1
|
Heggie A, Thurston TLM, Ellis T. Microbial messengers: nucleic acid delivery by bacteria. Trends Biotechnol 2025; 43:145-161. [PMID: 39117490 DOI: 10.1016/j.tibtech.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024]
Abstract
The demand for diverse nucleic acid delivery vectors, driven by recent biotechnological breakthroughs, offers opportunities for continuous improvements in efficiency, safety, and delivery capacity. With their enhanced safety and substantial cargo capacity, bacterial vectors offer significant potential across a variety of applications. In this review, we explore methods to engineer bacteria for nucleic acid delivery, including strategies such as engineering attenuated strains, lysis circuits, and conjugation machinery. Moreover, we explore pioneering techniques, such as manipulating nanoparticle (NP) coatings and outer membrane vesicles (OMVs), representing the next frontier in bacterial vector engineering. We foresee these advancements in bacteria-mediated nucleic acid delivery, through combining bacterial pathogenesis with engineering biology techniques, as a pivotal step forward in the evolution of nucleic acid delivery technologies.
Collapse
Affiliation(s)
- Alison Heggie
- Centre for Bacterial Resistance Biology, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK; Imperial College Centre for Synthetic Biology, South Kensington Campus, London, SW7 2AZ, UK; Department of Bioengineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Teresa L M Thurston
- Centre for Bacterial Resistance Biology, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Tom Ellis
- Imperial College Centre for Synthetic Biology, South Kensington Campus, London, SW7 2AZ, UK; Department of Bioengineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| |
Collapse
|
2
|
Nguyen TT, Bui LM, Byun JY, Cho BK, Kim SC. Exploring the Potential of a Genome-Reduced Escherichia coli Strain for Plasmid DNA Production. Int J Mol Sci 2023; 24:11749. [PMID: 37511505 PMCID: PMC10380479 DOI: 10.3390/ijms241411749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
The global demand for nucleic acid-based vaccines, including plasmid DNA (pDNA) and mRNA vaccines, needs efficient production platforms. However, conventional hosts for plasmid production have encountered challenges related to sequence integrity due to the presence of insertion sequences (ISs). In this study, we explored the potential of a genome-reduced Escherichia coli as a host for pDNA production. This strain had been constructed by removing approximately 23% of the genome which were unessential genes, including the genomic unstable elements. Moreover, the strain exhibits an elevated level of NADPH, a coenzyme known to increase plasmid production according to a mathematical model. We hypothesized that the combination of genome reduction and the abundance of NADPH would significantly enhance pDNA production capabilities. Remarkably, our results confirmed a three-fold increase in pDNA production compared to the widely employed DH5α strain. Furthermore, the genome-reduced strain exhibited heightened sensitivity to various antibiotics, bolstering its potential for large scale industrial pDNA production. These findings suggest the genome-reduced E. coli as an exciting candidate for revolutionizing the pDNA industry, offering unprecedented efficiency and productivity.
Collapse
Affiliation(s)
- Thi Thuy Nguyen
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Le Minh Bui
- Department of Biotechnology, NTT Hi-Tech Institute, Nguyen Tat Thanh University (NTTU), Ho Chi Minh City 700000, Vietnam
| | - Ji-Young Byun
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KI for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sun Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KI for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
3
|
Osterloh A. Vaccination against Bacterial Infections: Challenges, Progress, and New Approaches with a Focus on Intracellular Bacteria. Vaccines (Basel) 2022; 10:751. [PMID: 35632507 PMCID: PMC9144739 DOI: 10.3390/vaccines10050751] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
Many bacterial infections are major health problems worldwide, and treatment of many of these infectious diseases is becoming increasingly difficult due to the development of antibiotic resistance, which is a major threat. Prophylactic vaccines against these bacterial pathogens are urgently needed. This is also true for bacterial infections that are still neglected, even though they affect a large part of the world's population, especially under poor hygienic conditions. One example is typhus, a life-threatening disease also known as "war plague" caused by Rickettsia prowazekii, which could potentially come back in a war situation such as the one in Ukraine. However, vaccination against bacterial infections is a challenge. In general, bacteria are much more complex organisms than viruses and as such are more difficult targets. Unlike comparatively simple viruses, bacteria possess a variety of antigens whose immunogenic potential is often unknown, and it is unclear which antigen can elicit a protective and long-lasting immune response. Several vaccines against extracellular bacteria have been developed in the past and are still used successfully today, e.g., vaccines against tetanus, pertussis, and diphtheria. However, while induction of antibody production is usually sufficient for protection against extracellular bacteria, vaccination against intracellular bacteria is much more difficult because effective defense against these pathogens requires T cell-mediated responses, particularly the activation of cytotoxic CD8+ T cells. These responses are usually not efficiently elicited by immunization with non-living whole cell antigens or subunit vaccines, so that other antigen delivery strategies are required. This review provides an overview of existing antibacterial vaccines and novel approaches to vaccination with a focus on immunization against intracellular bacteria.
Collapse
Affiliation(s)
- Anke Osterloh
- Department of Infection Immunology, Research Center Borstel, Parkallee 22, 23845 Borstel, Germany
| |
Collapse
|
4
|
Jiang J, Ramos SJ, Bangalore P, Fisher P, Germar K, Lee BK, Williamson D, Kemme A, Schade E, McCoy J, Muthumani K, Weiner DB, Humeau LM, Broderick KE. Integration of needle-free jet injection with advanced electroporation delivery enhances the magnitude, kinetics, and persistence of engineered DNA vaccine induced immune responses. Vaccine 2019; 37:3832-3839. [DOI: 10.1016/j.vaccine.2019.05.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/14/2019] [Accepted: 05/18/2019] [Indexed: 01/08/2023]
|
5
|
Mekonnen ZA, Grubor-Bauk B, Masavuli MG, Shrestha AC, Ranasinghe C, Bull RA, Lloyd AR, Gowans EJ, Wijesundara DK. Toward DNA-Based T-Cell Mediated Vaccines to Target HIV-1 and Hepatitis C Virus: Approaches to Elicit Localized Immunity for Protection. Front Cell Infect Microbiol 2019; 9:91. [PMID: 31001491 PMCID: PMC6456646 DOI: 10.3389/fcimb.2019.00091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 03/14/2019] [Indexed: 01/07/2023] Open
Abstract
Human immunodeficiency virus (HIV)-1 and hepatitis C virus (HCV) are major contributors to the global disease burden with many experts recognizing the requirement of an effective vaccine to bring a durable end to these viral epidemics. The most promising vaccine candidates that have advanced into pre-clinical models and the clinic to eliminate or provide protection against these chronic viruses are viral vectors [e.g., recombinant cytomegalovirus, Adenovirus, and modified vaccinia Ankara (MVA)]. This raises the question, is there a need to develop DNA vaccines against HIV-1 and HCV? Since the initial study from Wolff and colleagues which showed that DNA represents a vector that can be used to express transgenes durably in vivo, DNA has been regularly evaluated as a vaccine vector albeit with limited success in large animal models and humans. However, several recent studies in Phase I-IIb trials showed that vaccination of patients with recombinant DNA represents a feasible therapeutic intervention to even cure cervical cancer, highlighting the potential of using DNA for human vaccinations. In this review, we will discuss the limitations and the strategies of using DNA as a vector to develop prophylactic T cell-mediated vaccines against HIV-1 and HCV. In particular, we focus on potential strategies exploiting DNA vectors to elicit protective localized CD8+ T cell immunity in the liver for HCV and in the cervicovaginal mucosa for HIV-1 as localized immunity will be an important, if not critical component, of an efficacious vaccine against these viral infections.
Collapse
Affiliation(s)
- Zelalem A. Mekonnen
- Virology Laboratory, Basil Hetzel Institute for Translational Health Research, Discipline of Surgery, University of Adelaide, Adelaide, SA, Australia
| | - Branka Grubor-Bauk
- Virology Laboratory, Basil Hetzel Institute for Translational Health Research, Discipline of Surgery, University of Adelaide, Adelaide, SA, Australia
| | - Makutiro G. Masavuli
- Virology Laboratory, Basil Hetzel Institute for Translational Health Research, Discipline of Surgery, University of Adelaide, Adelaide, SA, Australia
| | - Ashish C. Shrestha
- Virology Laboratory, Basil Hetzel Institute for Translational Health Research, Discipline of Surgery, University of Adelaide, Adelaide, SA, Australia
| | - Charani Ranasinghe
- Molecular Mucosal Vaccine Immunology Group, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Rowena A. Bull
- Viral Immunology Systems Program, The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
| | - Andrew R. Lloyd
- Viral Immunology Systems Program, The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
| | - Eric J. Gowans
- Virology Laboratory, Basil Hetzel Institute for Translational Health Research, Discipline of Surgery, University of Adelaide, Adelaide, SA, Australia
| | - Danushka K. Wijesundara
- Virology Laboratory, Basil Hetzel Institute for Translational Health Research, Discipline of Surgery, University of Adelaide, Adelaide, SA, Australia,*Correspondence: Danushka K. Wijesundara
| |
Collapse
|
6
|
Abstract
Non-viral gene delivery to skeletal muscle was one of the first applications of gene therapy that went into the clinic, mainly because skeletal muscle is an easily accessible tissue for local gene transfer and non-viral vectors have a relatively safe and low immunogenic track record. However, plasmid DNA, naked or complexed to the various chemistries, turn out to be moderately efficient in humans when injected locally and very inefficient (and very toxic in some cases) when injected systemically. A number of clinical applications have been initiated however, based on transgenes that were adapted to good local impact and/or to a wide physiological outcome (i.e., strong humoral and cellular immune responses following the introduction of DNA vaccines). Neuromuscular diseases seem more challenging for non-viral vectors. Nevertheless, the local production of therapeutic proteins that may act distantly from the injected site and/or the hydrodynamic perfusion of safe plasmids remains a viable basis for the non-viral gene therapy of muscle disorders, cachexia, as well as peripheral neuropathies.
