1
|
van Hengel EVA, van der Laan LJW, de Jonge J, Verstegen MMA. Towards Safety and Regulation Criteria for Clinical Applications of Decellularized Organ-Derived Matrices. Bioengineering (Basel) 2025; 12:136. [PMID: 40001655 PMCID: PMC11851377 DOI: 10.3390/bioengineering12020136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/25/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
Whole-organ decellularization generates scaffolds containing native extracellular matrix (ECM) components with preserved tissue microarchitecture, providing a promising advancement in tissue engineering and regenerative medicine. Decellularization retains the ECM integrity which is important for supporting cell attachment, growth, differentiation, and biological function. Although there are consensus guidelines to standardize decellularization processes and ECM characterization, no specific criteria or standards regarding matrix sterility and biosafety have been established so far. This regulatory gap in safety, sterilization, and regulation criteria has hampered the clinical translation of decellularized scaffolds. In this review, we identify essential criteria for the safe clinical use of decellularized products from both human and animal sources. These include the decellularization efficacy, levels of chemical residue, preservation of ECM composition and physical characteristics, and criteria for the aseptic processing of decellularization to assure sterility. Furthermore, we explore key considerations for advancing decellularized scaffolds into clinical practice, focusing on regulatory frameworks and safety requirements. Addressing these challenges is crucial for minimizing risks of adverse reactions or infection transmission, thereby accelerating the adoption of tissue-engineered products. This review aims to provide a foundation for establishing robust guidelines, supporting the safe and effective integration of decellularized scaffolds into regenerative medicine applications.
Collapse
Affiliation(s)
| | | | | | - Monique M. A. Verstegen
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (E.V.A.v.H.); (L.J.W.v.d.L.); (J.d.J.)
| |
Collapse
|
2
|
Ye C, Yang C, Zhang H, Gao R, Liao Y, Zhang Y, Jie L, Zhang Y, Cheng T, Wang Y, Ren J. Canonical Wnt signaling directs the generation of functional human PSC-derived atrioventricular canal cardiomyocytes in bioprinted cardiac tissues. Cell Stem Cell 2024; 31:398-409.e5. [PMID: 38366588 DOI: 10.1016/j.stem.2024.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 12/13/2023] [Accepted: 01/24/2024] [Indexed: 02/18/2024]
Abstract
The creation of a functional 3D bioprinted human heart remains challenging, largely due to the lack of some crucial cardiac cell types, including the atrioventricular canal (AVC) cardiomyocytes, which are essential to slow down the electrical impulse between the atrium and ventricle. By utilizing single-cell RNA sequencing analysis and a 3D bioprinting technology, we discover that stage-specific activation of canonical Wnt signaling creates functional AVC cardiomyocytes derived from human pluripotent stem cells. These cardiomyocytes display morphological characteristics and express molecular markers of AVC cardiomyocytes, including transcription factors TBX2 and MSX2. When bioprinted in prefabricated cardiac tissues, these cardiomyocytes successfully delay the electrical impulse, demonstrating their capability of functioning as the AVC cardiomyocytes in vitro. Thus, these findings not only identify canonical Wnt signaling as a key regulator of the AVC cardiomyocyte differentiation in vitro, but, more importantly, provide a critical cellular source for the biofabrication of a functional human heart.
Collapse
Affiliation(s)
- Chenxi Ye
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen 361006, Fujian, China
| | - Chuanlai Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, Fujian, China
| | - Heqiang Zhang
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen 361006, Fujian, China
| | - Rui Gao
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen 361006, Fujian, China
| | - Yingnan Liao
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen 361006, Fujian, China
| | - Yali Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, Fujian, China
| | - Lingjun Jie
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen 361006, Fujian, China
| | - Yanhui Zhang
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen 361006, Fujian, China
| | - Tong Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, Fujian, China
| | - Yan Wang
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen 361006, Fujian, China.
| | - Jie Ren
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen 361006, Fujian, China.
| |
Collapse
|
3
|
Hao L, Khajouei F, Rodriguez J, Kim S, Lee EJA. Unlocking the Promise of Decellularized Pancreatic Tissue: A Novel Approach to Support Angiogenesis in Engineered Tissue. Bioengineering (Basel) 2024; 11:183. [PMID: 38391669 PMCID: PMC10886056 DOI: 10.3390/bioengineering11020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024] Open
Abstract
Advancements in regenerative medicine have highlighted the potential of decellularized extracellular matrix (ECM) as a scaffold for organ bioengineering. Although the potential of ECM in major organ systems is well-recognized, studies focusing on the angiogenic effects of pancreatic ECM are limited. This study investigates the capabilities of pancreatic ECM, particularly its role in promoting angiogenesis. Using a Triton-X-100 solution, porcine pancreas was successfully decellularized, resulting in a significant reduction in DNA content (97.1% removal) while preserving key pancreatic ECM components. A three-dimensional ECM hydrogel was then created from this decellularized tissue and used for cell culture. Biocompatibility tests demonstrated enhanced adhesion and proliferation of mouse embryonic stem cell-derived endothelial cells (mES-ECs) and human umbilical vein endothelial cells (HUVECs) in this hydrogel compared to conventional scaffolds. The angiogenic potential was evaluated through tube formation assays, wherein the cells showed superior tube formation capabilities in ECM hydrogel compared to rat tail collagen. The RT-PCR analysis further confirmed the upregulation of pro-angiogenic genes in HUVECs cultured within the ECM hydrogel. Specifically, HUVECs cultured in the ECM hydrogel exhibited a significant upregulation in the expression of MMP2, VEGF and PAR-1, compared to those cultured in collagen hydrogel or in a monolayer condition. The identification of ECM proteins, specifically PRSS2 and Decorin, further supports the efficacy of pancreatic ECM hydrogel as an angiogenic scaffold. These findings highlight the therapeutic promise of pancreatic ECM hydrogel as a candidate for vascularized tissue engineering application.
Collapse
Affiliation(s)
- Lei Hao
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Fariba Khajouei
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Jaselin Rodriguez
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Soojin Kim
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Eun Jung A Lee
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
4
|
Chen X, Xing X, Lin S, Huang L, He L, Zou Y, Zhang X, Su B, Lu Y, Zheng D. Plant-derived nanovesicles: harnessing nature's power for tissue protection and repair. J Nanobiotechnology 2023; 21:445. [PMID: 38001440 PMCID: PMC10668476 DOI: 10.1186/s12951-023-02193-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Tissue damage and aging lead to dysfunction, disfigurement, and trauma, posing significant global challenges. Creating a regenerative microenvironment to resist external stimuli and induce stem cell differentiation is essential. Plant-derived nanovesicles (PDNVs) are naturally bioactive lipid bilayer nanovesicles that contain proteins, lipids, ribonucleic acid, and metabolites. They have shown potential in promoting cell growth, migration, and differentiation into various types of tissues. With immunomodulatory, microbiota regulatory, antioxidant, and anti-aging bioactivities, PDNVs are valuable in resisting external stimuli and facilitating tissue repair. The unique structure of PDNVs provides an optimal platform for drug encapsulation, and surface modifications enhance their stability and specificity. Moreover, by employing synergistic administration strategies, PDNVs can maximize their therapeutic potential. This review summarized the progress and prospects of PDNVs as regenerative tools, provided insights into their selection for repair activities based on existing studies, considered the key challenge for clinical application, and anticipated their continued prominent role in the field of biomedicine.
Collapse
Affiliation(s)
- Xiaohang Chen
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Xiaojie Xing
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Shuoqi Lin
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Liyu Huang
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Human Anatomy and Histology, and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Lianghang He
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Yuchun Zou
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Xuyang Zhang
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Bohua Su
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
| | - Youguang Lu
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
| | - Dali Zheng
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
5
|
Pezhouman A, Nguyen NB, Kay M, Kanjilal B, Noshadi I, Ardehali R. Cardiac regeneration - Past advancements, current challenges, and future directions. J Mol Cell Cardiol 2023; 182:75-85. [PMID: 37482238 DOI: 10.1016/j.yjmcc.2023.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
Cardiovascular disease is the leading cause of mortality and morbidity worldwide. Despite improvements in the standard of care for patients with heart diseases, including innovation in pharmacotherapy and surgical interventions, none have yet been proven effective to prevent the progression to heart failure. Cardiac transplantation is the last resort for patients with severe heart failure, but donor shortages remain a roadblock. Cardiac regenerative strategies include cell-based therapeutics, gene therapy, direct reprogramming of non-cardiac cells, acellular biologics, and tissue engineering methods to restore damaged hearts. Significant advancements have been made over the past several decades within each of these fields. This review focuses on the advancements of: 1) cell-based cardiac regenerative therapies, 2) the use of noncoding RNA to induce endogenous cell proliferation, and 3) application of bioengineering methods to promote retention and integration of engrafted cells. Different cell sources have been investigated, including adult stem cells derived from bone marrow and adipose cells, cardiosphere-derived cells, skeletal myoblasts, and pluripotent stem cells. In addition to cell-based transplantation approaches, there have been accumulating interest over the past decade in inducing endogenous CM proliferation for heart regeneration, particularly with the use of noncoding RNAs such as miRNAs and lncRNAs. Bioengineering applications have focused on combining cell-transplantation approaches with fabrication of a porous, vascularized scaffold using biomaterials and advanced bio-fabrication techniques that may offer enhanced retention of transplanted cells, with the hope that these cells would better engraft with host tissue to improve cardiac function. This review summarizes the present status and future challenges of cardiac regenerative therapies.
Collapse
Affiliation(s)
- Arash Pezhouman
- Baylor College of Medicine, Department of Medicine, Division of Cardiology, Houston, Texas 77030, United States; Texas Heart Institute, Houston, Texas 77030, United States
| | - Ngoc B Nguyen
- Baylor College of Medicine, Department of Internal Medicine, Houston, Texas 77030, United States
| | - Maryam Kay
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, CA 90095, United States
| | - Baishali Kanjilal
- Department of Bioengineering, University of California, Riverside, Riverside, CA 92521, United States
| | - Iman Noshadi
- Department of Bioengineering, University of California, Riverside, Riverside, CA 92521, United States
| | - Reza Ardehali
- Baylor College of Medicine, Department of Medicine, Division of Cardiology, Houston, Texas 77030, United States; Texas Heart Institute, Houston, Texas 77030, United States.
| |
Collapse
|
6
|
Rougier G, Maistriaux L, Fievé L, Xhema D, Evrard R, Manon J, Olszewski R, Szmytka F, Thurieau N, Boisson J, Kadlub N, Gianello P, Behets C, Lengelé B. Decellularized vascularized bone grafts: A preliminary in vitro porcine model for bioengineered transplantable bone shafts. Front Bioeng Biotechnol 2023; 10:1003861. [PMID: 36743653 PMCID: PMC9890275 DOI: 10.3389/fbioe.2022.1003861] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/09/2022] [Indexed: 01/19/2023] Open
Abstract
Introduction: Durable reconstruction of critical size bone defects is still a surgical challenge despite the availability of numerous autologous and substitute bone options. In this paper, we have investigated the possibility of creating a living bone allograft, using the perfusion/decellularization/recellularization (PDR) technique, which was applied to an original model of vascularized porcine bone graft. Materials and Methods: 11 porcine bone forelimbs, including radius and ulna, were harvested along with their vasculature including the interosseous artery and then decellularized using a sequential detergent perfusion protocol. Cellular clearance, vasculature, extracellular matrix (ECM), and preservation of biomechanical properties were evaluated. The cytocompatibility and in vitro osteoinductive potential of acellular extracellular matrix were studied by static seeding of NIH-3T3 cells and porcine adipose mesenchymal stem cells (pAMSC), respectively. Results: The vascularized bone grafts were successfully decellularized, with an excellent preservation of the 3D morphology and ECM microarchitecture. Measurements of DNA and ECM components revealed complete cellular clearance and preservation of ECM's major proteins. Bone mineral density (BMD) acquisitions revealed a slight, yet non-significant, decrease after decellularization, while biomechanical testing was unmodified. Cone beam computed tomography (CBCT) acquisitions after vascular injection of barium sulphate confirmed the preservation of the vascular network throughout the whole graft. The non-toxicity of the scaffold was proven by the very low amount of residual sodium dodecyl sulfate (SDS) in the ECM and confirmed by the high live/dead ratio of fibroblasts seeded on periosteum and bone ECM-grafts after 3, 7, and 16 days of culture. Moreover, cell proliferation tests showed a significant multiplication of seeded cell populations at the same endpoints. Lastly, the differentiation study using pAMSC confirmed the ECM graft's potential to promote osteogenic differentiation. An osteoid-like deposition occurred when pAMSC were cultured on bone ECM in both proliferative and osteogenic differentiation media. Conclusion: Fully decellularized bone grafts can be obtained by perfusion decellularization, thereby preserving ECM architecture and their vascular network, while promoting cell growth and differentiation. These vascularized decellularized bone shaft allografts thus present a true potential for future in vivo reimplantation. Therefore, they may offer new perspectives for repairing large bone defects and for bone tissue engineering.
