1
|
Azizian-Farsani F, Weixelbaumer K, Mascher D, Klang A, Högler S, Dinhopl N, Bauder B, Weissenböck H, Tichy A, Schmidt P, Mascher H, Osuchowski MF. Lethal versus surviving sepsis phenotypes displayed a partly differential regional expression of neurotransmitters and inflammation and did not modify the blood-brain barrier permeability in female CLP mice. Intensive Care Med Exp 2024; 12:96. [PMID: 39497013 PMCID: PMC11535104 DOI: 10.1186/s40635-024-00688-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/15/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Septic encephalopathy is frequent but its pathophysiology is enigmatic. We studied expression of neurotransmitters, inflammation and integrity of the blood-brain barrier (BBB) in several brain regions during abdominal sepsis. We compared mice with either lethal or surviving phenotype in the first 4 sepsis days. Mature CD-1 females underwent cecal ligation and puncture (CLP). Body temperature (BT) was measured daily and predicted-to-die (within 24 h) mice (for P-DIE; BT < 28 °C) were sacrificed together (1:1 ratio) with mice predicted-to-survive (P-SUR; BT > 35 °C), and healthy controls (CON). Brains were dissected into neocortex, cerebellum, midbrain, medulla, striatum, hypothalamus and hippocampus. RESULTS CLP mice showed an up to threefold rise of serotonin in the hippocampus, 5-hydroxyindoleacetic and homovanillic acid (HVA) in nearly all regions vs. CON. Compared to P-SUR, P-DIE mice showed a 1.7 to twofold rise of HVA (386 ng/g of tissue), dopamine (265 ng/g) and 3,4-Dihydroxyphenylacetic acid (DOPAC; 140 ng/g) in the hippocampus, hypothalamus and medulla (174, 156, 82 ng/g of tissue, respectively). CLP increased expression of TNFα, IL-1β and IL-6 mRNA by several folds in the midbrain, cerebellum and hippocampus versus CON. The same cytokines were further elevated in P-DIE vs P-SUR in the midbrain and cerebellum. Activation of astrocytes and microglia was robust across regions but remained typically phenotype independent. There was a similar influx of sodium fluorescein across the BBB in both P-DIE and P-SUR mice. CONCLUSIONS Compared to survivors, the lethal phenotype induced a stronger deregulation of amine metabolism and cytokine expression in selected brain regions, but the BBB permeability remained similar regardless of the predicted outcome.
Collapse
Affiliation(s)
- Fatemeh Azizian-Farsani
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200, Vienna, Austria
| | - Katrin Weixelbaumer
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200, Vienna, Austria
| | | | - Andrea Klang
- Institute of Pathology, University of Veterinary Medicine, Vienna, Austria
| | - Sandra Högler
- Institute of Pathology, University of Veterinary Medicine, Vienna, Austria
| | - Nora Dinhopl
- Institute of Pathology, University of Veterinary Medicine, Vienna, Austria
| | - Barbara Bauder
- Institute of Pathology, University of Veterinary Medicine, Vienna, Austria
| | | | - Alexander Tichy
- Institute of Medical Physics and Biostatistics, University of Veterinary Medicine, Vienna, Austria
| | - Peter Schmidt
- Institute of Pathology, University of Veterinary Medicine, Vienna, Austria
| | | | - Marcin F Osuchowski
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200, Vienna, Austria.
| |
Collapse
|
2
|
Liu N, Sonawane M, Sommerfeld O, Svensson CM, Figge MT, Bauer R, Bischoff SJ, Bauer M, Osuchowski MF, Press AT. Metamizole outperforms meloxicam in sepsis: insights on analgesics, survival and immunomodulation in the peritoneal contamination and infection sepsis model. Front Immunol 2024; 15:1432307. [PMID: 39281680 PMCID: PMC11392727 DOI: 10.3389/fimmu.2024.1432307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/26/2024] [Indexed: 09/18/2024] Open
Abstract
Background Limited availability and side effects of opioids have led to an increased use of non-opioid analgesia in animal disease models. However, by affecting the immune-inflammatory reactions, analgesia may disrupt the resolution of the host inflammation and modulate the survival in septic animals. This study used a clinically relevant sepsis mouse model of peritoneal contamination and infection (PCI) to investigate the antinociceptive and anti-inflammatory properties of two non-opioid analgesics. Methods Adult C57BL/6J mice were intraperitoneally injected with a human feces suspension and received either no analgesics (Non-A), Meloxicam, or Metamizole orally. The mice were monitored for pain and illness. Mortality was assessed at 7 days post-PCI. A separate group of mice was sacrificed 24 hours after infection. Blood, peritoneal lavage fluid (PLF), liver, and spleen were harvested for pathogen load quantification via qPCR, macrophage phenotyping, neutrophil infiltration/activation, and systemic/tissue cytokine release by flow cytometry. Results Meloxicam but not Metamizole reduced the mortality of septic mice by 31% on day 7 compared to the Non-A group. Both analgesics effectively alleviated pain but did not affect illness severity, body weight, and temperature. Meloxicam quadrupled the bacterial burden in the blood and PLF. In high IL-6 responders, Meloxicam treatment was associated with reduced circulating IL-10 and IL-1β compared to the Non-A septic group. In low IL-6 responders, Meloxicam increased circulating MCP-1 levels and decreased PGE2 levels compared to Non-A septic mice. Notably, Meloxicam reduced spleen neutrophil infiltration by 20% compared to two other sepsis groups. Conclusion Metamizole and Meloxicam effectively relieved pain and increased the animals' basal activity in the PCI sepsis model. Meloxicam prolonged survival yet triggered maladaptive responses due to its immunosuppressive features that decreased tissue bacterial clearance during sepsis. In contrast, Metamizole constitutes a safe and effective non-opioid alternative for analgesic control in the non-surgical PCI sepsis model.
Collapse
Affiliation(s)
- Na Liu
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | - Mitali Sonawane
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | - Oliver Sommerfeld
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | - Carl-Magnus Svensson
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Marc Thilo Figge
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Reinhard Bauer
- Friedrich-Schiller-University Jena, Institute of Molecular Cell Biology, Jena University Hospital, Jena, Germany
| | | | - Michael Bauer
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Marcin Filip Osuchowski
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Research Center, Vienna, Austria
| | - Adrian Tibor Press
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
- Medical Faculty, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
3
|
Aghayan AH, Mirazimi Y, Fateh K, Keshtkar A, Rafiee M, Atashi A. Therapeutic Effects of Mesenchymal Stem Cell-Derived Extracellular Vesicles in sepsis: a Systematic Review and Meta-Analysis of Preclinical Studies. Stem Cell Rev Rep 2024; 20:1480-1500. [PMID: 38814410 DOI: 10.1007/s12015-024-10741-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Sepsis is a life-threatening disorder with no definitive cure. Preclinical studies suggest that extracellular vesicles derived from mesenchymal stromal cells (EV-MSCs) can mitigate inflammatory conditions, potentially leading to increased survival and reduced organ dysfunction during sepsis. Our aim to conduct this systematic review and meta-analysis is assessing the EV-MSCs therapeutic efficacy in sepsis. METHODS PubMed, Embase, Scopus, WOS and ProQuest databases and also Google Scholar search engine were searched for published articles. We used hazard ratio (HR) and standardized mean difference (SMD) as effect sizes to evaluate the therapeutic effect of EV-MSCs on survival rate and determine their effect on reducing organ dysfunction, respectively. Finally, we employed GRADE tool for preclinical animal studies to evaluate certainty of the evidence. RESULTS 30 studies met the inclusion criteria for our article. Our meta-analysis results demonstrate that animals treated with MSC-EVs have better survival rate than untreated animals (HR = 0.33; 95% CI: 0.27-0.41). Our meta-analysis suggests that EV-MSCs can reduce organ dysfunctions in sepsis, such as the lung, kidney, and liver. Additionally, EV-MSCs decrease pro-inflammatory mediators like TNF-α, IL-1β, and IL-6. CONCLUSION Our results indicate that EV-MSCs can be as promising therapy for sepsis management in animal models and leading to increased survival rate and reduced organ dysfunction. Furthermore, our study introduces a novel tool for risk of bias assessment and provides recommendations based on various analysis. Future studies with aiming to guide clinical translation can utilize the results of this article to establish stronger evidence for EV-MSC effectiveness.
Collapse
Affiliation(s)
- Amir Hossein Aghayan
- Student Research Committee, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Yasin Mirazimi
- Student Research Committee, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Kosar Fateh
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbasali Keshtkar
- Department of Health Sciences Education Development, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rafiee
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Amir Atashi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran.
| |
Collapse
|
4
|
Oliveira L, Silva MC, Gomes AP, Santos RF, Cardoso MS, Nóvoa A, Luche H, Cavadas B, Amorim I, Gärtner F, Malissen B, Mallo M, Carmo AM. CD5L as a promising biological therapeutic for treating sepsis. Nat Commun 2024; 15:4119. [PMID: 38750020 PMCID: PMC11096381 DOI: 10.1038/s41467-024-48360-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
Sepsis results from systemic, dysregulated inflammatory responses to infection, culminating in multiple organ failure. Here, we demonstrate the utility of CD5L for treating experimental sepsis caused by cecal ligation and puncture (CLP). We show that CD5L's important features include its ability to enhance neutrophil recruitment and activation by increasing circulating levels of CXCL1, and to promote neutrophil phagocytosis. CD5L-deficient mice exhibit impaired neutrophil recruitment and compromised bacterial control, rendering them susceptible to attenuated CLP. CD5L-/- peritoneal cells from mice subjected to medium-grade CLP exhibit a heightened pro-inflammatory transcriptional profile, reflecting a loss of control of the immune response to the infection. Intravenous administration of recombinant CD5L (rCD5L) in immunocompetent C57BL/6 wild-type (WT) mice significantly ameliorates measures of disease in the setting of high-grade CLP-induced sepsis. Furthermore, rCD5L lowers endotoxin and damage-associated molecular pattern (DAMP) levels, and protects WT mice from LPS-induced endotoxic shock. These findings warrant the investigation of rCD5L as a possible treatment for sepsis in humans.
Collapse
Affiliation(s)
- Liliana Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - M Carolina Silva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
- Universidade de Aveiro, Aveiro, Portugal
| | - Ana P Gomes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Rita F Santos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
- ESS, Politécnico do Porto, Porto, Portugal
| | - Marcos S Cardoso
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
- ESS, Politécnico do Porto, Porto, Portugal
| | - Ana Nóvoa
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Hervé Luche
- Centre d'Immunophénomique (CIPHE), Aix Marseille Université, INSERM, CNRS, 13288, Marseille, France
| | - Bruno Cavadas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Irina Amorim
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Fátima Gärtner
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Bernard Malissen
- Centre d'Immunophénomique (CIPHE), Aix Marseille Université, INSERM, CNRS, 13288, Marseille, France
| | - Moisés Mallo
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Alexandre M Carmo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal.
| |
Collapse
|
5
|
Gong M, Qi S, Wu Z, Huang Y, Wu L, Wang X, He L, Lin L, Lin D. A novel therapeutic approach to modulate the inflammatory cascade: A timely exogenous local inflammatory response attenuates the sepsis-induced cytokine storm. Cytokine 2024; 176:156533. [PMID: 38340550 DOI: 10.1016/j.cyto.2024.156533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/03/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND The emergence of severe sepsis is contingent upon the occurrence of a cytokine storm (CS), a multifaceted process intricately entwined with the temporal dimension, thereby rendering the infection response remarkably intricate. Consequently, it becomes imperative to discern and accurately identify the optimal timing for interventions, predicated upon the dynamic timeline of inflammatory changes. Moreover, the administration of exogenous low-dose pro-inflammatory agents has exhibited the potential to impede the relentless progression of the inflammatory cascade. Hence, the present study aims to scrutinize the impact of exogenous Local Inflammatory Response (eLIR) on the body surface in the context of the inflammatory cascade during sepsis, within a temporal framework, with a particular emphasis on the point of exacerbation of inflammation. METHODS Rats were induced sterile sepsis by intraperitoneal injection of zymosan (ZY) at an appropriate dosage. The temporal progression of inflammatory changes and eLIR effects were described based on the trend of serum crucial inflammatory cytokines, tring to quest time-point of inflammatory aggravation in sepsis. Then, the varying degrees of surface inflammation caused by eLIR on this time point leading to the final effects on the inflammatory cascade response were explored. In addition, given the authentic pathological progression of sepsis, further observation was conducted on the impact of another intervention timing of eLIR on the inflammatory cascade. The survival rate was measured. Serum and organ related inflammatory cytokines were detected, and organ histopathology was investigated. RESULTS In present study, a dosage of 600 mg/kg ZY was found to be optimal for the sterile sepsis model. Initiating eLIR 6 h prior to ZY injection, the maximum effect point of eLIR could be precisely align with the inflammatory aggravation point of sterile sepsis. Initiating eLIR at this time, 3 sessions of eLIR were found to be more effective than 1 or 2 sessions in mitigating inflammatory responses during the initial stage of inflammation and the peak of inflammation. Notably, the findings also suggested that this intervention improve survival rate. In addition, the anti-inflammatory efficacy has been substantially diminished by the prompt initiation of 3 sessions of eLIR immediately after ZY injection at the onset of sepsis. Similarly, the current findings did not demonstrate a statistically significant enhancement in survival rates with eLIR at this time point. CONCLUSIONS Compared with the initial stage of inflammation, low-scale inflammation caused by a certain intensity of eLIR (3 sessions) on the body surface can more effectively pry the inflammation aggravation time-point, thereby shifting the pro-inflammatory to anti-inflammatory milieu, impeding the disproportionate cytokines release in inflammatory diseases, slowing down the inflammatory cascade, and improving the survival rate of sepsis.
Collapse
Affiliation(s)
- Meng Gong
- College of Acupuncture, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Shiyi Qi
- College of Acupuncture, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Zhiting Wu
- College of Acupuncture, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Ying Huang
- College of Acupuncture, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Lihua Wu
- Department of Otolaryngology, Fujian provincial hospital, Fuzhou, Fujian Province, China
| | - Xiangbin Wang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Lingling He
- College of Acupuncture, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Lili Lin
- College of Acupuncture, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China; Institute of Acupuncture and Meridian, Fujian Academy of Chinese Medical Sciences, Fuzhou, Fujian Province, China
| | - Dong Lin
- College of Acupuncture, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China; Institute of Acupuncture and Meridian, Fujian Academy of Chinese Medical Sciences, Fuzhou, Fujian Province, China.
| |
Collapse
|
6
|
Qiang X, Chen W, Zhu CS, Li J, Qi T, Lou L, Wang P, Tracey KJ, Wang H. Therapeutic potential of procathepsin L-inhibiting and progesterone-entrapping dimethyl-β-cyclodextrin nanoparticles in treating experimental sepsis. Front Immunol 2024; 15:1368448. [PMID: 38550581 PMCID: PMC10972846 DOI: 10.3389/fimmu.2024.1368448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/04/2024] [Indexed: 04/02/2024] Open
Abstract
The pathogenic mechanisms of bacterial infections and resultant sepsis are partly attributed to dysregulated inflammatory responses sustained by some late-acting mediators including the procathepsin-L (pCTS-L). It was entirely unknown whether any compounds of the U.S. Drug Collection could suppress pCTS-L-induced inflammation, and pharmacologically be exploited into possible therapies. Here, we demonstrated that a macrophage cell-based screening of a U.S. Drug Collection of 1360 compounds resulted in the identification of progesterone (PRO) as an inhibitor of pCTS-L-mediated production of several chemokines [e.g., Epithelial Neutrophil-Activating Peptide (ENA-78), Monocyte Chemoattractant Protein-1 (MCP-1) or MCP-3] and cytokines [e.g., Interleukin-10 (IL-10) or Tumor Necrosis Factor (TNF)] in primary human peripheral blood mononuclear cells (PBMCs). In vivo, these PRO-entrapping 2,6-dimethal-β-cyclodextrin (DM-β-CD) nanoparticles (containing 1.35 mg/kg PRO and 14.65 mg/kg DM-β-CD) significantly increased animal survival in both male (from 30% to 70%, n = 20, P = 0.041) and female (from 50% to 80%, n = 30, P = 0.026) mice even when they were initially administered at 24 h post the onset of sepsis. This protective effect was associated with a reduction of sepsis-triggered accumulation of three surrogate biomarkers [e.g., Granulocyte Colony Stimulating Factor (G-CSF) by 40%; Macrophage Inflammatory Protein-2 (MIP-2) by 45%; and Soluble Tumor Necrosis Factor Receptor I (sTNFRI) by 80%]. Surface Plasmon Resonance (SPR) analysis revealed a strong interaction between PRO and pCTS-L (KD = 78.2 ± 33.7 nM), which was paralleled with a positive correlation between serum PRO concentration and serum pCTS-L level (ρ = 0.56, P = 0.0009) or disease severity (Sequential Organ Failure Assessment, SOFA; ρ = 0.64, P = 0.0001) score in septic patients. Our observations support a promising opportunity to explore DM-β-CD nanoparticles entrapping lipophilic drugs as possible therapies for clinical sepsis.
