1
|
Zhong W, Xiong K, Li S, Li C. Macrophage polarization-related gene signature for risk stratification and prognosis of survival in gliomas. J Cell Mol Med 2024; 28:e70000. [PMID: 39448550 PMCID: PMC11502305 DOI: 10.1111/jcmm.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/12/2024] [Accepted: 02/09/2024] [Indexed: 10/26/2024] Open
Abstract
Macrophage polarization plays an essential role in tumour immune cell infiltration and tumour growth. In this study, we selected a series of genes distinguishing between M1 and M2 macrophages and explored their prognostic value in gliomas. A total of 170 genes were included in our study. The CGGA database was used as the training cohort and the TCGA database as the validation cohort. The biological processes and functions were identified by GO and KEGG analysis. Kaplan-Meier analysis was used to compare survival differences between groups. Importantly, we built a risk score model using Cox regression analysis based on the CGGA and verified it in the TCGA database and our sequencing data. Patients with gliomas in the high-risk group were associated with high pathologic grade, IDH WT status, MGMT promoter unmethylation, 1p19q non-codeletion and prone to have a poor outcome. GEPIA results revealed that CD300C, CNRIP1 and MYO1F are the most related genes of immune infiltrations. The differential expression of these genes between low-grade gliomas and glioblastomas was confirmed by q-RT-PCR. Macrophage polarization-related gene signatures can predict the malignancy and outcome of patients with gliomas and might act as a promising target for glioma immunotherapy in the future.
Collapse
Affiliation(s)
- Weiming Zhong
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
- Hypothalamic‐Pituitary Research Center, Xiangya HospitalCentral South UniversityChangshaHunanPeople's Republic of China
| | - Kaifen Xiong
- Department of DermatologyShenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenGuangdongPeople's Republic of China
| | - Shuwang Li
- Department of NeurosurgeryThe Second People's Hospital of Hunan ProvinceChangshaPeople's Republic of China
| | - Chuntao Li
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
- Hypothalamic‐Pituitary Research Center, Xiangya HospitalCentral South UniversityChangshaHunanPeople's Republic of China
| |
Collapse
|
2
|
Malhotra K, Dagli MM, Gujral J, Santangelo G, Goyal K, Wathen C, Ozturk AK, Welch WC. Global and Gender Equity in Oligodendroglioma Research: A Comprehensive Bibliometric Analysis Following the COVID-19 Pandemic. Cureus 2023; 15:e51161. [PMID: 38283488 PMCID: PMC10812378 DOI: 10.7759/cureus.51161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2023] [Indexed: 01/30/2024] Open
Abstract
Oligodendrogliomas are rare brain tumors arising from oligodendrocytes; there is a limited understanding of their pathogenesis, which leads to challenges in diagnosis, prognosis, and treatment. This study aimed to conduct a comprehensive bibliometric analysis of the oligodendroglioma literature to assess the current state of research, identify research trends, and elucidate implications for future research. The Lens® database was used to retrieve journal articles related to "oligodendroglioma" without geographic or temporal restrictions. Year-on-year trends in publication and funding were analyzed. Global and gender equity were assessed using the Namsor® Application programming interface. Collaboration patterns were explored using network visualizations. Keyword analysis revealed the most prominent themes in oligodendroglioma research. Out of 9701 articles initially retrieved, 8381 scholarly journal articles were included in the final analysis. Publication trends showed a consistent increase until 2020, followed by a sharp decline likely due to the COVID-19 pandemic. Global representation revealed researchers from 86 countries, with limited participation from low and middle-income countries (LMICs). Gender inequity was evident, with 78.7% of researchers being male. Collaboration analysis revealed a highly interconnected research community. Prognosis, genetic aberrations (particularly "IDH" mutations), and therapeutic options (including chemotherapy and radiotherapy) emerged as dominant research themes. The COVID-19 pandemic impacted oligodendroglioma research funding and publication trends, highlighting the importance of robust funding mechanisms. Global and gender inequities in research participation underscore the need for fostering inclusive collaboration, especially in LMICs. The interconnected research community presents opportunities for knowledge exchange and innovation. Keyword analysis highlights current research trends and a shift to genetic and molecular understanding.
Collapse
Affiliation(s)
- Kashish Malhotra
- Department of Surgery, Dayanand Medical College and Hospital, Ludhiana, IND
- Institute of Applied Health Research, University of Birmingham, Birmingham, GBR
| | - Mert Marcel Dagli
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Jaskeerat Gujral
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Gabrielle Santangelo
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Kashish Goyal
- Department of Internal Medicine, Dayanand Medical College and Hospital, Ludhiana, IND
| | - Connor Wathen
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Ali K Ozturk
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - William C Welch
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
3
|
Pandith AA, Zahoor W, Manzoor U, Nisar S, Guru FR, Naikoo NA, Aein QU, Baba SM, Bhat AR, Ganai F, Shah P. Evaluation of chromosome 1p/19q deletion by Fluorescence in Situ Hybridization (FISH) as prognostic factors in malignant glioma patients on treatment with alkylating chemotherapy. Cancer Genet 2023; 278-279:55-61. [PMID: 37625215 DOI: 10.1016/j.cancergen.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/12/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND Either deletion or co-deletion of chromosomal arms 1p or 19q is a characteristic and early genetic event in oligodendroglial tumors that is associated with a better prognosis and enhanced response to therapy. Information of 1p/19q status is now regarded as the standard of care when managing oligodendroglial tumors for therapeutic options in anticipation of the increased survival and progression-free survival times associated with it. Keeping this in view, we first time attempted to establish the FISH based detection of 1p/19q deletion in glioma tissue samples to evaluate its role and involvement in the disease. METHOD Overall 39 glioma cases of different histologies were evaluated by fluorescence in situ hybridization (FISH) technique using specific FISH probes with Olympus BX43 fluorescent microscope to detect chromosomes 1p and 19q or co-deletions therein. RESULTS Of the 39 glioma samples, overall 27 (69.2%) were found to have deletion either in 1p, 19q or both. Deletions were observed in 23.0%, 7.6% and 38.4% in 1p, 19q and 1p/19q co-deletions respectively. Overall oligidendrioglioma presented with 53.8% (21 of 39) deletions, astrocytoma group showed 12.8% and GBM accounted for 2.5% deletions. Overall survival and disease free survival was seen significantly better in oligidendrioglioma and astrocytoma with deleted tumors as compared to non-deleted ones (p<0.05). CONCLUSION Allelic losses on 1p and 19q, either discretely or shared, were more frequent in classic oligodendrogliomas than in either astrocytoma or Glioblastoma with better survival and response to therapy.
Collapse
Affiliation(s)
- Arshad A Pandith
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, J & K, India.
| | - Wani Zahoor
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, J & K, India
| | - Usma Manzoor
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, J & K, India
| | - Syed Nisar
- Department of Medical Oncology, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, J&K, India
| | - Faisal R Guru
- Department of Medical Oncology, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, J&K, India
| | - Niyaz A Naikoo
- Department of Biotechnology, Higher Education Department, Cluster University, Srinagar, J & K, India
| | - Qurat Ul Aein
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, J & K, India
| | - Shahid M Baba
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, J & K, India
| | - Abdul R Bhat
- Department of Neurosurgery, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, J&K, India
| | - Farooq Ganai
- Department of CVTS, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, J&K, India
| | - Parveen Shah
- Department of Pathology, SKIMS, Srinagar, J & K, India
| |
Collapse
|
4
|
Tuan PA, Duc NM. A rare, giant, anaplastic oligodendroglioma. Radiol Case Rep 2023; 18:1544-1548. [PMID: 36815147 PMCID: PMC9939545 DOI: 10.1016/j.radcr.2023.01.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 02/11/2023] Open
Abstract
Oligodendroglioma, the third most common glioma, accounts for 5% of primary brain tumors and around 20% of all glial neoplasms. They are quite uncommon in children. Here, we aimed to show an unusual case of a 9-year-old boy developing a huge anaplastic oligodendroglioma. A high-grade astrocytoma-like supratentorial tumor was discovered by a sophisticated brain scan employing magnetic resonance imaging. The tumor was identified by histopathology as an anaplastic oligodendroglioma. Anaplastic oligodendroglioma should be considered while making the differential diagnosis of high-grade astrocytoma notwithstanding its rarity.
Collapse
Affiliation(s)
- Pham Anh Tuan
- Department of Neurosurgery, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Nguyen Minh Duc
- Department of Radiology, Pham Ngoc Thach University of Medicine, 2 Duong Quang Trung, Ward 12, District 10, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
5
|
Vanhauwaert D, Pinson H, Vanschoenbeek K, Dedeurwaerdere F, De Gendt C, Boterberg T, De Vleeschouwer S. Cancer Registration, Molecular Marker Status, and Adherence to the WHO 2016 Classification of Pathology Reports for Glioma Diagnosed during 2017-2019 in Belgium. Pathobiology 2023; 90:365-376. [PMID: 36702113 DOI: 10.1159/000529320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/22/2023] [Indexed: 01/28/2023] Open
Abstract
INTRODUCTION The objective of this study was to cross-check and, if necessary, adjust registered ICD-O-3 topography and morphology codes with the findings in pathology reports available at the Belgian Cancer Registry (BCR) for glioma patients. Additionally, integration of molecular markers in the pathological diagnosis and concordance with WHO 2016 classification is investigated. METHODS Since information regarding molecular tests and corresponding conclusions are not available as structured data at population level, a manual screening of all pseudonymized pathology reports available at the BCR for registered glioma patients (2017-2019) was conducted. ICD-O-3 morphology and topography codes from the BCR database (based on information as provided by hospital oncological care programmes and pathology laboratories), were, at tumour level, cross-checked with the data from the pathology reports and, if needed, specified or corrected. Relevant molecular markers (IDH1/2, 1p19q codeletion, promoter region of the MGMT gene [MGMTp]) were manually extracted from the pathology reports. RESULTS In 95.3% of gliomas, the ICD-O-3 morphology code was correct. Non-specific topography codes were specified in 9.3%, while 3.3% of specific codes were corrected. The IDH status was known in 75.2% of astrocytic tumours. The rate of correct integrated diagnoses varied from 47.6% to 56.4% among different gliomas. MGMTp methylation status was available in 32.2% of glioblastomas. CONCLUSION Both the integration of molecular markers in the conclusion of the pathology reports and the delivery of those reports to the BCR can be improved. The availability of distinct ICD-O-3 codes for each molecularly defined tumour entity within the WHO classification would increase the consistency of cancer registration, facilitate population level research and international benchmarking.
Collapse
Affiliation(s)
| | - Harry Pinson
- Department of Neurosurgery, Ghent University Hospital, Ghent, Belgium
| | | | | | | | - Tom Boterberg
- Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium
| | - Steven De Vleeschouwer
- Department of Neurosurgery, UZ Leuven, Leuven, Belgium
- Department Neurosciences and Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Chromatin structure predicts survival in glioma patients. Sci Rep 2022; 12:8221. [PMID: 35581287 PMCID: PMC9114333 DOI: 10.1038/s41598-022-11019-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/15/2022] [Indexed: 11/08/2022] Open
Abstract
The pathological changes in epigenetics and gene regulation that accompany the progression of low-grade to high-grade gliomas are under-studied. The authors use a large set of paired atac-seq and RNA-seq data from surgically resected glioma specimens to infer gene regulatory relationships in glioma. Thirty-eight glioma patient samples underwent atac-seq sequencing and 16 samples underwent additional RNA-seq analysis. Using an atac-seq/RNA-seq correlation matrix, atac-seq peaks were paired with genes based on high correlation values (|r2| > 0.6). Samples clustered by IDH1 status but not by grade. Surprisingly there was a trend for IDH1 mutant samples to have more peaks. The majority of peaks are positively correlated with survival and positively correlated with gene expression. Constructing a model of the top six atac-seq peaks created a highly accurate survival prediction model (r2 = 0.68). Four of these peaks were still significant after controlling for age, grade, pathology, IDH1 status and gender. Grade II, III, and IV (primary) samples have similar transcription factors and gene modules. However, grade IV (recurrent) samples have strikingly few peaks. Patient-derived glioma cultures showed decreased peak counts following radiation indicating that this may be radiation-induced. This study supports the notion that IDH1 mutant and IDH1 wildtype gliomas have different epigenetic landscapes and that accessible chromatin sites mapped by atac-seq peaks tend to be positively correlated with expression. The data in this study leads to a new model of treatment response wherein glioma cells respond to radiation therapy by closing open regions of DNA.
