano MS, Osman H, Armaroli A, Scotton C, Mantuano P, Boccanegra B, Cappellari O, Schwartz E, Yuryev A, Mercuri E, Bertini E, D'Amico A, Mora M, Johansson C, Al-Khalili Szigyarto C, De Luca A, Ferlini A. Circadian Genes as Exploratory Biomarkers in DMD: Results From Both the mdx Mouse Model and Patients. Front Physiol 2021; 12:678974. [PMID: 34305639 PMCID: PMC8300012 DOI: 10.3389/fphys.2021.678974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/14/2021] [Indexed: 11/21/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a rare genetic disease due to dystrophin gene mutations which cause progressive weakness and muscle wasting. Circadian rhythm coordinates biological processes with the 24-h cycle and it plays a key role in maintaining muscle functions, both in animal models and in humans. We explored expression profiles of circadian circuit master genes both in Duchenne muscular dystrophy skeletal muscle and in its animal model, the mdx mouse. We designed a customized, mouse-specific Fluidic-Card-TaqMan-based assay (Fluid-CIRC) containing thirty-two genes related to circadian rhythm and muscle regeneration and analyzed gastrocnemius and tibialis anterior muscles from both unexercised and exercised mdx mice. Based on this first analysis, we prioritized the 7 most deregulated genes in mdx mice and tested their expression in skeletal muscle biopsies from 10 Duchenne patients. We found that CSNK1E, SIRT1, and MYOG are upregulated in DMD patient biopsies, consistent with the mdx data. We also demonstrated that their proteins are detectable and measurable in the DMD patients’ plasma. We suggest that CSNK1E, SIRT1, and MYOG might represent exploratory circadian biomarkers in DMD.
Collapse
Affiliation(s)
- Rachele Rossi
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,The Dubowitz Neuromuscular Centre, Institute of Child Health, London, United Kingdom
| | - Maria Sofia Falzarano
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Hana Osman
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan
| | - Annarita Armaroli
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Chiara Scotton
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Paola Mantuano
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Brigida Boccanegra
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Ornella Cappellari
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | | | | | - Eugenio Mercuri
- Pediatric Neurology Unit, Catholic University and Nemo Center, Policlinico Universitario Gemelli, Rome, Italy
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, IRCCS Bambino Gesu Children's Hospital, Rome, Italy
| | - Adele D'Amico
- Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, IRCCS Bambino Gesu Children's Hospital, Rome, Italy
| | - Marina Mora
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Camilla Johansson
- School of Chemistry, Biotechnology and Health, Royal Institute of Technology, Stockholm, Sweden
| | - Cristina Al-Khalili Szigyarto
- School of Chemistry, Biotechnology and Health, Royal Institute of Technology, Stockholm, Sweden.,Science for Life Laboratory, Royal Institute of Technology, Stockholm, Sweden
| | - Annamaria De Luca
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Alessandra Ferlini
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,The Dubowitz Neuromuscular Centre, Institute of Child Health, London, United Kingdom
| |
Collapse
|
37
|
Habibzadeh P, Ansari Asl M, Foroutan HR, Bahador A, Anbardar MH. Clinicopathological study of hepatic mesenchymal hamartoma and undifferentiated embryonal sarcoma of the liver: a single center study from Iran. Diagn Pathol 2021; 16:55. [PMID: 34162402 PMCID: PMC8223305 DOI: 10.1186/s13000-021-01117-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/10/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Undifferentiated embryonal sarcoma of liver (UESL) and hepatic mesenchymal hamartoma (HMH) are two rare entities which mainly affect the pediatric population. The aim of this investigation was to provide a comprehensive overview of the clinicopathologic characteristics of the patients diagnosed with these two conditions in a tertiary referral center in Iran. METHODS In this retrospective study patients diagnosed with UESL or HMH between 2012 and 2020 were studied. A comprehensive histopathologic evaluation of the cases along with immunohistochemistry evaluation using a panel of antibodies was conducted. Furthermore, clinical, paraclinical, and treatment data and follow up information was collected. RESULTS A total of 16 patients (8 UESL, 8 HMH) were studied in this investigation. Patients with UESL had a significantly (p = 0.002) higher age at diagnosis compared with those with HMH. Histologically, UESL cases were characterized by anaplastic cells with eosinophilic cytoplasm and bizarre nuclei and frequent atypical mitosis and spindling in a myxoid stroma while disordered arrangement of hepatic parenchyma, bile ducts, and primitive mesenchyme was seen in HMH. Furthermore, small round cells and extramedullary hematopoiesis were seen in 2 UESL and 3 HMH cases, respectively. Concurrent HMH was also seen in two UESL cases. Immunohistochemistry panel showed positive staining for Vimentin, Glypican-3, Desmin, CD56, CD10, and BCL2 in UESL cases and immunoreactivity for Vimentin, HepPar 1, Glypican-3, SMA, CD56, BCL2, and CD34 in various components of HMH. CONCLUSIONS In this study, the clinicopathologic features of UESL and HMH cases are presented. We also evaluated the utility of an immunohistochemistry panel in the diagnosis of these two rare entities and suggested novel markers. Our study corroborated the findings of previous investigations and expanded the clinicopathologic features of these two rare entities with diagnostic and potential therapeutic implications.