Collapse
Affiliation(s)
- Xiaoling Qiang
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Weiqiang Chen
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Cassie Shu Zhu
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Jianhua Li
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Timothy Qi
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Li Lou
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Ping Wang
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Kevin J. Tracey
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Haichao Wang
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| |
Collapse
|
7
|
Kannan SK, Kim CY, Heidarian M, Berton RR, Jensen IJ, Griffith TS, Badovinac VP. Mouse Models of Sepsis. Curr Protoc 2024; 4:e997. [PMID: 38439603 PMCID: PMC10917121 DOI: 10.1002/cpz1.997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Human sepsis is a complex disease that manifests with a diverse range of phenotypes and inherent variability among individuals, making it hard to develop a comprehensive animal model. Despite this difficulty, numerous models have been developed that capture many key aspects of human sepsis. The robustness of these models is vital for conducting pre-clinical studies to test and develop potential therapeutics. In this article, we describe four different models of murine sepsis that can be used to address different scientific questions relevant to the pathology and immune response during and after a septic event. Basic Protocol 1 details a non-synchronous cecal ligation and puncture (CLP) model of sepsis, where mice are subjected to polymicrobial exposure through surgery at different time points within 2 weeks. This variation in sepsis onset establishes each mouse at a different state of inflammation and cytokine levels that mimics the variability observed in humans when they present in the clinic. This model is ideal for studying the long-term impact of sepsis on the host. Basic Protocol 2 is also a type of polymicrobial sepsis, where injection of a specific amount of cecal slurry from a donor mouse into the peritoneum of recipient mice establishes immediate inflammation and sepsis without any need for surgery. Basic Protocol 3 describes infecting mice with a defined gram-positive or -negative bacterial strain to model a subset of sepsis observed in humans infected with a single pathogen. Basic Protocol 4 describes administering LPS to induce sterile endotoxemia. This form of sepsis is observed in humans exposed to bacterial toxins from the environment. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Non-synchronous cecal ligation and puncture Basic Protocol 2: Cecal slurry model of murine sepsis Basic Protocol 3: Monomicrobial model of murine sepsis Basic Protocol 4: LPS model of murine sepsis.
Collapse
Affiliation(s)
- Shravan-Kumar Kannan
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, USA
| | - Caleb Y. Kim
- Microbiology, Immunology, and Cancer Biology Program, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Roger R. Berton
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, USA
| | - Isaac J. Jensen
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, USA
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York City, New York, USA
| | - Thomas S. Griffith
- Microbiology, Immunology, and Cancer Biology Program, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Urology, University of Minnesota, Minneapolis, Minnesota, USA
- Minneapolis Veterans Affairs Health Care System, Minneapolis, Minnesota, USA
| | - Vladimir P. Badovinac
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, USA
- Microbiology, Immunology, and Cancer Biology Program, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
8
|
Liu D, Langston JC, Prabhakarpandian B, Kiani MF, Kilpatrick LE. The critical role of neutrophil-endothelial cell interactions in sepsis: new synergistic approaches employing organ-on-chip, omics, immune cell phenotyping and in silico modeling to identify new therapeutics. Front Cell Infect Microbiol 2024; 13:1274842. [PMID: 38259971 PMCID: PMC10800980 DOI: 10.3389/fcimb.2023.1274842] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Sepsis is a global health concern accounting for more than 1 in 5 deaths worldwide. Sepsis is now defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Sepsis can develop from bacterial (gram negative or gram positive), fungal or viral (such as COVID) infections. However, therapeutics developed in animal models and traditional in vitro sepsis models have had little success in clinical trials, as these models have failed to fully replicate the underlying pathophysiology and heterogeneity of the disease. The current understanding is that the host response to sepsis is highly diverse among patients, and this heterogeneity impacts immune function and response to infection. Phenotyping immune function and classifying sepsis patients into specific endotypes is needed to develop a personalized treatment approach. Neutrophil-endothelium interactions play a critical role in sepsis progression, and increased neutrophil influx and endothelial barrier disruption have important roles in the early course of organ damage. Understanding the mechanism of neutrophil-endothelium interactions and how immune function impacts this interaction can help us better manage the disease and lead to the discovery of new diagnostic and prognosis tools for effective treatments. In this review, we will discuss the latest research exploring how in silico modeling of a synergistic combination of new organ-on-chip models incorporating human cells/tissue, omics analysis and clinical data from sepsis patients will allow us to identify relevant signaling pathways and characterize specific immune phenotypes in patients. Emerging technologies such as machine learning can then be leveraged to identify druggable therapeutic targets and relate them to immune phenotypes and underlying infectious agents. This synergistic approach can lead to the development of new therapeutics and the identification of FDA approved drugs that can be repurposed for the treatment of sepsis.
Collapse
Affiliation(s)
- Dan Liu
- Department of Bioengineering, Temple University, Philadelphia, PA, United States
| | - Jordan C. Langston
- Department of Bioengineering, Temple University, Philadelphia, PA, United States
| | | | - Mohammad F. Kiani
- Department of Bioengineering, Temple University, Philadelphia, PA, United States
- Department of Mechanical Engineering, Temple University, Philadelphia, PA, United States
- Department of Radiation Oncology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Laurie E. Kilpatrick
- Center for Inflammation and Lung Research, Department of Microbiology, Immunology and Inflammation, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
9
|
Ferguson LT, Rashied AA, Liang Z, Yumoto T, Anyalebechi JC, Swift DA, Hernandes MS, Krafty RT, Coopersmith CM, Lee VK. A Novel Scoring System for Humane Endpoints in Mice with Cecal Ligation and Puncture-Induced Sepsis. Comp Med 2023; 73:446-460. [PMID: 38217069 PMCID: PMC10752367 DOI: 10.30802/aalas-cm-22-000124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/26/2023] [Accepted: 03/14/2023] [Indexed: 01/14/2024]
Abstract
Animal-based research is essential to the study of sepsis pathophysiology, diagnostics, and therapeutics. However, animal models of sepsis are often associated with high mortality because of the difficulty in predicting imminent death based on premortem assessment of the animals. The use of validated visual scoring would allow researchers to systematically identify humane endpoints but visual approaches require high interobserver agreement for accurate results. The objective of this study was to establish a scoring system for mice undergoing cecal ligation and puncture (CLP)-induced sepsis based on 3 visual parameters: respiratory status, activity and response to stimulus (ASR), and eye appearance, with scores ranging from 0 to 3. In the first study, we evaluated interobserver agreement. Veterinary and investigative staff assessed 283 mice with CLP and had substantial to near-perfect agreement for all 3 parameters as evaluated using weighted Cohen κ statistic. The second study assessed the ability of the scoring system and temperature to predict death. The scoring system and subcutaneous transpond- ers were used to monitor C57BL/6J mice (n = 80, male and female) until death or for 7 days after CLP. Results showed that the scoring system discriminates between surviving (n = 26) and nonsurviving (n = 54) septic mice. The scoring system was accurate in predicting death, with an AUC of 0.8997. The sensitivity and specificity of the ASR parameter were 96% and 92%, respectively, and for the eye parameter were 94% and 73%. A sum of the ASR and eye scores that was 5 or more was also predictive of death. Temperature was a quantitative predictor, with sensitivity and specificity of 93% and 92%, respectively. This scoring system refines the CLP model by allowing identification of humane endpoints and avoidance of spontaneous death.
Collapse
Affiliation(s)
| | - Ammar A Rashied
- Department of Biostatistics and Bioinformatics, Emory University Rollins School of Public Health, Atlanta, Georgia; and
| | - Zhe Liang
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine and Emory Healthcare, Atlanta, Georgia
| | - Tetsuya Yumoto
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine and Emory Healthcare, Atlanta, Georgia
- Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Kita-ku, Okayama, Japan
| | - Jerome C Anyalebechi
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine and Emory Healthcare, Atlanta, Georgia
| | - David A Swift
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine and Emory Healthcare, Atlanta, Georgia
| | - Marina S Hernandes
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Robert T Krafty
- Department of Biostatistics and Bioinformatics, Emory University Rollins School of Public Health, Atlanta, Georgia; and
| | - Craig M Coopersmith
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine and Emory Healthcare, Atlanta, Georgia
| | - Vanessa K Lee
- Division of Animal Resources, Emory University, Atlanta, Georgia
| |
Collapse
|
10
|
Sharma N, Chwastek D, Dwivedi DJ, Schlechte J, Yu IL, McDonald B, Arora J, Cani E, Eng M, Engelberts D, Kuhar E, Medeiros SK, Bourque SL, Cepinskas G, Gill SE, Jahandideh F, Macala KF, Panahi S, Pape C, Sontag D, Sunohara-Neilson J, Fergusson DA, Fox-Robichaud AE, Liaw PC, Lalu MM, Mendelson AA. Development and characterization of a fecal-induced peritonitis model of murine sepsis: results from a multi-laboratory study and iterative modification of experimental conditions. Intensive Care Med Exp 2023; 11:45. [PMID: 37460911 PMCID: PMC10352196 DOI: 10.1186/s40635-023-00533-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/04/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Preclinical sepsis models have been criticized for their inability to recapitulate human sepsis and suffer from methodological shortcomings that limit external validity and reproducibility. The National Preclinical Sepsis Platform (NPSP) is a consortium of basic science researchers, veterinarians, and stakeholders in Canada undertaking standardized multi-laboratory sepsis research to increase the efficacy and efficiency of bench-to-bedside translation. In this study, we aimed to develop and characterize a 72-h fecal-induced peritonitis (FIP) model of murine sepsis conducted in two independent laboratories. The experimental protocol was optimized by sequentially modifying dose of fecal slurry and timing of antibiotics in an iterative fashion, and then repeating the experimental series at site 1 and site 2. RESULTS Escalating doses of fecal slurry (0.5-2.5 mg/g) resulted in increased disease severity, as assessed by the modified Murine Sepsis Score (MSS). However, the MSS was poorly associated with progression to death during the experiments, and mice were found dead without elevated MSS scores. Administration of early antibiotics within 4 h of inoculation rescued the animals from sepsis compared with late administration of antibiotics after 12 h, as evidenced by 100% survival and reduced bacterial load in peritoneum and blood in the early antibiotic group. Site 1 and site 2 had statistically significant differences in mortality (60% vs 88%; p < 0.05) for the same dose of fecal slurry (0.75 mg/g) and marked differences in body temperature between groups. CONCLUSIONS We demonstrate a systematic approach to optimizing a 72-h FIP model of murine sepsis for use in multi-laboratory studies. Alterations to experimental conditions, such as dose of fecal slurry and timing of antibiotics, have clear impact on outcomes. Differences in mortality between sites despite rigorous standardization warrants further investigations to better understand inter-laboratory variation and methodological design in preclinical studies.
Collapse
Affiliation(s)
- Neha Sharma
- Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada
- Department of Medical Sciences, McMaster University, Hamilton, ON, Canada
| | - Damian Chwastek
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Dhruva J Dwivedi
- Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Jared Schlechte
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Ian-Ling Yu
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Braedon McDonald
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jaskirat Arora
- Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada
- Department of Medical Sciences, McMaster University, Hamilton, ON, Canada
| | - Erblin Cani
- Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada
- Department of Medical Sciences, McMaster University, Hamilton, ON, Canada
| | - Mikaela Eng
- Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada
- Department of Medical Sciences, McMaster University, Hamilton, ON, Canada
| | - Doreen Engelberts
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Eva Kuhar
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Sarah K Medeiros
- Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada
- Department of Medical Sciences, McMaster University, Hamilton, ON, Canada
| | - Stephane L Bourque
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, AB, Canada
| | - Gediminas Cepinskas
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Sean E Gill
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Forough Jahandideh
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Kimberly F Macala
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, AB, Canada
- Department of Critical Care Medicine, Royal Alexandra Hospital, University of Alberta, Edmonton, AB, Canada
| | - Sareh Panahi
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, AB, Canada
| | - Cynthia Pape
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada
| | - David Sontag
- Department of Medicine, Section of Critical Care Medicine, Rady Faculty of Health Sciences, University of Manitoba, Health Sciences Centre Winnipeg, Rm GF-234, 820 Sherbrook St, Winnipeg, MB, R3A 1R9, Canada
| | | | - Dean A Fergusson
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Clinical Epidemiology Program, Blueprint Translational Group, Ottawa Hospital Research Institute, 501 Smyth Road, P.O. Box 201B, Ottawa, ON, K1H 8L6, Canada
| | - Alison E Fox-Robichaud
- Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Patricia C Liaw
- Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Manoj M Lalu
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
- Clinical Epidemiology Program, Blueprint Translational Group, Ottawa Hospital Research Institute, 501 Smyth Road, P.O. Box 201B, Ottawa, ON, K1H 8L6, Canada.
- Department of Anesthesiology and Pain Medicine, The Ottawa Hospital, Ottawa, ON, Canada.
| | - Asher A Mendelson
- Department of Medicine, Section of Critical Care Medicine, Rady Faculty of Health Sciences, University of Manitoba, Health Sciences Centre Winnipeg, Rm GF-234, 820 Sherbrook St, Winnipeg, MB, R3A 1R9, Canada.
| |
Collapse
|
11
|
Wang J, Liao L, Chen Y, Chen L, Lai Z, Zhang L. A MODIFIED SURGICAL SEPSIS MODEL SATISFYING SEPSIS-3 AND HAVING HIGH CONSISTENCY OF MORTALITY. Shock 2023; 59:673-683. [PMID: 36821415 PMCID: PMC10082063 DOI: 10.1097/shk.0000000000002096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/04/2023] [Accepted: 02/06/2023] [Indexed: 02/24/2023]
Abstract
ABSTRACT Background : Cecal ligation and perforation (CLP) is currently considered the criterion standard model of sepsis; however, there are some deficiencies, such as low clinical relevance, inconsistency in severity grading, and an unknown proportion of CLP animals meeting the requirements of sepsis-3. Methods : Adult rats were randomly divided into the following three groups: modified CLP (M-CLP) group, CLP group, and sham group. The vital organ function of rats was evaluated 24 hours postoperatively by blood pressure, behavioral testing, histopathology, and blood test. Cytokine levels were determined by enzyme-linked immunosorbent assay, and T-cell suppression was assessed by flow cytometry. The stability of the model was evaluated by comparing the survival rates of repeated experiments in all groups from day 1 to day 14. Results : More rats in the M-CLP group met Sepsis-3 criteria than those in the CLP group 24 hours postoperatively (53.1% vs. 21.9%, P = 0.01). Rats in the M-CLP group developed more serious hepatic, pulmonary, and renal dysfunction. Similar to human sepsis, rats in the M-CLP group demonstrated more serious immunosuppression and systemic inflammation compared with the CLP group. In addition, disease development and severity, which was indicated by the stable survival rates of model animals, were more stable in the M-CLP group. Conclusions : More rats could meet Sepsis-3 criteria with this novel surgical procedure, which may reduce the number of animals needed in preclinical sepsis experiments. This stable M-CLP model may contribute to the development of new therapies.