Collapse
|
7
|
Chunduri NK, Barthel K, Storchova Z. Consequences of Chromosome Loss: Why Do Cells Need Each Chromosome Twice? Cells 2022; 11:1530. [PMID: 35563836 PMCID: PMC9101035 DOI: 10.3390/cells11091530] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 12/26/2022] Open
Abstract
Aneuploidy is a cellular state with an unbalanced chromosome number that deviates from the usual euploid status. During evolution, elaborate cellular mechanisms have evolved to maintain the correct chromosome content over generations. The rare errors often lead to cell death, cell cycle arrest, or impaired proliferation. At the same time, aneuploidy can provide a growth advantage under selective conditions in a stressful, frequently changing environment. This is likely why aneuploidy is commonly found in cancer cells, where it correlates with malignancy, drug resistance, and poor prognosis. To understand this "aneuploidy paradox", model systems have been established and analyzed to investigate the consequences of aneuploidy. Most of the evidence to date has been based on models with chromosomes gains, but chromosome losses and recurrent monosomies can also be found in cancer. We summarize the current models of chromosome loss and our understanding of its consequences, particularly in comparison to chromosome gains.
Collapse
Affiliation(s)
- Narendra Kumar Chunduri
- University Medical Center Groningen, European Research Institute for the Biology of Ageing, University of Groningen, 9713 AV Groningen, The Netherlands;
| | - Karen Barthel
- Department of molecular genetics, University of Kaiserslautern, 67663 Kaiserslautern, Germany;
| | - Zuzana Storchova
- Department of molecular genetics, University of Kaiserslautern, 67663 Kaiserslautern, Germany;
| |
Collapse
|
8
|
Li G, Huang R, Fan W, Wang D, Wu F, Zeng F, Yu M, Zhai Y, Chang Y, Pan C, Jiang T, Yan W, Wang H, Zhang W. Galectin-9/TIM-3 as a Key Regulator of Immune Response in Gliomas With Chromosome 1p/19q Codeletion. Front Immunol 2021; 12:800928. [PMID: 34956239 PMCID: PMC8692744 DOI: 10.3389/fimmu.2021.800928] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
Gliomas with chromosome 1p/19q codeletion were considered a specific tumor entity. This study was designed to reveal the biological function alterations tightly associated with 1p/19q codeletion in gliomas. Clinicopathological and RNA sequencing data from glioma patients were obtained from The Cancer Genome Atlas and Chinese Glioma Genome Atlas databases. Gene set variation analysis was performed to explore the differences in biological functions between glioma subgroups stratified by 1p/19q codeletion status. The abundance of immune cells in each sample was detected using the CIBERSORT analytical tool. Single-cell sequencing data from public databases were analyzed using the t-distributed stochastic neighbor embedding (t-SNE) algorithm, and the findings were verified by in vitro and in vivo experiments and patient samples.We found that the activation of immune and inflammatory responses was tightly associated with 1p/19q codeletion in gliomas. As the most important transcriptional regulator of Galectin-9 in gliomas, the expression level of CCAAT enhancer-binding protein alpha in samples with 1p/19q codeletion was significantly decreased, which led to the downregulation of the immune checkpoints Galectin-9 and TIM-3. These results were validated in three independent datasets. The t-SNE analysis showed that the loss of chromosome 19q was the main reason for the promotion of the antitumor immune response. IHC protein staining, in vitro and in vivo experiments verified the results of bioinformatics analysis. In gliomas, 1p/19q codeletion can promote the antitumor immune response by downregulating the expression levels of the immune checkpoint TIM-3 and its ligand Galectin-9.
Collapse
Affiliation(s)
- Guanzhang Li
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ruoyu Huang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenhua Fan
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Di Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fan Wu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Fan Zeng
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Mingchen Yu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - You Zhai
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yuanhao Chang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Changqing Pan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tao Jiang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Wei Yan
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hongjun Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Zhang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| |
Collapse
|
9
|
Lu D, Yang N, Wang S, Liu W, Zhang D, Wang J, Huang B, Li X. Identifying the Predictive Role of Oxidative Stress Genes in the Prognosis of Glioma Patients. Med Sci Monit 2021; 27:e934161. [PMID: 34836934 PMCID: PMC8634738 DOI: 10.12659/msm.934161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background Gliomas are primary aggressive brain tumors with poor prognoses. Oxidative stress plays a crucial role in the tumorigenesis and drug resistance of gliomas. The aim of the present study was to use integrated bioinformatics analyses to evaluate the prognostic value of oxidative stress-related genes (OSRGs) in glioma. Material/Methods Disease- and prognosis-associated OSRGs were identified using microarray and clinical data from the Chinese Glioma Genome Atlas database. Functional enrichment, gene-gene interaction, protein-protein interaction, and survival analyses were performed in screened OSRGs. The protein expression was validated by the Human Protein Atlas database. A risk score model was constructed and verified through Cox regression, receiver operating characteristic curve, principal component, and stratified analyses. The Cancer Genome Atlas (TCGA) database was used for external validation. A nomogram was constructed to facilitate the clinical application. Results Twenty-one disease-associated and 14 prognosis-associated OSRGs were identified. Enrichment analyses indicated that these signature OSRGs were involved in tumorigenesis and drug resistance of glioma. The risk score model demonstrated a significant difference in overall survival between the high- and low-risk groups. The area under the curve and hazard ratio (1.296) revealed the independent prognostic value of the model. The model exhibited good predictive efficacy in the TCGA cohort. A clinical nomogram was constructed to calculate survival rates in glioma patients at 1, 3, and 5 years. Conclusions Our comprehensive study indicated that OSRGs were valuable for prognosis prediction in glioma, which provides a novel insight into the relationship between oxidative stress and glioma and a potential therapeutic strategy for glioma patients.
Collapse
Affiliation(s)
- Di Lu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China (mainland).,Key Laboratory of Brain Function Remodeling, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Ning Yang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China (mainland).,Key Laboratory of Brain Function Remodeling, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Shuai Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China (mainland).,Key Laboratory of Brain Function Remodeling, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Wenyu Liu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China (mainland).,Key Laboratory of Brain Function Remodeling, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Di Zhang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China (mainland).,Key Laboratory of Brain Function Remodeling, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China (mainland).,Key Laboratory of Brain Function Remodeling, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland).,Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China (mainland).,Key Laboratory of Brain Function Remodeling, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China (mainland).,Key Laboratory of Brain Function Remodeling, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| |
Collapse
|
10
|
Chen Y, Wang Y, He Q, Wang W, Zhang T, Wang Z, Dong J, Lan Q, Zhao J. Integrative analysis of TP73 profile prognostic significance in WHO grade II/III glioma. Cancer Med 2021; 10:4644-4657. [PMID: 34121368 PMCID: PMC8267133 DOI: 10.1002/cam4.4016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 12/17/2022] Open
Abstract
Due to the extremely intrinsic heterogeneity among glioma patients, the outcomes of these patients are tremendously different. Therefore, the exploitation of novel biomarker classification of glioma is vitally important for deep insight into the essence and predicting the prognosis of glioma. We aim to analyze the correlation between TP73 mRNA expression, DNA methylated alteration and the prognosis of WHO grade II/III glioma, utilizing bioinformatics to evaluate its significance as a risk‐factor in predicting the prognosis of these glioma patients. The analysis found that TP73 expression was positively correlated with the grade of glioma, and showed a strong correlation with glioma molecular classification, which revealed significantly higher TP73 expression in IDH‐wildtype than in IDH‐mutant subtype of WHO grade II/III glioma. Cox regression analysis indicated that high expression of TP73 shared an independent high‐risk factor impacting the prognosis of WHO grade II/III glioma. We discovered 8 DNA promoter methylation sites with prognostic significance, which were negatively associated with TP73 expression, and positively associated with beneficial overall survival (OS) and progression‐free survival (PFS). Integrating with four independent glioma datasets, subsequent Meta‐analysis verified that low expression of TP73 was closely related to favorable OS, especially in IDH‐mutant subtype. Moreover, we found that 1p/19qCodel/TP73low subgroup shared the most favorable OS, 1p/19qNon−codel/TP73high subgroup suffered the worst OS. Meanwhile, the enrichment analysis of TP73‐related differential mRNAs demonstrated that TP73 aberration in WHO grade II/III glioma might be closely related to cell cycle and P53 signaling pathways. Finally, TP73 expression of 53 glioma specimens was measured by qRT‐PCR, which was consistent with the previous analytical result, and TP73 high‐expression subgroup suffered worse PFS than TP73 low‐expression subgroup. In summary, our funding supports that TP73 gene can perform as a reliable biomarker to evaluate the survival outcome of patients diagnosed with WHO grade II/III glioma.
Collapse
Affiliation(s)
- Yanming Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Ye Wang
- Heath Management Center, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qiheng He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wen Wang
- China National Clinical Research Center for Neurological Diseases, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tan Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhongyong Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Dong
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qing Lan
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jizong Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Monticelli M, Zeppa P, Zenga F, Altieri R, Mammi M, Bertero L, Castellano I, Cassoni P, Melcarne A, La Rocca G, Sabatino G, Ducati A, Garbossa D. The post-surgical era of GBM: How molecular biology has impacted on our clinical management. A review. Clin Neurol Neurosurg 2019; 170:120-126. [PMID: 29777944 DOI: 10.1016/j.clineuro.2018.05.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/04/2018] [Accepted: 05/13/2018] [Indexed: 12/31/2022]
Abstract
Glioblastoma (GBM) is the most common glioma in adults, with incidence increasing by 3% per year. According to the World Health Organization Classification of Central Nervous System Tumors, GBM is considered a grade IV tumor due to its malignant behavior. The aim of this review is to summarize the main biological aspects of GBM. In particular, we focused our attention on those alterations which have been proven to have an impact on patients' outcome, mainly in terms of overall survival (OS), or on the tumor response to therapies. We have also analyzed the cellular biology and the interactions between GBM and the surrounding environment.
Collapse
Affiliation(s)
- M Monticelli
- Neurosurgical Unit, Department of Neuroscience, University of Turin, Turin, Italy.
| | - P Zeppa
- Neurosurgical Unit, Department of Neuroscience, University of Turin, Turin, Italy
| | - F Zenga
- Neurosurgical Unit, Department of Neuroscience, University of Turin, Turin, Italy
| | - R Altieri
- Neurosurgical Unit, Department of Neuroscience, University of Turin, Turin, Italy
| | - M Mammi
- Neurosurgical Unit, Department of Neuroscience, University of Turin, Turin, Italy
| | - L Bertero
- Pathology Unit, Department of Medical Science, University of Turin, Turin, Italy
| | - I Castellano
- Pathology Unit, Department of Medical Science, University of Turin, Turin, Italy
| | - P Cassoni
- Pathology Unit, Department of Medical Science, University of Turin, Turin, Italy
| | - A Melcarne
- Neurosurgical Unit, Department of Neuroscience, University of Turin, Turin, Italy
| | - G La Rocca
- Institute of Neurosurgery, Catholic University of Rome, Agostino Gemelli Hospital, Rome, Italy
| | - G Sabatino
- Institute of Neurosurgery, Catholic University of Rome, Agostino Gemelli Hospital, Rome, Italy
| | - A Ducati
- Neurosurgical Unit, Department of Neuroscience, University of Turin, Turin, Italy
| | - D Garbossa
- Neurosurgical Unit, Department of Neuroscience, University of Turin, Turin, Italy
| |
Collapse
|
12
|
Lin AL, DeAngelis LM. Reappraising the 2016 WHO classification for diffuse glioma. Neuro Oncol 2019; 19:609-610. [PMID: 28379471 DOI: 10.1093/neuonc/nox003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Andrew L Lin
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Lisa M DeAngelis
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, USA
| |
Collapse
|
13
|
Capicua regulates neural stem cell proliferation and lineage specification through control of Ets factors. Nat Commun 2019; 10:2000. [PMID: 31043608 PMCID: PMC6494820 DOI: 10.1038/s41467-019-09949-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 03/28/2019] [Indexed: 11/08/2022] Open
Abstract
Capicua (Cic) is a transcriptional repressor mutated in the brain cancer oligodendroglioma. Despite its cancer link, little is known of Cic's function in the brain. We show that nuclear Cic expression is strongest in astrocytes and neurons but weaker in stem cells and oligodendroglial lineage cells. Using a new conditional Cic knockout mouse, we demonstrate that forebrain-specific Cic deletion increases proliferation and self-renewal of neural stem cells. Furthermore, Cic loss biases neural stem cells toward glial lineage selection, expanding the pool of oligodendrocyte precursor cells (OPCs). These proliferation and lineage effects are dependent on de-repression of Ets transcription factors. In patient-derived oligodendroglioma cells, CIC re-expression or ETV5 blockade decreases lineage bias, proliferation, self-renewal, and tumorigenicity. Our results identify Cic as an important regulator of cell fate in neurodevelopment and oligodendroglioma, and suggest that its loss contributes to oligodendroglioma by promoting proliferation and an OPC-like identity via Ets overactivity.