Collapse
Affiliation(s)
- Parham Habibzadeh
- Persian BayanGene Research and Training Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Hamid Reza Foroutan
- Laparoscopy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pediatric Surgery, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Bahador
- Department of Pediatric Surgery, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hossein Anbardar
- Department of Pathology, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
38
|
ZNRF3 and RNF43 cooperate to safeguard metabolic liver zonation and hepatocyte proliferation. Cell Stem Cell 2021; 28:1822-1837.e10. [PMID: 34129813 DOI: 10.1016/j.stem.2021.05.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 04/02/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022]
Abstract
AXIN2 and LGR5 mark intestinal stem cells (ISCs) that require WNT/β-Catenin signaling for constant homeostatic proliferation. In contrast, AXIN2/LGR5+ pericentral hepatocytes show low proliferation rates despite a WNT/β-Catenin activity gradient required for metabolic liver zonation. The mechanisms restricting proliferation in AXIN2+ hepatocytes and metabolic gene expression in AXIN2+ ISCs remained elusive. We now show that restricted chromatin accessibility in ISCs prevents the expression of β-Catenin-regulated metabolic enzymes, whereas fine-tuning of WNT/β-Catenin activity by ZNRF3 and RNF43 restricts proliferation in chromatin-permissive AXIN2+ hepatocytes, while preserving metabolic function. ZNRF3 deletion promotes hepatocyte proliferation, which in turn becomes limited by RNF43 upregulation. Concomitant deletion of RNF43 in ZNRF3 mutant mice results in metabolic reprogramming of periportal hepatocytes and induces clonal expansion in a subset of hepatocytes, ultimately promoting liver tumors. Together, ZNRF3 and RNF43 cooperate to safeguard liver homeostasis by spatially and temporally restricting WNT/β-Catenin activity, balancing metabolic function and hepatocyte proliferation.
Collapse
|
39
|
Lu SX, Huang YH, Liu LL, Zhang CZ, Yang X, Yang YZ, Shao CK, Li JM, Xie D, Zhang X, Jain D, Yun JP. α-Fetoprotein mRNA in situ hybridisation is a highly specific marker of hepatocellular carcinoma: a multi-centre study. Br J Cancer 2021; 124:1988-1996. [PMID: 33824478 PMCID: PMC8184895 DOI: 10.1038/s41416-021-01363-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/23/2021] [Accepted: 03/08/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Pathologic diagnosis of hepatocellular carcinoma (HCC) can be challenging in differentiating from benign and non-hepatocytic malignancy lesions. The aim of this study was to investigate the potential utility of α-fetoprotein (AFP) mRNA RNAscope, a sensitive and specific method, in the diagnosis of HCC. METHODS Three independent retrospective cohorts containing 2216 patients with HCC, benign liver lesions, and non-hepatocytic tumours were examined. AFP was detected using ELISA, IHC (Immunohistochemistry), and RNAscope. Glypican3 (GPC3), hepatocyte paraffin-1 (HepPar-1), and arginase-1 (Arg-1) proteins were detected using IHC. RESULTS AFP RNAscope improved the HCC detection sensitivity by 24.7-32.7% compared with IHC. In two surgical cohorts, a panel of AFP RNAscope and GPC3 provided the best diagnostic value in differentiating HCC from benign hepatocytic lesions (AUC = 0.905 and 0.811), and a panel including AFP RNAscope, GPC3, HepPar-1, and Arg-1 yielded the best AUC (0.971 and 0.977) when distinguishing HCC from non-hepatocytic malignancies. The results from the liver biopsy cohort were similar, and additional application of AFP RNAscope improved the sensitivity by 18% when distinguishing HCC from benign hepatocytic lesions. CONCLUSIONS AFP mRNA detected by RNAscope is highly specific for hepatocytic malignancy and may serve as a novel diagnostic biomarker for HCC.