Collapse
Affiliation(s)
- Jiebo Wang
- Department of Anesthesiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Lianming Liao
- Center of Laboratory Medicine, Union Hospital of Fujian Medical University, Fuzhou, China
| | - Ying Chen
- Department of Anesthesiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan City, China
| | - Liji Chen
- Center of Laboratory Medicine, Union Hospital of Fujian Medical University, Fuzhou, China
| | - Zhongmeng Lai
- Department of Anesthesiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Liangcheng Zhang
- Department of Anesthesiology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
12
|
Zhang M, Fergusson DA, Sharma R, Khoo C, Mendelson AA, McDonald B, Macala KF, Sharma N, Gill SE, Fiest KM, Lehmann C, Shorr R, Jahandideh F, Bourque SL, Liaw PC, Fox-Robichaud A, Lalu MM. Sex-based analysis of treatment responses in animal models of sepsis: a preclinical systematic review protocol. Syst Rev 2023; 12:50. [PMID: 36945012 PMCID: PMC10029211 DOI: 10.1186/s13643-023-02189-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 02/06/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND The importance of investigating sex- and gender-dependent differences has been recently emphasized by major funding agencies. Notably, the influence of biological sex on clinical outcomes in sepsis is unclear, and observational studies suffer from the effect of confounding factors. The controlled experimental environment afforded by preclinical studies allows for clarification and mechanistic evaluation of sex-dependent differences. We propose a systematic review to assess the impact of biological sex on baseline responses to disease induction as well as treatment responses in animal models of sepsis. Given the lack of guidance surrounding sex-based analyses in preclinical systematic reviews, careful consideration of various factors is needed to understand how best to conduct analyses and communicate findings. METHODS MEDLINE and Embase will be searched (2011-present) to identify preclinical studies of sepsis in which any intervention was administered and sex-stratified data reported. The primary outcome will be mortality. Secondary outcomes will include organ dysfunction, bacterial load, and IL-6 levels. Study selection will be conducted independently and in duplicate by two reviewers. Data extraction will be conducted by one reviewer and audited by a second independent reviewer. Data extracted from included studies will be pooled, and meta-analysis will be conducted using random effects modeling. Primary analyses will be stratified by animal age and will assess the impact of sex at the following time points: pre-intervention, in response to treatment, and post-intervention. Risk of bias will be assessed using the SYRCLE's risk-of-bias tool. Illustrative examples of potential methods to analyze sex-based differences are provided in this protocol. DISCUSSION Our systematic review will summarize the current state of knowledge on sex-dependent differences in sepsis. This will identify current knowledge gaps that future studies can address. Finally, this review will provide a framework for sex-based analysis in future preclinical systematic reviews. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42022367726.
Collapse
Affiliation(s)
- MengQi Zhang
- Faculty of Medicine, University of Ottawa, 451 Smyth Rd #2044, Ottawa, ON, K1H 8M5, Canada
- Clinical Epidemiology Program, Blueprint Translational Group, Ottawa Hospital Research Institute, 501 Smyth Box 511, Ottawa, ON, K1H 8L6, Canada
| | - Dean A Fergusson
- Faculty of Medicine, University of Ottawa, 451 Smyth Rd #2044, Ottawa, ON, K1H 8M5, Canada.
- Clinical Epidemiology Program, Blueprint Translational Group, Ottawa Hospital Research Institute, 501 Smyth Box 511, Ottawa, ON, K1H 8L6, Canada.
| | - Rahul Sharma
- Faculty of Medicine, University of Ottawa, 451 Smyth Rd #2044, Ottawa, ON, K1H 8M5, Canada
| | - Ciel Khoo
- Clinical Epidemiology Program, Blueprint Translational Group, Ottawa Hospital Research Institute, 501 Smyth Box 511, Ottawa, ON, K1H 8L6, Canada
| | - Asher A Mendelson
- Department of Internal Medicine, Section of Critical Care Medicine, Rady Faculty of Health Sciences, University of Manitoba, 820 Sherbrook Street, Winnipeg, MB, R3A 1R9, Canada
| | - Braedon McDonald
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Kimberly F Macala
- Department of Critical Care Medicine, Royal Alexandra Hospital, University of Alberta, 2-214 Clinical Science Building, 8440-112Th Street, Edmonton, AB, T6G 2B7, Canada
| | - Neha Sharma
- Department of Medical Sciences and Thrombosis and Atherosclerosis Research Institute, McMaster University, 237 Barton St East, Hamilton, ON, L8L 2X2, Canada
| | - Sean E Gill
- Centre for Critical Illness Research, Lawson Health Research Institutes, Victoria Research Labs, A6-134, 800 Commissioners Road Ease, London, ON, N6A 5W9, Canada
- Division of Respirology, Department of Medicine, Western University, London, ON, Canada
| | - Kirsten M Fiest
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Christian Lehmann
- Department of Anesthesia, Pain Management and Perioperative Medicine, II Health Sciences Centre, 5850 College Street, Halifax, NS, B3H 1X5, Canada
| | - Risa Shorr
- Learning Services, The Ottawa Hospital, Ottawa, ON, Canada
| | - Forough Jahandideh
- Clinical Epidemiology Program, Blueprint Translational Group, Ottawa Hospital Research Institute, 501 Smyth Box 511, Ottawa, ON, K1H 8L6, Canada
- Department of Anesthesiology & Pain Medicine, Katz Group Centre for Pharmacy and Health Research, University of Alberta, 3-020H, Edmonton, AB, T6G 2E1, Canada
| | - Stephane L Bourque
- Department of Anesthesiology & Pain Medicine, Katz Group Centre for Pharmacy and Health Research, University of Alberta, 3-020H, Edmonton, AB, T6G 2E1, Canada
| | - Patricia C Liaw
- Department of Medicine and Thrombosis and Atherosclerosis Research Institute, McMaster University and Hamilton Health Sciences, 237 Barton St East, Hamilton, ON, L8L 2X2, Canada
| | - Alison Fox-Robichaud
- Department of Medicine and Thrombosis and Atherosclerosis Research Institute, McMaster University and Hamilton Health Sciences, 237 Barton St East, Hamilton, ON, L8L 2X2, Canada
| | - Manoj M Lalu
- Clinical Epidemiology Program, Blueprint Translational Group, Ottawa Hospital Research Institute, 501 Smyth Box 511, Ottawa, ON, K1H 8L6, Canada.
- Department of Anesthesiology and Pain Medicine, The Ottawa Hospital, Room B307, 1053 Carling Avenue, Mail Stop 249, Ottawa, ON, K1Y 4E9, Canada.
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Box 511, Ottawa, ON, K1H 8L6, Canada.
| |
Collapse
|
13
|
Chen X, Wu R, Li L, Zeng Y, Chen J, Wei M, Feng Y, Chen G, Wang Y, Lin L, Luo H, Chen A, Zeng Z, He F, Bai Y, Zhang S, Han Y, Wang Z, Zhao X, Xiao W, Jiang Y, Gong S. Pregnancy-induced changes to the gut microbiota drive macrophage pyroptosis and exacerbate septic inflammation. Immunity 2023; 56:336-352.e9. [PMID: 36792573 DOI: 10.1016/j.immuni.2023.01.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 09/18/2022] [Accepted: 01/13/2023] [Indexed: 02/16/2023]
Abstract
The physiological and immune changes that occur during pregnancy are associated with worsened disease outcomes during infection and sepsis. How these perturbations exacerbate inflammation has not been explored. Here, using antibiotic treatment and fecal microbial transfers, we showed that sepsis susceptibility is driven by pregnancy-induced changes to gut microbiome in mice and humans. Integrative multiomics and genetically engineered bacteria revealed that reduced Parabacteroides merdae (P. merdae) abundance during pregnancy led to decreased formononetin (FMN) and increased macrophage death. Mechanistically, FMN inhibited macrophage pyroptosis by suppressing nuclear accumulation of hnRNPUL2 and subsequent binding to the Nlrp3 promoter. Treatment with FMN or deletion of murine hnRNPUL2 protected against septic inflammation. Intestinal abundances of P. merdae and FMN inversely correlated with the progression of septic patients. Our data reveal a microbe-immune axis that is disrupted in pregnant septic hosts, highlighting the potential of the FMN-hnRNPUL2-NLRP3 axis in providing promising therapeutic strategies for sepsis.
Collapse
Affiliation(s)
- Xia Chen
- Department of Obstetrics and Gynecology, First People's Hospital of Foshan, Foshan 528000, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Rong Wu
- Department of Obstetrics and Gynecology, First People's Hospital of Foshan, Foshan 528000, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Lei Li
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yunong Zeng
- Department of Obstetrics and Gynecology, First People's Hospital of Foshan, Foshan 528000, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jingrui Chen
- Department of Obstetrics and Gynecology, First People's Hospital of Foshan, Foshan 528000, China
| | - Mingyuan Wei
- Institute of Ecological Science, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yinglin Feng
- Department of Obstetrics and Gynecology, First People's Hospital of Foshan, Foshan 528000, China
| | - Guiming Chen
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yuhang Wang
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lizhen Lin
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Haihua Luo
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ali Chen
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhenhua Zeng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Fangjie He
- Department of Obstetrics and Gynecology, First People's Hospital of Foshan, Foshan 528000, China
| | - Yang Bai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Siyou Zhang
- Department of Obstetrics and Gynecology, First People's Hospital of Foshan, Foshan 528000, China
| | - Yubing Han
- Department of Obstetrics and Gynecology, First People's Hospital of Foshan, Foshan 528000, China
| | - Zhang Wang
- Institute of Ecological Science, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Xiaoshan Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Wei Xiao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China.
| | - Yong Jiang
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Shenhai Gong
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
14
|
Vandewalle J, Garcia B, Timmermans S, Vanderhaeghen T, Van Wyngene L, Eggermont M, Dufoor H, Van Dender C, Halimi F, Croubels S, Herpain A, Libert C. Hepatic Peroxisome Proliferator-Activated Receptor Alpha Dysfunction in Porcine Septic Shock. Cells 2022; 11:cells11244080. [PMID: 36552845 PMCID: PMC9777423 DOI: 10.3390/cells11244080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Despite decades of research, sepsis remains one of the most urgent unmet medical needs. Mechanistic investigations into sepsis have mainly focused on targeting inflammatory pathways; however, recent data indicate that sepsis should also be seen as a metabolic disease. Targeting metabolic dysregulations that take place in sepsis might uncover novel therapeutic opportunities. The role of peroxisome proliferator-activated receptor alpha (PPARɑ) in liver dysfunction during sepsis has recently been described, and restoring PPARɑ signaling has proven to be successful in mouse polymicrobial sepsis. To confirm that such therapy might be translated to septic patients, we analyzed metabolic perturbations in the liver of a porcine fecal peritonitis model. Resuscitation with fluids, vasopressor, antimicrobial therapy and abdominal lavage were applied to the pigs in order to mimic human clinical care. By using RNA-seq, we detected downregulated PPARɑ signaling in the livers of septic pigs and that reduced PPARɑ levels correlated well with disease severity. As PPARɑ regulates the expression of many genes involved in fatty acid oxidation, the reduced expression of these target genes, concomitant with increased free fatty acids in plasma and ectopic lipid deposition in the liver, was observed. The results obtained with pigs are in agreement with earlier observations seen in mice and support the potential of targeting defective PPARɑ signaling in clinical research.
Collapse
Affiliation(s)
- Jolien Vandewalle
- VIB Center for Inflammation Research, VIB, 9052 Ghent, Belgium
- Department for Biomedical Molecular Biology, Faculty of Sciences, Ghent University, 9052 Ghent, Belgium
- Correspondence: (J.V.); (C.L.)
| | - Bruno Garcia
- Experimental Laboratory of Intensive Care, Université Libre de Bruxelles, 1050 Brussels, Belgium
- Department of Intensive Care, Centre Hospitalier Universitaire de Lille, 59000 Lille, France
| | - Steven Timmermans
- VIB Center for Inflammation Research, VIB, 9052 Ghent, Belgium
- Department for Biomedical Molecular Biology, Faculty of Sciences, Ghent University, 9052 Ghent, Belgium
| | - Tineke Vanderhaeghen
- VIB Center for Inflammation Research, VIB, 9052 Ghent, Belgium
- Department for Biomedical Molecular Biology, Faculty of Sciences, Ghent University, 9052 Ghent, Belgium
| | - Lise Van Wyngene
- VIB Center for Inflammation Research, VIB, 9052 Ghent, Belgium
- Department for Biomedical Molecular Biology, Faculty of Sciences, Ghent University, 9052 Ghent, Belgium
| | - Melanie Eggermont
- VIB Center for Inflammation Research, VIB, 9052 Ghent, Belgium
- Department for Biomedical Molecular Biology, Faculty of Sciences, Ghent University, 9052 Ghent, Belgium
| | - Hester Dufoor
- VIB Center for Inflammation Research, VIB, 9052 Ghent, Belgium
- Department for Biomedical Molecular Biology, Faculty of Sciences, Ghent University, 9052 Ghent, Belgium
| | - Céline Van Dender
- VIB Center for Inflammation Research, VIB, 9052 Ghent, Belgium
- Department for Biomedical Molecular Biology, Faculty of Sciences, Ghent University, 9052 Ghent, Belgium
| | - Fëllanza Halimi
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Siska Croubels
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Antoine Herpain
- Experimental Laboratory of Intensive Care, Université Libre de Bruxelles, 1050 Brussels, Belgium
- Department of Intensive Care, Erasme University Hospital—HUB, Université Libre de Bruxelles, 1050 Brussels, Belgium
- Department of Intensive Care, St.-Pierre University Hospital, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Claude Libert
- VIB Center for Inflammation Research, VIB, 9052 Ghent, Belgium
- Department for Biomedical Molecular Biology, Faculty of Sciences, Ghent University, 9052 Ghent, Belgium
- Correspondence: (J.V.); (C.L.)
| |
Collapse
|
15
|
Ledesma M, Todero MF, Maceira L, Prieto M, Vay C, Galas M, López B, Yokobori N, Rearte B. Peptidome profiling for the immunological stratification in sepsis: a proof of concept study. Sci Rep 2022; 12:11469. [PMID: 35794460 PMCID: PMC9259554 DOI: 10.1038/s41598-022-15792-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/29/2022] [Indexed: 11/09/2022] Open
Abstract
Sepsis has been called the graveyard of pharmaceutical companies due to the numerous failed clinical trials. The lack of tools to monitor the immunological status in sepsis constrains the development of therapies. Here, we evaluated a test based on whole plasma peptidome acquired by MALDI-TOF-mass spectrometer and machine-learning algorithms to discriminate two lipopolysaccharide-(LPS) induced murine models emulating the pro- and anti-inflammatory/immunosuppression environments that can be found during sepsis. The LPS group was inoculated with a single high dose of LPS and the IS group was subjected to increasing doses of LPS, to induce proinflammatory and anti-inflammatory/immunosuppression profiles respectively. The LPS group showed leukopenia and higher levels of cytokines and tissue damage markers, and the IS group showed neutrophilia, lymphopenia and decreased humoral response. Principal component analysis of the plasma peptidomes formed discrete clusters that mostly coincided with the experimental groups. In addition, machine-learning algorithms discriminated the different experimental groups with a sensitivity of 95.7% and specificity of 90.9%. Data reveal the potential of plasma fingerprints analysis by MALDI-TOF-mass spectrometry as a simple, speedy and readily transferrable method for sepsis patient stratification that would contribute to therapeutic decision-making based on their immunological status.
Collapse
Affiliation(s)
- Martín Ledesma
- Laboratorio de Bacteriología, Departamento de Bioquímica Clínica, Hospital de Clínicas "José de San Martín", Facultad de Farmacia y Bioquímica, UBA, Av. Córdoba 2351, C1120, CABA, Argentina.,Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, CABA, Argentina
| | - María Florencia Todero
- Instituto de Medicina Experimental (IMEX) - CONICET - Academia Nacional de Medicina, Pacheco de Melo 3081, C1425AUM, CABA, Argentina
| | - Lautaro Maceira
- Instituto de Medicina Experimental (IMEX) - CONICET - Academia Nacional de Medicina, Pacheco de Melo 3081, C1425AUM, CABA, Argentina
| | - Mónica Prieto
- Servicio de Bacteriología Especial. Instituto Nacional de Enfermedades Infecciosas (INEI), ANLIS "Dr. C. G. Malbrán", Av. Vélez Sarsfield 563, C1282AFF, CABA, Argentina
| | - Carlos Vay
- Laboratorio de Bacteriología, Departamento de Bioquímica Clínica, Hospital de Clínicas "José de San Martín", Facultad de Farmacia y Bioquímica, UBA, Av. Córdoba 2351, C1120, CABA, Argentina
| | - Marcelo Galas
- Special Program of AMR, Communicable Diseases and Environmental Determinants of Health Department, Pan-American Health Organization, 525 23rd St NW, Washington, DC, 20037, USA
| | - Beatriz López
- Departamento de Bacteriología. INEI, ANLIS "Dr. C. G. Malbrán", Av. Vélez Sarsfield 563, C1282AFF, CABA, Argentina
| | - Noemí Yokobori
- Servicio de Micobacterias INEI, ANLIS "Dr. C. G. Malbrán", Av. Vélez Sarsfield 563, C1282AFF, CABA, Argentina.,Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, CABA, Argentina
| | - Bárbara Rearte
- Instituto de Medicina Experimental (IMEX) - CONICET - Academia Nacional de Medicina, Pacheco de Melo 3081, C1425AUM, CABA, Argentina. .,Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, CABA, Argentina.
| |
Collapse
|
16
|
Chen T, Fang Z, Zhu J, Lv Y, Li D, Pan J. ACE2 Promoted by STAT3 Activation Has a Protective Role in Early-Stage Acute Kidney Injury of Murine Sepsis. Front Med (Lausanne) 2022; 9:890782. [PMID: 35733865 PMCID: PMC9207930 DOI: 10.3389/fmed.2022.890782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/25/2022] [Indexed: 12/04/2022] Open
Abstract
Sepsis-induced AKI (SIAKI) is the most common complication with unacceptable mortality in hospitalized and critically ill patients. The pathophysiology of the development of SIAKI is still poorly understood. Our recent work has demonstrated the role of signal transducer and activator of transcription 3 (STAT3) pathways in regulating inflammation and coagulation in sepsis. We hypothesized that STAT3 activation has a critical role in early-stage SIAKI. The early-stage SIAKI model was established in cecal ligation and puncture (CLP) mice, which recapitulates the clinical and renal pathological features of early-stage AKI patients. Brush border loss (BBL) was the specific pathological feature of acute tubular injury in early-stage AKI. The role of STAT3 signaling and angiotension system in early-stage SIAKI was evaluated. The STAT3 activation (increased pSTAT3) and increased angiotensin-converting enzyme 2 (ACE2) expressions were observed in CLP mice. The low responsive expressions of pSTAT3 and ACE2 to septic inflammation in CLP AKI mice were associated with BBL. Correlation analysis of proteins' expressions showed pSTAT3 expression was significantly positively related to ACE2 expression in CLP mice. Reduced pSTAT3 after S3I201 intervention, which blocked STAT3 phosphorylation, decreased ACE2 expression, and exacerbated tubular injury in early-stage SIAKI. Our data indicate that endogenous increase of ACE2 expression upregulated by STAT3 activation in early-stage SIAKI play protective role against acute tubular injury.
