1
|
Lee MYH, Khoury G, Olshansky M, Sonza S, Carter GP, McMahon J, Stinear TP, Turner SJ, Lewin SR, Purcell DFJ. Detection of Chimeric Cellular: HIV mRNAs Generated Through Aberrant Splicing in HIV-1 Latently Infected Resting CD4+ T Cells. Front Cell Infect Microbiol 2022; 12:855290. [PMID: 35573784 PMCID: PMC9096486 DOI: 10.3389/fcimb.2022.855290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Latent HIV-1 provirus in infected individuals on suppressive therapy does not always remain transcriptionally silent. Both HIV-1 LTR and human gene promoter derived transcriptional events can contribute HIV-1 sequences to the mRNA produced in the cell. In addition, chimeric cellular:HIV mRNA can arise through readthrough transcription and aberrant splicing. Using target enrichment coupled to the Illumina Mi-Seq and PacBio RS II platforms, we show that 3’ LTR activation is frequent in latently infected cells from both the CCL19-induced primary cell model of HIV-1 latency as well as ex vivo samples. In both systems of latent HIV-1 infection, we detected several chimeric species that were generated via activation of a cryptic splice donor site in the 5’ LTR of HIV-1. Aberrant splicing involving the major HIV-1 splice donor sites, SD1 and SD4 disrupts post-transcriptional processing of the gene in which HIV-1 is integrated. In the primary cell model of HIV-1 latency, Tat-encoding sequences are incorporated into the chimeric mRNA transcripts through the use of SD4. Our study unravels clues to the characteristics of HIV-1 integrants that promote formation of chimeric cellular:HIV mRNA and improves the understanding of the HIV-1 RNA footprint in latently infected cells.
Collapse
Affiliation(s)
- Michelle Y-H Lee
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Georges Khoury
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Moshe Olshansky
- Department of Microbiology, Biomedical Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Secondo Sonza
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Glen P. Carter
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Doherty Applied Microbial Genomics, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - James McMahon
- Department of Infectious Diseases, Monash University and Alfred Hospital, Melbourne, VIC, Australia
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Doherty Applied Microbial Genomics, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Stephen J. Turner
- Department of Microbiology, Biomedical Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Sharon R. Lewin
- Department of Infectious Diseases, Monash University and Alfred Hospital, Melbourne, VIC, Australia
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Victorian Infectious Diseases Service, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Damian F. J. Purcell
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- *Correspondence: Damian F. J. Purcell,
| |
Collapse
|
2
|
Zerbato JM, Khoury G, Zhao W, Gartner MJ, Pascoe RD, Rhodes A, Dantanarayana A, Gooey M, Anderson J, Bacchetti P, Deeks SG, McMahon J, Roche M, Rasmussen TA, Purcell DF, Lewin SR. Multiply spliced HIV RNA is a predictive measure of virus production ex vivo and in vivo following reversal of HIV latency. EBioMedicine 2021; 65:103241. [PMID: 33647768 PMCID: PMC7920823 DOI: 10.1016/j.ebiom.2021.103241] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/11/2021] [Accepted: 01/27/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND One strategy being pursued to clear latently infected cells that persist in people living with HIV (PLWH) on antiretroviral therapy (ART) is to activate latent HIV infection with a latency reversing agent (LRA). Surrogate markers that accurately measure virus production following an LRA are needed. METHODS We quantified cell-associated unspliced (US), multiply spliced (MS) and supernatant (SN) HIV RNA by qPCR from total and resting CD4+ T cells isolated from seven PLWH on ART before and after treatment ex vivo with different LRAs, including histone deacetylase inhibitors (HDACi). MS and plasma HIV RNA were also quantified from PLWH on ART (n-11) who received the HDACi panobinostat. FINDINGS In total and resting CD4+ T cells from PLWH on ART, detection of US RNA was common while detection of MS RNA was infrequent. Primers used to detect MS RNA, in contrast to US RNA, bound sites of the viral genome that are commonly mutated or deleted in PLWH on ART. Following ex vivo stimulation with LRAs, we identified a strong correlation between the fold change increase in SN and MS RNA, but not the fold change increase in SN and US RNA. In PLWH on ART who received panobinostat, MS RNA was significantly higher in samples with detectable compared to non0detectable plasma HIV RNA. INTERPRETATION Following administration of an LRA, quantification of MS RNA is more likely to reflect an increase in virion production and is therefore a better indicator of meaningful latency reversal. FUNDING NHMRC, NIH DARE collaboratory.
Collapse
Affiliation(s)
- Jennifer M Zerbato
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Georges Khoury
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia; Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Wei Zhao
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Matthew J Gartner
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Rachel D Pascoe
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Ajantha Rhodes
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Ashanti Dantanarayana
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Megan Gooey
- HIV Characterisation Laboratory, Victorian Infectious Diseases Reference Laboratory, the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jenny Anderson
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Peter Bacchetti
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
| | - Steven G Deeks
- Department of Medicine, Division of HIV/AIDS, University of California San Francisco, San Francisco, USA
| | - James McMahon
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia
| | - Michael Roche
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia; School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Thomas A Rasmussen
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Damian Fj Purcell
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia; Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Sharon R Lewin
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia; Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia; Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.
| |
Collapse
|
3
|
Brief Report: Toll-like Receptor 9-1635A/G Polymorphism Is Associated With HIV-1 Rebound After Four Weeks of Interruption of Antiretroviral Therapy. J Acquir Immune Defic Syndr 2020; 85:252-256. [PMID: 32658127 PMCID: PMC10019827 DOI: 10.1097/qai.0000000000002437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES This study aims to analyze the association of the presence of common polymorphisms [single nucleotide polymorphisms (SNPs)] on Toll-like receptors (TLRs), such as TLR9-1635A/G, TLR2-1892A/C, TLR2-2258G/A, TLR4-899A/G, and TLR4-1196C/T, with the viral rebound after stopping antiretroviral treatment (ART). CCR5-Δ32 deletion and HLA-A/HLA-B alleles were also analyzed. DESIGN Interruption of ART may be required to investigate the outcome of strategies aimed to achieve drug-free HIV remission or cure. However, interruption of ART is currently not indicated. This was a retrospective longitudinal study that included 57 long-term suppressed HIV-1-infected individuals. METHODS TLR SNPs were detected by real-time polymerase chain reaction (PCR). CCR5-Δ32 was analyzed by conventional PCR and HLA-A and HLA-B alleles by PCR-SSOP Luminex. RESULTS HIV-1 RNA rebound at week 4 after treatment interruption positively correlated with pre-ART HIV-1 load (P = 0.025). The TLR9-1635AA genotype was independently associated with a higher HIV-1 rebound compared with those with AG + GG genotype (multivariate stepwise regression analysis, P = 0.004). Women had lower HIV-1 RNA load both at rebound and during the 72 weeks of follow-up compared with men (P < 0.05 at all time-points), whereas CD4 nadir and CD4 count set-point were similar according to sex. The pre-ART viral load was independently associated with the viral set-point (P = 0.001), whereas the presence of the HLA-A01 allele (P = 0.027) and the CD4 nadir (P = 0.001) were associated with the CD4 count set-point. CONCLUSIONS The association of the TLR9-1635AA genotype with a higher HIV-1 rebound suggests that this SNP may affect the results from strategies requiring interruption of ART aimed to cure HIV-1 infection.
Collapse
|
4
|
Khoury G, Mackenzie C, Ayadi L, Lewin SR, Branlant C, Purcell DFJ. Tat IRES modulator of tat mRNA (TIM-TAM): a conserved RNA structure that controls Tat expression and acts as a switch for HIV productive and latent infection. Nucleic Acids Res 2020; 48:2643-2660. [PMID: 31875221 PMCID: PMC7049722 DOI: 10.1093/nar/gkz1181] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 12/04/2019] [Accepted: 12/18/2019] [Indexed: 12/20/2022] Open
Abstract
Tat protein is essential to fully activate HIV transcription and processing of viral mRNA, and therefore determines virus expression in productive replication and the establishment and maintenance of latent infection. Here, we used thermodynamic and structure analyses to define a highly conserved sequence-structure in tat mRNA that functions as Tat IRES modulator of tat mRNA (TIM-TAM). By impeding cap-dependent ribosome progression during authentic spliced tat mRNA translation, TIM-TAM stable structure impacts on timing and level of Tat protein hence controlling HIV production and infectivity along with promoting latency. TIM-TAM also adopts a conformation that mediates Tat internal ribosome entry site (IRES)-dependent translation during the early phases of infection before provirus integration. Our results document the critical role of TIM-TAM in Tat expression to facilitate virus reactivation from latency, with implications for HIV treatment and drug development.
