1
|
Zhang WH, Xiang WY, Yi L, Fang R. The status and hotspot analysis of research on extracellular vesicles and osteoarthritis: a bibliometric analysis. Front Pharmacol 2025; 16:1484437. [PMID: 40230694 PMCID: PMC11994722 DOI: 10.3389/fphar.2025.1484437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 03/19/2025] [Indexed: 04/16/2025] Open
Abstract
Background Degenerative joint disease, known as osteoarthritis (OA), is characterized by pain, swelling, and decreased mobility. The illness has a major negative influence on patients' quality of life and is common around the world, especially among older people. Nevertheless, there are insufficient possibilities for early diagnosis and therapy. Extracellular vesicles, or EVs, control the immune response, tissue healing, and cellular communication. Methods This work offers a bibliometric representation of the areas of focus and correlations between extracellular vesicles and osteoarthritis. We searched for osteoarthritis and extracellular vesicles in publications in the Web of Science Core Collection (WoSCC) database. Bibliometrics, an R package, CiteSpace 6.1. R2, and VOSviewer 1.6.17 were used to perform bibliometric analyses of concentration fields, trends, and relevant factors. Results 944 papers from 59 nations were published; the countries that contributed the most to the field were China, the USA, and Italy. Professors Laura and Enrico are the top contributors. Sichuan University, Istituto Ortopedico Galeazzi, and Shanghai Jiao Tong University are the top three universities. The International Journal of Molecular Sciences is an excellent publication. Exosome, expression, knee osteoarthritis, extracellular vesicle, mesenchymal stem cell, osteoarthritis, and inflammation are the most often occurring keywords. Conclusion These results suggest areas of interest and focus for future research on EVs and OA. This trend suggests that the volume of literature on OA and EVs will continue to rise, with more research being published in the future. This study helps scholars understand current research hotspots in the field and may inspire future research.
Collapse
Affiliation(s)
- Wen Hao Zhang
- The Fourth Clinical College of Xinjiang Medical University, Urumqi, China
| | - Wen Yuan Xiang
- The Fourth Clinical College of Xinjiang Medical University, Urumqi, China
- Department of Orthopaedic, Institute of Traditional Chinese Medicine Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Department of Orthopaedic, Xinjiang Uygur Autonomous Region Institute of Traditional Chinese Medicine, Urumqi, China
- Department of orthopaedic, The Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Lin Yi
- The Fourth Clinical College of Xinjiang Medical University, Urumqi, China
- Department of Orthopaedic, Institute of Traditional Chinese Medicine Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Department of Orthopaedic, Xinjiang Uygur Autonomous Region Institute of Traditional Chinese Medicine, Urumqi, China
- Department of orthopaedic, The Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Rui Fang
- The Fourth Clinical College of Xinjiang Medical University, Urumqi, China
- Department of Orthopaedic, Institute of Traditional Chinese Medicine Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Department of Orthopaedic, Xinjiang Uygur Autonomous Region Institute of Traditional Chinese Medicine, Urumqi, China
- Department of orthopaedic, The Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
2
|
Benke EH, Boegner DJ, Bogusch AM, White IM. Sample-to-answer detection of miRNA from whole blood using thermally responsive alkane partitions. Biosens Bioelectron 2025; 271:117052. [PMID: 39675942 DOI: 10.1016/j.bios.2024.117052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/27/2024] [Accepted: 12/08/2024] [Indexed: 12/17/2024]
Abstract
Circulating miRNA offers a tremendous opportunity as a biomarker paradigm for many applications in disease diagnostics, including point-of-care diagnostics for global health needs. However, despite the numerous miRNA detection schemes reported, there still does not exist a solution for highly sensitive sample-to-answer detection of miRNA directly from complex samples, such as whole blood. We recently developed thermally responsive alkane partitions (TRAPs), which - when combined with magnetic microbeads - enable the complete assay automation from whole blood. Here we apply TRAPs with ligation-LAMP to automate the detection of miRNA in whole blood samples. MBs and a TRAP enable the automated purification of miRNA from blood, while a novel displacement-ligation method is utilized to trigger the ligation-LAMP reaction, which is streamlined into one step by a second TRAP. Using easily manufacturable TRAP-enabled assay cassettes and a custom low-cost handheld instrument, we report the specific detection of miR-155 at concentrations as low as 15 fM in whole blood with no intermediate steps by the user. This new approach creates the opportunity for point-of-care miRNA-based diagnostics with global health applications.