Collapse
Affiliation(s)
- Shi-Xun Lu
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yu-Hua Huang
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Li-Li Liu
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Chris Zhiyi Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xia Yang
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yuan-Zhong Yang
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Chun-Kui Shao
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jian-Ming Li
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dan Xie
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xuchen Zhang
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Dhanpat Jain
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Jing-Ping Yun
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
40
|
Sarcognato S, Sacchi D, Fassan M, Fabris L, Cadamuro M, Zanus G, Cataldo I, Capelli P, Baciorri F, Cacciatore M, Guido M. Cholangiocarcinoma. Pathologica 2021; 113:158-169. [PMID: 34294934 PMCID: PMC8299326 DOI: 10.32074/1591-951x-252] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 12/27/2022] Open
Abstract
Liver cancer represents the third leading cause of cancer-related death worldwide. Cholangiocarcinoma (CCA) is the second most common type of liver cancer after hepatocellular carcinoma, accounting for 10-15% of all primary liver malignancies. Both the incidence and mortality of CCA have been steadily increasing during the last decade. Moreover, most CCAs are diagnosed at an advanced stage, when therapeutic options are very limited. CCA may arise from any tract of the biliary system and it is classified into intrahepatic, perihilar, and distal CCA, according to the anatomical site of origin. This topographical classification also reflects distinct genetic and histological features, risk factors, and clinical outcomes. This review focuses on histopathology of CCA, its differential diagnoses, and its diagnostic pitfalls.
Collapse
Affiliation(s)
| | - Diana Sacchi
- Department of Pathology, Azienda ULSS2 Marca Trevigiana, Treviso, Italy
| | - Matteo Fassan
- Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Luca Fabris
- Department of Molecular Medicine - DMM, University of Padova, Padova, Italy
| | | | - Giacomo Zanus
- 4Surgery Unit, Azienda ULSS2 Marca Trevigiana, Treviso, Italy
- Department of Surgery, Oncology and Gastroenterology - DISCOG, University of Padova, Padova, Italy
| | - Ivana Cataldo
- Department of Pathology, Azienda ULSS2 Marca Trevigiana, Treviso, Italy
| | - Paola Capelli
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | | | | | - Maria Guido
- Department of Pathology, Azienda ULSS2 Marca Trevigiana, Treviso, Italy
- Department of Medicine - DIMED, University of Padova, Padova, Italy
| |
Collapse
|
41
|
Application of Immunohistochemistry in the Pathological Diagnosis of Liver Tumors. Int J Mol Sci 2021; 22:ijms22115780. [PMID: 34071338 PMCID: PMC8198626 DOI: 10.3390/ijms22115780] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 12/17/2022] Open
Abstract
Although radiological diagnostics have been progressing, pathological diagnosis remains the most reliable method for diagnosing liver tumors. In some cases, definite pathological diagnosis cannot be obtained by histological evaluation alone, especially when the sample is a small biopsy; in such cases, immunohistochemical staining is very useful. Immunohistochemistry is the most frequently used technique for molecular pathological diagnosis due to its broad application, ease of performance and evaluation, and reasonable cost. The results occasionally reflect specific genetic mutations. The immunohistochemical markers of hepatocellular carcinoma include those of hepatocellular differentiation—such as hepatocyte paraffin 1 and arginase-1—and those of malignant hepatocytes—such as glypican-3, heat shock protein 70, and glutamine synthetase (GS). To classify the subtypes of hepatocellular adenoma, examination of several immunohistochemical markers, such as liver fatty acid-binding protein, GS, and serum amyloid A, is indispensable. Immunohistochemical staining for GS is also important for the diagnosis of focal nodular hyperplasia. The representative immunohistochemical markers of intrahepatic cholangiocarcinoma include cytokeratin (CK) 7 and CK19. In this article, we provide an overview of the application of immunohistochemistry in the pathological diagnosis of liver tumors referring to the association with genetic alterations. Furthermore, we aimed to explain the practical points in the differential diagnosis of liver tumors by immunohistochemical staining.