Collapse
Affiliation(s)
- Georges Khoury
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity - The University of Melbourne, Melbourne, Victoria 3000, Australia.,Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR7365 CNRS Université Lorraine, Vandoeuvre-lès-Nancy 54505, France
| | - Charlene Mackenzie
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity - The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Lilia Ayadi
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR7365 CNRS Université Lorraine, Vandoeuvre-lès-Nancy 54505, France
| | - Sharon R Lewin
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria 3000, Australia.,Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Victoria 3010, Australia
| | - Christiane Branlant
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR7365 CNRS Université Lorraine, Vandoeuvre-lès-Nancy 54505, France
| | - Damian F J Purcell
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity - The University of Melbourne, Melbourne, Victoria 3000, Australia
| |
Collapse
|
5
|
Pasternak AO, Grijsen ML, Wit FW, Bakker M, Jurriaans S, Prins JM, Berkhout B. Cell-associated HIV-1 RNA predicts viral rebound and disease progression after discontinuation of temporary early ART. JCI Insight 2020; 5:134196. [PMID: 32097124 DOI: 10.1172/jci.insight.134196] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/19/2020] [Indexed: 11/17/2022] Open
Abstract
Plasma viral load (VL) and CD4+ T cell count are widely used as biomarkers of HIV type 1 (HIV-1) replication, pathogenesis, and response to antiretroviral therapy (ART). However, the clinical potential of cell-associated (CA) HIV-1 molecular markers is much less understood. Here, we measured CA HIV-1 RNA and DNA in HIV-infected individuals treated with temporary ART initiated during primary HIV-1 infection. We demonstrate substantial predictive value of CA RNA for (a) the virological and immunological response to early ART, (b) the magnitude and time to viral rebound after discontinuation of early ART, and (c) disease progression in the absence of treatment. Remarkably, when adjusted for CA RNA, plasma VL no longer appeared as an independent predictor of any clinical endpoint in this cohort. The potential of CA RNA as an HIV-1 clinical marker, in particular as a predictive biomarker of virological control after stopping ART, should be explored in the context of HIV-1 curative interventions.
Collapse
Affiliation(s)
| | - Marlous L Grijsen
- Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ferdinand W Wit
- Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Global Health program, Amsterdam Public Health research institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Institute for Global Health and Development, Amsterdam, Netherlands.,HIV Monitoring Foundation, Amsterdam, Netherlands
| | - Margreet Bakker
- Laboratory of Experimental Virology, Department of Medical Microbiology, and
| | - Suzanne Jurriaans
- Laboratory of Clinical Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Jan M Prins
- Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, and
| |
Collapse
|
6
|
Bacchetti P, Bosch RJ, Scully EP, Deng X, Busch MP, Deeks SG, Lewin SR. Statistical analysis of single-copy assays when some observations are zero. J Virus Erad 2019. [DOI: 10.1016/s2055-6640(20)30047-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
7
|
Vansant G, Vranckx LS, Zurnic I, Van Looveren D, Van de Velde P, Nobles C, Gijsbers R, Christ F, Debyser Z. Impact of LEDGIN treatment during virus production on residual HIV-1 transcription. Retrovirology 2019; 16:8. [PMID: 30940165 PMCID: PMC6444612 DOI: 10.1186/s12977-019-0472-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/23/2019] [Indexed: 11/24/2022] Open
Abstract
Background Persistence of latent, replication-competent provirus is the main impediment towards the cure of HIV infection. One of the critical questions concerning HIV latency is the role of integration site selection in HIV expression. Inhibition of the interaction between HIV integrase and its chromatin tethering cofactor LEDGF/p75 is known to reduce integration and to retarget residual provirus to regions resistant to reactivation. LEDGINs, small molecule inhibitors of the interaction between HIV integrase and LEDGF/p75, provide an interesting tool to study the underlying mechanisms. During early infection, LEDGINs block the interaction with LEDGF/p75 and allosterically inhibit the catalytic activity of IN (i.e. the early effect). When present during virus production, LEDGINs interfere with proper maturation due to enhanced IN oligomerization in the progeny virions (i.e. the late effect). Results We studied the effect of LEDGINs present during virus production on the transcriptional state of the residual virus. Infection of cells with viruses produced in the presence of LEDGINs resulted in a residual reservoir that was refractory to activation. Integration of residual provirus was less favored near epigenetic markers associated with active transcription. However, integration near H3K36me3 and active genes, both targeted by LEDGF/p75, was not affected. Also in primary cells, LEDGIN treatment induced a reservoir resistant to activation due to a combined early and late effect. Conclusion LEDGINs present a research tool to study the link between integration and transcription, an essential question in retrovirology. LEDGIN treatment during virus production altered integration of residual provirus in a LEDGF/p75-independent manner, resulting in a reservoir that is refractory to activation. Electronic supplementary material The online version of this article (10.1186/s12977-019-0472-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gerlinde Vansant
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Box 1023, 3000, Leuven, Flanders, Belgium
| | - Lenard S Vranckx
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Box 1023, 3000, Leuven, Flanders, Belgium
| | - Irena Zurnic
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Box 1023, 3000, Leuven, Flanders, Belgium
| | - Dominique Van Looveren
- Laboratory for Viral Vector Technology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Box 1023, 3000, Leuven, Belgium
| | - Paulien Van de Velde
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Box 1023, 3000, Leuven, Flanders, Belgium
| | - Christopher Nobles
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Rik Gijsbers
- Laboratory for Viral Vector Technology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Box 1023, 3000, Leuven, Belgium
| | - Frauke Christ
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Box 1023, 3000, Leuven, Flanders, Belgium
| | - Zeger Debyser
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Box 1023, 3000, Leuven, Flanders, Belgium.
| |
Collapse
|
8
|
Campbell GR, Bruckman RS, Chu YL, Trout RN, Spector SA. SMAC Mimetics Induce Autophagy-Dependent Apoptosis of HIV-1-Infected Resting Memory CD4+ T Cells. Cell Host Microbe 2018; 24:689-702.e7. [PMID: 30344003 PMCID: PMC6250054 DOI: 10.1016/j.chom.2018.09.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/15/2018] [Accepted: 09/11/2018] [Indexed: 12/18/2022]
Abstract
Long-lived resting memory CD4+ T cells (TCM) are a major reservoir of latent HIV infection. We hypothesized that latent HIV-TCM cells are maintained by aberrant expression of cell survival factors, including XIAP, BIRC2/cIAP1, and beclin-1. DIABLO/SMAC mimetics are therapeutic agents that compromise cell survival by hijacking host apoptotic machinery. We found that DIABLO/SMAC mimetics (birinapant, GDC-0152, and embelin) selectively kill HIV-TCM without increasing virus production or targeting uninfected TCM. Treatment of HIV-TCM with DIABLO/SMAC mimetics promoted XIAP and BIRC2 degradation, which triggered autophagy and the formation of a cell death complex consisting of pro-apoptotic (FADD, RIPK1, RIPK3, and caspase 8) and autophagy (ATG5, ATG7, and SQSTM1) proteins. Genetic or pharmacological inhibition of autophagy induction, but not autophagy-mediated degradation, abrogated this interaction and subsequent cell death. Our findings identify a mechanism whereby DIABLO/SMAC mimetics exploit autophagy and apoptotic machinery to selectively induce killing of HIV-TCM without viral reactivation while sparing uninfected cells.
Collapse
Affiliation(s)
- Grant R Campbell
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Rachel S Bruckman
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Yen-Lin Chu
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Rodney N Trout
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Stephen A Spector
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA; Rady Children's Hospital, San Diego, CA 92123, USA.
| |
Collapse
|
9
|
Gu CJ, Borjabad A, Hadas E, Kelschenbach J, Kim BH, Chao W, Arancio O, Suh J, Polsky B, McMillan J, Edagwa B, Gendelman HE, Potash MJ, Volsky DJ. EcoHIV infection of mice establishes latent viral reservoirs in T cells and active viral reservoirs in macrophages that are sufficient for induction of neurocognitive impairment. PLoS Pathog 2018; 14:e1007061. [PMID: 29879225 PMCID: PMC5991655 DOI: 10.1371/journal.ppat.1007061] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/29/2018] [Indexed: 02/06/2023] Open
Abstract
Suppression of HIV replication by antiretroviral therapy (ART) or host immunity can prevent AIDS but not other HIV-associated conditions including neurocognitive impairment (HIV-NCI). Pathogenesis in HIV-suppressed individuals has been attributed to reservoirs of latent-inducible virus in resting CD4+ T cells. Macrophages are persistently infected with HIV but their role as HIV reservoirs in vivo has not been fully explored. Here we show that infection of conventional mice with chimeric HIV, EcoHIV, reproduces physiological conditions for development of disease in people on ART including immunocompetence, stable suppression of HIV replication, persistence of integrated, replication-competent HIV in T cells and macrophages, and manifestation of learning and memory deficits in behavioral tests, termed here murine HIV-NCI. EcoHIV established latent reservoirs in CD4+ T lymphocytes in chronically-infected mice but could be induced by epigenetic modulators ex vivo and in mice. In contrast, macrophages expressed EcoHIV constitutively in mice for up to 16 months; murine leukemia virus (MLV), the donor of gp80 envelope in EcoHIV, did not infect macrophages. Both EcoHIV and MLV were found in brain tissue of infected mice but only EcoHIV induced NCI. Murine HIV-NCI was prevented by antiretroviral prophylaxis but once established neither persistent EcoHIV infection in mice nor NCI could be reversed by long-acting antiretroviral therapy. EcoHIV-infected, athymic mice were more permissive to virus replication in macrophages than were wild-type mice, suffered cognitive dysfunction, as well as increased numbers of monocytes and macrophages infiltrating the brain. Our results suggest an important role of HIV expressing macrophages in HIV neuropathogenesis in hosts with suppressed HIV replication.