Collapse
|
7
|
Yurina V. Live Bacterial Vectors-A Promising DNA Vaccine Delivery System. Med Sci (Basel) 2018; 6:E27. [PMID: 29570602 PMCID: PMC6024733 DOI: 10.3390/medsci6020027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/19/2018] [Accepted: 03/19/2018] [Indexed: 12/14/2022] Open
Abstract
Vaccination is one of the most successful immunology applications that has considerably improved human health. The DNA vaccine is a new vaccine being developed since the early 1990s. Although the DNA vaccine is promising, no human DNA vaccine has been approved to date. The main problem facing DNA vaccine efficacy is the lack of a DNA vaccine delivery system. Several studies explored this limitation. One of the best DNA vaccine delivery systems uses a live bacterial vector as the carrier. The live bacterial vector induces a robust immune response due to its natural characteristics that are recognized by the immune system. Moreover, the route of administration used by the live bacterial vector is through the mucosal route that beneficially induces both mucosal and systemic immune responses. The mucosal route is not invasive, making the vaccine easy to administer, increasing the patient's acceptance. Lactic acid bacterium is one of the most promising bacteria used as a live bacterial vector. However, some other attenuated pathogenic bacteria, such as Salmonella spp. and Shigella spp., have been used as DNA vaccine carriers. Numerous studies showed that live bacterial vectors are a promising candidate to deliver DNA vaccines.
Collapse
Affiliation(s)
- Valentina Yurina
- Department of Pharmacy, Medical Faculty, Universitas Brawijaya, East Java 65145, Malang, Indonesia.
| |
Collapse
|
8
|
Affiliation(s)
- Mingming Zhang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, 236 Baidi Road, Nankai District, Tianjin 300192, China
| | - Yanhang Hong
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, 236 Baidi Road, Nankai District, Tianjin 300192, China
| | - Wenjuan Chen
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, 236 Baidi Road, Nankai District, Tianjin 300192, China
| | - Chun Wang
- Department
of Biomedical Engineering, University of Minnesota, 7-105 Hasselmo
Hall, 312 Church Street S. E., Minneapolis, Minnesota 55455, United States
| |
Collapse
|
9
|
Abstract
Plasmids are currently an indispensable molecular tool in life science research and a central asset for the modern biotechnology industry, supporting its mission to produce pharmaceutical proteins, antibodies, vaccines, industrial enzymes, and molecular diagnostics, to name a few key products. Furthermore, plasmids have gradually stepped up in the past 20 years as useful biopharmaceuticals in the context of gene therapy and DNA vaccination interventions. This review provides a concise coverage of the scientific progress that has been made since the emergence of what are called today plasmid biopharmaceuticals. The most relevant topics are discussed to provide researchers with an updated overview of the field. A brief outline of the initial breakthroughs and innovations is followed by a discussion of the motivation behind the medical uses of plasmids in the context of therapeutic and prophylactic interventions. The molecular characteristics and rationale underlying the design of plasmid vectors as gene transfer agents are described and a description of the most important methods used to deliver plasmid biopharmaceuticals in vivo (gene gun, electroporation, cationic lipids and polymers, and micro- and nanoparticles) is provided. The major safety issues (integration and autoimmunity) surrounding the use of plasmid biopharmaceuticals is discussed next. Aspects related to the large-scale manufacturing are also covered, and reference is made to the plasmid products that have received marketing authorization as of today.
Collapse
|
10
|
Huang Y, Follmann D, Nason M, Zhang L, Huang Y, Mehrotra DV, Moodie Z, Metch B, Janes H, Keefer MC, Churchyard G, Robb ML, Fast PE, Duerr A, McElrath MJ, Corey L, Mascola JR, Graham BS, Sobieszczyk ME, Kublin JG, Robertson M, Hammer SM, Gray GE, Buchbinder SP, Gilbert PB. Effect of rAd5-Vector HIV-1 Preventive Vaccines on HIV-1 Acquisition: A Participant-Level Meta-Analysis of Randomized Trials. PLoS One 2015; 10:e0136626. [PMID: 26332672 PMCID: PMC4558095 DOI: 10.1371/journal.pone.0136626] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 08/05/2015] [Indexed: 11/28/2022] Open
Abstract
Background Three phase 2b, double-blind, placebo-controlled, randomized efficacy trials have tested recombinant Adenovirus serotype-5 (rAd5)-vector preventive HIV-1 vaccines: MRKAd5 HIV-1 gag/pol/nef in Step and Phambili, and DNA/rAd5 HIV-1 env/gag/pol in HVTN505. Due to efficacy futility observed at the first interim analysis in Step and HVTN505, participants of all three studies were unblinded to their vaccination assignments during the study but continued follow–up. Rigorous meta-analysis can provide crucial information to advise the future utility of rAd5-vector vaccines. Methods We included participant-level data from all three efficacy trials, and three Phase 1–2 trials evaluating the HVTN505 vaccine regimen. We predefined two co-primary analysis cohorts for assessing the vaccine effect on HIV-1 acquisition. The modified-intention-to-treat (MITT) cohort included all randomly assigned participants HIV-1 uninfected at study entry, who received at least the first vaccine/placebo, and the Ad5 cohort included MITT participants who received at least one dose of rAd5-HIV vaccine or rAd5-placebo. Multivariable Cox regression models were used to estimate hazard ratios (HRs) of HIV-1 infection (vaccine vs. placebo) and evaluate HR variation across vaccine regimens, time since vaccination, and subgroups using interaction tests. Findings Results are similar for the MITT and Ad5 cohorts; we summarize MITT cohort results. Pooled across the efficacy trials, over all follow-up time 403 (n = 224 vaccine; n = 179 placebo) of 6266 MITT participants acquired HIV-1, with a non-significantly higher incidence in vaccine recipients (HR 1.21, 95% CI 0.99–1.48, P = 0.06). The HRs significantly differed by vaccine regimen (interaction P = 0.03; MRKAd5 HR 1.41, 95% CI 1.11–1.78, P = 0.005 vs. DNA/rAd5 HR 0.88, 95% CI 0.61–1.26, P = 0.48). Results were similar when including the Phase 1–2 trials. Exploratory analyses based on the efficacy trials supported that the MRKAd5 vaccine-increased risk was concentrated in Ad5-positive or uncircumcised men early in follow-up, and in Ad5-negative or circumcised men later. Overall, MRKAd5 vaccine-increased risk was evident across subgroups except in circumcised Ad5-negative men (HR 0.97, 95% CI 0.58−1.63, P = 0.91); there was little evidence that the DNA/rAd5 vaccine, that was tested in this subgroup, increased risk (HR 0.88, 95% CI 0.61–1.26, P = 0.48). When restricting the analysis of Step and Phambili to follow-up time before unblinding, 114 (n = 65 vaccine; n = 49 placebo) of 3770 MITT participants acquired HIV-1, with a non-significantly higher incidence in MRKAd5 vaccine recipients (HR 1.30, 95% CI 0.89–1.14, P = 0.18). Interpretation and Significance The data support increased risk of HIV-1 infection by MRKAd5 over all follow-up time, but do not support increased risk of HIV-1 infection by DNA/rAd5. This study provides a rationale for including monitoring plans enabling detection of increased susceptibility to infection in HIV-1 at-risk populations.
Collapse
Affiliation(s)
- Yunda Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Dean Follmann
- National Institute of Allergy and Infectious Diseases and Biostatistics Research Branch, National Institutes of Health, Bethesda, MD, United States of America
| | - Martha Nason
- Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Lily Zhang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Ying Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Devan V. Mehrotra
- Merck Research Laboratories, North Wales, PA, United States of America
| | - Zoe Moodie
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Barbara Metch
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Holly Janes
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Michael C. Keefer
- Infectious Disease Division, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America
| | | | - Merlin L. Robb
- HJF HIV Program, US Military HIV Research Program, Bethesda, MD, United States of America
| | - Patricia E. Fast
- Research and Development, International AIDS Vaccine Initiative, New York, New York, United States of America
| | - Ann Duerr
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - M. Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States of America
| | - Barney S. Graham
- Viral Pathogenesis Laboratory, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States of America
| | - Magdalena E. Sobieszczyk
- Division of Infectious Diseases, Department of Medicine, Columbia University, New York, New York, United States of America
| | - James G. Kublin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Michael Robertson
- Infectious Disease Clinical Research, Merck, Philadelphia, Pennsylvania, United States of America
| | - Scott M. Hammer
- Division of Infectious Diseases, Department of Medicine, Columbia University, New York, New York, United States of America
| | - Glenda E. Gray
- University of the Witwatersrand, Johannesburg, South Africa
| | - Susan P. Buchbinder
- Bridge HIV, San Francisco Department of Public Health, San Francisco, CA, United States of America
| | - Peter B. Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
11
|
Abstract
Inactivated and attenuated vaccines have contributed to the control or even the eradication of significant animal pathogens. However, these traditional vaccine technologies have limitations and disadvantages. Inactivated vaccines lack efficacy against certain pathogens, while attenuated vaccines are not always as safe. New technology vaccines, namely DNA and recombinant viral vector vaccines, are being developed and tested against pathogens of small ruminants. These vaccines induce both humoral and cellular immune responses, are safe to manufacture and use and can be utilized in strategies for differentiation of infected from vaccinated animals. Although there are more strict regulatory requirements for the safety standards of these vaccines, once a vaccine platform is evaluated and established, effective vaccines can be rapidly produced and deployed in the field to prevent spread of emerging pathogens. The present article offers an introduction to these next generation technologies and examples of vaccines that have been tested against important diseases of sheep and goats.