Collapse
Affiliation(s)
- Tianxin Chen
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhendong Fang
- Department of Key Laboratory of Intelligent Critical Care and Life Support Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianfen Zhu
- Department of Endoscopy Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yinqiu Lv
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Duo Li
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jingye Pan
- Department of Key Laboratory of Intelligent Critical Care and Life Support Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of ICU, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Jingye Pan
| |
Collapse
|
17
|
Hof S, Marcus C, Kuebart A, Schulz J, Truse R, Raupach A, Bauer I, Flögel U, Picker O, Herminghaus A, Temme S. A Toolbox to Investigate the Impact of Impaired Oxygen Delivery in Experimental Disease Models. Front Med (Lausanne) 2022; 9:869372. [PMID: 35652064 PMCID: PMC9149176 DOI: 10.3389/fmed.2022.869372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/25/2022] [Indexed: 12/29/2022] Open
Abstract
Impaired oxygen utilization is the underlying pathophysiological process in different shock states. Clinically most important are septic and hemorrhagic shock, which comprise more than 75% of all clinical cases of shock. Both forms lead to severe dysfunction of the microcirculation and the mitochondria that can cause or further aggravate tissue damage and inflammation. However, the detailed mechanisms of acute and long-term effects of impaired oxygen utilization are still elusive. Importantly, a defective oxygen exploitation can impact multiple organs simultaneously and organ damage can be aggravated due to intense organ cross-talk or the presence of a systemic inflammatory response. Complexity is further increased through a large heterogeneity in the human population, differences in genetics, age and gender, comorbidities or disease history. To gain a deeper understanding of the principles, mechanisms, interconnections and consequences of impaired oxygen delivery and utilization, interdisciplinary preclinical as well as clinical research is required. In this review, we provide a "tool-box" that covers widely used animal disease models for septic and hemorrhagic shock and methods to determine the structure and function of the microcirculation as well as mitochondrial function. Furthermore, we suggest magnetic resonance imaging as a multimodal imaging platform to noninvasively assess the consequences of impaired oxygen delivery on organ function, cell metabolism, alterations in tissue textures or inflammation. Combining structural and functional analyses of oxygen delivery and utilization in animal models with additional data obtained by multiparametric MRI-based techniques can help to unravel mechanisms underlying immediate effects as well as long-term consequences of impaired oxygen delivery on multiple organs and may narrow the gap between experimental preclinical research and the human patient.
Collapse
Affiliation(s)
- Stefan Hof
- Department of Anaesthesiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Carsten Marcus
- Department of Anaesthesiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Anne Kuebart
- Department of Anaesthesiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Jan Schulz
- Department of Anaesthesiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Richard Truse
- Department of Anaesthesiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Annika Raupach
- Department of Anaesthesiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Inge Bauer
- Department of Anaesthesiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging, Department of Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Olaf Picker
- Department of Anaesthesiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Anna Herminghaus
- Department of Anaesthesiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sebastian Temme
- Department of Anaesthesiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
18
|
Minasyan H. Oxygen therapy for sepsis and prevention of complications. Acute Crit Care 2022; 37:137-150. [PMID: 35545238 PMCID: PMC9184979 DOI: 10.4266/acc.2021.01200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/16/2021] [Indexed: 11/30/2022] Open
Abstract
Patients with sepsis have a wide range of respiratory disorders that can be treated with oxygen therapy. Experimental data in animal sepsis models show that oxygen therapy significantly increases survival, while clinical data on the use of different oxygen therapy protocols are ambiguous. Oxygen therapy, especially hyperbaric oxygenation, in patients with sepsis can aggravate existing oxidative stress and contribute to the development of disseminated intravascular coagulation. The purpose of this article is to compare experimental and clinical data on oxygen therapy in animals and humans, to discuss factors that can influence the results of oxygen therapy for sepsis treatment in humans, and to provide some recommendations for reducing oxidative stress and preventing disseminated intravascular coagulation during oxygen therapy.
Collapse
|
19
|
Beneficial effects of citrulline enteral administration on sepsis-induced T cell mitochondrial dysfunction. Proc Natl Acad Sci U S A 2022; 119:2115139119. [PMID: 35173051 PMCID: PMC8872724 DOI: 10.1073/pnas.2115139119] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2021] [Indexed: 12/13/2022] Open
Abstract
Since sepsis induces a sustained immunosuppression responsible for secondary infections acquisition and late mortality, restoring immune function would result in a better outcome. Given the role of arginine deficiency in T cell dysfunction, the evaluation of restoring arginine availability in sepsis has to be explored. Using an animal model of sepsis, we demonstrated that increasing arginine availability enhanced mitochondrial T cell function and decreased sepsis-induced immunosuppression. Severe sepsis induces a sustained immune dysfunction associated with poor clinical behavior. In particular, lymphopenia along with increased lymphocyte apoptosis and decreased lymphocyte proliferation, enhanced circulating regulatory T cells (Treg), and the emergence of myeloid-derived suppressor cells (MDSCs) have all been associated with persistent organ dysfunction, secondary infections, and late mortality. The mechanisms involved in MDSC-mediated T cell dysfunction during sepsis share some features with those described in malignancies such as arginine deprivation. We hypothesized that increasing arginine availability would restore T cell function and decrease sepsis-induced immunosuppression. Using a mouse model of sepsis based on cecal ligation and puncture and secondary pneumonia triggered by methicillin-resistant Staphylococcus aureus inoculation, we demonstrated that citrulline administration was more efficient than arginine in increasing arginine plasma levels and restoring T cell mitochondrial function and proliferation while reducing sepsis-induced Treg and MDSC expansion. Because there is no specific therapeutic strategy to restore immune function after sepsis, we believe that our study provides evidence for developing citrulline-based clinical studies in sepsis.
Collapse
|
20
|
Lee D, Lee E, Jang S, Kim K, Cho E, Mun SJ, Son W, Jeon HI, Kim HK, Jeong YJ, Lee Y, Oh JE, Yoo HH, Lee Y, Min SJ, Yang CS. Discovery of Mycobacterium tuberculosis Rv3364c-Derived Small Molecules as Potential Therapeutic Agents to Target SNX9 for Sepsis. J Med Chem 2022; 65:386-408. [PMID: 34982557 DOI: 10.1021/acs.jmedchem.1c01551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The serine protease inhibitor Rv3364c of Mycobacterium tuberculosis (MTB) is highly expressed in cells during MTB exposure. In this study, we showed that the 12WLVSKF17 motif of Rv3364c interacts with the BAR domain of SNX9 and inhibits endosome trafficking to interact with p47phox, thereby suppressing TLR4 inflammatory signaling in macrophages. Derived from the structure of this Rv3364c peptide motif, 2,4-diamino-6-(4-tert-butylphenyl)-1,3,5-trazine, DATPT as a 12WLVSKF17 peptide-mimetic small molecule has been identified. DATPT can block the SNX9-p47phox interaction in the endosome and suppress reactive oxygen species and inflammatory cytokine production; it demonstrated significant therapeutic effects in a mouse model of cecal ligation and puncture-induced sepsis. DATPT has considerably improved potency, with an IC50 500-fold (in vitro) or 2000-fold (in vivo) lower than that of the 12WLVSKF17 peptide. Furthermore, DATPT shows potent antibacterial activities by reduction in ATP production and leakage of intracellular ATP out of bacteria. These results provide evidence for peptide-derived small molecule DATPT with anti-inflammatory and antibacterial functions for the treatment of sepsis.
Collapse
Affiliation(s)
- Daeun Lee
- Department of Molecular and Life Science, Hanyang University, Ansan 15588, S. Korea
| | - Eunbi Lee
- Department of Applied Chemistry, Hanyang University, Ansan 15588, S. Korea.,Center for Bionano Intelligence Education and Research, Ansan 15588, S. Korea
| | - Sein Jang
- Department of Molecular and Life Science, Hanyang University, Ansan 15588, S. Korea.,Center for Bionano Intelligence Education and Research, Ansan 15588, S. Korea
| | - Kyungmin Kim
- Department of Applied Chemistry, Hanyang University, Ansan 15588, S. Korea.,Center for Bionano Intelligence Education and Research, Ansan 15588, S. Korea
| | - Euni Cho
- Center for Bionano Intelligence Education and Research, Ansan 15588, S. Korea.,Department of Bionano Technology, Hanyang University, Seoul 04673, S. Korea
| | - Seok-Jun Mun
- Center for Bionano Intelligence Education and Research, Ansan 15588, S. Korea.,Department of Bionano Technology, Hanyang University, Seoul 04673, S. Korea
| | - Wooic Son
- Department of Molecular and Life Science, Hanyang University, Ansan 15588, S. Korea.,Center for Bionano Intelligence Education and Research, Ansan 15588, S. Korea
| | - Hye-In Jeon
- Department of Molecular and Life Science, Hanyang University, Ansan 15588, S. Korea.,Center for Bionano Intelligence Education and Research, Ansan 15588, S. Korea
| | - Hyo Keun Kim
- Department of Molecular and Life Science, Hanyang University, Ansan 15588, S. Korea.,Center for Bionano Intelligence Education and Research, Ansan 15588, S. Korea
| | - Young Jin Jeong
- Department of Molecular and Life Science, Hanyang University, Ansan 15588, S. Korea.,Center for Bionano Intelligence Education and Research, Ansan 15588, S. Korea
| | - Yuno Lee
- Korea Chemical Bank, Korea Research Institute of Chemical Technology, Daejeon 34114, S. Korea
| | - Ji Eun Oh
- Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan 15588, S. Korea
| | - Hye Hyun Yoo
- Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan 15588, S. Korea
| | - Youngbok Lee
- Department of Applied Chemistry, Hanyang University, Ansan 15588, S. Korea.,Center for Bionano Intelligence Education and Research, Ansan 15588, S. Korea.,Department of Chemical & Molecular Engineering, Hanyang University, Ansan 15588, S. Korea
| | - Sun-Joon Min
- Department of Applied Chemistry, Hanyang University, Ansan 15588, S. Korea.,Center for Bionano Intelligence Education and Research, Ansan 15588, S. Korea.,Department of Chemical & Molecular Engineering, Hanyang University, Ansan 15588, S. Korea
| | - Chul-Su Yang
- Department of Molecular and Life Science, Hanyang University, Ansan 15588, S. Korea.,Center for Bionano Intelligence Education and Research, Ansan 15588, S. Korea
| |
Collapse
|
21
|
Urban C, Hayes HV, Piraino G, Wolfe V, Lahni P, O'Connor M, Phares C, Zingarelli B. Colivelin, a synthetic derivative of humanin, ameliorates endothelial injury and glycocalyx shedding after sepsis in mice. Front Immunol 2022; 13:984298. [PMID: 36119052 PMCID: PMC9478210 DOI: 10.3389/fimmu.2022.984298] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/15/2022] [Indexed: 11/19/2022] Open
Abstract
Endothelial dysfunction plays a central role in the pathogenesis of sepsis-mediated multiple organ failure. Several clinical and experimental studies have suggested that the glycocalyx is an early target of endothelial injury during an infection. Colivelin, a synthetic derivative of the mitochondrial peptide humanin, has displayed cytoprotective effects in oxidative conditions. In the current study, we aimed to determine the potential therapeutic effects of colivelin in endothelial dysfunction and outcomes of sepsis in vivo. Male C57BL/6 mice were subjected to a clinically relevant model of polymicrobial sepsis by cecal ligation and puncture (CLP) and were treated with vehicle or colivelin (100-200 µg/kg) intraperitoneally at 1 h after CLP. We observed that vehicle-treated mice had early elevation of plasma levels of the adhesion molecules ICAM-1 and P-selectin, the angiogenetic factor endoglin and the glycocalyx syndecan-1 at 6 h after CLP when compared to control mice, while levels of angiopoietin-2, a mediator of microvascular disintegration, and the proprotein convertase subtilisin/kexin type 9, an enzyme implicated in clearance of endotoxins, raised at 18 h after CLP. The early elevation of these endothelial and glycocalyx damage biomarkers coincided with lung histological injury and neutrophil inflammation in lung, liver, and kidneys. At transmission electron microscopy analysis, thoracic aortas of septic mice showed increased glycocalyx breakdown and shedding, and damaged mitochondria in endothelial and smooth muscle cells. Treatment with colivelin ameliorated lung architecture, reduced organ neutrophil infiltration, and attenuated plasma levels of syndecan-1, tumor necrosis factor-α, macrophage inflammatory protein-1α and interleukin-10. These therapeutic effects of colivelin were associated with amelioration of glycocalyx density and mitochondrial structure in the aorta. At molecular analysis, colivelin treatment was associated with inhibition of the signal transducer and activator of transcription 3 and activation of the AMP-activated protein kinase in the aorta and lung. In long-term outcomes studies up to 7 days, co-treatment of colivelin with antimicrobial agents significantly reduced the disease severity score when compared to treatment with antibiotics alone. In conclusion, our data support that damage of the glycocalyx is an early pathogenetic event during sepsis and that colivelin may have therapeutic potential for the treatment of sepsis-associated endothelial dysfunction.
Collapse
Affiliation(s)
- Catherine Urban
- Division of Pediatric Critical Care, Stony Brook Children's, Stony Brook University, Stony Brook, NY, United States
| | - Hannah V Hayes
- Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Giovanna Piraino
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Vivian Wolfe
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Patrick Lahni
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Michael O'Connor
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Ciara Phares
- Department of Systems Biology and Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Basilia Zingarelli
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
22
|
Vale A, Nascimento D, Pineros A, Ferreira R, Santos J, Aragon D, Cunha F, Ramalho F, Alves-Filho J, Carlotti A. Riboflavin did not provide anti-inflammatory or antioxidant effects in an experimental model of sepsis. Braz J Med Biol Res 2022; 55:e12107. [PMID: 35648977 PMCID: PMC9150426 DOI: 10.1590/1414-431x2022e12107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/13/2022] [Indexed: 11/22/2022] Open
Abstract
We aimed to evaluate whether the administration of riboflavin to septic animals reduces inflammation, oxidative stress, organ dysfunction, and mortality. C57BL/6 mice, 6-8 weeks old, were allocated to the study group (polymicrobial sepsis induced by cecal ligation and puncture (CLP) + antibiotic + iv riboflavin), control (CLP + antibiotic + iv saline), or naïve (non-operated controls). Serum concentrations of alanine aminotransferase (ALT), creatine kinase-MB (CK-MB), urea, and creatinine, and markers of inflammation [interleukin (IL)-6, tumor necrosis factor (TNF)-α, keratinocyte-derived chemokine (KC), and macrophage inflammatory protein (MIP)-2)], and oxidative stress (malondialdehyde (MDA) were measured 12 h after the experiment. Animal survival rates were calculated after 7 days. Means between groups were compared using linear regression models adjusted under the Bayesian approach. No significant difference was observed between control and study groups in serum concentrations of IL-6 (95% credible interval) (-0.35 to 0.44), TNF-α (-15.7 to 99.1), KC (-0.13 to 0.05), MIP-2 (-0.84 to 0.06), MDA (-1.25 to 2.53), or ALT (-6.6 to 11.5). Serum concentrations of CK-MB (-145.1 to -30.1), urea (-114.7 to -15.1), and creatinine (-1.14 to -0.01) were higher in the study group. Survival was similar in both groups (P=0.8). Therefore, the use of riboflavin in mice undergoing sepsis induced by CLP did not reduce inflammation, oxidative stress, organ dysfunction, or mortality compared with placebo.