Collapse
Affiliation(s)
- Guillaume Rougier
- Pole of Morphology (MORF)—Institute of Experimental and Clinical Research (IREC)—UCLouvain, Brussels, Belgium,Department of Oncological and Cervicofacial Reconstructive Surgery, Otorhinolaryngology, Maxillofacial Surgery—Institut Curie, Paris, France
| | - Louis Maistriaux
- Pole of Morphology (MORF)—Institute of Experimental and Clinical Research (IREC)—UCLouvain, Brussels, Belgium,Pole of Experimental Surgery and Transplantation (CHEX)—Institute of Experimental and Clinical Research (IREC)—UCLouvain, Brussels, Belgium,*Correspondence: Louis Maistriaux,
| | - Lies Fievé
- Pole of Morphology (MORF)—Institute of Experimental and Clinical Research (IREC)—UCLouvain, Brussels, Belgium
| | - Daela Xhema
- Pole of Experimental Surgery and Transplantation (CHEX)—Institute of Experimental and Clinical Research (IREC)—UCLouvain, Brussels, Belgium
| | - Robin Evrard
- Pole of Experimental Surgery and Transplantation (CHEX)—Institute of Experimental and Clinical Research (IREC)—UCLouvain, Brussels, Belgium,Neuromusculoskeletal Lab (NMSK)—Institute of Experimental and Clinical Research (IREC)—UCLouvain, Brussels, Belgium
| | - Julie Manon
- Pole of Morphology (MORF)—Institute of Experimental and Clinical Research (IREC)—UCLouvain, Brussels, Belgium,Neuromusculoskeletal Lab (NMSK)—Institute of Experimental and Clinical Research (IREC)—UCLouvain, Brussels, Belgium
| | - Raphael Olszewski
- Neuromusculoskeletal Lab (NMSK)—Institute of Experimental and Clinical Research (IREC)—UCLouvain, Brussels, Belgium,Department of Maxillofacial Surgery and Stomatology—Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Fabien Szmytka
- IMSIA, ENSTA Paris, Institut Polytechnique de Paris, Palaiseau, France
| | - Nicolas Thurieau
- IMSIA, ENSTA Paris, Institut Polytechnique de Paris, Palaiseau, France
| | - Jean Boisson
- IMSIA, ENSTA Paris, Institut Polytechnique de Paris, Palaiseau, France
| | - Natacha Kadlub
- IMSIA, ENSTA Paris, Institut Polytechnique de Paris, Palaiseau, France,Department of Maxillofacial and Reconstructive Surgery—Necker Enfants Malades, Paris, France
| | - Pierre Gianello
- Pole of Experimental Surgery and Transplantation (CHEX)—Institute of Experimental and Clinical Research (IREC)—UCLouvain, Brussels, Belgium
| | - Catherine Behets
- Pole of Morphology (MORF)—Institute of Experimental and Clinical Research (IREC)—UCLouvain, Brussels, Belgium
| | - Benoît Lengelé
- Pole of Morphology (MORF)—Institute of Experimental and Clinical Research (IREC)—UCLouvain, Brussels, Belgium,Department of Plastic and Reconstructive Surgery—Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
7
|
Petrosyan A, Montali F, Peloso A, Citro A, Byers LN, La Pointe C, Suleiman M, Marchetti A, Mcneill EP, Speer AL, Ng WH, Ren X, Bussolati B, Perin L, Di Nardo P, Cardinale V, Duisit J, Monetti AR, Savino JR, Asthana A, Orlando G. Regenerative medicine technologies applied to transplant medicine. An update. Front Bioeng Biotechnol 2022; 10:1015628. [PMID: 36263358 PMCID: PMC9576214 DOI: 10.3389/fbioe.2022.1015628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Regenerative medicine (RM) is changing how we think and practice transplant medicine. In regenerative medicine, the aim is to develop and employ methods to regenerate, restore or replace damaged/diseased tissues or organs. Regenerative medicine investigates using tools such as novel technologies or techniques, extracellular vesicles, cell-based therapies, and tissue-engineered constructs to design effective patient-specific treatments. This review illustrates current advancements in regenerative medicine that may pertain to transplant medicine. We highlight progress made and various tools designed and employed specifically for each tissue or organ, such as the kidney, heart, liver, lung, vasculature, gastrointestinal tract, and pancreas. By combing both fields of transplant and regenerative medicine, we can harbor a successful collaboration that would be beneficial and efficacious for the repair and design of de novo engineered whole organs for transplantations.
Collapse
Affiliation(s)
- Astgik Petrosyan
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Saban Research Institute, Division of Urology, Children’s Hospital Los Angeles, Los Angeles, CA, United States
| | - Filippo Montali
- Department of General Surgery, di Vaio Hospital, Fidenza, Italy
| | - Andrea Peloso
- Visceral Surgery Division, University Hospitals of Geneva, Geneva, Switzerland
| | - Antonio Citro
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Lori N. Byers
- Wake Forest School of Medicine, Winston Salem, NC, United States
| | | | - Mara Suleiman
- Wake Forest School of Medicine, Winston Salem, NC, United States
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alice Marchetti
- Wake Forest School of Medicine, Winston Salem, NC, United States
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Eoin P. Mcneill
- Department of Pediatric Surgery, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, United States
| | - Allison L Speer
- Department of Pediatric Surgery, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, United States
| | - Wai Hoe Ng
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Xi Ren
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Laura Perin
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Saban Research Institute, Division of Urology, Children’s Hospital Los Angeles, Los Angeles, CA, United States
| | - Paolo Di Nardo
- Centro Interdipartimentale per la Medicina Rigenerativa (CIMER), Università Degli Studi di Roma Tor Vergata, Rome, Italy
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Jerome Duisit
- Department of Plastic, Reconstructive and Aesthetic Surgery, CHU Rennes, University of Rennes I, Rennes, France
| | | | | | - Amish Asthana
- Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Giuseppe Orlando
- Wake Forest School of Medicine, Winston Salem, NC, United States
| |
Collapse
|
8
|
Li Y, Chen X. Progress on methods of T lymphocyte development in vitro. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:491-499. [PMID: 37202105 PMCID: PMC10265001 DOI: 10.3724/zdxbyxb-2021-0369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/20/2022] [Indexed: 05/20/2023]
Abstract
T lymphocytes (T cells) play an important role in adoptive cellular immunotherapy (ACT). T cells can be stably derived and easily obtained by various methods of T cell development in vitro, which have more advantages than traditional methods of T cells isolated from autologous or allogeneic tissues. At present, there are mainly three methods for T cell development in vitro: fetal thymus organ culture, recombinant thymus organ culture and two-dimensional culture driven by Notch signal. Fetal thymus organ culture is easy to operate, the isolated thymus can support T cell differentiation and development to maturity in vitro, but the intact thymus has problems of limited maintenance time and difficulty in cell harvesting. In recombinant thymic organ culture, various thymic stromal cells are dispersed and recombined to construct a three-dimensional culture environment, which can support T cell maturation in vitro and in vivo; however, biomaterials and three-dimensional environment may lead to limited culture maintenance time and cell yield. Two-dimensional culture method uses artificial presentation of Notch signaling pathway ligands to drive T cell differentiation and development; the culture architecture is simple and stable, but it can only support T cell development to the early immature stage. This article reviews the research progress of various culture methods of T cell development in vitro, and discusses the existing problems and the future development to facilitate the application of ACT.
Collapse
|
9
|
Bioengineering approaches to treat the failing heart: from cell biology to 3D printing. Nat Rev Cardiol 2022; 19:83-99. [PMID: 34453134 DOI: 10.1038/s41569-021-00603-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/12/2021] [Indexed: 02/08/2023]
Abstract
Successfully engineering a functional, human, myocardial pump would represent a therapeutic alternative for the millions of patients with end-stage heart disease and provide an alternative to animal-based preclinical models. Although the field of cardiac tissue engineering has made tremendous advances, major challenges remain, which, if properly resolved, might allow the clinical implementation of engineered, functional, complex 3D structures in the future. In this Review, we provide an overview of state-of-the-art studies, challenges that have not yet been overcome and perspectives on cardiac tissue engineering. We begin with the most clinically relevant cell sources used in this field and discuss the use of topological, biophysical and metabolic stimuli to obtain mature phenotypes of cardiomyocytes, particularly in relation to organized cytoskeletal and contractile intracellular structures. We then move from the cellular level to engineering planar cardiac patches and discuss the need for proper vascularization and the main strategies for obtaining it. Finally, we provide an overview of several different approaches for the engineering of volumetric organs and organ parts - from whole-heart decellularization and recellularization to advanced 3D printing technologies.
Collapse
|
10
|
Genitourinary Tissue Engineering: Reconstruction and Research Models. Bioengineering (Basel) 2021; 8:bioengineering8070099. [PMID: 34356206 PMCID: PMC8301202 DOI: 10.3390/bioengineering8070099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/28/2021] [Accepted: 07/06/2021] [Indexed: 01/15/2023] Open
Abstract
Tissue engineering is an emerging field of research that initially aimed to produce 3D tissues to bypass the lack of adequate tissues for the repair or replacement of deficient organs. The basis of tissue engineering protocols is to create scaffolds, which can have a synthetic or natural origin, seeded or not with cells. At the same time, more and more studies have indicated the low clinic translation rate of research realised using standard cell culture conditions, i.e., cells on plastic surfaces or using animal models that are too different from humans. New models are needed to mimic the 3D organisation of tissue and the cells themselves and the interaction between cells and the extracellular matrix. In this regard, urology and gynaecology fields are of particular interest. The urethra and vagina can be sites suffering from many pathologies without currently adequate treatment options. Due to the specific organisation of the human urethral/bladder and vaginal epithelium, current research models remain poorly representative. In this review, the anatomy, the current pathologies, and the treatments will be described before focusing on producing tissues and research models using tissue engineering. An emphasis is made on the self-assembly approach, which allows tissue production without the need for biomaterials.
Collapse
|
11
|
Speer AL, Ren X, McNeill EP, Aziz JM, Muir SM, Marino DI, Dadhich P, Sawant K, Ciccocioppo R, Asthana A, Bitar KN, Orlando G. Bioengineering of the digestive tract: approaching the clinic. Cytotherapy 2021; 23:381-389. [PMID: 33840629 DOI: 10.1016/j.jcyt.2021.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/29/2021] [Accepted: 02/08/2021] [Indexed: 12/18/2022]
Abstract
The field of regenerative medicine is developing technologies that, in the near future, will offer alternative approaches to either cure diseases affecting the gastrointestinal tract or slow their progression by leveraging the intrinsic ability of our tissues and organs to repair after damage. This article will succinctly illustrate the three technologies that are closer to clinical translation-namely, human intestinal organoids, sphincter bioengineering and decellularization, whereby the cellular compartment of a given segment of the digestive tract is removed to obtain a scaffold consisting of the extracellular matrix. The latter will be used as a template for the regeneration of a functional organ, whereby the newly generated cellular compartment will be obtained from the patient's own cells. Although clinical application of this technology is approaching, product development challenges are being tackled to warrant safety and efficacy.