Collapse
Affiliation(s)
- C S Kyriakis
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| |
Collapse
|
12
|
|
13
|
Xu Y, Yuen PW, Lam JKW. Intranasal DNA Vaccine for Protection against Respiratory Infectious Diseases: The Delivery Perspectives. Pharmaceutics 2014; 6:378-415. [PMID: 25014738 PMCID: PMC4190526 DOI: 10.3390/pharmaceutics6030378] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 06/20/2014] [Accepted: 06/24/2014] [Indexed: 11/16/2022] Open
Abstract
Intranasal delivery of DNA vaccines has become a popular research area recently. It offers some distinguished advantages over parenteral and other routes of vaccine administration. Nasal mucosa as site of vaccine administration can stimulate respiratory mucosal immunity by interacting with the nasopharyngeal-associated lymphoid tissues (NALT). Different kinds of DNA vaccines are investigated to provide protection against respiratory infectious diseases including tuberculosis, coronavirus, influenza and respiratory syncytial virus (RSV) etc. DNA vaccines have several attractive development potential, such as producing cross-protection towards different virus subtypes, enabling the possibility of mass manufacture in a relatively short time and a better safety profile. The biggest obstacle to DNA vaccines is low immunogenicity. One of the approaches to enhance the efficacy of DNA vaccine is to improve DNA delivery efficiency. This review provides insight on the development of intranasal DNA vaccine for respiratory infections, with special attention paid to the strategies to improve the delivery of DNA vaccines using non-viral delivery agents.
Collapse
Affiliation(s)
- Yingying Xu
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, 21 Sassoon Road, Hong Kong, China.
| | - Pak-Wai Yuen
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, 21 Sassoon Road, Hong Kong, China.
| | - Jenny Ka-Wing Lam
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, 21 Sassoon Road, Hong Kong, China.
| |
Collapse
|
14
|
Felber BK, Valentin A, Rosati M, Bergamaschi C, Pavlakis GN. HIV DNA Vaccine: Stepwise Improvements Make a Difference. Vaccines (Basel) 2014; 2:354-79. [PMID: 26344623 PMCID: PMC4494255 DOI: 10.3390/vaccines2020354] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/11/2014] [Accepted: 04/18/2014] [Indexed: 12/15/2022] Open
Abstract
Inefficient DNA delivery methods and low expression of plasmid DNA have been major obstacles for the use of plasmid DNA as vaccine for HIV/AIDS. This review describes successful efforts to improve DNA vaccine methodology over the past ~30 years. DNA vaccination, either alone or in combination with other methods, has the potential to be a rapid, safe, and effective vaccine platform against AIDS. Recent clinical trials suggest the feasibility of its translation to the clinic.
Collapse
Affiliation(s)
- Barbara K Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA.
| | - Antonio Valentin
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA.
| | - Margherita Rosati
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA.
| | - Cristina Bergamaschi
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA.
| | - George N Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA.
| |
Collapse
|
15
|
Recent Developments in Preclinical DNA Vaccination. Vaccines (Basel) 2014; 2:89-106. [PMID: 26344468 PMCID: PMC4494203 DOI: 10.3390/vaccines2010089] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 11/22/2013] [Accepted: 11/26/2013] [Indexed: 12/21/2022] Open
Abstract
The advantages of genetic immunization of the new vaccine using plasmid DNAs are multifold. For example, it is easy to generate plasmid DNAs, increase their dose during the manufacturing process, and sterilize them. Furthermore, they can be stored for a long period of time upon stabilization, and their protein encoding sequences can be easily modified by employing various DNA-manipulation techniques. Although DNA vaccinations strongly increase Th1-mediated immune responses in animals, several problems persist. One is about their weak immunogenicity in humans. To overcome this problem, various genetic adjuvants, electroporation, and prime-boost methods have been developed preclinically, which are reviewed here.
Collapse
|
16
|
Hammer SM, Sobieszczyk ME, Janes H, Karuna ST, Mulligan MJ, Grove D, Koblin BA, Buchbinder SP, Keefer MC, Tomaras GD, Frahm N, Hural J, Anude C, Graham BS, Enama ME, Adams E, DeJesus E, Novak RM, Frank I, Bentley C, Ramirez S, Fu R, Koup RA, Mascola JR, Nabel GJ, Montefiori DC, Kublin J, McElrath MJ, Corey L, Gilbert PB. Efficacy trial of a DNA/rAd5 HIV-1 preventive vaccine. N Engl J Med 2013; 369:2083-92. [PMID: 24099601 PMCID: PMC4030634 DOI: 10.1056/nejmoa1310566] [Citation(s) in RCA: 467] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND A safe and effective vaccine for the prevention of human immunodeficiency virus type 1 (HIV-1) infection is a global priority. We tested the efficacy of a DNA prime-recombinant adenovirus type 5 boost (DNA/rAd5) vaccine regimen in persons at increased risk for HIV-1 infection in the United States. METHODS At 21 sites, we randomly assigned 2504 men or transgender women who have sex with men to receive the DNA/rAd5 vaccine (1253 participants) or placebo (1251 participants). We assessed HIV-1 acquisition from week 28 through month 24 (termed week 28+ infection), viral-load set point (mean plasma HIV-1 RNA level 10 to 20 weeks after diagnosis), and safety. The 6-plasmid DNA vaccine (expressing clade B Gag, Pol, and Nef and Env proteins from clades A, B, and C) was administered at weeks 0, 4, and 8. The rAd5 vector boost (expressing clade B Gag-Pol fusion protein and Env glycoproteins from clades A, B, and C) was administered at week 24. RESULTS In April 2013, the data and safety monitoring board recommended halting vaccinations for lack of efficacy. The primary analysis showed that week 28+ infection had been diagnosed in 27 participants in the vaccine group and 21 in the placebo group (vaccine efficacy, -25.0%; 95% confidence interval, -121.2 to 29.3; P=0.44), with mean viral-load set points of 4.46 and 4.47 HIV-1 RNA log10 copies per milliliter, respectively. Analysis of all infections during the study period (41 in the vaccine group and 31 in the placebo group) also showed lack of vaccine efficacy (P=0.28). The vaccine regimen had an acceptable side-effect profile. CONCLUSIONS The DNA/rAd5 vaccine regimen did not reduce either the rate of HIV-1 acquisition or the viral-load set point in the population studied. (Funded by the National Institute of Allergy and Infectious Diseases; ClinicalTrials.gov number, NCT00865566.).
Collapse
|
17
|
Kløverpris HN, Jackson A, Handley A, Hayes P, Gilmour J, Riddell L, Chen F, Atkins M, Boffito M, Walker BD, Ackland J, Sullivan M, Goulder P. Non-immunogenicity of overlapping gag peptides pulsed on autologous cells after vaccination of HIV infected individuals. PLoS One 2013; 8:e74389. [PMID: 24124451 PMCID: PMC3790804 DOI: 10.1371/journal.pone.0074389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 07/17/2013] [Indexed: 12/30/2022] Open
Abstract
Background HIV Gag-specific CD4+ and CD8+ T-cell responses are important for HIV immune control. Pulsing overlapping Gag peptides on autologous lymphocytes (OPAL) has proven immunogenic and effective in reducing viral loads in multiple pigtail macaque studies, warranting clinical evaluation. Methodology We performed a phase I, single centre, placebo-controlled, double-blinded and dose-escalating study to evaluate the safety and preliminary immunogenicity of a novel therapeutic vaccine approach ‘OPAL-HIV-Gag(c)’. This vaccine is comprised of 120 15mer peptides, overlapping by 11 amino acids, spanning the HIV Gag C clade sequence proteome, pulsed on white blood cells enriched from whole blood using a closed system, followed by intravenous reinfusion. Patients with undetectable HIV viral loads (<50 copies/ml plasma) on HAART received four administrations at week 0, 4, 8 and 12, and were followed up for 12 weeks post-treatment. Twenty-three people were enrolled in four groups: 12 mg (n = 6), 24 mg (n = 7), 48 mg (n = 2) or matching placebo (n = 8) with 18 immunologically evaluable. T-cell immunogenicity was assessed by IFNγ ELIspot and intracellular cytokine staining (ICS). Results The OPAL-HIV-Gag(c) peptides were antigenic in vitro in 17/17 subjects. After vaccination with OPAL-HIV-Gag(c), 1/6 subjects at 12 mg and 1/6 subjects at 24 mg dose groups had a 2- and 3-fold increase in ELIspot magnitudes from baseline, respectively, of Gag-specific CD8+ T-cells at week 14, compared to 0/6 subjects in the placebo group. No Gag-specific CD4+ T-cell responses or overall change in Rev, Nef, Tat and CMV specific responses were detected. Marked, transient and self-limiting lymphopenia was observed immediately post-vaccination (4 hours) in OPAL-HIV-Gag(c) but not in placebo recipients, with median fall from 1.72 to 0.67 million lymphocytes/mL for active groups (P<0.001), compared to post-placebo from 1.70 to 1.56 lymphocytes/ml (P = 0.16). Conclusion/Significance Despite strong immunogenicity observed in several Macaca nemestrina studies using this approach, OPAL-HIV-Gag(c) was not significantly immunogenic in humans and improved methods of generating high-frequency Gag-specific T-cell responses are required. Name of Registry ClinicalTrials.gov, Registry number: NCT01123915, URL trial registry database: http://www.clinicaltrials.gov/ct2/results?term=OPAL-HIV-1001&Search=Search
Collapse
Affiliation(s)
- Henrik N. Kløverpris
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- KwaZulu-Natal Research Institute for Tuberculosis and HIV (K-RITH), Nelson R Mandela School of Medicine, University of Kwazulu-Natal, Durban, KwaZulu-Natal, South Africa
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- * E-mail: ,
| | - Akil Jackson
- St Stephen's AIDS Trust St Stephen's Centre, Chelsea and Westminster Hospital, London, United Kingdom
| | | | - Peter Hayes
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Jill Gilmour
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Lynn Riddell
- Department of Genitourinary Medicine, Northhamptonshire Healthcare National Health Service Trust, Northhampton General Hospital, Cliftonville, Northhampton, United Kingdom
| | - Fabian Chen
- Department of Sexual Health, Royal Berkshire Hospital, Reading, United Kingdom
| | - Mark Atkins
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Marta Boffito
- St Stephen's AIDS Trust St Stephen's Centre, Chelsea and Westminster Hospital, London, United Kingdom
| | - Bruce D. Walker
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Maryland, Chevy Chase, Maryland, United States of America
| | - Jim Ackland
- Global Biosolutions, Craigeburn, Victoria, Australia
| | - Mark Sullivan
- Medicines Development, Melbourne, Victoria, Australia
| | - Philip Goulder
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Boston, Massachusetts, United States of America
| |
Collapse
|
18
|
Innate Immune Signaling by, and Genetic Adjuvants for DNA Vaccination. Vaccines (Basel) 2013; 1:278-92. [PMID: 26344113 PMCID: PMC4494227 DOI: 10.3390/vaccines1030278] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/06/2013] [Accepted: 07/09/2013] [Indexed: 02/07/2023] Open
Abstract
DNA vaccines can induce both humoral and cellular immune responses. Although some DNA vaccines are already licensed for infectious diseases in animals, they are not licensed for human use because the risk and benefit of DNA vaccines is still controversial. Indeed, in humans, the immunogenicity of DNA vaccines is lower than that of other traditional vaccines. To develop the use of DNA vaccines in the clinic, various approaches are in progress to enhance or improve the immunogenicity of DNA vaccines. Recent studies have shown that immunogenicity of DNA vaccines are regulated by innate immune responses via plasmid DNA recognition through the STING-TBK1 signaling cascade. Similarly, molecules that act as dsDNA sensors that activate innate immune responses through STING-TBK1 have been identified and used as genetic adjuvants to enhance DNA vaccine immunogenicity in mouse models. However, the mechanisms that induce innate immune responses by DNA vaccines are still unclear. In this review, we will discuss innate immune signaling upon DNA vaccination and genetic adjuvants of innate immune signaling molecules.