Collapse
|
14
|
Sciortino T, Fernandes B, Conti Nibali M, Gay LG, Rossi M, Lopci E, Colombo AE, Elefante MG, Pessina F, Bello L, Riva M. Frameless stereotactic biopsy for precision neurosurgery: diagnostic value, safety, and accuracy. Acta Neurochir (Wien) 2019; 161:967-974. [PMID: 30895395 DOI: 10.1007/s00701-019-03873-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/06/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND Stereotactic biopsy is consistently employed to characterize cerebral lesions in patients who are not suitable for microsurgical resection. In the past years, technical improvement and neuroimaging advancements contributed to increase the diagnostic yield, the safety, and the application of this procedure. Currently, in addition to histological diagnosis, the molecular analysis is considered essential in the diagnostic process to properly select therapeutic and prognostic algorithms in a personalized approach. The present study reports our experience with frameless stereotactic brain biopsy in this molecular era. METHODS One hundred forty consecutive patients treated from January 2013 to September 2018 were analyzed. Biopsies were performed using the Brainlab Varioguide® frameless stereotactic system. Patients' clinical and demographic data, the time of occupation of the operating room, the surgical time, the morbidity, and the diagnostic yield in providing a histological and molecular diagnosis were recorded and evaluated. RESULTS The overall diagnostic yield was 93.6% with nine procedures resulting non-diagnostic. Among 110 patients with glioma, the IDH-1 mutational status was characterized in 108 cases (98.2%), resulting wild-type in all subjects but 3; MGMT methylation was characterized in 96 cases (87.3%), resulting present in 60 patients, and 1p/19q codeletion was founded in 6 of the 20 cases of grade II-III gliomas analyzed. All the specimens were apt for molecular analysis when performed. Bleeding requiring surgical drainage occurred in 2.1% of the cases; 8 (5.7%) asymptomatic hemorrhages requiring no treatment were observed. No biopsy-related mortality was recorded. Median length of hospital stay was 5 days (IQR 4-8) with mean surgical time of 60.77 min (± 23.12) and 137.44 ± 24.1 min of total occupation time of the operative room. CONCLUSIONS Stereotactic frameless biopsy is a safe, feasible, and fast procedure to obtain a histological and molecular diagnosis.
Collapse
Affiliation(s)
- Tommaso Sciortino
- Università degli Studi di Milano, Milan, Italy
- Unit of Oncological Neurosurgery, Humanitas Clinical and Research Center - IRCCS, Rozzano (MI), Italy
| | - Bethania Fernandes
- Unit of Pathology, Humanitas Clinical and Research Center - IRCCS, Rozzano (MI), Italy
| | - Marco Conti Nibali
- Università degli Studi di Milano, Milan, Italy
- Unit of Oncological Neurosurgery, Humanitas Clinical and Research Center - IRCCS, Rozzano (MI), Italy
| | - Lorenzo G Gay
- Università degli Studi di Milano, Milan, Italy
- Unit of Oncological Neurosurgery, Humanitas Clinical and Research Center - IRCCS, Rozzano (MI), Italy
| | - Marco Rossi
- Università degli Studi di Milano, Milan, Italy
- Unit of Oncological Neurosurgery, Humanitas Clinical and Research Center - IRCCS, Rozzano (MI), Italy
| | - Egesta Lopci
- Unit of Nuclear Medicine, Humanitas Clinical and Research Center - IRCCS, Rozzano (MI), Italy
| | - Anna E Colombo
- Unit of Pathology, Humanitas Clinical and Research Center - IRCCS, Rozzano (MI), Italy
| | - Maria G Elefante
- Unit of Pathology, Humanitas Clinical and Research Center - IRCCS, Rozzano (MI), Italy
| | - Federico Pessina
- Unit of Oncological Neurosurgery, Humanitas Clinical and Research Center - IRCCS, Rozzano (MI), Italy
- Department of Biomedical Sciences, Humanitas University, Rozzano (MI), Italy
| | - Lorenzo Bello
- Unit of Oncological Neurosurgery, Humanitas Clinical and Research Center - IRCCS, Rozzano (MI), Italy
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Marco Riva
- Unit of Oncological Neurosurgery, Humanitas Clinical and Research Center - IRCCS, Rozzano (MI), Italy.
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
15
|
Thon N, Tonn JC, Kreth FW. The surgical perspective in precision treatment of diffuse gliomas. Onco Targets Ther 2019; 12:1497-1508. [PMID: 30863116 PMCID: PMC6390867 DOI: 10.2147/ott.s174316] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Over the last decade, advances in molecular and imaging-based biomarkers have induced a more versatile diagnostic classification and prognostic evaluation of glioma patients. This, in combination with a growing therapeutic armamentarium, enables increasingly individualized, risk-benefit-optimized treatment strategies. This path to precision medicine in glioma patients requires surgical procedures to be reassessed within multidimensional management considerations. This article attempts to integrate the surgical intervention into a dynamic network of versatile diagnostic characterization, prognostic assessment, and multimodal treatment options in the light of the latest 2016 World Health Organization (WHO) classification of diffuse brain tumors, WHO grade II, III, and IV. Special focus is set on surgical aspects such as resectability, extent of resection, and targeted surgical strategies including minimal invasive stereotactic biopsy procedures, convection enhanced delivery, and photodynamic therapy. Moreover, the influence of recent advances in radiomics/radiogenimics on the process of surgical decision-making will be touched.
Collapse
Affiliation(s)
- Niklas Thon
- Department of Neurosurgery, Ludwig-Maximilians-University Munich, Munich, Germany,
| | - Joerg-Christian Tonn
- Department of Neurosurgery, Ludwig-Maximilians-University Munich, Munich, Germany,
| | | |
Collapse
|
16
|
Romo CG, Palsgrove DN, Sivakumar A, Elledge CR, Kleinberg LR, Chaichana KL, Gocke CD, Rodriguez FJ, Holdhoff M. Widely metastatic IDH1-mutant glioblastoma with oligodendroglial features and atypical molecular findings: a case report and review of current challenges in molecular diagnostics. Diagn Pathol 2019; 14:16. [PMID: 30738431 PMCID: PMC6368694 DOI: 10.1186/s13000-019-0793-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 02/01/2019] [Indexed: 01/06/2023] Open
Abstract
Background Gliomas with 1p/19q-codeletion as well as mutation of isocitrate dehydrogenase (IDH) 1 are typically characterized as oligodendrogliomas with comparatively good response to treatment with radiation and chemotherapy. Case presentation We present the case of a 28-year-old man with an IDH1 and TP53 mutant high grade glioma with abnormalities in chromosomes 1 and 19 suggestive of anaplastic oligodendroglioma that rapidly progressed to widespread metastatic disease. Biopsy of a liver lesion confirmed metastasis of the patient’s known brain primary and chemotherapy with temozolomide was initiated. The patient’s rapidly growing tumor burden with fulminant liver failure and tumor lysis led to multisystem failure of which the patient died. Further molecular testing illustrated features more consistent with glioblastoma: multiple large chromosomal aberrations including loss of whole chromosome 1 and 2q; gain/amplification of MYCN, MET, and CDK4; loss of CDKN2A/B; and an ATRX mutation. Conclusion This case illustrates the importance of higher level molecular diagnostic testing for patients with particularly aggressive disease progression that is not concordant with standard prognoses. Additional data on cases with atypical alterations of 1p and 19q are needed to better understand the distinct biology of these cancers so that appropriate therapies can be developed. Electronic supplementary material The online version of this article (10.1186/s13000-019-0793-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carlos G Romo
- Brain Cancer Program, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, 1550 Orleans Street, 1M16, Baltimore, MD, 21287, USA
| | - Doreen N Palsgrove
- Department of Pathology, Johns Hopkins University of Medicine, Baltimore, MD, USA
| | - Ananyaa Sivakumar
- Brain Cancer Program, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, 1550 Orleans Street, 1M16, Baltimore, MD, 21287, USA
| | - Christen R Elledge
- Department of Radiation Oncology, Johns Hopkins University of Medicine, Baltimore, MD, USA
| | - Lawrence R Kleinberg
- Department of Radiation Oncology, Johns Hopkins University of Medicine, Baltimore, MD, USA
| | - Kaisorn L Chaichana
- Department of Neurosurgery, Johns Hopkins University of Medicine, Baltimore, MD, USA
| | - Christopher D Gocke
- Department of Pathology, Johns Hopkins University of Medicine, Baltimore, MD, USA
| | - Fausto J Rodriguez
- Department of Pathology, Johns Hopkins University of Medicine, Baltimore, MD, USA
| | - Matthias Holdhoff
- Brain Cancer Program, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, 1550 Orleans Street, 1M16, Baltimore, MD, 21287, USA.
| |
Collapse
|
17
|
Kobyakov GL, Absalyamova OV, Poddubskiy AA, Lodygina KS, Kobyakova EA. [The 2016 WHO classification of primary central nervous system tumors: a clinician's view]. ZHURNAL VOPROSY NEĬROKHIRURGII IMENI N. N. BURDENKO 2018; 82:88-96. [PMID: 29927430 DOI: 10.17116/neiro201882388] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This article is devoted to the latest edition of the 2016 WHO classification of primary CNS tumors. The authors, who are clinicians and not morphologists, have tried to analyze and briefly present the main changes to the new edition of the WHO classification of primary CNS tumors, the main difference of which from the previous 2007 classification is inclusion of the molecular genetic features of primary CNS tumors in the classification criteria. The article focuses mainly on the classification issues of diffuse gliomas and glioblastoma, with assessment of the role of IDH-1,2, ATRX, TERT, and MGMT mutations as well as a 1p/19q co-deletion. The article briefly describes some new nosological forms (e.g., Grade III anaplastic pleomorphic xanthoastrocytoma) and presents a new approach to the classification of embryonic (medulloblastoma) and glial childhood tumors as well as tables of the main differences between 2016 and 2007 WHO classifications of primary CNS tumors. Based on their own clinical experience, the authors dispute with the described classification and suggest their own ideas for improving the classification of primary CNS tumors in the future.
Collapse
Affiliation(s)
- G L Kobyakov
- Burdenko Neurosurgery Institute, 4-ya Tverskaya-Yamskaya Str., 16, Moscow, 125047, Russia
| | - O V Absalyamova
- Burdenko Neurosurgery Institute, 4-ya Tverskaya-Yamskaya Str., 16, Moscow, 125047, Russia
| | - A A Poddubskiy
- Burdenko Neurosurgery Institute, 4-ya Tverskaya-Yamskaya Str., 16, Moscow, 125047, Russia
| | - K S Lodygina
- Burdenko Neurosurgery Institute, 4-ya Tverskaya-Yamskaya Str., 16, Moscow, 125047, Russia
| | - E A Kobyakova
- Blokhin Russian Cancer Research Center, Kashirskoe Shosse, 23, Moscow, Russia, 115478
| |
Collapse
|
18
|
Hombach-Klonisch S, Mehrpour M, Shojaei S, Harlos C, Pitz M, Hamai A, Siemianowicz K, Likus W, Wiechec E, Toyota BD, Hoshyar R, Seyfoori A, Sepehri Z, Ande SR, Khadem F, Akbari M, Gorman AM, Samali A, Klonisch T, Ghavami S. Glioblastoma and chemoresistance to alkylating agents: Involvement of apoptosis, autophagy, and unfolded protein response. Pharmacol Ther 2018; 184:13-41. [DOI: 10.1016/j.pharmthera.2017.10.017] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Holdhoff M, Cairncross GJ, Kollmeyer TM, Zhang M, Zhang P, Mehta MP, Werner-Wasik M, Souhami L, Bahary JP, Kwok Y, Hartford AC, Chakravarti A, Yegnasubramanian S, Vogelstein B, Papadopoulos N, Kinzler K, Jenkins RB, Bettegowda C. Genetic landscape of extreme responders with anaplastic oligodendroglioma. Oncotarget 2018; 8:35523-35531. [PMID: 28388591 PMCID: PMC5482595 DOI: 10.18632/oncotarget.16773] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 03/21/2017] [Indexed: 02/04/2023] Open
Abstract
Background The NRG Oncology RTOG 9402 trial showed significant survival benefit in patients with 1p/19q co-deleted anaplastic oligodendrogliomas (AO) who received both radiation (RT) and chemotherapy (PCV regimen) versus RT alone. Substantial separation of the survival curves was only seen after 7.3 years. We aimed to determine whether there are specific genetic alterations that distinguish co-deleted AO patients who benefit from the addition of PCV from those who do not. Methods: We performed whole exome sequencing on matched tumor and normal DNA from all available short-term (STS) and long-term survivors (LTS) who received RT+PCV. hTERT status and rs55705857 genotypes (G-allele) were analyzed in both cohorts. Results: Six STS (survival of <7.3y) and 7 LTS (survival of ≥7.3y and no progression) had sufficient material for analysis. There was no significant difference between the groups regarding age, performance status and extent of resection. On average, STS had 7 and LTS 4 mutations. Most common mutations in STS vs. LTS were: IDH1 (67 vs. 86%), CIC (50 vs. 71%) and FUBP1 (17 vs. 71%). The hTERT promoter was mutated in 83% STS and 86% LTS. Genotyping of rs55705857 showed a higher prevalence of G allele carriers in LTS than STS (43 vs. 17%). Conclusions These findings confirm that IDH, CIC, FUBP1 mutations and rs55705857 genotype are common in AO. No distinct genetic signature was identified to differentiate STS and LTS.