Collapse
Affiliation(s)
- Evan H Benke
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - David J Boegner
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Alejandra M Bogusch
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Ian M White
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
3
|
Yuan Y, Xiao Y, Zhao J, Zhang L, Li M, Luo L, Jia Y, Wang K, Chen Y, Wang P, Wang Y, Wei J, Shen K, Hu D. Exosomes as novel biomarkers in sepsis and sepsis related organ failure. J Transl Med 2024; 22:1078. [PMID: 39609831 PMCID: PMC11604007 DOI: 10.1186/s12967-024-05817-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/29/2024] [Indexed: 11/30/2024] Open
Abstract
Sepsis, a severe and life-threatening condition arising from a dysfunctional host response to infection, presents considerable challenges to the health care system and is characterized by high mortality rates and substantial economic costs. Exosomes have garnered attention as potential diagnostic markers because of their capacity to mirror the pathophysiological milieu of sepsis. This discourse reviews the progression of sepsis classification from Sepsis 1.0 to Sepsis 3.0, highlighting the imperative for sensitive and specific biomarkers to facilitate timely diagnosis and optimize patient outcomes. Existing biomarkers, such as procalcitonin (PCT) and C-reactive protein (CRP), exhibit certain limitations, thereby prompting the quest for more dependable diagnostic indicators. Exosomal cargoes, which encompass proteins and miRNAs, present a trove of biomarker candidates, attributable to their stability, pervasive presence, and indicative nature of the disease status. The potential of exosomal biomarkers in the identification of sepsis-induced organ damage, including cardiomyopathy, acute kidney injury, and acute lung injury, is emphasized, as they provide real-time insights into cardiac and renal impairments. Despite promising prospects, hurdles persist in the standardization of exosome extraction and the need for extensive clinical trials to validate their efficacy. The combination of biomarker development and sophisticated exosome detection techniques represents a pioneering strategy in the realm of sepsis diagnosis and management, underscoring the significance of further research and clinical validation.
Collapse
Affiliation(s)
- Yixuan Yuan
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an, 710032, China
| | - Yujie Xiao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an, 710032, China
| | - Jiazhen Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Lixia Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an, 710032, China
| | - Mengyang Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an, 710032, China
| | - Liang Luo
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an, 710032, China
| | - Yanhui Jia
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an, 710032, China
| | - Kejia Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an, 710032, China
| | - Yuxi Chen
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an, 710032, China
| | - Peng Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an, 710032, China
| | - Yuhang Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an, 710032, China
| | - Jingtao Wei
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an, 710032, China
| | - Kuo Shen
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an, 710032, China.
- Air Force Hospital of Western Theater Command, Gongnongyuan Street #1, Chengdu, 610065, China.
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an, 710032, China.