Collapse
Affiliation(s)
- Allison L Speer
- McGovern Medical School, The University of Texas Health Science Center, Houston, Texas, USA
| | - Xi Ren
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Eoin P McNeill
- McGovern Medical School, The University of Texas Health Science Center, Houston, Texas, USA
| | - Justine M Aziz
- Wake Forest Baptist Medical Center, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Sean M Muir
- Wake Forest Baptist Medical Center, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Domenica I Marino
- College of Arts and Sciences, Ohio State University, Columbus, Ohio, USA
| | | | - Ketki Sawant
- Cellf Bio LLC, Winston-Salem, North Carolina, USA
| | - Rachele Ciccocioppo
- Department of Medicine, Gastroenterology Unit, Giambattista Rossi University Hospital, University Hospital Integrated Trust of Verona, University of Verona, Verona, Italy
| | - Amish Asthana
- Wake Forest Baptist Medical Center, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Khalil N Bitar
- Wake Forest Baptist Medical Center, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA; Cellf Bio LLC, Winston-Salem, North Carolina, USA
| | - Giuseppe Orlando
- Wake Forest Baptist Medical Center, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.
| |
Collapse
|
12
|
Kitano K, Ohata K, Economopoulos KP, Gorman DE, Gilpin SE, Becerra DC, Ott HC. Orthotopic Transplantation of Human Bioartificial Lung Grafts in a Porcine Model: A Feasibility Study. Semin Thorac Cardiovasc Surg 2021; 34:752-759. [PMID: 33713829 DOI: 10.1053/j.semtcvs.2021.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/04/2021] [Indexed: 12/31/2022]
Abstract
Lung transplantation is the only treatment for end-stage lung disease; however, donor organ shortage and intense immunosuppression limit its broad clinical impact. Bioengineering of lungs with patient-derived cells could overcome these problems. We created bioartificial lungs by seeding human-derived cells onto porcine lung matrices and performed orthotopic transplantation to assess feasibility and in vivo function. Porcine decellularized lung scaffolds were seeded with human airway epithelial cells and human umbilical vein endothelial cells. Following in vitro culture, the bioartificial lungs were orthotopically transplanted into porcine recipients with planned 1-day survival (n = 3). Lungs were assessed with histology and in vivo function. Orthotopic transplantation of cadaveric lungs was performed as control. Engraftment of endothelial and epithelial cells in the grafts were histologically demonstrated. Technically successful orthotopic anastomoses of the vasculatures and airway were achieved in all animals. Perfusion and ventilation of the lung grafts were confirmed intraoperatively. The gas exchange function was evident immediately after transplantation; PO2 gradient between pulmonary artery and vein were 178 ± 153 mm Hg in the bioartificial lung group and 183 ± 117 mm Hg in the control group. At time of evaluation 24 hours after reperfusion, the pulmonary arteries were found to be occluded with thrombus in all bioartificial lungs. Engineering and orthotopic transplantation of bioartificial lungs with human cells were technically feasible in a porcine model. Early gas exchange function was evident. Further progress in optimizing recellularization and maturation of the grafts will be necessary for sustained perfusability and function.
Collapse
Affiliation(s)
- Kentaro Kitano
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Department of Thoracic Surgery, The University of Tokyo Hospital, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Keiji Ohata
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Daniel E Gorman
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sarah E Gilpin
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - David C Becerra
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Harald C Ott
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
13
|
Asthana A, Tamburrini R, Chaimov D, Gazia C, Walker SJ, Van Dyke M, Tomei A, Lablanche S, Robertson J, Opara EC, Soker S, Orlando G. Comprehensive characterization of the human pancreatic proteome for bioengineering applications. Biomaterials 2020; 270:120613. [PMID: 33561625 DOI: 10.1016/j.biomaterials.2020.120613] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/27/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
Interactions between the pancreatic extracellular matrix (ECM) and islet cells are known to regulate multiple aspects of islet physiology, including survival, proliferation, and glucose-stimulated insulin secretion. Recognizing the essential role of ECM in islet survival and function, various engineering approaches have been developed that aim to utilize ECM-based materials to recreate a native-like microenvironment. However, a major impediment to the success of these approaches has been the lack of a robust and comprehensive characterization of the human pancreatic proteome. Herein, by combining mass spectrometry (MS) and multiplex ELISA, we have provided an improved workflow for the in-depth profiling of the proteome, including minor constituents that are generally underrepresented. Moreover, we have further validated the effectiveness of our detergent-free decellularization protocol in the removal of cellular proteins and retention of the matrisome. It has also been established that the decellularized ECM and its derivatives can provide more tissue-specific cues than traditionally used biological scaffolds and are therefore more physiologically relevant for the development of hydrogels, bioinks and medium additives, in order to create a pancreatic niche. The data generated in this study would contribute significantly to the efforts of comprehensively defining the ECM atlas and also serve as a standard for the human pancreatic proteome to provide further guidance for design and engineering strategies for improved tissue engineering scaffolds.
Collapse
Affiliation(s)
- Amish Asthana
- Department of Surgery, Wake Forest Baptist Medical Center, Medical Center Boulevard, Winston Salem, USA; Wake Forest Institute for Regenerative Medicine, Winston Salem, USA; Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, USA
| | - Riccardo Tamburrini
- Department of Surgery, Wake Forest Baptist Medical Center, Medical Center Boulevard, Winston Salem, USA; Wake Forest Institute for Regenerative Medicine, Winston Salem, USA; Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, USA
| | - Deborah Chaimov
- Department of Surgery, Wake Forest Baptist Medical Center, Medical Center Boulevard, Winston Salem, USA; Wake Forest Institute for Regenerative Medicine, Winston Salem, USA; Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, USA
| | - Carlo Gazia
- Department of Surgery, Wake Forest Baptist Medical Center, Medical Center Boulevard, Winston Salem, USA; Wake Forest Institute for Regenerative Medicine, Winston Salem, USA; Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, USA
| | - Stephen J Walker
- Wake Forest Institute for Regenerative Medicine, Winston Salem, USA; Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, USA
| | - Mark Van Dyke
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Alice Tomei
- Diabetes Research Institute, University of Miami, Miami, USA
| | - Sandrine Lablanche
- Grenoble Alps University, Laboratory of Fundamental and Applied Bioenergetics (LBFA), And Environmental and System Biology (BEeSy), Grenoble, France; Inserm, U1055, Grenoble, France
| | - John Robertson
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
| | - Emmanuel C Opara
- Wake Forest Institute for Regenerative Medicine, Winston Salem, USA; Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, USA
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Winston Salem, USA; Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, USA
| | - Giuseppe Orlando
- Department of Surgery, Wake Forest Baptist Medical Center, Medical Center Boulevard, Winston Salem, USA; Wake Forest Institute for Regenerative Medicine, Winston Salem, USA; Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, USA.
| |
Collapse
|
14
|
Information-Driven Design as a Potential Approach for 3D Printing of Skeletal Muscle Biomimetic Scaffolds. NANOMATERIALS 2020; 10:nano10101986. [PMID: 33049913 PMCID: PMC7600731 DOI: 10.3390/nano10101986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 01/04/2023]
Abstract
Severe muscle injuries are a real clinical issue that still needs to be successfully addressed. Tissue engineering can represent a potential approach for this aim, but effective healing solutions have not been developed yet. In this regard, novel experimental protocols tailored to a biomimetic approach can thus be defined by properly systematizing the findings acquired so far in the biomaterials and scaffold manufacturing fields. In order to plan a more comprehensive strategy, the extracellular matrix (ECM), with its properties stimulating neomyogenesis and vascularization, should be considered as a valuable biomaterial to be used to fabricate the tissue-specific three-dimensional structure of interest. The skeletal muscle decellularized ECM can be processed and printed, e.g., by means of stereolithography, to prepare bioactive and biomimetic 3D scaffolds, including both biochemical and topographical features specifically oriented to skeletal muscle regenerative applications. This paper aims to focus on the skeletal muscle tissue engineering sector, suggesting a possible approach to develop instructive scaffolds for a guided healing process.
Collapse
|
15
|
Edgar L, Pu T, Porter B, Aziz JM, La Pointe C, Asthana A, Orlando G. Regenerative medicine, organ bioengineering and transplantation. Br J Surg 2020; 107:793-800. [DOI: 10.1002/bjs.11686] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/17/2020] [Indexed: 12/21/2022]
Abstract
Abstract
Background
Organ transplantation is predicted to increase as life expectancy and the incidence of chronic diseases rises. Regenerative medicine-inspired technologies challenge the efficacy of the current allograft transplantation model.
Methods
A literature review was conducted using the PubMed interface of MEDLINE from the National Library of Medicine. Results were examined for relevance to innovations of organ bioengineering to inform analysis of advances in regenerative medicine affecting organ transplantation. Data reports from the Scientific Registry of Transplant Recipient and Organ Procurement Transplantation Network from 2008 to 2019 of kidney, pancreas, liver, heart, lung and intestine transplants performed, and patients currently on waiting lists for respective organs, were reviewed to demonstrate the shortage and need for transplantable organs.
Results
Regenerative medicine technologies aim to repair and regenerate poorly functioning organs. One goal is to achieve an immunosuppression-free state to improve quality of life, reduce complications and toxicities, and eliminate the cost of lifelong antirejection therapy. Innovative strategies include decellularization to fabricate acellular scaffolds that will be used as a template for organ manufacturing, three-dimensional printing and interspecies blastocyst complementation. Induced pluripotent stem cells are an innovation in stem cell technology which mitigate both the ethical concerns associated with embryonic stem cells and the limitation of other progenitor cells, which lack pluripotency. Regenerative medicine technologies hold promise in a wide array of fields and applications, such as promoting regeneration of native cell lines, growth of new tissue or organs, modelling of disease states, and augmenting the viability of existing ex vivo transplanted organs.
Conclusion
The future of organ bioengineering relies on furthering understanding of organogenesis, in vivo regeneration, regenerative immunology and long-term monitoring of implanted bioengineered organs.
Collapse
Affiliation(s)
- L Edgar
- Department of Surgery, Section of Transplantation, Wake Forest University School of Medicine, Winston Salem, North Carolina, USA
| | - T Pu
- Department of Surgery, Section of Transplantation, Wake Forest University School of Medicine, Winston Salem, North Carolina, USA
| | - B Porter
- University of Florida College of Medicine, Gainesville, Florida, USA
| | - J M Aziz
- Department of Surgery, Section of Transplantation, Wake Forest University School of Medicine, Winston Salem, North Carolina, USA
| | - C La Pointe
- Sherbrooke University, Sherbrooke, Quebec, Canada
| | - A Asthana
- Department of Surgery, Section of Transplantation, Wake Forest University School of Medicine, Winston Salem, North Carolina, USA
| | - G Orlando
- Department of Surgery, Section of Transplantation, Wake Forest University School of Medicine, Winston Salem, North Carolina, USA
| |
Collapse
|
16
|
Marzaro M, Algeri M, Tomao L, Tedesco S, Caldaro T, Balassone V, Contini AC, Guerra L, Federici D’Abriola G, Francalanci P, Caristo ME, Lupoi L, Boskoski I, Bozza A, Astori G, Pozzato G, Pozzato A, Costamagna G, Dall’Oglio L. Successful muscle regeneration by a homologous microperforated scaffold seeded with autologous mesenchymal stromal cells in a porcine esophageal substitution model. Therap Adv Gastroenterol 2020; 13:1756284820923220. [PMID: 32523626 PMCID: PMC7257852 DOI: 10.1177/1756284820923220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 04/06/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Since the esophagus has no redundancy, congenital and acquired esophageal diseases often require esophageal substitution, with complicated surgery and intestinal or gastric transposition. Peri-and-post-operative complications are frequent, with major problems related to the food transit and reflux. During the last years tissue engineering products became an interesting therapeutic alternative for esophageal replacement, since they could mimic the organ structure and potentially help to restore the native functions and physiology. The use of acellular matrices pre-seeded with cells showed promising results for esophageal replacement approaches, but cell homing and adhesion to the scaffold remain an important issue and were investigated. METHODS A porcine esophageal substitute constituted of a decellularized scaffold seeded with autologous bone marrow-derived mesenchymal stromal cells (BM-MSCs) was developed. In order to improve cell seeding and distribution throughout the scaffolds, they were micro-perforated by Quantum Molecular Resonance (QMR) technology (Telea Electronic Engineering). RESULTS The treatment created a microporous network and cells were able to colonize both outer and inner layers of the scaffolds. Non seeded (NSS) and BM-MSCs seeded scaffolds (SS) were implanted on the thoracic esophagus of 4 and 8 pigs respectively, substituting only the muscle layer in a mucosal sparing technique. After 3 months from surgery, we observed an esophageal substenosis in 2/4 NSS pigs and in 6/8 SS pigs and a non-practicable stricture in 1/4 NSS pigs and 2/8 SS pigs. All the animals exhibited a normal weight increase, except one case in the SS group. Actin and desmin staining of the post-implant scaffolds evidenced the regeneration of a muscular layer from one anastomosis to another in the SS group but not in the NSS one. CONCLUSIONS A muscle esophageal substitute starting from a porcine scaffold was developed and it was fully repopulated by BM-MSCs after seeding. The substitute was able to recapitulate in shape and function the original esophageal muscle layer.
