1
|
Wei N, Liu C, Zhu H, Wang C, Zhou Y, Xiao Z, Du L, Song Y. Hypoalbuminemia contributes to ascites formation via sodium and water retention: Evidence from clinical date and albumin deficient mice. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167275. [PMID: 38844112 DOI: 10.1016/j.bbadis.2024.167275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/10/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024]
Abstract
Albumin infusions improve circulatory and renal function in patients with decompensated cirrhosis. However, there is no convincing evidence that hypoalbuminemia contributes to ascites formation in liver cirrhosis. The aim of our study is to determine the exact role of hypoalbuminemia in the formation of ascites caused by liver cirrhosis and its underlying mechanism. Clinical profiles of patients with liver cirrhosis retrospectively analyzed. The details of albumin involved in ascites formation were investigated in rat model and murine model. Statistical analysis demonstrated hypoalbuminemia was an independent risk factor for ascites formation in patients with liver cirrhosis (OR = 0.722, P < 0.001). In carbon tetrachloride (CCl4)-induced rat model of liver cirrhosis, a significant reduction in serum albumin was observed in rats with ascites (13.37 g/L) compared with rats without ascites (21.43 g/L, P < 0.001). In thioacetamide (TAA)-treated mice, ascites amount of heterozygous albumin (Alb+/-) mice (112.0 mg) was larger than that of wild-type (Alb+/+) mice (58.46 mg, P < 0.001). In CCl4-induced chronic liver injury, ascites amounts of Alb+/- or Alb+/+ mice were 80.00 mg or 48.46 mg (P = 0.001). Further study demonstrated 24-h urinary sodium excretion in Alb+/- mice was lower than that of Alb+/+ mice in TAA/CCl4-induce murine models of liver cirrhosis. Additionally, serum sodium concentration of Alb+/- mice was lower than that of Alb+/+ mice. In cirrhotic mice, higher level of antidiuretic hormone was observed in Alb+/- mice compared with the control; and renal aquaporin (AQP2) expression in Alb+/- mice was significantly higher than that of WT mice. These revealed hypoalbuminemia contributed to the occurrence of ascites in liver cirrhosis through sodium and water retention.
Collapse
Affiliation(s)
- Ning Wei
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chang Liu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Huifang Zhu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chengbo Wang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yangyang Zhou
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhuanglong Xiao
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Li Du
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuhu Song
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
2
|
Herrnreiter CJ, Luck ME, Cannon AR, Li X, Choudhry MA. Reduced Expression of miR-146a Potentiates Intestinal Inflammation following Alcohol and Burn Injury. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:881-893. [PMID: 38189569 PMCID: PMC10922766 DOI: 10.4049/jimmunol.2300405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/13/2023] [Indexed: 01/09/2024]
Abstract
MicroRNAs (miRNAs) are small noncoding RNA molecules that negatively regulate gene expression. Within the intestinal epithelium, miRNAs play a critical role in gut homeostasis, and aberrant miRNA expression has been implicated in various disorders associated with intestinal inflammation and barrier disruption. In this study, we sought to profile changes in intestinal epithelial cell miRNA expression after alcohol and burn injury and elucidate their impact on inflammation and barrier integrity. Using a mouse model of acute ethanol intoxication and burn injury, we found that small intestinal epithelial cell expression of miR-146a is significantly decreased 1 d following injury. Using in vitro studies, we show that reduced miR-146a promotes intestinal epithelial cell inflammation by promoting p38 MAPK signaling via increased levels of its target TRAF6 (TNFR-associated factor 6). Furthermore, we demonstrate that in vivo miR-146a overexpression significantly inhibits intestinal inflammation 1 d following combined injury and potentially supports intestinal barrier homeostasis. Overall, this study highlights the important impact that miRNA expression can have on intestinal homeostasis and the valuable potential of harnessing aberrant miRNA expression as a therapeutic target to control intestinal inflammation.
Collapse
Affiliation(s)
- Caroline J. Herrnreiter
- Biochemistry, Molecular and Cancer Biology Program, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
- Burn & Shock Trauma Research Institute, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
- Alcohol Research Program, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
- Department of Surgery, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
- Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
| | - Marisa E. Luck
- Burn & Shock Trauma Research Institute, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
- Alcohol Research Program, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
- Department of Surgery, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
- Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
| | - Abigail R. Cannon
- Burn & Shock Trauma Research Institute, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
- Alcohol Research Program, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
- Department of Surgery, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
- Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
| | - Xiaoling Li
- Burn & Shock Trauma Research Institute, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
- Alcohol Research Program, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
- Department of Surgery, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
- Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
| | - Mashkoor A. Choudhry
- Burn & Shock Trauma Research Institute, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
- Alcohol Research Program, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
- Department of Surgery, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
- Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
| |
Collapse
|
3
|
Gentili M, Hidalgo-Garcia L, Vezza T, Ricci E, Migliorati G, Rodriguez-Nogales A, Riccardi C, Galvez J, Ronchetti S. A recombinant glucocorticoid-induced leucine zipper protein ameliorates symptoms of dextran sulfate sodium-induced colitis by improving intestinal permeability. FASEB J 2021; 35:e21950. [PMID: 34613638 DOI: 10.1096/fj.202100778rrrr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 12/15/2022]
Abstract
Inflammatory bowel diseases (IBDs) are chronic inflammatory disorders characterized by relapsing intestinal inflammation, but many details of pathogenesis remain to be fully unraveled. Glucocorticoid (GC)-induced leucine zipper (GILZ) is a mediator of the anti-inflammatory effects of GCs, the most powerful drugs for IBD treatment, but they cause several unwanted side effects. The fusion protein TAT-GILZ has been successfully used in some pre-clinical models of inflammatory and autoimmune diseases. To test the efficacy of TAT-GILZ for treating dextran sulfate sodium (DSS)-induced colitis and explore its impact on the gut microbiome, colitis was induced by DSS in C57BL/6J mice and treated with TAT-GILZ or dexamethasone. Various hallmarks of colitis were analyzed, including disease activity index, gut permeability, and expression of pro-inflammatory cytokines and tight junction proteins. TAT-GILZ treatment showed a therapeutic effect when administered after the onset of colitis. Its efficacy was associated with improved gut permeability, as evidenced by zonula occludens-1 and CD74 upregulation in inflamed colonic tissue. TAT-GILZ also ameliorated the changes in the gut microbiota induced by the DSS, thus potentially providing an optimal environment for colonization of the mucosa surface by beneficial bacteria. Overall, our results demonstrated for the first time that TAT-GILZ treatment proved effective after disease onset allowing restoration of gut permeability, a key pathogenic feature of colitis. Additionally, TAT-GILZ restored gut dysbiosis, thereby contributing to healing mechanisms. Interestingly, we found unprecedented effects of exogenous GILZ that did not overlap with those of GCs.
Collapse
Affiliation(s)
- Marco Gentili
- Pharmacology Division, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Laura Hidalgo-Garcia
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Teresa Vezza
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Erika Ricci
- Pharmacology Division, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Graziella Migliorati
- Pharmacology Division, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Alba Rodriguez-Nogales
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Carlo Riccardi
- Pharmacology Division, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Julio Galvez
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Simona Ronchetti
- Pharmacology Division, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
4
|
Herrera M, Molina P, Souza-Smith FM. Ethanol-induced lymphatic endothelial cell permeability via MAP-kinase regulation. Am J Physiol Cell Physiol 2021; 321:C104-C116. [PMID: 33909502 PMCID: PMC8321794 DOI: 10.1152/ajpcell.00039.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 11/22/2022]
Abstract
Chronic alcohol alters the immune system enhancing the susceptibility to inflammation, bacterial, and viral infections in alcohol users. We have shown that alcohol causes increased permeability of mesenteric lymphatic vessels in alcohol-fed rats. The mechanisms of alcohol-induced lymphatic leakage are unknown. Endothelial cell monolayer permeability is controlled by junctional proteins complexes called tight junctions (TJ) and adherens junctions (AJ), and each can be regulated by MAPK activation. We hypothesize that ethanol induces lymphatic endothelial cell (LEC) permeability via disruption of LEC TJ through MAPK activation. An in vitro model of rat LECs was used. Ethanol-supplemented medium was added at concentrations of 0, 25, and 50 mM to confluent cells. Resistance-based barrier function, transwell permeability, cell viability, TJ, AJ, and MAPK protein activity, TJ and AJ gene expressions, and the role of p38 MAPK in barrier function regulation were measured. Ethanol increased the permeability of LECs compared to controls that was not associated with decreased cell viability. LECs treated with 50 mM ethanol showed an increase in phosphorylated levels of p38. No significant changes in TJ and AJ gene or protein expressions were observed after ethanol treatment. p38 inhibition prevented ethanol-induced increases in permeability. These findings suggest that p38 may play a role in the regulation of ethanol-induced LEC permeability, but altered permeability may not be associated with decreased TJ or AJ protein expression. Further investigation into junctional protein localization is needed to better understand the effects of ethanol on lymphatic endothelial cell-to-cell contacts and hyperpermeability.