| |
Collapse
|
4
|
Yan Y, Liao L. MicroRNA Expression Profile in Patients Admitted to ICU as Novel and Reliable Approach for Diagnostic and Therapeutic Purposes. Mol Biotechnol 2024; 66:1357-1375. [PMID: 37314613 DOI: 10.1007/s12033-023-00767-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/06/2023] [Indexed: 06/15/2023]
Abstract
The ability to detect early metabolic changes in patients who have an increased mortality risk in the intensive care units (ICUs) could increase the likelihood of predicting recovery patterns and assist in disease management. Markers that can predict the disease progression of patients in the ICU might also be beneficial for improving their medical profile. Although biomarkers have been used in the ICU more frequently in recent years, the clinical use of most of them is limited. A wide range of biological processes are influenced by microRNAs (miRNAs) that modulate the translation and stability of specific mRNAs. Studies suggest that miRNAs may serve as a diagnostic and therapeutic biomarker in ICUs by profiling miRNA dysregulation in patient samples. To improve the predictive value of biomarkers for ICU patients, researchers have proposed both investigating miRNAs as novel biomarkers and combining them with other clinical biomarkers. Herein, we discuss recent approaches to the diagnosis and prognosis of patients admitted to an ICU, highlighting the use of miRNAs as novel and robust biomarkers for this purpose. In addition, we discuss emerging approaches to biomarker development and ways to improve the quality of biomarkers so that patients in ICU get the best outcomes possible.
Collapse
Affiliation(s)
- Youqin Yan
- ICU Department, People's Hospital of Changshan, Changshan, China
| | - Linjun Liao
- ICU Department, People's Hospital of Changshan, Changshan, China.
| |
Collapse
|
5
|
Behroozizad N, Mahmoodpoor A, Shadvar K, Ardebil RA, Pahnvar AJ, Sohrabifar N, Kazeminasab S. Evaluation of circulating levels of miR-135a and miR-193 in patients with sepsis. Mol Biol Rep 2024; 51:282. [PMID: 38324210 DOI: 10.1007/s11033-024-09225-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND Sepsis is a life-threatening condition where early diagnosis and prognostic awareness provide guidance for selecting the appropriate treatment strategies. A wide variety of biomarker-based studies in clinical medicine provide new insights into personalized medicine for sepsis patients. MiRNAs are endogenous non-coding RNA molecules that have been acting as great potential diagnostic, prognostic and therapeutic biomarkers in various diseases. METHODS AND RESULTS In the present study, the expression levels of two selected miRNAs, including miR-135a and miR-193, were evaluated for their prognostic potential in patients with sepsis. The circulating levels of miRNAs were quantified by quantitative PCR (qPCR) in patients with sepsis (n = 100) and age- and sex-matched healthy controls (n = 100). Statistical findings confirmed the valuable prognostic potential of miR-135a in patients with sepsis, while no significant difference was found between the miR-193 expression level in the patients with sepsis and the controls. CONCLUSIONS Circulating levels of miRNA-135a can serve a the prognostic biomarker for patients with sepsis. These findings highlight the importance of miRNAs as signatures in the personalized managements of sepsis.
Collapse
Affiliation(s)
- Nazila Behroozizad
- Department of Anesthesiology and Intensive care, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Ata Mahmoodpoor
- Department of Anesthesiology and Intensive care, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Kamran Shadvar
- Department of Anesthesiology and Intensive care, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Roghayeh Asghari Ardebil
- Department of Anesthesiology and Intensive care, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Aynour Jalali Pahnvar
- Department of Biological Sciences, Faculty of Basic Sciences, Higher Education Institute of Rab- Rashid, Tabriz, Iran
| | - Nasim Sohrabifar
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Somayeh Kazeminasab
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Sadr Laboratories Group, Medical Genetics Laboratory, Tabriz, Iran.