Collapse
|
19
|
A brief history of the global effort to develop a preventive HIV vaccine. Vaccine 2013; 31:3502-18. [PMID: 23707164 DOI: 10.1016/j.vaccine.2013.05.018] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 05/01/2013] [Accepted: 05/07/2013] [Indexed: 01/09/2023]
Abstract
Soon after HIV was discovered as the cause of AIDS in 1983-1984, there was an expectation that a preventive vaccine would be rapidly developed. In trying to achieve that goal, three successive scientific paradigms have been explored: induction of neutralizing antibodies, induction of cell mediated immunity, and exploration of combination approaches and novel concepts. Although major progress has been made in understanding the scientific basis for HIV vaccine development, efficacy trials have been critical in moving the field forward. In 2009, the field was reinvigorated with the modest results obtained from the RV144 trial conducted in Thailand. Here, we review those vaccine development efforts, with an emphasis on events that occurred during the earlier years. The goal is to provide younger generations of scientists with information and inspiration to continue the search for an HIV vaccine.
Collapse
|
20
|
Graham BS, Enama ME, Nason MC, Gordon IJ, Peel SA, Ledgerwood JE, Plummer SA, Mascola JR, Bailer RT, Roederer M, Koup RA, Nabel GJ. DNA vaccine delivered by a needle-free injection device improves potency of priming for antibody and CD8+ T-cell responses after rAd5 boost in a randomized clinical trial. PLoS One 2013; 8:e59340. [PMID: 23577062 PMCID: PMC3620125 DOI: 10.1371/journal.pone.0059340] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 02/12/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND DNA vaccine immunogenicity has been limited by inefficient delivery. Needle-free delivery of DNA using a CO2-powered Biojector® device was compared to delivery by needle and syringe and evaluated for safety and immunogenicity. METHODS Forty adults, 18-50 years, were randomly assigned to intramuscular (IM) vaccinations with DNA vaccine, VRC-HIVDNA016-00-VP, (weeks 0, 4, 8) by Biojector® 2000™ or needle and syringe (N/S) and boosted IM at week 24 with VRC-HIVADV014-00-VP (rAd5) with N/S at 10(10) or 10(11) particle units (PU). Equal numbers per assigned schedule had low (≤500) or high (>500) reciprocal titers of preexisting Ad5 neutralizing antibody. RESULTS 120 DNA and 39 rAd5 injections were given; 36 subjects completed follow-up research sample collections. IFN-γ ELISpot response rates were 17/19 (89%) for Biojector® and 13/17 (76%) for N/S delivery at Week 28 (4 weeks post rAd5 boost). The magnitude of ELISpot response was about 3-fold higher in Biojector® compared to N/S groups. Similar effects on response rates and magnitude were observed for CD8+, but not CD4+ T-cell responses by ICS. Env-specific antibody responses were about 10-fold higher in Biojector-primed subjects. CONCLUSIONS DNA vaccination by Biojector® was well-tolerated and compared to needle injection, primed for greater IFN-γ ELISpot, CD8+ T-cell, and antibody responses after rAd5 boosting. TRIAL REGISTRATION ClinicalTrials.gov NCT00109629.
Collapse
MESH Headings
- Adenoviridae/genetics
- Adolescent
- Adult
- Antibodies, Viral/immunology
- CD8-Positive T-Lymphocytes/immunology
- DNA, Recombinant/genetics
- Dose-Response Relationship, Immunologic
- Female
- HIV-1/immunology
- HIV-1/metabolism
- Humans
- Immunity, Cellular/immunology
- Immunity, Humoral/immunology
- Immunization, Secondary/methods
- Injections
- Male
- Middle Aged
- Peptide Fragments/metabolism
- Safety
- Vaccination/instrumentation
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/adverse effects
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Young Adult
Collapse
Affiliation(s)
- Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kalams SA, Parker S, Jin X, Elizaga M, Metch B, Wang M, Hural J, Lubeck M, Eldridge J, Cardinali M, Blattner WA, Sobieszczyk M, Suriyanon V, Kalichman A, Weiner DB, Baden LR. Safety and immunogenicity of an HIV-1 gag DNA vaccine with or without IL-12 and/or IL-15 plasmid cytokine adjuvant in healthy, HIV-1 uninfected adults. PLoS One 2012; 7:e29231. [PMID: 22242162 PMCID: PMC3252307 DOI: 10.1371/journal.pone.0029231] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 11/22/2011] [Indexed: 01/09/2023] Open
Abstract
Background DNA vaccines are a promising approach to vaccination since they circumvent the problem of vector-induced immunity. DNA plasmid cytokine adjuvants have been shown to augment immune responses in small animals and in macaques. Methodology/Principal Findings We performed two first in human HIV vaccine trials in the US, Brazil and Thailand of an RNA-optimized truncated HIV-1 gag gene (p37) DNA derived from strain HXB2 administered either alone or in combination with dose-escalation of IL-12 or IL-15 plasmid cytokine adjuvants. Vaccinations with both the HIV immunogen and cytokine adjuvant were generally well-tolerated and no significant vaccine-related adverse events were identified. A small number of subjects developed asymptomatic low titer antibodies to IL-12 or IL-15. Cellular immunogenicity following 3 and 4 vaccinations was poor, with response rates to gag of 4.9%/8.7% among vaccinees receiving gag DNA alone, 0%/11.5% among those receiving gag DNA+IL-15, and no responders among those receiving DNA+high dose (1500 ug) IL-12 DNA. However, after three doses, 44.4% (4/9) of vaccinees receiving gag DNA and intermediate dose (500 ug) of IL-12 DNA demonstrated a detectable cellular immune response. Conclusions/Significance This combination of HIV gag DNA with plasmid cytokine adjuvants was well tolerated. There were minimal responses to HIV gag DNA alone, and no apparent augmentation with either IL-12 or IL-15 plasmid cytokine adjuvants. Despite the promise of DNA vaccines, newer formulations or methods of delivery will be required to increase their immunogenicity. Trial Registration Clinicaltrials.gov NCT00115960NCT00111605
Collapse
Affiliation(s)
- Spyros A Kalams
- Division of Infectious Diseases, Department of Medicine, Department of Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of Ameica.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Levine MM. “IDEAL” vaccines for resource poor settings. Vaccine 2011; 29 Suppl 4:D116-25. [DOI: 10.1016/j.vaccine.2011.11.090] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 11/18/2011] [Accepted: 11/23/2011] [Indexed: 12/22/2022]
|
23
|
Ferraro B, Morrow MP, Hutnick NA, Shin TH, Lucke CE, Weiner DB. Clinical applications of DNA vaccines: current progress. Clin Infect Dis 2011; 53:296-302. [PMID: 21765081 DOI: 10.1093/cid/cir334] [Citation(s) in RCA: 264] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
It was discovered almost 20 years ago that plasmid DNA, when injected into the skin or muscle of mice, could induce immune responses to encoded antigens. Since that time, there has since been much progress in understanding the basic biology behind this deceptively simple vaccine platform and much technological advancement to enhance immune potency. Among these advancements are improved formulations and improved physical methods of delivery, which increase the uptake of vaccine plasmids by cells; optimization of vaccine vectors and encoded antigens; and the development of novel formulations and adjuvants to augment and direct the host immune response. The ability of the current, or second-generation, DNA vaccines to induce more-potent cellular and humoral responses opens up this platform to be examined in both preventative and therapeutic arenas. This review focuses on these advances and discusses both preventive and immunotherapeutic clinical applications.
