1
|
Vardarli E, Bhattarai N, El Ayadi A, Prasai A, Rontoyanni VG, Reda Abdelrahman D, Murton AJ. Burns results in profound muscle protein wasting in Sprague Dawley rats that is not resolved using the lipolysis inhibitor, acipimox. PLoS One 2025; 20:e0323640. [PMID: 40392906 DOI: 10.1371/journal.pone.0323640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/13/2025] [Indexed: 05/22/2025] Open
Abstract
INTRODUCTION Major burns results in the rapid and profound accumulation of lipid in peripheral tissues, but its impact on muscle metabolic function is unclear. Given previous reports demonstrating that lipid oversupply compromises processes instrumental in the maintenance of muscle protein balance, we hypothesize that burn-induced lipid accumulation contributes to the loss of muscle mass with thermal injury. METHODS To investigate this further, 48 male Sprague Dawley rats were randomized to undergo either a 60% total body surface area burn or sham procedure. To elucidate the impact of burn-induced lipid accumulation, animals were further subdivided to receive either acipimox (50 mg.kg-1 b.w.), a lipolysis inhibitor administered to deplete intramuscular lipids, or vehicle (PBS), daily for 7 days. Throughout, animals received deuterated water to permit the determination of muscle protein kinetics. RESULTS Compared to sham animals, burn injury resulted in a 12% loss of gastrocnemius muscle mass (P < 0.001), paralleled by a 30 and 40 increase in the fractional synthetic and breakdown rates of gastrocnemius mixed proteins (P < 0.01), respectively, culminating in a 2-fold decline in net muscle protein (P < 0.01). Contrary to expectations, burns had no impact on muscle triglyceride content, while acipimox treatment failed to protect muscle mass, impact muscle triglyceride concentrations, or muscle protein kinetics. CONCLUSIONS In a rodent model of burns, the loss of muscle mass primarily occurs due to the acceleration of muscle proteolysis, independent of any change in muscle lipid content.
Collapse
Affiliation(s)
- Emre Vardarli
- Graduate School of Biomedical Sciences, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Surgery, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Nisha Bhattarai
- Graduate School of Biomedical Sciences, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Surgery, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Amina El Ayadi
- Department of Surgery, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Anesh Prasai
- Department of Surgery, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Victoria G Rontoyanni
- Department of Surgery, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Doaa Reda Abdelrahman
- Department of Surgery, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Center on Aging, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Andrew J Murton
- Department of Surgery, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Center on Aging, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Shriners Children's Texas, Galveston, Texas, United States of America
| |
Collapse
|
2
|
Ingolfsland EC, Molomjamts M, Foster A, Lee H, Roehrich H, Morikuni A, Qureishy H, Tran PV, McLoon LK, Georgieff MK. Phlebotomy-induced anemia reduces oxygen-induced retinopathy severity and dampens retinal developmental transcriptomic pathways in rats. Pediatr Res 2025; 97:1237-1245. [PMID: 39379628 DOI: 10.1038/s41390-024-03477-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/16/2024] [Accepted: 08/07/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND Phlebotomy-induced-anemia (PIA), which induces tissue hypoxia and angiogenesis, occurs universally among infants at risk for severe retinopathy of prematurity (ROP). We hypothesized that PIA exacerbates pathologic retinal neovascularization in ROP. METHODS We induced PIA to a hematocrit of 18% among rats undergoing the established 50/10 oxygen-induced retinopathy (OIR) model. Rats were euthanized at P15 and P20, during the avascular and neovascular phases of OIR, respectively. Retinal vascular morphometry, cytokine/chemokine concentrations, transcriptomes, and mRNA expression of angiogenic and iron-deficiency markers were compared to non-PIA controls. RESULTS In OIR, PIA decreased percent avascular area at P15 by 35%, percent neovascular area at P20 by 42%, and select pro-inflammatory cytokine/chemokine concentrations at both time points. At P20, PIA increased mRNA expression of angiopoietin 2/ vascular endothelial growth factor-A 2-fold and transferrin and transferrin receptor 5-fold. RNA sequencing showed dampened pathways of angiogenesis, inflammation, and neural development in anemic OIR females. CONCLUSION Contrary to our hypothesis, PIA decreased OIR severity and retinal cytokine and chemokine levels and dampened transcriptomic pathways central to retinal vascular and neural development in neonatal rats. These data suggest PIA provides a protective effect from OIR. Further investigation into the functional effect of these molecular changes is warranted. IMPACT This is the first preclinical study to investigate the impact of neonatal anemia on oxygen-induced retinopathy (OIR) outcomes. This study adds to the literature that anemia decreases neovascularization, decreases cytokine and chemokine levels, and dampens angiogenic and neural transcriptomic pathways in the rat 50/10 OIR model. The study identifies a sex-specific transcriptomic response to anemia in the 50/10 OIR model, with females primarily impacted.
Collapse
Affiliation(s)
- Ellen C Ingolfsland
- Department of Pediatrics, Division of Neonatology, University of Minnesota Medical School, Minneapolis, MN, USA.
| | - Mandkhai Molomjamts
- Department of Pediatrics, Division of Neonatology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Ann Foster
- Department of Pediatrics, Division of Neonatology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Haeyeon Lee
- Department of Pediatrics, Division of Neonatology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Heidi Roehrich
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Amelia Morikuni
- Department of Pediatrics, Division of Neonatology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Husaam Qureishy
- Department of Pediatrics, Division of Neonatology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Phu V Tran
- Department of Pediatrics, Division of Neonatology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Linda K McLoon
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Michael K Georgieff
- Department of Pediatrics, Division of Neonatology, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
3
|
Ibrahim FM, Shalaby ES, Abdelhameed MF, El-Akad RH, Ahmed KA, Abdel-Aziz MS, El Habbasha ES, Rodrigues CV, Pintado M. Bioactive Potential of Chitosan-Oleic Acid Nanoparticles Loaded with Lemon Peel Essential Oil for Topical Treatment of Vulvovaginal Candidiasis. Molecules 2024; 29:5766. [PMID: 39683923 DOI: 10.3390/molecules29235766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
The rising incidence of vulvovaginal candidiasis (VVC) has been leading to the development of alternative antifungal therapies. This study aimed to develop a topical chitosan-oleic acid nanoparticle (CH-OA-NP) cream loaded with lemon peel essential oil (LPEO) for VVC treatment. The characterization of the optimal nanoparticle formulation (F4: 10 g/L CH, 2:1 OA/LPEO ratio) showed high encapsulation efficiency, stability, and controlled release. Moreover, it was characterized regarding its particle size, polydispersity index, zeta potential, and chemical/morphological profile. LPEO-related compounds (e.g., eriodictyol) were identified through LC-ESI-QqTOF-HRMS in the cream matrix, suggesting the preservation of LPEO potential bioactivities after formulation. In silico docking of 12 LPEO metabolites revealed that compounds such as citronellic acid exerted inhibitory effects against several inflammation-associated enzymes (e.g., 14-α-Demethylase). In vitro antimicrobial tests demonstrated remarkable activity against Candida albicans, Gram-negative (e.g., Escherichia coli), and Gram-positive (e.g., Staphylococcus aureus) bacteria. In vivo studies in a rat model of VVC revealed significant antifungal, anti-inflammatory, and immunomodulatory effects of the LPEO-CH-OA-NP cream (5% and 10%), leading to reduced MDA, MPO, and IL-1β levels and increased GSH activity. This novel formulation potentially offers a promising alternative therapy for VVC, addressing the current antifungal therapies' limitations, counteracting drug resistance.
Collapse
Affiliation(s)
- Faten M Ibrahim
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo P.O. Box 12622, Egypt
| | - Eman Samy Shalaby
- Pharmaceutical Technology Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo P.O. Box 12622, Egypt
| | - Mohamed F Abdelhameed
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza P.O. Box 12622, Egypt
| | - Radwa H El-Akad
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza P.O. Box 12622, Egypt
| | - Kawkab A Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza P.O. Box 12211, Egypt
| | - Mohamed S Abdel-Aziz
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre, Cairo P.O. Box 12622, Egypt
| | - El Sayed El Habbasha
- Field Crops Research Department, National Research Centre, Cairo P.O. Box 12622, Egypt
| | - Cristina V Rodrigues
- CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Manuela Pintado
- CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
4
|
Bertollo AG, Mingoti MED, de Medeiros J, da Silva GB, Capoani GT, Lindemann H, Cassol J, Manica D, de Oliveira T, Garcez ML, Bagatini MD, Bohnen LC, Junior WAR, Ignácio ZM. Hydroalcoholic Extract of Centella asiatica and Madecassic Acid Reverse Depressive-Like Behaviors, Inflammation and Oxidative Stress in Adult Rats Submitted to Stress in Early Life. Mol Neurobiol 2024; 61:10182-10197. [PMID: 38703344 DOI: 10.1007/s12035-024-04198-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
Major depressive disorder (MDD) is a severe disorder that causes enormous loss of quality of life, and among the factors underlying MDD is stress in maternal deprivation (MD). In addition, classic pharmacotherapy has presented severe adverse effects. Centella asiatica (C. asiatica) demonstrates a potential neuroprotective effect but has not yet been evaluated in MD models. This study aimed to evaluate the effect of C. asiatica extract and the active compound madecassic acid on possible depressive-like behavior, inflammation, and oxidative stress in the hippocampus and serum of young rats submitted to MD in the first days of life. Rats (after the first day of birth) were separated from the mother for 3 h a day for 10 days. When adults, these animals were divided into groups and submitted to treatment for 14 days. After subjecting the animals to protocols of locomotor activity in the open field and behavioral despair in the forced swimming test, researchers then euthanized the animals. The hippocampus and serum were collected and analyzed for the inflammatory cytokines and oxidative markers. The C. asiatica extract and active compound reversed or reduced depressive-like behaviors, inflammation in the hippocampus, and oxidative stress in serum and hippocampus. These results suggest that C. asiatica and madecassic acid have potential antidepressant action, at least partially, through anti-inflammatory and antioxidant profiles.
Collapse
Affiliation(s)
- Amanda Gollo Bertollo
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Maiqueli Eduarda Dama Mingoti
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Jesiel de Medeiros
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Gilnei Bruno da Silva
- Multicentric Postgraduate Program in Biochemistry and Molecular Biology, State University of Santa Catarina, Lages, SC, Brazil
| | - Giovana Tamara Capoani
- Laboratory of Pharmacognosy, Community University of Chapecó Region, Unochapecó, Chapecó, SC, Brazil
| | - Heloisa Lindemann
- Laboratory of Pharmacognosy, Community University of Chapecó Region, Unochapecó, Chapecó, SC, Brazil
| | - Joana Cassol
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Daiane Manica
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Tacio de Oliveira
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Michelle Lima Garcez
- Department of Clinical Analysis, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Margarete Dulce Bagatini
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Lilian Caroline Bohnen
- Postgraduate Program in Health Sciences, Community University of Chapecó Region, Unochapecó, Chapecó, SC, Brazil
| | - Walter Antônio Roman Junior
- Postgraduate Program in Health Sciences, Community University of Chapecó Region, Unochapecó, Chapecó, SC, Brazil
| | - Zuleide Maria Ignácio
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil.
| |
Collapse
|
5
|
Kapisiz A, Kaya C, Eryilmaz S, Karabulut R, Turkyilmaz Z, Inan MA, Gulbahar O, Sonmez K. Protective effects of lupeol in rats with renal ischemia‑reperfusion injury. Exp Ther Med 2024; 28:313. [PMID: 38911048 PMCID: PMC11190881 DOI: 10.3892/etm.2024.12602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/02/2024] [Indexed: 06/25/2024] Open
Abstract
Acute kidney injury (AKI) caused by ischemia and, exogenous or endogenous nephrotoxic agents poses a serious health issue. AKI is seen in 1% of all hospital admissions, 2-5% of hospitalizations and 67% of intensive care unit (ICU) patients. The in-hospital mortality rates for AKI is 40-50, and >50% for ICU patients. Ischemia-reperfusion (I/R) injury in the kidney can activate inflammatory responses and oxidative stress, resulting in AKI. The common endpoint in acute tubular necrosis is a cellular insult secondary to ischemia or direct toxins, which results in effacement of brush border, cell death and decreased function of tubular cells. The aim of the present study was to assess if the reported antioxidant and anti-inflammatory agent lupeol can exert any effects against renal I/R damage. In total, 24 Wistar Albino rats were randomly assigned into four groups of 6, namely Sham, lupeol, ischemia and therapy groups. In the lupeol group, intraperitoneal administration of 100 mg/kg lupeol was given 1 h before laparotomy, whilst only laparotomy was conducted in the sham group. The renal arteries of both kidneys were clamped for 45 min, 1 h after either intraperitoneal saline injection (in the ischemia group) or 100 mg/kg lupeol application (in the therapy group). The blood samples and renal tissues of all rats were collected after 24 h. In blood samples, blood urea nitrogen (BUN) was measured by the urease enzymatic method, and creatinine was measured by the kinetic Jaffe method. Using ELISA method, TNF-α and IL-6 levels were measured in the blood samples, whereas malondialdehyde (MDA), glutathione (GSH), caspase-3 levels were measured in kidney tissues. In addition, kidney histopathological analysis was performed by evaluating the degree of degeneration, tubular dilatation, interstitial lymphocyte infiltration, protein cylinders, necrosis and loss of brush borders. It was determined that renal damage occurred due to higher BUN, creatinine, MDA, TNF-α and caspase-3 values observed in the kidney tissues and blood samples of rats in ischemia group compared with the Sham group. Compared with those in the ischemia group, rats in the therapy group exhibited increased levels of GSH and reduced levels of BUN, TNF-α, MDA. Furthermore, the ischemia group also had reduced histopathological damage scores. Although differences in creatinine, IL-6 and caspase-3 levels were not statistically significant, they were markedly reduced in the treatment group. Taken together, these findings suggest that lupeol can prevent kidney damage as mainly evidenced by the reduced histopathological damage scores, decreased levels of oxidative stress and reduced levels of inflammatory markers. These properties may allow lupeol to be used in the treatment of AKI.