Collapse
Affiliation(s)
- Matthias Holdhoff
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | | | | | - Ming Zhang
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Peixin Zhang
- NRG Oncology Statistics and Data Management Center, Philadelphia, PA, USA
| | - Minesh P Mehta
- University of Maryland Medical Center, Baltimore, MD, USA
| | | | - Luis Souhami
- McGill University Health Centre, Montreal, QC, Canada
| | - Jean-Paul Bahary
- Centre Hospitalier de l'Université de Montréal, Montreal University, Montreal, QC, Canada
| | - Young Kwok
- University of Maryland Medical Center, Baltimore, MD, USA
| | | | | | | | - Bert Vogelstein
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | | | - Kenneth Kinzler
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | | | - Chetan Bettegowda
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| |
Collapse
|
20
|
Li YX, Shi Z, Aibaidula A, Chen H, Tang Q, Li KKW, Chung NYF, Chan DTM, Poon WS, Mao Y, Wu J, Zhou L, Chan AKY, Ng HK. Not all 1p/19q non-codeleted oligodendroglial tumors are astrocytic. Oncotarget 2018; 7:64615-64630. [PMID: 27556304 PMCID: PMC5323103 DOI: 10.18632/oncotarget.11378] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/12/2016] [Indexed: 12/21/2022] Open
Abstract
Although 1p/19q codeletion is the genetic hallmark defining oligodendrogliomas, approximately 30-40% of oligodendroglial tumors have intact 1p/19q in the literature and they demonstrate a worse prognosis. This group of 1p/19q intact oligodendroglial tumors is frequently suggested to be astrocytic in nature with TP53 and ATRX mutations but actually remains under-investigated. In the present study, we provided evidence that not all 1p/19q intact oligodendroglial tumors are astrocytic through histologic and molecular approaches. We examined 1p/19q status by FISH in a large cohort of 337 oligodendroglial tumors and identified 39.8% lacking 1p/19q codeletion which was independently associated with poor prognosis. Among this 1p/19q intact oligodendroglial tumor cohort, 58 cases demonstrated classic oligodendroglial histology which showed older patient age, better prognosis, association with grade III histology, PDGFRA expression, TERTp mutation, as well as frequent IDH mutation. More than half of the 1p/19q intact oligodendroglial tumors showed lack of astrocytic defining markers, p53 expression and ATRX loss. TP53 mutational analysis was additionally conducted in 45 cases of the 1p/19q intact oligodendroglial tumors. Wild-type TP53 was detected in 71.1% of cases which was associated with classic oligodendroglial histology. Importantly, IDH and TERTp co-occurred in 75% of 1p/19q intact, TP53 wild-type oligodendrogliomas, highlighting the potential of the co-mutations in assisting diagnosis of oligodendrogliomas in tumors with clear cell morphology and non-codeleted 1p/19q status. In summary, our study demonstrated that not all 1p/19q intact oligodendroglial tumors are astrocytic and co-evaluation of IDH and TERTp mutation could potentially serve as an adjunct for diagnosing 1p/19q intact oligodendrogliomas.
Collapse
Affiliation(s)
- Yan-Xi Li
- Department of Anatomical and Cellular Pathology, Chinese University of Hong Kong, Hong Kong, China.,Shenzhen Research Institute, Chinese University of Hong Kong, Hong Kong, China.,Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhifeng Shi
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | | | - Hong Chen
- Department of Neuropathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qisheng Tang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Kay Ka-Wai Li
- Department of Anatomical and Cellular Pathology, Chinese University of Hong Kong, Hong Kong, China.,Shenzhen Research Institute, Chinese University of Hong Kong, Hong Kong, China
| | - Nellie Yuk-Fei Chung
- Department of Anatomical and Cellular Pathology, Chinese University of Hong Kong, Hong Kong, China.,Shenzhen Research Institute, Chinese University of Hong Kong, Hong Kong, China
| | - Danny Tat-Ming Chan
- Neurosurgery Division, Department of Surgery, Chinese University of Hong Kong, Hong Kong, China
| | - Wai Sang Poon
- Neurosurgery Division, Department of Surgery, Chinese University of Hong Kong, Hong Kong, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinsong Wu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Liangfu Zhou
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Aden Ka-Yin Chan
- Department of Anatomical and Cellular Pathology, Chinese University of Hong Kong, Hong Kong, China.,Shenzhen Research Institute, Chinese University of Hong Kong, Hong Kong, China
| | - Ho-Keung Ng
- Department of Anatomical and Cellular Pathology, Chinese University of Hong Kong, Hong Kong, China.,Shenzhen Research Institute, Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
21
|
Wang H, Xu H, Xu T, Tan C, Jiang M, Chen Y, Hu X, Zhou J, Shen J, Qin R, Hu D, Huang Q, Wang M, Wang L, Duan D, Yan Y, Chen J. High expression of TIG3 predicts poor survival in patients with primary glioblastoma. Tumour Biol 2017. [PMID: 28639915 DOI: 10.1177/1010428317712135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
TIG3 (tazarotene-induced gene 3) has been reported to suppress the progression of several malignancies, where this gene is universally downregulated. However, the expression of TIG3 in primary glioblastoma and its relevance to patient's prognosis have not been elaborated. Thus, this study was aimed to evaluate TIG3 expression level in primary glioblastoma and investigate the prognostic value of TIG3 for patients. The Cancer Genome Atlas database was first utilized to analyze the expression and prognostic potential of TIG3 in 528 glioblastoma cases. Compared with control group, glioblastoma showed significantly elevated TIG3 expression (p < 0.001). Log-rank analysis revealed that higher expression of TIG3 was associated with shorter overall survival (358vs 383 days, p = 0.039). Furthermore, TIG3 protein expression detected by immunohistochemistry confirmed positive correlation of TIG3 expression and glioma grade and upregulation of TIG3 in our cohort of 101 primary glioblastoma patients compared to 16 normal brains. Finally, Kaplan-Meier analysis and Cox regression analysis identified high TIG3 expression as an independent risk factor for overall survival of primary glioblastoma patients (overall survival, 10 vs 13 months, p = 0.033; hazard ratio = 1.542, p = 0.046). Together, this study indicated that increased expression of TIG3 in primary glioblastoma is a novel biomarker for predicting poor outcome of patients. We then hypothesize that TIG3 may function in a different pattern in glioblastoma.
Collapse
Affiliation(s)
- Hongxiang Wang
- 1 Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Hanchong Xu
- 1 Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Tao Xu
- 1 Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Cong Tan
- 2 Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Mei Jiang
- 3 Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Yihong Chen
- 4 Department of Cardiology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xinyu Hu
- 3 Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Jinxu Zhou
- 1 Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China.,5 Department of Neurosurgery, The 101th Hospital of PLA, Wuxi, China
| | - Junyan Shen
- 3 Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Rong Qin
- 1 Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China.,6 Department of Neurosurgery, The 184th Hospital of PLA, Yingtan, China
| | - Daiyu Hu
- 3 Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Qilin Huang
- 1 Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Min Wang
- 3 Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Lian Wang
- 3 Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Dongxia Duan
- 3 Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Yong Yan
- 1 Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Juxiang Chen
- 1 Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
22
|
Peyrl A, Frischer J, Hainfellner JA, Preusser M, Dieckmann K, Marosi C. Brain tumors - other treatment modalities. HANDBOOK OF CLINICAL NEUROLOGY 2017; 145:547-560. [PMID: 28987193 DOI: 10.1016/b978-0-12-802395-2.00034-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Management of tumors of the central nervous system is challenging for clinicians for various reasons, including complex diagnostic procedures, limited penetration of drugs into brain tissue, and the prerequisite to preserve brain function in any case of therapeutic intervention. Therapeutic success is dependent on the efforts, skills, and cooperation of involved specialists and disciplines. Knowledge and ability to apply adequate therapeutic modalities in an interdisciplinary approach in due time are crucial, necessitating coordination of diagnostic procedures and therapeutic interventions by means of multidisciplinary brain tumor boards. In this chapter we present in brief the essential current standards and future perspectives for therapy modalities that complement surgery of brain tumors.
Collapse
Affiliation(s)
- Andreas Peyrl
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Josa Frischer
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria; Comprehensive Cancer Center - Central Nervous System Tumors Unit (CCC-CNS), Medical University of Vienna, Vienna, Austria
| | - Johannes A Hainfellner
- Comprehensive Cancer Center - Central Nervous System Tumors Unit (CCC-CNS), Medical University of Vienna, Vienna, Austria; Institute of Neurology, Medical University of Vienna, Vienna, Austria.
| | - Matthias Preusser
- Comprehensive Cancer Center - Central Nervous System Tumors Unit (CCC-CNS), Medical University of Vienna, Vienna, Austria; Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Karin Dieckmann
- Comprehensive Cancer Center - Central Nervous System Tumors Unit (CCC-CNS), Medical University of Vienna, Vienna, Austria; Department of Radiotherapy, Medical University of Vienna, Vienna, Austria
| | - Christine Marosi
- Comprehensive Cancer Center - Central Nervous System Tumors Unit (CCC-CNS), Medical University of Vienna, Vienna, Austria; Department of Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
23
|
Contribution of 1p, 19q, 9p and 10q Automated Analysis by FISH to the Diagnosis and Prognosis of Oligodendroglial Tumors According to WHO 2016 Guidelines. PLoS One 2016; 11:e0168728. [PMID: 28030632 PMCID: PMC5193469 DOI: 10.1371/journal.pone.0168728] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/05/2016] [Indexed: 01/19/2023] Open
Abstract
Objective To study the feasibility and the diagnostic and prognostic interest of automated analysis of 1p, 19q, 9p and 10q status by FISH technique in oligodendroglial tumors. Methods We analyzed a retrospective series of 33 consecutive gliomas with oligodendroglial histology (originally diagnosed as 24 oligodendrogliomas and 9 oligoastrocytomas). For all cases, automated FISH analysis of 1p, 19q, 9p and 10q status were performed and compared to clinical and histological data, ATRX, IDH1R132H and alpha-internexin status (studied by immunohistochemistry) and overall survival (OS). Manual analysis of 9p and 10q status were also performed and compared to automated analysis to verify the concordance of the two methods. Results The 33 gliomas were reclassified into 13 low-grade oligodendrogliomas (OII), 10 anaplastic oligodendrogliomas (OIII), 3 diffuse astrocytomas (AII), 3 anaplastic astrocytomas (AIII) and 4 glioblastomas (GBM) according to the WHO 2016 histological criteria. The 1p and/or 19q imbalanced status were restricted to astrocytomas with no correlation to their grade or their OS. Chromosome 9p deletion was restricted to OIII (70%) and GBM (100%) and was correlated with a shorter OS in the total cohort (p = 0.0007), the oligodendroglioma cohort (p = 0.03) and the astrocytoma cohort (p = 0.001). Concordance between 9p manual and automated analysis was satisfactory (81%, κ = 0.69). Chromosome 10q deletion was restricted to GBMs (50%) and was correlated with a poor OS in both the total cohort (p = 0.003) and the astrocytoma (AS) cohort (p = 0.04). Concordance between manual and automated analysis was satisfactory (79%, κ = 0.62). Conclusion Automated analysis of 1p, 19q, 9p and 10q status by FISH is a reliable technique which allows for refined classification of oligodendroglial tumors. 1p and/or 19q imbalanced status is evidence of astrocytic differentiation. 9p deletion is found in high grade oligodendrogliomas and astrocytomas with a poor OS. 10q is related to GBM status and a poor OS.