Collapse
Affiliation(s)
- Bernadette Ferraro
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
24
|
Bakari M, Aboud S, Nilsson C, Francis J, Buma D, Moshiro C, Aris EA, Lyamuya EF, Janabi M, Godoy-Ramirez K, Joachim A, Polonis VR, Bråve A, Earl P, Robb M, Marovich M, Wahren B, Pallangyo K, Biberfeld G, Mhalu F, Sandström E. Broad and potent immune responses to a low dose intradermal HIV-1 DNA boosted with HIV-1 recombinant MVA among healthy adults in Tanzania. Vaccine 2011; 29:8417-28. [PMID: 21864626 PMCID: PMC4795940 DOI: 10.1016/j.vaccine.2011.08.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 07/13/2011] [Accepted: 08/01/2011] [Indexed: 10/17/2022]
Abstract
BACKGROUND We conducted a phase I/II randomized placebo-controlled trial with the aim of exploring whether priming with a low intradermal dose of a multiclade, multigene HIV-1 DNA vaccine could improve the immunogenicity of the same vaccine given intramuscularly prior to boosting with a heterologous HIV-1 MVA among healthy adults in Dar es Salaam, Tanzania. METHODS Sixty HIV-uninfected volunteers were randomized to receive DNA plasmid vaccine 1mg intradermally (id), n=20, or 3.8mg intramuscularly (im), n=20, or placebo, n=20, using a needle-free injection device. DNA plasmids encoding HIV-1 genes gp160 subtype A, B, C; rev B; p17/p24 gag A, B and Rtmut B were given at weeks 0, 4 and 12. Recombinant MVA (10(8)pfu) expressing HIV-1 Env, Gag, Pol of CRF01_AE or placebo was administered im at month 9 and 21. RESULTS The vaccines were well tolerated. Two weeks after the third HIV-DNA injection, 22/38 (58%) vaccinees had IFN-γ ELISpot responses to Gag. Two weeks after the first HIV-MVA boost all 35 (100%) vaccinees responded to Gag and 31 (89%) to Env. Two to four weeks after the second HIV-MVA boost, 28/29 (97%) vaccinees had IFN-γ ELISpot responses, 27 (93%) to Gag and 23 (79%) to Env. The id-primed recipients had significantly higher responses to Env than im recipients. Intracellular cytokine staining for Gag-specific IFN-γ/IL-2 production showed both CD8(+) and CD4(+) T cell responses. All vaccinees had HIV-specific lymphoproliferative responses. All vaccinees reacted in diagnostic HIV serological tests and 26/29 (90%) had antibodies against gp160 after the second HIV-MVA boost. Furthermore, while all of 29 vaccinee sera were negative for neutralizing antibodies against clade B, C and CRF01_AE pseudoviruses in the TZM-bl neutralization assay, in a PBMC assay, the response rate ranged from 31% to 83% positives, depending upon the clade B or CRF01_AE virus tested. CONCLUSIONS This vaccine approach is safe and highly immunogenic. Low dose, id HIV-DNA priming elicited higher and broader cell-mediated immune responses to Env after HIV-MVA boost compared to a higher HIV-DNA priming dose given im. Three HIV-DNA priming immunizations followed by two HIV-MVA boosts efficiently induced Env-antibody responses.
Collapse
Affiliation(s)
- Muhammad Bakari
- Department of Internal Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
DNA priming and influenza vaccine immunogenicity: two phase 1 open label randomised clinical trials. THE LANCET. INFECTIOUS DISEASES 2011; 11:916-24. [PMID: 21975270 PMCID: PMC7185472 DOI: 10.1016/s1473-3099(11)70240-7] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Because the general population is largely naive to H5N1 influenza, antibodies generated to H5 allow analysis of novel influenza vaccines independent of background immunity from previous infection. We assessed the safety and immunogenicity of DNA encoding H5 as a priming vaccine to improve antibody responses to inactivated influenza vaccination. METHODS In VRC 306 and VRC 310, two sequentially enrolled phase 1, open-label, randomised clinical trials, healthy adults (age 18-60 years) were randomly assigned to receive intramuscular H5 DNA (4 mg) at day 0 or twice, at day 0 and week 4, followed by H5N1 monovalent inactivated vaccine (MIV; 90 μg) at 4 or 24 weeks, and compared with a two-dose regimen of H5N1 MIV with either a 4 or 24 week interval. Antibody responses were assessed by haemagglutination inhibition (HAI), ELISA, neutralisation (ID(80)), and immunoassays for stem-directed antibodies. T cell responses were assessed by intracellular cytokine staining. After enrolment, investigators and individuals were not masked to group assignment. VRC 306 and VRC 310 are registered with ClinicalTrials.gov, numbers NCT00776711 and NCT01086657, respectively. FINDINGS In VRC 306, 60 individuals were randomly assigned to the four groups (15 in each) and 59 received the vaccinations. In VRC 310, of the 21 individuals enrolled, 20 received the vaccinations (nine received a two-dose regimen of H5N1 MIV and 11 received H5 DNA at day 0 followed by H5N1 MIV at week 24). H5 DNA priming was safe and enhanced H5-specific antibody titres following an H5N1 MIV boost, especially when the interval between DNA prime and MIV boost was extended to 24 weeks. In the two studies, DNA priming with a 24-week MIV boost interval induced protective HAI titres in 21 (81%) of 26 of individuals, with an increase in geometric mean titre (GMT) of more than four times that of individuals given the MIV-MIV regimen at 4 or 24 weeks (GMT 103-206 vs GMT 27-33). Additionally, neutralising antibodies directed to the conserved stem region of H5 were induced by this prime-boost regimen in several individuals. No vaccine-related serious adverse events were recorded. INTERPRETATION DNA priming 24 weeks in advance of influenza vaccine boosting increased the magnitude of protective antibody responses (HAI) and in some cases induced haemagglutinin-stem-specific neutralising antibodies. A DNA-MIV vaccine regimen could enhance the efficacy of H5 or other influenza vaccines and shows that anti-stem antibodies can be elicited by vaccination in man. FUNDING National Institutes of Health.
Collapse
|
26
|
Baden LR, Blattner WA, Morgan C, Huang Y, Defawe OD, Sobieszczyk ME, Kochar N, Tomaras GD, McElrath MJ, Russell N, Brandariz K, Cardinali M, Graham BS, Barouch DH, Dolin R. Timing of plasmid cytokine (IL-2/Ig) administration affects HIV-1 vaccine immunogenicity in HIV-seronegative subjects. J Infect Dis 2011; 204:1541-9. [PMID: 21940420 DOI: 10.1093/infdis/jir615] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND To investigate the potential immunostimulatory effect of interleukin (IL) 2 as a human immunodeficiency virus type 1 (HIV-1) vaccine adjuvant, we conducted a study of a plasmid coding for a fusion protein of IL-2 and immunoglobulin (IL-2/Ig). METHODS This phase I trial evaluated an HIV-1 DNA vaccine with the plasmid cytokine adjuvant (IL-2/Ig) in 70 HIV-negative adults. Subjects received placebo (group C), adjuvant alone (group A), vaccine alone (group D), increasing doses of adjuvant concurrent with vaccine (groups T1-T4), or adjuvant given 2 days after vaccine (group T5). RESULTS No significant differences in adverse events were observed between treatment groups. Cellular immune responses to envelope protein EnvA peptides were detected by interferon (IFN) γ and IL-2 enzyme-linked immunospot (ELISPOT) assays in 50% and 40% of subjects, respectively, in T4, and in 100% and 80% in T5. The median responses for groups T4 and T5, respectively, were 90 and 193 spot-forming cells (SFCs)/10⁶ peripheral blood mononuclear cells (P = .004; T4 vs T5) for the IL-2 ELISPOT assay and 103 and 380 SFCs/10⁶ PBMCs (P = .003; T4 vs T5) for the IFN-γ ELISPOT assay. A trend to more durable cellular immune responses in T5 was observed at 1 year (T5 vs T4/D; P = .07). Higher anti-Env antibody responses were detected with T5 than with T4. CONCLUSIONS Plasmid IL-2/Ig significantly increased immune responses when administered 2 days after the DNA vaccine, compared with simultaneous administration. These observations have important implications for the development of cytokine augmentation strategies. CLINICAL TRIALS REGISTRATION NCT00069030.
Collapse
Affiliation(s)
- Lindsey R Baden
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kulkarni V, Jalah R, Ganneru B, Bergamaschi C, Alicea C, von Gegerfelt A, Patel V, Zhang GM, Chowdhury B, Broderick KE, Sardesai NY, Valentin A, Rosati M, Felber BK, Pavlakis GN. Comparison of immune responses generated by optimized DNA vaccination against SIV antigens in mice and macaques. Vaccine 2011; 29:6742-54. [PMID: 21195080 PMCID: PMC3115438 DOI: 10.1016/j.vaccine.2010.12.056] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Optimized DNA vectors were constructed comprising the proteome of SIV including the structural, enzymatic, regulatory, and accessory proteins. In addition to native antigens as produced by the virus, fusion proteins and modified antigens with altered secretion, cellular localization and stability characteristics were generated. The DNA vectors were tested for expression upon transfection in human cells. In addition, the vectors were tested either alone or in combinations in mice and macaques, which provided an opportunity to compare immune responses in two animal models. DNA only immunization using intramuscular injection in the absence or presence of in vivo electroporation did not alter the phenotype of the induced T cell responses in mice. Although several fusion proteins induced immune responses to all the components of a polyprotein, we noted fusion proteins that abrogated immune response to some of the components. Since the expression levels of such fusion proteins were not affected, these data suggest that the immune recognition of certain components was altered by the fusion. Testing different DNA vectors in mice and macaques revealed that a combination of DNAs producing different forms of the same antigen generated more balanced immune responses, a desirable feature for an optimal AIDS vaccine.