Collapse
|
23
|
Analgesia and Humane Endpoints for Rodents in Sepsis Research. Methods Mol Biol 2021. [PMID: 34048020 DOI: 10.1007/978-1-0716-1488-4_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Numerous regulatory bodies around the world require analgesics for rodents undergoing surgery to induce sepsis. Well-controlled pain will decrease morbidity. Options for analgesics include NSAIDs, local analgesics, and opioids. Supportive care can also decrease stress to post-operative animals. As well, humane endpoints should be agreed upon before the study commences so as to alleviate unnecessary pain and distress.
Collapse
|
24
|
First Do No Harm: A Proposal of an Expert-Guided Framework of Surrogate Humane Endpoints in Preclinical Models of Acute Lung Injury. Crit Care Med 2021; 49:373-375. [PMID: 33438977 DOI: 10.1097/ccm.0000000000004758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Laitano O, Pindado J, Valera I, Spradlin RA, Murray KO, Villani KR, Alzahrani JM, Ryan TE, Efron PA, Ferreira LF, Barton ER, Clanton TL. The impact of hindlimb disuse on sepsis-induced myopathy in mice. Physiol Rep 2021; 9:e14979. [PMID: 34309237 PMCID: PMC8311555 DOI: 10.14814/phy2.14979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 11/24/2022] Open
Abstract
Sepsis induces a myopathy characterized by loss of muscle mass and weakness. Septic patients undergo prolonged periods of limb muscle disuse due to bed rest. The contribution of limb muscle disuse to the myopathy phenotype remains poorly described. To characterize sepsis-induced myopathy with hindlimb disuse, we combined the classic sepsis model via cecal ligation and puncture (CLP) with the disuse model of hindlimb suspension (HLS) in mice. Male C57bl/6j mice underwent CLP or SHAM surgeries. Four days after surgeries, mice underwent HLS or normal ambulation (NA) for 7 days. Soleus (SOL) and extensor digitorum longus (EDL) were dissected for in vitro muscle mechanics, morphological, and histological assessments. In SOL muscles, both CLP+NA and SHAM+HLS conditions elicited ~20% reduction in specific force (p < 0.05). When combined, CLP+HLS elicited ~35% decrease in specific force (p < 0.05). Loss of maximal specific force (~8%) was evident in EDL muscles only in CLP+HLS mice (p < 0.05). CLP+HLS reduced muscle fiber cross-sectional area (CSA) and mass in SOL (p < 0.05). In EDL muscles, CLP+HLS decreased absolute mass to a smaller extent (p < 0.05) with no changes in CSA. Immunohistochemistry revealed substantial myeloid cell infiltration (CD68+) in SOL, but not in EDL muscles, of CLP+HLS mice (p < 0.05). Combining CLP with HLS is a feasible model to study sepsis-induced myopathy in mice. Hindlimb disuse combined with sepsis induced muscle dysfunction and immune cell infiltration in a muscle dependent manner. These findings highlight the importance of rehabilitative interventions in septic hosts to prevent muscle disuse and help attenuate the myopathy.
Collapse
Affiliation(s)
- Orlando Laitano
- Department of Nutrition and Integrative PhysiologyCollege of Health and Human SciencesFlorida State UniversityTallahasseeFLUSA
| | - Jose Pindado
- Department of Nutrition and Integrative PhysiologyCollege of Health and Human SciencesFlorida State UniversityTallahasseeFLUSA
| | - Isela Valera
- Department of Nutrition and Integrative PhysiologyCollege of Health and Human SciencesFlorida State UniversityTallahasseeFLUSA
| | - Ray A. Spradlin
- Department of Applied Physiology and KinesiologyCollege of Health and Human PerformanceUniversity of FloridaGainesvilleFLUSA
| | - Kevin O. Murray
- Department of Applied Physiology and KinesiologyCollege of Health and Human PerformanceUniversity of FloridaGainesvilleFLUSA
| | - Katelyn R. Villani
- Department of Applied Physiology and KinesiologyCollege of Health and Human PerformanceUniversity of FloridaGainesvilleFLUSA
| | - Jamal M. Alzahrani
- Department of Applied Physiology and KinesiologyCollege of Health and Human PerformanceUniversity of FloridaGainesvilleFLUSA
| | - Terence E. Ryan
- Department of Applied Physiology and KinesiologyCollege of Health and Human PerformanceUniversity of FloridaGainesvilleFLUSA
| | - Philip A. Efron
- Department of SurgeryCollege of MedicineUniversity of FloridaGainesvilleFLUSA
| | - Leonardo F. Ferreira
- Department of Applied Physiology and KinesiologyCollege of Health and Human PerformanceUniversity of FloridaGainesvilleFLUSA
| | - Elisabeth R. Barton
- Department of Applied Physiology and KinesiologyCollege of Health and Human PerformanceUniversity of FloridaGainesvilleFLUSA
| | - Thomas L. Clanton
- Department of Applied Physiology and KinesiologyCollege of Health and Human PerformanceUniversity of FloridaGainesvilleFLUSA
| |
Collapse
|
26
|
The Effects of Biological Sex on Sepsis Treatments in Animal Models: A Systematic Review and a Narrative Elaboration on Sex- and Gender-Dependent Differences in Sepsis. Crit Care Explor 2021; 3:e0433. [PMID: 34151276 PMCID: PMC8205191 DOI: 10.1097/cce.0000000000000433] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Preclinical studies provide an opportunity to evaluate the relationship between sex and sepsis, and investigate underlying mechanisms in a controlled experimental environment. The objective of our systematic review was to assess the impact of biological sex on treatment response to fluid and antibiotic therapy in animal models of sepsis. Furthermore, we provide a narrative elaboration of sex-dependent differences in preclinical models of sepsis. DATA SOURCES MEDLINE and Embase were searched from inception to March 16, 2020. STUDY SELECTION All studies reporting sex-stratified data comparing antibiotics and/or fluid resuscitation with a placebo or no treatment arm in an in vivo model of sepsis were included. DATA EXTRACTION Outcomes of interest were mortality (primary) and organ dysfunction (secondary). Risk of bias was assessed. Study selection and data extraction were conducted independently and in duplicate. DATA SYNTHESIS The systematic search returned 2,649 unique studies, and two met inclusion criteria. Both studies used cecal ligation and puncture models with imipenem/cilastatin antibiotics. No eligible studies investigated fluids. In one study, antibiotic therapy significantly reduced mortality in male, but not female, animals. The other study reported no sex differences in organ dysfunction. Both studies were deemed to be at a high overall risk of bias. CONCLUSIONS There is a remarkable and concerning paucity of data investigating sex-dependent differences in fluid and antibiotic therapy for the treatment of sepsis in animal models. This may reflect poor awareness of the importance of investigating sex-dependent differences. Our discussion therefore expands on general concepts of sex and gender in biomedical research and sex-dependent differences in key areas of sepsis research such as the cardiovascular system, immunometabolism, the microbiome, and epigenetics. Finally, we discuss current clinical knowledge, the potential for reverse translation, and directions for future studies. REGISTRATION PROSPERO CRD42020192738.
Collapse
|
27
|
Abstract
ABSTRACT The ARRIVE (Animals in Research: Reporting In Vivo Experiments) guidelines were endorsed by the Shock Society in 2012, but to date there has been no systematic evaluation of research reporting quality for Shock. We systematically assessed 100 randomly selected animal-based research articles published between 2014 and 2018 for reporting quality and statistical practice, compared with 40 pre-ARRIVE studies. More than half of surveyed papers omitted verifiable ethical oversight information and basic animal descriptive information. Few papers reported best-practice methods, such as sample size justification (10%), randomization (43%), randomization method (7%), blinding (23%). Only one paper reported effect sizes to interpret study results. Most troubling was inadequate reporting of welfare-related information (anesthesia, analgesia, humane endpoints, euthanasia). Almost a decade after ARRIVE endorsement, our findings show that reporting deficiencies have persisted with little sign of correction. There is a clear need for investigators to increase transparency of research methods reporting, and drastically improve skills in experimental design. Improvement in standards and greater attention paid to reporting will lead to improvement in reproducibility, replicability, and research quality. It is incumbent upon the research community to improve reporting practices; accurate and transparent reporting is integral to producing rigorous and ethical science.
Collapse
Affiliation(s)
- Penny S Reynolds
- Department of Anesthesiology, Statistics in Anesthesiology Research (STAR) Core, College of Medicine, University of Florida, Gainesville, Florida
| | | |
Collapse
|
28
|
Winkler MS, Skirecki T, Brunkhorst FM, Cajander S, Cavaillon JM, Ferrer R, Flohé SB, García-Salido A, Giamarellos-Bourboulis EJ, Girardis M, Kox M, Lachmann G, Martin-Loeches I, Netea MG, Spinetti T, Schefold JC, Torres A, Uhle F, Venet F, Weis S, Scherag A, Rubio I, Osuchowski MF. Bridging animal and clinical research during SARS-CoV-2 pandemic: A new-old challenge. EBioMedicine 2021; 66:103291. [PMID: 33813139 PMCID: PMC8016444 DOI: 10.1016/j.ebiom.2021.103291] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/22/2021] [Accepted: 03/05/2021] [Indexed: 02/07/2023] Open
Abstract
Many milestones in medical history rest on animal modeling of human diseases. The SARS-CoV-2 pandemic has evoked a tremendous investigative effort primarily centered on clinical studies. However, several animal SARS-CoV-2/COVID-19 models have been developed and pre-clinical findings aimed at supporting clinical evidence rapidly emerge. In this review, we characterize the existing animal models exposing their relevance and limitations as well as outline their utility in COVID-19 drug and vaccine development. Concurrently, we summarize the status of clinical trial research and discuss the novel tactics utilized in the largest multi-center trials aiming to accelerate generation of reliable results that may subsequently shape COVID-19 clinical treatment practices. We also highlight areas of improvement for animal studies in order to elevate their translational utility. In pandemics, to optimize the use of strained resources in a short time-frame, optimizing and strengthening the synergy between the preclinical and clinical domains is pivotal.
Collapse
Affiliation(s)
- Martin S Winkler
- Department of Anesthesiology, Emergency and Intensive Care Medicine, University of Göttingen, Göttingen, Robert-Koch-Str. 40, 37085 Göttingen, Germany
| | - Tomasz Skirecki
- Laboratory of Flow Cytometry, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Frank M Brunkhorst
- Dept. of Anesthesiology and Intensive Care Medicine & Center for Sepsis Control and Care (CSCC), Jena University Hospital-Friedrich Schiller University, Am Klinikum 1, 07747 Jena, Germany; Center for Clinical Studies, Jena University Hospital, 07747 Jena, Germany
| | - Sara Cajander
- Department of Infectious Diseases, Faculty of Medicine and Health, Örebro University, Sweden
| | | | - Ricard Ferrer
- Intensive Care Department and Shock, Organ Dysfunction and Resuscitation Research Group, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, Barcelona, 08035, Spain; Centro de Investigación Biomedica En Red-Enfermedades Respiratorias (CibeRes, CB06/06/0028), Instituto de salud Carlos III (ISCIII), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain
| | - Stefanie B Flohé
- Department of Trauma, Hand, and Reconstructive Surgery, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Alberto García-Salido
- Pediatric Critical Care Unit, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | | | - Massimo Girardis
- Department of Anesthesia and Intensive Care, University Hospital of Modena, Italy
| | - Matthijs Kox
- Department of Intensive Care Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Gunnar Lachmann
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Straße 2, 10178 Berlin, Germany
| | - Ignacio Martin-Loeches
- Multidisciplinary Intensive Care Research Organization (MICRO), St. James's Hospital, James's St N, Ushers, Dublin, D03 VX82, Ireland
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Thibaud Spinetti
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, 3010 Bern, Switzerland
| | - Joerg C Schefold
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, 3010 Bern, Switzerland
| | - Antoni Torres
- Pneumology Department, Respiratory Institute (ICR), Hospital Clinic of Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) - University of Barcelona (UB), Spain
| | - Florian Uhle
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | - Fabienne Venet
- Hospices Civils de Lyon, Immunology Laboratory, Edouard Herriot Hospital, 5 Place d'Arsonval, 69003 Lyon, France; EA 7426 "Pathophysiology of Injury-Induced Immunosuppression - PI3", Université Claude Bernard Lyon 1/bioMérieux/Hospices Civils de Lyon, Edouard Herriot Hospital, 5 Place d'Arsonval, 69003 Lyon, France
| | - Sebastian Weis
- Dept. of Anesthesiology and Intensive Care Medicine & Center for Sepsis Control and Care (CSCC), Jena University Hospital-Friedrich Schiller University, Am Klinikum 1, 07747 Jena, Germany; Institute for Infectious Disease and Infection Control, Jena University Hospital-Friedrich Schiller University, Am Klinikum 1, 07747 Jena, Germany
| | - André Scherag
- Institute of Medical Statistics, Computer and Data Sciences, Jena University Hospital-Friedrich Schiller University, Bachstrasse 18, 07743 Jena, Germany
| | - Ignacio Rubio
- Dept. of Anesthesiology and Intensive Care Medicine & Center for Sepsis Control and Care (CSCC), Jena University Hospital-Friedrich Schiller University, Am Klinikum 1, 07747 Jena, Germany
| | - Marcin F Osuchowski
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Research Center, Donaueschingenstrasse 13, 1200, Vienna, Austria.
| |
Collapse
|
29
|
Li Z, Huang B, Yi W, Wang F, Wei S, Yan H, Qin P, Zou D, Wei R, Chen N. Identification of Potential Early Diagnostic Biomarkers of Sepsis. J Inflamm Res 2021; 14:621-631. [PMID: 33688234 PMCID: PMC7937397 DOI: 10.2147/jir.s298604] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
Objective The goal of this article was to identify potential biomarkers for early diagnosis of sepsis in order to improve their survival. Methods We analyzed differential gene expression between adult sepsis patients and controls in the GSE54514 dataset. Coexpression analysis was used to cluster coexpression modules, and enrichment analysis was performed on module genes. We also analyzed differential gene expression between neonatal sepsis patients and controls in the GSE25504 dataset, and we identified the subset of differentially expressed genes (DEGs) common to neonates and adults. All samples in the GSE54514 dataset were randomly divided into training and validation sets, and diagnostic signatures were constructed using least absolute shrink and selection operator (LASSO) regression. The key gene signature was screened for diagnostic value based on area under the receiver operating characteristic curve (AUC). STEM software identified dysregulated genes associated with sepsis-associated mortality. The ssGSEA method was used to quantify differences in immune cell infiltration between sepsis and control samples. Results A total of 6316 DEGs in GSE54514 were obtained spanning 10 modules. Module genes were mainly enriched in immune and metabolic responses. Screening 51 genes from among common genes based on AUC > 0.7 led to a LASSO model for the training set. We obtained a 25-gene signature, which we validated in the validation set and in the GSE25504 dataset. Among the signature genes, SLC2A6, C1ORF55, DUSP5 and RHOB were recognized as key genes (AUC > 0.75) in both the GSE54514 and GSE25504 datasets. SLC2A6 was identified by STEM as associated with sepsis-associated mortality and showed the strongest positive correlation with infiltration levels of Th1 cells. Conclusion In summary, our four key genes may have important implications for the early diagnosis of sepsis patients. In particular, SLC2A6 may be a critical biomarker for predicting survival in sepsis.