Collapse
|
24
|
Saito T, Muragaki Y, Maruyama T, Komori T, Tamura M, Nitta M, Tsuzuki S, Kawamata T. Calcification on CT is a simple and valuable preoperative indicator of 1p/19q loss of heterozygosity in supratentorial brain tumors that are suspected grade II and III gliomas. Brain Tumor Pathol 2016; 33:175-82. [PMID: 26849373 DOI: 10.1007/s10014-016-0249-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 01/18/2016] [Indexed: 01/29/2023]
Abstract
Gliomas with 1p/19q loss of heterozygosity (LOH) are known to be associated with longer patient survival and higher sensitivity to treatment than tumors without 1p/19q LOH. This study was designed to clarify whether the preoperative finding of calcification on CT was correlated with 1p/19q LOH in patients with suspected WHO grade II and III gliomas. This study included 250 adult patients who underwent resection for primary supratentorial tumors at Tokyo Women's Medical University Hospital. The tumors were suspected, based on MRI findings, to be WHO grade II or III gliomas. The presence of calcification on the patients' CT images was qualitatively evaluated before treatment. After surgery, the resected tumors were examined to determine their 1p/19q status and mutations of IDH1 and p53. The presence of calcification was significantly correlated with 1p/19q LOH (P < 0.0001), with a positive predictive value of 91 %. The tumors of all the 78 patients with calcification were diagnosed as oligodendroglial tumors. Seventy of these patients showed classic oligodendroglial features, while 8 patients showed non-classic features. Calcification on CT is a simple and valuable preoperative indicator of 1p/19q LOH in supratentorial brain tumors that are suspected to be WHO grade II and III gliomas.
Collapse
Affiliation(s)
- Taiichi Saito
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan.
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Yoshihiro Muragaki
- Faculty of Advanced Techno-Surgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Takashi Maruyama
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Takashi Komori
- Department of Laboratory Medicine and Pathology (Neuropathology), Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Manabu Tamura
- Faculty of Advanced Techno-Surgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Masayuki Nitta
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Shunsuke Tsuzuki
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Takakazu Kawamata
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
25
|
Duval C, de Tayrac M, Michaud K, Cabillic F, Paquet C, Gould PV, Saikali S. Automated Analysis of 1p/19q Status by FISH in Oligodendroglial Tumors: Rationale and Proposal of an Algorithm. PLoS One 2015; 10:e0132125. [PMID: 26135922 PMCID: PMC4489714 DOI: 10.1371/journal.pone.0132125] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 06/10/2015] [Indexed: 11/28/2022] Open
Abstract
Objective To propose a new algorithm facilitating automated analysis of 1p and 19q status by FISH technique in oligodendroglial tumors with software packages available in the majority of institutions using this technique. Methods We documented all green/red (G/R) probe signal combinations in a retrospective series of 53 oligodendroglial tumors according to literature guidelines (Algorithm 1) and selected only the most significant combinations for a new algorithm (Algorithm 2). This second algorithm was then validated on a prospective internal series of 45 oligodendroglial tumors and on an external series of 36 gliomas. Results Algorithm 2 utilizes 24 G/R combinations which represent less than 40% of combinations observed with Algorithm 1. The new algorithm excludes some common G/R combinations (1/1, 3/2) and redefines the place of others (defining 1/2 as compatible with normal and 3/3, 4/4 and 5/5 as compatible with imbalanced chromosomal status). The new algorithm uses the combination + ratio method of signal probe analysis to give the best concordance between manual and automated analysis on samples of 100 tumor cells (91% concordance for 1p and 89% concordance for 19q) and full concordance on samples of 200 tumor cells. This highlights the value of automated analysis as a means to identify cases in which a larger number of tumor cells should be studied by manual analysis. Validation of this algorithm on a second series from another institution showed a satisfactory concordance (89%, κ = 0.8). Conclusion Our algorithm can be easily implemented on all existing FISH analysis software platforms and should facilitate multicentric evaluation and standardization of 1p/19q assessment in gliomas with reduction of the professional and technical time required.
Collapse
Affiliation(s)
- Céline Duval
- Department of pathology, Centre Hospitalier Universitaire de Québec, Québec, Canada
| | - Marie de Tayrac
- Department of genomic and molecular genetics, Centre Hospitalier Universitaire de Rennes, Rennes, France
| | - Karine Michaud
- Department of Neurosurgery, Centre Hospitalier Universitaire de Québec, Québec, Canada
| | - Florian Cabillic
- Department of cytogenetics and cellular biology, Centre Hospitalier Universitaire de Rennes, Rennes, France
| | - Claudie Paquet
- Department of pathology, Centre Hospitalier Universitaire de Québec, Québec, Canada
| | - Peter Vincent Gould
- Department of pathology, Centre Hospitalier Universitaire de Québec, Québec, Canada
| | - Stéphan Saikali
- Department of pathology, Centre Hospitalier Universitaire de Québec, Québec, Canada
- * E-mail:
| |
Collapse
|
26
|
Abstract
Low-grade diffuse gliomas are a heterogeneous group of primary glial brain tumors with highly variable survival. Currently, patients with low-grade diffuse gliomas are stratified into risk subgroups by subjective histopathologic criteria with significant interobserver variability. Several key molecular signatures have emerged as diagnostic, prognostic, and predictor biomarkers for tumor classification and patient risk stratification. In this review, we discuss the effect of the most critical molecular alterations described in diffuse (IDH1/2, 1p/19q codeletion, ATRX, TERT, CIC, and FUBP1) and circumscribed (BRAF-KIAA1549, BRAF(V600E), and C11orf95-RELA fusion) gliomas. These molecular features reflect tumor heterogeneity and have specific associations with patient outcome that determine appropriate patient management. This has led to an important, fundamental shift toward developing a molecular classification of World Health Organization grade II-III diffuse glioma.
Collapse
Affiliation(s)
- Adriana Olar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Erik P Sulman
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
27
|
Vigneswaran K, Neill S, Hadjipanayis CG. Beyond the World Health Organization grading of infiltrating gliomas: advances in the molecular genetics of glioma classification. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:95. [PMID: 26015937 DOI: 10.3978/j.issn.2305-5839.2015.03.57] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 02/12/2015] [Indexed: 01/28/2023]
Abstract
BACKGROUND Traditional classification of diffuse infiltrating gliomas (DIGs) as World Health Organization (WHO) grades II-IV is based on histological features of a heterogeneous population of tumors with varying prognoses and treatments. Over the last decade, research efforts have resulted in a better understanding of the molecular basis of glioma formation as well as the genetic alterations commonly identified in diffuse gliomas. METHODS A systematic review of the current literature related to advances in molecular phenotypes, mutations, and genomic analysis of gliomas was carried out using a PubMed search for these key terms. Data was studied and synthesized to generate a comprehensive review of glioma subclassification. RESULTS This new data helps supplement the existing WHO grading scale by subtyping gliomas into specific molecular groups. The emerging molecular profile of diffuse gliomas includes the studies of gene expression and DNA methylation in different glioma subtypes. The discovery of novel mutations in isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) provides new biomarkers as points of stratification of gliomas based on prognosis and treatment response. Gliomas that harbor CpG island hypermethylator phenotypes constitute a subtype of glioma with improved survival. The difficulty of classifying oligodendroglial lineage of tumors can be aided with identification of 1p/19q codeletion. Glioblastomas (GBMs) previously described as primary or secondary can now be divided based on gene expression into proneural, mesenchymal, and classical subtypes and the identification of mutations in the promoter region of the telomerase reverse transcriptase (TERTp) have been correlated with poor prognosis in GBMs. CONCLUSIONS Incorporation of new molecular and genomic changes into the existing WHO grading of DIGs may provide better patient prognostication as well as advance the development of patient-specific treatments and clinical trials.
Collapse
Affiliation(s)
- Krishanthan Vigneswaran
- 1 Department of Neurosurgery; 2 Department of Pathology, Brain Tumor Nanotechnology Laboratory, Winship Cancer Institute of Emory University, Emory University School of Medicine Atlanta, GA 30322, USA
| | - Stewart Neill
- 1 Department of Neurosurgery; 2 Department of Pathology, Brain Tumor Nanotechnology Laboratory, Winship Cancer Institute of Emory University, Emory University School of Medicine Atlanta, GA 30322, USA
| | - Costas G Hadjipanayis
- 1 Department of Neurosurgery; 2 Department of Pathology, Brain Tumor Nanotechnology Laboratory, Winship Cancer Institute of Emory University, Emory University School of Medicine Atlanta, GA 30322, USA
| |
Collapse
|
28
|
Prabowo AS, van Thuijl HF, Scheinin I, Sie D, van Essen HF, Iyer AM, Spliet WGM, Ferrier CH, van Rijen PC, Veersema TJ, Thom M, Schouten-van Meeteren AYN, Reijneveld JC, Ylstra B, Wesseling P, Aronica E. Landscape of chromosomal copy number aberrations in gangliogliomas and dysembryoplastic neuroepithelial tumours. Neuropathol Appl Neurobiol 2015; 41:743-55. [PMID: 25764012 DOI: 10.1111/nan.12235] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/02/2015] [Indexed: 12/26/2022]
Abstract
AIM Gangliogliomas (GGs) and dysembryoplastic neuroepithelial tumours (DNTs) represent the most common histological entities within the spectrum of glioneuronal tumours (GNTs). The wide variability of morphological features complicates histological classification, including discrimination from prognostically distinct diffuse low-grade astrocytomas (AIIs). This study was performed to increase our understanding of these tumours. METHODS We studied chromosomal copy number aberrations (CNAs) by genome-wide sequencing in a large cohort of GNTs and linked these to comprehensive histological analysis and clinical characteristics. One hundred fourteen GNTs were studied: 50 GGs and 64 DNTs. Also, a data set of CNAs from 38 diffuse AIIs was included. RESULTS The most frequent CNAs in both GGs and DNTs were gains at chromosomes 5 and 7, often concurrent, and gain at chromosome 6. None of the CNAs was linked to histological subtype, immunohistochemical features or to clinical characteristics. Comparison of AIIs and diffuse GNTs revealed that gain at whole chromosome 5 is only observed in GNTs. CNA patterns indicative of chromothripsis were detected in three GNTs. CONCLUSION We conclude that GNTs with diverse morphologies share molecular features, and our findings support the need to improve classification and differential diagnosis of tumour entities within the spectrum of GNTs, as well as their distinction from other gliomas.
Collapse
Affiliation(s)
- Avanita S Prabowo
- Department of (Neuro)Pathology, University of Amsterdam, Amsterdam, The Netherlands
| | - Hinke Foka van Thuijl
- Department of Neurology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Ilari Scheinin
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Pathology, Haartman Institute and HUSLAB, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Daoud Sie
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Hendrik F van Essen
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Anand M Iyer
- Department of (Neuro)Pathology, University of Amsterdam, Amsterdam, The Netherlands
| | - Wim G M Spliet
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cyrille H Ferrier
- Department of Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands.,Clinical Neurophysiology/Rudolf Magnus Institute for Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter C van Rijen
- Department of Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tim J Veersema
- Department of Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Neurology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maria Thom
- Neuropathology Department, University College London Institute of Neurology, London, UK
| | | | - Jaap C Reijneveld
- Department of Neurology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands.,Department of Neurology, VU University Medical Center, Amsterdam, The Netherlands
| | - Bauke Ylstra
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Pieter Wesseling
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eleonora Aronica
- Department of (Neuro)Pathology, University of Amsterdam, Amsterdam, The Netherlands.,Swammerdam Institute for Life Sciences, Centre for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands.,SEIN - Stichting Epilepsie Instellingen Nederland, Heemstede, The Netherlands
| |
Collapse
|
29
|
Olar A, Wani KM, Alfaro-Munoz KD, Heathcock LE, van Thuijl HF, Gilbert MR, Armstrong TS, Sulman EP, Cahill DP, Vera-Bolanos E, Yuan Y, Reijneveld JC, Ylstra B, Wesseling P, Aldape KD. IDH mutation status and role of WHO grade and mitotic index in overall survival in grade II-III diffuse gliomas. Acta Neuropathol 2015; 129:585-96. [PMID: 25701198 PMCID: PMC4369189 DOI: 10.1007/s00401-015-1398-z] [Citation(s) in RCA: 248] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 02/11/2015] [Accepted: 02/12/2015] [Indexed: 12/31/2022]
Abstract
Diffuse gliomas are up till now graded based upon morphology. Recent findings indicate that isocitrate dehydrogenase (IDH) mutation status defines biologically distinct groups of tumors. The role of tumor grade and mitotic index in patient outcome has not been evaluated following stratification by IDH mutation status. To address this, we interrogated 558 WHO grade II-III diffuse gliomas for IDH1/2 mutations and investigated the prognostic impact of WHO grade within IDH-mutant and IDH-wild type tumor subsets independently. The prognostic impact of grade was modest in IDH-mutant [hazard ratio (HR) = 1.21, 95 % confidence interval (CI) = 0.91-1.61] compared to IDH-wild type tumors (HR = 1.74, 95 % CI = 0.95-3.16). Using a dichotomized mitotic index cut-off of 4/1000 tumor cells, we found that while mitotic index was significantly associated with outcome in IDH-wild type tumors (log-rank p < 0.0001, HR = 4.41, 95 % CI = 2.55-7.63), it was not associated with outcome in IDH-mutant tumors (log-rank p = 0.5157, HR = 1.10, 95 % CI = 0.80-1.51), and could demonstrate a statistical interaction (p < 0.0001) between IDH mutation and mitotic index (i.e., suggesting that the effect of mitotic index on patient outcome is dependent on IDH mutation status). Patient age, an established prognostic factor in diffuse glioma, was significantly associated with outcome only in the IDH-wild type subset, and consistent with prior data, 1p/19q co-deletion conferred improved outcome in the IDH-mutant cohort. These findings suggest that stratification of grade II-III gliomas into subsets defined by the presence or absence of IDH mutation leads to subgroups with distinct prognostic characteristics. Further evaluation of grading criteria and prognostic markers is warranted within IDH-mutant versus IDH-wild type diffuse grade II-III gliomas as independent entities.