Collapse
Affiliation(s)
- Chao-Jiang Gu
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Alejandra Borjabad
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Eran Hadas
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Jennifer Kelschenbach
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Boe-Hyun Kim
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Wei Chao
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Ottavio Arancio
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States of America
| | - Jin Suh
- Department of Medicine, St. Joseph’s Regional Medical Center, Paterson, New Jersey, United States of America
| | - Bruce Polsky
- Department of Medicine, NYU Winthrop Hospital, Mineola, New York, United States of America
| | - JoEllyn McMillan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Mary Jane Potash
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - David J. Volsky
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| |
Collapse
|
10
|
Impact of Allogeneic Hematopoietic Stem Cell Transplantation on the HIV Reservoir and Immune Response in 3 HIV-Infected Individuals. J Acquir Immune Defic Syndr 2017; 75:328-337. [PMID: 28350553 DOI: 10.1097/qai.0000000000001381] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Allogeneic hematopoietic stem cell transplantation (HSCT) can lead to significant changes to the HIV reservoir and HIV immune responses, indicating that further characterization of HIV-infected patients undergoing HSCT is warranted. METHODS We studied 3 patients who underwent HSCT after either reduced intensity conditioning or myeloablative conditioning regimen. We measured HIV antigens and antibodies (Ag/Ab), HIV-specific CD4 T-cell responses, HIV RNA, and DNA in plasma, peripheral blood mononuclear cells, isolated CD4 T cells from peripheral blood, and lymph node cells. The patients remained on antiretroviral therapy throughout the follow-up period. RESULTS All patients have been in continued remission for 4-6 years post-HSCT. Analyses of HIV RNA and DNA levels showed substantial reductions in HIV reservoir-related measurements in all 3 patients, changes in immune response varied with pronounced reductions in 2 patients and a less dramatic reduction in 1 patient. One patient experienced unexpected viral rebound 4 years after HSCT. CONCLUSIONS These 3 cases highlight the substantial changes to the HIV reservoir and the HIV immune response in patients undergoing allogeneic HSCT. The viral rebound observed in 1 patient indicates that replication competent HIV can re-emerge several years after HSCT despite these marked changes.
Collapse
|
11
|
HIVed, a knowledgebase for differentially expressed human genes and proteins during HIV infection, replication and latency. Sci Rep 2017; 7:45509. [PMID: 28358052 PMCID: PMC5371986 DOI: 10.1038/srep45509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/27/2017] [Indexed: 12/22/2022] Open
Abstract
Measuring the altered gene expression level and identifying differentially expressed genes/proteins during HIV infection, replication and latency is fundamental for broadening our understanding of the mechanisms of HIV infection and T-cell dysfunction. Such studies are crucial for developing effective strategies for virus eradication from the body. Inspired by the availability and enrichment of gene expression data during HIV infection, replication and latency, in this study, we proposed a novel compendium termed HIVed (HIV expression database; http://hivlatency.erc.monash.edu/) that harbours comprehensive functional annotations of proteins, whose genes have been shown to be dysregulated during HIV infection, replication and latency using different experimental designs and measurements. We manually curated a variety of third-party databases for structural and functional annotations of the protein entries in HIVed. With the goal of benefiting HIV related research, we collected a number of biological annotations for all the entries in HIVed besides their expression profile, including basic protein information, Gene Ontology terms, secondary structure, HIV-1 interaction and pathway information. We hope this comprehensive protein-centric knowledgebase can bridge the gap between the understanding of differentially expressed genes and the functions of their protein products, facilitating the generation of novel hypotheses and treatment strategies to fight against the HIV pandemic.
Collapse
|
12
|
HIV integration and the establishment of latency in CCL19-treated resting CD4(+) T cells require activation of NF-κB. Retrovirology 2016; 13:49. [PMID: 27459960 PMCID: PMC4962537 DOI: 10.1186/s12977-016-0284-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/15/2016] [Indexed: 12/17/2022] Open
Abstract
Background Eradication of HIV cannot be achieved with combination antiretroviral therapy (cART) because of the persistence of long-lived latently infected resting memory CD4+ T cells. We previously reported that HIV latency could be established in resting CD4+ T cells in the presence of the chemokine CCL19. To define how CCL19 facilitated the establishment of latent HIV infection, the role of chemokine receptor signalling was explored. Results In resting CD4+ T cells, CCL19 induced phosphorylation of RAC-alpha serine/threonine-protein kinase (Akt), nuclear factor kappa B (NF-κB), extracellular-signal-regulated kinase (ERK) and p38. Inhibition of the phosphoinositol-3-kinase (PI3K) and Ras/Raf/Mitogen-activated protein kinase/ERK kinase (MEK)/ERK signalling pathways inhibited HIV integration, without significant reduction in HIV nuclear entry (measured by Alu-LTR and 2-LTR circle qPCR respectively). Inhibiting activation of MEK1/ERK1/2, c-Jun N-terminal kinase (JNK), activating protein-1 (AP-1) and NF-κB, but not p38, also inhibited HIV integration. We also show that HIV integrases interact with Pin1 in CCL19-treated CD4+ T cells and inhibition of JNK markedly reduced this interaction, suggesting that CCL19 treatment provided sufficient signals to protect HIV integrase from degradation via the proteasome pathway. Infection of CCL19-treated resting CD4+ T cells with mutant strains of HIV, lacking NF-κB binding sites in the HIV long terminal repeat (LTR) compared to infection with wild type virus, led to a significant reduction in integration by up to 40-fold (range 1–115.4, p = 0.03). This was in contrast to only a modest reduction of 5-fold (range 1.7–11, p > 0.05) in fully activated CD4+ T cells infected with the same mutants. Finally, we demonstrated significant differences in integration sites following HIV infection of unactivated, CCL19-treated, and fully activated CD4+ T cells. Conclusions HIV integration in CCL19-treated resting CD4+ T cells depends on NF-κB signalling and increases the stability of HIV integrase, which allow subsequent integration and establishment of latency. These findings have implications for strategies needed to prevent the establishment, and potentially reverse, latent infection. Electronic supplementary material The online version of this article (doi:10.1186/s12977-016-0284-7) contains supplementary material, which is available to authorized users.
Collapse
|
13
|
Anderson JL, Mota TM, Evans VA, Kumar N, Rezaei SD, Cheong K, Solomon A, Wightman F, Cameron PU, Lewin SR. Understanding Factors That Modulate the Establishment of HIV Latency in Resting CD4+ T-Cells In Vitro. PLoS One 2016; 11:e0158778. [PMID: 27383184 PMCID: PMC4934909 DOI: 10.1371/journal.pone.0158778] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/21/2016] [Indexed: 11/18/2022] Open
Abstract
Developing robust in vitro models of HIV latency is needed to better understand how latency is established, maintained and reversed. In this study, we examined the effects of donor variability, HIV titre and co-receptor usage on establishing HIV latency in vitro using two models of HIV latency. Using the CCL19 model of HIV latency, we found that in up to 50% of donors, CCL19 enhanced latent infection of resting CD4+ T-cells by CXCR4-tropic HIV in the presence of low dose IL-2. Increasing the infectious titre of CXCR4-tropic HIV increased both productive and latent infection of resting CD4+ T-cells. In a different model where myeloid dendritic cells (mDC) were co-cultured with resting CD4+ T-cells, we observed a higher frequency of latently infected cells in vitro than CCL19-treated or unstimulated CD4+ T-cells in the presence of low dose IL-2. In the DC-T-cell model, latency was established with both CCR5- and CXCR4-tropic virus but higher titres of CCR5-tropic virus was required in most donors. The establishment of latency in vitro through direct infection of resting CD4+ T-cells is significantly enhanced by CCL19 and mDC, but the efficiency is dependent on virus titre, co-receptor usage and there is significant donor variability.