Collapse
Affiliation(s)
- Zhenhua Li
- Department of Emergency Medicine, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530022, People's Republic of China.,Intensive Care Unit, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530022, People's Republic of China
| | - Bin Huang
- Intensive Care Unit, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530022, People's Republic of China
| | - Wenfeng Yi
- Intensive Care Unit, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530022, People's Republic of China
| | - Fei Wang
- Department of Emergency Medicine, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530022, People's Republic of China
| | - Shizhuang Wei
- Department of Emergency Medicine, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530022, People's Republic of China
| | - Huaixing Yan
- Department of Emergency Medicine, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530022, People's Republic of China
| | - Pan Qin
- Department of Emergency Medicine, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530022, People's Republic of China
| | - Donghua Zou
- Department of Emergency Medicine, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530022, People's Republic of China
| | - Rongguo Wei
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530022, People's Republic of China
| | - Nian Chen
- Department of Infectious Diseases, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530022, People's Republic of China
| |
Collapse
|
30
|
Role of endothelial microRNA 155 on capillary leakage in systemic inflammation. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2021; 25:76. [PMID: 33618730 PMCID: PMC7901081 DOI: 10.1186/s13054-021-03500-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/10/2021] [Indexed: 01/07/2023]
Abstract
Background Capillary leakage is a key contributor to the pathological host response to infections. The underlying mechanisms remain incompletely understood, and the role of microRNAs (MIR) has not been investigated in detail. We hypothesized that specific MIRs might be regulated directly in the endothelium thereby contributing to vascular leakage.
Methods SmallRNA sequencing of endotoxemic murine pulmonary endothelial cells (ECs) was done to detect regulated vascular MIRs. In vivo models: transgenic zebrafish (flk1:mCherry/l-fabp:eGFP-DPB), knockout/wildtype mouse (B6.Cg-Mir155tm1.1Rsky/J); disease models: LPS 17.5 mg/kgBW and cecal ligation and puncture (CLP); in vitro models: stimulated human umbilical vein EC (HUVECs), transendothelial electrical resistance. Results Endothelial MIR155 was identified as a promising candidate in endotoxemic murine pulmonary ECs (25 × upregulation). Experimental overexpression in a transgenic zebrafish line and in HUVECs was sufficient to induce spontaneous vascular leakage. To the contrary, genetic MIR155 reduction protects against permeability both in vitro and in endotoxemia in vivo in MIR155 heterozygote knockout mice thereby improving survival by 40%. A tight junction protein, Claudin-1, was down-regulated both in endotoxemia and by experimental MIR155 overexpression. Translationally, MIR155 was detectable at high levels in bronchoalveolar fluid of patients with ARDS compared to healthy human subjects. Conclusions We found that MIR155 is upregulated in the endothelium in mouse and men as part of a systemic inflammatory response and might contribute to the pathophysiology of vascular leakage in a Claudin-1-dependent manner. Future studies have to clarify whether MIR155 could be a potential therapeutic target. ![]()
Collapse
|
31
|
Identification and characterization of neutrophil heterogeneity in sepsis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2021; 25:50. [PMID: 33549126 PMCID: PMC7865119 DOI: 10.1186/s13054-021-03481-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/26/2021] [Indexed: 01/12/2023]
Abstract
BACKGROUND Although the immune function of neutrophils in sepsis has been well described, the heterogeneity of neutrophils remains unclear during the process of sepsis. METHODS In this study, we used a mouse CLP model to simulate the clinical scenario of patients with sepsis, neutrophil infiltration, abnormal distribution and dysfunction was analyzed. LPS was used to stimulate neutrophils in vitro to simulate sepsis; single-cell gene sequencing technology was used to explore the immunological typing. To explore the immunological function of immunosuppressive neutrophils, PD-L1 knockout neutrophils were cocultured with lymphocytes from wild-type mice. RESULTS We found that neutrophils presented variant dysfunction at the late stage of sepsis, including inhibition of apoptosis, seriously damaged chemotaxis and extensive infiltration into the tissues. Single-cell RNA sequencing revealed that multiple subclusters of neutrophils were differentiated after LPS stimulation. The two-dimensional spatial distribution analysis showed that Foxp3+ T cells were much closer to Ly-6G than the CD4+ and CD8+ cells, indicating that infiltrated neutrophils may play immunomodulatory effect on surrounding T-regs. Further observations showed that LPS mediates PD-L1 over expression through p38α-MSK1/-MK2 pathway in neutrophils. The subsets of highly expressed PD-L1 exert immunosuppressive effect under direct contact mode, including inhibition of T cell activation and induction of T cell apoptosis and trans-differentiation. CONCLUSIONS Taken together, our data identify a previously unknown immunosuppressive subset of neutrophils as inhibitory neutrophil in order to more accurately describe the phenotype and characteristics of these cells in sepsis.
Collapse
|
32
|
McGinn R, Fergusson DA, Stewart DJ, Kristof AS, Barron CC, Thebaud B, McIntyre L, Stacey D, Liepmann M, Dodelet-Devillers A, Zhang H, Renlund R, Lilley E, Downey GP, Brown EG, Côté L, Dos Santos CC, Fox-Robichaud AE, Hussain SNA, Laffey JG, Liu M, MacNeil J, Orlando H, Qureshi ST, Turner PV, Winston BW, Lalu MM. Surrogate Humane Endpoints in Small Animal Models of Acute Lung Injury: A Modified Delphi Consensus Study of Researchers and Laboratory Animal Veterinarians. Crit Care Med 2021; 49:311-323. [PMID: 33332817 DOI: 10.1097/ccm.0000000000004734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES In many jurisdictions, ethical concerns require surrogate humane endpoints to replace death in small animal models of acute lung injury. Heterogenous selection and reporting of surrogate endpoints render interpretation and generalizability of findings between studies difficult. We aimed to establish expert-guided consensus among preclinical scientists and laboratory animal veterinarians on selection and reporting of surrogate endpoints, monitoring of these models, and the use of analgesia. DESIGN A three-round consensus process, using modified Delphi methodology, with researchers who use small animal models of acute lung injury and laboratory animal veterinarians who provide care for these animals. Statements on the selection and reporting of surrogate endpoints, monitoring, and analgesia were generated through a systematic search of MEDLINE and Embase. Participants were asked to suggest any additional potential statements for evaluation. SETTING A web-based survey of participants representing the two stakeholder groups (researchers, laboratory animal veterinarians). Statements were rated on level of evidence and strength of support by participants. A final face-to-face meeting was then held to discuss results. SUBJECTS None. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Forty-two statements were evaluated, and 29 were rated as important, with varying strength of evidence. The majority of evidence was based on rodent models of acute lung injury. Endpoints with strong support and evidence included temperature changes and body weight loss. Behavioral signs and respiratory distress also received support but were associated with lower levels of evidence. Participants strongly agreed that analgesia affects outcomes in these models and that none may be necessary following nonsurgical induction of acute lung injury. Finally, participants strongly supported transparent reporting of surrogate endpoints. A prototype composite score was also developed based on participant feedback. CONCLUSIONS We provide a preliminary framework that researchers and animal welfare committees may adapt for their needs. We have identified knowledge gaps that future research should address.
Collapse
Affiliation(s)
- Ryan McGinn
- Department of Anesthesiology and Pain Medicine, The Ottawa Hospital, Faculty of Medicine, University of Ottawa, ON, Canada
- Clinical Epidemiology Program, Blueprint Translational Research Group, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Dean A Fergusson
- Clinical Epidemiology Program, Blueprint Translational Research Group, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Duncan J Stewart
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Arnold S Kristof
- Department of Anesthesiology and Pain Medicine, The Ottawa Hospital, Faculty of Medicine, University of Ottawa, ON, Canada
- Clinical Epidemiology Program, Blueprint Translational Research Group, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada
- Department of Critical Care and Translational Research in Respiratory Diseases Program, McGill University Health Centre, Montreal, QC, Canada
- Division of Respirology, Departments of Critical Care and Medicine, McGill University, Montreal, QC, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
- Division of Critical Care, Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
- Faculty of Health Sciences, University of Ottawa, Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- The Research Institute of the McGill University Health Center, McGill University, Montreal, QC, Canada
- Departments of Anesthesia, Medicine and Physiology, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
- Keenan Research Centre - Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
- Research Animals Department, Royal Society for the Prevention of Cruelty to Animals, Southwater, United Kingdom
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, CO
- Departments of Medicine and Immunology and Microbiology, University of Colorado, Denver, CO
- Neurosciences Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Interdepartmental Division of Critical Care, and Keenan Research Center, St Michael's Hospital, University of Toronto, Toronto, ON, Canada
- Department of Medicine and Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, ON, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Animal & Veterinary Sciences, University of Ottawa, Ottawa, ON, Canada
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
- Departments of Critical Care Medicine, Medicine and Biochemistry and Molecular Biology, Cumming School and Medicine and the University of Calgary, Calgary, AB, Canada
| | - Carly C Barron
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Bernard Thebaud
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Lauralyn McIntyre
- Division of Critical Care, Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Dawn Stacey
- Faculty of Health Sciences, University of Ottawa, Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Mark Liepmann
- Department of Anesthesiology and Pain Medicine, The Ottawa Hospital, Faculty of Medicine, University of Ottawa, ON, Canada
| | - Aurore Dodelet-Devillers
- The Research Institute of the McGill University Health Center, McGill University, Montreal, QC, Canada
| | - Haibo Zhang
- Departments of Anesthesia, Medicine and Physiology, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Richard Renlund
- Keenan Research Centre - Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Elliot Lilley
- Research Animals Department, Royal Society for the Prevention of Cruelty to Animals, Southwater, United Kingdom
| | - Gregory P Downey
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, CO
- Departments of Medicine and Immunology and Microbiology, University of Colorado, Denver, CO
| | - Earl G Brown
- Neurosciences Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Lucie Côté
- The Research Institute of the McGill University Health Center, McGill University, Montreal, QC, Canada
| | - Claudia C Dos Santos
- Interdepartmental Division of Critical Care, and Keenan Research Center, St Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Alison E Fox-Robichaud
- Department of Medicine and Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, ON, Canada
| | - Sabah N A Hussain
- Department of Anesthesiology and Pain Medicine, The Ottawa Hospital, Faculty of Medicine, University of Ottawa, ON, Canada
- Clinical Epidemiology Program, Blueprint Translational Research Group, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada
- Department of Critical Care and Translational Research in Respiratory Diseases Program, McGill University Health Centre, Montreal, QC, Canada
- Division of Respirology, Departments of Critical Care and Medicine, McGill University, Montreal, QC, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
- Division of Critical Care, Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
- Faculty of Health Sciences, University of Ottawa, Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- The Research Institute of the McGill University Health Center, McGill University, Montreal, QC, Canada
- Departments of Anesthesia, Medicine and Physiology, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
- Keenan Research Centre - Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
- Research Animals Department, Royal Society for the Prevention of Cruelty to Animals, Southwater, United Kingdom
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, CO
- Departments of Medicine and Immunology and Microbiology, University of Colorado, Denver, CO
- Neurosciences Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Interdepartmental Division of Critical Care, and Keenan Research Center, St Michael's Hospital, University of Toronto, Toronto, ON, Canada
- Department of Medicine and Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, ON, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Animal & Veterinary Sciences, University of Ottawa, Ottawa, ON, Canada
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
- Departments of Critical Care Medicine, Medicine and Biochemistry and Molecular Biology, Cumming School and Medicine and the University of Calgary, Calgary, AB, Canada
| | - John G Laffey
- Departments of Anesthesia, Medicine and Physiology, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Mingyao Liu
- Departments of Anesthesia, Medicine and Physiology, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Jenna MacNeil
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Holly Orlando
- Animal & Veterinary Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Salman T Qureshi
- Department of Anesthesiology and Pain Medicine, The Ottawa Hospital, Faculty of Medicine, University of Ottawa, ON, Canada
- Clinical Epidemiology Program, Blueprint Translational Research Group, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada
- Department of Critical Care and Translational Research in Respiratory Diseases Program, McGill University Health Centre, Montreal, QC, Canada
- Division of Respirology, Departments of Critical Care and Medicine, McGill University, Montreal, QC, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
- Division of Critical Care, Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
- Faculty of Health Sciences, University of Ottawa, Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- The Research Institute of the McGill University Health Center, McGill University, Montreal, QC, Canada
- Departments of Anesthesia, Medicine and Physiology, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
- Keenan Research Centre - Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
- Research Animals Department, Royal Society for the Prevention of Cruelty to Animals, Southwater, United Kingdom
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, CO
- Departments of Medicine and Immunology and Microbiology, University of Colorado, Denver, CO
- Neurosciences Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Interdepartmental Division of Critical Care, and Keenan Research Center, St Michael's Hospital, University of Toronto, Toronto, ON, Canada
- Department of Medicine and Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, ON, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Animal & Veterinary Sciences, University of Ottawa, Ottawa, ON, Canada
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
- Departments of Critical Care Medicine, Medicine and Biochemistry and Molecular Biology, Cumming School and Medicine and the University of Calgary, Calgary, AB, Canada
| | - Patricia V Turner
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Brent W Winston
- Departments of Critical Care Medicine, Medicine and Biochemistry and Molecular Biology, Cumming School and Medicine and the University of Calgary, Calgary, AB, Canada
| | - Manoj M Lalu
- Department of Anesthesiology and Pain Medicine, The Ottawa Hospital, Faculty of Medicine, University of Ottawa, ON, Canada
- Clinical Epidemiology Program, Blueprint Translational Research Group, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada
- Department of Critical Care and Translational Research in Respiratory Diseases Program, McGill University Health Centre, Montreal, QC, Canada
- Division of Respirology, Departments of Critical Care and Medicine, McGill University, Montreal, QC, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
- Division of Critical Care, Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
- Faculty of Health Sciences, University of Ottawa, Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- The Research Institute of the McGill University Health Center, McGill University, Montreal, QC, Canada
- Departments of Anesthesia, Medicine and Physiology, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
- Keenan Research Centre - Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
- Research Animals Department, Royal Society for the Prevention of Cruelty to Animals, Southwater, United Kingdom
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, CO
- Departments of Medicine and Immunology and Microbiology, University of Colorado, Denver, CO
- Neurosciences Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Interdepartmental Division of Critical Care, and Keenan Research Center, St Michael's Hospital, University of Toronto, Toronto, ON, Canada
- Department of Medicine and Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, ON, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Animal & Veterinary Sciences, University of Ottawa, Ottawa, ON, Canada
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
- Departments of Critical Care Medicine, Medicine and Biochemistry and Molecular Biology, Cumming School and Medicine and the University of Calgary, Calgary, AB, Canada
| |
Collapse
|
33
|
Rethinking animal models of sepsis - working towards improved clinical translation whilst integrating the 3Rs. Clin Sci (Lond) 2021; 134:1715-1734. [PMID: 32648582 PMCID: PMC7352061 DOI: 10.1042/cs20200679] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022]
Abstract
Sepsis is a major worldwide healthcare issue with unmet clinical need. Despite extensive animal research in this area, successful clinical translation has been largely unsuccessful. We propose one reason for this is that, sometimes, the experimental question is misdirected or unrealistic expectations are being made of the animal model. As sepsis models can lead to a rapid and substantial suffering – it is essential that we continually review experimental approaches and undertake a full harm:benefit impact assessment for each study. In some instances, this may require refinement of existing sepsis models. In other cases, it may be replacement to a different experimental system altogether, answering a mechanistic question whilst aligning with the principles of reduction, refinement and replacement (3Rs). We discuss making better use of patient data to identify potentially useful therapeutic targets which can subsequently be validated in preclinical systems. This may be achieved through greater use of construct validity models, from which mechanistic conclusions are drawn. We argue that such models could provide equally useful scientific data as face validity models, but with an improved 3Rs impact. Indeed, construct validity models may not require sepsis to be modelled, per se. We propose that approaches that could support and refine clinical translation of research findings, whilst reducing the overall welfare burden on research animals.
Collapse
|
34
|
Abstract
Cecal ligation and puncture (CLP) is referred to as the "gold standard" rodent model for abdominal sepsis. CLP creates a continuously leaking, polymicrobial infectious focus in the abdomen. The abdominal cavity is opened under general anesthesia and analgesia and the cecum is exposed, ligated underneath the ileocecal valve, and punctured with a needle. A small amount of feces is pressed out through the puncture and the cecum is repositioned into the abdomen, which is then closed with single button sutures and tissue glue. CLP severity can be influenced via the length of the ligated cecum as well as the needle size. Within 24 h, animals develop clinical signs of a systemic bacterial infection. Analgesia, wide range antibiotic treatment, and fluid resuscitation should be administered during the acute phase of sepsis to increase the clinical relevance of the CLP model.