Collapse
|
42
|
Chikhale M, Toi PC, Siddaraju N, Ananthakrishnan R. The strength of cytomorphology and efficacy of immuno-cytochemistry in distinguishing hepatocellular carcinoma from its mimics on fine-needle aspiration cytology. Diagn Cytopathol 2021; 49:864-875. [PMID: 33929782 DOI: 10.1002/dc.24759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 01/09/2023]
Abstract
BACKGROUND Cytomorphologic distinction of hepatocellular carcinoma (HCC) from its mimics on fine-needle aspiration cytology (FNAC) is often problematic. The present study evaluates the strength of cytomorphology and the utility of an immuno-panel of arginase-1, glypican-3, HepPar-1, thyroid transcription factor (TTF-1) and CK-19 in resolving this diagnostic issue. METHODS FNAC features of 71 nodular hepatic lesions were studied with an immunocyto/ histochemical (ICC/IHC) panel of arginase-1, glypican-3, HepPar-1, TTF-1 taking 10% positivity as "cut-off." Cytomorpholologic diagnoses were compared with diagnoses made on combined cytomorphologic and ICC/IHC approach. RESULTS Of 71 cases, 32, 10 and 29 had histopathologic, cell block and clinico-radiologic correlation respectively with 55 metastatic adenocarcinomas (MAC), 13 HCCs and one case each of hepatic adenoma (HA), cirrhotic nodule (CN) and intrahepatic cholangiocarcinoma (CC). Cytoplasmic positivity of HepPar-1 and glypican-3 were noted in 11/13 and 8/13 HCCs respectively; while only 3/13 and 1/13 HCCs revealed cytoplasmic positivity for arginase-1 and TTF-1 respectively. Benign hepatic lesions were negative for glypican-3 and TTF-1, but expressed both arginase-1and HepPar-1. Twenty-one of 55 MACs and the lone case of CC were positive for CK-19; however, all MACs and CC cases were negative for HepPar-1, arginase-1, glypican-3 and TTF-1. The immune-panel had sensitivity, specificity and diagnostic accuracy of 100%, 88.9% and 90.6%, respectively, for differentiating HCC from its morphologic mimics. CONCLUSION Though a meticulous cytologic evaluation in conjunction with clinicoradiologic profile helps in distinguishing HCC from its benign and malignant mimics; an immunopanel of arginase-1, glypican-3, HepPar-1, TTF-1 and CK-19 drastically improves the diagnostic accuracy.
Collapse
Affiliation(s)
| | - Pampa Ch Toi
- Department of Pathology, JIPMER, Puducherry, India
| | | | | |
Collapse
|
43
|
Hernandez S, Rojas F, Laberiano C, Lazcano R, Wistuba I, Parra ER. Multiplex Immunofluorescence Tyramide Signal Amplification for Immune Cell Profiling of Paraffin-Embedded Tumor Tissues. Front Mol Biosci 2021; 8:667067. [PMID: 33996912 PMCID: PMC8118604 DOI: 10.3389/fmolb.2021.667067] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/29/2021] [Indexed: 12/22/2022] Open
Abstract
Every day, more evidence is revealed regarding the importance of the relationship between the response to cancer immunotherapy and the cancer immune microenvironment. It is well established that a profound characterization of the immune microenvironment is needed to identify prognostic and predictive immune biomarkers. To this end, we find phenotyping cells by multiplex immunofluorescence (mIF) a powerful and useful tool to identify cell types in biopsy specimens. Here, we describe the use of mIF tyramide signal amplification for labeling up to eight markers on a single slide of formalin-fixed, paraffin-embedded tumor tissue to phenotype immune cells in tumor tissues. Different panels show different markers, and the different panels can be used to characterize immune cells and relevant checkpoint proteins. The panel design depends on the research hypothesis, the cell population of interest, or the treatment under investigation. To phenotype the cells, image analysis software is used to identify individual marker expression or specific co-expression markers, which can differentiate already selected phenotypes. The individual-markers approach identifies a broad number of cell phenotypes, including rare cells, which may be helpful in a tumor microenvironment study. To accurately interpret results, it is important to recognize which receptors are expressed on different cell types and their typical location (i.e., nuclear, membrane, and/or cytoplasm). Furthermore, the amplification system of mIF may allow us to see weak marker signals, such as programmed cell death ligand 1, more easily than they are seen with single-marker immunohistochemistry (IHC) labeling. Finally, mIF technologies are promising resources for discovery of novel cancer immunotherapies and related biomarkers. In contrast with conventional IHC, which permits only the labeling of one single marker per tissue sample, mIF can detect multiple markers from a single tissue sample, and at the same time, deliver extensive information about the cell phenotypes composition and their spatial localization. In this matter, the phenotyping process is critical and must be done accurately by a highly trained personal with knowledge of immune cell protein expression and tumor pathology.