Collapse
Affiliation(s)
- Jenny L Anderson
- Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Talia M Mota
- Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Vanessa A Evans
- Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Nitasha Kumar
- Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Simin D Rezaei
- Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Karey Cheong
- Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ajantha Solomon
- Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Fiona Wightman
- Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Paul U Cameron
- Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia.,Department of Infectious Diseases, Monash University and Alfred Hospital, Melbourne, Victoria, Australia
| | - Sharon R Lewin
- Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia.,Department of Infectious Diseases, Monash University and Alfred Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
14
|
Vranckx LS, Demeulemeester J, Saleh S, Boll A, Vansant G, Schrijvers R, Weydert C, Battivelli E, Verdin E, Cereseto A, Christ F, Gijsbers R, Debyser Z. LEDGIN-mediated Inhibition of Integrase-LEDGF/p75 Interaction Reduces Reactivation of Residual Latent HIV. EBioMedicine 2016; 8:248-264. [PMID: 27428435 PMCID: PMC4919729 DOI: 10.1016/j.ebiom.2016.04.039] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/19/2016] [Accepted: 04/28/2016] [Indexed: 12/20/2022] Open
Abstract
Persistence of latent, replication-competent Human Immunodeficiency Virus type 1 (HIV-1) provirus is the main impediment towards a cure for HIV/AIDS (Acquired Immune Deficiency Syndrome). Therefore, different therapeutic strategies to eliminate the viral reservoirs are currently being explored. We here propose a novel strategy to reduce the replicating HIV reservoir during primary HIV infection by means of drug-induced retargeting of HIV integration. A novel class of integration inhibitors, referred to as LEDGINs, inhibit the interaction between HIV integrase and the LEDGF/p75 host cofactor, the main determinant of lentiviral integration site selection. We show for the first time that LEDGF/p75 depletion hampers HIV-1 reactivation in cell culture. Next we demonstrate that LEDGINs relocate and retarget HIV integration resulting in a HIV reservoir that is refractory to reactivation by different latency-reversing agents. Taken together, these results support the potential of integrase inhibitors that modulate integration site targeting to reduce the likeliness of viral rebound. LEDGF/p75 depletion hampers HIV reactivation in cell culture. LEDGINs relocate and retarget authentic HIV integration. LEDGIN treatment results in quiescent residual HIV provirus which is less susceptible to reactivation. LEDGIN treatment during primary HIV infection may lead to an HIV remission.
Different strategies to cure HIV infection are being explored. Although complete eradication of the HIV provirus is the ultimate goal, disease remission allowing treatment interruption without viral rebound would constitute a significant leap forward. HIV integration site selection is orchestrated by LEDGF/p75. The advent of LEDGINs, that block the interaction between integrase and LEDGF/p75, allowed us to examine the hypothesis that interference with HIV integration site selection would yield integration sites that are less optimal for productive infection. Here we provide evidence in cell culture that LEDGIN treatment during acute HIV infection yields an HIV reservoir refractory to reactivation.
Collapse
Affiliation(s)
- Lenard S Vranckx
- Laboratory of Molecular Virology and Gene Therapy, Department of Pharmacological and Pharmaceutical Sciences, KU Leuven, Kapucijnenvoer 33 VTCB +5, 3000 Leuven, Flanders, Belgium.
| | - Jonas Demeulemeester
- Laboratory of Molecular Virology and Gene Therapy, Department of Pharmacological and Pharmaceutical Sciences, KU Leuven, Kapucijnenvoer 33 VTCB +5, 3000 Leuven, Flanders, Belgium.
| | - Suha Saleh
- Laboratory of Molecular Virology and Gene Therapy, Department of Pharmacological and Pharmaceutical Sciences, KU Leuven, Kapucijnenvoer 33 VTCB +5, 3000 Leuven, Flanders, Belgium.
| | - Annegret Boll
- Laboratory of Molecular Virology, Centre for Integrative Biology (CIBIO), University of Trento, Via delle Regole 101, 38123 Trento, Italy.
| | - Gerlinde Vansant
- Laboratory of Molecular Virology and Gene Therapy, Department of Pharmacological and Pharmaceutical Sciences, KU Leuven, Kapucijnenvoer 33 VTCB +5, 3000 Leuven, Flanders, Belgium.
| | - Rik Schrijvers
- Laboratory of Molecular Virology and Gene Therapy, Department of Pharmacological and Pharmaceutical Sciences, KU Leuven, Kapucijnenvoer 33 VTCB +5, 3000 Leuven, Flanders, Belgium; Laboratory of Clinical Immunology, Department of Microbiology and Immunology, KU Leuven, Herestraat 49, 3000 Leuven, Flanders, Belgium.
| | - Caroline Weydert
- Laboratory of Molecular Virology and Gene Therapy, Department of Pharmacological and Pharmaceutical Sciences, KU Leuven, Kapucijnenvoer 33 VTCB +5, 3000 Leuven, Flanders, Belgium.
| | - Emilie Battivelli
- Gladstone Institute of Virology and Immunology, University of California, 1650 Owens St., 94158 San Francisco, CA, USA.
| | - Eric Verdin
- Gladstone Institute of Virology and Immunology, University of California, 1650 Owens St., 94158 San Francisco, CA, USA.
| | - Anna Cereseto
- Laboratory of Molecular Virology, Centre for Integrative Biology (CIBIO), University of Trento, Via delle Regole 101, 38123 Trento, Italy.
| | - Frauke Christ
- Laboratory of Molecular Virology and Gene Therapy, Department of Pharmacological and Pharmaceutical Sciences, KU Leuven, Kapucijnenvoer 33 VTCB +5, 3000 Leuven, Flanders, Belgium.
| | - Rik Gijsbers
- Laboratory of Molecular Virology and Gene Therapy, Department of Pharmacological and Pharmaceutical Sciences, KU Leuven, Kapucijnenvoer 33 VTCB +5, 3000 Leuven, Flanders, Belgium.
| | - Zeger Debyser
- Laboratory of Molecular Virology and Gene Therapy, Department of Pharmacological and Pharmaceutical Sciences, KU Leuven, Kapucijnenvoer 33 VTCB +5, 3000 Leuven, Flanders, Belgium.
| |
Collapse
|
15
|
Reddy DN, Ballante F, Chuang T, Pirolli A, Marrocco B, Marshall GR. Design and Synthesis of Simplified Largazole Analogues as Isoform-Selective Human Lysine Deacetylase Inhibitors. J Med Chem 2016; 59:1613-33. [PMID: 26681404 DOI: 10.1021/acs.jmedchem.5b01632] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Selective inhibition of KDAC isoforms while maintaining potency remains a challenge. Using the largazole macrocyclic depsipeptide structure as a starting point for developing new KDACIs with increased selectivity, a combination of four different simplified largazole analogue (SLA) scaffolds with diverse zinc-binding groups (for a total of 60 compounds) were designed, synthesized, and evaluated against class I KDACs 1, 3, and 8, and class II KDAC6. Experimental evidence as well as molecular docking poses converged to establish the cyclic tetrapeptides (CTPs) as the primary determinant of both potency and selectivity by influencing the correct alignment of the zinc-binding group in the KDAC active site, providing a further basis for developing new KDACIs of higher isoform selectivity and potency.
Collapse
Affiliation(s)
- Damodara N Reddy
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine , 700 South Euclid Avenue, St. Louis, Missouri 63110, United States
| | - Flavio Ballante
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine , 700 South Euclid Avenue, St. Louis, Missouri 63110, United States
| | - Timothy Chuang
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine , 700 South Euclid Avenue, St. Louis, Missouri 63110, United States
| | - Adele Pirolli
- Rome Center for Molecular Design, Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma , P. le A. Moro 5, 00185 Roma, Italy
| | - Biagina Marrocco
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma , P. le A. Moro 5, 00185 Roma, Italy
| | - Garland R Marshall
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine , 700 South Euclid Avenue, St. Louis, Missouri 63110, United States
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW To summarize the evidence in the literature that supports the central nervous system (CNS) as a viral reservoir for HIV-1 and to prioritize future research efforts. RECENT FINDINGS HIV-1 DNA has been detected in brain tissue of patients with undetectable viral load or neurocognitive disorders, and is associated with long-lived cells such as astrocytes and microglia. In neurocognitively normal patients, HIV-1 can be found at high frequency in these cells (4% of astrocytes and 20% of macrophages). CNS cells have unique molecular mechanisms to suppress viral replication and induce latency, which include increased expression of dominant negative transcription factors and suppressive epigenetic factors. There is also evidence of continued inflammation in patients lacking a CNS viral load, suggesting the production and activity of viral neurotoxins (for example, Tat). SUMMARY Together, these findings provide evidence that the CNS can potentially act as a viral reservoir of HIV-1. However, the majority of these studies were performed in historical cohorts (absence of combination antiretroviral therapy or presence of viral load), which do not reflect modern day patients (combination antiretroviral therapy-treated and undetectable viral load). Future studies will need to examine patient samples with these characteristics to conclusively determine whether the CNS represents a relevant and important viral reservoir.