Collapse
Affiliation(s)
- Alparslan Kapisiz
- Department of Pediatric Surgery, Gazi University Faculty of Medicine, Yenimahalle, 06500 Ankara, Turkey
| | - Cem Kaya
- Department of Pediatric Surgery, Gazi University Faculty of Medicine, Yenimahalle, 06500 Ankara, Turkey
| | - Sibel Eryilmaz
- Department of Pediatric Surgery, Gazi University Faculty of Medicine, Yenimahalle, 06500 Ankara, Turkey
| | - Ramazan Karabulut
- Department of Pediatric Surgery, Gazi University Faculty of Medicine, Yenimahalle, 06500 Ankara, Turkey
| | - Zafer Turkyilmaz
- Department of Pediatric Surgery, Gazi University Faculty of Medicine, Yenimahalle, 06500 Ankara, Turkey
| | - Mehmet Arda Inan
- Department of Pathology, Gazi University Faculty of Medicine, Yenimahalle, 06500 Ankara, Turkey
| | - Ozlem Gulbahar
- Department of Biochemistry, Gazi University Faculty of Medicine, Yenimahalle, 06500 Ankara, Turkey
| | - Kaan Sonmez
- Department of Pediatric Surgery, Gazi University Faculty of Medicine, Yenimahalle, 06500 Ankara, Turkey
| |
Collapse
|
6
|
Kelly LS, Munley JA, Pons EE, Kannan KB, Whitley EM, Bible LE, Efron PA, Mohr AM. A rat model of multicompartmental traumatic injury and hemorrhagic shock induces bone marrow dysfunction and profound anemia. Animal Model Exp Med 2024; 7:367-376. [PMID: 38860566 PMCID: PMC11228100 DOI: 10.1002/ame2.12447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/06/2024] [Accepted: 05/25/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Severe trauma is associated with systemic inflammation and organ dysfunction. Preclinical rodent trauma models are the mainstay of postinjury research but have been criticized for not fully replicating severe human trauma. The aim of this study was to create a rat model of multicompartmental injury which recreates profound traumatic injury. METHODS Male Sprague-Dawley rats were subjected to unilateral lung contusion and hemorrhagic shock (LCHS), multicompartmental polytrauma (PT) (unilateral lung contusion, hemorrhagic shock, cecectomy, bifemoral pseudofracture), or naïve controls. Weight, plasma toll-like receptor 4 (TLR4), hemoglobin, spleen to body weight ratio, bone marrow (BM) erythroid progenitor (CFU-GEMM, BFU-E, and CFU-E) growth, plasma granulocyte colony-stimulating factor (G-CSF) and right lung histologic injury were assessed on day 7, with significance defined as p values <0.05 (*). RESULTS Polytrauma resulted in markedly more profound inhibition of weight gain compared to LCHS (p = 0.0002) along with elevated plasma TLR4 (p < 0.0001), lower hemoglobin (p < 0.0001), and enlarged spleen to body weight ratios (p = 0.004). Both LCHS and PT demonstrated suppression of CFU-E and BFU-E growth compared to naïve (p < 0.03, p < 0.01). Plasma G-CSF was elevated in PT compared to both naïve and LCHS (p < 0.0001, p = 0.02). LCHS and PT demonstrated significant histologic right lung injury with poor alveolar wall integrity and interstitial edema. CONCLUSIONS Multicompartmental injury as described here establishes a reproducible model of multicompartmental injury with worsened anemia, splenic tissue enlargement, weight loss, and increased inflammatory activity compared to a less severe model. This may serve as a more effective model to recreate profound traumatic injury to replicate the human inflammatory response postinjury.
Collapse
Affiliation(s)
- Lauren S. Kelly
- Department of Surgery and Sepsis and Critical Illness Research CenterUniversity of Florida College of MedicineGainesvilleFloridaUSA
| | - Jennifer A. Munley
- Department of Surgery and Sepsis and Critical Illness Research CenterUniversity of Florida College of MedicineGainesvilleFloridaUSA
| | - Erick E. Pons
- Department of Surgery and Sepsis and Critical Illness Research CenterUniversity of Florida College of MedicineGainesvilleFloridaUSA
| | - Kolenkode B. Kannan
- Department of Surgery and Sepsis and Critical Illness Research CenterUniversity of Florida College of MedicineGainesvilleFloridaUSA
| | | | - Letitia E. Bible
- Department of Surgery and Sepsis and Critical Illness Research CenterUniversity of Florida College of MedicineGainesvilleFloridaUSA
| | - Philip A. Efron
- Department of Surgery and Sepsis and Critical Illness Research CenterUniversity of Florida College of MedicineGainesvilleFloridaUSA
| | - Alicia M. Mohr
- Department of Surgery and Sepsis and Critical Illness Research CenterUniversity of Florida College of MedicineGainesvilleFloridaUSA
| |
Collapse
|
7
|
Mulder PPG, Hooijmans CR, Vlig M, Middelkoop E, Joosten I, Koenen HJPM, Boekema BKHL. Kinetics of Inflammatory Mediators in the Immune Response to Burn Injury: Systematic Review and Meta-Analysis of Animal Studies. J Invest Dermatol 2024; 144:669-696.e10. [PMID: 37806443 DOI: 10.1016/j.jid.2023.09.269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/31/2023] [Accepted: 09/20/2023] [Indexed: 10/10/2023]
Abstract
Burns are often accompanied by a dysfunctional immune response, which can lead to systemic inflammation, shock, and excessive scarring. The objective of this study was to provide insight into inflammatory pathways associated with burn-related complications. Because detailed information on the various inflammatory mediators is scattered over individual studies, we systematically reviewed animal experimental data for all reported inflammatory mediators. Meta-analyses of 352 studies revealed a strong increase in cytokines, chemokines, and growth factors, particularly 19 mediators in blood and 12 in burn tissue. Temporal kinetics showed long-lasting surges of proinflammatory cytokines in blood and burn tissue. Significant time-dependent effects were seen for IL-1β, IL-6, TGF-β1, and CCL2. The response of anti-inflammatory mediators was limited. Burn technique had a profound impact on systemic response levels. Large burn size and scalds further increased systemic, but not local inflammation. Animal characteristics greatly affected inflammation, for example, IL-1β, IL-6, and TNF-α levels were highest in young, male rats. Time-dependent effects and dissimilarities in response demonstrate the importance of appropriate study design. Collectively, this review presents a general overview of the burn-induced immune response exposing inflammatory pathways that could be targeted through immunotherapy for burn patients and provides guidance for experimental set-ups to advance burn research.
Collapse
Affiliation(s)
- Patrick P G Mulder
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands; Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Carlijn R Hooijmans
- Meta-Research Team, Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel Vlig
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands
| | - Esther Middelkoop
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands; Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Tissue Function and Regeneration, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Irma Joosten
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hans J P M Koenen
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bouke K H L Boekema
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands; Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Bouji N, Meadows E, Hollander JM, Velayutham M, Stewart E, Herriott J, Dietz MJ. A pilot study of mitochondrial response to an in vivo prosthetic joint Staphylococcus aureus infection model. J Orthop Res 2024; 42:539-546. [PMID: 37794704 PMCID: PMC10959235 DOI: 10.1002/jor.25696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/28/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023]
Abstract
Prosthetic joint infections (PJI) are associated with orthopaedic morbidity and mortality. Mitochondria, the "cell's powerhouses," are thought to play crucial roles in infection response and in increased risk of sepsis mortality. No current research discusses PJI's effect on mitochondrial function and a lack of understanding of immune-infection interactions potentially hinders patient care. The purpose of this pilot study was to evaluate the impact of simulated PJI on local tissue mitochondrial function. Using an established prosthetic implant-associated in vivo model, tissues were harvested from the surgical limb of a methicillin-sensitive Staphylococcus aureus implant-associated infection group (n = 6) and compared to a noninfected group (n = 6) at postoperative day (POD) 21. Using mitochondrial coupling assays, oxygen consumption rate and extracellular acidification rate were assessed in each group. Electron flow through mitochondrial complexes reflected group activity. Electron Paramagnetic Resonance (EPR) spectrometry measured the oxidizing potential of serum samples from infected versus noninfected groups. On POD21, colony-forming units per gram of tissue showed 5 × 109 in the infected group and 101 in the noninfected group (p < 0.0001). Maximal respiration and oxygen consumption due to adenosine triphosphate synthesis were significantly lower in isolated mitochondria from infected limbs (p = 0.04). Both groups had similar complex I, III, IV, and V activity (p > 0.1). Infected group EPR signal intensity reflecting reactive oxygen species levels was 1.31 ± 0.30 compared to 1.16 ± 0.28 (p = 0.73) in the noninfected group. This study highlights PJI's role in mammalian cell mitochondrial dysfunction and oxidative tissue damage, which can help develop interventions to combat PJI.
Collapse
Affiliation(s)
- Nour Bouji
- Department of Orthopaedics, Health Sciences Center-WVU School of Medicine, Morgantown, West Virginia, USA
| | - Ethan Meadows
- Department of Human Performance-Exercise Physiology, Health Sciences Center-WVU School of Medicine, Morgantown, West Virginia, USA
| | - John M Hollander
- Department of Human Performance-Exercise Physiology, Health Sciences Center-WVU School of Medicine, Morgantown, West Virginia, USA
| | - Murugesan Velayutham
- Department of Biochemistry and Molecular Medicine, Health Sciences Center-WVU School of Medicine, Morgantown, West Virginia, USA
| | - Elizabeth Stewart
- Department of Orthopaedics, Health Sciences Center-WVU School of Medicine, Morgantown, West Virginia, USA
| | - Jacob Herriott
- Department of Orthopaedics, Health Sciences Center-WVU School of Medicine, Morgantown, West Virginia, USA
| | - Matthew J Dietz
- Department of Orthopaedics, Health Sciences Center-WVU School of Medicine, Morgantown, West Virginia, USA
| |
Collapse
|
9
|
Lopez-Echeverria G, Alamaw E, Gorman G, Jampachaisri K, Huss MK, Pacharinsak C. Comparing Three Formulations of Buprenorphine in an Incisional Pain Model in Mice. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2023; 62:531-537. [PMID: 38030144 PMCID: PMC10772916 DOI: 10.30802/aalas-jaalas-23-000011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/08/2023] [Accepted: 04/10/2023] [Indexed: 12/01/2023]
Abstract
This study compared the therapeutic effects in mice of 3 different formulations of buprenorphine. These formulations were standard buprenorphine hydrochloride (Bup-HCL) and 2 different extended-release buprenorphine formulations (Bup-ER and Ethiqa-XR [Bup-XR]). Drugs were evaluated based on their ability to attenuate thermal hypersensitivity in a mouse plantar incisional pain model. We hypothesized that Bup-HCL would attenuate postoperative thermal hypersensitivity at 20 min after administration, and that Bup-ER and Bup-XR would attenuate thermal hypersensitivity at 40 min after administration. Male C57BL6/J mice were randomly assigned to 1 of 4 treatment groups: 1) saline, 5 mL/kg SC, once; 2) Bup-HCL, 0.1 mg/kg SC, once; 3) Bup-ER, 1 mg/kg, SC, once; and 4) Bup-XR, 3.25 mg/kg, SC, once. Thermal hypersensitivity was assessed on the day before surgery and again on the day of surgery at 20, 40, 60, 90, and 120 min after drug administration. Thermal hypersensitivity after surgery was not different among the Bup-HCL, Bup-ER and Bup-XR groups at any timepoint. In addition, all buprenorphine treatment groups showed significantly less thermal hypersensitivity after surgery than did the saline group. Subjective observations suggested that mice that received Bup-ER or Bup-XR became hyperactive after drug administration (83 and 75% of mice tested, respectively). Our results indicate that Bup-HCL, Bup-ER, or Bup-XR attenuate thermal hyper- sensitivity related to foot incision by 20 min after administration.