Collapse
MESH Headings
- AIDS Vaccines/administration & dosage
- AIDS Vaccines/immunology
- Animals
- Antigens, Viral/immunology
- Cloning, Molecular
- Electroporation
- Enzyme-Linked Immunospot Assay
- Female
- Flow Cytometry
- Gene Products, env/genetics
- Gene Products, env/immunology
- Gene Products, env/metabolism
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- Gene Products, gag/metabolism
- Genetic Vectors
- HEK293 Cells
- HIV-1/genetics
- HIV-1/immunology
- Humans
- Immunity, Cellular
- Immunity, Humoral
- Interferon-gamma/immunology
- Macaca mulatta
- Mice
- Mice, Inbred BALB C
- Plasmids/genetics
- Plasmids/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- SAIDS Vaccines/administration & dosage
- SAIDS Vaccines/immunology
- Simian Immunodeficiency Virus/genetics
- Simian Immunodeficiency Virus/immunology
- Transfection
- Vaccination
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
Collapse
Affiliation(s)
- Viraj Kulkarni
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702-1201, United States
| | - Rashmi Jalah
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702-1201, United States
| | - Brunda Ganneru
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702-1201, United States
| | - Cristina Bergamaschi
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702-1201, United States
| | - Candido Alicea
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702-1201, United States
| | - Agneta von Gegerfelt
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702-1201, United States
| | - Vainav Patel
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702-1201, United States
| | - Gen-Mu Zhang
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702-1201, United States
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702-1201, United States
| | - Bhabadeb Chowdhury
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702-1201, United States
| | | | | | - Antonio Valentin
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702-1201, United States
| | - Margherita Rosati
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702-1201, United States
| | - Barbara K. Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702-1201, United States
| | - George N. Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702-1201, United States
| |
Collapse
|
28
|
A genetic system for RNase E variant-controlled overproduction of ColE1-type plasmid DNA. J Biotechnol 2011; 152:171-5. [DOI: 10.1016/j.jbiotec.2011.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 02/10/2011] [Accepted: 02/16/2011] [Indexed: 11/20/2022]
|
29
|
Jaoko W, Karita E, Kayitenkore K, Omosa-Manyonyi G, Allen S, Than S, Adams EM, Graham BS, Koup RA, Bailer RT, Smith C, Dally L, Farah B, Anzala O, Muvunyi CM, Bizimana J, Tarragona-Fiol T, Bergin PJ, Hayes P, Ho M, Loughran K, Komaroff W, Stevens G, Thomson H, Boaz MJ, Cox JH, Schmidt C, Gilmour J, Nabel GJ, Fast P, Bwayo J. Safety and immunogenicity study of Multiclade HIV-1 adenoviral vector vaccine alone or as boost following a multiclade HIV-1 DNA vaccine in Africa. PLoS One 2010; 5:e12873. [PMID: 20877623 PMCID: PMC2943475 DOI: 10.1371/journal.pone.0012873] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 08/23/2010] [Indexed: 11/21/2022] Open
Abstract
Background We conducted a double-blind, randomized, placebo-controlled Phase I study of a recombinant replication-defective adenovirus type 5 (rAd5) vector expressing HIV-1 Gag and Pol from subtype B and Env from subtypes A, B and C, given alone or as boost following a DNA plasmid vaccine expressing the same HIV-1 proteins plus Nef, in 114 healthy HIV-uninfected African adults. Methodology/Principal Findings Volunteers were randomized to 4 groups receiving the rAd5 vaccine intramuscularly at dosage levels of 1×1010 or 1×1011 particle units (PU) either alone or as boost following 3 injections of the DNA vaccine given at 4 mg/dose intramuscularly by needle-free injection using Biojector® 2000. Safety and immunogenicity were evaluated for 12 months. Both vaccines were well-tolerated. Overall, 62% and 86% of vaccine recipients in the rAd5 alone and DNA prime - rAd5 boost groups, respectively, responded to the HIV-1 proteins by an interferon-gamma (IFN-γ) ELISPOT. The frequency of immune responses was independent of rAd5 dosage levels. The highest frequency of responses after rAd5 alone was detected at 6 weeks; after DNA prime - rAd5 boost, at 6 months (end of study). At baseline, neutralizing antibodies against Ad5 were present in 81% of volunteers; the distribution was similar across the 4 groups. Pre-existing immunity to Ad5 did not appear to have a significant impact on reactogenicity or immune response rates to HIV antigens by IFN-γ ELISPOT. Binding antibodies against Env were detected in up to 100% recipients of DNA prime - rAd5 boost. One volunteer acquired HIV infection after the study ended, two years after receipt of rAd5 alone. Conclusions/Significance The HIV-1 rAd5 vaccine, either alone or as a boost following HIV-1 DNA vaccine, was well-tolerated and immunogenic in African adults. DNA priming increased the frequency and magnitude of cellular and humoral immune responses, but there was no effect of rAd5 dosage on immunogenicity endpoints. Trial Registration ClinicalTrials.gov NCT00124007
Collapse
MESH Headings
- AIDS Vaccines/adverse effects
- AIDS Vaccines/immunology
- Adenoviridae/genetics
- Adenoviridae/immunology
- Adolescent
- Adult
- Antibodies, Viral/immunology
- Double-Blind Method
- Drug-Related Side Effects and Adverse Reactions
- Genetic Vectors/adverse effects
- Genetic Vectors/genetics
- Genetic Vectors/immunology
- HIV Infections/immunology
- HIV Infections/prevention & control
- HIV Infections/virology
- HIV-1/classification
- HIV-1/genetics
- HIV-1/immunology
- Humans
- Immunization, Secondary
- Male
- Middle Aged
- Vaccines, DNA/adverse effects
- Vaccines, DNA/immunology
- Young Adult
- gag Gene Products, Human Immunodeficiency Virus/adverse effects
- gag Gene Products, Human Immunodeficiency Virus/genetics
- gag Gene Products, Human Immunodeficiency Virus/immunology
- pol Gene Products, Human Immunodeficiency Virus/adverse effects
- pol Gene Products, Human Immunodeficiency Virus/genetics
- pol Gene Products, Human Immunodeficiency Virus/immunology
Collapse
Affiliation(s)
- Walter Jaoko
- Kenya AIDS Vaccine Initiative (KAVI), Nairobi, Kenya
| | - Etienne Karita
- Projet San Francisco (PSF), Rwanda-Zambia HIV Research Project, Kigali, Rwanda
| | | | | | - Susan Allen
- Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Soe Than
- International AIDS Vaccine Initiative (IAVI), New York, New York, United States of America
| | - Elizabeth M. Adams
- Vaccine Clinical Research Branch (VCRB), Vaccine Research Program (VRP)/Division of AIDS (DAIDS)/National Institute of Allergy and Infectious Diseases (NIAID)/National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Barney S. Graham
- Vaccine Research Center (VRC)/NIAID/NIH, Bethesda, Maryland, United States of America
| | - Richard A. Koup
- Vaccine Research Center (VRC)/NIAID/NIH, Bethesda, Maryland, United States of America
| | - Robert T. Bailer
- Vaccine Research Center (VRC)/NIAID/NIH, Bethesda, Maryland, United States of America
| | - Carol Smith
- The EMMES Corporation, Rockville, Maryland, United States of America
| | - Len Dally
- The EMMES Corporation, Rockville, Maryland, United States of America
| | - Bashir Farah
- Kenya AIDS Vaccine Initiative (KAVI), Nairobi, Kenya
| | - Omu Anzala
- Kenya AIDS Vaccine Initiative (KAVI), Nairobi, Kenya
| | - Claude M. Muvunyi
- Projet San Francisco (PSF), Rwanda-Zambia HIV Research Project, Kigali, Rwanda
| | - Jean Bizimana
- Projet San Francisco (PSF), Rwanda-Zambia HIV Research Project, Kigali, Rwanda
| | | | - Philip J. Bergin
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Peter Hayes
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Martin Ho
- The EMMES Corporation, Rockville, Maryland, United States of America
| | - Kelley Loughran
- The EMMES Corporation, Rockville, Maryland, United States of America
| | - Wendy Komaroff
- International AIDS Vaccine Initiative (IAVI), New York, New York, United States of America
| | - Gwynneth Stevens
- International AIDS Vaccine Initiative (IAVI), New York, New York, United States of America
| | - Helen Thomson
- International AIDS Vaccine Initiative (IAVI), New York, New York, United States of America
| | - Mark J. Boaz
- International AIDS Vaccine Initiative (IAVI), New York, New York, United States of America
| | - Josephine H. Cox
- International AIDS Vaccine Initiative (IAVI), New York, New York, United States of America
| | - Claudia Schmidt
- International AIDS Vaccine Initiative (IAVI), New York, New York, United States of America
| | - Jill Gilmour
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Gary J. Nabel
- Vaccine Research Center (VRC)/NIAID/NIH, Bethesda, Maryland, United States of America
| | - Patricia Fast
- International AIDS Vaccine Initiative (IAVI), New York, New York, United States of America
- * E-mail:
| | - Job Bwayo
- Kenya AIDS Vaccine Initiative (KAVI), Nairobi, Kenya
| |
Collapse
|
30
|
Cafaro A, Macchia I, Maggiorella MT, Titti F, Ensoli B. Innovative approaches to develop prophylactic and therapeutic vaccines against HIV/AIDS. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 655:189-242. [PMID: 20047043 DOI: 10.1007/978-1-4419-1132-2_14] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The acquired immunodeficiency syndrome (AIDS) emerged in the human population in the summer of 1981. According to the latest United Nations estimates, worldwide over 33 million people are infected with human immunodeficiency virus (HIV) and the prevalence rates continue to rise globally. To control the alarming spread of HIV, an urgent need exists for developing a safe and effective vaccine that prevents individuals from becoming infected or progressing to disease. To be effective, an HIV/AIDS vaccine should induce broad and long-lasting humoral and cellular immune responses, at both mucosal and systemic level. However, the nature of protective immune responses remains largely elusive and this represents one of the major roadblocks preventing the development of an effective vaccine. Here we summarize our present understanding of the factors responsible for resistance to infection or control of progression to disease in human and monkey that may be relevant to vaccine development and briefly review recent approaches which are currently being tested in clinical trials. Finally, the rationale and the current status of novel strategies based on nonstructural HIV-1 proteins, such as Tat, Nef and Rev, used alone or in combination with modified structural HIV-1 Env proteins are discussed.