Collapse
Affiliation(s)
- Adriana Olar
- Department of Pathology, G1.3510, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Low-grade gliomas (LGG) constitute grades I and II tumors of astrocytic and grade II tumors of oligodendroglial lineage. Although these tumors are typically slow growing, they may be associated with significant morbidity and mortality because of recurrence and malignant progression, even in the setting of optimal resection. LGG in pediatric and adult age groups are currently classified by morphologic criteria. Recent years have heralded a molecular revolution in understanding brain tumors, including LGG. Next-generation sequencing has definitively demonstrated that pediatric and adult LGG fundamentally differ in their underlying molecular characteristics, despite being histologically similar. Pediatric LGG show alterations in FGFR1 and BRAF in pilocytic astrocytomas and FGFR1 alterations in diffuse astrocytomas, each converging on the mitogen-activated protein kinase signaling pathway. Adult LGG are characterized by IDH1/2 mutations and ATRX mutations in astrocytic tumors and IDH1/2 mutations and 1p/19q codeletions in oligodendroglial tumors. TERT promoter mutations are also noted in LGG and are mainly associated with oligodendrogliomas. These findings have considerably refined approaches to classifying these tumors. Moreover, many of the molecular alterations identified in LGG directly impact on prognosis, tumor biology, and the development of novel therapies.
Collapse
|
31
|
Chan AKY, Yao Y, Zhang Z, Chung NYF, Liu JSM, Li KKW, Shi Z, Chan DTM, Poon WS, Zhou L, Ng HK. TERT promoter mutations contribute to subset prognostication of lower-grade gliomas. Mod Pathol 2015; 28:177-86. [PMID: 25081751 DOI: 10.1038/modpathol.2014.94] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 05/20/2014] [Accepted: 05/21/2014] [Indexed: 12/16/2022]
Abstract
Recurrent mutations in the promoter region of telomerase reverse transcriptase (TERT) have been found in various cancers including diffuse gliomas. Mutations lead to TERT upregulation and are associated with aggressive clinical behavior in glioblastomas. However, the clinical significance of TERT promoter mutations in lower-grade gliomas remains undetermined. The aim of this study is to evaluate the status of TERT promoter and the respective prognostic significance in a cohort of 237 lower-grade gliomas comprising grades II and III astrocytomas, oligodendrogliomas, and oligoastrocytomas. Mutually exclusive mutations in TERT promoter, C228T and C250T, were identified in 16/105 (15%) diffuse astrocytomas, 16/63 (25%) anaplastic astrocytomas, 13/18 (72%) oligodendrogliomas, 3/3 (100%) anaplastic oligodendrogliomas, 17/45 (38%) oligoastrocytomas, and 2/3 (67%) anaplastic oligoastrocytomas. Mutations co-occurred with 1p/19q codeletion (P<0.001) and are associated with oligodendroglial histology (P<0.001). Kaplan-Meier's survival analysis showed that TERT promoter mutation (P=0.037), Isocitrate dehydrogenase (IDH) mutation (P<0.001), and 1p/19q codeletion (P<0.001) were associated with favorable overall survival (OS). In the subset of 116 IDH-mutated lower-grade gliomas lacking 1p/19q codeletion, 19 TERT promoter-mutated tumors exhibited longer progression-free survival (PFS) (P=0.027) and OS (P=0.004). Consistent with this observation, in the subset of 97 IDH-mutated astrocytomas, 14 TERT promoter-mutated tumors showed longer PFS (P=0.001) and OS (P=0.001). In contrast, among the subset of 74 IDH wild-type lower-grade gliomas with intact 1p/19q, TERT promoter mutation was associated with shorter PFS (P=0.001) and OS (P=0.001). Similarly, in the subset of 65 IDH wild-type astrocytomas, 16 TERT promoter-mutated tumors exhibited unfavorable PFS (P=0.007) and OS (P=0.008). Our results indicate that when combined with IDH status, TERT promoter mutation contributes to prognostic subgroups of lower-grade astrocytic tumors or 1p/19q intact lower-grade gliomas and this may further refine future molecular classification of lower-grade gliomas.
Collapse
Affiliation(s)
- Aden Ka-Yin Chan
- 1] Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China [2] The Chinese University of Hong Kong-Shenzhen Research Institute, Shenzhen, China
| | - Yu Yao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhenyu Zhang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Nellie Yuk-Fei Chung
- 1] Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China [2] The Chinese University of Hong Kong-Shenzhen Research Institute, Shenzhen, China
| | - Joseph Shu-Ming Liu
- 1] Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China [2] The Chinese University of Hong Kong-Shenzhen Research Institute, Shenzhen, China
| | - Kay Ka-Wai Li
- 1] Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China [2] The Chinese University of Hong Kong-Shenzhen Research Institute, Shenzhen, China
| | - Zhifeng Shi
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Danny Tat-Ming Chan
- Neurosurgery Division, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Wai Sang Poon
- Neurosurgery Division, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Liangfu Zhou
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Ho-Keung Ng
- 1] Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China [2] The Chinese University of Hong Kong-Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
32
|
Killela PJ, Pirozzi CJ, Healy P, Reitman ZJ, Lipp E, Rasheed BA, Yang R, Diplas BH, Wang Z, Greer PK, Zhu H, Wang CY, Carpenter AB, Friedman H, Friedman AH, Keir ST, He J, He Y, McLendon RE, Herndon JE, Yan H, Bigner DD. Mutations in IDH1, IDH2, and in the TERT promoter define clinically distinct subgroups of adult malignant gliomas. Oncotarget 2015; 5:1515-25. [PMID: 24722048 PMCID: PMC4039228 DOI: 10.18632/oncotarget.1765] [Citation(s) in RCA: 204] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Frequent mutations in isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) and the promoter of telomerase reverse transcriptase (TERT) represent two significant discoveries in glioma genomics. Understanding the degree to which these two mutations co-occur or occur exclusively of one another in glioma subtypes presents a unique opportunity to guide glioma classification and prognosis. We analyzed the relationship between overall survival (OS) and the presence of IDH1/2 and TERT promoter mutations in a panel of 473 adult gliomas. We hypothesized and show that genetic signatures capable of distinguishing among several types of gliomas could be established providing clinically relevant information that can serve as an adjunct to histopathological diagnosis. We found that mutations in the TERT promoter occurred in 74.2% of glioblastomas (GBM), but occurred in a minority of Grade II-III astrocytomas (18.2%). In contrast, IDH1/2 mutations were observed in 78.4% of Grade II-III astrocytomas, but were uncommon in primary GBM. In oligodendrogliomas, TERT promoter and IDH1/2 mutations co-occurred in 79% of cases. Patients whose Grade III-IV gliomas exhibit TERT promoter mutations alone predominately have primary GBMs associated with poor median OS (11.5 months). Patients whose Grade III-IV gliomas exhibit IDH1/2 mutations alone predominately have astrocytic morphologies and exhibit a median OS of 57 months while patients whose tumors exhibit both TERT promoter and IDH1/2 mutations predominately exhibit oligodendroglial morphologies and exhibit median OS of 125 months. Analyzing gliomas based on their genetic signatures allows for the stratification of these patients into distinct cohorts, with unique prognosis and survival.
Collapse
Affiliation(s)
- Patrick J Killela
- Department of Pathology, Duke University Medical Center, The Preston Robert Tisch Brain Tumor Center at Duke, and Pediatric Brain Tumor Foundation Institute at Duke, Durham, NC, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Duval C, de Tayrac M, Sanschagrin F, Michaud K, Gould PV, Saikali S. ImmunoFISH is a reliable technique for the assessment of 1p and 19q status in oligodendrogliomas. PLoS One 2014; 9:e100342. [PMID: 24949947 PMCID: PMC4065070 DOI: 10.1371/journal.pone.0100342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 05/23/2014] [Indexed: 11/19/2022] Open
Abstract
Objective To develop a new ImmunoFISH technique for the study of oligodendrogliomas by combining a standard immunohistochemical stain using MIB-1 antibody with a standard FISH technique using commercial 1p36 and 19q13 chromosomal probes. Methods Validation was performed by two observers on a series of 36 pre-selected oligodendrogliomas and compared to the results previously determined by FISH alone. Results The ImFISH technique is easy to perform and to analyze and is no more time-consuming than the usual FISH technique. Our results show that the inter-observer reliability of ImFISH is high (κ = 0.86 and 0.95 respectively for 1p and 19q). Compared to FISH, the ImFISH exhibits a very high sensitivity (∼100%) and specificity (∼90%) for 1p and/or 19q deleted cases. The sensitivity is high for normal cases (∼85%) and imbalanced cases (∼90%) with a specificity ranging between 50 and 85%. Finally, there were no significant differences between FISH and ImFISH results calculated on 60, 40 or 20 cells. Conclusion Our study demonstrates the reliability of the ImFISH technique in oligodendrogliomas and emphasizes its advantage in poorly cellular tumoral specimen.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antibodies, Antinuclear/metabolism
- Antibodies, Monoclonal/metabolism
- Brain Neoplasms/genetics
- Brain Neoplasms/metabolism
- Chromosomes, Human, Pair 1/genetics
- Chromosomes, Human, Pair 1/metabolism
- Chromosomes, Human, Pair 19/genetics
- Chromosomes, Human, Pair 19/metabolism
- Female
- Humans
- Immunohistochemistry
- In Situ Hybridization, Fluorescence/methods
- Male
- Middle Aged
- Observer Variation
- Oligodendroglioma/genetics
- Oligodendroglioma/metabolism
- Reproducibility of Results
Collapse
Affiliation(s)
- Céline Duval
- Department of Pathology, Centre Hospitalier Universitaire de Québec, Québec, Canada
| | - Marie de Tayrac
- Department of genomic and molecular genetics, Centre Hospitalier Universitaire de Rennes, Rennes, France
| | - François Sanschagrin
- Department of Pathology, Centre Hospitalier Universitaire de Québec, Québec, Canada
| | - Karine Michaud
- Department of Neurosurgery, Centre Hospitalier Universitaire de Québec, Québec, Canada
| | - Peter Vincent Gould
- Department of Pathology, Centre Hospitalier Universitaire de Québec, Québec, Canada
| | - Stéphan Saikali
- Department of Pathology, Centre Hospitalier Universitaire de Québec, Québec, Canada
- * E-mail:
| |
Collapse
|
35
|
Haynes HR, Camelo-Piragua S, Kurian KM. Prognostic and predictive biomarkers in adult and pediatric gliomas: toward personalized treatment. Front Oncol 2014; 4:47. [PMID: 24716189 PMCID: PMC3970023 DOI: 10.3389/fonc.2014.00047] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 02/27/2014] [Indexed: 12/12/2022] Open
Abstract
It is increasingly clear that both adult and pediatric glial tumor entities represent collections of neoplastic lesions, each with individual pathological molecular events and treatment responses. In this review, we discuss the current prognostic biomarkers validated for clinical use or with future clinical validity for gliomas. Accurate prognostication is crucial for managing patients as treatments may be associated with high morbidity and the benefits of high risk interventions must be judged by the treating clinicians. We also review biomarkers with predictive validity, which may become clinically relevant with the development of targeted therapies for adult and pediatric gliomas.