Collapse
Affiliation(s)
- Matthew Herrera
- Department of Physiology, Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Patricia Molina
- Department of Physiology, Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Flavia M Souza-Smith
- Department of Physiology, Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|
5
|
McCarty MF, Lerner A. Perspective: Prospects for Nutraceutical Support of Intestinal Barrier Function. Adv Nutr 2021; 12:316-324. [PMID: 33126251 PMCID: PMC8243597 DOI: 10.1093/advances/nmaa139] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/28/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
Impairment of intestinal barrier function is linked to certain pathologies and to aging, and can be a cause of bacterial infections, systemic and hepatic inflammation, food allergies, and autoimmune disorders. The formation and maintenance of intestinal tight junctions is supported by glucagon-like peptide-2 (GLP-2), which via insulin-like growth factor I activity boosts phosphoinositide 3-kinase/Akt/mammalian target of rapamycin complex 1 (PI3K/Akt/mTORC1) signaling in enterocytes. 5'-AMP-activated protein kinase (AMPK) activity as well as estrogen receptor-β (ERβ) activity are also protective in this regard. Conversely, activation of mitogen-activated protein kinases (MAPKs) and cellular Src (c-Src) under inflammatory conditions can induce dissociation of tight junctions. Hence, nutraceuticals that promote GLP-2 secretion from L cells-effective pre/probiotics, glycine, and glutamine-as well as diets rich in soluble fiber or resistant starch, can support intestinal barrier function. AMPK activators-notably berberine and the butyric acid produced by health-promoting microflora-are also beneficial in this regard, as are soy isoflavones, which function as selective agonists for ERβ. The adverse impact of MAPK and c-Src overactivation on the intestinal barrier can be combatted with various antioxidant measures, including phycocyanobilin, phase 2-inducer nutraceuticals, and N-acetylcysteine. These considerations suggest that rationally designed functional foods or complex supplementation programs could have clinical potential for supporting and restoring healthful intestinal barrier function.
Collapse
Affiliation(s)
| | - Aaron Lerner
- Chaim Sheba Medical Center, Zabludowicz Center for Autoimmune Diseases, Tel-Hashomer, Israel
| |
Collapse
|
6
|
Lasso Peptide Microcin J25 Effectively Enhances Gut Barrier Function and Modulates Inflammatory Response in an Enterotoxigenic Escherichia coli-Challenged Mouse Model. Int J Mol Sci 2020; 21:ijms21186500. [PMID: 32899529 PMCID: PMC7555725 DOI: 10.3390/ijms21186500] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
Bacterial resistance leads to severe public health and safety issues worldwide. Alternatives to antibiotics are currently needed. A promising lasso peptide, microcin J25 (MccJ25), is considered to be the best potential substitute for antibiotics to treat pathogen infection, including enterotoxigenic Escherichia coli (ETEC). This study evaluated the efficacy of MccJ25 in the prevention of ETEC infection. Forty-five female BALB/c mice of clean grade (aged seven weeks, approximately 16.15 g) were randomly divided into three experimental groups as follows: (i) control group (uninfected); (ii) ETEC infection group; (iii) MccJ25 + ETEC group. Fifteen mice per group in five cages, three mice/cage. MccJ25 conferred effective protection against ETEC-induced body weight loss, decrease in rectal temperature and increase in diarrhea scores in mice. Moreover, in ETEC-challenged mice model, MccJ25 significantly improved intestinal morphology, decreased intestinal histopathological scores and attenuated intestinal inflammation by decreasing proinflammatory cytokines and intestinal permeability, including reducing serum diamine oxidase and D-lactate levels. MccJ25 enhanced epithelial barrier function by increasing occludin expression in the colon and claudin-1 expression in the jejunum, ultimately improving intestinal health of host. MccJ25 was further found to alleviate gut inflammatory responses by decreasing inflammatory cytokine production and expression via the activation of the mitogen-activated protein kinase and nuclear factor κB signaling pathways. Taken together, the results indicated that MccJ25 protects against ETEC-induced intestinal injury and intestinal inflammatory responses, suggesting the potential application of MccJ25 as an excellent antimicrobial or anti-inflammation agent against pathogen infections.
Collapse
|
7
|
Jiang C, Lin W, Wang L, Lv Y, Song Y, Chen X, Yang H. Fushen Granule, A Traditional Chinese Medicine, ameliorates intestinal mucosal dysfunction in peritoneal dialysis rat model by regulating p38MAPK signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2020; 251:112501. [PMID: 31877365 DOI: 10.1016/j.jep.2019.112501] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/12/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fushen Granule (FSG) is a Chinese medicinal formular prepared in hospital to treat intestinal mucosal dysfunction induced by peritoneal dialysis (PD). However, the mechanisms of this formular has not been studied yet. AIM OF THE STUDY The present study was designed to investigate the effect of FSG against intestinal dysfunction during PD treatment and explore the potential mechanisms using a rat PD model. METHODS AND METHODS In the present study, the effect of FSG on improving intestinal mucosal architecture injury was intuitively shown by hematoxylin-eosin staining, the serum levels of DAO and D-lactate were measured to evaluate the intestinal permeability by the DAO Assay Kit and D-Lactic Acid ELISA Kit. The expression of the intestinal mucosal barrier related inflammation factor by real-time PCR. The main effective constituents of FSG were characterized by UPLC/Q-TOF analysis, and the targets and pathways of the constituents were predicted via TCMSP database and IPA. the activation of p38MAPK signaling pathway by western blotting. RESULTS HE staining results showed that FSG protected against intestinal mucosal injury in pathology in PD rats. FSG decreased the intestinal mucosal permeability by increasing the transepithelial electrical resistance (TER) level and decreasing the intestinal clearance of fluorescein-isothiocyanate dextran (FD4) and the level of D-lactate and diamine oxidase (DAO). FSG significantly decreased the expression of ICAM-1, IL-1β, iNOS and TNF-α, and further inhibited the activation of p38MAPK signaling pathway via down-regulating the expression of P-p38MAPK and up-regulating the expression of DUSP1, occludin, and ZO-1. CONCLUSION This study demonstrates that FSG ameliorated intestinal mucosal dysfunction in PD by decreasing expression of pro-inflammatory cytokines and inhibiting the activation of p38MAPK signaling pathway. The results provide a promising basis for the alternative medicine treatment of intestinal mucosal dysfunction in PD.
Collapse
Affiliation(s)
- Chen Jiang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| | - Wei Lin
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| | - Lingyun Wang
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Yang Lv
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| | - Yu Song
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| | - Xin Chen
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| | - Hongtao Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| |
Collapse
|
8
|
Astragaloside IV attenuates sepsis-induced intestinal barrier dysfunction via suppressing RhoA/NLRP3 inflammasome signaling. Int Immunopharmacol 2020; 78:106066. [DOI: 10.1016/j.intimp.2019.106066] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/10/2019] [Accepted: 11/18/2019] [Indexed: 12/20/2022]
|
9
|
Yu H, Wang Y, Zeng X, Cai S, Wang G, Liu L, Huang S, Li N, Liu H, Ding X, Song Q, Qiao S. Therapeutic administration of the recombinant antimicrobial peptide microcin J25 effectively enhances host defenses against gut inflammation and epithelial barrier injury induced by enterotoxigenic
Escherichia coli
infection. FASEB J 2019; 34:1018-1037. [DOI: 10.1096/fj.201901717r] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Haitao Yu
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture and Rural Affairs Feed Industry CenterChina Agricultural University Beijing P.R. China
- Beijing Key Laboratory of Biofeed Additives Beijing P.R. China
| | - Yuming Wang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture and Rural Affairs Feed Industry CenterChina Agricultural University Beijing P.R. China
- Beijing Key Laboratory of Biofeed Additives Beijing P.R. China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture and Rural Affairs Feed Industry CenterChina Agricultural University Beijing P.R. China
- Beijing Key Laboratory of Biofeed Additives Beijing P.R. China
| | - Shuang Cai
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture and Rural Affairs Feed Industry CenterChina Agricultural University Beijing P.R. China
- Beijing Key Laboratory of Biofeed Additives Beijing P.R. China
| | - Gang Wang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture and Rural Affairs Feed Industry CenterChina Agricultural University Beijing P.R. China
- Beijing Key Laboratory of Biofeed Additives Beijing P.R. China
| | - Lu Liu
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture and Rural Affairs Feed Industry CenterChina Agricultural University Beijing P.R. China
- Beijing Key Laboratory of Biofeed Additives Beijing P.R. China
| | - Shuo Huang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture and Rural Affairs Feed Industry CenterChina Agricultural University Beijing P.R. China
- Beijing Key Laboratory of Biofeed Additives Beijing P.R. China
| | - Ning Li
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture and Rural Affairs Feed Industry CenterChina Agricultural University Beijing P.R. China
- Beijing Key Laboratory of Biofeed Additives Beijing P.R. China
| | - Hongbin Liu
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture and Rural Affairs Feed Industry CenterChina Agricultural University Beijing P.R. China
- Beijing Key Laboratory of Biofeed Additives Beijing P.R. China
| | - Xiuliang Ding
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture and Rural Affairs Feed Industry CenterChina Agricultural University Beijing P.R. China
- Beijing Key Laboratory of Biofeed Additives Beijing P.R. China
| | - Qinglong Song
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture and Rural Affairs Feed Industry CenterChina Agricultural University Beijing P.R. China
- Beijing Key Laboratory of Biofeed Additives Beijing P.R. China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture and Rural Affairs Feed Industry CenterChina Agricultural University Beijing P.R. China
- Beijing Key Laboratory of Biofeed Additives Beijing P.R. China
| |
Collapse
|
10
|
Ye N, Yu T, Guo H, Li J. Intestinal Injury in Heat Stroke. J Emerg Med 2019; 57:791-797. [PMID: 31708310 DOI: 10.1016/j.jemermed.2019.08.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/23/2019] [Accepted: 08/25/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Heat stroke is a life-threatening syndrome that is characterized by its severe clinical symptoms, rapid progression, and high rate of mortality. Recently, research has indicated that a dysfunctional intestinal epithelia barrier plays an important role in the pathophysiology of heat stroke. Protecting the intestines from heat stress had been identified as a potentially effective treatment for patients with heat stroke and may reduce the innate immune response caused by endotoxins in circulation. OBJECTIVES The aim of this review is to discuss this key event in heat stroke and to describe the mechanism during progression. DISCUSSION Direct injuries and secondary impairments of the intestine induced by heat stress are discussed; recent studies that refer to intestine-specific prevention and treatment in heat stroke and heat stress-induced injuries are also summarized. CONCLUSIONS A more detailed pathogenesis of heat stroke needs to be elucidated so that potentially effective means of treatment and prevention of heat stroke can be developed and studied.