| |
Collapse
|
6
|
Lin Y, Ma L, Dan H, Chen G, Dai J, Xu L, Liu Y. MiR-107-3p Knockdown Alleviates Endothelial Injury in Sepsis via Kallikrein-Related Peptidase 5. J Surg Res 2023; 292:264-274. [PMID: 37666089 DOI: 10.1016/j.jss.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 06/28/2023] [Accepted: 07/02/2023] [Indexed: 09/06/2023]
Abstract
INTRODUCTION Endothelial injury is a major characteristic of sepsis and contributes to sepsis-induced multiple-organ dysfunction. In this study, we investigated the role of miR-107-3p in sepsis-induced endothelial injury. METHODS Human umbilical vein endothelial cells (HUVECs) were exposed to 20 μg/mL of lipopolysaccharide (LPS) for 6-48 h. The levels of miR-107-3p and kallikrein-related peptidase 5 (KLK5) were examined. HUVECs were treated with LPS for 12 h and subsequently transfected with miR-107-3p inhibitor, KLK5 siRNA, or cotransfected with KLK5 siRNA and miR-107-3p inhibitor/negative control inhibitor. Cell survival, apoptosis, invasion, cell permeability, inflammatory response, and the Toll-like receptor 4/nuclear factor κB signaling were evaluated. In addition, the relationship between miR-107-3p and KLK5 expression was predicted and verified. RESULTS LPS significantly elevated miR-107-3p levels, which peaked at 12 h. Conversely, the KLK5 level was lower in the LPS group than in the control group and was lowest at 12 h. MiR-107-3p knockdown significantly attenuated reductions in cell survival and invasion, apoptosis promotion, hyperpermeability and inflammation induction, and activation of the NF-κB signaling caused by LPS. KLK5 knockdown had the opposite effect. Additionally, KLK5 was demonstrated as a target of miR-107-3p. MiR-107-3p knockdown partially reversed the effects of KLK5 depletion in LPS-activated HUVECs. CONCLUSIONS Our findings indicate that miR-107-3p knockdown may protect against sepsis-induced endothelial cell injury by targeting KLK5. This study identified a novel therapeutic target for sepsis-induced endothelial injury.
Collapse
Affiliation(s)
- Yongbo Lin
- Department of Cardiology, People's Hospital of Dongxihu District, Wuhan, China
| | - Li Ma
- Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Hanliang Dan
- Department of Cardiology, People's Hospital of Dongxihu District, Wuhan, China
| | - Gang Chen
- Department of ICU, Wuhan Wuchang Hospital, Wuhan, China
| | - Jian Dai
- Department of ICU, Wuhan Wuchang Hospital, Wuhan, China
| | - Liang Xu
- Department of ICU, Wuhan Wuchang Hospital, Wuhan, China.
| | - Yuqi Liu
- Department of Respiratory and Critical Care Medicine, 2nd Affiliated Hospital of Fujian Medical University, Quanzhou, China.
| |
Collapse
|
7
|
Gan Y, Zhao G, Wang Z, Zhang X, Wu MX, Lu M. Bacterial Membrane Vesicles: Physiological Roles, Infection Immunology, and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301357. [PMID: 37357142 PMCID: PMC10477901 DOI: 10.1002/advs.202301357] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/19/2023] [Indexed: 06/27/2023]
Abstract
Bacterial or fungal membrane vesicles, traditionally considered as microbial metabolic wastes, are secreted mainly from the outer membrane or cell membrane of microorganisms. However, recent studies have shown that these vesicles play essential roles in direct or indirect communications among microorganisms and between microorganisms and hosts. This review aims to provide an updated understanding of the physiological functions and emerging applications of bacterial membrane vesicles, with a focus on their biogenesis, mechanisms of adsorption and invasion into host cells, immune stimulatory effects, and roles in the much-concerned problem of bacterial resistance. Additionally, the potential applications of these vesicles as biomarkers, vaccine candidates, and drug delivery platforms are discussed.