Collapse
Affiliation(s)
| | - Eden Alamaw
- Department of Comparative Medicine, Stanford University, Stanford, California
| | - Gregory Gorman
- Pharmaceutical Sciences Research Institute, McWhorter School of Pharmacy, Samford University, Birmingham, Alabama
| | | | - Monika K Huss
- Department of Comparative Medicine, Stanford University, Stanford, California
| | | |
Collapse
|
10
|
Peña-Corona SI, Vargas-Estrada D, Chávez-Corona JI, Mendoza-Rodríguez CA, Caballero-Chacón S, Pedraza-Chaverri J, Gracia-Mora MI, Galván-Vela DP, García-Rodríguez H, Sánchez-Bartez F, Vergara-Onofre M, Leyva-Gómez G. Vitamin E (α-Tocopherol) Does Not Ameliorate the Toxic Effect of Bisphenol S on the Metabolic Analytes and Pancreas Histoarchitecture of Diabetic Rats. TOXICS 2023; 11:626. [PMID: 37505591 PMCID: PMC10383361 DOI: 10.3390/toxics11070626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
This study investigated whether the coadministration of vitamin E (VitE) diminishes the harmful effects provoked by plasticizer bisphenol S (BPS) in the serum metabolites related to hepatic and renal metabolism, as well as the endocrine pancreatic function in diabetic male Wistar rats. Rats were divided into five groups (n = 5-6); the first group was healthy rats (Ctrl group). The other four groups were diabetic rats induced with 45 mg/kg bw of streptozotocin: Ctrl-D (diabetic control); VitE-D (100 mg/kg bw/d of VitE); BPS-D (100 mg/kg bw/d of BPS); The animals from the VitE + BPS-D group were administered 100 mg/kg bw/d of VitE + 100 mg/kg bw/d of BPS. All compounds were administered orally for 30 days. Body weight, biochemical assays, urinalysis, glucose tolerance test, pancreas histopathology, proximate chemical analysis in feces, and the activity of antioxidants in rat serum were assessed. The coadministration of VitE + BPS produced weight losses, increases in 14 serum analytes, and degeneration in the pancreas. Therefore, the VitE + BPS coadministration did not have a protective effect versus the harmful impact of BPS or the diabetic metabolic state; on the contrary, it partially aggravated the damage produced by the BPS. VitE is likely to have an additive effect on the toxicity of BPS.
Collapse
Affiliation(s)
- Sheila I Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Dinorah Vargas-Estrada
- Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Juan I Chávez-Corona
- Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - C Adriana Mendoza-Rodríguez
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Sara Caballero-Chacón
- Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - María Isabel Gracia-Mora
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Diana Patricia Galván-Vela
- Unidad de Investigación Preclínica (UNIPREC), Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Helena García-Rodríguez
- Unidad de Investigación Preclínica (UNIPREC), Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Francisco Sánchez-Bartez
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Marcela Vergara-Onofre
- Departamento de Producción Agricola y Animal, Universidad Autónoma Metropolitana Unidad Xochimilco, Ciudad de México 04960, Mexico
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
11
|
Gheibi P, Eftekhari Z, Doroud D, Parivar K. Association between uterine toxicity induced by chlorpyrifos and downregulation of heparin-binding epidermal growth factor and L-selectin genes. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2023; 14:45-52. [PMID: 36816860 PMCID: PMC9906618 DOI: 10.30466/vrf.2021.532844.3203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 09/13/2021] [Indexed: 02/24/2023]
Abstract
Various factors are effective in reducing the fertility rate. This experiment aimed to investigate chlorpyrifos (CPF), an organophosphate, that could alter the structure of the uterus and the molecules involved in parental and fetal. CPF was injected intraperitoneally in thirty mice for five days in a week (six weeks). The animals were euthanized on the 5th day of gestation, then their blood and uterus were collected for biochemical and histopathological assays. Exposure to CPF resulted in a significant reduction in maternal weight gain and the number of litters. Alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) were significantly increased in blood serum of the CPF group compared with the control. The number of uterus glands, endometrium thickness, and the uterine cavity were changed following CPF injection. Additional investigation indicated that the expressions of L-selectin, L-selectin ligand, and heparin-binding epidermal growth factor (HB-EGF) as initial adhesion of mice blastocysts and maternal endometrium biomarkers were downregulated in the CPF group. Nevertheless, any mortality and abnormal clinical symptoms were not observed in the treated mice. This study revealed a potential molecular mechanism of continuous CPF-induced toxicity in fetal-maternal attachment without clinical symptoms.
Collapse
Affiliation(s)
- Parisa Gheibi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran;
| | - Zohre Eftekhari
- Biotechnology Department, Pasteur Institute of Iran, Tehran, Iran; ,Correspondence Zohre Eftekhari. DVM, DVSc, Biotechnology Department, Pasteur Institute of Iran, Tehran, Iran. E-mail:
| | - Delaram Doroud
- Department of Quality Control, Research and Production Complex, Pasteur Institute of Iran, Karaj, Iran.
| | - Kazem Parivar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran;
| |
Collapse
|
12
|
Mohammadi Z, Pishkar L, Eftekhari Z, Barzin G, Babaeekhou L. The Human Host Defense Peptide LL-37 Overexpressed in Lung Cell Lines by Methanolic Extract of Valeriana officinalis. BRAZ J PHARM SCI 2023; 59. [DOI: 10.1590/s2175-97902023e21025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025] Open
|
13
|
Liu Y, Yu M, Chen L, Liu J, Li X, Zhang C, Xiang X, Li X, Lv Q. Systemic Review of Animal Models Used in the Study of Crush Syndrome. Shock 2022; 57:469-478. [PMID: 35066515 DOI: 10.1097/shk.0000000000001911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Crush syndrome (CS), also known as traumatic rhabdomyolysis, is the leading cause of death following extrication from structural collapse due to earthquakes. Due to the unfeasibility of human studies, animal models are used to study crush syndrome pathophysiology, including biochemistry and treatment regimes. The aim of this systematic literature review was to identify the differences and benefits of various animal models used in the study of CS and provide valuable information for design of future research. A systematic search was conducted in two methods: with the filters "(crush syndrome) AND (crush muscle injury)" and with the keywords "(crush syndrome) AND (animal model)" covering all articles in the PubMed databases. The search generated 378 articles. After screening abstracts, 91 articles were retrieved and read, then 11 repeated articles were removed and 2 reference papers were included. We finally reviewed 82 original articles. There appear to be two primary methods employed for inducing crush syndrome in animal models, which are chemically induced injury and physically induced injury. Chemical method mainly includes intramuscular (IM) injection of tissue extract solution and IM injection of 50% glycerine. Physical method can be classified into invasive and non-invasive physical compression by elasticated material, inflatable band and heavy load. Various species of animals have been used to study CS, including mice (13.4%), rats (68.3%), rabbits (11.0%), canines (4.9%), goats (1.2%), and pigs (1.2%). Small animals are suitable for researches exploring the mechanism of disease or drug efficacy while large animals can work better with clinical application-related researches. In regard to the choice of modeling method, compressing the certain muscle of animals by heavy things is superior to others to cause systemic trauma-related rhabdomyolysis signs. In addition, due to the significant burden of crush injuries on animals, further attention shall be paid to the selection of the most suitable anesthetics and appropriate analgesics.
Collapse
Affiliation(s)
- Yahua Liu
- Emergency Department, Chinese PLA General Hospital (The Third Center), Beijing, China
- Beijing Key Laboratory of Disaster Rescue Medicine, Beijing, China
| | - Mengyang Yu
- General Medicine Department, Chinese PLA General Hospital (The Third Center), Beijing, China
| | - Li Chen
- General Medicine Department, Chinese PLA general Hospital (The First Center), Beijing, China
| | - Jing Liu
- Pathology Department, Chinese PLA General Hospital (The Third Center), Beijing, China
| | - Xin Li
- Emergency Department, Chinese PLA General Hospital (The Third Center), Beijing, China
| | - Chengying Zhang
- General Medicine Department, Chinese PLA General Hospital (The Third Center), Beijing, China
| | - Xueyuan Xiang
- Urology, Chinese PLA General Hospital (The Third Center), Beijing, China
| | - Xiaoxue Li
- Beijing Key Laboratory of Disaster Rescue Medicine, Beijing, China
- Chinese PLA General Hospital (Innovative Medicine Division), Beijing, China
| | - Qi Lv
- Institute of Disaster Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| |
Collapse
|
14
|
IL-10 Dysregulation Underlies Chemokine Insufficiency, Delayed Macrophage Response, and Impaired Healing in Diabetic Wounds. J Invest Dermatol 2022; 142:692-704.e14. [PMID: 34517005 PMCID: PMC8860852 DOI: 10.1016/j.jid.2021.08.428] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 02/08/2023]
Abstract
Persistent inflammation is a major contributor to healing impairment in diabetic chronic wounds. Paradoxically, diabetic wound environment during the acute phase of healing is completely different because it exhibits a reduced macrophage response owing to inadequate expression of CCL2 proinflammatory cytokine. What causes a reduction in CCL2 expression in diabetic wounds early after injury remains unknown. In this study, we report that in contrast to prolonged exposure to high glucose, which makes monocytes proinflammatory, short-term exposure to high glucose causes a rapid monocyte reprogramming, manifested by increased expression and secretion of IL-10, which in an autocrine/paracrine fashion reduces glucose uptake and transforms monocytes into an anti-inflammatory phenotype by dampening signaling through toll-like receptors. We show that IL-10 expression is significantly increased in diabetic wounds during the acute phase of healing, causing significant reductions in toll-like receptor signaling and proinflammatory cytokine production, delaying macrophage and leukocyte responses, and underlying healing impairment in diabetic wounds. Importantly, blocking IL-10 signaling during the acute phase of healing improves toll-like receptor signaling, increases proinflammatory cytokine production, enhances macrophage and leukocyte responses, and stimulates healing in diabetic wounds. We posit that anti-IL-10 strategies have therapeutic potential if added topically after surgical debridement, which resets chronic wounds into acute fresh wounds.
Collapse
|
15
|
Tobar Leitão SA, Soares DDS, Carvas Junior N, Zimmer R, Ludwig NF, Andrades M. Study of anesthetics for euthanasia in rats and mice: A systematic review and meta-analysis on the impact upon biological outcomes (SAFE-RM). Life Sci 2021; 284:119916. [PMID: 34480936 DOI: 10.1016/j.lfs.2021.119916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 12/09/2022]
Abstract
AIM To summarize the knowledge on the effect of anesthetics employed right before euthanasia on biological outcomes. DATA SOURCE A systematic review of the literature to find studies with isoflurane, ketamine, halothane, pentobarbital, or thiopental just before euthanasia of laboratory rats or mice. STUDY SELECTION Controlled studies with quantitative data available. DATA EXTRACTION The search, data extraction, and risk of bias (RoB) were performed independently by two reviewers using a structured form. For each outcome, an effect size (ES) was calculated relative to the control group. Meta-analysis was performed using robust variance meta-regression for hierarchical data structures, with adjustment for small samples. DATA SYNTHESIS We included 20 studies with 407 biological outcomes (110 unique). RoB analysis indicated that 87.5% of the domains evaluated showed unclear risk, 2% high risk, and 10.5% low risk. The effect size for all anesthetics considered together was 0.99 (CI95% = 0.75-1.23; p < 0.0001). Sub-analyses indicate high effect sizes for pentobarbital (1.14; CI95% = 0.75-1.52; p < 0.0001), and isoflurane (1.01; CI95% = 0.58-1.44; p = 0.0005) but not for ketamine (1.49; CI95% = -7.95-10.9; p = 0.295). CONCLUSION We showed that anesthetics interfere differently with the majority of the outcomes assessed. However, our data did not support the use of one anesthetic over others or even the killing without anesthetics. We conclude that outcomes cannot be compared among studies without considering the killing method. This protocol was registered at Prospero (CRD42019119520). FUNDING There was no direct funding for this research.