Collapse
Affiliation(s)
- Aurelio Cafaro
- National AIDS Center, Istituto Superiore di Sanità, V.le Regina Elena 299, 00161, Rome, Italy
| | | | | | | | | |
Collapse
|
31
|
Repeated DNA therapeutic vaccination of chronically SIV-infected macaques provides additional virological benefit. Vaccine 2010; 28:1962-74. [PMID: 20188252 DOI: 10.1016/j.vaccine.2009.10.099] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously reported that therapeutic immunization by intramuscular injection of optimized plasmid DNAs encoding SIV antigens effectively induces immune responses able to reduce viremia in antiretroviral therapy (ART)-treated SIVmac251-infected Indian rhesus macaques. We subjected such therapeutically immunized macaques to a second round of therapeutic vaccination using a combination of plasmids expressing SIV genes and the IL-15/IL-15 receptor alpha as molecular adjuvant, which were delivered by the more efficacious in vivo constant-current electroporation. A very strong induction of antigen-specific responses to Gag, Env, Nef, and Pol, during ART (1.2-1.6% of SIV-specific T cells in the circulating T lymphocytes) was obtained with the improved vaccination method. Immunological responses were characterized by the production of IFN-gamma, IL-2, and TNF-alpha either alone, or in combination as double or triple cytokine positive multifunctional T cells. A significant induction of CD4(+) T cell responses, mainly targeting Gag, Nef, and Pol, as well as of CD8(+) T cells, mainly targeting Env, was found in both T cells with central memory and effector memory markers. After release from ART, the animals showed a virological benefit with a further approximately 1 log reduction in viremia. Vaccination with plasmid DNAs has several advantages over other vaccine modalities, including the possibility for repeated administration, and was shown to induce potent, efficacious, and long-lasting recall immune responses. Therefore, these data support the concept of adding DNA vaccination to the HAART regimen to boost the HIV-specific immune responses.
Collapse
|
32
|
Long-lasting humoral and cellular immune responses and mucosal dissemination after intramuscular DNA immunization. Vaccine 2010; 28:4827-36. [PMID: 20451642 DOI: 10.1016/j.vaccine.2010.04.064] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 02/26/2010] [Accepted: 04/21/2010] [Indexed: 01/22/2023]
Abstract
Naïve Indian rhesus macaques were immunized with a mixture of optimized plasmid DNAs expressing several SIV antigens using in vivo electroporation via the intramuscular route. The animals were monitored for the development of SIV-specific systemic (blood) and mucosal (bronchoalveolar lavage) cellular and humoral immune responses. The immune responses were of great magnitude, broad (Gag, Pol, Nef, Tat and Vif), long-lasting (up to 90 weeks post third vaccination) and were boosted with each subsequent immunization, even after an extended 90-week rest period. The SIV-specific cellular immune responses were consistently more abundant in bronchoalveolar lavage (BAL) than in blood, and were characterized as predominantly effector memory CD4(+) and CD8(+) T cells in BAL and as both central and effector memory T cells in blood. SIV-specific T cells containing Granzyme B were readily detected in both blood and BAL, suggesting the presence of effector cells with cytolytic potential. DNA vaccination also elicited long-lasting systemic and mucosal humoral immune responses, including the induction of Gag-specific IgA. The combination of optimized DNA vectors and improved intramuscular delivery by in vivo electroporation has the potential to elicit both cellular and humoral responses and dissemination to the periphery, and thus to improve DNA immunization efficacy.
Collapse
|
33
|
Walker LE, Vang L, Shen X, Livingston BD, Post P, Sette A, Godin CS, Newman MJ. Design and preclinical development of a recombinant protein and DNA plasmid mixed format vaccine to deliver HIV-derived T-lymphocyte epitopes. Vaccine 2009; 27:7087-95. [PMID: 19786132 PMCID: PMC2783266 DOI: 10.1016/j.vaccine.2009.09.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 09/02/2009] [Accepted: 09/16/2009] [Indexed: 01/23/2023]
Abstract
Coordinated interactions between helper and cytotoxic T-lymphocytes (HTL and CTL) are needed for optimal effector cell functions and the establishment of immunological memory. We, therefore, designed a mixed format vaccine based on the use of highly conserved HIV-derived T-lymphocyte epitopes wherein the HTL epitopes were delivered as a recombinant protein and the CTL epitopes which were encoded in a DNA vaccine plasmid. Immunogenicity testing in HLA transgenic mice and GLP preclinical safety testing in rabbits and guinea pigs were used to document the utility of this approach and to support Phase 1 trial clinical testing. Both vaccine components were immunogenic and safely co-administered.
Collapse
Affiliation(s)
| | - Lo Vang
- Pharmexa Inc., San Diego,, CA, USA
| | | | | | | | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, San Diego, CA, USA
| | | | | |
Collapse
|
34
|
Moss RB. Prospects for control of emerging infectious diseases with plasmid DNA vaccines. JOURNAL OF IMMUNE BASED THERAPIES AND VACCINES 2009; 7:3. [PMID: 19735569 PMCID: PMC2746192 DOI: 10.1186/1476-8518-7-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 09/07/2009] [Indexed: 11/21/2022]
Abstract
Experiments almost 20 years ago demonstrated that injections of a sequence of DNA encoding part of a pathogen could stimulate immunity. It was soon realized that "DNA vaccination" had numerous potential advantages over conventional vaccine approaches including inherent safety and a more rapid production time. These and other attributes make DNA vaccines ideal for development against emerging pathogens. Recent advances in optimizing various aspects of DNA vaccination have accelerated this approach from concept to reality in contemporary human trials. Although not yet licensed for human use, several DNA vaccines have now been approved for animal health indications. The rapid manufacturing capabilities of DNA vaccines may be particularly important for emerging infectious diseases including the current novel H1N1 Influenza A pandemic, where pre-existing immunity is limited. Because of recent advances in DNA vaccination, this approach has the potential to be a powerful new weapon in protecting against emerging and potentially pandemic human pathogens.
Collapse
|
35
|
DNA vaccination in rhesus macaques induces potent immune responses and decreases acute and chronic viremia after SIVmac251 challenge. Proc Natl Acad Sci U S A 2009; 106:15831-6. [PMID: 19717425 DOI: 10.1073/pnas.0902628106] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Optimized plasmid DNAs encoding the majority of SIVmac239 proteins and delivered by electroporation (EP) elicited strong immune responses in rhesus macaques. Vaccination decreased viremia in both the acute and chronic phases of infection after challenge with pathogenic SIVmac251. Two groups of macaques were vaccinated with DNA plasmids producing different antigen forms, "native" and "modified," inducing distinct immune responses. Both groups showed significantly lower viremia during the acute phase of infection, whereas the group immunized with the native antigens showed better protection during the chronic phase (1.7 log decrease in virus load, P = 0.009). Both groups developed strong cellular and humoral responses against the DNA vaccine antigens, which included Gag, Pol, Env, Nef, and Tat. Vaccination induced both central memory and effector memory T cells that were maintained at the day of challenge, suggesting the potential for rapid mobilization upon virus challenge. The group receiving the native antigens developed higher and more durable anti-Env antibodies, including neutralizing antibodies at the day of challenge. These results demonstrate that DNA vaccination in the absence of any heterologous boost can provide protection from high viremia comparable to any other vaccine modalities tested in this macaque model.
Collapse
|
36
|
Dubie RA, Maksaereekul S, Shacklett BL, Lemongello D, Cole KS, Villinger F, Blozis SA, Luciw PA, Sparger EE. Co-immunization with IL-15 enhances cellular immune responses induced by a vif-deleted simian immunodeficiency virus proviral DNA vaccine and confers partial protection against vaginal challenge with SIVmac251. Virology 2009; 386:109-21. [PMID: 19193388 PMCID: PMC3640844 DOI: 10.1016/j.virol.2009.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 10/30/2008] [Accepted: 01/08/2009] [Indexed: 11/18/2022]
Abstract
Simian immunodeficiency virus (SIV) infection of rhesus macaques is a valuable animal model for human immunodeficiency virus (HIV)-1 vaccine development. Our laboratory recently described the immunogenicity and limited efficacy of a vif-deleted SIVmac239 proviral DNA (SIV/CMVDelta vif) vaccine. The current report characterizes immunogenicity and efficacy for the SIV/CMVDelta vif proviral DNA vaccine when co-inoculated with an optimized rhesus interleukin (rIL)-15 expression plasmid. Macaques co-inoculated with rIL-15 and SIV/CMVDelta vif proviral plasmids showed significantly improved SIV-specific CD8 T cell immunity characterized by increased IFN-gamma ELISPOT and polyfunctional CD8 T cell responses. Furthermore, these animals demonstrated a sustained suppression of plasma virus loads after multiple low dose vaginal challenges with pathogenic SIVmac251. Importantly, SIV-specific cellular responses were greater in immunized animals compared to unvaccinated controls during the initial 12 weeks after challenge. Taken together, these findings support the use of IL-15 as an adjuvant in prophylactic anti-HIV vaccine strategies.
Collapse
Affiliation(s)
- Robert A. Dubie
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616
| | - Saipiroon Maksaereekul
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616
| | - Barbara L. Shacklett
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616
| | - Donna Lemongello
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616
| | - Kelly S. Cole
- Center for Vaccine Research and Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Francois Villinger
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322
| | | | - Paul A. Luciw
- Center for Comparative Medicine, University of California, Davis, CA 95616
| | - Ellen E. Sparger
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616
| |
Collapse
|
37
|
Phase I study of a herpes simplex virus type 2 (HSV-2) DNA vaccine administered to healthy, HSV-2-seronegative adults by a needle-free injection system. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 15:1638-43. [PMID: 18784341 DOI: 10.1128/cvi.00167-08] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We conducted a double-blind, vehicle-controlled, dose escalation safety and immunogenicity trial of a candidate herpes simplex virus type 2 (HSV-2) surface glycoprotein D2 (gD2) DNA vaccine administered by use of a needle-free device. Sixty-two healthy adults were randomized using a 4:1 vaccine-to-placebo ratio. Half of the participants were HSV-1 seronegative, and all were HSV-2 seronegative. Vaccine doses included 100 microg, 300 microg, 1,000 microg or 3,000 microg of a plasmid expressing the gD2 protein. Subjects received vaccine at 0, 4, 8, and 24 weeks. Some subjects received an additional 1,000-microg boost at 52 weeks. We found that the vaccine was safe and well tolerated, with most adverse events being local site reactions. No dose-limiting toxicities were observed. gD2-specific cytotoxic T-lymphocyte and lymphoproliferation responses were detected 2 weeks after the third vaccine injection in one of four HSV-1-seronegative, HSV-2-seronegative participants who received 3,000 microg of vaccine. A DNA-based vaccination strategy against HSV-2 appears to be safe and may generate a vaccine-specific cellular immune response, but high vaccine doses are likely needed to elicit an immune response in most vaccinees.