Collapse
|
17
|
Campbell GR, Bruckman RS, Chu YL, Spector SA. Autophagy induction by histone deacetylase inhibitors inhibits HIV type 1. J Biol Chem 2014; 290:5028-5040. [PMID: 25540204 DOI: 10.1074/jbc.m114.605428] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Histone deacetylase inhibitors (HDACi) are being evaluated in a "shock-and-kill" therapeutic approach to reverse human immunodeficiency virus type-1 (HIV) latency from CD4(+) T cells. Using this approach, HDACi have induced HIV RNA synthesis in latently infected cells from some patients. The hope is that the increase in viral production will lead to killing of the infected cell either by the virus itself or by the patient's immune system, a "sterilizing cure." Although administered within the context of combination antiretroviral therapy, the infection of bystander cells remains a concern. In this study, we investigated the effect of HDACi (belinostat, givinostat, panobinostat, romidepsin, and vorinostat) on the productive infection of macrophages. We demonstrate that the HDACi tested do not alter the initial susceptibility of macrophages to HIV infection. However, we demonstrate that HDACi decrease HIV release from macrophages in a dose-dependent manner (belinostat < givinostat < vorinostat < panobinostat < romidepsin) via degradation of intracellular HIV through the canonical autophagy pathway. This mechanism involves unc-51-like autophagy-activating kinase 1 (ULK1) and the inhibition of the mammalian target of rapamycin and requires the formation of autophagosomes and their maturation into autolysosomes in the absence of increased cell death. These data provide further evidence in support of a role for autophagy in the control of HIV infection and suggest that careful consideration of off-target effects will be essential if HDACi are to be a component of a multipronged approach to eliminate latently infected cells.
Collapse
Affiliation(s)
- Grant R Campbell
- From the Department of Pediatrics, Division of Infectious Diseases, University of California at San Diego, La Jolla, California 92093-0672.
| | - Rachel S Bruckman
- From the Department of Pediatrics, Division of Infectious Diseases, University of California at San Diego, La Jolla, California 92093-0672
| | - Yen-Lin Chu
- From the Department of Pediatrics, Division of Infectious Diseases, University of California at San Diego, La Jolla, California 92093-0672
| | - Stephen A Spector
- From the Department of Pediatrics, Division of Infectious Diseases, University of California at San Diego, La Jolla, California 92093-0672.
| |
Collapse
|
18
|
Activation of HIV transcription with short-course vorinostat in HIV-infected patients on suppressive antiretroviral therapy. PLoS Pathog 2014; 10:e1004473. [PMID: 25393648 PMCID: PMC4231123 DOI: 10.1371/journal.ppat.1004473] [Citation(s) in RCA: 434] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/15/2014] [Indexed: 02/06/2023] Open
Abstract
Human immunodeficiency virus (HIV) persistence in latently infected resting memory CD4+ T-cells is the major barrier to HIV cure. Cellular histone deacetylases (HDACs) are important in maintaining HIV latency and histone deacetylase inhibitors (HDACi) may reverse latency by activating HIV transcription from latently infected CD4+ T-cells. We performed a single arm, open label, proof-of-concept study in which vorinostat, a pan-HDACi, was administered 400 mg orally once daily for 14 days to 20 HIV-infected individuals on suppressive antiretroviral therapy (ART). The primary endpoint was change in cell associated unspliced (CA-US) HIV RNA in total CD4+ T-cells from blood at day 14. The study is registered at ClinicalTrials.gov (NCT01365065). Vorinostat was safe and well tolerated and there were no dose modifications or study drug discontinuations. CA-US HIV RNA in blood increased significantly in 18/20 patients (90%) with a median fold change from baseline to peak value of 7.4 (IQR 3.4, 9.1). CA-US RNA was significantly elevated 8 hours post drug and remained elevated 70 days after last dose. Significant early changes in expression of genes associated with chromatin remodeling and activation of HIV transcription correlated with the magnitude of increased CA-US HIV RNA. There were no statistically significant changes in plasma HIV RNA, concentration of HIV DNA, integrated DNA, inducible virus in CD4+ T-cells or markers of T-cell activation. Vorinostat induced a significant and sustained increase in HIV transcription from latency in the majority of HIV-infected patients. However, additional interventions will be needed to efficiently induce virus production and ultimately eliminate latently infected cells. Trial Registration ClinicalTrials.gov NCT01365065 The major barrier to curing HIV is the long term persistence of latently infected resting memory T-cells in HIV-infected patients on antiretroviral therapy (ART). One strategy being pursued to eliminate latently infected cells is to activate HIV production from latently infected cells with the aim of killing latently infected cells via virus induced cell death or stimulation of an HIV-specific immune response. Histone deacetylases (HDACs) are important in maintaining HIV latency. Vorinostat, an inhibitor of HDACs (HDACi) licensed for the treatment of some malignancies, has been shown in laboratory studies and a clinical study of selected individuals to disrupt HIV latency. We examined the ability of standard dose vorinostat given daily for 14 days to activate latent HIV infection in unselected HIV-infected individuals on ART. The study showed evidence of activation of latent HIV infection in 18/20 (90%) of individuals and was safe and generally well tolerated. There were significant early changes in host gene expression, which persisted during and after the period of vorinostat. No changes were seen in immune activation or number of latently infected cells. Vorinostat was able to activate latent HIV infection in most individuals. Additional interventions will be needed to eliminate latent HIV infection.
Collapse
|
19
|
Casabianca A, Orlandi C, Canovari B, Scotti M, Acetoso M, Valentini M, Petrelli E, Magnani M. A real time PCR platform for the simultaneous quantification of total and extrachromosomal HIV DNA forms in blood of HIV-1 infected patients. PLoS One 2014; 9:e111919. [PMID: 25364909 PMCID: PMC4218859 DOI: 10.1371/journal.pone.0111919] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 10/01/2014] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The quantitative measurement of various HIV-1 DNA forms including total, unintegrated and integrated provirus play an increasingly important role in HIV-1 infection monitoring and treatment-related research. We report the development and validation of a SYBR Green real time PCR (TotUFsys platform) for the simultaneous quantification of total and extrachromosomal HIV-1 DNA forms in patients. This innovative technique makes it possible to obtain both measurements in a single PCR run starting from frozen blood employing the same primers and standard curve. Moreover, due to identical amplification efficiency, it allows indirect estimation of integrated level. To specifically detect 2-LTR a qPCR method was also developed. METHODOLOGY/FINDINGS Primers used for total HIV-1 DNA quantification spanning a highly conserved region were selected and found to detect all HIV-1 clades of group M and the unintegrated forms of the same. A total of 195 samples from HIV-1 patients in a wide range of clinical conditions were analyzed with a 100% success rate, even in patients with suppressed plasma viremia, regardless of CD4+ or therapy. No significant correlation was observed between the two current prognostic markers, CD4+ and plasma viremia, while a moderate or high inverse correlation was found between CD4+ and total HIV DNA, with strong values for unintegrated HIV DNA. CONCLUSIONS/SIGNIFICANCE Taken together, the results support the use of HIV DNA as another tool, in addition to traditional assays, which can be used to estimate the state of viral infection, the risk of disease progression and to monitor the effects of ART. The TotUFsys platform allowed us to obtain a final result, expressed as the total and unintegrated HIV DNA copy number per microgram of DNA or 10(4) CD4+, for 12 patients within two working days.
Collapse
Affiliation(s)
- Anna Casabianca
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, Urbino (PU), Italy
- * E-mail:
| | - Chiara Orlandi
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, Urbino (PU), Italy
| | - Benedetta Canovari
- Azienda Ospedaliera Ospedali Riuniti Marche Nord - Presidio Ospedaliero San Salvatore, Pesaro (PU), Italy
| | - Maddalena Scotti
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, Urbino (PU), Italy
| | - Marcello Acetoso
- Azienda Ospedaliera Ospedali Riuniti Marche Nord - Presidio Ospedaliero San Salvatore, Pesaro (PU), Italy
| | - Massimo Valentini
- Azienda Ospedaliera Ospedali Riuniti Marche Nord - Presidio Ospedaliero San Salvatore, Pesaro (PU), Italy
| | - Enzo Petrelli
- Azienda Ospedaliera Ospedali Riuniti Marche Nord - Presidio Ospedaliero San Salvatore, Pesaro (PU), Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, Urbino (PU), Italy
| |
Collapse
|
20
|
Ambrosioni J, Nicolas D, Sued O, Agüero F, Manzardo C, Miro JM. Update on antiretroviral treatment during primary HIV infection. Expert Rev Anti Infect Ther 2014; 12:793-807. [PMID: 24803105 DOI: 10.1586/14787210.2014.913981] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Primary HIV-1 infection covers a period of around 12 weeks in which the virus disseminates from the initial site of infection into different tissues and organs. In this phase, viremia is very high and transmission of HIV is an important issue. Most guidelines recommend antiretroviral treatment in patients who are symptomatic, although the indication for treatment remains inconclusive in asymptomatic patients. In this article the authors review the main virological and immunological events during this early phase of infection, and discuss the arguments for and against antiretroviral treatment. Recommendations of different guidelines, the issue of the HIV transmission and transmission of resistance to antiretroviral drugs, as well as recently available information opening perspectives for functional cure in patients treated in very early steps of HIV infection are also discussed.