Collapse
Affiliation(s)
- Sharia Hernandez
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Frank Rojas
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Caddie Laberiano
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Rossana Lazcano
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ignacio Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Edwin Roger Parra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
44
|
Vij M, Calderaro J. Pathologic and molecular features of hepatocellular carcinoma: An update. World J Hepatol 2021; 13:393-410. [PMID: 33959223 PMCID: PMC8080551 DOI: 10.4254/wjh.v13.i4.393] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/27/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
Morphological diversity and several new distinct pathologic subtypes of hepatocellular carcinoma (HCC) are now well-recognized. Recent advances in tumor genomics and transcriptomics have identified several recurrent somatic/genetic alterations that are closely related with histomorphological subtypes and have therefore, greatly improved our understanding of HCC pathogenesis. Pathologic subtyping allows for a diagnosis which is clinically helpful and can have important implication in patient prognostication as some of these subtypes are extremely aggressive with vascular invasion, early recurrence, and worst outcomes. Several targeted treatments are now being considered in HCC, and the reporting of subtypes may be quite useful for personalized therapeutic purpose. This manuscript reviews the recently identified histomorphological subtypes and molecular alterations in HCC.
Collapse
Affiliation(s)
- Mukul Vij
- Department ofPathology, Dr Rela Institute and Medical Center, Chennai 600044, Tamil Nadu, India.
| | - Julien Calderaro
- Department of Pathology, Groupe Hospitalier Henri Mondor, Creteil F-94010, France
| |
Collapse
|
45
|
Immunohistochemical staining reveals differential expression of ACSL3 and ACSL4 in hepatocellular carcinoma and hepatic gastrointestinal metastases. Biosci Rep 2021; 40:222647. [PMID: 32286604 PMCID: PMC7198044 DOI: 10.1042/bsr20200219] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/24/2022] Open
Abstract
Long-chain fatty acyl CoA synthetases (ACSLs) activate fatty acids by CoA addition thus facilitating their intracellular metabolism. Dysregulated ACSL expression features in several cancers and can affect processes such as ferroptosis, fatty acid β-oxidation, prostaglandin biosynthesis, steroidogenesis and phospholipid acyl chain remodelling. Here we investigate long chain acyl-CoA synthetase 3 (ACSL3) and long chain acyl-CoA synthetase 4 (ACSL4) expression in liver malignancies. The expression and subcellular localisations of the ACSL3 and ACSL4 isoforms in hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA) and hepatic metastases were assessed by immunohistochemical analyses of multiple tumour tissue arrays and by subcellular fractionation of cultured HepG2 cells. The expression of both enzymes was increased in HCC compared with normal liver. Expression of ACSL3 was similar in HCC and hepatic metastases but lower in healthy tissue. Increased ACSL3 expression distinguished HCC from CCA with a sensitivity of 87.2% and a specificity of 75%. ACSL4 expression was significantly greater in HCC than in all other tumours and distinguished HCC from normal liver tissue with a sensitivity of 93.8% and specificity of 93.6%. Combined ACSL3 and ACSL4 staining scores distinguished HCC from hepatic metastases with 80.1% sensitivity and 77.1% specificity. These enzymes had partially overlapping intracellular distributions, ACSL4 localised to the plasma membrane and both isoforms associated with lipid droplets and the endoplasmic reticulum (ER). In conclusion, analysis of ACSL3 and ACSL4 expression can distinguish different classes of hepatic tumours.