Collapse
Affiliation(s)
- Santiago Alonso Tobar Leitão
- Postgraduate Program in Cardiology and Cardiovascular Science, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2400, 90035-903 Porto Alegre, RS, Brazil; Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350 - sala 12113, 90035-903 Porto Alegre, RS, Brazil
| | - Douglas Dos Santos Soares
- Postgraduate Program in Cardiology and Cardiovascular Science, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2400, 90035-903 Porto Alegre, RS, Brazil; Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350 - sala 12113, 90035-903 Porto Alegre, RS, Brazil
| | - Nelson Carvas Junior
- Department of Evidence-Based Health, UNIFESP, Rua Isabel Schmidt, 349, São Paulo 04743-030, Brazil
| | - Rafael Zimmer
- Postgraduate Program in Medical Science, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2400, 90035-903 Porto Alegre, RS, Brazil
| | - Nataniel Floriano Ludwig
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brazil
| | - Michael Andrades
- Postgraduate Program in Cardiology and Cardiovascular Science, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2400, 90035-903 Porto Alegre, RS, Brazil; Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350 - sala 12113, 90035-903 Porto Alegre, RS, Brazil.
| |
Collapse
|
16
|
Prince N, Penatzer JA, Shackleford TL, Stewart EK, Dietz MJ, Boyd JW. Tissue-level cytokines in a rodent model of chronic implant-associated infection. J Orthop Res 2021; 39:2159-2168. [PMID: 33283316 PMCID: PMC8180530 DOI: 10.1002/jor.24940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/28/2020] [Accepted: 12/01/2020] [Indexed: 02/04/2023]
Abstract
Systemic cytokine concentrations have been extensively studied in implant-associated infections, providing sensitive diagnostic markers. However, less is known about the relationships of tissue-level cytokines surrounding the joint. The aim of this study was to define the cytokine profiles of tissues to investigate the use of these cytokines as markers of debridement in chronic joint infection. Using a rodent model, muscle samples were obtained from rats following Kirschner wire implantation and infection with Staphylococcus aureus to determine if: (1) differences exist in cytokine concentrations with proximity to infection, and (2) localized infection-specific markers can be identified on a tissue level to potentially serve as debridement markers in the future. Samples were collected from 4 distinct locations, and the concentrations of interleukin(IL)-1α, IL-1β, IL-4, IL-5, IL-6, IL-10, IL-12p70, IL-13, granulocyte-macrophage colony-stimulating factor, interferon-γ, and tumor necrosis factor-α were quantified in each sample, relative to the amount of tissue. Cytokine concentrations differed with proximity to the joint when implant or infection was present, and tissues at the operative knee joint showed the highest levels of most cytokines. Additionally, IL-1β, IL-4, and IL-6 showed promise, beyond diagnostics, as tissue-level indicators of infection response. Ultimately, this study illustrated that tissue-level evaluation provided insight into infection-specific response, and these markers may be useful for guiding the debridement of implant-associated infections.
Collapse
Affiliation(s)
- Nicole Prince
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA,Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Julia A. Penatzer
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA,Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Taylor L. Shackleford
- Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Elizabeth K. Stewart
- Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Matthew J. Dietz
- Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Jonathan W. Boyd
- Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV, USA,Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA,Department of Occupational and Environmental Health Sciences, West Virginia University, WV, USA,Corresponding Author: Jonathan Boyd, West Virginia University School of Medicine, Department of Orthopaedics, 64 Medical Center Drive, 5408 HSS, P.O. Box 9196, Morgantown, WV 26506-9196, Phone: 304-293-1360,
| |
Collapse
|
17
|
Garrone B, Durando L, Prenderville J, Sokolowska E, Milanese C, Di Giorgio FP, Callaghan C, Bianchi M. Paracetamol (acetaminophen) rescues cognitive decline, neuroinflammation and cytoskeletal alterations in a model of post-operative cognitive decline (POCD) in middle-aged rats. Sci Rep 2021; 11:10139. [PMID: 33980934 PMCID: PMC8115335 DOI: 10.1038/s41598-021-89629-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/22/2021] [Indexed: 11/09/2022] Open
Abstract
Post-operative cognitive dysfunction (POCD) is a debilitating clinical phenomenon in elderly patients. Management of pain in elderly is complicated because analgesic opiates elicit major side effects. In contrast, paracetamol (acetaminophen) has shown analgesic efficacy, no impact on cognition, and its side effects are well tolerated. We investigated the efficacy of paracetamol, compared to the opioid analgesic buprenorphine, in a model of POCD by investigating cognitive decline, allodynia, peripheral and hippocampal cytokines levels, and hippocampal microtubule dynamics as a key modulator of synaptic plasticity. A POCD model was developed in middle-aged (MA) rats by inducing a tibia fracture via orthopaedic surgery. Control MA rats did not undergo any surgery and only received isoflurane anaesthesia. We demonstrated that cognitive decline and increased allodynia following surgery was prevented in paracetamol-treated animals, but not in animals which were exposed to anesthesia alone or underwent the surgery and received buprenorphine. Behavioral alterations were associated with different peripheral cytokine changes between buprenorphine and paracetamol treated animals. Buprenorphine showed no central effects, while paracetamol showed modulatory effects on hippocampal cytokines and markers of microtubule dynamics which were suggestive of neuroprotection. Our data provide the first experimental evidence corroborating the use of paracetamol as first-choice analgesic in POCD.
Collapse
Affiliation(s)
- B Garrone
- Angelini Pharma S.p.A., Viale Amelia, 70, 00181, Rome, Italy
| | - L Durando
- Angelini Pharma S.p.A., Viale Amelia, 70, 00181, Rome, Italy
| | - J Prenderville
- Transpharmation Ireland Ltd., Trinity College Dublin-Institute of Neuroscience (TCIN), Lloyd Institute, Trinity College, Dublin 2, Ireland
| | - E Sokolowska
- Transpharmation Ireland Ltd., Trinity College Dublin-Institute of Neuroscience (TCIN), Lloyd Institute, Trinity College, Dublin 2, Ireland
| | - C Milanese
- Angelini Pharma S.p.A., Viale Amelia, 70, 00181, Rome, Italy
| | - F P Di Giorgio
- Angelini Pharma S.p.A., Viale Amelia, 70, 00181, Rome, Italy
| | - C Callaghan
- Ulysses Neuroscience Ltd, Room 3.57B, Trinity College Dublin-Institute of Neuroscience (TCIN), Lloyd Institute, Trinity College, Dublin 2, Ireland
| | - M Bianchi
- Ulysses Neuroscience Ltd, Room 3.57B, Trinity College Dublin-Institute of Neuroscience (TCIN), Lloyd Institute, Trinity College, Dublin 2, Ireland.
| |
Collapse
|
18
|
Abstract
ABSTRACT The ARRIVE (Animals in Research: Reporting In Vivo Experiments) guidelines were endorsed by the Shock Society in 2012, but to date there has been no systematic evaluation of research reporting quality for Shock. We systematically assessed 100 randomly selected animal-based research articles published between 2014 and 2018 for reporting quality and statistical practice, compared with 40 pre-ARRIVE studies. More than half of surveyed papers omitted verifiable ethical oversight information and basic animal descriptive information. Few papers reported best-practice methods, such as sample size justification (10%), randomization (43%), randomization method (7%), blinding (23%). Only one paper reported effect sizes to interpret study results. Most troubling was inadequate reporting of welfare-related information (anesthesia, analgesia, humane endpoints, euthanasia). Almost a decade after ARRIVE endorsement, our findings show that reporting deficiencies have persisted with little sign of correction. There is a clear need for investigators to increase transparency of research methods reporting, and drastically improve skills in experimental design. Improvement in standards and greater attention paid to reporting will lead to improvement in reproducibility, replicability, and research quality. It is incumbent upon the research community to improve reporting practices; accurate and transparent reporting is integral to producing rigorous and ethical science.
Collapse
Affiliation(s)
- Penny S Reynolds
- Department of Anesthesiology, Statistics in Anesthesiology Research (STAR) Core, College of Medicine, University of Florida, Gainesville, Florida
| | | |
Collapse
|
19
|
Manresa MC. Animal Models of Contact Dermatitis: 2,4-Dinitrofluorobenzene-Induced Contact Hypersensitivity. Methods Mol Biol 2021; 2223:87-100. [PMID: 33226589 DOI: 10.1007/978-1-0716-1001-5_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Allergic contact dermatitis (ACD) is a common skin disease with high prevalence in work environments. Human allergic contact dermatitis is triggered by the exposure to haptens that leads to an initial phase known as sensitization. During this phase, hapten-protein complexes presented by antigen-presenting cells activate a T-cell-mediated response, leading to the generation of memory cells against the hapten. Upon re-exposure to the same hapten, the elicitation phase is initiated. This phase is characterized by a quicker acute inflammatory response involving activation and/or infiltration of a variety of immune cell populations. Human ACD can be studied through the use of animal models of contact hypersensitivity (CHS). The 2,4-dinitrofluorobenzene (DNFB)-induced CHS model is a commonly used mouse model that has been helpful in the study of the mechanisms as well as potential therapeutic interventions of ACD. In this chapter I will provide a detailed protocol to develop acute DNFB-induced CHS in mice in a period of 7 days. In addition, I will discuss several key considerations for experimental design including best controls, potential expected outcomes, and sample collection.
Collapse
Affiliation(s)
- Mario C Manresa
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
20
|
Alrashidi NA, Zafar TA, Khan I. High‐Amylose Cornstarch Variably Affects Food Intake and Body Composition of Rats When Substituted to Standard versus a Moderately High‐Fat High‐Sugar Diet. STARCH-STARKE 2020. [DOI: 10.1002/star.202000036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Noura A Alrashidi
- Department of Food Science and Nutrition, College of Life Sciences Kuwait University P.O. Box 5969, 13060‐Safat Kuwait
| | - Tasleem A. Zafar
- Department of Food Science and Nutrition, College of Life Sciences Kuwait University P.O. Box 5969, 13060‐Safat Kuwait
| | - Islam Khan
- Department of Biochemistry, Faculty of Medicine Kuwait University P.O. Box 5969, 13060‐Safat Kuwait
| |
Collapse
|
21
|
Buprenorphine Analgesia Reduces Survival With ALM Resuscitation in a Rat Model of Uncontrolled Hemorrhage: Concerns for Trauma-Related Research. Shock 2020; 55:379-387. [PMID: 32925604 DOI: 10.1097/shk.0000000000001630] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT The effect of analgesia on physiological systems has received little attention in trauma research. Our aim was to examine the effect of two different analgesics, buprenorphine and carprofen, on adenosine, lidocaine, and magnesium (ALM) resuscitation in a rat model of laparotomy and non-compressible hemorrhage. Male Sprague-Dawley rats were randomly assigned to Saline Carprieve, ALM Carprieve, Saline Buprenorphine, or ALM Buprenorphine (all n = 10). Anesthetized animals underwent surgical placement of chronic catheters and laparotomy, then hemorrhage was induced by liver resection (60% left lateral lobe). After 15 min, animals received 0.7 mL/kg 3% NaCl ± ALM bolus, and after 60 min, 4 h 0.5 mL/kg/h 0.9% NaCl±ALM drip with 72 h monitoring. Carprieve groups received 5 mg/kg s.c. every 24 h and Buprenorphine groups received 0.05 mg/kg Temgesic every 6 to 12 h. Survival, hemodynamics, blood chemistry, and hematology were measured. ALM Carprieve led to 100% survival compared to 40% survival in ALM Buprenorphine group (P = 0.004). In Saline-treated rats, buprenorphine reduced median survival time by 91% (22 h to 2 h). Recovery of mean arterial pressure (MAP) at 60 min was lower in the buprenorphine versus Carprieve groups (83% vs. 101% for ALM and 62% vs. 95% for Saline groups). Buprenorphine was also associated with higher blood lactates and potassium. No analgesic-related differences were found in total white cells, lymphocytes, platelet count, hyperthermia, weight loss, or pica. We conclude that reduced survival and MAP recovery appears to a buprenorphine effect on cardiovascular function. Until the underlying mechanisms can be elucidated, buprenorphine should be used with caution in small and possibly large models of trauma and shock.
Collapse
|
22
|
Gheibi P, Eftekhari Z, Doroud D, Parivar K. Chlorpyrifos effects on integrin alpha v and beta 3 in implantation window phase. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:29530-29538. [PMID: 32440878 DOI: 10.1007/s11356-020-08288-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/02/2020] [Indexed: 06/11/2023]
Abstract
Chlorpyrifos (CPF), as a worldwide pesticide, can effect on the integrins αv and β3 which play a main role in the implantation window. Therefore, the aim of this study was to consider CPF effects on integrin alpha v and beta 3 in implantation window phase. Thirty female NMRI mice were separated into groups of CPF, sham, and control. After 6 weeks, each group was mated, and on the 5th day of gestation, all mice were euthanized. Estradiol and progesterone levels were detected by the enzyme-linked immunosorbent assay (ELISA) test; two subunits of integrins (αv and β3) genes and proteins of endometrium were analyzed by real-time polymerase chain reaction (RT-PCR) and immunohistochemistry method, respectively. Fibrosis of the liver which evaluated by Masson's trichrome stain was increased in the CPF group compared with the others. But estradiol and progesterone levels were significantly decreased in CPF groups. Based on the findings, the proportion of genes' expressions of integrin subunits declined by the effect of CPF, while there was not any notable consequence on mice in the sham group. Alpha v and beta 3 integrin proteins expressed in all groups, but the concentration of these proteins in CPF groups was lower than in other groups. This study has shown that the decline of estradiol and progesterone downregulates the expression of αv and β3 integrins which were influenced by CPF exposure. Changing these patterns of proteins could have numerous influences on unsuccessful implantation. Therefore, this experimental study recommends that inclusive consideration of the effects of insecticides may be crucial to women's unrecognized cause of infertility.