Collapse
Affiliation(s)
- Nan Ye
- Department of Military Biosafety, Army Medical University, Third Military Medical University, Chongqing, China
| | - Tiantian Yu
- Department of Military Biosafety, Army Medical University, Third Military Medical University, Chongqing, China
| | - Hongxia Guo
- Department of Military Biosafety, Army Medical University, Third Military Medical University, Chongqing, China
| | - Jintao Li
- Department of Military Biosafety, Army Medical University, Third Military Medical University, Chongqing, China
| |
Collapse
|
11
|
Al-Sadi R, Youssef M, Rawat M, Guo S, Dokladny K, Haque M, Watterson MD, Ma TY. MMP-9-induced increase in intestinal epithelial tight permeability is mediated by p38 kinase signaling pathway activation of MLCK gene. Am J Physiol Gastrointest Liver Physiol 2019; 316:G278-G290. [PMID: 30543452 PMCID: PMC6397336 DOI: 10.1152/ajpgi.00126.2018] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 11/21/2018] [Accepted: 12/07/2018] [Indexed: 01/31/2023]
Abstract
Matrix metalloproteinase-9 (MMP-9) has been implicated as being an important pathogenic factor in inflammatory bowel disease (IBD). MMP-9 is markedly elevated in intestinal tissue of patients with IBD, and IBD patients have a defective intestinal tight-junction (TJ) barrier manifested by an increase in intestinal permeability. The loss of intestinal epithelial barrier function is an important contributing factor in the development and prolongation of intestinal inflammation; however, the role of MMP-9 in intestinal barrier function remains unclear. The purpose of this study was to investigate the effect of MMP-9 on the intestinal epithelial TJ barrier and to delineate the intracellular mechanisms involved by using in vitro (filter-grown Caco-2 monolayers) and in vivo (mouse small intestine recycling perfusion) systems. MMP-9 caused a time- and dose-dependent increase in Caco-2 TJ permeability. MMP-9 also caused an increase in myosin light-chain kinase (MLCK) gene activity, protein expression, and enzymatic activity. The pharmacological MLCK inhibition and siRNA-induced knockdown of MLCK inhibited the MMP-9-induced increase in Caco-2 TJ permeability. MMP-9 caused a rapid activation of the p38 kinase signaling pathway and inhibition of p38 kinase activity prevented the MMP-9-induced increase in MLCK gene activity and the increase in Caco-2 TJ permeability. MMP-9 also caused an increase in mouse intestinal permeability in vivo, which was accompanied by an increase in MLCK expression. The MMP-9-induced increase in mouse intestinal permeability was inhibited in MLCK-deficient mice. These data show for the first time that the MMP-9-induced increase in intestinal TJ permeability in vitro and in vivo was mediated by the p38 kinase signal transduction pathway upregulation of MLCK gene activity and that therapeutic targeting of these pathways can prevent the MMP-9-induced increase in intestinal TJ permeability. NEW & NOTEWORTHY MMP-9 is highly elevated in patients with IBD. IBD patients have compromised intestinal TJ barrier function manifested by an increase in intestinal permeability and intestinal inflammation. This study shows that MMP-9, at clinically achievable concentrations, causes an increase in intestinal TJ permeability in vitro and in vivo. In addition, a MMP-9-induced increase in intestinal TJ permeability was mediated by an increase in MLCK gene and protein expression via the p38 kinase pathway.
Collapse
Affiliation(s)
- Rana Al-Sadi
- Penn State Milton S. Hershey Medical Center, College of Medicine , Hershey, Pennsylvania
| | - Moustafa Youssef
- Department of Internal Medicine, University of New Mexico School of Medicine , Albuquerque, New Mexico
| | - Manmeet Rawat
- Department of Internal Medicine, University of New Mexico School of Medicine , Albuquerque, New Mexico
| | - Shuhong Guo
- Department of Internal Medicine, University of New Mexico School of Medicine , Albuquerque, New Mexico
| | - Karol Dokladny
- Department of Internal Medicine, University of New Mexico School of Medicine , Albuquerque, New Mexico
| | - Mohammad Haque
- Penn State Milton S. Hershey Medical Center, College of Medicine , Hershey, Pennsylvania
| | | | - Thomas Y Ma
- Penn State Milton S. Hershey Medical Center, College of Medicine , Hershey, Pennsylvania
- Department of Internal Medicine, University of New Mexico School of Medicine , Albuquerque, New Mexico
| |
Collapse
|
12
|
Wang W, Weng J, Yu L, Huang Q, Jiang Y, Guo X. Role of TLR4-p38 MAPK-Hsp27 signal pathway in LPS-induced pulmonary epithelial hyperpermeability. BMC Pulm Med 2018; 18:178. [PMID: 30482200 PMCID: PMC6258407 DOI: 10.1186/s12890-018-0735-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/07/2018] [Indexed: 01/15/2023] Open
Abstract
Background The breakdown of alveolar barrier dysfunction contributes to Lipopolysaccharide stimulated pulmonary edema and acute lung injury. Actin cytoskeleton has been implicated to be critical in regulation of epithelial barrier. Here, we performed in vivo and in vitro study to investigate role of TLR4-p38 MAPK-Hsp27 signal pathway in LPS-induced ALI. Methods For in vivo studies, 6–8-week-old C57 mice were used, Bronchoalveolar lavage Fluid /Blood fluorescent ratio, wet-to-dry lung weight ratio, as well as protein concentrations and neutrophil cell counts in BALF were detected as either directly or indirectly indicators of pulmonary alveolar barrier dysfunction. And hematoxylin and eosin staining was performed to estimate pulmonary injury. The in vitro explorations of transepithelial permeability were achieved through transepithelial electrical resistance measurement and testing of FITC-Dextran transepithelial flux in A549. In addition, cytoskeletal rearrangement was tested through F-actin immunostaining. And SB203580 was used to inhibit p38 MAPK activation, while siRNA was administered to genetically knockdown specific protein. Results We showed that LPS triggered activation of p38 MAPK, rearrangement of cytoskeleton which resulted in severe epithelial hyperpermeability and lung edema. A549 pretreated with TLR4 siRNA、p38 MAPK siRNA and its inhibitor SB203580 displayed a lower permeability and fewer stress fibers formation after LPS stimulation, accompanied with lower phosphorylation level of p38 MAPK and Hsp27, which verified the involvement of TLR4-p38 MAPK-Hsp27 in LPS-evoked alveolar epithelial injury. Inhibition of p38 MAPK activity with SB203580 in vivo attenuated pulmonary edema formation and hyperpermeability in response to LPS. Conclusions Our study demonstrated that LPS increased alveolar epithelial permeability both in vitro and in vivo and that TLR4- p38 MAPK- Hsp27 signal pathway dependent actin remolding was involved in this process.