Collapse
|
46
|
Avadhani V, Cohen C, Siddiqui MT, Krasinskas A. A Subset of Intrahepatic Cholangiocarcinomas Express Albumin RNA as Detected by In Situ Hybridization. Appl Immunohistochem Mol Morphol 2021; 29:175-179. [PMID: 33181516 DOI: 10.1097/pai.0000000000000882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/07/2020] [Indexed: 12/28/2022]
Abstract
Intrahepatic cholangiocarcinomas (ICCs) show morphologic diversity, ranging from tumors composed of nonmucinous small ducts to mucin-producing large duct tumors to tumors with mixed hepatocellular carcinoma features. Diagnosing ICCs can be difficult, especially on biopsy, not only because of the morphologic diversity, but also because metastatic tumors are often in the differential diagnosis. Recently, branched DNA-based albumin RNA in situ hybridization (ISH) has been shown to be a potential sensitive and specific marker for ICC with 99% sensitivity. Using a different RNA ISH technology, we evaluated the expression of albumin RNA ISH in ICC. We performed RNA ISH for albumin using RNAscope on 43 ICCs in a triplicate tissue microarray. Albumin RNA ISH was positive in 18 of 43 (42%) ICCs. Five of the 6 (83%) combined hepatocellular carcinoma-CC were positive in the CC component. None of the tumors with mucin production were positive (0/9). In our cohort, albumin RNA ISH showed a sensitivity of 42% in ICCs, supporting the morphologic diversity of ICCs. Albumin RNA ISH does not appear to be a highly sensitive marker for ICC and hence cannot be used as a stand-alone marker for ICC.
Collapse
Affiliation(s)
- Vaidehi Avadhani
- Department of Pathology and Laboratory Medicine, Emory University Hospital, Atlanta, GA
| | - Cynthia Cohen
- Department of Pathology and Laboratory Medicine, Emory University Hospital, Atlanta, GA
| | - Momin T Siddiqui
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York City, NY
| | - Alyssa Krasinskas
- Department of Pathology and Laboratory Medicine, Emory University Hospital, Atlanta, GA
| |
Collapse
|
47
|
Key Enzymes in Pyrimidine Synthesis, CAD and CPS1, Predict Prognosis in Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:cancers13040744. [PMID: 33670206 PMCID: PMC7916936 DOI: 10.3390/cancers13040744] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 02/05/2021] [Indexed: 02/06/2023] Open
Abstract
Patients with hepatocellular carcinoma (HCC) have a highly variable clinical course. Therefore, there is an urgent need to identify new prognostic markers to determine prognosis and select specific therapies. Recently, it has been demonstrated that dysregulation of the urea cycle (UC) is a common phenomenon in multiple types of cancer. Upon UC dysregulation, nitrogen is diverted toward the multifunctional enzyme carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, and dihydroorotase (CAD), and increases pyrimidine synthesis. In this study, we investigated the role of CAD and carbamoyl-phosphate synthetase 1 (CPS1), a rate-limiting enzyme of the UC highly expressed in hepatocytes, in HCC. We created a tissue microarray to analyze expression of both enzymes by immunohistochemistry in a large and well-characterized overall cohort of 871 HCCs of 561 patients that underwent surgery. CAD was induced in recurrent HCCs, and high expression predicted shorter overall survival. CPS1 was downregulated in HCC and further reduced in recurrent tumors and distant metastases. Additionally, low CPS1 was associated with short overall survival. A combined score of both enzymes was an independent prognostic marker in a multivariate Cox regression model (HR = 1.37, 95% confidence interval 1.06-1.75, p = 0.014). Inhibition of pyrimidine synthesis may represent a novel therapeutic strategy for HCC.