Collapse
Affiliation(s)
- Juan Ambrosioni
- Infectious Diseases Service, Hospital Clinic-IDIBAPS, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
21
|
Spina CA, Anderson J, Archin NM, Bosque A, Chan J, Famiglietti M, Greene WC, Kashuba A, Lewin SR, Margolis DM, Mau M, Ruelas D, Saleh S, Shirakawa K, Siliciano RF, Singhania A, Soto PC, Terry VH, Verdin E, Woelk C, Wooden S, Xing S, Planelles V. An in-depth comparison of latent HIV-1 reactivation in multiple cell model systems and resting CD4+ T cells from aviremic patients. PLoS Pathog 2013; 9:e1003834. [PMID: 24385908 PMCID: PMC3873446 DOI: 10.1371/journal.ppat.1003834] [Citation(s) in RCA: 342] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 10/30/2013] [Indexed: 01/01/2023] Open
Abstract
The possibility of HIV-1 eradication has been limited by the existence of latently infected cellular reservoirs. Studies to examine control of HIV latency and potential reactivation have been hindered by the small numbers of latently infected cells found in vivo. Major conceptual leaps have been facilitated by the use of latently infected T cell lines and primary cells. However, notable differences exist among cell model systems. Furthermore, screening efforts in specific cell models have identified drug candidates for "anti-latency" therapy, which often fail to reactivate HIV uniformly across different models. Therefore, the activity of a given drug candidate, demonstrated in a particular cellular model, cannot reliably predict its activity in other cell model systems or in infected patient cells, tested ex vivo. This situation represents a critical knowledge gap that adversely affects our ability to identify promising treatment compounds and hinders the advancement of drug testing into relevant animal models and clinical trials. To begin to understand the biological characteristics that are inherent to each HIV-1 latency model, we compared the response properties of five primary T cell models, four J-Lat cell models and those obtained with a viral outgrowth assay using patient-derived infected cells. A panel of thirteen stimuli that are known to reactivate HIV by defined mechanisms of action was selected and tested in parallel in all models. Our results indicate that no single in vitro cell model alone is able to capture accurately the ex vivo response characteristics of latently infected T cells from patients. Most cell models demonstrated that sensitivity to HIV reactivation was skewed toward or against specific drug classes. Protein kinase C agonists and PHA reactivated latent HIV uniformly across models, although drugs in most other classes did not.
Collapse
Affiliation(s)
- Celsa A. Spina
- Veterans Administration San Diego Healthcare System, San Diego, California, United States of America
- Department of Pathology, University of California San Diego, La Jolla, California, United States of America
| | - Jenny Anderson
- Department of Infectious Diseases, Alfred Hospital, Melbourne, Australia
| | - Nancie M. Archin
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Alberto Bosque
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Jonathan Chan
- Gladstone Institute of Virology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Marylinda Famiglietti
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Warner C. Greene
- Gladstone Institute of Virology and Immunology, University of California San Francisco, San Francisco, California, United States of America
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Angela Kashuba
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Sharon R. Lewin
- Department of Infectious Diseases, Alfred Hospital, Melbourne, Australia
- Monash University, Melbourne, Australia
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
| | - David M. Margolis
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Matthew Mau
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Debbie Ruelas
- Gladstone Institute of Virology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Suha Saleh
- Department of Infectious Diseases, Alfred Hospital, Melbourne, Australia
| | - Kotaro Shirakawa
- Gladstone Institute of Virology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Robert F. Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Howard Hughes Medical Institute, Baltimore, Maryland, United States of America
| | - Akul Singhania
- Veterans Administration San Diego Healthcare System, San Diego, California, United States of America
| | - Paula C. Soto
- Veterans Administration San Diego Healthcare System, San Diego, California, United States of America
- Department of Pathology, University of California San Diego, La Jolla, California, United States of America
| | - Valeri H. Terry
- Veterans Administration San Diego Healthcare System, San Diego, California, United States of America
| | - Eric Verdin
- Gladstone Institute of Virology and Immunology, University of California San Francisco, San Francisco, California, United States of America
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Christopher Woelk
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Stacey Wooden
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sifei Xing
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Howard Hughes Medical Institute, Baltimore, Maryland, United States of America
| | - Vicente Planelles
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
22
|
Evans VA, Kumar N, Filali A, Procopio FA, Yegorov O, Goulet JP, Saleh S, Haddad EK, da Fonseca Pereira C, Ellenberg PC, Sekaly RP, Cameron PU, Lewin SR. Myeloid dendritic cells induce HIV-1 latency in non-proliferating CD4+ T cells. PLoS Pathog 2013; 9:e1003799. [PMID: 24339779 PMCID: PMC3855553 DOI: 10.1371/journal.ppat.1003799] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 10/12/2013] [Indexed: 12/11/2022] Open
Abstract
Latently infected resting CD4+ T cells are a major barrier to HIV cure. Understanding how latency is established, maintained and reversed is critical to identifying novel strategies to eliminate latently infected cells. We demonstrate here that co-culture of resting CD4+ T cells and syngeneic myeloid dendritic cells (mDC) can dramatically increase the frequency of HIV DNA integration and latent HIV infection in non-proliferating memory, but not naïve, CD4+ T cells. Latency was eliminated when cell-to-cell contact was prevented in the mDC-T cell co-cultures and reduced when clustering was minimised in the mDC-T cell co-cultures. Supernatants from infected mDC-T cell co-cultures did not facilitate the establishment of latency, consistent with cell-cell contact and not a soluble factor being critical for mediating latent infection of resting CD4+ T cells. Gene expression in non-proliferating CD4+ T cells, enriched for latent infection, showed significant changes in the expression of genes involved in cellular activation and interferon regulated pathways, including the down-regulation of genes controlling both NF-κB and cell cycle. We conclude that mDC play a key role in the establishment of HIV latency in resting memory CD4+ T cells, which is predominantly mediated through signalling during DC-T cell contact. Current antiretroviral drugs significantly prolong life and reduce morbidity but are unable to cure HIV. While on treatment, the virus is able to hide in resting memory T cells in a silent or “latent” form. These latently infected cells are rare and thus are hard to study using blood from HIV-infected individuals on treatment. Therefore, it is very important to have laboratory models that can closely mimic what is going on in the body. We have developed a novel model of HIV latency in the laboratory. Using this model we have shown that the presence of dendritic cells, an important type of immune cell that can regulate T cell activation, at the time of infection allows for the infection of resting T cells and the establishment of latency. We have demonstrated that this is predominantly mediated by direct cell-to-cell interactions. Further exploration of the mechanisms behind HIV latency could lead to new ways to treat and possibly eradicate HIV.
Collapse
Affiliation(s)
- Vanessa A. Evans
- Department of Infectious Diseases, Monash University, Melbourne, Victoria, Australia
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia
| | - Nitasha Kumar
- Department of Infectious Diseases, Monash University, Melbourne, Victoria, Australia
| | - Ali Filali
- VGTI-Florida, Port St. Lucie, Florida, United States of America
| | | | - Oleg Yegorov
- VGTI-Florida, Port St. Lucie, Florida, United States of America
| | - Jean-Philippe Goulet
- Laboratoire d'immunologie, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Quebec, Canada
| | - Suha Saleh
- Department of Infectious Diseases, Monash University, Melbourne, Victoria, Australia
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia
| | - Elias K. Haddad
- VGTI-Florida, Port St. Lucie, Florida, United States of America
- Laboratoire d'immunologie, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Quebec, Canada
| | - Candida da Fonseca Pereira
- Department of Infectious Diseases, Monash University, Melbourne, Victoria, Australia
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia
- Monash Micro Imaging, Monash University, Melbourne, Victoria, Australia
| | - Paula C. Ellenberg
- Department of Infectious Diseases, Monash University, Melbourne, Victoria, Australia
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia
| | - Rafick-Pierre Sekaly
- VGTI-Florida, Port St. Lucie, Florida, United States of America
- Laboratoire d'immunologie, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Quebec, Canada
| | - Paul U. Cameron
- Department of Infectious Diseases, Monash University, Melbourne, Victoria, Australia
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia
- Infectious Diseases Unit, Alfred Hospital, Melbourne, Victoria, Australia
| | - Sharon R. Lewin
- Department of Infectious Diseases, Monash University, Melbourne, Victoria, Australia
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia
- Infectious Diseases Unit, Alfred Hospital, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
23
|
GRL-04810 and GRL-05010, difluoride-containing nonpeptidic HIV-1 protease inhibitors (PIs) that inhibit the replication of multi-PI-resistant HIV-1 in vitro and possess favorable lipophilicity that may allow blood-brain barrier penetration. Antimicrob Agents Chemother 2013; 57:6110-21. [PMID: 24080647 DOI: 10.1128/aac.01420-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We designed, synthesized, and identified two novel nonpeptidic human immunodeficiency virus type 1 (HIV-1) protease inhibitors (PIs), GRL-04810 and GRL-05010, containing the structure-based designed privileged cyclic ether-derived nonpeptide P2 ligand, bis-tetrahydrofuranylurethane (bis-THF), and a difluoride moiety, both of which are active against the laboratory strain HIV-1LAI (50% effective concentrations [EC50s], 0.0008 and 0.003 μM, respectively) with minimal cytotoxicity (50% cytotoxic concentrations [CC50s], 17.5 and 37.0 μM, respectively, in CD4(+) MT-2 cells). The two compounds were active against multi-PI-resistant clinical HIV-1 variants isolated from patients who had no response to various antiviral regimens. GRL-04810 and GRL-05010 also blocked the infectivity and replication of each of the HIV-1NL4-3 variants selected by up to 5 μM lopinavir (EC50s, 0.03 and 0.03 μM, respectively) and atazanavir (EC50s, 0.02 and 0.04 μM, respectively). Moreover, they were active against darunavir (DRV)-resistant variants (EC50 in 0.03 to 0.034 μM range for GRL-04810 and 0.026 to 0.043 μM for GRL-05010), while DRV had EC50s between 0.02 and 0.174 μM. GRL-04810 had a favorable lipophilicity profile as determined with the partition (log P) and distribution (log D) coefficients of -0.14 and -0.29, respectively. The in vitro blood-brain barrier (BBB) permeability assay revealed that GRL-04810 and GRL-05010 may have a greater advantage in terms of crossing the BBB than the currently available PIs, with apparent penetration indexes of 47.8 × 10(-6) and 61.8 × 10(-6) cm/s, respectively. The present data demonstrate that GRL-04810 and GRL-05010 exert efficient activity against a wide spectrum of HIV-1 variants in vitro and suggest that two fluorine atoms added to their bis-THF moieties may well enhance their penetration across the BBB.