Collapse
Affiliation(s)
| | - Mattia Algeri
- Hemato-Oncology, Ospedale Pediatrico Bambino
Gesù, Roma, Italy
| | - Luigi Tomao
- Hemato-Oncology, Ospedale Pediatrico Bambino
Gesù, Roma, Italy
| | | | - Tamara Caldaro
- Digestive Endoscopy and Surgical Unit, Ospedale
Pediatrico Bambino Gesù, Roma, Italy
| | - Valerio Balassone
- Digestive Endoscopy and Surgical Unit, Ospedale
Pediatrico Bambino Gesù, Roma, Italy
| | - Anna Chiara Contini
- Digestive Endoscopy and Surgical Unit, Ospedale
Pediatrico Bambino Gesù, Roma, Italy
| | - Luciano Guerra
- Digestive Endoscopy and Surgical Unit, Ospedale
Pediatrico Bambino Gesù, Roma, Italy
| | | | | | | | | | | | - Angela Bozza
- LTCA, ULSS 8 Berica, Vicenza, Italy,Laboratorio di Terapie Cellulari Avanzate,
Vicenza, Italy
| | - Giuseppe Astori
- LTCA, ULSS 8 Berica, Vicenza, Italy,Laboratorio di Terapie Cellulari Avanzate,
Vicenza, Italy
| | | | | | - Guido Costamagna
- Digestive Endoscopy Unit, Fondazione
Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Luigi Dall’Oglio
- Digestive Endoscopy and Surgical Unit, Ospedale
Pediatrico Bambino Gesù, Roma, Italy
| |
Collapse
|
17
|
Molecular Pathways Underlying Adaptive Repair of the Injured Kidney: Novel Donation After Cardiac Death and Acute Kidney Injury Platforms. Ann Surg 2020; 271:383-390. [PMID: 30048305 DOI: 10.1097/sla.0000000000002946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To test the hypothesis that gene expression profiling in peripheral blood from patients who have undergone kidney transplantation (KT) will provide mechanistic insights regarding graft repair and regeneration. BACKGROUND Renal grafts obtained from living donors (LD) typically function immediately, whereas organs from donation after cardiac death (DCD) or acute kidney injury (AKI) donors may experience delayed function with eventual recovery. Thus, recipients of LD, DCD, and AKI kidneys were studied to provide a more complete understanding of the molecular basis for renal recovery. METHODS Peripheral blood was collected from LD and DCD/AKI recipients before transplant and throughout the first 30 days thereafter. Total RNA was isolated and assayed on whole genome microarrays. RESULTS Comparison of longitudinal gene expression between LD and AKI/DCD revealed 2 clusters, representing 141 differentially expressed transcripts. A subset of 11 transcripts was found to be differentially expressed in AKI/DCD versus LD. In all recipients, the most robust gene expression changes were observed in the first day after transplantation. After day 1, gene expression profiles differed depending upon the source of the graft. In patients receiving LD grafts, the expression of most genes did not remain markedly elevated beyond the first day post-KT. In the AKI/DCD groups, elevations in gene expression were maintained for at least 5 days post-KT. In all recipients, the pattern of coordinate gene overexpression subsided by 28 to 30 days. CONCLUSIONS Gene expression in peripheral blood of AKI/DCD recipients offers a novel platform to understand the potential mechanisms and timing of kidney repair and regeneration after transplantation.
Collapse
|
18
|
Keshel SH, Rahimi A, Hancox Z, Ebrahimi M, Khojasteh A, Sefat F. The promise of regenerative medicine in the treatment of urogenital disorders. J Biomed Mater Res A 2020; 108:1747-1759. [PMID: 32270582 DOI: 10.1002/jbm.a.36942] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/20/2022]
Abstract
Polymers and scaffolds are the most significant tools in regenerative medicine. Urogenital disorders are an important group of diseases that greatly affect the patient's life expectancy and quality. Reconstruction of urogenital defects is one of the current challenges in regenerative medicine. Regenerative medicine, as well as tissue engineering, may offer suitable approaches, while the tools needed are appropriate materials and cells. Autologous urothelial cells obtained from biopsy, bone marrow-derived stem cells, adipose stem cells and urine-derived stem cells that expressed mesenchymal cell markers are the cells that mainly used. In addition, two main types of biomaterials mainly exist; synthetic polymers and composite scaffolds that are biodegradable polymers with controllable properties and naturally derived biomaterials such as extracellular matrix components and acellular tissue matrices. In this review, we present and evaluate the most appropriate and suitable scaffolds (naturally derived and synthetic polymers) and cells applied in urogenital reconstruction.
Collapse
Affiliation(s)
- Saeed Heidari Keshel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Rahimi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zoe Hancox
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford, UK
| | - Maryam Ebrahimi
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford, UK
| | - Arash Khojasteh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshid Sefat
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford, UK.,Interdisciplinary Research Centre in Polymer Science & Technology (Polymer IRC), University of Bradford, Bradford, UK
| |
Collapse
|
19
|
A Hepatic Scaffold from Decellularized Liver Tissue: Food for Thought. Biomolecules 2019; 9:biom9120813. [PMID: 31810291 PMCID: PMC6995515 DOI: 10.3390/biom9120813] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 02/07/2023] Open
Abstract
Allogeneic liver transplantation is still deemed the gold standard solution for end-stage organ failure; however, donor organ shortages have led to extended waiting lists for organ transplants. In order to overcome the lack of donors, the development of new therapeutic options is mandatory. In the last several years, organ bioengineering has been extensively explored to provide transplantable tissues or whole organs with the final goal of creating a three-dimensional growth microenvironment mimicking the native structure. It has been frequently reported that an extracellular matrix-based scaffold offers a structural support and important biological molecules that could help cellular proliferation during the recellularization process. The aim of the present review is to underline the recent developments in cell-on-scaffold technology for liver bioengineering, taking into account: (1) biological and synthetic scaffolds; (2) animal and human tissue decellularization; (3) scaffold recellularization; (4) 3D bioprinting; and (5) organoid technology. Future possible clinical applications in regenerative medicine for liver tissue engineering and for drug testing were underlined and dissected.
Collapse
|
20
|
Extracellular matrix-based hydrogels obtained from human tissues: a work still in progress. Curr Opin Organ Transplant 2019; 24:604-612. [DOI: 10.1097/mot.0000000000000691] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
21
|
Carotenuto F, Teodori L, Maccari AM, Delbono L, Orlando G, Di Nardo P. Turning regenerative technologies into treatment to repair myocardial injuries. J Cell Mol Med 2019; 24:2704-2716. [PMID: 31568640 PMCID: PMC7077550 DOI: 10.1111/jcmm.14630] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/28/2019] [Accepted: 07/23/2019] [Indexed: 02/06/2023] Open
Abstract
Regenerative therapies including stem cell treatments hold promise to allow curing patients affected by severe cardiac muscle diseases. However, the clinical efficacy of stem cell therapy remains elusive, so far. The two key roadblocks that still need to be overcome are the poor cell engraftment into the injured myocardium and the limited knowledge of the ideal mixture of bioactive factors to be locally delivered for restoring heart function. Thus, therapeutic strategies for cardiac repair are directed to increase the retention and functional integration of transplanted cells in the damaged myocardium or to enhance the endogenous repair mechanisms through cell‐free therapies. In this context, biomaterial‐based technologies and tissue engineering approaches have the potential to dramatically impact cardiac translational medicine. This review intends to offer some consideration on the cell‐based and cell‐free cardiac therapies, their limitations and the possible future developments.
Collapse
Affiliation(s)
- Felicia Carotenuto
- Centro Interdipartimentale di Medicina Rigenerativa, Università di Roma Tor Vergata, Rome, Italy.,Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università di Roma Tor Vergata, Rome, Italy.,Diagnostics and Metrology (FSN-TECFIS-DIM), ENEA, C.R. Frascati, Rome, Italy
| | - Laura Teodori
- Diagnostics and Metrology (FSN-TECFIS-DIM), ENEA, C.R. Frascati, Rome, Italy
| | - Anna Maria Maccari
- Centro Interdipartimentale di Medicina Rigenerativa, Università di Roma Tor Vergata, Rome, Italy.,Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università di Roma Tor Vergata, Rome, Italy
| | - Luciano Delbono
- Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Giuseppe Orlando
- Wake Forest University School of Medicine, Winston Salem, NC, USA.,Department of Surgery, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Paolo Di Nardo
- Centro Interdipartimentale di Medicina Rigenerativa, Università di Roma Tor Vergata, Rome, Italy.,Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università di Roma Tor Vergata, Rome, Italy.,I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
22
|
Ciccocioppo R, Cantore A, Chaimov D, Orlando G. Regenerative medicine: the red planet for clinicians. Intern Emerg Med 2019; 14:911-921. [PMID: 31203564 DOI: 10.1007/s11739-019-02126-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/06/2019] [Indexed: 12/11/2022]
Abstract
Regenerative medicine represents the forefront of health sciences and holds promises for the treatment and, possibly, the cure of a number of challenging conditions. It relies on the use of stem cells, tissue engineering, and gene therapy alone or in different combinations. The goal is to deliver cells, tissues, or organs to repair, regenerate, or replace the damaged ones. Among stem-cell populations, both haematopoietic and mesenchymal stem cells have been employed in the treatment of refractory chronic inflammatory diseases with promising results. However, only mesenchymal stem cells seem advantageous as both systemic and local injections may be performed without the need for immune ablation. Recently, also induced pluripotent stem cells have been exploited for therapeutic purposes given their tremendous potential to be an unlimited source of any tissue-specific cells. Moreover, through the development of technologies that make organ fabrication possible using cells and supporting scaffolding materials, regenerative medicine promises to enable organ-on-demand, whereby patients will receive organs in a timely fashion without the risk of rejection. Finally, gene therapy is emerging as a successful strategy not only in monogenic diseases, but also in multifactorial conditions. Several of these approaches have recently received approval for commercialization, thus opening a new therapeutic era. This is why both General Practitioners and Internists should be aware of these great advancements.