Collapse
Affiliation(s)
- Yixiao Gan
- Department of Transfusion MedicineHuashan HospitalFudan UniversityShanghai200040P. R. China
| | - Gang Zhao
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200240P. R. China
| | - Zhicheng Wang
- Department of Transfusion MedicineHuashan HospitalFudan UniversityShanghai200040P. R. China
| | - Xingcai Zhang
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
| | - Mei X. Wu
- Wellman Center for PhotomedicineMassachusetts General HospitalDepartment of DermatologyHarvard Medical School, 50 Blossom StreetBostonMA02114USA
| | - Min Lu
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200240P. R. China
| |
Collapse
|
8
|
Chouik Y, Lebossé F, Plissonnier ML, Lega JC, Pradat P, Antonini T, Subic M, Hartig-Lavie K, Erard D, Villeret F, Guichon C, Payancé A, Radenne S, Rautou PE, Zoulim F, Levrero M. Circulating microRNAs improve bacterial infection diagnosis and overall survival prediction in acute decompensation of liver cirrhosis. iScience 2023; 26:107427. [PMID: 37575179 PMCID: PMC10415934 DOI: 10.1016/j.isci.2023.107427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/23/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
Bacterial infections are the most frequent precipitating event in patients with acute decompensation of cirrhosis (AD) and are associated with high mortality. Early diagnosis is challenging due to cirrhosis-related systemic inflammation. Here we investigated the potential of circulating microRNAs to diagnose bacterial infections and predict survival in cirrhotic patients with AD. High throughput profiling of circulating microRNAs was performed using the Nanostring technology in 57 AD patients and 24 patients with compensated cirrhosis (CC). Circulating miRs profiling showed that: (a) miRs differentially detected in AD vs. CC were mostly down-regulated; (b) a composite score including absolute neutrophil count, C reactive protein and miR-362-3p could diagnose bacterial infection with an excellent performance (AUC of 0.825 [95% CI = 0.671-0.980; p < 0.001]); (c) a composite score including miR-382-5p, miR-592 and MELD-Na improved 6-month survival prediction. Circulating miRs are strongly dysregulated in patients with AD and may help to improve bacterial infection diagnosis and survival prediction.
Collapse
Affiliation(s)
- Yasmina Chouik
- Cancer Research Center of Lyon (CRCL), INSERM U1052, CNRS UMR5286, Lyon, France
- Department of Hepatology, Hôpital Croix-Rousse, Hospices Civils de Lyon, Lyon, France
- University of Lyon Claude Bernard 1 (UCLB1), Lyon, France
| | - Fanny Lebossé
- Cancer Research Center of Lyon (CRCL), INSERM U1052, CNRS UMR5286, Lyon, France
- Department of Hepatology, Hôpital Croix-Rousse, Hospices Civils de Lyon, Lyon, France
- University of Lyon Claude Bernard 1 (UCLB1), Lyon, France
| | | | - Jean-Christophe Lega
- Department of Internal Medicine, Hôpital Lyon Sud, Hospices Civils de Lyon, Lyon, France
| | - Pierre Pradat
- Clinical Research Center, GHN, Hospices Civils de Lyon, Lyon, France
| | - Teresa Antonini
- Department of Hepatology, Hôpital Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | | | - Kerstin Hartig-Lavie
- Department of Hepatology, Hôpital Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Domitille Erard
- Department of Hepatology, Hôpital Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - François Villeret
- Department of Hepatology, Hôpital Croix-Rousse, Hospices Civils de Lyon, Lyon, France
- University of Lyon Claude Bernard 1 (UCLB1), Lyon, France
| | - Céline Guichon
- Department of Anesthesiology and Intensive Care, Hôpital Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Audrey Payancé
- Université Paris-Cité, Inserm, Centre de recherche sur l’inflammation, UMR 1149, Paris, France