Collapse
Affiliation(s)
- Harry R Haynes
- Department of Neuropathology, Frenchay Hospital , Bristol , UK
| | | | | |
Collapse
|
36
|
Abstract
OBJECTIVES To determine prognostic factors and optimal timing of postoperative radiation therapy (RT) in adult low-grade gliomas. METHODS Records from 554 adults diagnosed with nonpilocytic low-grade gliomas at Mayo Clinic between 1992 and 2011 were retrospectively reviewed. RESULTS Median follow-up was 5.2 years. Histology revealed astrocytoma in 22%, oligoastrocytoma in 34%, and oligodendroglioma in 45%. Initial surgery achieved gross total resection in 31%, radical subtotal resection in 10%, subtotal resection (STR) in 21%, and biopsy only in 39%. Median overall survival (OS) and progression-free survival (PFS) were 11.4 and 4.1 years, respectively. On multivariate analysis, factors associated with lower OS included astrocytomas and use of postoperative RT. Adverse prognostic factors for PFS on multivariate analysis included tumor size, astrocytomas, STR/biopsy only and not receiving RT. Patients undergoing gross total resection/radical subtotal resection had the best OS and PFS. Comparing survival with the log-rank test demonstrated no association between RT and PFS (P=0.24), but RT was associated with lower OS (P<0.0001). In patients undergoing STR/biopsy only, RT was associated with improved PFS (P<0.0001) but lower OS (P=0.03). Postoperative RT was associated with adverse prognostic factors including age > 40 years, deep tumors, size≥5 cm, astrocytomas and STR/biopsy only. Patients delaying RT until recurrence experienced 10-year OS (71%) similar to patients never needing RT (74%; P=0.34). CONCLUSIONS This study supports the association between aggressive surgical resection and better OS and PFS, and between postoperative RT and improved PFS in patients receiving STR/biopsy only. In addition, our findings suggest that delaying RT until progression is safe in patients who are eligible.
Collapse
|
37
|
Olar A, Aldape KD. Using the molecular classification of glioblastoma to inform personalized treatment. J Pathol 2014; 232:165-77. [PMID: 24114756 PMCID: PMC4138801 DOI: 10.1002/path.4282] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 08/23/2013] [Accepted: 09/24/2013] [Indexed: 12/19/2022]
Abstract
Glioblastoma is the most common and most aggressive diffuse glioma, associated with short survival and uniformly fatal outcome, irrespective of treatment. It is characterized by morphological, genetic and gene-expression heterogeneity. The current standard of treatment is maximal surgical resection, followed by radiation, with concurrent and adjuvant chemotherapy. Due to the heterogeneity, most tumours develop resistance to treatment and shortly recur. Following recurrence, glioblastoma is quickly fatal in the majority of cases. Recent genetic molecular advances have contributed to a better understanding of glioblastoma pathophysiology and disease stratification. In this paper we review basic glioblastoma pathophysiology, with emphasis on clinically relevant genetic molecular alterations and potential targets for further drug development.
Collapse
Affiliation(s)
- Adriana Olar
- Department of Pathology, University of Texas MD Anderson Cancer Centre, Houston, TX, USA
| | | |
Collapse
|
38
|
Jiang H, Ren X, Wang J, Zhang Z, Jia W, Lin S. Short-term survivors in glioblastomas with oligodendroglioma component: a clinical study of 186 Chinese patients from a single institution. J Neurooncol 2013; 116:395-404. [PMID: 24264532 PMCID: PMC3890040 DOI: 10.1007/s11060-013-1311-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 11/10/2013] [Indexed: 02/01/2023]
Abstract
This study was designed to display the molecular genetic features of short-term survivors in glioblastomas with oligodendroglioma component (GBMO). A total of 186 patients with histological diagnosis of primary gliomas, including 11 GBMO-STS (short-term survivors, survival ≤12 months), 29 GBMO-LTS (relatively long-term survivors, survival >12 months), 36 anaplastic oligoastrocytoma (AOA) and 110 glioblastoma multiforme (GBM), enrolled in the study. An evaluation form was developed and used to document molecular pathological, clinical and treatment-associated parameters between subgroups. Kaplan–Meier plots for survival showed that the median progression-free survival (PFS) and overall survival (OS) of GBMO-STS were 5.0 and 10.0 months, respectively. Intergroup comparison revealed that the GBMO-STS harbored the most dismal prognosis than those with AOA, GBMO-LTS or GBM (P < 0.001 for PFS, P < 0.001 for OS, respectively). Cox regression analyses revealed that 1p/19q co-deletion and 19p polysomy were independent prognostic factors (P < 0.05). Pearson’s Chi square test demonstrated GBMO-STS exhibited lower 1p/19q co-deletion, IDH1 mutation rates than AOA or GBMO-LTS (P = 0.032, P = 0.045 for 1p/19q co-deletion; P = 0.034, P = 0.005 for IDH1 mutation, respectively) but higher chromosome 1q, 19p polysomy rates compared with AOA or GBM (P = 0.037, P = 0.030 for 1q polysomy; P = 0.017, P = 0.011 for 19p polysomy, respectively). Patients with glioblastomas with oligodendroglioma component concurrent with polysomy for chromosomes 1 and 19 always confers an unfavorable prognosis which needs our extra attention in clinic.
Collapse
Affiliation(s)
- Haihui Jiang
- Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050 China
| | - Xiaohui Ren
- Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050 China
| | - Junmei Wang
- Pathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100050 China
| | - Zhe Zhang
- Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050 China
| | - Wenqing Jia
- Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050 China
| | - Song Lin
- Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050 China
| |
Collapse
|
39
|
Eisenreich S, Abou-El-Ardat K, Szafranski K, Campos Valenzuela JA, Rump A, Nigro JM, Bjerkvig R, Gerlach EM, Hackmann K, Schröck E, Krex D, Kaderali L, Schackert G, Platzer M, Klink B. Novel CIC point mutations and an exon-spanning, homozygous deletion identified in oligodendroglial tumors by a comprehensive genomic approach including transcriptome sequencing. PLoS One 2013; 8:e76623. [PMID: 24086756 PMCID: PMC3785522 DOI: 10.1371/journal.pone.0076623] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 08/26/2013] [Indexed: 12/26/2022] Open
Abstract
Oligodendroglial tumors form a distinct subgroup of gliomas, characterized by a better response to treatment and prolonged overall survival. Most oligodendrogliomas and also some oligoastrocytomas are characterized by a unique and typical unbalanced translocation, der(1,19), resulting in a 1p/19q co-deletion. Candidate tumor suppressor genes targeted by these losses, CIC on 19q13.2 and FUBP1 on 1p31.1, were only recently discovered. We analyzed 17 oligodendrogliomas and oligoastrocytomas by applying a comprehensive approach consisting of RNA expression analysis, DNA sequencing of CIC, FUBP1, IDH1/2, and array CGH. We confirmed three different genetic subtypes in our samples: i) the “oligodendroglial” subtype with 1p/19q co-deletion in twelve out of 17 tumors; ii) the “astrocytic” subtype in three tumors; iii) the “other” subtype in two tumors. All twelve tumors with the 1p/19q co-deletion carried the most common IDH1 R132H mutation. In seven of these tumors, we found protein-disrupting point mutations in the remaining allele of CIC, four of which are novel. One of these tumors also had a deleterious mutation in FUBP1. Only by integrating RNA expression and array CGH data, were we able to discover an exon-spanning homozygous microdeletion within the remaining allele of CIC in an additional tumor with 1p/19q co-deletion. Therefore we propose that the mutation rate might be underestimated when looking at sequence variants alone. In conclusion, the high frequency and the spectrum of CIC mutations in our 1p/19q-codeleted tumor cohort support the hypothesis that CIC acts as a tumor suppressor in these tumors, whereas FUBP1 might play only a minor role.
Collapse
Affiliation(s)
- Sophie Eisenreich
- Institut für Klinische Genetik, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Khalil Abou-El-Ardat
- Institut für Klinische Genetik, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Karol Szafranski
- Leibniz Institute for Age Research, Fritz Lipmann Institute (FLI), Jena, Germany
| | - Jaime A. Campos Valenzuela
- Institut für Medizinische Informatik und Biometrie, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Andreas Rump
- Institut für Klinische Genetik, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Janice M. Nigro
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Rolf Bjerkvig
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Eva-Maria Gerlach
- Institut für Klinische Genetik, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Karl Hackmann
- Institut für Klinische Genetik, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Evelin Schröck
- Institut für Klinische Genetik, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Dietmar Krex
- Klinik und Poliklinik für Neurochirurgie, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Lars Kaderali
- Institut für Medizinische Informatik und Biometrie, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Gabriele Schackert
- Klinik und Poliklinik für Neurochirurgie, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Matthias Platzer
- Leibniz Institute for Age Research, Fritz Lipmann Institute (FLI), Jena, Germany
| | - Barbara Klink
- Institut für Klinische Genetik, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- * E-mail:
| |
Collapse
|
40
|
Rondahl V, Holmlund C, Karlsson T, Wang B, Faraz M, Henriksson R, Hedman H. Lrig2-deficient mice are protected against PDGFB-induced glioma. PLoS One 2013; 8:e73635. [PMID: 24023893 PMCID: PMC3762791 DOI: 10.1371/journal.pone.0073635] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 07/23/2013] [Indexed: 11/18/2022] Open
Abstract
Background The leucine-rich repeats and immunoglobulin-like domains (LRIG) proteins constitute an integral membrane protein family that has three members: LRIG1, LRIG2, and LRIG3. LRIG1 negatively regulates growth factor signaling, but little is known regarding the functions of LRIG2 and LRIG3. In oligodendroglial brain tumors, high expression of LRIG2 correlates with poor patient survival. Lrig1 and Lrig3 knockout mice are viable, but there have been no reports on Lrig2-deficient mice to date. Methodology/Principal Findings Lrig2-deficient mice were generated by the ablation of Lrig2 exon 12 (Lrig2E12). The Lrig2E12-/- mice showed a transiently reduced growth rate and an increased spontaneous mortality rate; 20-25% of these mice died before 130 days of age, with the majority of the deaths occurring before 50 days. Ntv-a transgenic mice with different Lrig2 genotypes were transduced by intracranial injection with platelet-derived growth factor (PDGF) B-encoding replication-competent avian retrovirus (RCAS)-producing DF-1 cells. All injected Lrig2E12+/+ mice developed Lrig2 expressing oligodendroglial brain tumors of lower grade (82%) or glioblastoma-like tumors of higher grade (18%). Lrig2E12-/- mice, in contrast, only developed lower grade tumors (77%) or had no detectable tumors (23%). Lrig2E12-/- mouse embryonic fibroblasts (MEF) showed altered induction-kinetics of immediate-early genes Fos and Egr2 in response to PDGF-BB stimulation. However, Lrig2E12-/- MEFs showed no changes in Pdgfrα or Pdgfrβ levels or in levels of PDGF-BB-induced phosphorylation of Pdgfrα, Pdgfrβ, Akt, or extracellular signal-regulated protein kinases 1 and 2 (ERK1/2). Overexpression of LRIG1, but not of LRIG2, downregulated PDGFRα levels in HEK-293T cells. Conclusions The phenotype of Lrig2E12-/- mice showed that Lrig2 was a promoter of PDGFB-induced glioma, and Lrig2 appeared to have important molecular and developmental functions that were distinct from those of Lrig1 and Lrig3.
Collapse
Affiliation(s)
- Veronica Rondahl
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Camilla Holmlund
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Terese Karlsson
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Baofeng Wang
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Mahmood Faraz
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Roger Henriksson
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
- Regionalt Cancercentrum Stockholm, Karolinska Universitetssjukhuset Solna, Stockholm, Sweden
| | - Håkan Hedman
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
41
|
Discovery of structural alterations in solid tumor oligodendroglioma by single molecule analysis. BMC Genomics 2013; 14:505. [PMID: 23885787 PMCID: PMC3727977 DOI: 10.1186/1471-2164-14-505] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 07/23/2013] [Indexed: 12/31/2022] Open
Abstract
Background Solid tumors present a panoply of genomic alterations, from single base changes to the gain or loss of entire chromosomes. Although aberrations at the two extremes of this spectrum are readily defined, comprehensive discernment of the complex and disperse mutational spectrum of cancer genomes remains a significant challenge for current genome analysis platforms. In this context, high throughput, single molecule platforms like Optical Mapping offer a unique perspective. Results Using measurements from large ensembles of individual DNA molecules, we have discovered genomic structural alterations in the solid tumor oligodendroglioma. Over a thousand structural variants were identified in each tumor sample, without any prior hypotheses, and often in genomic regions deemed intractable by other technologies. These findings were then validated by comprehensive comparisons to variants reported in external and internal databases, and by selected experimental corroborations. Alterations range in size from under 5 kb to hundreds of kilobases, and comprise insertions, deletions, inversions and compound events. Candidate mutations were scored at sub-genic resolution and unambiguously reveal structural details at aberrant loci. Conclusions The Optical Mapping system provides a rich description of the complex genomes of solid tumors, including sequence level aberrations, structural alterations and copy number variants that power generation of functional hypotheses for oligodendroglioma genetics.