Collapse
Affiliation(s)
- Rachele Ciccocioppo
- Gastroenterology Unit, Department of Medicine, AOUI Policlinico G.B. Rossi and University of Verona, Piazzale L.A. Scuro 10, 37134, Verona, Italy.
| | - Alessio Cantore
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita Salute San Raffaele University, Milan, Italy
| | - Deborah Chaimov
- Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Giuseppe Orlando
- Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
23
|
Decellularization of the Porcine Ear Generates a Biocompatible, Nonimmunogenic Extracellular Matrix Platform for Face Subunit Bioengineering. Ann Surg 2019; 267:1191-1201. [PMID: 28252516 DOI: 10.1097/sla.0000000000002181] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The purpose of this study was to assess whether perfusion-decellularization technology could be applied to facial grafts. BACKGROUND Facial allotransplantation remains an experimental procedure. Regenerative medicine techniques allow fabrication of transplantable organs from an individual's own cells, which are seeded into extracellular matrix (ECM) scaffolds from animal or human organs. Therefore, we hypothesized that ECM scaffolds also can be created from facial subunits. We explored the use of the porcine ear as a clinically relevant face subunit model to develop regenerative medicine-related platforms for facial bioengineering. METHODS Porcine ear grafts were decellularized and histologic, immunologic, and cell culture studies done to determine whether scaffolds retained their 3D framework and molecular content; were biocompatible in vitro and in vivo, and triggered an anti-MHC immune response from the host. RESULTS The cellular compartment of the porcine ear was completely removed except for a few cartilaginous cells, leaving behind an acellular ECM scaffold; this scaffold retained its complex 3D architecture and biochemical components. The framework of the vascular tree was intact at all hierarchical levels and sustained a physiologically relevant blood pressure when implanted in vivo. Scaffolds were biocompatible in vitro and in vivo, and elicited no MHC immune response from the host. Cells from different types remained viable and could even differentiate at the scale of a whole-ear scaffold. CONCLUSIONS Acellular scaffolds were produced from the porcine ear, and may be a valuable platform to treat facial deformities using regenerative medicine approaches.
Collapse
|
24
|
Immune responses towards bioengineered tissues and strategies to control them. Curr Opin Organ Transplant 2019; 24:582-589. [PMID: 31385889 DOI: 10.1097/mot.0000000000000688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Research into development of artificial tissues and bioengineered organs to replace physiological functions of injured counterparts has highlighted a previously underestimated challenge for its clinical translatability: the immune response against biomaterials. Herein, we will provide an update and review current knowledge regarding this important barrier to regenerative medicine. RECENT FINDINGS Although a clear understanding of the immune reactivity against biomaterials remains elusive, accumulating evidence indicates that innate immune cells, primarily neutrophils and macrophages, play a key role in the initial phases of the immune response. More recently, data have shown that in later phases, T and B cells are also involved. The use of physicochemical modifications of biomaterials and cell-based strategies to modulate the host inflammatory response is being actively investigated for effective biomaterial integration. SUMMARY The immune response towards biomaterials and bioengineered organs plays a crucial role in determining their utility as transplantable grafts. Expanding our understanding of these responses is necessary for developing protolerogenic strategies and delivering on the ultimate promise of regenerative medicine.
Collapse
|
25
|
Rethinking Regenerative Medicine From a Transplant Perspective (and Vice Versa). Transplantation 2019; 103:237-249. [DOI: 10.1097/tp.0000000000002370] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Vishwakarma SK, Lakkireddy C, Bardia A, Paspala SAB, Tripura C, Habeeb MA, Khan AA. Bioengineered functional humanized livers: An emerging supportive modality to bridge the gap of organ transplantation for management of end-stage liver diseases. World J Hepatol 2018; 10:822-836. [PMID: 30533183 PMCID: PMC6280164 DOI: 10.4254/wjh.v10.i11.822] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/24/2018] [Accepted: 10/11/2018] [Indexed: 02/06/2023] Open
Abstract
End stage liver diseases (ESLD) represent a major, neglected global public health crisis which requires an urgent action towards finding a proper cure. Orthotropic liver transplantation has been the only definitive treatment modality for ESLD. However, shortage of donor organs, timely unavailability, post-surgery related complications and financial burden on the patients limits the number of patients receiving the transplants. Since last two decades cell-based therapies have revolutionized the field of organ/tissue regeneration. However providing an alternative organ source to address the donor liver shortage still poses potential challenges. The developments made in this direction provide useful futuristic approaches, which could be translated into pre-clinical and clinical settings targeting appropriate applications in specific disease conditions. Earlier studies have demonstrated the applicability of this particular approach to generate functional organ in rodent system by connecting them with portal and hepatic circulatory networks. However, such strategy requires very high level of surgical expertise and also poses the technical and financial questions towards its future applicability. Hence, alternative sites for generating secondary organs are being tested in several types of disease conditions. Among different sites, omentum has been proved to be more appropriate site for implanting several kinds of functional tissue constructs without eliciting much immunological response. Hence, omentum may be considered as better site for transplanting humanized bioengineered ex vivo generated livers, thereby creating a secondary organ at intra-omental site. However, the expertise for generating such bioengineered organs are limited and only very few centres are involved for investigating the potential use of such implants in clinical practice due to gap between the clinical transplant surgeons and basic scientists working on the concept evolution. Herein we discuss the recent advances and challenges to create functional secondary organs through intra-omental transplantation of ex vivo generated bioengineered humanized livers and their further application in the management of ESLD as a supportive bridge for organ transplantation.
Collapse
Affiliation(s)
- Sandeep Kumar Vishwakarma
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad 500058, Telangana, India
- Dr Habeebullah Life Sciences, Attapur, Hyderabad 500058, Telangana, India
| | - Chandrakala Lakkireddy
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad 500058, Telangana, India
- Dr Habeebullah Life Sciences, Attapur, Hyderabad 500058, Telangana, India
| | - Avinash Bardia
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad 500058, Telangana, India
- Dr Habeebullah Life Sciences, Attapur, Hyderabad 500058, Telangana, India
| | - Syed Ameer Basha Paspala
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad 500058, Telangana, India
- Dr Habeebullah Life Sciences, Attapur, Hyderabad 500058, Telangana, India
| | - Chaturvedula Tripura
- CSIR-Centre for Cellular and Molecular Biology, Habsiguda, Hyderabad 500007, Telangana, India
| | - Md Aejaz Habeeb
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad 500058, Telangana, India
- Dr Habeebullah Life Sciences, Attapur, Hyderabad 500058, Telangana, India
| | - Aleem Ahmed Khan
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad 500058, Telangana, India
- Dr Habeebullah Life Sciences, Attapur, Hyderabad 500058, Telangana, India.
| |
Collapse
|
27
|
Huang Y, Mei J, Yu Y, Ding Y, Xia W, Yue T, Chen W, Zhou M, Yang Y. Comparative Decellularization and Recellularization of Normal Versus Streptozotocin‐Induced Diabetes Mellitus Rat Pancreas. Artif Organs 2018; 43:399-412. [PMID: 30182423 DOI: 10.1111/aor.13353] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 08/25/2018] [Accepted: 08/28/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Ying‐Bao Huang
- Department of Radiology The First Affiliated Hospital of Wenzhou Medical University Wenzhou China
| | - Jin Mei
- Anatomy Department Wenzhou Medical University Wenzhou China
- Institute of Bioscaffold Transplantation and Immunology Wenzhou Medical University Wenzhou China
- Institute of Neuroscience Wenzhou Medical University Wenzhou China
| | - Yaling Yu
- Department of Orthopedic Surgery Shanghai Jiao Tong University Affiliated Sixth People’s Hospital Shanghai China
| | - Yuqiang Ding
- Institute of Neuroscience Wenzhou Medical University Wenzhou China
| | - Weizhi Xia
- Department of Radiology The Second Affiliated Hospital of Wenzhou Medical University Wenzhou China
| | - Ting Yue
- Department of Radiology The First Affiliated Hospital of Wenzhou Medical University Wenzhou China
| | - Weijian Chen
- Department of Radiology The First Affiliated Hospital of Wenzhou Medical University Wenzhou China
| | - Meng‐Tao Zhou
- Department of Surgery The First Affiliated Hospital of Wenzhou Medical University Wenzhou China
| | - Yun‐Jun Yang
- Department of Radiology The First Affiliated Hospital of Wenzhou Medical University Wenzhou China
| |
Collapse
|
28
|
Peloso A, Citro A, Zoro T, Cobianchi L, Kahler-Quesada A, Bianchi CM, Andres A, Berishvili E, Piemonti L, Berney T, Toso C, Oldani G. Regenerative Medicine and Diabetes: Targeting the Extracellular Matrix Beyond the Stem Cell Approach and Encapsulation Technology. Front Endocrinol (Lausanne) 2018; 9:445. [PMID: 30233489 PMCID: PMC6127205 DOI: 10.3389/fendo.2018.00445] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/18/2018] [Indexed: 12/20/2022] Open
Abstract
According to the Juvenile Diabetes Research Foundation (JDRF), almost 1. 25 million people in the United States (US) have type 1 diabetes, which makes them dependent on insulin injections. Nationwide, type 2 diabetes rates have nearly doubled in the past 20 years resulting in more than 29 million American adults with diabetes and another 86 million in a pre-diabetic state. The International Diabetes Ferderation (IDF) has estimated that there will be almost 650 million adult diabetic patients worldwide at the end of the next 20 years (excluding patients over the age of 80). At this time, pancreas transplantation is the only available cure for selected patients, but it is offered only to a small percentage of them due to organ shortage and the risks linked to immunosuppressive regimes. Currently, exogenous insulin therapy is still considered to be the gold standard when managing diabetes, though stem cell biology is recognized as one of the most promising strategies for restoring endocrine pancreatic function. However, many issues remain to be solved, and there are currently no recognized treatments for diabetes based on stem cells. In addition to stem cell resesarch, several β-cell substitutive therapies have been explored in the recent era, including the use of acellular extracellular matrix scaffolding as a template for cellular seeding, thus providing an empty template to be repopulated with β-cells. Although this bioengineering approach still has to overcome important hurdles in regards to clinical application (including the origin of insulin producing cells as well as immune-related limitations), it could theoretically provide an inexhaustible source of bio-engineered pancreases.
Collapse
Affiliation(s)
- Andrea Peloso
- Division of Abdominal Surgery, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- HepatoPancreato-Biliary Centre, Geneva University Hospitals, Geneva, Switzerland
| | - Antonio Citro
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Tamara Zoro
- Department of General Surgery, IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia, Italy
| | - Lorenzo Cobianchi
- Department of General Surgery, IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia, Italy
| | - Arianna Kahler-Quesada
- Division of Abdominal Surgery, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Carlo M. Bianchi
- Department of General Surgery, IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia, Italy
| | - Axel Andres
- Division of Abdominal Surgery, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- HepatoPancreato-Biliary Centre, Geneva University Hospitals, Geneva, Switzerland
| | - Ekaterine Berishvili
- Cell Isolation and Transplantation Center, University of Geneva, Geneva, Switzerland
- Institute of Medical Research, Ilia State University, Tbilisi, Georgia
| | - Lorenzo Piemonti
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Thierry Berney
- Cell Isolation and Transplantation Center, University of Geneva, Geneva, Switzerland
| | - Christian Toso
- Division of Abdominal Surgery, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- HepatoPancreato-Biliary Centre, Geneva University Hospitals, Geneva, Switzerland
| | - Graziano Oldani
- Division of Abdominal Surgery, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- HepatoPancreato-Biliary Centre, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
29
|
Odorico J, Markmann J, Melton D, Greenstein J, Hwa A, Nostro C, Rezania A, Oberholzer J, Pipeleers D, Yang L, Cowan C, Huangfu D, Egli D, Ben-David U, Vallier L, Grey ST, Tang Q, Roep B, Ricordi C, Naji A, Orlando G, Anderson DG, Poznansky M, Ludwig B, Tomei A, Greiner DL, Graham M, Carpenter M, Migliaccio G, D'Amour K, Hering B, Piemonti L, Berney T, Rickels M, Kay T, Adams A. Report of the Key Opinion Leaders Meeting on Stem Cell-derived Beta Cells. Transplantation 2018; 102:1223-1229. [PMID: 29781950 PMCID: PMC6775764 DOI: 10.1097/tp.0000000000002217] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Beta cell replacement has the potential to restore euglycemia in patients with insulin-dependent diabetes. Although great progress has been made in establishing allogeneic islet transplantation from deceased donors as the standard of care for those with the most labile diabetes, it is also clear that the deceased donor organ supply cannot possibly treat all those who could benefit from restoration of a normal beta cell mass, especially if immunosuppression were not required. Against this background, the International Pancreas and Islet Transplant Association in collaboration with the Harvard Stem Cell Institute, the Juvenile Diabetes Research Foundation (JDRF), and the Helmsley Foundation held a 2-day Key Opinion Leaders Meeting in Boston in 2016 to bring together experts in generating and transplanting beta cells derived from stem cells. The following summary highlights current technology, recent significant breakthroughs, unmet needs and roadblocks to stem cell-derived beta cell therapies, with the aim of spurring future preclinical collaborative investigations and progress toward the clinical application of stem cell-derived beta cells.