Collapse
Affiliation(s)
- Parisa Gheibi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, 1477893855, Iran
| | - Zohre Eftekhari
- Research & Production Complex, Quality Control Department, Pasteur Institute of Iran, Tehran, Alborz, 3159915111, Iran.
| | - Delaram Doroud
- Research & Production Complex, Quality Control Department, Pasteur Institute of Iran, Tehran, Alborz, 3159915111, Iran
| | - Kazem Parivar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, 1477893855, Iran
| |
Collapse
|
23
|
Perkins SE, Hankenson FC. Nonexperimental Xenobiotics: Unintended Consequences of Intentionally Administered Substances in Terrestrial Animal Models. ILAR J 2020; 60:216-227. [PMID: 32574354 DOI: 10.1093/ilar/ilaa003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 12/17/2019] [Accepted: 01/10/2020] [Indexed: 11/13/2022] Open
Abstract
Review of the use of nonexperimental xenobiotics in terrestrial animal models and the potential unintended consequences of these compounds, including drug-related side effects and adverse reactions.
Collapse
Affiliation(s)
- Scott E Perkins
- Tufts Comparative Medicine Services, Tufts University, Boston, Massachusetts; and Department of Environmental and Population Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts
| | - F Claire Hankenson
- Campus Animal Resources, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan
| |
Collapse
|
24
|
Savvidis M, Papavasiliou K, Taitzoglou I, Giannakopoulou A, Kitridis D, Galanis N, Vrabas I, Tsiridis E. Postoperative Administration of Alpha-tocopherol Enhances Osseointegration of Stainless Steel Implants: An In Vivo Rat Model. Clin Orthop Relat Res 2020; 478:406-419. [PMID: 31714415 PMCID: PMC7438137 DOI: 10.1097/corr.0000000000001037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 10/16/2019] [Indexed: 01/31/2023]
Abstract
BACKGROUND Alpha-tocopherol, a well-known antioxidative agent, may have a positive effect on bone formation during the remodeling phase of secondary fracture healing. Fracture healing and osseointegration of implants share common biological pathways; hence, alpha-tocopherol may enhance implant osseointegration. QUESTIONS/PURPOSES This experimental study in rats assessed the ability of alpha-tocopherol to enhance osseointegration of orthopaedic implants as determined by (1) pull-out strength and removal torque and (2) a histomorphological assessment of bone formation. In addition, we asked, (3) is there a correlation between the administration of alpha-tocopherol and a reduction in postoperative oxidative stress (as determined by malondialdehyde, protein carbonyls, reduced and oxidized glutathione and their ratio, catalase activity and total antioxidant capacity) that develops after implantation of an orthopaedic implant? METHODS This blinded study was performed in study and control groups, each consisting of 15 young adult male Wistar rats. On Day 0, a custom-designed stainless-steel screw was implanted in the proximal metaphysis of both tibias of all rats. On Day 1, animals were randomized to receive either alpha-tocopherol (40 mg/kg once per day intraperitoneally) or saline (controls). Animals were treated according to identical perioperative and postoperative protocols and were euthanized on Day 29. All animals completed the study and all tibias were suitable for evaluation. Implant pullout strength was assessed in the right tibias, and removal torque and histomorphometric evaluations (that is, volume of newly formed bone surrounding the implant in mm, percentage of newly formed bone, percentage of bone marrow surrounding the implant per optical field, thickness of newly formed bone in μm, percentage of mineralized bone in newly formed bone, volume of mature newly formed bone surrounding the implant in mm and percentage of mineralized newly formed bone per tissue area) were performed in the left tibias. The plasma levels of alpha-tocopherol, malondialdehyde, protein carbonyls, glutathione, glutathione disulfide, catalase, and the total antioxidant capacity were evaluated, and the ratio of glutathione to oxidized glutathione was calculated. RESULTS All parameters were different between the alpha-tocopherol-treated and control rats, favoring those in the alpha-tocopherol group. The pullout strength for the alpha-tocopherol group (mean ± SD) was 124.9 ± 20.7 newtons (N) versus 88.1 ± 12.7 N in the control group (mean difference -36.7 [95% CI -49.6 to -23.9]; p < 0.001). The torque median value was 7 (range 5.4 to 8.3) versus 5.2 (range 3.6 to 6 ) N/cm (p < 0.001). The newly formed bone volume was 29.8 ± 5.7 X 10 versus 25.2 ± 7.8 X 10 mm (mean difference -4.6 [95% CI -8.3 to -0.8]; p = 0.018), the percentage of mineralized bone in newly formed bone was 74.6% ± 8.7% versus 62.1% ± 9.8% (mean difference -12.5 [95% CI -20.2 to -4.8]; p = 0.003), the percentage of mineralized newly formed bone per tissue area was 40.3 ± 8.6% versus 34.8 ± 9% (mean difference -5.5 [95% CI -10.4 to -0.6]; p = 0.028), the glutathione level was 2 ± 0.4 versus 1.3 ± 0.3 μmol/g of hemoglobin (mean difference -0.6 [95% CI -0.9 to -0.4]; p < 0.001), the median glutathione/oxidized glutathione ratio was 438.8 (range 298 to 553) versus 340.1 (range 212 to 454; p = 0.002), the catalase activity was 155.6 ± 44.6 versus 87.3 ± 25.2 U/mg Hb (mean difference -68.3 [95% CI -95.4 to -41.2]; p < 0.001), the malondialdehyde level was 0.07 ± 0.02 versus 0.14 ± 0.03 μmol/g protein (mean difference 0.07 [95% CI 0.05 to 0.09]; p < 0.001), the protein carbonyl level was 0.16 ± 0.04 versus 0.27 ± 0.08 nmol/mg of protein (mean difference -0.1 [95% CI 0.05 to 0.15]; p = 0.002), the alpha-tocopherol level was 3.9 ± 4.1 versus 0.9 ± 0.2 mg/dL (mean difference -3 [95% CI -5.2 to -0.7]; p = 0.011), and the total antioxidant capacity was 15.9 ± 3.2 versus 13.7 ± 1.7 nmol 2,2-diphenyl-1-picrylhydrazyl radical/g of protein (mean difference -2.1 [95% CI -4.1 to -0.18]; p = 0.008). CONCLUSIONS These results using an in vivo rat model support that postoperatively administered alpha-tocopherol can enhance the osseointegration of an orthopaedic implant, although a cause and effect relationship between the administration of alpha-tocopherol and a reduction in postoperative stress cannot be securely established. CLINICAL RELEVANCE These findings suggest that postoperative administration of alpha-tocopherol is a promising approach to enhance osseointegration of orthopaedic implants in patients. Further studies with different animal models and/or different implants and those evaluating the alpha-tocopherol dose response are needed before performing clinical trials that will examine whether these promising, preliminary results can be extrapolated to the clinical setting as well.
Collapse
Affiliation(s)
- Matthaios Savvidis
- M. Savvidis, 2nd Orthopaedic Department, 424 Army General Training Hospital, Thessaloniki, Greece
| | - Kyriakos Papavasiliou
- K. Papavasiliou, N. Galanis, E. Tsiridis, 3rd Orthopaedic Department, Aristotle University of Thessaloniki Medical School, Papageorgiou General Hospital, Thessaloniki, Greece
| | - Ioannis Taitzoglou
- I. Taitzoglou, Laboratory of Physiology, University Campus, Aristotle University of Thessaloniki School of Veterinary Medicine, Thessaloniki, Greece
| | - Aggeliki Giannakopoulou
- A. Giannakopoulou, Department of Hematology, G. Papanicolaou General Hospital, Thessaloniki, Greece, and Laboratory of Anatomy, Histology and Embryology, Aristotle, University of Thessaloniki School of Veterinary Medicine, Thessaloniki, Greece
| | - Dimitrios Kitridis
- D. Kitridis, 1st Orthopaedic Department, George Papanikolaou General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Nikiforos Galanis
- K. Papavasiliou, N. Galanis, E. Tsiridis, 3rd Orthopaedic Department, Aristotle University of Thessaloniki Medical School, Papageorgiou General Hospital, Thessaloniki, Greece
| | - Ioannis Vrabas
- I Vrabas, School of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Eleftherios Tsiridis
- K. Papavasiliou, N. Galanis, E. Tsiridis, 3rd Orthopaedic Department, Aristotle University of Thessaloniki Medical School, Papageorgiou General Hospital, Thessaloniki, Greece
| |
Collapse
|
25
|
Dynamics of Endotoxin, Inflammatory Variables, and Organ Dysfunction After Treatment With Antibiotics in an Escherichia coli Porcine Intensive Care Sepsis Model. Crit Care Med 2019; 46:e634-e641. [PMID: 29595561 DOI: 10.1097/ccm.0000000000003139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
OBJECTIVES To investigate the dynamics of antibiotic-induced endotoxin liberation and inflammatory response in vivo in a clinically relevant large animal intensive care sepsis model and whether the addition of an aminoglycoside to a β-lactam antibiotic affects these responses. DESIGN Prospective, placebo-controlled interventional experimental study. SETTING University research unit. SUBJECTS Thirty-six healthy pigs administered Escherichia coli as a 3-hour infusion. INTERVENTIONS After 2 hours, during E. coli infusion, the animals were exposed to cefuroxime alone, the combination of cefuroxime and tobramycin, or saline. MEASUREMENTS AND MAIN RESULTS Plasma endotoxin, interleukin-6, tumor necrosis factor-α, leucocytes, and organ dysfunction were recorded for 4 hours after antibiotic treatment, and differences to the values before treatment were calculated. In vitro experiments were performed to ascertain whether endotoxin is released during antibiotic-induced bacterial killing of this E. coli strain. Despite differences between the treatment arms in vitro, no differences in plasma endotoxin were observed in vivo. Antibiotic-treated animals demonstrated a higher interleukin-6 response (p < 0.001), greater leucocyte activation (p < 0.001), and more pronounced deterioration in pulmonary static compliance (p < 0.01) over time than controls. Animals treated with the combination showed a trend toward less inflammation. CONCLUSIONS Treatment with antibiotics may elicit an increased inflammatory interleukin-6 response that is associated with leucocyte activation and pulmonary organ dysfunction. No observable differences were detected in plasma endotoxin concentrations. The reduction in cefuroxime-induced endotoxin release after the addition of an aminoglycoside in vitro could not be reproduced in this model.
Collapse
|
26
|
Characterization of plasma cytokine response to intraperitoneally administered LPS & subdiaphragmatic branch vagus nerve stimulation in rat model. PLoS One 2019; 14:e0214317. [PMID: 30921373 PMCID: PMC6438475 DOI: 10.1371/journal.pone.0214317] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 03/11/2019] [Indexed: 01/17/2023] Open
Abstract
Vagus nerve stimulation (VNS) has been on the forefront of inflammatory disorder research and has yielded many promising results. Questions remain, however, about the biological mechanisms of such treatments and the inconsistencies in the methods used in research efforts. Here, we aimed to clarify the inflammatory response to intraperitoneal (IP) injections of lipopolysaccharide (LPS) in rats, while analyzing corresponding effects of electrical stimulation to subdiaphragmatic branches (anterior gastric, accessory celiac, and hepatic) of the left vagus nerve. We accomplished an in-depth characterization of the time-varying cytokine cascade response in the serum of 58 rats to an acute IP LPS challenge over a 330-minute period by utilizing curve-fitting and starting point-alignment methods. We then explored the post-LPS neuromodulation effects of electrically stimulating individually cuffed subdiaphragmatic branches. Through our analysis, we found there to be a consistent order of IP LPS cytokine response (IL-10, TNF-α, GM-CSF, IL-17F, IL-6, IL-22, INF-γ). Apart from IL-10, the IP cytokine cascade was more variable in starting time and occurred later than in previously recorded intravenous (IV) challenges. We also found distinct regulatory effects on multiple cytokine levels by each of the three subdiaphragmatic stimulation subsets. While the time-variability of IP LPS use in rats complicates its utility, we have shown it to be a practical, arguably more physiologically relevant method than IV in rats when our methods are used. More importantly, we have shown that selective subdiaphragmatic neurostimulation can be utilized to selectively induce specific effects on inflammation in the body.
Collapse
|
27
|
Babadjouni R, Patel A, Liu Q, Shkirkova K, Lamorie-Foote K, Connor M, Hodis DM, Cheng H, Sioutas C, Morgan TE, Finch CE, Mack WJ. Nanoparticulate matter exposure results in neuroinflammatory changes in the corpus callosum. PLoS One 2018; 13:e0206934. [PMID: 30395590 PMCID: PMC6218079 DOI: 10.1371/journal.pone.0206934] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/21/2018] [Indexed: 12/11/2022] Open
Abstract
Epidemiological studies have established an association between air pollution particulate matter exposure (PM2.5) and neurocognitive decline. Experimental data suggest that microglia play an essential role in air pollution PM-induced neuroinflammation and oxidative stress. This study examined the effect of nano-sized particulate matter (nPM) on complement C5 deposition and microglial activation in the corpus callosum of mice (C57BL/6J males). nPM was collected in an urban Los Angeles region impacted by traffic emissions. Mice were exposed to 10 weeks of re-aerosolized nPM or filtered air for a cumulative 150 hours. nPM-exposed mice exhibited reactive microglia and 2-fold increased local deposition of complement C5/ C5α proteins and complement component C5a receptor 1 (CD88) in the corpus callosum. However, serum C5 levels did not differ between nPM and filtered air cohorts. These findings demonstrate white matter C5 deposition and microglial activation secondary to nPM exposure. The C5 upregulation appears to be localized to the brain.