Collapse
Affiliation(s)
- Weiju Wang
- Department of Pathophysiology, Guangdong Province Key Laboratory for Shock and Microcirculation Research, Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, 510515, China
| | - Jie Weng
- Department of Pathophysiology, Guangdong Province Key Laboratory for Shock and Microcirculation Research, Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, 510515, China
| | - Lei Yu
- Department of Pathophysiology, Guangdong Province Key Laboratory for Shock and Microcirculation Research, Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, 510515, China
| | - Qiaobing Huang
- Department of Pathophysiology, Guangdong Province Key Laboratory for Shock and Microcirculation Research, Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, 510515, China.
| | - Yong Jiang
- Department of Pathophysiology, Guangdong Province Key Laboratory for Shock and Microcirculation Research, Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, 510515, China.
| | - Xiaohua Guo
- Department of Pathophysiology, Guangdong Province Key Laboratory for Shock and Microcirculation Research, Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
13
|
Yu H, Ding X, Shang L, Zeng X, Liu H, Li N, Huang S, Wang Y, Wang G, Cai S, Chen M, Levesque CL, Johnston LJ, Qiao S. Protective Ability of Biogenic Antimicrobial Peptide Microcin J25 Against Enterotoxigenic Escherichia Coli-Induced Intestinal Epithelial Dysfunction and Inflammatory Responses IPEC-J2 Cells. Front Cell Infect Microbiol 2018; 8:242. [PMID: 30057893 PMCID: PMC6053529 DOI: 10.3389/fcimb.2018.00242] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 06/22/2018] [Indexed: 12/28/2022] Open
Abstract
Poison of intestinal induce severe health problems in human infants and young animals due to contaminating foods and feedstuffs. With the emergence of public health concerns and high-speed diffuse of drug-opposition of bacteria, the adoption of antimicrobial peptides as potential candidates in treating pathogen infections raised up. Nature Microcin J25 (MccJ25), a class of lasso peptides separated from a fecal strain of E. coli, has been replied to display powerful antimicrobial behavior. Herein, the study was to assess the usefulness of biogenic MccJ25 in the prophylaxis of ETEC K88 infection in IPEC-J2 cells. In vitro antimicrobial activity against ETEC K88 and cytotoxicity of biogenic MccJ25 were determined first. To further understand how biogenic MccJ25 mediates its impact, ETEC K88 adhesion in cells, membrane permeability [as indicated by reduced release of lactate dehydrogenase (LDH)], transepithelial electrical resistance (TEER), barrier function, and proinflammatory cytokines levels were determined in IPEC-J2 cells after treatment with biogenic MccJ25 and challenge with ETEC K88. Biogenic MccJ25 had a minimum inhibitory concentration of 0.25 μg/mL against ETEC K88, decreased ETEC K88 adhesion in cells and did not cause cytotoxicity toward cells. Furthermore, biogenic MccJ25 protects against ETEC-induced barrier dysfunction by increasing the TEER, decreasing the LDH and promoting tight junction proteins (TJPs) by promoting the assembly of occludin and claudin-1 in the tight junction complex. Biogenic MccJ25 was further found to relieve inflammation responses through modulation of interleukine-6, IL-8 and tumor necrosis factor-α levels via inhibition of mitogen-activated protein kinase (MAPK) and nuclear factor κB activation. In summary, biogenic MccJ25 can protects against ETEC K88-induced intestinal damage and inflammatory response, recommend the hidden adoption of biogenic MccJ25 as a novel prophylactic agent to reduce pathogen infection in animals, food or humans.
Collapse
Affiliation(s)
- Haitao Yu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Xiuliang Ding
- National Feed Engineering Technology Research Center, Beijing, China
| | - Lijun Shang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Hongbin Liu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Ning Li
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Shuo Huang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Yuming Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Gang Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Shuang Cai
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Meixia Chen
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Crystal L Levesque
- Department of Animal Sciences, South Dakota State University, Brookings, SD, United States
| | - Lee J Johnston
- Swine Nutrition and Production, West Central Research and Outreach Center, University of Minnesota, Morris, MN, United States
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| |
Collapse
|
14
|
Dun Y, Liu M, Chen J, Peng D, Zhao H, Zhou Z, Wang T, Liu C, Guo Y, Zhang C, Yuan D. Regulatory effects of saponins from Panax japonicus on colonic epithelial tight junctions in aging rats. J Ginseng Res 2016; 42:50-56. [PMID: 29348722 PMCID: PMC5766693 DOI: 10.1016/j.jgr.2016.12.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 10/27/2016] [Accepted: 12/20/2016] [Indexed: 12/24/2022] Open
Abstract
Background Saponins from Panax japonicus (SPJ) are the most abundant and main active components of P. japonicus, which replaces ginseng roots in treatment for many kinds of diseases in the minority ethnic group in China. Our previous studies have demonstrated that SPJ has the effects of anti-inflammation through the mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) signaling pathways. The present study was designed to investigate whether SPJ can modulate intestinal tight junction barrier in aging rats and further to explore the potential mechanism. Methods Aging rats had been treated with different doses (10 mg/kg, 30 mg/kg, and 60 mg/kg) of SPJ for 6 mo since they were 18 mo old. After the rats were euthanized, the colonic samples were harvested. Levels of tight junctions (claudin-1 and occludin) were determined by immunohistochemical staining. Levels of proinflammatory cytokines (interleukin-1β and tumor necrosis factor-α) were examined by Western blot. NF-κB and phosphorylation of MAPK signaling pathways were also determined by Western blot. Results We found that SPJ increased the expression of the tight junction proteins claudin-1 and occludin in the colon of aging rats. Treatment with SPJ decreased the levels of interleukin-1β and tumor necrosis factor-α, reduced the phosphorylation of three MAPK isoforms, and inhibited the expression of NF-κB in the colon of aging rats. Conclusion The studies demonstrated that SPJ modulates the damage of intestinal epithelial tight junction in aging rats, inhibits inflammation, and downregulates the phosphorylation of the MAPK and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Yaoyan Dun
- Medical College of China Three Gorges University, Yichang, China
| | - Min Liu
- Medical College of China Three Gorges University, Yichang, China
| | - Jing Chen
- Medical College of China Three Gorges University, Yichang, China
| | - Danli Peng
- Medical College of China Three Gorges University, Yichang, China
| | - Haixia Zhao
- Medical College of China Three Gorges University, Yichang, China
| | - Zhiyong Zhou
- Medical College of China Three Gorges University, Yichang, China
| | - Ting Wang
- Medical College of China Three Gorges University, Yichang, China
| | - Chaoqi Liu
- Medical College of China Three Gorges University, Yichang, China
| | - Yuhui Guo
- Medical College of China Three Gorges University, Yichang, China
| | - Changcheng Zhang
- Medical College of China Three Gorges University, Yichang, China
| | - Ding Yuan
- Renhe Hospital of China Three Gorges University, Yichang, China
| |
Collapse
|
15
|
Ling KH, Wan MLY, El-Nezami H, Wang M. Protective Capacity of Resveratrol, a Natural Polyphenolic Compound, against Deoxynivalenol-Induced Intestinal Barrier Dysfunction and Bacterial Translocation. Chem Res Toxicol 2016; 29:823-33. [DOI: 10.1021/acs.chemrestox.6b00001] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ka-Ho Ling
- School
of Biological Sciences, Faculty of Science, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam, Hong Kong
| | - Murphy Lam Yim Wan
- School
of Biological Sciences, Faculty of Science, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam, Hong Kong
| | - Hani El-Nezami
- School
of Biological Sciences, Faculty of Science, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam, Hong Kong
- Institute
of Public Health and Clinical Nutrition, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Mingfu Wang
- School
of Biological Sciences, Faculty of Science, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam, Hong Kong
| |
Collapse
|
16
|
Lin AE, Beasley FC, Olson J, Keller N, Shalwitz RA, Hannan TJ, Hultgren SJ, Nizet V. Role of Hypoxia Inducible Factor-1α (HIF-1α) in Innate Defense against Uropathogenic Escherichia coli Infection. PLoS Pathog 2015; 11:e1004818. [PMID: 25927232 PMCID: PMC4415805 DOI: 10.1371/journal.ppat.1004818] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 03/18/2015] [Indexed: 02/04/2023] Open
Abstract