Collapse
|
42
|
Henriquez NV, Forshew T, Tatevossian R, Ellis M, Richard-Loendt A, Rogers H, Jacques TS, Reitboeck PG, Pearce K, Sheer D, Grundy RG, Brandner S. Comparative expression analysis reveals lineage relationships between human and murine gliomas and a dominance of glial signatures during tumor propagation in vitro. Cancer Res 2013; 73:5834-44. [PMID: 23887970 DOI: 10.1158/0008-5472.can-13-1299] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Brain tumors are thought to originate from stem/progenitor cell populations that acquire specific genetic mutations. Although current preclinical models have relevance to human pathogenesis, most do not recapitulate the histogenesis of the human disease. Recently, a large series of human gliomas and medulloblastomas were analyzed for genetic signatures of prognosis and therapeutic response. Using a mouse model system that generates three distinct types of intrinsic brain tumors, we correlated RNA and protein expression levels with human brain tumors. A combination of genetic mutations and cellular environment during tumor propagation defined the incidence and phenotype of intrinsic murine tumors. Importantly, in vitro passage of cancer stem cells uniformly promoted a glial expression profile in culture and in brain tumors. Gene expression profiling revealed that experimental gliomas corresponded to distinct subclasses of human glioblastoma, whereas experimental supratentorial primitive neuroectodermal tumors (sPNET) correspond to atypical teratoid/rhabdoid tumor (AT/RT), a rare childhood tumor.
Collapse
Affiliation(s)
- Nico V Henriquez
- Authors' Affiliations: Division of Neuropathology, Department of Neurodegenerative Disease, University College London (UCL) Institute of Neurology; Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London; Department of Histopathology, Neural Development Unit, and UCL Genomics, UCL Institute of Child Health, Great Ormond Street Hospital, London; and Children's Brain Tumour Research Centre, Queen's Medical Centre, Nottingham, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Olar A, Aldape KD. Biomarkers classification and therapeutic decision-making for malignant gliomas. Curr Treat Options Oncol 2013; 13:417-36. [PMID: 22956341 DOI: 10.1007/s11864-012-0210-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OPINION STATEMENT Diffuse gliomas are the most common primary brain tumors, with glioblastoma (GBM) encompassing more than 50 % of all cases. Despite aggressive therapy, patients nearly always succumb to their disease and the survival for patients with GBM is approximately 1 year. During past years, numerous scientific contributions have reshaped the field of neuro-oncology and neuropathology. A series of molecular discoveries have shed light on new pathogenic mechanisms, as well as new prognostic and predictive biomarkers with clinical relevance. The current World Health Organization (WHO) classification system is solely based on morphologic criteria; however, there is accumulated evidence that tumors with similar histology have distinct molecular signatures with a clinically significant impact on treatment response and survival. Molecular markers and signatures could be incorporated into the glioma classification and grading system to mirror the clinical outcomes. Additionally, molecular markers could lead to a redefinition of currently controversial entities, such as mixed oligoastrocytomas. Newly discovered molecular alterations also have the potential to become targets for future drug development. Despite tremendous progress in the past decade, therapeutic progress for diffuse gliomas has been slow. A further understanding of glioma biology, in concert with well-designed clinical trials, is necessary to identify more putative molecular biomarkers and unravel the mysteries in the pathogenic mechanisms that trigger this menacing disease.
Collapse
Affiliation(s)
- Adriana Olar
- Department of Pathology and Genomic Medicine, The Methodist Hospital, 6565 Fannin St, M227, Houston, TX 77030, USA.
| | | |
Collapse
|
44
|
Personalized radiation therapy and biomarker-driven treatment strategies: a systematic review. Cancer Metastasis Rev 2013; 32:479-92. [DOI: 10.1007/s10555-013-9419-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
45
|
Drucker KL, Paulsen AR, Giannini C, Decker PA, Blaber SI, Blaber M, Uhm JH, O'Neill BP, Jenkins RB, Scarisbrick IA. Clinical significance and novel mechanism of action of kallikrein 6 in glioblastoma. Neuro Oncol 2013; 15:305-18. [PMID: 23307575 DOI: 10.1093/neuonc/nos313] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Kallikreins have prognostic value in specific malignancies, but few studies have addressed their clinical significance to glioblastoma multiforme (GBM). Kallikrein 6 (KLK6) is of potential high relevance to GBM, since it is upregulated at sites of CNS pathology and linked to reactive astrogliosis. Here we examine the clinical value of KLK6 as a prognostic indicator of GBM patient survival and its activity in promoting resistance to cytotoxic agents. METHODS The association between patient survival and levels of KLK6 immunoreactivity were investigated in 60 grade IV astrocytoma tumor specimens. Levels of KLK6 RNA were also evaluated in a separate set of GBM patient tumors (n = 23). Recombinant KLK6 or enforced KLK6 overexpression in GBM cell lines was used to evaluate effects on astrocytoma cell survival. RESULTS A range of KLK6 expression was observed across grade IV tumors, with higher levels a poor prognostic indicator of patient survival (P = .02) even after adjusting for gender and Eastern Cooperative Oncology Group performance scores (P = .01). KLK6 reduced the sensitivity of GBM cell lines to cytotoxic agents, including staurosporine and cisplatin, and to the current standard of patient care: radiotherapy or temozolomide alone or in combination. The ability of KLK6 to promote resistance to apoptosis was dependent on activation of the thrombin receptor, protease activated receptor 1. CONCLUSIONS Taken together, these results indicate that elevated levels of KLK6 in GBM are likely to promote the resistance of tumor cells to cytotoxic agents and are an indicator of reduced patient postsurgical survival times.
Collapse
Affiliation(s)
- Kristen L Drucker
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, 200 First St., SW., Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ma R, de Pennington N, Hofer M, Blesing C, Stacey R. Diagnostic and prognostic markers in gliomas - an update. Br J Neurosurg 2013; 27:311-5. [PMID: 23278177 DOI: 10.3109/02688697.2012.752432] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Gliomas are the most common primary central nervous system tumour seen in adults. There have been many advances over the last two decades as we widen our search for a molecular basis of gliomagenesis. Many biomarkers have been discovered to be important in the management of gliomas, including 1p19q co-deletion, MGMT promoter methylation, BRAF and IDH1 mutations. In this review, we attempt to summarise the available literature on these biomarkers and their use in the diagnosis and management of gliomas. We pay special attention to the recently discovered IDH1 mutation, which is already proving to be a valuable new marker for favourable prognosis and may also indicate a greater response to therapy. 1p19q co-deletions have been shown to delineate a clinically distinct tumour type and are now routinely tested for in certain situations and can help direct treatment. MGMT promoter methylation is one of the most commonly studied biomarkers in gliomas. It has been shown to be a strong positive prognostic marker in gliomas, with positive tumours being more sensitive to chemotherapy. However, a lack of alternatives means that it is not yet a routine mutation tested for clinically. BRAF mutations are new markers found in pilocytic astrocytomas. Although the prognostic value of such mutations is not yet known, they may play a significant role in the diagnosis and treatment of such tumours. IDH1 mutations are 'the new kid on the block' and seem to play a central role in the pathogenesis of gliomas. They represent an independent and favourable prognostic marker and are a new molecular marker for disease diagnosis. Its role in determining response to chemotherapy is still controversial but with further study, IDH1 mutations may prove to be an invaluable marker in the management of gliomas.
Collapse
Affiliation(s)
- R Ma
- Department of Neurosurgery, John Radcliffe Hospital, Oxford Racliffe Hospitals Trust, West Wing, Headley Way, Headington, Oxford, UK.
| | | | | | | | | |
Collapse
|
47
|
Glaudemans AWJM, Enting RH, Heesters MAAM, Dierckx RAJO, van Rheenen RWJ, Walenkamp AME, Slart RHJA. Value of 11C-methionine PET in imaging brain tumours and metastases. Eur J Nucl Med Mol Imaging 2012; 40:615-35. [DOI: 10.1007/s00259-012-2295-5] [Citation(s) in RCA: 195] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 11/06/2012] [Indexed: 11/29/2022]
|
48
|
Goodenberger ML, Jenkins RB. Genetics of adult glioma. Cancer Genet 2012; 205:613-21. [PMID: 23238284 DOI: 10.1016/j.cancergen.2012.10.009] [Citation(s) in RCA: 593] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 10/22/2012] [Accepted: 10/26/2012] [Indexed: 12/13/2022]
Abstract
Gliomas make up approximately 30% of all brain and central nervous system tumors and 80% of all malignant brain tumors. Despite the frequency of gliomas, the etiology of these tumors remains largely unknown. Diffuse gliomas, including astrocytomas and oligodendrogliomas, belong to a single pathologic class but have very different histologies and molecular etiologies. Recent genomic studies have identified separate molecular subtypes within the glioma classification that appear to correlate with biological etiology, prognosis, and response to therapy. The discovery of these subtypes suggests that molecular genetic tests are and will be useful, beyond classical histology, for the clinical classification of gliomas. While a familial susceptibility to glioma has been identified, only a small percentage of gliomas are thought to be due to single-gene hereditary cancer syndromes. Through the use of linkage studies and genome-wide association studies, multiple germline variants have been identified that are beginning to define the genetic susceptibility to glioma.
Collapse
Affiliation(s)
- McKinsey L Goodenberger
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | | |
Collapse
|
49
|
Gupta K, Salunke P. Molecular markers of glioma: an update on recent progress and perspectives. J Cancer Res Clin Oncol 2012; 138:1971-81. [PMID: 23052697 DOI: 10.1007/s00432-012-1323-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 09/17/2012] [Indexed: 02/02/2023]
Abstract
BACKGROUND Significant progress has been made in the molecular diagnostic subtyping of brain tumors especially gliomas. Designing effective tailored therapy remains the cornerstone for delving into the molecular heterogeneity and classification of gliomas. More homogenous tumor populations may lead to more uniform tumor responses in particular molecular constellation. Recent decade has seen a surge of molecular markers of glioma which hold a promise and potential of being strong prognostic, predictive, and diagnostic markers. They are also extremely critical for the stratification of current clinical trails. METHOD Review of the pertinent literature regarding the molecular markers of glioma was performed. Methods of detection of these markers and their clinical relevance are also discussed. RESULTS AND CONCLUSIONS This review provides an update on progress and perspectives of these newest set of biomarkers which can also supplement and refine histological classification and serves as important prognostic and predictive markers; particularly relevant in this aspect are O(6)-methylguanine-DNA methyltransferase promoter methylation, IDH1 mutations, and codeletion of 1p/19q. BRAF fusion/mutations and EGFR amplification provide important clues diagnostically.
Collapse
Affiliation(s)
- Kirti Gupta
- Department of Histopathology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India.
| | | |
Collapse
|
50
|
Deb P, Mani NS, Sudumbrekar SM, Taneja N, Patrikar S. Correlation of histomorphologic prognostic markers and proliferative index with loss of heterozygosity 1p/19q and MGMT status in diffusely infiltrating gliomas. Med J Armed Forces India 2012; 69:228-36. [PMID: 24600115 DOI: 10.1016/j.mjafi.2012.08.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Accepted: 08/31/2012] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Loss of heterozygosity (LOH)1p/19q, and epigenetic silencing of O(6)-methylguanine-DNAmethyltransferase (MGMT) gene, displayed promising role as predictive and prognostic markers in brain tumours. The present study correlated both with conventional histomorphologic prognostic markers and proliferative index in diffusely infiltrating gliomas (DIG). METHODS Tissues from 45 patients were evaluated for LOH1p/19q using polymerase chain reaction based microsatellite analysis; and for MGMT using immunohistochemistry. Results were correlated with age, histologic type, WHO grade, and proliferation index. RESULTS Mean MIB-1 LI showed significant correlation with tumour grade. MGMT-staining in grade II and IV tumours were 31.1% and 16.8%, respectively, while in DA and GBM it was 88.2% and 19.0%, respectively, which were statistically significant. Sixteen cases showed LOH 1p and/or 19q of which 10 (5 oligodendroglial, 3 GBM, AA, DA) had combined LOH; while three each showed 1p (all GBM) and 19q (2 DA and GBM) loss. In the MIB-1LI ≤ 5% and >5% groups LOH 1p and/or 19q was encountered in 6 and 10 cases, respectively. A significant inverse association was noted between LOH with MGMT. CONCLUSIONS LOH1p/19q and MGMT shows good correlation with conventional histomorphologic and proliferation markers, and should constitute part of the optimal diagnostic workup of DIG.
Collapse
Affiliation(s)
- Prabal Deb
- Associate Professor, Department of Pathology, AFMC, Pune-411040, India
| | - N S Mani
- DDG, MS (P), O/o DGMS (Army), Army Headquarter, New Delhi, India
| | - S M Sudumbrekar
- Consultant (Surgery & Neurosurgery), Command Hospital (EC), Kolkata, India
| | - Nitin Taneja
- Graded Specialist (Pathology), Military Hospital Amritsar, C/o-56 APO, India
| | - Seema Patrikar
- Lecturer in Statistics & Demography, Dept of Community Medicine, AFMC, Pune-40, India
| |
Collapse
|