Collapse
Affiliation(s)
- Jon Odorico
- Division of Transplantation, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - James Markmann
- Department of Surgery, Massachusetts General Hospital, Boston, MA
| | - Douglas Melton
- Harvard Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Boston MA
| | | | - Albert Hwa
- Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Cristina Nostro
- Department of Physiology, University of Toronto, University of Toronto, Toronto Canada
| | | | - Jose Oberholzer
- Department of Surgery, University of Illinois at Chicago, Chicago, IL
| | - Daniel Pipeleers
- Center for Beta Cell Therapy in Diabetes, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Chad Cowan
- Harvard Stem Cell Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Danwei Huangfu
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Dieter Egli
- Columbia Stem Cell Initiative, Columbia University, New York, NY
| | - Uri Ben-David
- Broad Institute of MIT and Harvard, Cancer Program, Golub Lab, Cambridge MA
| | - Ludovic Vallier
- Department of Surgery, University of Cambridge, Cambridge, United Kingdom
| | - Shane T Grey
- Department of Medicine, University of Sydney, Sydney, Australia
| | - Qizhi Tang
- Department of Surgery, UCSF Medical Center, San Francisco, CA
| | - Bart Roep
- National Diabetes Center of Excellence, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Ali Naji
- Department of Surgery, University of Pennsylvania, Philadelphia, PA
| | - Giuseppe Orlando
- Center on Diabetes, Obesity, and Metabolism, Wake Forest School of Medicine, Winston-Salem, NC
| | - Daniel G Anderson
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA
| | - Mark Poznansky
- Department of Medicine, Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Barbara Ludwig
- Department of Endocrinology and Diabetes, University Hospital Dresden, Dresden, Germany
| | - Alice Tomei
- Department of Surgery, University of Miami, Miami, FL
| | - Dale L Greiner
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Melanie Graham
- Department of Surgery, University of Minnesota, Minneapolis, MN
| | | | | | | | - Bernhard Hering
- Department of Surgery, University of Minnesota, Minneapolis, MN
| | - Lorenzo Piemonti
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan Italy
| | - Thierry Berney
- Department of Surgery, Geneva University, Geneva, Switzerland
| | - Mike Rickels
- Department of Surgery, University of Pennsylvania, Philadelphia, PA
| | - Thomas Kay
- Department of Medicine, St. Vincent's Institute, Melbourne, Australia
| | - Ann Adams
- Department of Surgery, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
30
|
Wrenn SM, Griswold ED, Uhl FE, Uriarte JJ, Park HE, Coffey AL, Dearborn JS, Ahlers BA, Deng B, Lam YW, Huston DR, Lee PC, Wagner DE, Weiss DJ. Avian lungs: A novel scaffold for lung bioengineering. PLoS One 2018; 13:e0198956. [PMID: 29949597 PMCID: PMC6021073 DOI: 10.1371/journal.pone.0198956] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 05/28/2018] [Indexed: 02/07/2023] Open
Abstract
Allogeneic lung transplant is limited both by the shortage of available donor lungs and by the lack of suitable long-term lung assist devices to bridge patients to lung transplantation. Avian lungs have different structure and mechanics resulting in more efficient gas exchange than mammalian lungs. Decellularized avian lungs, recellularized with human lung cells, could therefore provide a powerful novel gas exchange unit for potential use in pulmonary therapeutics. To initially assess this in both small and large avian lung models, chicken (Gallus gallus domesticus) and emu (Dromaius novaehollandiae) lungs were decellularized using modifications of a detergent-based protocol, previously utilized with mammalian lungs. Light and electron microscopy, vascular and airway resistance, quantitation and gel analyses of residual DNA, and immunohistochemical and mass spectrometric analyses of remaining extracellular matrix (ECM) proteins demonstrated maintenance of lung structure, minimal residual DNA, and retention of major ECM proteins in the decellularized scaffolds. Seeding with human bronchial epithelial cells, human pulmonary vascular endothelial cells, human mesenchymal stromal cells, and human lung fibroblasts demonstrated initial cell attachment on decellularized avian lungs and growth over a 7-day period. These initial studies demonstrate that decellularized avian lungs may be a feasible approach for generating functional lung tissue for clinical therapeutics.
Collapse
Affiliation(s)
- Sean M. Wrenn
- Department of Surgery, University of Vermont, Burlington, VT, United States of America
- Department of Medicine, University of Vermont, Burlington, VT, United States of America
| | - Ethan D. Griswold
- Department of Medicine, University of Vermont, Burlington, VT, United States of America
- Rochester Institute of Technology, Rochester, NY, United States of America
| | - Franziska E. Uhl
- Department of Medicine, University of Vermont, Burlington, VT, United States of America
| | - Juan J. Uriarte
- Department of Medicine, University of Vermont, Burlington, VT, United States of America
| | - Heon E. Park
- Department of Medicine, University of Vermont, Burlington, VT, United States of America
- Department of Mechanical Engineering, University of Vermont, Burlington, VT, United States of America
| | - Amy L. Coffey
- Department of Medicine, University of Vermont, Burlington, VT, United States of America
| | - Jacob S. Dearborn
- Department of Medicine, University of Vermont, Burlington, VT, United States of America
| | - Bethany A. Ahlers
- Department of Biology, University of Vermont, Burlington, VT, United States of America
| | - Bin Deng
- Department of Biology, University of Vermont, Burlington, VT, United States of America
| | - Ying-Wai Lam
- Department of Biology, University of Vermont, Burlington, VT, United States of America
| | - Dryver R. Huston
- Department of Mechanical Engineering, University of Vermont, Burlington, VT, United States of America
| | - Patrick C. Lee
- Department of Mechanical Engineering, University of Vermont, Burlington, VT, United States of America
| | - Darcy E. Wagner
- Comprehensive Pneumology Center, Ludwig Maximilians University Munich, Munich, Germany
- Department of Experimental Medical Science, Lung Bioengineering and Regeneration, Lund University, Lund, Sweden
| | - Daniel J. Weiss
- Department of Medicine, University of Vermont, Burlington, VT, United States of America
- * E-mail:
| |
Collapse
|
31
|
|
32
|
Perfusion-decellularization of human ear grafts enables ECM-based scaffolds for auricular vascularized composite tissue engineering. Acta Biomater 2018; 73:339-354. [PMID: 29654989 DOI: 10.1016/j.actbio.2018.04.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 03/27/2018] [Accepted: 04/04/2018] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Human ear reconstruction is recognized as the emblematic enterprise in tissue engineering. Up to now, it has failed to reach human applications requiring appropriate tissue complexity along with an accessible vascular tree. We hereby propose a new method to process human auricles in order to provide a poorly immunogenic, complex and vascularized ear graft scaffold. METHODS 12 human ears with their vascular pedicles were procured. Perfusion-decellularization was applied using a SDS/polar solvent protocol. Cell and antigen removal was examined by histology and DNA was quantified. Preservation of the extracellular matrix (ECM) was assessed by conventional and 3D-histology, proteins and cytokines quantifications. Biocompatibility was assessed by implantation in rats for up to 60 days. Adipose-derived stem cells seeding was conducted on scaffold samples and with human aortic endothelial cells whole graft seeding in a perfusion-bioreactor. RESULTS Histology confirmed cell and antigen clearance. DNA reduction was 97.3%. ECM structure and composition were preserved. Implanted scaffolds were tolerated in vivo, with acceptable inflammation, remodeling, and anti-donor antibody formation. Seeding experiments demonstrated cell engraftment and viability. CONCLUSIONS Vascularized and complex auricular scaffolds can be obtained from human source to provide a platform for further functional auricular tissue engineered constructs, hence providing an ideal road to the vascularized composite tissue engineering approach. STATEMENT OF SIGNIFICANCE The ear is emblematic in the biofabrication of tissues and organs. Current regenerative medicine strategies, with matrix from donor tissues or 3D-printed, didn't reach any application for reconstruction, because critically missing a vascular tree for perfusion and transplantation. We previously described the production of vascularized and cell-compatible scaffolds, from porcine ear grafts. In this study, we ---- applied findings directly to human auricles harvested from postmortem donors, providing a perfusable matrix that retains the ear's original complexity and hosts new viable cells after seeding. This approach unlocks the ability to achieve an auricular tissue engineering approach, associated with possible clinical translation.
Collapse
|
33
|
|
34
|
Proceedings of the signature series event of the international society for cellular therapy: "Advancements in cellular therapies and regenerative medicine in digestive diseases," London, United Kingdom, May 3, 2017. Cytotherapy 2018; 20:461-476. [PMID: 29398624 DOI: 10.1016/j.jcyt.2017.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 12/01/2017] [Indexed: 12/18/2022]
Abstract
A summary of the First Signature Series Event, "Advancements in Cellular Therapies and Regenerative Medicine for Digestive Diseases," held on May 3, 2017, in London, United Kingdom, is presented. Twelve speakers from three continents covered major topics in the areas of cellular therapy and regenerative medicine applied to liver and gastrointestinal medicine as well as to diabetes mellitus. Highlights from their presentations, together with an overview of the global impact of digestive diseases and a proposal for a shared online collection and data-monitoring platform tool, are included in this proceedings. Although growing evidence demonstrate the feasibility and safety of exploiting cell-based technologies for the treatment of digestive diseases, regulatory and methodological obstacles will need to be overcome before the successful implementation in the clinic of these novel attractive therapeutic strategies.
Collapse
|
35
|
ImmunoCloak as a Paradigm of the Biomaterial Approach to Immunomodulation: Where Regenerative Medicine Meets Organ Transplantation. Transplantation 2018; 101:234-235. [PMID: 27798511 DOI: 10.1097/tp.0000000000001551] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
36
|
|
37
|
Abstract
OBJECTIVE During the last decade, face allotransplantation has been shown to be a revolutionary reconstructive procedure for severe disfigurements. However, offer to patients remains limited due to lifelong immunosuppression. To move forward in the field, a new pathway in tissue engineering is proposed. BACKGROUND Our previously reported technique of matrix production of a porcine auricular subunit graft has been translated to a human face model. METHODS 5 partial and 1 total face grafts were procured from human fresh cadavers. After arterial cannulation, the specimens were perfused using a combined detergent/polar solvent decellularization protocol. Preservation of vascular patency was assessed by imaging, cell and antigen removal by DNA quantification and histology. The main extracellular matrix proteins and associated cytokines were evaluated. Lip scaffolds were cultivated with dermal, muscle progenitor and endothelial cells, either on discs or in a bioreactor. RESULTS Decellularization was successful in all facial grafts within 12 days revealing acellular scaffolds with full preservation of innate morphology. Imaging demonstrated a preservation of the entire vascular tree patency. Removal of cells and antigens was confirmed by reduction of DNA and antigen markers negativation. Microscopic evaluation revealed preservation of tissue structures as well as of major proteins. Seeded cells were viable and well distributed within all scaffolds. CONCLUSIONS Complex acellular facial scaffolds were obtained, preserving simultaneously a cell-friendly extracellular matrix and a perfusable vascular tree. This step will enable further engineering of postmortem facial grafts, thereby offering new perspectives in composite tissue allotransplantation.