| | - Sylvie Radenne
- Department of Hepatology, Hôpital Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Pierre-Emmanuel Rautou
- Université Paris-Cité, Inserm, Centre de recherche sur l’inflammation, UMR 1149, Paris, France
- Service d'Hépatologie, AP-HP, Hôpital Beaujon, DMU DIGEST, Centre de Référence des Maladies Vasculaires du Foie, FILFOIE, ERN RARE-LIVER, Clichy, France
| | - Fabien Zoulim
- Cancer Research Center of Lyon (CRCL), INSERM U1052, CNRS UMR5286, Lyon, France
- Department of Hepatology, Hôpital Croix-Rousse, Hospices Civils de Lyon, Lyon, France
- University of Lyon Claude Bernard 1 (UCLB1), Lyon, France
| | - Massimo Levrero
- Cancer Research Center of Lyon (CRCL), INSERM U1052, CNRS UMR5286, Lyon, France
- Department of Hepatology, Hôpital Croix-Rousse, Hospices Civils de Lyon, Lyon, France
- University of Lyon Claude Bernard 1 (UCLB1), Lyon, France
- Department of Medicine SCIAC and the Italian Institute of Technology (IIT) Center for Life Nanosciences (CLNS), University of Rome La Sapienza, Rome, Italy
| |
Collapse
|
9
|
Martino E, D'Onofrio N, Balestrieri A, Mele L, Sardu C, Marfella R, Campanile G, Balestrieri ML. MiR-15b-5p and PCSK9 inhibition reduces lipopolysaccharide-induced endothelial dysfunction by targeting SIRT4. Cell Mol Biol Lett 2023; 28:66. [PMID: 37587410 PMCID: PMC10428548 DOI: 10.1186/s11658-023-00482-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/01/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Endothelial dysfunction and deregulated microRNAs (miRNAs) participate in the development of sepsis and are associated with septic organ failure and death. Here, we explored the role of miR-15b-5p on inflammatory pathways in lipopolysaccharide (LPS)-treated human endothelial cells, HUVEC and TeloHAEC. METHODS The miR-15b-5p levels were evaluated in LPS-stimulated HUVEC and TeloHAEC cells by quantitative real-time PCR (qRT-PCR). Functional experiments using cell counting kit-8 (CCK-8), transfection with antagomir, and enzyme-linked immunosorbent assays (ELISA) were conducted, along with investigation of pyroptosis, apoptosis, autophagy, and mitochondrial reactive oxygen species (ROS) by cytofluorometric analysis and verified by fluorescence microscopy. Sirtuin 4 (SIRT4) levels were detected by ELISA and immunoblotting, while proprotein convertase subtilisin-kexin type 9 (PCSK9) expression was determined by flow cytometry (FACS) and immunofluorescence analyses. Dual-luciferase reporter evaluation was performed to confirm the miR-15b-5p-SIRT4 interaction. RESULTS The results showed a correlation among miR-15b-5p, PCSK9, and SIRT4 levels in septic HUVEC and TeloHAEC. Inhibition of miR-15b-5p upregulated SIRT4 content, alleviated sepsis-related inflammatory pathways, attenuated mitochondrial stress, and prevented apoptosis, pyroptosis, and autophagic mechanisms. Finally, a PCSK9 inhibitor (i-PCSK9) was used to analyze the involvement of PCSK9 in septic endothelial injury. i-PCSK9 treatment increased SIRT4 protein levels, opposed the septic inflammatory cascade leading to pyroptosis and autophagy, and strengthened the protective role of miR-15b-5p inhibition. Increased luciferase signal validated the miR-15b-5p-SIRT4 binding. CONCLUSIONS Our in vitro findings suggested the miR-15b-5p-SIRT4 axis as a suitable target for LPS-induced inflammatory pathways occurring in sepsis, and provide additional knowledge on the beneficial effect of i-PCSK9 in preventing vascular damage by targeting SIRT4.
Collapse
Affiliation(s)
- Elisa Martino
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138, Naples, Italy
| | - Nunzia D'Onofrio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138, Naples, Italy.