Collapse
Affiliation(s)
- Susanne Drechsler
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Research Center, Vienna, Austria
| | - Marcin Osuchowski
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Research Center, Vienna, Austria.
| |
Collapse
|
35
|
Giuliani C, Bucci I, Napolitano G. Phenylmethimazole is a candidate drug for the treatment of severe forms of coronavirus disease 2019 (COVID-19) as well as other virus-induced "cytokines storm". Med Hypotheses 2020; 146:110473. [PMID: 33385879 PMCID: PMC7759336 DOI: 10.1016/j.mehy.2020.110473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/18/2020] [Indexed: 02/08/2023]
Abstract
Severe forms of the Coronavirus disease 2019 (COVID-19) are characterized by an enhanced inflammatory syndrome called “cytokine storm” that produces an aberrant release of high amounts of cytokines, chemokines, and other proinflammatory mediators. The pathogenetic role of the “cytokine storm” has been confirmed by the efficacy of immunosuppressive drugs such as corticosteroids along with antiviral drugs in the treatment of the severe forms of this disease. Phenylmethimazole (C10) is a derivative of methimazole with anti-inflammatory properties. Studies performed both in vitro and in vivo have shown that C10 is able to block the production of multiple cytokines, chemokines, and other proinflammatory molecules involved in the pathogenesis of inflammation. Particularly, C10 is effective in reducing the increased secretion of cytokines in animal models of endotoxic shock. We hypothesize that these effects are not limited to the endotoxic shock, but can also be applied to any disease characterized by the presence of a “cytokine storm”. Therefore, C10 may be a potential drug to be used alternatively or in association with the corticosteroids or other immunosuppressive agents in the severe forms of COVID-19 as well as other viral diseases that induce a “cytokine storm”. Preclinical and clinical studies have to be performed to confirm this hypothesis.
Collapse
Affiliation(s)
- Cesidio Giuliani
- Unit of Endocrinology, Department of Medicine and Sciences of Aging, and Center for Advanced Science and Technology (CAST), University of Chieti-Pescara, Chieti, Italy.
| | - Ines Bucci
- Unit of Endocrinology, Department of Medicine and Sciences of Aging, and Center for Advanced Science and Technology (CAST), University of Chieti-Pescara, Chieti, Italy
| | - Giorgio Napolitano
- Unit of Endocrinology, Department of Medicine and Sciences of Aging, and Center for Advanced Science and Technology (CAST), University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
36
|
Kim SY, Kim D, Kim S, Lee D, Mun SJ, Cho E, Son W, Jang K, Yang CS. Mycobacterium tuberculosis Rv2626c-derived peptide as a therapeutic agent for sepsis. EMBO Mol Med 2020; 12:e12497. [PMID: 33258196 PMCID: PMC7721357 DOI: 10.15252/emmm.202012497] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022] Open
Abstract
The Rv2626c protein of Mycobacterium tuberculosis is a promising vaccine candidate owing to its strong serum antibody response in patients with tuberculosis. However, there is limited information regarding the intracellular response induced by Rv2626c in macrophages. In this study, we demonstrated that Rv2626c interacts with the RING domain of TRAF6 and inhibits lysine (K) 63‐linked polyubiquitination of TRAF6 (E3 ubiquitin ligase activity); this results in the suppression of TLR4 inflammatory signaling in macrophages. Furthermore, we showed that the C‐terminal 123–131‐amino acid Rv2626c motif promotes macrophage recruitment, phagocytosis, M2 macrophage polarization, and subsequent bacterial clearance. We developed rRv2626c‐CA, a conjugated peptide containing the C‐terminal 123–131‐amino acid Rv2626c that targets macrophages, penetrates the cell membrane, and has demonstrated significant therapeutic effects in a mouse model of cecal ligation and puncture‐induced sepsis. This multifunctional rRv2626c‐CA has considerably improved potency, with an IC50 that is 250‐fold (in vitro) or 1,000‐fold (in vivo) lower than that of rRv2626c‐WT. We provide evidence for new peptide‐based drugs with anti‐inflammatory and antibacterial properties for the treatment of sepsis.
Collapse
Affiliation(s)
- Sun Young Kim
- Department of Bionano Technology, Hanyang University, Seoul, South Korea
| | - Donggyu Kim
- Department of Molecular and Life Science, Hanyang University, Ansan, South Korea.,Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, South Korea
| | - Sojin Kim
- Department of Molecular and Life Science, Hanyang University, Ansan, South Korea
| | - Daeun Lee
- Department of Molecular and Life Science, Hanyang University, Ansan, South Korea
| | - Seok-Jun Mun
- Department of Bionano Technology, Hanyang University, Seoul, South Korea.,Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, South Korea
| | - Euni Cho
- Department of Bionano Technology, Hanyang University, Seoul, South Korea.,Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, South Korea
| | - Wooic Son
- Department of Molecular and Life Science, Hanyang University, Ansan, South Korea.,Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, South Korea
| | - Kiseok Jang
- Department of Pathology, Hanyang University College of Medicine, Seoul, South Korea
| | - Chul-Su Yang
- Department of Molecular and Life Science, Hanyang University, Ansan, South Korea.,Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, South Korea
| |
Collapse
|
37
|
Lang GP, Ndongson-Dongmo B, Lajqi T, Brodhun M, Han Y, Wetzker R, Frasch MG, Bauer R. Impact of ambient temperature on inflammation-induced encephalopathy in endotoxemic mice-role of phosphoinositide 3-kinase gamma. J Neuroinflammation 2020; 17:292. [PMID: 33028343 PMCID: PMC7541275 DOI: 10.1186/s12974-020-01954-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) is an early and frequent event of infection-induced systemic inflammatory response syndrome. Phosphoinositide 3-kinase γ (PI3Kγ) is linked to neuroinflammation and inflammation-related microglial activity. In homeotherms, variations in ambient temperature (Ta) outside the thermoneutral zone lead to thermoregulatory responses, mainly driven by a gradually increasing sympathetic activity, and may affect disease severity. We hypothesized that thermoregulatory response to hypothermia (reduced Ta) aggravates SAE in PI3Kγ-dependent manner. METHODS Experiments were performed in wild-type, PI3Kγ knockout, and PI3Kγ kinase-dead mice, which were kept at neutral (30 ± 0.5 °C) or moderately lowered (26 ± 0.5 °C) Ta. Mice were exposed to lipopolysaccharide (LPS, 10 μg/g, from Escherichia coli serotype 055:B5, single intraperitoneal injection)-evoked systemic inflammatory response (SIR) and monitored 24 h for thermoregulatory response and blood-brain barrier integrity. Primary microglial cells and brain tissue derived from treated mice were analyzed for inflammatory responses and related cell functions. Comparisons between groups were made with one-way or two-way analysis of variance, as appropriate. Post hoc comparisons were made with the Holm-Sidak test or t tests with Bonferroni's correction for adjustments of multiple comparisons. Data not following normal distribution was tested with Kruskal-Wallis test followed by Dunn's multiple comparisons test. RESULTS We show that a moderate reduction of ambient temperature triggers enhanced hypothermia of mice undergoing LPS-induced systemic inflammation by aggravated SAE. PI3Kγ deficiency enhances blood-brain barrier injury and upregulation of matrix metalloproteinases (MMPs) as well as an impaired microglial phagocytic activity. CONCLUSIONS Thermoregulatory adaptation in response to ambient temperatures below the thermoneutral range exacerbates LPS-induced blood-brain barrier injury and neuroinflammation. PI3Kγ serves a protective role in suppressing release of MMPs, maintaining microglial motility and reinforcing phagocytosis leading to improved brain tissue integrity. Thus, preclinical research targeting severe brain inflammation responses is seriously biased when basic physiological prerequisites of mammal species such as preferred ambient temperature are ignored.
Collapse
Affiliation(s)
- Guang-Ping Lang
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, Hans-Knöll-Straße 2, D-07745 Jena, Germany
- Joint International Research Laboratory of Ethnomedicine and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, 563006 China
| | - Bernadin Ndongson-Dongmo
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, Hans-Knöll-Straße 2, D-07745 Jena, Germany
- Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Trim Lajqi
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, Hans-Knöll-Straße 2, D-07745 Jena, Germany
- Department of Neonatology, University Children’s Hospital, Heidelberg, Germany
| | - Michael Brodhun
- Department of Pathology, Helios-Klinikum Erfurt, Erfurt, Germany
| | - Yingying Han
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Reinhard Wetzker
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | | | - Reinhard Bauer
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, Hans-Knöll-Straße 2, D-07745 Jena, Germany
| |
Collapse
|
38
|
Leisman DE, Fernandes TD, Bijol V, Abraham MN, Lehman JR, Taylor MD, Capone C, Yaipan O, Bellomo R, Deutschman CS. Impaired angiotensin II type 1 receptor signaling contributes to sepsis-induced acute kidney injury. Kidney Int 2020; 99:148-160. [PMID: 32882263 DOI: 10.1016/j.kint.2020.07.047] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 07/16/2020] [Accepted: 07/24/2020] [Indexed: 12/26/2022]
Abstract
In sepsis-induced acute kidney injury, kidney blood flow may increase despite decreased glomerular filtration. Normally, angiotensin-II reduces kidney blood flow to maintain filtration. We hypothesized that sepsis reduces angiotensin type-1 receptor (AT1R) expression to account for this observation and tested this hypothesis in a patient case-control study and studies in mice. Seventy-three mice underwent cecal ligation and puncture (a sepsis model) or sham operation. Additionally, 94 septic mice received losartan (selective AT1R antagonist), angiotensin II without or with losartan, or vehicle. Cumulative urine output, kidney blood flow, blood urea nitrogen, and creatinine were measured. AT1R expression was assessed using ELISA, qPCR, and immunofluorescence. A blinded pathologist evaluated tissue for ischemic injury. AT1R expression was compared in autopsy tissue from seven patients with sepsis to that of the non-involved portion of kidney from ten individuals with kidney cancer and three non-infected but critically ill patients. By six hours post ligation/puncture, kidney blood flow doubled, blood urea nitrogen rose, and urine output fell. Concurrently, AT1R expression significantly fell 2-fold in arterioles and the macula densa. Creatinine significantly rose by 24 hours and sham operation did not alter measurements. Losartan significantly exacerbated ligation/puncture-induced changes in kidney blood flow, blood urea nitrogen, creatinine, and urine output. There was no histologic evidence of cortical ischemia. Significantly, angiotensin II prevented changes in kidney blood flow, creatinine, and urine output compared to vehicle. Co-administering losartan with angiotensin-II reversed this protection. Relative to both controls, patients with sepsis had low AT1R expression in arterioles and macula densa. Thus, murine cecal ligation/puncture and clinical sepsis decrease renal AT1R expression. Angiotensin II prevents functional changes while AT1R-blockade exacerbates them independent of ischemia in mice.
Collapse
Affiliation(s)
- Daniel E Leisman
- Icahn School of Medicine at Mount Sinai, New York, New York, USA; Sepsis Research Laboratory, Feinstein Institute for Medical Research, Manhasset, New York, USA; Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.
| | - Tiago D Fernandes
- Sepsis Research Laboratory, Feinstein Institute for Medical Research, Manhasset, New York, USA; Department of Pediatrics, Cohen Children's Medical Center, New Hyde Park, New York, USA
| | - Vanesa Bijol
- Department of Pathology, North Shore University Hospital, Manhasset, New York, USA; Zucker School of Medicine at Hofstra-Northwell, Hempstead, New York, USA
| | - Mabel N Abraham
- Sepsis Research Laboratory, Feinstein Institute for Medical Research, Manhasset, New York, USA; Department of Pediatrics, Cohen Children's Medical Center, New Hyde Park, New York, USA
| | - Jake R Lehman
- Sepsis Research Laboratory, Feinstein Institute for Medical Research, Manhasset, New York, USA; Zucker School of Medicine at Hofstra-Northwell, Hempstead, New York, USA
| | - Matthew D Taylor
- Sepsis Research Laboratory, Feinstein Institute for Medical Research, Manhasset, New York, USA; Department of Pediatrics, Cohen Children's Medical Center, New Hyde Park, New York, USA; Zucker School of Medicine at Hofstra-Northwell, Hempstead, New York, USA
| | - Christine Capone
- Sepsis Research Laboratory, Feinstein Institute for Medical Research, Manhasset, New York, USA; Department of Pediatrics, Cohen Children's Medical Center, New Hyde Park, New York, USA; Zucker School of Medicine at Hofstra-Northwell, Hempstead, New York, USA
| | - Omar Yaipan
- Sepsis Research Laboratory, Feinstein Institute for Medical Research, Manhasset, New York, USA; Department of Pediatrics, Cohen Children's Medical Center, New Hyde Park, New York, USA
| | - Rinaldo Bellomo
- Data Analytics, Research and Evaluation (DARE) Centre, Austin Hospital, University of Melbourne, Melbourne, Australia; Department of Intensive Care, Austin Hospital, Melbourne, Australia; Centre of Integrated Critical Care, University of Melbourne, Melbourne, Australia; School of Medicine, University of Melbourne, Melbourne, Australia
| | - Clifford S Deutschman
- Sepsis Research Laboratory, Feinstein Institute for Medical Research, Manhasset, New York, USA; Department of Pediatrics, Cohen Children's Medical Center, New Hyde Park, New York, USA; Zucker School of Medicine at Hofstra-Northwell, Hempstead, New York, USA
| |
Collapse
|
39
|
Hoffman M, Kyriazis ID, Lucchese AM, de Lucia C, Piedepalumbo M, Bauer M, Schulze PC, Bonios MJ, Koch WJ, Drosatos K. Myocardial Strain and Cardiac Output are Preferable Measurements for Cardiac Dysfunction and Can Predict Mortality in Septic Mice. J Am Heart Assoc 2020; 8:e012260. [PMID: 31112430 PMCID: PMC6585345 DOI: 10.1161/jaha.119.012260] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background Sepsis is the overwhelming host response to infection leading to shock and multiple organ dysfunction. Cardiovascular complications greatly increase sepsis‐associated mortality. Although murine models are routinely used for preclinical studies, the benefit of using genetically engineered mice in sepsis is countered by discrepancies between human and mouse sepsis pathophysiology. Therefore, recent guidelines have called for standardization of preclinical methods to document organ dysfunction. We investigated the course of cardiac dysfunction and myocardial load in different mouse models of sepsis to identify the optimal measurements for early systolic and diastolic dysfunction. Methods and Results We performed speckle‐tracking echocardiography and assessed blood pressure, plasma inflammatory cytokines, lactate, B‐type natriuretic peptide, and survival in mouse models of endotoxemia or polymicrobial infection (cecal ligation and puncture, [CLP]) of moderate and high severity. We observed that myocardial strain and cardiac output were consistently impaired early in both sepsis models. Suppression of cardiac output was associated with systolic dysfunction in endotoxemia or combined systolic dysfunction and reduced preload in the CLP model. We found that cardiac output at 2 hours post‐CLP is a negative prognostic indicator with high sensitivity and specificity that predicts mortality at 48 hours. Using a known antibiotic (ertapenem) treatment, we confirmed that this approach can document recovery. Conclusions We propose a non‐invasive approach for assessment of cardiac function in sepsis and myocardial strain and strain rate as preferable measures for monitoring cardiovascular function in sepsis mouse models. We further show that the magnitude of cardiac output suppression 2 hours post‐CLP can be used to predict mortality.