Collapse
Affiliation(s)
- Robin Babadjouni
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Arati Patel
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Qinghai Liu
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Kristina Shkirkova
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Krista Lamorie-Foote
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Michelle Connor
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Drew M. Hodis
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Hank Cheng
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, United States of America
| | - Constantinos Sioutas
- Department of Civil and Environmental Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, United States of America
| | - Todd E. Morgan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, United States of America
| | - Caleb E. Finch
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, United States of America
| | - William J. Mack
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
28
|
Letendre C, Sawyer E, Young LJ, Old JM. Immunosenescence in a captive semelparous marsupial, the red-tailed phascogale (Phascogale calura). BMC ZOOL 2018. [DOI: 10.1186/s40850-018-0036-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
29
|
Guillory AN, Clayton RP, Prasai A, Jay JW, Wetzel M, El Ayadi A, Herndon DN, Finnerty CC. Buprenorphine-Sustained Release Alters Hemodynamic Parameters in a Rat Burn Model. J Surg Res 2018; 232:154-159. [PMID: 30463712 DOI: 10.1016/j.jss.2018.03.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 02/02/2018] [Accepted: 03/13/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND It has been previously shown that anesthesia and analgesia can affect outcomes in the rat burn model and that buprenorphine alleviated pain without drastically altering the outcomes of interest. Recently, the use of a sustained release (SR) formulation of buprenorphine has been promoted over conventional buprenorphine. In this study, we assessed whether buprenorphine-SR altered hemodynamic parameters in our rat model of severe burn injury. MATERIALS AND METHODS Adult male Sprague-Dawley rats were randomized to receive either conventional buprenorphine (0.05 mg/kg) or buprenorphine-SR (1 mg/kg). Buprenorphine-SR was administered 24 h before the experiment. Buprenorphine was administered on the day of experiment. These groups were further randomized to control or scald burn (60% of total body surface area). Systolic and diastolic blood pressure (SBP, DBP) and heart rate (HR) were measured using a noninvasive blood pressure system before receiving analgesia and after 72 h. RESULTS As expected, HR was significantly higher after burn injury regardless of analgesic (P <0.0001). Both SBP and DBP were significantly decreased in burned animals receiving conventional buprenorphine (P < 0.0001), but neither was altered in the buprenorphine-SR-treated burned animals. However, SBP, DBP, and HR were significantly increased after 72 h in control animals receiving buprenorphine-SR (P < 0.0001). CONCLUSIONS These data indicate that buprenorphine-SR alters the hemodynamic response to injury and may not be an appropriate choice for a model of severe burn injury. If this analgesic is used, investigators must cautiously form conclusions, especially in experimental conditions that would be expected to alter cardiac hemodynamics.
Collapse
Affiliation(s)
- Ashley N Guillory
- Shriners Hospitals for Children(®)-Galveston, Galveston, Texas; Department of Surgery, University of Texas Medical Branch, Galveston, Texas; Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas
| | - Robert P Clayton
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas
| | - Anesh Prasai
- Shriners Hospitals for Children(®)-Galveston, Galveston, Texas; Department of Surgery, University of Texas Medical Branch, Galveston, Texas
| | - Jayson W Jay
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas
| | - Michael Wetzel
- Shriners Hospitals for Children(®)-Galveston, Galveston, Texas; Department of Surgery, University of Texas Medical Branch, Galveston, Texas
| | - Amina El Ayadi
- Shriners Hospitals for Children(®)-Galveston, Galveston, Texas; Department of Surgery, University of Texas Medical Branch, Galveston, Texas; Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas
| | - David N Herndon
- Shriners Hospitals for Children(®)-Galveston, Galveston, Texas; Department of Surgery, University of Texas Medical Branch, Galveston, Texas
| | - Celeste C Finnerty
- Shriners Hospitals for Children(®)-Galveston, Galveston, Texas; Department of Surgery, University of Texas Medical Branch, Galveston, Texas; Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas.
| |
Collapse
|
30
|
Peterson NC, Nunamaker EA, Turner PV. To Treat or Not to Treat: The Effects of Pain on Experimental Parameters. Comp Med 2017; 67:469-482. [PMID: 29212578 PMCID: PMC5713161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/09/2016] [Accepted: 02/17/2017] [Indexed: 06/07/2023]
Abstract
A common dilemma faced by all animal bioethics committees arises when exceptions are proposed to the use of analgesics in painful procedures. The committee and researcher must weigh the possible confounding effects of including additional drugs (analgesics) in their treatment regimen against the moral obligation to perform humane research. Often neglected in these considerations are the potential confounding effects of unrelieved pain and consistency with pain-relieving practices in human medicine. In this review, we summarize what is currently known regarding the molecular and physiologic effects of pain and analgesics in common animal models used across several therapeutic areas. This work is intended to help provide guidance and assurance that a comprehensive approach has been taken when contemplating how pain relief will be applied in animal research protocols.
Collapse
Affiliation(s)
| | | | - Patricia V Turner
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
31
|
Al-Humadi N. Pre-clinical toxicology considerations for vaccine development. Vaccine 2017; 35:5762-5767. [PMID: 28916246 DOI: 10.1016/j.vaccine.2017.09.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/01/2017] [Accepted: 09/05/2017] [Indexed: 10/18/2022]
Abstract
Vaccine development requires pre-clinical toxicology studies, following good laboratory practice (GLP), before first in human (phase I) use. Many factors are critical in the final outcome of any pre-clinical toxicology study. The study design is one of these critical factors and should be carefully planned to avoid any false negative and/or false positive results. Preparation is another most critical factor in a successful study. Major changes in any procedure during the course of study should be avoided by all means. For example, if the protocol specified the tail as the site of blood collection and this procedure was used for the control group at the day of necropsy, this collection site should never be replaced by another site (e.g. foot, eye, or heart) in all other treatment groups. Food restrictions and acute restraint stress affect clinical pathology data and should be avoided in rodents. Institutional Animal Care and Use Committee (IACUC) guidelines for frequent blood collections (weekly, monthly, or at necropsy) in any animal species should be strictly followed. Clinical pathology data will be profoundly affected by any diversion from the recommended volumes. If CO2 is specified in the protocol for anesthesia and/or euthanasia, ensuring enough quantity to use for all groups at necropsy is a very important factor. Using two different anesthetics in any study (e.g. CO2 vs. pentobarbital) may result in false positive or false negative results in clinical chemistry parameters. Quality assurance elements (SOPs, instrument validation, lab certification etc.) affect the data interpretation and the final outcome of any toxicology study. SOPs should be up to date and written clearly. All lab instruments should be validated and all laboratories should be certified.
Collapse
Affiliation(s)
- Nabil Al-Humadi
- Office of Vaccine Research & Review, CBER, Food and Drug Administration, 10904 New Hampshire Avenue, Silver Spring, MD 20903, USA.
| |
Collapse
|
32
|
Powell K, Ethun K, Taylor DK. The effect of light level, CO2 flow rate, and anesthesia on the stress response of mice during CO2 euthanasia. Lab Anim (NY) 2017; 45:386-95. [PMID: 27654690 DOI: 10.1038/laban.1117] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 07/01/2016] [Indexed: 11/09/2022]
Abstract
Euthanasia protocols are designed to mitigate the stress experienced by animals, and an environment that induces minimal stress helps achieve that goal. A protocol that is efficient and practical in a typical animal research facility is also important. Light intensity, isoflurane, and CO2 flow rate were studied for their impact on the stress response of mice during CO2 euthanasia. Behavior was observed and scored during euthanasia and serum corticosterone was measured immediately after death. Unsurprisingly, animals euthanized with a high-flow rate of CO2 became unconscious in the least amount of time, while animals euthanized with a low-flow rate required the most time to reach unconsciousness. There was a significant increase in anxious behaviors in animals in the isoflurane group (F1,12 = 6.67, P = 0.024), the high-flow rate CO2 group (F1,12 = 10.24, P = 0.007), and bright chamber group (F1,12 = 7.27, P = 0.019). Serum corticosterone was highest in the isoflurane group (124.72 ± 83.98 ng/ml), however there was no significant difference in corticosterone levels observed for the other study variables of light and flow-rate. A darkened chamber and low CO2 flow rates help to decrease stress experienced during CO2 euthanasia, while the use of isoflurane was observed to increase the stress response during euthanasia.
Collapse
Affiliation(s)
- Karin Powell
- Division of Animal Resources, Emory University, Atlanta, Georgia
| | - Kelly Ethun
- Division of Animal Resources, Emory University, Atlanta, Georgia
| | - Douglas K Taylor
- Division of Animal Resources, Emory University, Atlanta, Georgia
| |
Collapse
|
33
|
Ciarlone GE, Dean JB. Normobaric hyperoxia stimulates superoxide and nitric oxide production in the caudal solitary complex of rat brain slices. Am J Physiol Cell Physiol 2016; 311:C1014-C1026. [PMID: 27733362 DOI: 10.1152/ajpcell.00160.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 10/05/2016] [Indexed: 12/25/2022]
Abstract
Central CO2-chemosensitive neurons in the caudal solitary complex (cSC) are stimulated not only by hypercapnic acidosis, but by hyperoxia as well. While a cellular mechanism for the CO2 response has yet to be isolated, previous data show that a redox-sensitive mechanism underlies neuronal excitability to hyperoxia. However, it remains unknown how changes in Po2 affect the production of reactive oxygen and nitrogen species (RONS) in the cSC that can lead to increased cellular excitability and, with larger doses, to cellular dysfunction and death. To this end, we used fluorescence microscopy in real time to determine how normobaric hyperoxia increases the production of key RONS in the cSC. Because neurons in the region are CO2 sensitive, we also examined the potential effects of CO2 narcosis, used during euthanasia before brain slice harvesting, on RONS production. Our findings show that normobaric hyperoxia (0.4 → 0.95 atmospheres absolute O2) increases the fluorescence rates of fluorogenic dyes specific to both superoxide and nitric oxide. Interestingly, different results were seen for superoxide fluorescence when CO2 narcosis was used during euthanasia, suggesting long-lasting changes in superoxide production and/or antioxidant activity subsequent to CO2 narcosis before brain slicing. Further research needs to distinguish whether the increased levels of RONS reported here are merely increases in oxidative and nitrosative signaling or, alternatively, evidence of redox and nitrosative stress.
Collapse
Affiliation(s)
- Geoffrey E Ciarlone
- Department of Molecular Pharmacology and Physiology, Hyperbaric Biomedical Research Laboratory, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Jay B Dean
- Department of Molecular Pharmacology and Physiology, Hyperbaric Biomedical Research Laboratory, Morsani College of Medicine, University of South Florida, Tampa, Florida
| |
Collapse
|
34
|
Duan H, Zhang X, Chai J, Hu Q, Liu L, Ma L, Feng Y, Yu Y. Apoptosis and death receptor signaling in diaphragm of burnt rats. J Surg Res 2016; 203:6-14. [PMID: 27338528 DOI: 10.1016/j.jss.2016.01.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 01/20/2016] [Accepted: 01/27/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Respiratory dysfunction is a frequent complication after severe burn injury. Respiratory muscle atrophy may induce respiratory dysfunction due to insufficient inspiratory motive power. Accumulated evidence suggests that apoptosis is very important in skeletal muscle atrophy in multiple pathologic conditions. Therefore, we hypothesize that myonuclear apoptosis contributes to diaphragm atrophy induced by burn injury, and death receptor signaling activation plays a role in this process. METHODS Wistar rats in the burn-injured group were subjected to a full-thickness scald injury around 40% of total body surface area. Diaphragm samples were examined for myonuclear apoptosis by transmission electron microscope, terminal deoxynucleotidyl transferase-mediated nick end labeling assay, and immunohistochemistry for caspase-3. Serum level of apoptotic ligands were assessed by ELISA. Activation of death receptor signaling was examined by Western blotting. RESULTS Burn injury resulted in significant reductions of diaphragm muscle mass and myofiber cross-section area. Apoptosis in diaphragm appeared from day 1 and peaked on day 4 after injury. The level of soluble TNF-related apoptosis-inducing ligand and the ratio of Fas ligand to soluble Fas in serum significantly increased after burn injury. In diaphragm of burnt animals, the expressions of proapoptotic proteins, such as cleaved caspase-8, cleaved caspase-3, and Bax-to-Bcl-2 ratio were upregulated, whereas expression of pAkt, an antiapoptotic protein, was downregulated. Immunohistochemistry revealed that the most of the caspase-3 was expressed in myofiber nuclei and their surrounding cytoplasm area in tissue sections. CONCLUSIONS Severe burn injury induces myonuclear apoptosis in diaphragm, which could be a contributor to diaphragm muscle atrophy. Activation of death receptor signaling may be a mechanism of apoptosis in diaphragm.