Uropathogenic E. coli (UPEC) is the primary cause of urinary tract infections (UTI) affecting approximately 150 million people worldwide. Here, we revealed the importance of transcriptional regulator hypoxia-inducible factor-1 α subunit (HIF-1α) in innate defense against UPEC-mediated UTI. The effects of AKB-4924, a HIF-1α stabilizing agent, were studied using human uroepithelial cells (5637) and a murine UTI model. UPEC adherence and invasion were significantly reduced in 5637 cells when HIF-1α protein was allowed to accumulate. Uroepithelial cells treated with AKB-4924 also experienced reduced cell death and exfoliation upon UPEC challenge. In vivo, fewer UPEC were recovered from the urine, bladders and kidneys of mice treated transurethrally with AKB-4924, whereas increased bacteria were recovered from bladders of mice with a HIF-1α deletion. Bladders and kidneys of AKB-4924 treated mice developed less inflammation as evidenced by decreased pro-inflammatory cytokine release and neutrophil activity. AKB-4924 impairs infection in uroepithelial cells and bladders, and could be correlated with enhanced production of nitric oxide and antimicrobial peptides cathelicidin and β-defensin-2. We conclude that HIF-1α transcriptional regulation plays a key role in defense of the urinary tract against UPEC infection, and that pharmacological HIF-1α boosting could be explored further as an adjunctive therapy strategy for serious or recurrent UTI. Urinary tract infection (UTI), commonly caused by uropathogenic E.coli (UPEC), affects more than 150 million people worldwide, resulting in 14 million hospital visits per year and an estimated total cost of 6 billion dollars in direct health care. Due to the high prevalence of UTI and rapid emergence of antibiotic-resistant bacteria, new effective strategies to prevent and treat UTI are urgently needed. Here, we describe a global regulatory role of transcription factor hypoxia-inducible factor-1 (HIF-1) in innate antimicrobial defense against UPEC. HIF-1 stabilization reduces UPEC attachment to and invasion of uroepithelial cells, and protects bladders from UPEC-mediated cytotoxicity in vivo. In the murine UTI model, we found normal bladder HIF-1 expression is required for efficient UPEC clearance, since HIF-1-deficient mice suffer more severe infection than normal mice. Further studies showed that key elements of host protection provided by HIF-1 regulation are uroepithelial cell nitric oxide and antimicrobial peptide production. This study provides valuable insight into the importance of HIF-1 in supporting host immunity during UTI and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Ann E. Lin
- Division of Pediatric Pharmacology & Drug Discovery, University of California, San Diego, La Jolla, California, United States of America
| | - Federico C. Beasley
- Division of Pediatric Pharmacology & Drug Discovery, University of California, San Diego, La Jolla, California, United States of America
| | - Joshua Olson
- Division of Pediatric Pharmacology & Drug Discovery, University of California, San Diego, La Jolla, California, United States of America
| | - Nadia Keller
- Division of Pediatric Pharmacology & Drug Discovery, University of California, San Diego, La Jolla, California, United States of America
| | | | - Thomas J. Hannan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Scott J. Hultgren
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Victor Nizet
- Division of Pediatric Pharmacology & Drug Discovery, University of California, San Diego, La Jolla, California, United States of America
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, United States of America
- Rady Children’s Hospital, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
17
|
Lei S, Cheng T, Guo Y, Li C, Zhang W, Zhi F. Somatostatin ameliorates lipopolysaccharide-induced tight junction damage via the ERK-MAPK pathway in Caco2 cells. Eur J Cell Biol 2014; 93:299-307. [PMID: 24950815 DOI: 10.1016/j.ejcb.2014.05.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 05/16/2014] [Accepted: 05/21/2014] [Indexed: 12/21/2022] Open
Abstract
Dysfunction of the epithelial barrier is an important pathogenic factor of inflammatory bowel disease and other inflammatory conditions of the gut. Somatostatin (SST) has been demonstrated to reduce local and systemic inflammation reactions and maintain the integrity of the blood-brain barrier (BBB). To determine the beneficial effect of SST on lipopolysaccharide (LPS)-induced damage of the tight junction (TJ) and its mechanisms, Caco2 cells pretreated with SST (1nM) or MEK inhibitor U0126 (10μM) were exposed to LPS. LPS significantly reduced the expression of TJ proteins in a dose-dependent way. LPS (100μg/ml) greatly induced Caco2 monolayer barrier dysfunction by decreasing transepithelial resistance and increasing epithelial permeability. Pretreatment with SST effectively improved the barrier dysfunction of Caco2 cells. SST significantly increased the expression of TJ proteins occludin and ZO-1 and inhibited the redistribution of TJ proteins due to LPS stimulation. Furthermore, SST decreased the LPS-induced phosphorylation of ERK1/2, and a selective MEK inhibitor markedly protected the barrier function against LPS disturbance by blocking the activation of the ERK-MAPK pathway in Caco2 cells. Besides, LPS significantly increased the mRNA level of SSTR5, which was partly inhibited by pretreatment with SST. In conclusion, the present study indicates that SST protects the Caco2 monolayer barrier against LPS-induced tight junction breakdown by down-regulating the activation of the ERK-MAPK pathway and suppression the activation of SSTR5.
Collapse
Affiliation(s)
- Shan Lei
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tianming Cheng
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yandong Guo
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chen Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wendi Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fachao Zhi
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
18
|
Cheadle GA, Costantini TW, Bansal V, Eliceiri BP, Coimbra R. Cholinergic signaling in the gut: a novel mechanism of barrier protection through activation of enteric glia cells. Surg Infect (Larchmt) 2014; 15:387-93. [PMID: 24828283 DOI: 10.1089/sur.2013.103] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Enteric glia cells (EGCs) play an important role in maintaining proper intestinal barrier function. We have shown that vagal nerve stimulation (VNS) increases EGC activation, which is associated with better gut barrier integrity. Enteric neurons communicate with EGCs through nicotinic cholinergic signaling, which may represent a pathway by which VNS activates EGCs. This study sought to define further the mechanism by which VNS prevents intestinal barrier failure using an in vitro model. We hypothesized that a nicotinic cholinergic agonist would increase EGC activation, prevent intestinal nuclear factor kappa-B (NF-κB) activation, and result in better intestinal barrier function. METHODS Cultured EGCs were exposed to the nicotinic cholinergic agonist nicotine. Expression of glial fibrillary acidic protein (GFAP) was measured by immunoblot to determine changes in EGC activation. Caco-2 cells were grown to confluence and incubated alone or in co-culture with EGCs. Cells were then stimulated with Cytomix for 24 h in the presence or absence of nicotine, and barrier integrity was assessed by permeability to 4-kDa FITC-dextran. Changes in phosphorylated inhibitor of NF-κb (P-IκBα) and phosphorylated NF-κB (P-NF-κB) were assessed by immunoblot. RESULTS Stimulation with nicotine resulted in EGC activation, as demonstrated by an increase in GFAP expression. Cytomix stimulation increased permeability in Caco-2 cells cultured alone or with EGCs. Treatment of stimulated Caco-2/EGC co-cultures with nicotine reduced permeability similar to control. Nicotine failed to prevent barrier permeability in Caco-2 cells alone. Co-culture of stimulated Caco-2 cells with nicotine-activated EGCs prevented Cytomix-induced increases in P-IκBα and P-NF-κB expression. CONCLUSION A pharmacologic nicotinic cholinergic agonist increased EGC activation and improved intestinal epithelial barrier function in an in vitro model of intestinal injury. Nicotine-activated EGCs appear to modulate barrier function by preventing the activation of the NF-κB pathway. Therapies aimed at activating EGCs may have important clinical applications for improving intestinal barrier function after injury.
Collapse
Affiliation(s)
- Gerald A Cheadle
- Division of Trauma, Surgical Critical Care, and Burns, Department of Surgery, University of California San Diego Health Sciences , San Diego, California
| | | | | | | | | |
Collapse
|
19
|
Al-Sadi R, Ye D, Boivin M, Guo S, Hashimi M, Ereifej L, Ma TY. Interleukin-6 modulation of intestinal epithelial tight junction permeability is mediated by JNK pathway activation of claudin-2 gene. PLoS One 2014; 9:e85345. [PMID: 24662742 PMCID: PMC3963839 DOI: 10.1371/journal.pone.0085345] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 12/03/2013] [Indexed: 01/11/2023] Open
Abstract
Defective intestinal epithelial tight junction (TJ) barrier has been shown to be a pathogenic factor in the development of intestinal inflammation. Interleukin-6 (IL-6) is a pleiotropic, pro-inflammatory cytokine which plays an important role in promoting inflammatory response in the gut and in the systemic circulation. Despite its key role in mediating variety inflammatory response, the effect of IL-6 on intestinal epithelial barrier remains unclear. The purpose of this study was to investigate the effect of IL-6 on intestinal epithelial TJ barrier and to delineate the intracellular mechanisms involved using in-vitro (filter-grown Caco-2 monolayers) and in-vivo model (mouse intestinal perfusion) systems. Our results indicated that IL-6 causes a site-selective increase in Caco-2 intestinal epithelia TJ permeability, causing an increase in flux of small-sized molecules having molecular radius <4 Å. The size-selective increase in Caco-2 TJ permeability was regulated by protein-specific increase in claudin-2 expression. The IL-6 increase in TJ permeability required activation of JNK signaling cascade. The JNK pathway activation of AP-1 resulted in AP-1 binding to its binding sequence on the claudin-2 promoter region, leading to promoter activation and subsequent increase in claudin-2 gene transcription and protein synthesis and TJ permeability. Our in-vivo mouse perfusion showed that IL-6 modulation of mouse intestinal permeability was also mediated by AP-1 dependent increase in claudin-2 expression. In conclusion, our studies show for the first time that the IL-6 modulation of intestinal TJ permeability was regulated by JNK activation of AP-1 and AP-1 activation of claudin-2 gene.