Collapse
|
48
|
Flannery PC, Abbott KL, Pondugula SR. Correlation of PPM1A Downregulation with CYP3A4 Repression in the Tumor Liver Tissue of Hepatocellular Carcinoma Patients. Eur J Drug Metab Pharmacokinet 2020; 45:297-304. [PMID: 31792727 DOI: 10.1007/s13318-019-00595-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVE In many patients with hepatocellular carcinoma (HCC), cytochrome P450 3A4 (CYP3A4) expression has been reported to be significantly reduced in the tumor liver tissue. Moreover, this CYP3A4 repression is associated with decreased CYP3A4-mediated drug metabolism in the tumor liver tissue. However, the underlying mechanisms of CYP3A4 repression are not fully understood. We have previously shown that Mg2+/Mn2+-dependent phosphatase 1A (PPM1A) positively regulates human pregnane X receptor (hPXR)-mediated CYP3A4 expression in a PPM1A expression-dependent manner. We sought to determine whether PPM1A expression is downregulated and whether PPM1A downregulation is correlated with CYP3A4 repression in the tumor liver tissue of HCC patients. METHODS Quantitative RT-PCR and western blot analyses were performed to study mRNA and protein expression, respectively. Cell-based reporter gene assays were conducted to examine the hPXR transactivation of CYP3A4 promoter activity. RESULTS Arginase-1 and glypican-3 gene expression studies confirmed that the tumor samples used in our study originate from HCC livers but not non-hepatocellular tumors. mRNA and protein expression of PPM1A and CYP3A4 was found to be significantly repressed in the tumor liver tissues compared to the matched non-tumor liver tissues. In the reporter gene assays, elevated PPM1A levels counteracted the inhibition of hPXR-mediated CYP3A4 promoter activity by signaling pathways that are upregulated in HCC, suggesting that decreased PPM1A levels in HCC could not fully counteract the hPXR-inhibiting signaling pathways. CONCLUSIONS Together, these results are consistent with the conclusion that PPM1A downregulation in the tumor liver tissue of HCC patients correlates with CYP3A4 repression. Downregulation of PPM1A levels in the tumor liver tissue may contribute to reduced hPXR-mediated CYP3A4 expression, and provide a novel mechanism of CYP3A4 repression in the tumor liver tissue of HCC patients.
Collapse
Affiliation(s)
- Patrick C Flannery
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, 109 Greene Hall, Auburn, AL, 36849, USA.,Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, 36849, USA
| | - Kodye L Abbott
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, 109 Greene Hall, Auburn, AL, 36849, USA.,Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, 36849, USA
| | - Satyanarayana R Pondugula
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, 109 Greene Hall, Auburn, AL, 36849, USA. .,Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
49
|
Italian Clinical Practice Guidelines on Cholangiocarcinoma - Part I: Classification, diagnosis and staging. Dig Liver Dis 2020; 52:1282-1293. [PMID: 32893173 DOI: 10.1016/j.dld.2020.06.045] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022]
Abstract
Cholangiocarcinoma (CCA) is the second most common primary liver cancer, characterized by a poor prognosis and resistance to chemotherapeutics. The progressive increase in CCA incidence and mortality registered worldwide in the last two decades and the need to clarify various aspects of clinical management have prompted the Italian Association for the Study of the Liver (AISF) to commission the drafting of dedicated guidelines in collaboration with a group of Italian scientific societies. These guidelines have been formulated in accordance with the Italian National Institute of Health indications and developed by following the GRADE method and related advancements.
Collapse
|
50
|
Abstract
Hepatocellular carcinoma (HCC) is a morphologically heterogeneous tumor with variable architectural growth patterns and several distinct histologic subtypes. Large-scale attempts have been made over the past decade to identify targetable genomic alterations in HCC; however, its translation into clinical personalized care remains a challenge to precision oncology. The role of pathology is no longer limited to confirmation of diagnosis when radiologic features are atypical. Pathology is now in a position to predict the underlying molecular alteration, prognosis, and behavior of HCC. This review outlines various aspects of histopathologic diagnosis and role of pathology in cutting-edge diagnostics of HCC.
Collapse
Affiliation(s)
- Monika Vyas
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 303 Brookline Avenue, Boston, MA 02215, USA
| | - Xuchen Zhang
- Department of Pathology, Yale School of Medicine, 310 Cedar Street, PO Box 208023, New Haven, CT 06520-8023, USA.
| |
Collapse
|