| | - Anna Balestrieri
- Food Safety Department, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055, Portici, Italy
| | - Luigi Mele
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Via Luciano Armanni 5, 80138, Naples, Italy
| | - Celestino Sardu
- Department of Advanced Clinical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Miraglia, 80138, Naples, Italy
| | - Raffaele Marfella
- Department of Advanced Clinical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Miraglia, 80138, Naples, Italy
| | - Giuseppe Campanile
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via F. Delpino 1, 80137, Naples, Italy
| | - Maria Luisa Balestrieri
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138, Naples, Italy
| |
Collapse
|
10
|
Jiao Y, Wai Tong CS, Rainer TH. An appraisal of studies using mouse models to assist the biomarker discovery for sepsis prognosis. Heliyon 2023; 9:e17770. [PMID: 37456011 PMCID: PMC10344760 DOI: 10.1016/j.heliyon.2023.e17770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Clinicians need reliable outcome predictors to improve the prognosis of septic patients. Mouse models are widely used in sepsis research. We aimed to review how mouse models were used to search for novel prognostic biomarkers of sepsis in order to optimize their use for future biomarker discovery. Methods We searched PubMed from 2012 to July 2022 using "((sepsis) AND (mice)) AND ((prognosis) OR (prognostic biomarker))". Results A total of 412 publications were retrieved. We selected those studies in which mouse sepsis was used to demonstrate prognostic potential of biomarker candidates and/or assist the subsequent evaluation in human sepsis for further appraisal. The most frequent models were lipopolysaccharide (LPS) injection and caecal ligation and puncture (CLP) using young male mice. Discovery technologies applied on mice include setting survival and nonsurvivable groups, detecting changes of biomarker levels and measuring physiological parameters during sepsis. None of the biomarkers achieved sufficient clinical performance for clinical use. Conclusions The number of studies and strategies using mouse models to discover prognostic biomarkers of sepsis are limited. Current mouse models need to be further optimized to better conform to human sepsis. Current biomarker platforms do not achieve predictive performance for clinical use.
Collapse
|
11
|
Chen Y, Gong H, Tang D, Yu L, Long S, Zheng B, Luo D, Cai A. Liver proteomic analysis reveals the key proteins involved in host immune response to sepsis. PeerJ 2023; 11:e15294. [PMID: 37255592 PMCID: PMC10226476 DOI: 10.7717/peerj.15294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/04/2023] [Indexed: 06/01/2023] Open
Abstract
Background Sepsis is a serious infection-induced response in the host, which can result in life-threatening organ dysfunction. It is of great importance to unravel the relationship between sepsis and host immune response and its mechanisms of action. Liver is one of the most vulnerable organs in sepsis, however, the specific pathogenesis of septic liver injury has not been well understood at the protein level. Methods A total of 12 healthy Sprague-Dawley (SD) male rats aged from 6 to 8 weeks were adaptively housed in individual cages in the specific pathogen free animal room. These lab rats were grouped into two groups: treatment (N = 9) and control (N = 3) groups; only three mice from the treatment group survived and were used for subsequent experiments. A TMT-based proteomic analysis for liver tissue was performed in the septic rat model. Results A total of 37,012 unique peptides were identified, and then 6,166 proteins were determined, among which 5,701 were quantifiable. Compared to the healthy control group, the septic rat group exhibited 162 upregulated and 103 downregulated differentially expressed proteins (DEPs). The upregulated and downregulated DEPs were the most significantly enriched into the complement and coagulation cascades and metabolic pathways. Protein-protein interaction (PPI) analysis further revealed that the upregulated and downregulated DEPs each clustered in a PPI network. Several highly connected upregulated and downregulated DEPs were also enriched into the complement and coagulation cascades pathways and metabolic pathways, respectively. The parallel reaction monitoring (PRM) results of the selected DEPs were consistent with the results of the TMT analysis, supporting the proteomic data. Conclusion Our findings highlight the roles of complement and coagulation cascades and metabolic pathways that may play vital roles in the host immune response. The DEPs may serve as clinically potential treatment targets for septic liver injury.