Collapse
Affiliation(s)
- Rana Al-Sadi
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
- Albuquerque Veterans Affairs Medical Center, Albuquerque, New Mexico, United States of America
| | - Dongmei Ye
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - Michel Boivin
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - Shuhong Guo
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
- Albuquerque Veterans Affairs Medical Center, Albuquerque, New Mexico, United States of America
| | - Mariam Hashimi
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - Lisa Ereifej
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - Thomas Y. Ma
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
- Albuquerque Veterans Affairs Medical Center, Albuquerque, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
20
|
Inhibition of tumor necrosis factor-alpha and cyclooxigenase-2 by Isatin: a molecular mechanism of protection against TNBS-induced colitis in rats. Chem Biol Interact 2013; 209:48-55. [PMID: 24316276 DOI: 10.1016/j.cbi.2013.11.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/12/2013] [Accepted: 11/28/2013] [Indexed: 12/22/2022]
Abstract
Isatin, an indole alkaloid has been shown to have anti-microbial, anti-tumor and anti-inflammatory effects. Due to its findings, we evaluated whether this alkaloid would have any effect on TNBS-induced colitis. Animals (male Unib:WH rats, aged 8 weeks old) were induced colitis through a rectal administration of 2,4,6-trinitrobenzene sulphonic acid using a catheter inserted 8 cm into the rectum of the animals. The rats were divided into two major groups: non-colitic and colitic. The colitic group was sub-divided into 6 groups (10 animals per group): colitic non-treated, Isatin 3; 6; 12.5; 18.75 and 25 mg/kg. Our main results showed that the oral treatment with Isatin 6 and 25 mg/kg were capable of avoiding the increase in TNF-α, COX-2 and PGE₂ levels when compared to the colitic non-treated group. Interestingly, the same doses (6 and 25 mg/kg) were also capable of preventing the decrease in IL-10 levels comparing with the colitic non-treated group. The levels of MPO, (an indirect indicator of neutrophil presence), were also maintained lower than those of the colitic non-treated group. Isatin also prevented the decrease of SOD activity and increase of GSH-Px and GSH-Rd activity as well as the depletion of GSH levels. In conclusion, both pre-treatments (6 and 25 mg/kg) were capable of protecting the gut mucosa against the injury caused by TNBS, through the combination of antioxidant and anti-inflammatory properties, which, together, showed a protective activity of the indole alkaloid Isatin.
Collapse
|
21
|
Enteric glia cells attenuate cytomix-induced intestinal epithelial barrier breakdown. PLoS One 2013; 8:e69042. [PMID: 23840906 PMCID: PMC3698076 DOI: 10.1371/journal.pone.0069042] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 06/04/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Intestinal barrier failure may lead to systemic inflammation and distant organ injury in patients following severe injury. Enteric glia cells (EGCs) have been shown to play an important role in maintaining gut barrier integrity through secretion of S-Nitrosoglutathione (GSNO). We have recently shown than Vagal Nerve Stimulation (VNS) increases EGC activation, which was associated with improved gut barrier integrity. Thus, we sought to further study the mechanism by which EGCs prevent intestinal barrier breakdown utilizing an in vitro model. We postulated that EGCs, through the secretion of GSNO, would improve intestinal barrier function through improved expression and localization of intestinal tight junction proteins. METHODS Epithelial cells were co-cultured with EGCs or incubated with GSNO and exposed to Cytomix (TNF-α, INF-γ, IL-1β) for 24 hours. Barrier function was assessed by permeability to 4kDa FITC-Dextran. Changes in tight junction proteins ZO-1, occludin, and phospho-MLC (P-MLC) were assessed by immunohistochemistry and immunoblot. KEY RESULTS Co-culture of Cytomix-stimulated epithelial monolayers with EGCs prevented increases in permeability and improved expression and localization of occludin, ZO-1, and P-MLC. Further, treatment of epithelial monolayers with GSNO also prevented Cytomix-induced increases in permeability and exhibited a similar improvement in expression and localization of occludin, ZO-1, and P-MLC. CONCLUSIONS & INFERENCES The addition of EGCs, or their secreted mediator GSNO, prevents epithelial barrier failure after injury and improved expression of tight junction proteins. Thus, therapies that increase EGC activation, such as VNS, may be a novel strategy to limit barrier failure in patients following severe injury.
Collapse
|
22
|
Fischer A, Gluth M, Pape UF, Wiedenmann B, Theuring F, Baumgart DC. Adalimumab prevents barrier dysfunction and antagonizes distinct effects of TNF-α on tight junction proteins and signaling pathways in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2013; 304:G970-9. [PMID: 23538493 DOI: 10.1152/ajpgi.00183.2012] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Intestinal barrier dysfunction is pivotal in the etiology of inflammatory bowel diseases. Combined clinical and endoscopic remission ("mucosal healing") in patients who received anti-TNF-α therapies suggests restitution of the intestinal barrier, but the mechanisms involved are largely unknown. We therefore investigated the impact of the anti-TNF-α antibody adalimumab on barrier function in two in vitro models. Combined stimulation of Caco-2 and T-84 cells with interferon-γ and TNF-α resulted in a significant decrease of transepithelial electrical resistance (TEER) within 6 h that was prevented by adalimumab in concentrations down to 100 ng/ml. Adalimumab furthermore antagonized the appearance of irregular membrane undulations and prevented internalization of tight junction proteins upon cytokine exposure. In addition, TNF-α induced a downregulation of claudin-1, claudin-2, claudin-4, and occludin as well as activation of phosphatidylinositol 3-kinase signaling in T-84 but not Caco-2 cells, which was reversed by adalimumab. At the signaling level, adalimumab prevented increased phosphorylation of myosin light chain as well as activation of p38 MAPK and NF-κB accompanying the decline in TEER in both model systems. Pharmacological inhibition of NF-κB signaling partially prevented the TNF-α-induced TEER loss, whereas inhibition of p38 worsened barrier dysfunction in Caco-2 but not T-84 cells. Taken together, these data demonstrate that adalimumab prevents barrier dysfunction induced by TNF-α both functionally and structurally as well as at the level of signal transduction. Barrier protection might therefore constitute a novel mechanism how anti-TNF-α therapy contributes to epithelial restitution and tissue repair in inflammatory bowel diseases.
Collapse
Affiliation(s)
- Andreas Fischer
- Department of Medicine, Division of Gastroenterology and Hepatology, Humboldt-University of Berlin, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Al-Sadi R, Guo S, Ye D, Dokladny K, Alhmoud T, Ereifej L, Said HM, Ma TY. Mechanism of IL-1β modulation of intestinal epithelial barrier involves p38 kinase and activating transcription factor-2 activation. THE JOURNAL OF IMMUNOLOGY 2013; 190:6596-606. [PMID: 23656735 DOI: 10.4049/jimmunol.1201876] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The defective intestinal epithelial tight junction (TJ) barrier has been postulated to be an important pathogenic factor contributing to intestinal inflammation. It has been shown that the proinflammatory cytokine IL-1β causes an increase in intestinal permeability; however, the signaling pathways and the molecular mechanisms involved remain unclear. The major purpose of this study was to investigate the role of the p38 kinase pathway and the molecular processes involved. In these studies, the in vitro intestinal epithelial model system (Caco-2 monolayers) was used to delineate the cellular and molecular mechanisms, and a complementary in vivo mouse model system (intestinal perfusion) was used to assess the in vivo relevance of the in vitro findings. Our data indicated that the IL-1β increase in Caco-2 TJ permeability correlated with an activation of p38 kinase. The activation of p38 kinase caused phosphorylation and activation of p38 kinase substrate, activating transcription factor (ATF)-2. The activated ATF-2 translocated to the nucleus where it attached to its binding motif on the myosin L chain kinase (MLCK) promoter region, leading to the activation of MLCK promoter activity and gene transcription. Small interfering RNA induced silencing of ATF-2, or mutation of the ATF-2 binding motif prevented the activation of MLCK promoter and MLCK mRNA transcription. Additionally, in vivo intestinal perfusion studies also indicated that the IL-1β increase in mouse intestinal permeability required p38 kinase-dependent activation of ATF-2. In conclusion, these studies show that the IL-1β-induced increase in intestinal TJ permeability in vitro and in vivo was regulated by p38 kinase activation of ATF-2 and by ATF-2 regulation of MLCK gene activity.
Collapse
Affiliation(s)
- Rana Al-Sadi
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Baliga MS, Joseph N, Venkataranganna MV, Saxena A, Ponemone V, Fayad R. Curcumin, an active component of turmeric in the prevention and treatment of ulcerative colitis: preclinical and clinical observations. Food Funct 2013; 3:1109-17. [PMID: 22833299 DOI: 10.1039/c2fo30097d] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Inflammatory bowel disease (IBD) comprising of ulcerative colitis (UC) and Crohn's disease (CD) is a major ailment affecting the small and large bowel. In clinics, IBD is treated using 5-amninosalicylates, antibiotics, the steroids and immunomodulators. Unfortunately, the long term usages of these agents are associated with undue side effects and compromise the therapeutic advantage. Accordingly, there is a need for novel agents that are effective, acceptable and non toxic to humans. Preclinical studies in experimental animals have shown that curcumin, an active principle of the Indian spice turmeric (Curcuma longa Linn) is effective in preventing or ameliorating UC and inflammation. Over the last few decades there has been increasing interest in the possible role of curcumin in IBD and several studies with various experimental models of IBD have shown it to be effective in mediating the inhibitory effects by scavenging free radicals, increasing antioxidants, influencing multiple signaling pathways, especially the kinases (MAPK, ERK), inhibiting myeloperoxidase, COX-1, COX-2, LOX, TNF-α, IFN-γ, iNOS; inhibiting the transcription factor NF-κB. Clinical studies have also shown that co-administration of curcumin with conventional drugs was effective, to be well-tolerated and treated as a safe medication for maintaining remission, to prevent relapse and improve clinical activity index. Large randomized controlled clinical investigations are required to fully understand the potential of oral curcumin for treating IBD.