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW The persistence of HIV within infected CD4 T cells is a major obstacle to eradication, and assessment of the strategies to reduce HIV reservoirs is one of the major challenges. Measuring HIV reservoirs accurately will be necessary to assess those strategies. The objective of this review is to present the most recent studies that may help to define the best markers to measure HIV reservoirs. RECENT FINDINGS Recent findings have shown that multiple assays can be used to quantify the different analytes that reflect the HIV reservoirs. They have provided new insights, but lack of standardization has made cross-comparisons of data difficult. No single best assay for measuring HIV reservoirs has been identified and these assays often address different questions, such as the size of the reservoirs, the composition of the reservoirs, or the capacity of latent reservoirs to produce virus. A consensus on what values reflect robust conclusions will have to wait for the generation of additional results. SUMMARY In conclusion, there is a compelling need for investigators to optimize assays and share protocol reagents and specimens to permit the validation, comparison, and standardization of techniques. There is an important need for validated, high-throughput, sensitive, and accurate assays that can detect changes in HIV reservoir size in order to assess the impact of candidate therapies.
Collapse
Affiliation(s)
- Christine Rouzioux
- Department of Virology, Necker Hospital, Paris Descartes University, Paris-Sorbonne-Cité, Paris, France.
| | | |
Collapse
|
25
|
Targeting the glutamatergic system for the treatment of HIV-associated neurocognitive disorders. J Neuroimmune Pharmacol 2013; 8:594-607. [PMID: 23553365 PMCID: PMC3661915 DOI: 10.1007/s11481-013-9442-z] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 02/08/2013] [Indexed: 12/22/2022]
Abstract
The accumulation of excess glutamate in the extracellular space as a consequence of CNS trauma, neurodegenerative diseases, infection, or deregulation of glutamate clearance results in neuronal damage by excessive excitatory neurotransmission. Glutamate excitotoxicity is thought to be one of several mechanisms by which HIV exerts neurotoxicity that culminates in HIV-associated neurocognitive disorders (HAND). Excess glutamate is released upon HIV infection of macrophage/microglial cells and has been associated with neurotoxicity mediated by gp120, transactivator of transcription (Tat) and other HIV proteins. Several strategies have been used over the years to try to prevent glutamate excitotoxicity. Since the main toxic effects of excess glutamate are thought to be due to excitotoxicity from over activation of glutamate receptors, antagonists of these receptors have been popular therapeutic targets. Early work to ameliorate the effects of excess extracellular glutamate focused on NMDA receptor antagonism, but unfortunately, potent blockade of this receptor has been fraught with side effects. One alternative to direct receptor blockade has been the inhibition of enzymes responsible for the production of glutamate such as glutaminase and glutamate carboxypeptidase II. Another approach has been to regulate the transporters responsible for modulation of extracellular glutamate such as excitatory amino acid transporters and the glutamate-cystine antiporter. There is preliminary experimental evidence that these approaches have potential therapeutic utility for the treatment of HAND. These efforts however, are at an early stage where the next steps are dependent on the identification of drug-like inhibitors as well as the development of predictive neuroAIDS animal models.
Collapse
|
26
|
Continuous versus intermittent treatment strategies during primary HIV-1 infection: the randomized ANRS INTERPRIM Trial. AIDS 2012; 26:1895-905. [PMID: 22842994 DOI: 10.1097/qad.0b013e32835844d9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVES The ANRS-112 INTERPRIM trial assessed whether fixed-cycles of antiretroviral treatment interruption (ART-STI) combined or not with pegylated interferon alpha-2b (peg-IFN) could lower viral load and achieve a healthier immune system in patients diagnosed during primary HIV-1-infection (PHI). DESIGN AND METHODS Patients were randomized to receive either continuous ART (cART) during 72 weeks, or cART during 36 weeks followed by three ART-STIs, or the same ART-STIs associated with peg-IFN during the first 14 weeks and each interruption (ART-STI-IFN). Treatment was stopped at week 72. Final evaluation was based on plasma HIV-RNA level 6 months after the last treatment interruption. RESULTS Eighty-seven percent of patients achieved undetectable HIV-RNA at week 32, with no deleterious impact of sequential treatment interruptions (STIs). Viral rebounds during interruptions were lower in the ART-STI-IFN than in the ART-STI group and during the second and third interruptions compared with the first one. However, HIV-RNA levels, CD4 T-cell counts and CD4 T/CD8 T ratios were similar between groups after the 6-month interruption, with a persistent effect on CD4 T cells and total cell-associated HIV-DNA levels. Predictive factors of virological outcome were HIV-RNA and HIV-DNA levels at PHI and HIV-DNA levels at treatment interruption. HIV-specific responses did not differ between strategies and were not associated with outcome. Forty-eight percent of patients experienced treatment resumption during long-term follow-up without difference between groups. CONCLUSION When initiated during PHI, STIs associated or not with IFN did not result in a different outcome as compared to cART. All regimens showed a high response rate and a sustained immunological benefit after cessation.
Collapse
|
27
|
Savkovic B, Symonds G, Murray JM. Stochastic model of in-vivo X4 emergence during HIV infection: implications for the CCR5 inhibitor maraviroc. PLoS One 2012; 7:e38755. [PMID: 22866173 PMCID: PMC3398969 DOI: 10.1371/journal.pone.0038755] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 05/11/2012] [Indexed: 12/30/2022] Open
Abstract
The emergence of X4 tropic viral strains throughout the course of HIV infection is associated with poorer prognostic outcomes and faster progressions to AIDS than for patients in whom R5 viral strains predominate. Here we investigate a stochastic model to account for the emergence of X4 virus via mutational intermediates of lower fitness that exhibit dual/mixed (D/M) tropism, and employ the model to investigate whether the administration of CCR5 blockers in-vivo is likely to promote a shift towards X4 tropism. We show that the proposed stochastic model can account for X4 emergence with a median time of approximately 4 years post-infection as a result of: 1.) random stochastic mutations in the V3 region of env during the reverse transcription step of infection; 2.) increasing numbers of CXCR4-expressing activated naive CD4+ T cells with declining total CD4+ T cell counts, thereby providing increased numbers of activated target cells for productive infection by X4 virus. Our model indicates that administration of the CCR5 blocker maraviroc does not promote a shift towards X4 tropism, assuming sufficient efficacy of background therapy (BT). However our modelling also indicates that administration of maraviroc as a monotherapy or with BT of suboptimal efficacy can promote emergence of X4 tropic virus, resulting in accelerated progression to AIDS. Taken together, our results demonstrate that maraviroc is safe and effective if co-administered with sufficiently potent BT, but that suboptimal BT may promote X4 emergence and accelerated progression to AIDS. These results underscore the clinical importance for careful selection of BT when CCR5 blockers are administered in-vivo.