Collapse
Affiliation(s)
- Hongjie Duan
- Department of Burns and Plastic Surgery, Burns Institute, The First Affiliated Hospital of PLA General Hospital (Formerly 304th Hospital of PLA), Beijing, China
| | - Xulong Zhang
- Department of Burns and Plastic Surgery, Burns Institute, The First Affiliated Hospital of PLA General Hospital (Formerly 304th Hospital of PLA), Beijing, China
| | - Jiake Chai
- Department of Burns and Plastic Surgery, Burns Institute, The First Affiliated Hospital of PLA General Hospital (Formerly 304th Hospital of PLA), Beijing, China.
| | - Quan Hu
- Department of Burns and Plastic Surgery, Burns Institute, The First Affiliated Hospital of PLA General Hospital (Formerly 304th Hospital of PLA), Beijing, China
| | - Lingying Liu
- Department of Burns and Plastic Surgery, Burns Institute, The First Affiliated Hospital of PLA General Hospital (Formerly 304th Hospital of PLA), Beijing, China
| | - Li Ma
- Department of Burns and Plastic Surgery, Burns Institute, The First Affiliated Hospital of PLA General Hospital (Formerly 304th Hospital of PLA), Beijing, China
| | - Yongqiang Feng
- Department of Burns and Plastic Surgery, Burns Institute, The First Affiliated Hospital of PLA General Hospital (Formerly 304th Hospital of PLA), Beijing, China
| | - Yonghui Yu
- Department of Burns and Plastic Surgery, Burns Institute, The First Affiliated Hospital of PLA General Hospital (Formerly 304th Hospital of PLA), Beijing, China
| |
Collapse
|
35
|
Han AA, Currie HN, Loos MS, Vrana JA, Fabyanic EB, Prediger MS, Boyd JW. Spatiotemporal phosphoprotein distribution and associated cytokine response of a traumatic injury. Cytokine 2015; 79:12-22. [PMID: 26702931 DOI: 10.1016/j.cyto.2015.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/25/2015] [Accepted: 12/06/2015] [Indexed: 02/02/2023]
Abstract
Molecular mechanisms of wound healing have been extensively characterized, providing a better understanding of the processes involved in wound repair and offering advances in treatment methods. Both spatial and temporal investigations of injury biomarkers have helped to pinpoint significant time points and locations during the recovery process, which may be vital in managing the injury and making the appropriate diagnosis. This study addresses spatial and temporal differences of phosphoproteins found in skeletal muscle tissue following a traumatic femur fracture, which were further compared to co-localized cytokine responses. In particular, several proteins (Akt, ERK, c-Jun, CREB, JNK, MEK1, and p38) and post-translational phosphorylations (p-Akt, p-c-Jun, p-CREB, p-ERK1/2, p-MEK1, p-p38, p-GSK3α/β, p-HSP27, p-p70S6K, and p-STAT3) associated with inflammation, new tissue formation, and remodeling were found to exhibit significant spatial and temporal differences in response to the traumatic injury. Quadratic discriminant analysis of all measured responses, including cytokine concentrations from previously published findings, was used to classify temporal and spatial observations at high predictive rates, further confirming that distinct spatiotemporal distributions for total protein, phosphorylation signaling, and cytokine (IL-1α, IL-1ß, IL2, IL6, TNF-α, and MIP-1α) responses exist. Finally, phosphoprotein measurements were found to be significantly correlated to cytokine concentrations, suggesting coordinated intracellular and extracellular activity during crucial periods of repair. This study represents a first attempt to monitor and assess integrated changes in extracellular and intracellular signaling in response to a traumatic injury in muscle tissues, which may provide a framework for future research to improve both our understanding of wounds and their treatment options.
Collapse
Affiliation(s)
- Alice A Han
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Holly N Currie
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Matthew S Loos
- Department of Surgery, West Virginia University, Morgantown, WV, USA
| | - Julie A Vrana
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Emily B Fabyanic
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Maren S Prediger
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Jonathan W Boyd
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
36
|
Anesthetic Ketamine-Induced DNA Damage in Different Cell Types In Vivo. Mol Neurobiol 2015; 53:5575-81. [DOI: 10.1007/s12035-015-9476-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/06/2015] [Indexed: 10/22/2022]
|
37
|
Angiopoietin-like protein 2 may mediate the inflammation in murine mastitis through the activation of interleukin-6 and tumour necrosis factor-α. World J Microbiol Biotechnol 2015; 31:1235-40. [PMID: 26003652 DOI: 10.1007/s11274-015-1873-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 05/16/2015] [Indexed: 12/30/2022]
Abstract
Mastitis is the inflammation of the mammary gland. Recent research has shown that Angiopoietin-like protein 2 (ANGPTL2) is a key inflammatory mediator. In the present study, we tested whether there is a correlation between increased ANGPTL2 expression and inflammation in response to Staphylococcus aureus in murine mastitis and the mechanisms involved. Thirty mice were divided into two groups: blank control group, challenged group. The entire infused mammary glands were removed to observe the changes of histopathology, myeloperoxidase (MPO) activity, production of tumour necrosis factor-α (TNF-α) and interleukin (IL)-6, and genes expression of ANGPTL2, TNF-α and IL-6. In challenged group, the structure of mammary glands was damaged and the large areas of cell fragments were observed. The MPO activity, IL-6 and TNF-α concentrations, ANGPTL2, IL-6, and TNF-α mRNA levels were significantly elevated in challenged group compared with blank control group. The present findings indicate ANGPTL2 may mediate the inflammation in murine mastitis through the activation of IL-6 and TNF-α.
Collapse
|
38
|
Braden GC, Brice AK, Hankenson FC. Adverse effects of vapocoolant and topical anesthesia for tail biopsy of preweanling mice. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2015; 54:291-298. [PMID: 26045455 PMCID: PMC4460942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/07/2014] [Accepted: 08/20/2014] [Indexed: 06/04/2023]
Abstract
Tail biopsy of laboratory mice for genotyping purposes has been studied extensively to develop refinements for this common procedure. Our prior work assessed tail vertebral development in different mouse strains (age, 3 to 42 d) and analyzed behavior and activity in mice (age, 21 to 45 d) biopsied under isoflurane anesthesia. To assess the effects of biopsy on preweanling mice, we here evaluated BALB/cAnNCrl mice (n = 80; age, 18 to 21 d) that received topical vapocoolant (ethyl chloride), topical anesthetic (Cetacaine), or isoflurane anesthesia before undergoing a 5-mm or sham biopsy. Control mice did not receive any anesthetic intervention. Regardless of the anesthetic used, acute observation scores indicative of distress were increased at 10 min after biopsy, and locomotor activity was decreased, in biopsied compared with control mice. Acute observation scores at 10 min after biopsy were higher in mice that received ethyl chloride compared with isoflurane or no anesthesia. Microscopic analysis revealed that inflammatory changes in the distal tail remained elevated until 7 d after biopsy and were higher in tails exposed to ethyl chloride. Our findings indicate that vapocoolant, topical anesthesia, and inhaled isoflurane do not enhance the wellbeing of preweanling mice undergoing tail biopsy. Due to the lack of appreciable benefits and the presence of notable adverse effects, using vapocoolants or Cetacaine for this tail biopsy procedure in laboratory mice is unadvisable and we encourage the removal of these agents from institutional tail biopsy guidelines.
Collapse
Affiliation(s)
- Gillian C Braden
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Angela K Brice
- University Laboratory Animal Resources, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - F Claire Hankenson
- University Laboratory Animal Resources, Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
39
|
Boulanger Bertolus J, Nemeth G, Makowska IJ, Weary DM. Rat aversion to sevoflurane and isoflurane. Appl Anim Behav Sci 2015. [DOI: 10.1016/j.applanim.2014.12.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
40
|
Kiss T, Kovacs K, Komocsi A, Tornyos A, Zalan P, Sumegi B, Gallyas F, Kovacs K. Novel mechanisms of sildenafil in pulmonary hypertension involving cytokines/chemokines, MAP kinases and Akt. PLoS One 2014; 9:e104890. [PMID: 25133539 PMCID: PMC4136836 DOI: 10.1371/journal.pone.0104890] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/15/2014] [Indexed: 11/23/2022] Open
Abstract
Pulmonary arterial hypertension (PH) is associated with high mortality due to right ventricular failure and hypoxia, therefore to understand the mechanism by which pulmonary vascular remodeling initiates these processes is very important. We used a well-characterized monocrotaline (MCT)-induced rat PH model, and analyzed lung morphology, expression of cytokines, mitogen-activated protein kinase (MAPK) phosphorylation, and phosphatidylinositol 3-kinase-Akt (PI-3k-Akt) pathway and nuclear factor (NF)-κB activation in order to elucidate the mechanisms by which sildenafil's protective effect in PH is exerted. Besides its protective effect on lung morphology, sildenafil suppressed multiple cytokines involved in neutrophil and mononuclear cells recruitment including cytokine-induced neutrophil chemoattractant (CINC)-1, CINC-2α/β, tissue inhibitor of metalloproteinase (TIMP)-1, interleukin (IL)-1α, lipopolysaccharide induced CXC chemokine (LIX), monokine induced by gamma interferon (MIG), macrophage inflammatory protein (MIP)-1α, and MIP-3α. NF-κB activation and phosphorylation were also attenuated by sildenafil. Furthermore, sildenafil reduced extracellular signal-regulated kinase (ERK)1/2 and p38 MAPK activation while enhanced activation of the cytoprotective Akt pathway in PH. These data suggest a beneficial effect of sildenafil on inflammatory and kinase signaling mechanisms that substantially contribute to its protective effects, and may have potential implications in designing future therapeutic strategies in the treatment of pulmonary hypertension.
Collapse
Affiliation(s)
- Tamas Kiss
- Department of Anaesthesiology and Intensive Therapy, University of Pécs, Pécs, Hungary
| | | | | | | | - Petra Zalan
- Department of Biochemistry and Medical Chemistry, University of Pécs, Pécs, Hungary
| | - Balazs Sumegi
- Department of Biochemistry and Medical Chemistry, University of Pécs, Pécs, Hungary
- MTA-PTE Nuclear-Mitochondrial Research Group, Pécs, Hungary
- Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Ferenc Gallyas
- Department of Biochemistry and Medical Chemistry, University of Pécs, Pécs, Hungary
| | - Krisztina Kovacs
- Department of Biochemistry and Medical Chemistry, University of Pécs, Pécs, Hungary
- * E-mail:
| |
Collapse
|
41
|
Animal models in burn research. Cell Mol Life Sci 2014; 71:3241-55. [PMID: 24714880 DOI: 10.1007/s00018-014-1612-5] [Citation(s) in RCA: 289] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 03/14/2014] [Accepted: 03/17/2014] [Indexed: 01/08/2023]
Abstract
Burn injury is a severe form of trauma affecting more than 2 million people in North America each year. Burn trauma is not a single pathophysiological event but a devastating injury that causes structural and functional deficits in numerous organ systems. Due to its complexity and the involvement of multiple organs, in vitro experiments cannot capture this complexity nor address the pathophysiology. In the past two decades, a number of burn animal models have been developed to replicate the various aspects of burn injury, to elucidate the pathophysiology, and to explore potential treatment interventions. Understanding the advantages and limitations of these animal models is essential for the design and development of treatments that are clinically relevant to humans. This review aims to highlight the common animal models of burn injury in order to provide investigators with a better understanding of the benefits and limitations of these models for translational applications. While many animal models of burn exist, we limit our discussion to the skin healing of mouse, rat, and pig. Additionally, we briefly explain hypermetabolic characteristics of burn injury and the animal model utilized to study this phenomena. Finally, we discuss the economic costs associated with each of these models in order to guide decisions of choosing the appropriate animal model for burn research.
Collapse
|
42
|
Currie HN, Loos MS, Vrana JA, Dragan K, Boyd JW. Spatial cytokine distribution following traumatic injury. Cytokine 2014; 66:112-8. [DOI: 10.1016/j.cyto.2014.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 01/05/2014] [Accepted: 01/07/2014] [Indexed: 11/30/2022]
|
43
|
Groth MP, Kristensen AT, Øvlisen KA, Tranholm M. Buprenorphine does not impact the inflammatory response in haemophilia A mice with experimentally-induced haemarthrosis. Lab Anim 2014; 48:225-236. [DOI: 10.1177/0023677214524381] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Haemarthrosis is the most common clinical manifestation of haemophilia and is responsible for significant morbidity in haemophilic patients. The murine experimentally-induced knee bleeding model is an important model in haemophilia research but it is currently unknown if the use of analgesia in this model might impact on the inflammatory response. The aim was to investigate the inflammatory response after a needle induced knee bleed in haemophilia A mice treated with buprenorphine or saline. One hundred and sixty mice were randomized into two groups to blindly receive buprenorphine or saline. All the mice were anaesthetized and knee injury was induced by inserting a 30 G needle into the right knee joint. At t = 6, 24, 48 and 72 h, 20 mice from each group were terminated and the following parameters were assessed: change in body weight and joint diameter, visual bleeding score (VBS), white blood counts, haematocrit, platelet concentrations, haemoglobin, plasma haptoglobin and plasma and synovial fluid levels of 23 cytokines. Twenty mice were terminated at t = 0 receiving no injury or treatment to provide baseline measures. Twenty-one cytokines in plasma and 22 cytokines in synovial fluid, joint diameter change, VBS and blood parameters were not significantly altered by the administration of buprenorphine. Slight alterations of plasma haptoglobin at t = 48 h, body weight, plasma and synovial eotaxin and plasma G-CSF were found in buprenorphine-treated mice. We demonstrated that buprenorphine does not overall impact on the inflammatory response, and the use of buprenorphine in the knee bleeding model in haemophilic mice should be continued.