Collapse
Affiliation(s)
- Manjeshwar Shrinath Baliga
- Department of Research and Development, Father Muller Medical College, Kankanady, Mangalore, Karnataka, India.
| | | | | | | | | | | |
Collapse
|
25
|
Peerapen P, Thongboonkerd V. p38 MAPK mediates calcium oxalate crystal-induced tight junction disruption in distal renal tubular epithelial cells. Sci Rep 2013; 3:1041. [PMID: 23304432 PMCID: PMC3540397 DOI: 10.1038/srep01041] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 12/06/2012] [Indexed: 01/01/2023] Open
Abstract
We examined whether p38 MAPK plays role in calcium oxalate monohydrate (COM) crystal-induced tight junction disruption. Polarized MDCK cells were pretreated with or without 20 μM SB239063 (p38 MAPK inhibitor) for 2-h, and then incubated with 100 μg/ml COM crystals for up to 48-h. Western blotting showed increased level of phospho-p38, not total p38, in COM-treated cells, whereas SB239063 pretreatment successfully maintained phospho-p38 at its basal level. COM crystals also caused decreased levels of two tight junction proteins, zonula occludens-1 (ZO-1) and occludin. Immunofluorescence study revealed disruption of tight junction, redistribution, and dissociation of ZO-1 and occludin. Moreover, transepithelial resistance (TER) showed defective barrier function, whereas Western blotting for Na+/K+-ATPase-α1 revealed defective fence function of tight junction in COM-treated cells. All these expression and functional defects were successfully prevented by SB239063 pretreatment. These findings indicate that COM crystals cause tight junction disruption in distal renal tubular epithelial cells through p38 MAPK activation.
Collapse
Affiliation(s)
- Paleerath Peerapen
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | |
Collapse
|
26
|
Miyauchi E, O'Callaghan J, Buttó LF, Hurley G, Melgar S, Tanabe S, Shanahan F, Nally K, O'Toole PW. Mechanism of protection of transepithelial barrier function by Lactobacillus salivarius: strain dependence and attenuation by bacteriocin production. Am J Physiol Gastrointest Liver Physiol 2012; 303:G1029-41. [PMID: 22961803 DOI: 10.1152/ajpgi.00003.2012] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Enhanced barrier function is one mechanism whereby commensals and probiotic bacteria limit translocation of foreign antigens or pathogens in the gut. However, barrier protection is not exhibited by all probiotic or commensals and the strain-specific molecules involved remain to be clarified. We evaluated the effects of 33 individual Lactobacillus salivarius strains on the hydrogen peroxide (H(2)O(2))-induced barrier impairment in human epithelial Caco-2 cells. These strains showed markedly different effects on H(2)O(2)-induced reduction in transepithelial resistance (TER). The effective strains such as UCC118 and CCUG38008 attenuated H(2)O(2)-induced disassembly and relocalization of tight junction proteins, but the ineffective strain AH43324 did not. Strains UCC118 and CCUG38008 induced phosphorylation of extracellular signal-regulated kinase (ERK) in Caco-2 cells, and the ERK inhibitor U0126 attenuated the barrier-protecting effect of these strains. In contrast, the AH43324 strain induced phosphorylation of Akt and p38, which was associated with an absence of a protective effect. Global transcriptome analysis of UCC118 and AH43324 revealed that some genes in a bacteriocin gene cluster were upregulated in AH43324 under TER assay conditions. A bacteriocin-negative UCC118 mutant displayed significantly greater suppressive effect on H(2)O(2)-induced reduction in TER compared with wild-type UCC118. The wild-type strain augmented H(2)O(2)-induced phosphorylation of Akt and p38, whereas a bacteriocin-negative UCC118 mutant did not. These observations indicate that L. salivarius strains are widely divergent in their capacity for barrier protection, and this is underpinned by differences in the activation of intracellular signaling pathways. Furthermore, bacteriocin production appears to have an attenuating influence on lactobacillus-mediated barrier protection.
Collapse
Affiliation(s)
- Eiji Miyauchi
- Department of Microbiology, University College Cork, National University of Ireland, Cork, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
NF-κΒ inhibition is ineffective in blocking cytokine-induced IL-8 production but P38 and STAT1 inhibitors are effective. Inflamm Res 2012; 61:977-85. [PMID: 22618201 DOI: 10.1007/s00011-012-0490-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 04/18/2012] [Accepted: 05/03/2012] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE In vitro but not in vivo evidence indicates that blockade of NF-κB is effective in reducing inflammation and production of IL-8. We hypothesized that the failure of in vitro experiments to predict in vivo outcome was due to the use of short time periods of observation and the use of single cytokines to stimulate NF-κB. METHODS HEK cells with a NF-κB reporter gene or CaCo-2 cells were stimulated with CM (IL-1-β; TNF-α, and IFN-γ) or individual cytokines in the presence and absence of NF-κB inhibitors, a STAT1 inhibitor, and/or a p38 MAPK inhibitor for periods up to 24 h. NF-κB activation, IL-8 production, and nitric oxide production were measured. RESULTS CM-induced IL-8 production in HEK cells was additive to synergistic. CM enhanced production of IL-8 at 24 h but not 4 h was independent of NF-κB. The p38 inhibitor SB203580 and the STAT1 inhibitor EGCG blocked CM-induced IL-8 production at both early and late time periods. The NF-κB inhibitors PDTC and BAY11-7082 were found to increase CM-stimulated IL-8 production in Caco-2 cells at 24 h. CONCLUSIONS Our data suggest an effective strategy to reduce IL-8 production is to block p38 or STAT1 rather than NF-κB.
Collapse
|
28
|
Julian MW, Bao S, Knoell DL, Fahy RJ, Shao G, Crouser ED. Intestinal epithelium is more susceptible to cytopathic injury and altered permeability than the lung epithelium in the context of acute sepsis. Int J Exp Pathol 2011; 92:366-76. [PMID: 21838744 DOI: 10.1111/j.1365-2613.2011.00783.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial morphology and function are altered in intestinal epithelia during endotoxemia. However, it is unclear whether mitochondrial abnormalities occur in lung epithelial cells during acute sepsis or whether mitochondrial dysfunction corresponds with altered epithelial barrier function. Thus, we hypothesized that the intestinal epithelium is more susceptible to mitochondrial injury than the lung epithelium during acute sepsis and that mitochondrial dysfunction precedes impaired barrier function. Using a resuscitated feline model of Escherichia coli-induced sepsis, lung and ileal tissues were harvested after 6 h for histological and mitochondrial ultrastructural analyses in septic (n = 6) and time-matched controls (n = 6). Human lung epithelial cells (HLEC) and Caco-2 monolayers (n = 5) were exposed to 'cytomix' (TNFα: 40 ng/ml, IL-1β: 20 ng/ml, IFNγ: 10 ng/ml) for 24-72 h, and measurements of transepithelial electrical resistance (TER), epithelial permeability and mitochondrial membrane potential (ΔΨ) were taken. Lung epithelial morphology, mitochondrial ultrastructure and pulmonary gas exchange were unaltered in septic animals compared to matching controls. While histologically intact, ileal epithelia demonstrated marked mitochondrial ultrastructural damage during sepsis. Caco-2 monolayers treated with cytomix showed a significant decrease in mitochondrial ΔΨ within 24 h, which was associated with a progressive reduction in TER and increased epithelial permeability over the subsequent 48 h. In contrast, mitochondrial ΔΨ and epithelial barrier functions were preserved in HLEC following cytomix. These findings indicate that intestinal epithelium is more susceptible to mitochondrial damage and dysfunction than the lung epithelium in the context of sepsis. Early alterations in mitochondrial function portend subsequent epithelial barrier dysfunction.
Collapse
Affiliation(s)
- Mark W Julian
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, The Ohio State University Medical Center, Columbus, OH 43210-1252, USA
| | | | | | | | | | | |
Collapse
|
29
|
Quaranta MG, Vincentini O, Felli C, Spadaro F, Silano M, Moricoli D, Giordani L, Viora M. Exogenous HIV-1 Nef upsets the IFN-γ-induced impairment of human intestinal epithelial integrity. PLoS One 2011; 6:e23442. [PMID: 21858117 PMCID: PMC3152569 DOI: 10.1371/journal.pone.0023442] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 07/18/2011] [Indexed: 11/20/2022] Open
Abstract
Background The mucosal tissues play a central role in the transmission of HIV-1 infection as well as in the pathogenesis of AIDS. Despite several clinical studies reported intestinal dysfunction during HIV infection, the mechanisms underlying HIV-induced impairments of mucosal epithelial barrier are still unclear. It has been postulated that HIV-1 alters enterocytic function and HIV-1 proteins have been detected in several cell types of the intestinal mucosa. In the present study, we analyzed the effect of the accessory HIV-1 Nef protein on human epithelial cell line. Methodology/Principal Findings We used unstimulated or IFN-γ-stimulated Caco-2 cells, as a model for homeostatic and inflamed gastrointestinal tracts, respectively. We investigated the effect of exogenous recombinant Nef on monolayer integrity analyzing its uptake, transepithelial electrical resistance, permeability to FITC-dextran and the expression of tight junction proteins. Moreover, we measured the induction of proinflammatory mediators. Exogenous Nef was taken up by Caco-2 cells, increased intestinal epithelial permeability and upset the IFN-γ-induced reduction of transepitelial resistance, interfering with tight junction protein expression. Moreover, Nef inhibited IFN-γ-induced apoptosis and up-regulated TNF-α, IL-6 and MIP-3α production by Caco-2 cells while down-regulated IL-10 production. The simultaneous exposure of Caco-2 cells to Nef and IFN-γ did not affect cytokine secretion respect to untreated cells. Finally, we found that Nef counteracted the IFN-γ induced arachidonic acid cascade. Conclusion/Significance Our findings suggest that exogenous Nef, perturbing the IFN-γ-induced impairment of intestinal epithelial cells, could prolong cell survival, thus allowing for accumulation of viral particles. Our results may improve the understanding of AIDS pathogenesis, supporting the discovery of new therapeutic interventions.