Collapse
|
38
|
Cravedi P, Farouk S, Angeletti A, Edgar L, Tamburrini R, Duisit J, Perin L, Orlando G. Regenerative immunology: the immunological reaction to biomaterials. Transpl Int 2017; 30:1199-1208. [PMID: 28892571 DOI: 10.1111/tri.13068] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 06/29/2017] [Accepted: 09/04/2017] [Indexed: 01/09/2023]
Abstract
Regenerative medicine promises to meet two of the most urgent needs of modern organ transplantation, namely immunosuppression-free transplantation and an inexhaustible source of organs. Ideally, bioengineered organs would be manufactured from a patient's own biomaterials-both cells and the supporting scaffolding materials in which cells would be embedded and allowed to mature to eventually regenerate the organ in question. While some groups are focusing on the feasibility of this approach, few are focusing on the immunogenicity of the scaffolds that are being developed for organ bioengineering purposes. This review will succinctly discuss progress in the understanding of immunological characteristics and behavior of different scaffolds currently under development, with emphasis on the extracellular matrix scaffolds obtained decellularized animal or human organs which seem to provide the ideal template for bioengineering purposes.
Collapse
Affiliation(s)
- Paolo Cravedi
- Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Samira Farouk
- Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrea Angeletti
- Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Experimental, Diagnostic, Specialty Medicine, Nephrology, Dialysis, and Renal Transplant Unit, S. Orsola University Hospital, Bologna, Italy
| | - Lauren Edgar
- Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Riccardo Tamburrini
- Wake Forest University School of Medicine, Winston Salem, NC, USA.,Section of Transplantation, Department of Surgery, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Jerome Duisit
- Pôle de Chirurgie Expérimentale (CHEX), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium.,Department of Plastic and Reconstructive Surgery, Cliniques Universitaires St-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Laura Perin
- Division of Urology, GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Saban Research Institute, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - Giuseppe Orlando
- Wake Forest University School of Medicine, Winston Salem, NC, USA.,Section of Transplantation, Department of Surgery, Wake Forest University School of Medicine, Winston Salem, NC, USA
| |
Collapse
|
39
|
Oldani G, Peloso A, Lacotte S, Meier R, Toso C. Xenogeneic chimera-Generated by blastocyst complementation-As a potential unlimited source of recipient-tailored organs. Xenotransplantation 2017; 24. [PMID: 28736957 DOI: 10.1111/xen.12327] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/05/2017] [Accepted: 07/08/2017] [Indexed: 12/13/2022]
Abstract
Blastocyst complementation refers to the injection of cells into a blastocyst. The technology allows for the creation of chimeric animals, which have the potential to be used as an unlimited source of organ donors. Pluripotent stem cells could be generated from a patient in need of a transplantation and injected into a large animal blastocyst (potentially of a pig), leading to the creation of organ(s) allowing immunosuppression-free transplantation. Various chimera combinations have already been generated, but one of the most recent steps leads to the creation of human-pig chimeras, which could be studied at an embryo stage. Although still far from clinical reality, the potential application is almost unlimited. The present review illustrates the historical steps of intra- and interspecific blastocyst complementation in rodents and large animals, specifically looking at its potential for generation of organ grafts. We also speculate on how it could change transplant indications, on its economic impact, and on the linked ethical concerns.
Collapse
Affiliation(s)
- Graziano Oldani
- Division of Abdominal Surgery, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,HepatoPancreato-Biliary Centre, Geneva University Hospitals, Geneva, Switzerland
| | - Andrea Peloso
- Division of Abdominal Surgery, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Division of General Surgery, IRCCS Policlinico San Matteo Foundation, University of Pavia, Pavia, Italy
| | - Stéphanie Lacotte
- Division of Abdominal Surgery, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Raphael Meier
- Division of Abdominal Surgery, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,HepatoPancreato-Biliary Centre, Geneva University Hospitals, Geneva, Switzerland
| | - Christian Toso
- Division of Abdominal Surgery, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,HepatoPancreato-Biliary Centre, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
40
|
Vranckx JJ, Hondt MD. Tissue engineering and surgery: from translational studies to human trials. Innov Surg Sci 2017; 2:189-202. [PMID: 31579752 PMCID: PMC6754028 DOI: 10.1515/iss-2017-0011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/16/2017] [Indexed: 12/23/2022] Open
Abstract
Tissue engineering was introduced as an innovative and promising field in the mid-1980s. The capacity of cells to migrate and proliferate in growth-inducing medium induced great expectancies on generating custom-shaped bioconstructs for tissue regeneration. Tissue engineering represents a unique multidisciplinary translational forum where the principles of biomaterial engineering, the molecular biology of cells and genes, and the clinical sciences of reconstruction would interact intensively through the combined efforts of scientists, engineers, and clinicians. The anticipated possibilities of cell engineering, matrix development, and growth factor therapies are extensive and would largely expand our clinical reconstructive armamentarium. Application of proangiogenic proteins may stimulate wound repair, restore avascular wound beds, or reverse hypoxia in flaps. Autologous cells procured from biopsies may generate an ‘autologous’ dermal and epidermal laminated cover on extensive burn wounds. Three-dimensional printing may generate ‘custom-made’ preshaped scaffolds – shaped as a nose, an ear, or a mandible – in which these cells can be seeded. The paucity of optimal donor tissues may be solved with off-the-shelf tissues using tissue engineering strategies. However, despite the expectations, the speed of translation of in vitro tissue engineering sciences into clinical reality is very slow due to the intrinsic complexity of human tissues. This review focuses on the transition from translational protocols towards current clinical applications of tissue engineering strategies in surgery.
Collapse
Affiliation(s)
- Jan Jeroen Vranckx
- Department of Plastic and Reconstructive Surgery, KU Leuven University Hospitals, 49 Herestraat, B-3000 Leuven, Belgium
| | - Margot Den Hondt
- Laboratory of Plastic Surgery and Tissue Engineering Research, Department of Plastic and Reconstructive Surgery, KU-Leuven University Hospitals, Leuven, Belgium
| |
Collapse
|
41
|
Fan Z, Miao Y, Qu Q, Xiao S, Wang J, Du L, Liu B, Hu Z. Unlocking the vital role of host cells in hair follicle reconstruction by semi-permeable capsules. PLoS One 2017; 12:e0179279. [PMID: 28614369 PMCID: PMC5470686 DOI: 10.1371/journal.pone.0179279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 05/27/2017] [Indexed: 12/21/2022] Open
Abstract
Organ regeneration is becoming a promising choice for many patients; however, many details about the mechanisms underlying organ regeneration remain unknown. As regenerative organs, hair follicles offer a good model to study the mechanisms associated with regenerative medicine. The relevant studies have mainly focused on donor cells, and there are no systematic studies involving the effect of host factors on hair follicle reconstruction. Thus, we intend to explore the effect of host cells on hair follicle reconstruction. Epidermal and dermal cells from red fluorescent protein (RFP) transgenic newborn mice were injected into green fluorescent protein (GFP) transgenic mice. In addition, we wrapped the mixed dermal and epidermal cells from GFP transgenic and RFP transgenic mice by the Cell-in-a-Box kit to form "capsules," so that the cells within would be isolated from host cells. These capsules were cultured in vitro and transplanted in vivo. Fully developed reconstructed hair follicles were observed after the injection of mixed cells. These reconstructed follicles mainly consisted of donor cells, as well as a small number of host cells. The encapsulated cells gradually aggregated into cell spheres in vitro without apparent differentiation towards hair follicles. With respect to the transplanted capsules, concentric circle structures were observed, but no hair follicles or hair shafts formed. When the concentric circle structures were transplanted in vivo, mature hair follicles were observed 30 days later. Host cells were found in the reconstructed hair follicles. Thus, we conclude that host cells participate in the process of hair follicle reconstruction, and they play a vital role in the process, especially for the maturation of reconstructed hair follicles. Furthermore, we established a special hair follicle reconstruction system with the help of capsules: transplant cells were isolated from host, but other factors from host could exchange with cells inside.
Collapse
Affiliation(s)
- Zhexiang Fan
- Department of Plastic and Aesthetic Surgery, Nan Fang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yong Miao
- Department of Plastic and Aesthetic Surgery, Nan Fang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qian Qu
- Department of Plastic and Aesthetic Surgery, Nan Fang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shune Xiao
- Department of Plastic and Aesthetic Surgery, Nan Fang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jin Wang
- Department of Plastic and Aesthetic Surgery, Nan Fang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lijuan Du
- Department of Plastic and Aesthetic Surgery, Nan Fang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Bingcheng Liu
- Department of Plastic and Aesthetic Surgery, Nan Fang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiqi Hu
- Department of Plastic and Aesthetic Surgery, Nan Fang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
42
|
Den Hondt M, Vranckx JJ. Reconstruction of defects of the trachea. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:24. [PMID: 28070690 DOI: 10.1007/s10856-016-5835-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/16/2016] [Indexed: 06/06/2023]
Abstract
The trachea has a complex anatomy to fulfill its tasks. Its unique fibro-cartilaginous structure maintains an open conduit during respiration, and provides vertical elasticity for deglutition, mobility of the neck and speech. Blood vessels pierce the intercartilaginous ligaments to perfuse the ciliated epithelium, which ensures effective mucociliary clearance. Removal of a tracheal segment affected by benign or malignant disease requires airtight restoration of the continuity of the tube. When direct approximation of both tracheal ends is no longer feasible, a reconstruction is needed. This may occur in recurrent short-segment defects in a scarred environment, or in defects comprising more than half the length of the trachea. The resulting gap must be filled with vascularized tissue that restores the mucosal lining and supports the semi-rigid, semi-flexible framework of the trachea. For long-segment or circular defects, restoration of this unique biomechanical profile becomes even more important. Due to the inherent difficulty of creating such a tube, a tracheostomy or palliative stenting are often preferred over permanent reconstruction. To significantly improve and sustain quality of life of these patients, surgeons proposed innovative strategies for complex tracheal repair. In this review, we provide an overview of current clinical applications of tracheal repair using autologous and allogenic tissues. We look at recent advances in the field of tissue engineering, and the areas for improvement of these first human applications. Lastly, we highlight the focus of our research, in an effort to contribute to the development of optimized tracheal reconstructive techniques.
Collapse
Affiliation(s)
- Margot Den Hondt
- Department of Plastic and Reconstructive Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Jan Jeroen Vranckx
- Department of Plastic and Reconstructive Surgery, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
43
|
Petrosyan A, Da Sacco S, Tripuraneni N, Kreuser U, Lavarreda-Pearce M, Tamburrini R, De Filippo RE, Orlando G, Cravedi P, Perin L. A step towards clinical application of acellular matrix: A clue from macrophage polarization. Matrix Biol 2017; 57-58:334-346. [PMID: 27575985 PMCID: PMC6717660 DOI: 10.1016/j.matbio.2016.08.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 08/08/2016] [Accepted: 08/17/2016] [Indexed: 01/23/2023]
Abstract
The outcome of tissue engineered organ transplants depends on the capacity of the biomaterial to promote a pro-healing response once implanted in vivo. Multiple studies, including ours, have demonstrated the possibility of using the extracellular matrix (ECM) of animal organs as platform for tissue engineering and more recently, discarded human organs have also been proposed as scaffold source. In contrast to artificial biomaterials, natural ECM has the advantage of undergoing continuous remodeling which allows adaptation to diverse conditions. It is known that natural matrices present diverse immune properties when compared to artificial biomaterials. However, how these properties compare between diseased and healthy ECM and artificial scaffolds has not yet been defined. To answer this question, we used decellularized renal ECM derived from WT mice and from mice affected by Alport Syndrome at different time-points of disease progression as a model of renal failure with extensive fibrosis. We characterized the morphology and composition of these ECMs and compared their in vitro effects on macrophage activation with that of synthetic scaffolds commonly used in the clinic (collagen type I and poly-L-(lactic) acid, PLLA). We showed that ECM derived from Alport kidneys differed in fibrous protein deposition and cytokine content when compared to ECM derived from WT kidneys. Yet, both WT and Alport renal ECM induced macrophage differentiation mainly towards a reparative (M2) phenotype, while artificial biomaterials towards an inflammatory (M1) phenotype. Anti-inflammatory properties of natural ECMs were lost when homogenized, hence three-dimensional structure of ECM seems crucial for generating an anti-inflammatory response. Together, these data support the notion that natural ECM, even if derived from diseased kidneys promote a M2 protolerogenic macrophage polarization, thus providing novel insights on the applicability of ECM obtained from discarded organs as ideal scaffold for tissue engineering.