Collapse
Affiliation(s)
- Borislav Savkovic
- School of Mathematics and Statistics, University of New South Wales, Sydney, Australia.
| | | | | |
Collapse
|
28
|
Abstract
Combination antiretroviral therapy (cART) has led to a very substantial reduction in morbidity and mortality in HIV-infected patients; however, cART alone is unable to cure HIV and therapy is lifelong. Therefore, a new strategy to cure HIV is urgently needed. There is now a concerted effort from scientists, clinicians and funding agencies to identify ways to achieve either a functional cure (long-term control of HIV in the absence of cART) or a sterilizing cure (elimination of all HIV-infected cells). Multiple strategies aiming at achieving a cure for HIV are currently being investigated, including both pharmacotherapy and gene therapy. In this review, we will review the rationale as well as in vitro and clinical trial data that support the role of histone deacetylase inhibitors as one approach to cure HIV.
Collapse
|
29
|
Saleh S, Wightman F, Ramanayake S, Alexander M, Kumar N, Khoury G, Pereira C, Purcell D, Cameron PU, Lewin SR. Expression and reactivation of HIV in a chemokine induced model of HIV latency in primary resting CD4+ T cells. Retrovirology 2011; 8:80. [PMID: 21992606 PMCID: PMC3215964 DOI: 10.1186/1742-4690-8-80] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 10/12/2011] [Indexed: 11/30/2022] Open
Abstract
Background We recently described that HIV latent infection can be established in vitro following incubation of resting CD4+ T-cells with chemokines that bind to CCR7. The main aim of this study was to fully define the post-integration blocks to virus replication in this model of CCL19-induced HIV latency. Results High levels of integrated HIV DNA but low production of reverse transcriptase (RT) was found in CCL19-treated CD4+ T-cells infected with either wild type (WT) NL4.3 or single round envelope deleted NL4.3 pseudotyped virus (NL4.3- Δenv). Supernatants from CCL19-treated cells infected with either WT NL4.3 or NL4.3- Δenv did not induce luciferase expression in TZM-bl cells, and there was no expression of intracellular p24. Following infection of CCL19-treated CD4+ T-cells with NL4.3 with enhanced green fluorescent protein (EGFP) inserted into the nef open reading frame (NL4.3- Δnef-EGFP), there was no EGFP expression detected. These data are consistent with non-productive latent infection of CCL19-treated infected CD4+ T-cells. Treatment of cells with phytohemagluttinin (PHA)/IL-2 or CCL19, prior to infection with WT NL4.3, resulted in a mean fold change in unspliced (US) RNA at day 4 compared to day 0 of 21.2 and 1.1 respectively (p = 0.01; n = 5), and the mean expression of multiply spliced (MS) RNA was 56,000, and 5,000 copies/million cells respectively (p = 0.01; n = 5). In CCL19-treated infected CD4+ T-cells, MS-RNA was detected in the nucleus and not in the cytoplasm; in contrast to PHA/IL-2 activated infected cells where MS RNA was detected in both. Virus could be recovered from CCL19-treated infected CD4+ T-cells following mitogen stimulation (with PHA and phorbyl myristate acetate (PMA)) as well as TNFα, IL-7, prostratin and vorinostat. Conclusions In this model of CCL19-induced HIV latency, we demonstrate HIV integration without spontaneous production of infectious virus, detection of MS RNA in the nucleus only, and the induction of virus production with multiple activating stimuli. These data are consistent with ex vivo findings from latently infected CD4+ T-cells from patients on combination antiretroviral therapy, and therefore provide further support of this model as an excellent in vitro model of HIV latency.
Collapse
Affiliation(s)
- Suha Saleh
- Department of Medicine, Monash University, Melbourne, VIC, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Combination antiretroviral therapy (cART) has led to a major reduction in HIV-related mortality and morbidity; however, HIV can still not be cured. Achieving either a functional cure (long-term control of HIV in the absence of cART) or a sterilizing cure (elimination of all HIV-infected cells) remains a major challenge. The most significant barrier to cure is the establishment of a latent or 'silent' infection in resting CD4 T cells. Several randomized clinical trials have demonstrated that treatment intensification with additional antiretrovirals has little impact on latent reservoirs. Some potential other approaches that may reduce the latent reservoir include very early initiation of cART and the use of agents that could reverse latent infection. Drugs such as histone deacetylase inhibitors, currently used and licensed for the treatment of some cancers; methylation inhibitors; cytokines such as IL-7 or activators of nuclear factor kappa B (NF-κB) such as prostratin, show promising activity in reversing latency in vitro when used either alone or in combination. Alternate strategies include using gene therapy to modify expression of CCR5 and therefore make cells resistant to HIV. This review will primarily focus on the advantages and disadvantages of methods currently being used to quantify persistent virus ex vivo in patients receiving cART and strategies aimed at cure that are being tested in vitro or in early clinical development. In addition, we discuss key issues that need to be addressed to successfully move laboratory research to clinical trials aimed at curing HIV.
Collapse
|
31
|
Murray JM, Fanning GC, Macpherson JL, Evans LA, Pond SM, Symonds GP. Mathematical modelling of the impact of haematopoietic stem cell-delivered gene therapy for HIV. J Gene Med 2010; 11:1077-86. [PMID: 19777528 DOI: 10.1002/jgm.1401] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Gene therapy represents a new treatment paradigm for HIV that is potentially delivered by a safe, once-only therapeutic intervention. METHODS Using mathematical modelling, we assessed the possible impact of autologous haematopoietic stem cell (HSC) delivered, anti-HIV gene therapy. The therapy comprises a ribozyme construct (OZ1) directed to a conserved region of HIV-1 delivered by transduced HSC (OZ1+HSC). OZ1+HSC contributes to the CD4+ T lymphocyte and monocyte/macrophage cell pools that preferentially expand under the selective pressure of HIV infection. The model was used to predict the efficacy of OZ1 in a highly active antiretroviral therapy (HAART) naïve individual and a HAART-experienced individual undergoing two structured treatment operations. In the standard scenario, OZ1+HSC was taken as 20% of total body HSC. RESULTS For a HAART-naïve individual, modelling predicts a reduction of HIV RNA at 1 and 2 years post-OZ1 therapy of 0.5 log(10) and 1 log(10), respectively. Eight years after OZ1 therapy, the CD4+ T-lymphocyte count was 271 cells/mm(3) compared to 96 cells/mm(3) for an untreated individual. In a HAART-experienced individual HIV RNA was reduced by 0.34 log(10) and 0.86 log(10) at 1 and 2 years. The OZ1 effect was maximal when both CD4+ T lymphocytes and monocytes/macrophages were protected from successful, productive infection by OZ1. CONCLUSIONS The modelling indicates a single infusion of HSC cell-delivered gene therapy can impact on HIV viral load and CD4 T-lymphocyte count. Given that gene therapy avoids the complications associated with HAART, there is significant potential for this approach in the treatment of HIV.
Collapse
Affiliation(s)
- John M Murray
- School of Mathematics and Statistics, University of New South Wales, Sydney, Australia.
| | | | | | | | | | | |
Collapse
|
32
|
Volberding P, Demeter L, Bosch RJ, Aga E, Pettinelli C, Hirsch M, Vogler M, Martinez A, Little S, Connick E, ACTG 371 Team. Antiretroviral therapy in acute and recent HIV infection: a prospective multicenter stratified trial of intentionally interrupted treatment. AIDS 2009; 23:1987-95. [PMID: 19696651 PMCID: PMC2888600 DOI: 10.1097/qad.0b013e32832eb285] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Antiretroviral therapy in early HIV infection may enhance outcome and viral control may be better in acute versus recent infection 24 weeks after treatment interruption. METHODS A prospective trial of treatment stratified by acute versus recent HIV-1 infection. If HIV viral load <50 copies/ml after at least 52 weeks, treatment was interrupted. If viremia rebounded, treatment and interruption were repeated. The primary endpoint was maintaining viral load less than 5000 copies/ml for 24 weeks following treatment interruption. RESULTS Of the 121 patients enrolled at 15 sites, ninety-five percent were men, median age was 34 years; 69% were white. Median viral load was higher in acute HIV-1 infection (210 000 copies/ml) than recent HIV-1 infection (43 000 copies/ml). The 73 primary endpoint patients (28 acute HIV-1 infection, 45 recent HIV-1 infection) had significantly higher baseline CD4 T-cell counts (P = 0.044) and lower viral load (P = 0.016). The primary endpoint was achieved in 29 (40%) of the 73 and in 24% of the 121 enrolled overall. There was no significant outcome difference (P = 0.81) between the acute HIV-1 infection [43%, 95% confidence interval (CI) 24-63%] and recent HIV-1 infection (38%, 95% CI 24-53%) groups. Differences after longer follow-up can not be ascertained by this trial. Baseline viral load less than 100 000/ml 22/46 (48%) compared with more than 100 000/ml, 7/27 (26%) and higher baseline CD4 immune activation predicted success. CONCLUSION Forty percent of patients treated during acute HIV-1 infection or recent HIV-1 infection sustained a viral load less than 5000 copies/ml after 24 weeks of treatment interruption.
Collapse
Affiliation(s)
- Paul Volberding
- University of California-San Francisco, 4150 Clement Street, San Francisco, CA 94121, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|