Collapse
Affiliation(s)
- Maria Giovanna Quaranta
- Department of Therapeutic Research and Medicine Evaluation, Istituto Superiore di Sanità, Roma, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Schlegel N, Meir M, Heupel WM, Holthöfer B, Leube RE, Waschke J. Desmoglein 2-mediated adhesion is required for intestinal epithelial barrier integrity. Am J Physiol Gastrointest Liver Physiol 2010; 298:G774-83. [PMID: 20224006 DOI: 10.1152/ajpgi.00239.2009] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The integrity of intercellular junctions that form the "terminal bar" in intestinal epithelium is crucial for sealing the intestinal barrier. Whereas specific roles of tight and adherens junctions are well known, the contribution of desmosomal adhesion for maintaining the intestinal epithelial barrier has not been specifically addressed. For the present study, we generated a desmoglein 2 antibody directed against the extracellular domain (Dsg2 ED) to test whether impaired Dsg2-mediated adhesion affects intestinal epithelial barrier functions in vitro. This antibody was able to specifically block Dsg2 interaction in cell-free atomic-force microscopy experiments. For in vitro studies of the intestinal barrier we used Caco2 cells following differentiation into tight enterocyte-like epithelial monolayers. Application of Dsg2 ED to Caco2 monolayers resulted in increased cell dissociation compared with controls in a dispase-based enterocyte dissociation assay. Under similar conditions, Dsg2 antibody significantly decreased transepithelial electrical resistance and increased FITC-dextran flux, indicating that Dsg2 interaction is critically involved in the maintenance of epithelial intestinal barrier functions. As revealed by immunostaining, this was due to Dsg2 ED antibody-induced rupture of tight junctions because tight junction proteins claudins 1, 4, and 5, occludin, and tight junction-associated protein zonula occludens-1 were partially removed from cell borders by Dsg2 ED treatment. Similar results were obtained by application of a commercial monoclonal antibody directed against the ED of Dsg2. Antibody-induced effects were blocked by absorption experiments using Dsg2-Fc-coated beads. Our data indicate that Dsg2-mediated adhesion affects tight junction integrity and is required to maintain intestinal epithelial barrier properties.
Collapse
Affiliation(s)
- Nicolas Schlegel
- Inst. of Anatomy and Cell Biology, University of Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Burns, inflammation, and intestinal injury: protective effects of an anti-inflammatory resuscitation strategy. ACTA ACUST UNITED AC 2010; 67:1162-8. [PMID: 20009662 DOI: 10.1097/ta.0b013e3181ba3577] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Intestinal barrier breakdown after severe burn can lead to intestinal inflammation, which may act as the source of the systemic inflammatory response. In vitro intestinal cell studies have shown that mitogen-activated protein kinase (MAPK) signaling is an important modulator of intestinal inflammation. We have previously observed that pentoxifylline (PTX) attenuates burn-induced intestinal permeability and tight junction breakdown. We hypothesized that PTX would limit intestinal barrier breakdown and attenuate inflammatory signaling via the MAPK pathway. METHODS Male balb/c mice underwent 30% total body surface area full-thickness steam burn. Immediately after burn, animals received an intraperitoneal injection of PTX (12.5 mg/kg) in normal saline or normal saline alone. In vivo intestinal permeability to 4 kDa fluorescein isothiocyanate-dextran was measured. Intestinal extracts were obtained to measure interleukin-6 by enzyme-linked immunosorbent assay, and phosphorylated p38 MAPK, p38 MAPK, phosphorylated extracellular signal-related kinase (1/2) (ERK (1/2)), and ERK (1/2) by immunoblotting. Acute lung injury was assessed by histology at 24 hours after burn. RESULTS Administration of PTX immediately after injury attenuated burn-induced intestinal permeability. PTX also decreased the burn-induced phosphorylation of p38 MAPK and decreased phosphorylation of ERK (1/2) at 2 hours and 24 hours after injury. Animals given PTX had decreased intestinal interleukin-6 levels. A single dose of PTX also decreased histologic lung injury at 24 hours after burn. CONCLUSION PTX attenuates burn-induced intestinal permeability and subsequent intestinal inflammation. Use of PTX after burn was also associated with decreased acute lung injury. Because of its compelling anti-inflammatory effects, PTX may be an ideal candidate for use as an immunomodulatory adjunct to resuscitation fluid.
Collapse
|
32
|
Costantini TW, Peterson CY, Kroll L, Loomis WH, Eliceiri BP, Baird A, Bansal V, Coimbra R. Role of p38 MAPK in burn-induced intestinal barrier breakdown. J Surg Res 2009; 156:64-9. [PMID: 19577248 PMCID: PMC4251589 DOI: 10.1016/j.jss.2009.03.066] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 02/07/2009] [Accepted: 03/24/2009] [Indexed: 11/26/2022]
Abstract
BACKGROUND Severe burn results in intestinal barrier breakdown, which may lead to the generation of a systemic inflammatory response and distant organ injury. Intestinal barrier integrity is regulated, in part, by the tight junction protein myosin light chain kinase (MLCK). Previous studies in cell culture have shown that activation of p38 MAPK plays an important role in modulating intestinal barrier function. We hypothesized that (1) severe burn up-regulates p38 MAPK activation and results in increased intestinal permeability via augmented expression of MLCK, and (2) inhibition of p38 MAPK will prevent the burn-induced increase in MLCK expression, resulting in improved intestinal barrier integrity. MATERIALS AND METHODS Male Balb/c mice were subjected to a 30% total body surface area (TBSA) full thickness steam burn, then randomized to receive an intraperitoneal injection of a p38 MAPK inhibitor (SB203580, 25 mg/kg) or vehicle. In vivo intestinal permeability to 4kDa FITC-Dextran was measured. Expression of phosphorylated p38 MAPK, total p38 MAPK, MLCK, and phosphorylated MLC from intestinal extracts was assessed by immunoblotting. RESULTS Severe burn increased intestinal permeability, which was associated with activation of p38 MAPK, and increased expression of MLCK. Treatment with SB203580 significantly attenuated burn-induced intestinal permeability (212 microg/mL versus 81 microg/mL, P<0.05), and decreased expression of intestinal MLCK resulting in decreased phosphorylation of MLC. CONCLUSION p38 MAPK plays an important role in regulating burn-induced intestinal permeability through activation of MLCK. Inhibition of p38 MAPK may be an important therapeutic target aimed at attenuating intestinal barrier breakdown by preventing the burn-induced alterations in tight junction proteins.
Collapse
Affiliation(s)
- Todd W. Costantini
- Division of Trauma, Surgical Critical Care, and Burns, Department of Surgery, University of California-San Diego School of Medicine, San Diego, California
| | - Carrie Y. Peterson
- Division of Trauma, Surgical Critical Care, and Burns, Department of Surgery, University of California-San Diego School of Medicine, San Diego, California
| | - Lauren Kroll
- Division of Trauma, Surgical Critical Care, and Burns, Department of Surgery, University of California-San Diego School of Medicine, San Diego, California
| | - William H. Loomis
- Division of Trauma, Surgical Critical Care, and Burns, Department of Surgery, University of California-San Diego School of Medicine, San Diego, California
| | - Brian P. Eliceiri
- Division of Trauma, Surgical Critical Care, and Burns, Department of Surgery, University of California-San Diego School of Medicine, San Diego, California
| | - Andrew Baird
- Division of Trauma, Surgical Critical Care, and Burns, Department of Surgery, University of California-San Diego School of Medicine, San Diego, California
| | - Vishal Bansal
- Division of Trauma, Surgical Critical Care, and Burns, Department of Surgery, University of California-San Diego School of Medicine, San Diego, California
| | - Raul Coimbra
- Division of Trauma, Surgical Critical Care, and Burns, Department of Surgery, University of California-San Diego School of Medicine, San Diego, California
| |
Collapse
|
33
|
What's new in Shock, April 2008? Shock 2008; 29:427-30. [PMID: 18344841 DOI: 10.1097/shk.0b013e31816c14e9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|