Collapse
|
38
|
Kennedy JS, Co M, Green S, Longtine K, Longtine J, O'Neill MA, Adams JP, Rothman AL, Yu Q, Johnson-Leva R, Pal R, Wang S, Lu S, Markham P. The safety and tolerability of an HIV-1 DNA prime-protein boost vaccine (DP6-001) in healthy adult volunteers. Vaccine 2008; 26:4420-4. [PMID: 18588934 DOI: 10.1016/j.vaccine.2008.05.090] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 05/20/2008] [Accepted: 05/23/2008] [Indexed: 11/26/2022]
Abstract
This report describes the safety observations following administration of a polyvalent DNA prime-protein boost HIV-1 vaccine formulated with adjuvant QS21. Local injection site reactions were the most common (65% of subjects), and included type IV delayed-type hypersensitivity (DTH) reactions at prior DNA inoculation sites in 12 of 28 (43%) subjects following protein vaccination. Systemic reactions revealed two cases of vasculitis temporally related to inoculation with recombinant Env protein+QS21 adjuvant. Questions remain regarding the cause of the vasculitis, but the unique DTH observation may have contributed to the high level of immune responses previously reported for this vaccine.
Collapse
Affiliation(s)
- Jeffrey S Kennedy
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, Worcester, MA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Phue JN, Lee SJ, Trinh L, Shiloach J. Modified Escherichia coli B (BL21), a superior producer of plasmid DNA compared with Escherichia coli K (DH5α). Biotechnol Bioeng 2008; 101:831-6. [DOI: 10.1002/bit.21973] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Multifunctional T-cell characteristics induced by a polyvalent DNA prime/protein boost human immunodeficiency virus type 1 vaccine regimen given to healthy adults are dependent on the route and dose of administration. J Virol 2008; 82:6458-69. [PMID: 18448544 DOI: 10.1128/jvi.00068-08] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A phase I clinical vaccine study of a human immunodeficiency virus type 1 (HIV-1) vaccine regimen comprising a DNA prime formulation (5-valent env and monovalent gag) followed by a 5-valent Env protein boost for seronegative adults was previously shown to induce HIV-1-specific T cells and anti-Env antibodies capable of neutralizing cross-clade viral isolates. In light of these initial findings, we sought to more fully characterize the HIV-1-specific T cells by using polychromatic flow cytometry. Three groups of participants were vaccinated three times with 1.2 mg of DNA administered intradermally (i.d.; group A), 1.2 mg of DNA administered intramuscularly (i.m.; group B), or 7.2 mg of DNA administered i.m. (high-dose group C) each time. Each group subsequently received one or two doses of 0.375 mg each of the gp120 protein boost vaccine (i.m.). Env-specific CD4 T-cell responses were seen in the majority of participants; however, the kinetics of responses differed depending on the route of DNA administration. The high i.m. dose induced the responses of the greatest magnitude after the DNA vaccinations, while the i.d. group exhibited the responses of the least magnitude. Nevertheless, after the second protein boost, the magnitude of CD4 T-cell responses in the i.d. group was indistinguishable from those in the other two groups. After the DNA vaccinations and the first protein boost, a greater number of polyfunctional Env-specific CD4 T cells (those with > or = 2 functions) were seen in the high-dose group than in the other groups. Gag-specific CD4 T cells and Env-specific CD8 T cells were seen only in the high-dose group. These findings demonstrate that the route and dose of DNA vaccines significantly impact the quality of immune responses, yielding important information for future vaccine design.
Collapse
|
41
|
Modifying the HIV-1 env gp160 gene to improve pDNA vaccine-elicited cell-mediated immune responses. Vaccine 2008; 26:5083-94. [PMID: 18485543 DOI: 10.1016/j.vaccine.2008.03.092] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Plasmid DNA (pDNA) vaccines are effective at eliciting immune responses in a wide variety of animal model systems, however, pDNA vaccines have generally been incapable of inducing robust immune responses in clinical trials. Therefore, to identify means to improve pDNA vaccine performance, we compared various post-transcriptional and post-translational genetic modifications for their ability to improve antigen-specific CMI responses. Mice vaccinated using a sub-optimal 100 mcg dose of a pDNA encoding an unmodified primary isolate HIV-1(6101) env gp160 failed to demonstrate measurable env-specific CMI responses. In contrast, significant env-specific CMI responses were seen in mice immunized with pDNA expression vectors encoding env genes modified by RNA optimization or codon optimization. Further modification of the RNA optimized env gp160 gene by the addition of (i) a simian retrovirus type 1 constitutive RNA transport element; (ii) a murine intracisternal A-particle derived RNA transport element; (iii) a tissue plasminogen activator protein signal leader sequences; (iv) a beta-catenin derived ubiquitination target sequence; or (v) a monocyte chemotactic protein-3 derived signal sequence failed to further improve the induction of env-specific CMI responses. Therefore, modification of the env gp160 gene by RNA or codon optimization alone is necessary for high-level rev-independent expression and results in robust env-specific CMI responses in immunized mice. Importantly, further modification(s) of the env gene to alter cellular localization or increase proteolytic processing failed to result in increased env-specific immune responses. These results have important implications for the design and development of an efficacious vaccine for the prevention of HIV-1 infection.
Collapse
|
42
|
Goubier A, Fuhrmann L, Forest L, Cachet N, Evrad-Blanchard M, Juillard V, Fischer L. Superiority of needle-free transdermal plasmid delivery for the induction of antigen-specific IFNγ T cell responses in the dog. Vaccine 2008; 26:2186-90. [DOI: 10.1016/j.vaccine.2008.01.059] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 01/10/2008] [Accepted: 01/11/2008] [Indexed: 12/28/2022]
|
43
|
Lu S, Wang S, Grimes-Serrano JM. Current progress of DNA vaccine studies in humans. Expert Rev Vaccines 2008; 7:175-91. [PMID: 18324888 DOI: 10.1586/14760584.7.2.175] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Despite remarkable progress in the field of DNA vaccine research since its discovery in the early 1990 s, the formal acceptance of this novel technology as a new modality of human vaccines depends on the successful demonstration of its safety and efficacy in advanced clinical trials. Although clinical trials conducted so far have provided overwhelming evidence that DNA vaccines are well tolerated and have an excellent safety profile, the early designs of DNA vaccines failed to demonstrate sufficient immunogenicity in humans. However, studies conducted over the last few years have led to promising results, particularly when DNA vaccines were used in combination with other forms of vaccines. Here, we provide a review of the data from reported DNA vaccine clinical studies with an emphasis on the ability of DNA vaccines to elicit antigen-specific, cell-mediated and antibody responses in humans. The majority of these trials are designed to test candidate vaccines against several major human pathogens and the remaining studies tested the immunogenicity of therapeutic vaccines against cancer.
Collapse
Affiliation(s)
- Shan Lu
- Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, LRB 304, Worcester, MA 01605, USA.
| | | | | |
Collapse
|
44
|
Luxembourg A, Evans CF, Hannaman D. Electroporation-based DNA immunisation: translation to the clinic. Expert Opin Biol Ther 2007; 7:1647-64. [DOI: 10.1517/14712598.7.11.1647] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
45
|
Rodríguez JW, Pagan NO, Ocasio MC, Ríos Z, Cubano LA, Boukli NM, Otero M, Hunter R, Nair MP, Rios-Olivares E. Induction of a Soluble Anti-HIV-1 factor (s) with IFN-γ, IL-10, and β-Chemokine Modulating Activity by an Influenza-Bacterial Polyantigenic Mixture. ACTA ACUST UNITED AC 2007; 3. [PMID: 24327810 DOI: 10.3844/ajidsp.2007.267.275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Partial immune restoration may be obtained with highly active antiretroviral therapy (HAART), but specific anti-HIV-1 immune responses do not appear to improve substantially. We have demonstrated that a soluble factor(s) induced by a mixture of inactivated influenza and bacterial vaccines called polyantigenic immunomodulator (PAI), possesses strong immunoregulatory and anti-HIV-1 activities. In the present study, we show that culture fluids from both PAI-stimulated peripheral blood mononuclear cells (PBMC) and CD8+ T-cells of HIV-1 infected patients were able to suppress HIV-1 replication in an MHC-unrestricted fashion. The PAI-induced antiviral activity was eliminated when culture fluids were pre-heated at 100°C for 10 min. and it is associated with induction of IFN-γ, MIP-1α, MIP-1β, and RANTES production, but inhibition of IL-10. Furthermore, this induction is dependent on the immunological status (CD4:CD8 ratio) of the HIV-1 infected patient. Taken together, our results suggest that the MHC-unrestricted HIV-1 suppression that is induced by culture fluids from PAI-stimulated PBMC may result from the stimulation of immune cell subpopulations to produce a heat-labile antiviral soluble factor(s), which in turn modulate cytokine and β-chemokine production. The identification of this PAI-induced soluble factor(s) may have major therapeutic potential.
Collapse
Affiliation(s)
- José W Rodríguez
- Department of Microbiology and Immunology, Universidad Central del Caribe School of Medicine, Bayamón, Puerto Rico
| | | | | | | | | | | | | | | | | | | |
Collapse
|