Collapse
Affiliation(s)
- MP Groth
- Department of Veterinary Clinical and Animal Sciences, Faculty of Life Sciences, University of Copenhagen, Frederiksberg C, Denmark
- Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark
| | - AT Kristensen
- Department of Veterinary Clinical and Animal Sciences, Faculty of Life Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | | | - M Tranholm
- Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark
| |
Collapse
|
44
|
FENG YONGQIANG, CHAI JIAKE, CHU WANLI, MA LI, ZHANG PEIPEI, DUAN HONGJIE. Combination of ketamine and xylazine exacerbates cardiac dysfunction in severely scalded rats during the shock stage. Exp Ther Med 2013; 6:641-648. [PMID: 24137240 PMCID: PMC3786838 DOI: 10.3892/etm.2013.1213] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/23/2013] [Indexed: 11/06/2022] Open
Abstract
Cardiac inhibition due to burn injury and anesthetics have been documented previously. However, little is known about their combined effects on cardiac function. The aim of the present study was to observe the effects of a ketamine/xylazine (K/X) combination on the cardiac function of rats with severe scalds and compare them with those of avertin. Adult rats were randomly distributed into four groups: the KXB group (scalds anesthetized with K/X, n=10), the KXC group (sham scalds anesthetized with K/X, n=10), the AVB group (scalds anesthetized with avertin, n=10) and the AVC group (sham scalds anesthetized with avertin, n=10). Ketamine and xylazine were administered at 25 and 6 mg/kg, respectively, and avertin at 200 mg/kg before full-thickness scalds or sham scalds of 30% total body surface area (TBSA) were produced. Echocardiographic parameters were assessed following injury. The heart rate (HR) in the KXB group was fatally low during the study period. Fractional shortening (FS%) and ejection fraction (EF) in the KXB group were extremely low initially and remained low. The left ventricular end-diastolic volume (LVEDV) and left ventricular end-systolic volume (LVESV) were reduced in the burned rats. Serum levels of cardiac troponin I (cTnI) were significantly higher in the KXB group than in the AVB group (1.66±0.28 vs. 1.16±0.34 ng/ml, P<0.01). The highest lung wet/dry weight ratio was observed in the KXB group. However, no evident heart tissue pathological changes were observed in these groups. The apoptotic index of myocardial cells and caspase 3 expression level were highest in the KXB group (P<0.01). In conclusion, K/X exacerbated cardiac inhibition in severely scalded rats during the shock stage by a mechanism which may involve mitochondrial apoptosis.
Collapse
Affiliation(s)
- YONGQIANG FENG
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100048, P.R. China
| | - JIAKE CHAI
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100048, P.R. China
| | - WANLI CHU
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100048, P.R. China
| | - LI MA
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100048, P.R. China
| | - PEIPEI ZHANG
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100048, P.R. China
| | - HONGJIE DUAN
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100048, P.R. China
| |
Collapse
|
45
|
Gragasin FS, Bourque SL, Davidge ST. Propofol increases vascular relaxation in aging rats chronically treated with the angiotensin-converting enzyme inhibitor captopril. Anesth Analg 2013; 116:775-83. [PMID: 23429803 DOI: 10.1213/ane.0b013e3182825fbf] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Both propofol use and advanced age are predictors of intraoperative hypotension. We previously demonstrated that propofol enhances vasodilation in mesenteric arteries from aged rats, partly due to increased nitric oxide (NO) bioavailability. Patients chronically treated with angiotensin-converting enzyme (ACE) inhibitors may exhibit refractory hypotension under general anesthesia. We hypothesized that propofol enhances NO-mediated vasodilation in arteries from aged rats chronically treated with ACE inhibitors. METHODS Sprague-Dawley rats aged 12 to 13 months were treated with or without captopril for 7 to 8 weeks, yielding a final age of 14 to 15 months at the time of experimentation. Before euthanasia, arterial blood pressures were obtained through carotid artery cannulation. Concentration-response curves to propofol (0.1-100 µM) or methacholine (MCh) (0.01-3 µM) were then assessed on isolated resistance mesenteric arteries (100-200 μm diameter) from both treatment (captopril) and control rats. MCh relaxation was also assessed after propofol pretreatment (1 and 10 µM). N(G)-nitro-l-arginine methyl ester (l-NAME) (100 µM) and meclofenamate (10 µM) were used to inhibit NO and prostaglandin synthesis, respectively. Concentration-response data were summarized as 50% of the maximum relaxation response or area under the curve. RESULTS Mean arterial blood pressure in the captopril-treated rats was lower than in untreated rats (P = 0.049). When comparing relaxation in arteries from captopril-treated versus untreated rats, concentration-response curves revealed that captopril-treated rats display greater direct propofol relaxation (P = 0.018). MCh relaxation in the absence of propofol, however, was not different between captopril-treated and untreated rats (P = 0.80). Propofol pretreatment increased MCh relaxation in arteries from captopril-treated compared with untreated rats (P = 0.029 for 1 µM and P = 0.020 for 10 µM). Meclofenamate did not have an effect in this response (P = 0.22). l-NAME-dependent inhibition of MCh relaxation, however, was greater in arteries from control compared with captopril-treated rats (P = 0.0077). However, propofol increased the proportion of NO-dependent vasodilation to MCh similarly in both groups. This suggests that other vasodilatory pathways are involved in the differential response to MCh in the presence of propofol in captopril-treated rats. CONCLUSIONS Our results show that mesenteric arterial relaxation in response to propofol, both by direct stimulation and through modulation of endothelium-dependent mechanisms, is, in part, NO-dependent. In captopril-treated rats, propofol further increased arterial relaxation through a non-NO-dependent vasodilating pathway (e.g., endothelium-derived hyperpolarizing factor), which may account for enhanced vasodilation during propofol exposure in patients treated with ACE inhibitors.
Collapse
Affiliation(s)
- Ferrante S Gragasin
- FRCPC, Department of Anesthesiology and Pain Medicine, University of Alberta, 8-120 Clinical Science Building, 8440-112 St., Edmonton, Alberta, Canada T6G 2G3.
| | | | | |
Collapse
|
46
|
Kulp GA, Tilton RG, Herndon DN, Jeschke MG. Hyperglycemia exacerbates burn-induced liver inflammation via noncanonical nuclear factor-κB pathway activation. Mol Med 2012; 18:948-56. [PMID: 22572938 PMCID: PMC3459487 DOI: 10.2119/molmed.2011.00357] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 05/03/2012] [Indexed: 01/04/2023] Open
Abstract
Hyperglycemia and inflammation are hallmarks of burn injury. In this study, we used a rat model of hyperglycemia and burn injury to investigate the effects of hyperglycemia on inflammatory responses in the liver. Hyperglycemia was induced in male Sprague-Dawley rats with streptozotocin (STZ) (35-40 mg/kg), followed by a 60% third-degree scald burn injury. Cytokine levels (by multiplex, in cytosolic liver extracts), hormones (by enzyme-linked immunosorbent assay [ELISA], in serum), nuclear factor (NF)-κB protein deoxyribonucleic acid (DNA) binding (by ELISA, in nuclear liver extracts) and liver functional panel (using VetScan, in serum) were measured at different time points up to 7 d after burn injury. Blood glucose significantly increased after burn injury in both groups with different temporal patterns. Hyperglycemic rats were capable of endogenous insulin secretion, which was enhanced significantly versus controls 12 h after burn injury. DNA binding data of liver nuclear extracts showed a robust and significant activation of the noncanonical NF-κB pathway in the hyperglycemic versus control burn animals, including increased NF-κB-inducing kinase expression (p < 0.05). Liver acute-phase proteins and cytokine expression were increased, whereas secretion of constitutive proteins was decreased after burn injury in hyperglycemic versus control animals (p < 0.05). These results indicate that burn injury to the skin rapidly activated canonical and noncanonical NF-κB pathways in the liver. Robust activation of the NF-κB noncanonical pathway was associated with increased expression of inflammatory markers and acute-phase proteins, and impaired glucose metabolism. Hyperglycemia is detrimental to burn outcome by augmenting inflammation mediated by hepatic noncanonical NF-κB pathway activation.
Collapse
Affiliation(s)
- Gabriela A Kulp
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Biochemistry and Molecular Biology Graduate Program, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Ronald G Tilton
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - David N Herndon
- Shriners Hospital for Children and Department of Surgery, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Marc G Jeschke
- Ross Tilley Burn Centre, Sunnybrook Health Science Centre, Sunnybrook Research Institute, Department of Surgery, Division of Plastic Surgery, Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
47
|
Floerchinger B, Yuan X, Jurisch A, Timsit MO, Ge X, Lee YL, Schmid C, Tullius SG. Inflammatory immune responses in a reproducible mouse brain death model. Transpl Immunol 2012; 27:25-9. [PMID: 22549100 DOI: 10.1016/j.trim.2012.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 04/13/2012] [Accepted: 04/16/2012] [Indexed: 11/25/2022]
Abstract
BACKGROUND Brain death impairs donor organ quality and accelerates immune responses after transplantation. Detailed aspects of immune activation following brain death remain unclear. We have established a mouse model and investigated the immediate consequences of brain death and anesthesia on immune responses. METHODS C57JBl/6 mice (n=6/group) were anesthetized with isoflurane (ISF) or ketamine/xylazine (KX); subsequently, animals underwent brain death induction and were followed for 3h under continuous ventilation. Blood pressure was monitored continuously and animals were resuscitated with normal saline to achieve normotension. Immune activation in brain dead animals was analyzed by IFNγ-ELispot, MLR, and flow-cytometry. Sham-operated and naïve animals served as controls. RESULTS Blood pressure remained stable in both BD/KX and BD/ISF animals during the 3h observation time. Brain death was linked to systemic immune activation: IFNγ-expression of splenocytes and lymphocyte proliferation rates was significantly elevated subsequent to brain death (p<0.02, <0.01); T-cell activation markers CD28 and CD69 had increased in brain dead animals (p<0.03, <0.02). Isoflurane treatment in sham controls throughout the observation period (3.5h) revealed anesthesia associated IFNγ-expression and lymphocyte activation which were not observed when animals were treated with ketamine/xylazine (p<0.04, <0.009). CONCLUSIONS This study reports on a reproducible and hemodynamically stable brain death mouse model. Hemodynamic stability was not impacted through either isoflurane or ketamine/xylazine induction. Of clinical relevance, prolonged anesthesia with isoflurane had been linked to pro-inflammatory cytokine activation. Brain death caused systemic immune activation in organ donors.
Collapse
Affiliation(s)
- Bernhard Floerchinger
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
|
49
|
Jaykaran, Yadav P, Kantharia ND. Reporting of method of animal sacrifice in articles published in Indian journals. J Pharmacol Pharmacother 2011; 2:125-7. [PMID: 21772779 PMCID: PMC3127345 DOI: 10.4103/0976-500x.81912] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Jaykaran
- Department of Pharmacology, Govt. Medical College, Surat 395 001, Gujarat, India
| | | | | |
Collapse
|
50
|
Zhang H, Good DJ. Comparison of hypothalamic mRNA levels in mice euthanized by CO₂ inhalation and focused-beam microwave irradiation. Lab Anim (NY) 2011; 40:313-8. [PMID: 22358208 DOI: 10.1038/laban1011-313] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 08/17/2011] [Indexed: 11/09/2022]
Abstract
Focused-beam microwave irradiation (FBMI) is a relatively new method for euthanasia of small mammals and is available to most researchers. Compared with CO₂ inhalation, this method of euthanasia has the advantage of preserving fast-degrading metabolites. But differences in brain RNA quantity and quality, gene expression and histology in mice euthanized by CO₂ inhalation versus FBMI have not been investigated. Here the authors report that a smaller quantity of RNA was isolated from brains of mice euthanized by FBMI compared with those of mice euthanized by CO₂ inhalation. They also found relative differences in the levels of the expression of some genes. These studies suggest that either method can be used for histological analysis or RNA isolation, but the authors caution against combining the techniques within a single study on gene expression.
Collapse
Affiliation(s)
- Haiyan Zhang
- Human Nutrition, Foods and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | | |
Collapse
|