Collapse
Affiliation(s)
- Matthew Hoffman
- 1 Center for Translational Medicine and Department of Pharmacology Lewis Katz School of Medicine Temple University Philadelphia PA
| | - Ioannis D Kyriazis
- 1 Center for Translational Medicine and Department of Pharmacology Lewis Katz School of Medicine Temple University Philadelphia PA
| | - Anna M Lucchese
- 1 Center for Translational Medicine and Department of Pharmacology Lewis Katz School of Medicine Temple University Philadelphia PA
| | - Claudio de Lucia
- 1 Center for Translational Medicine and Department of Pharmacology Lewis Katz School of Medicine Temple University Philadelphia PA
| | - Michela Piedepalumbo
- 1 Center for Translational Medicine and Department of Pharmacology Lewis Katz School of Medicine Temple University Philadelphia PA.,2 Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences University of Campania "Luigi Vanvitelli" Naples Italy
| | - Michael Bauer
- 3 Department for Anesthesiology and Intensive Care Medicine Friedrich-Schiller-University Jena Germany
| | - P Christian Schulze
- 4 Division of Cardiology, Angiology, Intensive Medical Care and Pneumology Department of Internal Medicine I University Hospital Jena Germany
| | - Michael J Bonios
- 5 Heart Failure and Transplant Unit Onassis Cardiac Surgery Center Athens Greece
| | - Walter J Koch
- 1 Center for Translational Medicine and Department of Pharmacology Lewis Katz School of Medicine Temple University Philadelphia PA
| | - Konstantinos Drosatos
- 1 Center for Translational Medicine and Department of Pharmacology Lewis Katz School of Medicine Temple University Philadelphia PA
| |
Collapse
|
40
|
Activation of AMP-Activated Protein Kinase by A769662 Ameliorates Sepsis-Induced Acute Lung Injury in Adult Mice. Shock 2020; 52:540-549. [PMID: 30562237 DOI: 10.1097/shk.0000000000001303] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A serious consequence of sepsis is acute lung injury, whose severity is particularly impacted by the age of the patient. AMP-activated protein kinase (AMPK) is a crucial regulator of cellular metabolism, which controls mitochondrial biogenesis and autophagy. Here, we investigated the effect of pharmacological activation of AMPK with A769662 on lung injury by using a model that would preferably mimic the clinical condition of adult patients. Male C57BL/6 retired breeder mice (7-9 months old) were subjected to sepsis by cecal ligation and puncture (CLP). Mice received vehicle or A769662 (10 mg/kg) intraperitoneally at 1 h after CLP. At 6 h after CLP, vehicle-treated mice exhibited severe lung injury and elevation of plasma pro-inflammatory cytokines when compared with control mice. At molecular analysis, lung injury was associated with downregulation of AMPKα1/α2 catalytic subunits and reduced phosphorylation of AMPKβ1 regulatory subunit. Treatment with A769662 ameliorated lung architecture, reduced bacterial load in lung and blood, and attenuated plasma levels of interleukin-6. This protective effect was associated with nuclear phosphorylation of AMPKα1/α2 and AMPKβ1, increased nuclear expression of peroxisome proliferator-activated receptor γ co-activator-α and increased autophagy, as evaluated by the light-chain (LC)3B-I and LC3B-II content, without changes in sirtuin-1 cellular dynamics. Treatment with A769662 alone or in combination with the antimicrobial agent imipenem (25 mg/kg) increased survival rate (29% and 51%, respectively) when compared with vehicle treatment (10%) at 7 days after CLP. These data suggest that pharmacological activation of AMPK might be a beneficial approach for the treatment of sepsis in adult population.
Collapse
|
41
|
Fecal Microbiota Transplantation and Hydrocortisone Ameliorate Intestinal Barrier Dysfunction and Improve Survival in a Rat Model of Cecal Ligation and Puncture-Induced Sepsis. Shock 2020; 55:666-675. [PMID: 32496421 DOI: 10.1097/shk.0000000000001566] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Sepsis is a life-threatening syndrome which can progress to multiple organ dysfunction with high mortality. Intestinal barrier failure exerts a central role in the pathophysiological sequence of events that lead from sepsis to multiple organ dysfunction. The present study investigated the role of hydrocortisone (HC) administration and fecal microbiota transplantation (FMT) in several parameters of the gut barrier integrity, immune activation, and survival, in a model of polymicrobial sepsis in rats. METHODS Forty adults male Wistar rats were randomly divided into four groups: sham (group I), cecal ligation and puncture (CLP) (group II), CLP + HC (2.8 mg/kg, intraperitoneally single dose at 6 h) (group III), and CLP + FMT at 6 h (group IV). At 24 h post-CLP, ileal tissues were harvested for histological and immunohistochemical analyses while endotoxin, IL-6, and IL-10 levels in systemic circulation were determined. In a second experiment the same groups were observed for 7 days for mortality, with daily administration of hydrocortisone (group III) and FMT (group IV) in surviving rats. RESULTS HC administration and FMT significantly reduced mortality of septic rats by 50%. These interventions totally reversed intestinal mucosal atrophy by increasing villous density and mucosal thickness (μm, mean ± SD: Group I: 620 ± 35, Group II: 411 ± 52, Group III: 622 ± 19, Group IV: 617 ± 44). HC and FMT reduced the apoptotic body count in intestinal crypts whereas these increased the mitotic/apoptotic index. Activated caspase-3 expression in intestinal crypts was significantly reduced by HC or FMT (activated caspase-3 (+) enterocytes/10 crypts, mean ± SD: Group I: 1.6 ± 0.5, Group II: 5.8 ± 2.4, Group III: 3.6 ± 0.9, Group IV: 2.3 ± 0.6). Both treatments increased Paneth cell count and decreased intraepithelial CD3(+) T lymphocytes and inflammatory infiltration of lamina propria to control levels. In the sham group almost the total of intestinal epithelial cells expressed occludin (92 ± 8%) and claudin-1 (98 ± 4%) and CLP reduced this expression to 34 ± 12% for occludin and 35 ± 7% for claudin-1. Administration of HC significantly increased occludin (51 ± 17%) and claudin-1 (77 ± 9%) expression. FMT exerted also a significant restoring effect in tight junction by increasing occludin (56 ± 15%) and claudin-1 (84 ± 7%) expression. The beneficial effects of these treatments on gut barrier function led to significant reduction of systemic endotoxemia (EU/mL, mean ± SD: Group I: 0.93 ± 0.36, Group II: 2.14 ± 1.74, Group III: 1.48 ± 0.53, Group IV: 1.61 ± 0.58), while FMT additionally decreased IL-6 and IL-10 levels. CONCLUSION Fecal microbiota transplantation and stress dose hydrocortisone administration in septic rats induce a multifactorial improvement of the gut mechanical and immunological barriers, preventing endotoxemia and leading to improved survival.
Collapse
|
42
|
Juffermans NP, Radermacher P, Laffey JG. The importance of discovery science in the development of therapies for the critically ill. Intensive Care Med Exp 2020; 8:17. [PMID: 32458264 PMCID: PMC7251015 DOI: 10.1186/s40635-020-00304-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/12/2020] [Indexed: 12/15/2022] Open
Abstract
Discovery science, a term which encompasses basic, translational, and computational science with the aim to discover new therapies, has advanced critical care. By combining knowledge on inflammatory and genomic pathways with computational methods, discovery science is currently enabling us to optimize clinical trials design by predictive enrichment and to move into the era of personalized medicine for complex syndromes such as sepsis and ARDS. Whereas computational methods are gaining in interest, efforts to invest in basic and translational science in critical care are declining. As basic and translational science is essential to advance our understanding of the pathophysiology of organ failure, this loss of interest may result in failure to discover new therapies for the critically ill. A renewed emphasis on basic and translational science is essential to find solutions for fundamental questions that remain in critical care. This requires a strategy to prioritize basic and translational science as an essential component within the critical care research "toolkit." Key aspects of this strategy include an increased focus on basic science in critical care medical curricula as well as in critical care platforms such as conferences and medical journals. Training of critical care clinician scientists in basic and translational research will require new organizational models within the academic institutions, as well as the development of new funding opportunities for early career critical care clinician scientists.
Collapse
Affiliation(s)
- Nicole P Juffermans
- Laboratory of Experimental Intensive Care and Anesthesiology, AmsterdamUMC, location AMC, Amsterdam, the Netherlands.
| | | | - John G Laffey
- Anaesthesia, School of Medicine, National University of Ireland, Galway, Ireland.,Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, National University of Ireland, Galway, Ireland
| | | |
Collapse
|
43
|
Abstract
Regulatory guidelines mandate housing for laboratory mice at temperatures below their thermoneutral zone, creating chronic cold stress. However, increases in housing temperature could alter immune responses. We hypothesized housing mice at temperatures within their thermoneutral zone would improve sepsis survival and alter immune responses. Male C57BL/6 mice were housed at 22°C or 30°C after cecal ligation and puncture (CLP) for 10 days. Survival of mice housed at 30°C (78%) after CLP was significantly increased compared with mice housed at 22°C (40%). Experimental groups were repeated with mice euthanized at 0, 12, 24, and 48 h post-surgery to examine select immune parameters. Raising housing temperature minimally altered systemic, peritoneal, or splenic cell counts. However, IL-6 levels in plasma and peritoneal lavage fluid were significantly lower at 12 h post-surgery in mice housed at 30°C compared with 22°C. Bacterial colony counts from peritoneal lavage fluid were significantly lower in mice housed at 30°C and in vivo studies suggested this was the result of increased phagocytosis by neutrophils. As previously demonstrated, adoptive transfer of fibrocytes significantly increased sepsis survival compared with saline at 22°C. However, there was no additive effect when adoptive transfer was performed at 30°C. Overall, the results demonstrated that thermoneutral housing improves survival after CLP by increasing local phagocytic activity and technical revisions may be necessary to standardize the severity of the model across different housing temperatures. These findings stress the pronounced impact housing temperature has on the CLP model and the importance of reporting housing temperature.
Collapse
|
44
|
Libert C, Ayala A, Bauer M, Cavaillon JM, Deutschman C, Frostell C, Knapp S, Kozlov AV, Wang P, Osuchowski MF, Remick DG. Part II: Minimum Quality Threshold in Preclinical Sepsis Studies (MQTiPSS) for Types of Infections and Organ Dysfunction Endpoints. Shock 2020; 51:23-32. [PMID: 30106873 DOI: 10.1097/shk.0000000000001242] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although the clinical definitions of sepsis and recommended treatments are regularly updated, a systematic review has not been done for preclinical models. To address this deficit, a Wiggers-Bernard Conference on preclinical sepsis modeling reviewed the 260 most highly cited papers between 2003 and 2012 using sepsis models to create a series of recommendations. This Part II report provides recommendations for the types of infections and documentation of organ injury in preclinical sepsis models. Concerning the types of infections, the review showed that the cecal ligation and puncture model was used for 44% of the studies while 40% injected endotoxin. Recommendation #8 (numbered sequentially from Part I): endotoxin injection should not be considered as a model of sepsis; live bacteria or fungal strains derived from clinical isolates are more appropriate. Recommendation #9: microorganisms should replicate those typically found in human sepsis. Sepsis-3 states that sepsis is life-threatening organ dysfunction caused by a dysregulated host response to infection, but the review of the papers showed limited attempts to document organ dysfunction. Recommendation #10: organ dysfunction definitions should be used in preclinical models. Recommendation #11: not all activities in an organ/system need to be abnormal to verify organ dysfunction. Recommendation #12: organ dysfunction should be measured in an objective manner using reproducible scoring systems. Recommendation #13: not all experiments must measure all parameters of organ dysfunction, but investigators should attempt to fully capture as much information as possible. These recommendations are proposed as "best practices" for animal models of sepsis.
Collapse
Affiliation(s)
- Claude Libert
- Center for Inflammation Research, VIB, Ghent, Belgium.,Ghent University, Ghent, Belgium
| | - Alfred Ayala
- Rhode Island Hospital & Alpert School of Medicine at Brown University, Providence, Rhode Island
| | | | | | - Clifford Deutschman
- Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York
| | - Claes Frostell
- Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden
| | | | - Andrey V Kozlov
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Research Center, Vienna, Austria
| | - Ping Wang
- Feinstein Institute for Medical Research, Manhasset, New York
| | - Marcin F Osuchowski
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Research Center, Vienna, Austria
| | | |
Collapse
|
45
|
Rubio I, Osuchowski MF, Shankar-Hari M, Skirecki T, Winkler MS, Lachmann G, La Rosée P, Monneret G, Venet F, Bauer M, Brunkhorst FM, Kox M, Cavaillon JM, Uhle F, Weigand MA, Flohé SB, Wiersinga WJ, Martin-Fernandez M, Almansa R, Martin-Loeches I, Torres A, Giamarellos-Bourboulis EJ, Girardis M, Cossarizza A, Netea MG, van der Poll T, Scherag A, Meisel C, Schefold JC, Bermejo-Martín JF. Current gaps in sepsis immunology: new opportunities for translational research. THE LANCET. INFECTIOUS DISEASES 2019; 19:e422-e436. [DOI: 10.1016/s1473-3099(19)30567-5] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/30/2019] [Accepted: 08/06/2019] [Indexed: 12/18/2022]
|
46
|
Carpenter KC, Hakenjos JM, Fry CD, Nemzek JA. The Influence of Pain and Analgesia in Rodent Models of Sepsis. Comp Med 2019; 69:546-554. [PMID: 31213216 PMCID: PMC6935706 DOI: 10.30802/aalas-cm-19-000004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/15/2019] [Accepted: 04/01/2019] [Indexed: 12/17/2022]
Abstract
Sepsis is a multifaceted host response to infection that dramatically affects patient outcomes and the cost of health care. Animal models are necessary to replicate the complexity and heterogeneity of clinical sepsis. However, these models entail a high risk of pain and distress due to tissue trauma, inflammation, endotoxin-mediated hyperalgesia, and other mechanisms. Several recent studies and initiatives address the need to improve the welfare of animals through analgesics and standardize the models used in preclinical sepsis research. Ultimately, the goal is to provide high-fidelity, humane animal models that better replicate the clinical course of sepsis, to provide more effective translation and advance therapeutic discovery. The purpose of this review is to discuss the current understanding of the roles of pain and analgesia in rodent models of sepsis. The current definitions of sepsis along with an overview of pain in human sepsis are described. Finally, welfare concerns associated with animal models of sepsis and the most recent considerations for relief of pain and distress are reviewed.
Collapse
Affiliation(s)
- Kelsey C Carpenter
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, Michigan
| | - John M Hakenjos
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Christopher D Fry
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Jean A Nemzek
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, Michigan;,
| |
Collapse
|
47
|
The Response to the Letter to the Editor Titled: "Is Triple Self-plagiarism "OK" If Only Made Transparent?" by Volker R Jacobs, MD, MBA. Shock 2019; 51:140-141. [PMID: 30475325 DOI: 10.1097/shk.0000000000001294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
What's New in Shock, October 2018? Shock 2019; 50:373-376. [PMID: 30216297 DOI: 10.1097/shk.0000000000001206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Skirecki T, Drechsler S, Hoser G, Jafarmadar M, Siennicka K, Pojda Z, Kawiak J, Osuchowski MF. The Fluctuations of Leukocytes and Circulating Cytokines in Septic Humanized Mice Vary With Outcome. Front Immunol 2019; 10:1427. [PMID: 31297113 PMCID: PMC6607920 DOI: 10.3389/fimmu.2019.01427] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/06/2019] [Indexed: 12/20/2022] Open
Abstract
Sepsis remains a major challenge in translational research given its heterogeneous pathophysiology and the lack of specific therapeutics. The use of humanized mouse chimeras with transplanted human hematopoietic cells may improve the clinical relevance of pre-clinical studies. However, knowledge of the human immuno-inflammatory response during sepsis in humanized mice is scarce; it is unclear how similar or divergent mouse and human-origin immuno-inflammatory responses in sepsis are. In this study, we evaluated the early outcome-dependent immuno-inflammatory response in humanized mice generated in the NSG strain after cecal ligation and puncture (CLP) sepsis. Mice were observed for 32 h post-CLP and were assigned to either predicted-to-die (P-DIE) or predicted-to-survive (P-SUR) groups for retrospective comparisons. Blood samples were collected at baseline, 6 and 24 h, whereas the bone marrow and spleen were collected between 24 and 32 h post-CLP. In comparison to P-SUR, P-DIE humanized mice had a 3-fold higher frequency of human splenic monocytes and their CD80 expression was reduced by 1.3-fold; there was no difference in the HLA-DR expression. Similarly, the expression of CD80 on the bone marrow monocytes from P-DIE mice was decreased by 32% (p < 0.05). Sepsis induced a generalized up-regulation of both human and murine plasma cytokines (TNFα, IL-6, IL-10, IL-8/KC, MCP-1); it was additionally aggravated in P-DIE vs. P-SUR. Human cytokines were strongly overridden by the murine ones (approx. ratio 1:9) but human TNFα was 7-fold higher than mouse TNFα. Interestingly, transplantation of human cells did not influence murine cytokine response in NSG mice, but humanized NSG mice were more susceptible to sepsis in comparison with NSG mice (79 vs. 33% mortality; p < 0.05). In conclusion, our results show that humanized mice reflect selected aspects of human immune responses in sepsis and therefore may be a feasible alternative in preclinical immunotherapy modeling.
Collapse
Affiliation(s)
- Tomasz Skirecki
- Laboratory of Flow Cytometry, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Susanne Drechsler
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Research Center, Vienna, Austria
| | - Grazyna Hoser
- Laboratory of Flow Cytometry, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Mohammad Jafarmadar
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Research Center, Vienna, Austria
| | - Katarzyna Siennicka
- Department of Regenerative Medicine, Maria Sklodowska-Curie Institute-Oncology Center, Warsaw, Poland
| | - Zygmunt Pojda
- Department of Regenerative Medicine, Maria Sklodowska-Curie Institute-Oncology Center, Warsaw, Poland
| | - Jerzy Kawiak
- Laboratory of Flow Cytometry, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Marcin F Osuchowski
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Research Center, Vienna, Austria
| |
Collapse
|
50
|
What's New in Shock, July 2019? Shock 2019; 52:1-4. [PMID: 31188264 DOI: 10.1097/shk.0000000000001350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|