Collapse
Affiliation(s)
- Astgik Petrosyan
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Saban Research Institute, Children's Hospital Los Angeles, Department of Urology, University of Southern California, Los Angeles, CA 90027, USA
| | - Stefano Da Sacco
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Saban Research Institute, Children's Hospital Los Angeles, Department of Urology, University of Southern California, Los Angeles, CA 90027, USA
| | - Nikita Tripuraneni
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Saban Research Institute, Children's Hospital Los Angeles, Department of Urology, University of Southern California, Los Angeles, CA 90027, USA
| | - Ursula Kreuser
- Radboud Institute for Molecular Life Sciences, Department of Physiology, 6525 GA Nijmegen, The Netherlands
| | - Maria Lavarreda-Pearce
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Saban Research Institute, Children's Hospital Los Angeles, Department of Urology, University of Southern California, Los Angeles, CA 90027, USA
| | - Riccardo Tamburrini
- Department of General Surgery, Section of Transplantation, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - Roger E De Filippo
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Saban Research Institute, Children's Hospital Los Angeles, Department of Urology, University of Southern California, Los Angeles, CA 90027, USA
| | - Giuseppe Orlando
- Department of General Surgery, Section of Transplantation, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - Paolo Cravedi
- Renal Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Annenberg Building, New York, NY 10029, USA
| | - Laura Perin
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Saban Research Institute, Children's Hospital Los Angeles, Department of Urology, University of Southern California, Los Angeles, CA 90027, USA.
| |
Collapse
|
44
|
Peloso A, Katari R, Tamburrini R, Duisit J, Orlando G. Glycosaminoglycans as a measure of outcome of cell-on-scaffold seeding (decellularization) technology. Expert Rev Med Devices 2016; 13:1067-1068. [DOI: 10.1080/17434440.2016.1249849] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
45
|
Extracellular matrix scaffolds as a platform for kidney regeneration. Eur J Pharmacol 2016; 790:21-27. [DOI: 10.1016/j.ejphar.2016.07.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/19/2016] [Accepted: 07/21/2016] [Indexed: 12/25/2022]
|
46
|
Pitkin Z. New Phase of Growth for Xenogeneic-Based Bioartificial Organs. Int J Mol Sci 2016; 17:E1593. [PMID: 27657057 PMCID: PMC5037858 DOI: 10.3390/ijms17091593] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/17/2016] [Accepted: 08/29/2016] [Indexed: 12/12/2022] Open
Abstract
In this article, we examine the advanced clinical development of bioartificial organs and describe the challenges to implementing such systems into patient care. The case for bioartificial organs is evident: they are meant to reduce patient morbidity and mortality caused by the persistent shortage of organs available for allotransplantation. The widespread introduction and adoption of bioengineered organs, incorporating cells and tissues derived from either human or animal sources, would help address this shortage. Despite the decades of development, the variety of organs studied and bioengineered, and continuous progress in the field, only two bioengineered systems are currently commercially available: Apligraf® and Dermagraft® are both approved by the FDA to treat diabetic foot ulcers, and Apligraf® is approved to treat venous leg ulcers. Currently, no products based on xenotransplantation have been approved by the FDA. Risk factors include immunological barriers and the potential infectivity of porcine endogenous retrovirus (PERV), which is unique to xenotransplantation. Recent breakthroughs in gene editing may, however, mitigate risks related to PERV. Because of its primary role in interrupting progress in xenotransplantation, we present a risk assessment for PERV infection, and conclude that the formerly high risk has been reduced to a moderate level. Advances in gene editing, and more broadly in the field, may make it more likely than ever before that bioartificial organs will alleviate the suffering of patients with organ failure.
Collapse
Affiliation(s)
- Zorina Pitkin
- Organogenesis Inc., 150 Dan Road, Canton, MA 02021, USA.
| |
Collapse
|
47
|
Peloso A, Urbani L, Cravedi P, Katari R, Maghsoudlou P, Alvarez Fallas ME, Sordi V, Citro A, Purroy C, Niu G, McQuilling JP, Sittadjody S, Farney AC, Iskandar SS, Rogers J, Stratta RJ, Opara EC, Piemonti L, Furdui C, Soker S, De Coppi P, Orlando G. The Human Pancreas as a Source of Protolerogenic Extracellular Matrix Scaffold for a New-generation Bioartificial Endocrine Pancreas. Ann Surg 2016; 264:169-79. [PMID: 26649588 PMCID: PMC4882269 DOI: 10.1097/sla.0000000000001364] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Our study aims at producing acellular extracellular matrix scaffolds from the human pancreas (hpaECMs) as a first critical step toward the production of a new-generation, fully human-derived bioartificial endocrine pancreas. In this bioartificial endocrine pancreas, the hardware will be represented by hpaECMs, whereas the software will consist in the cellular compartment generated from patient's own cells. BACKGROUND Extracellular matrix (ECM)-based scaffolds obtained through the decellularization of native organs have become the favored platform in the field of complex organ bioengineering. However, the paradigm is now switching from the porcine to the human model. METHODS To achieve our goal, human pancreata were decellularized with Triton-based solution and thoroughly characterized. Primary endpoints were complete cell and DNA clearance, preservation of ECM components, growth factors and stiffness, ability to induce angiogenesis, conservation of the framework of the innate vasculature, and immunogenicity. Secondary endpoint was hpaECMs' ability to sustain growth and function of human islet and human primary pancreatic endothelial cells. RESULTS Results show that hpaECMs can be successfully and consistently produced from human pancreata and maintain their innate molecular and spatial framework and stiffness, and vital growth factors. Importantly, hpaECMs inhibit human naïve CD4 T-cell expansion in response to polyclonal stimuli by inducing their apoptosis and promoting their conversion into regulatory T cells. hpaECMs are cytocompatible and supportive of representative pancreatic cell types. DISCUSSION We, therefore, conclude that hpaECMs has the potential to become an ideal platform for investigations aiming at the manufacturing of a regenerative medicine-inspired bioartificial endocrine pancreas.
Collapse
Affiliation(s)
- Andrea Peloso
- Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Luca Urbani
- Surgery Unit, Stem Cells and Regenerative Section, UCL Institute of Child Health and Great Ormond Street Hospital, London, UK
| | - Paolo Cravedi
- Department of Medicine, Recanati Miller Transplant Institute and Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Ravi Katari
- Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Panagiotis Maghsoudlou
- Surgery Unit, Stem Cells and Regenerative Section, UCL Institute of Child Health and Great Ormond Street Hospital, London, UK
| | - Mario Enrique Alvarez Fallas
- Surgery Unit, Stem Cells and Regenerative Section, UCL Institute of Child Health and Great Ormond Street Hospital, London, UK
- Stem Cells and Regenerative Medicine Lab, Fondazione Instituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Valeria Sordi
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonio Citro
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Carolina Purroy
- Department of Medicine, Recanati Miller Transplant Institute and Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Guoguang Niu
- Wake Forest School of Medicine, Winston Salem, NC, USA
| | | | | | - Alan C Farney
- Wake Forest School of Medicine, Winston Salem, NC, USA
| | | | | | | | | | - Lorenzo Piemonti
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Shay Soker
- Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Paolo De Coppi
- Surgery Unit, Stem Cells and Regenerative Section, UCL Institute of Child Health and Great Ormond Street Hospital, London, UK
| | | |
Collapse
|
48
|
Roh KH, Roy K. Engineering approaches for regeneration of T lymphopoiesis. Biomater Res 2016; 20:20. [PMID: 27358746 PMCID: PMC4926289 DOI: 10.1186/s40824-016-0067-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/13/2016] [Indexed: 12/19/2022] Open
Abstract
T cells play a central role in immune-homeostasis; specifically in the induction of antigen-specific adaptive immunity against pathogens and mutated self with immunological memory. The thymus is the unique organ where T cells are generated. In this review, first the complex structures and functions of various thymic microcompartments are briefly discussed to identify critical engineering targets for regeneration of thymic functions in vitro and in vivo. Then the biomimetic regenerative engineering approaches are reviewed in three categories: 1) reconstruction of 3-D thymic architecture, 2) cellular engineering, and 3) biomaterials-based artificial presentation of critical biomolecules. For each engineering approach, remaining challenges and clinical opportunities are also identified and discussed.
Collapse
Affiliation(s)
- Kyung-Ho Roh
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 950 Atlantic Drive NW, Atlanta, GA 30332 USA
| | - Krishnendu Roy
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 950 Atlantic Drive NW, Atlanta, GA 30332 USA
| |
Collapse
|
49
|
Abstract
Worldwide, increasing numbers of patients are developing end-stage renal disease, and at present, the only treatment options are dialysis or kidney transplantation. Dialysis is associated with increased morbidity and mortality, poor life quality and high economic costs. Transplantation is by far the better option, but there are insufficient numbers of donor kidneys available. Therefore, there is an urgent need to explore alternative approaches. In this review, we discuss how this problem could potentially be addressed by using autologous cells and appropriate scaffolds to develop 'bioengineered' kidneys for transplantation. In particular, we will highlight recent breakthroughs in pluripotent stem cell biology that have led to the development of autologous renal progenitor cells capable of differentiating to all renal cell types and will discuss how these cells could be combined with appropriate scaffolds to develop a bioengineered kidney.
Collapse
Affiliation(s)
- Bettina Wilm
- Institute of Translational Medicine, Centre for Preclinical Imaging, University of Liverpool, Crown Street, Liverpool, L69 3BX UK
| | - Riccardo Tamburrini
- Department of Surgery, Section of Transplantation, Wake Forest School of Medicine,Wake Forest Baptist Hospital, Medical Center Blvd, Winston Salem, NC 27157 USA
| | - Giuseppe Orlando
- Department of Surgery, Section of Transplantation, Wake Forest School of Medicine,Wake Forest Baptist Hospital, Medical Center Blvd, Winston Salem, NC 27157 USA
| | - Patricia Murray
- Institute of Translational Medicine, Centre for Preclinical Imaging, University of Liverpool, Crown Street, Liverpool, L69 3BX UK
| |
Collapse
|
50
|
Jamal HA. Tooth Organ Bioengineering: Cell Sources and Innovative Approaches. Dent J (Basel) 2016; 4:dj4020018. [PMID: 29563460 PMCID: PMC5851265 DOI: 10.3390/dj4020018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/22/2016] [Accepted: 05/27/2016] [Indexed: 01/02/2023] Open
Abstract
Various treatment approaches for restoring missing teeth are being utilized nowadays by using artificial dental crowns/bridges or the use of dental implants. All aforementioned restorative modalities are considered to be the conventional way of treating such cases. Although these artificial therapies are commonly used for tooth loss rehabilitation, they are still less conservative, show less biocompatibility and fail to restore the natural biological and physiological function. Adding to that, they are considered to be costly due to the risk of failure and they also require regular maintenance. Regenerative dentistry is currently considered a novel therapeutic concept with high potential for a complete recovery of the natural function and esthetics of teeth. Biological-cell based dental therapies would involve replacement of teeth by using stem cells that will ultimately grow a bioengineered tooth, thereby restoring both the biological and physiological functions of the natural tooth, and are considered to be the ultimate goal in regenerative dentistry. In this review, various stem cell-based therapeutic approaches for tooth organ bioengineering will be discussed.
Collapse
Affiliation(s)
- Hasan A Jamal
- Independent Researcher, Ibrahim Al- Jaffali, Awali, Mecca 21955, Saudi Arabia.
| |
Collapse
|