Collapse
Affiliation(s)
- Yingying Chen
- Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Hui Gong
- Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Donge Tang
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, China
| | - Lan Yu
- Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Shoubin Long
- Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Bao Zheng
- Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Dixian Luo
- Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Anji Cai
- Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
12
|
Cánovas-Cervera I, Nacher-Sendra E, Osca-Verdegal R, Dolz-Andrés E, Beltrán-García J, Rodríguez-Gimillo M, Ferrando-Sánchez C, Carbonell N, García-Giménez JL. The Intricate Role of Non-Coding RNAs in Sepsis-Associated Disseminated Intravascular Coagulation. Int J Mol Sci 2023; 24:ijms24032582. [PMID: 36768905 PMCID: PMC9916911 DOI: 10.3390/ijms24032582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Disseminated Intravascular Coagulation (DIC) is a type of tissue and organ dysregulation in sepsis, due mainly to the effect of the inflammation on the coagulation system. Unfortunately, the underlying molecular mechanisms that lead to this disorder are not fully understood. Moreover, current biomarkers for DIC, including biological and clinical parameters, generally provide a poor diagnosis and prognosis. In recent years, non-coding RNAs have been studied as promising and robust biomarkers for a variety of diseases. Thus, their potential in the diagnosis and prognosis of DIC should be further studied. Specifically, the relationship between the coagulation cascade and non-coding RNAs should be established. In this review, microRNAs, long non-coding RNAs, and circular RNAs are studied in relation to DIC. Specifically, the axis between these non-coding RNAs and the corresponding affected pathway has been identified, including inflammation, alteration of the coagulation cascade, and endothelial damage. The main affected pathway identified is PI3K/AKT/mTOR axis, where several ncRNAs participate in its regulation, including miR-122-5p which is sponged by circ_0005963, ciRS-122, and circPTN, and miR-19a-3p which is modulated by circ_0000096 and circ_0063425. Additionally, both miR-223 and miR-24 were found to affect the PI3K/AKT pathway and were regulated by lncGAS5 and lncKCNQ1OT1, respectively. Thus, this work provides a useful pipeline of inter-connected ncRNAs that future research on their impact on DIC can further explore.
Collapse
Affiliation(s)
- Irene Cánovas-Cervera
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
- Health Research Institute INCLIVA, 46010 Valencia, Spain
| | - Elena Nacher-Sendra
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
- Health Research Institute INCLIVA, 46010 Valencia, Spain
| | - Rebeca Osca-Verdegal
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
- Health Research Institute INCLIVA, 46010 Valencia, Spain
- Center for Biomedical Research Network on Rare Diseases (CIBERER), Carlos III Health Institute, 46010 Valencia, Spain
| | - Enric Dolz-Andrés
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| | - Jesús Beltrán-García
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
- Health Research Institute INCLIVA, 46010 Valencia, Spain
- Center for Biomedical Research Network on Rare Diseases (CIBERER), Carlos III Health Institute, 46010 Valencia, Spain
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, CA 92093, USA
| | - María Rodríguez-Gimillo
- Health Research Institute INCLIVA, 46010 Valencia, Spain
- Intensive Care Unit, Clinical University Hospital of Valencia, 46010 Valencia, Spain
| | - Carolina Ferrando-Sánchez
- Health Research Institute INCLIVA, 46010 Valencia, Spain
- Intensive Care Unit, Clinical University Hospital of Valencia, 46010 Valencia, Spain
| | - Nieves Carbonell
- Health Research Institute INCLIVA, 46010 Valencia, Spain
- Intensive Care Unit, Clinical University Hospital of Valencia, 46010 Valencia, Spain
| | - José Luis García-Giménez
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
- Health Research Institute INCLIVA, 46010 Valencia, Spain
- Center for Biomedical Research Network on Rare Diseases (CIBERER), Carlos III Health Institute, 46010 Valencia, Spain
- Correspondence: ; Tel.: +34-963-864-646
| |
Collapse
|
13
|
Formosa A, Turgeon P, dos Santos CC. Role of miRNA dysregulation in sepsis. Mol Med 2022; 28:99. [PMID: 35986237 PMCID: PMC9389495 DOI: 10.1186/s10020-022-00527-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/05/2022] [Indexed: 11/18/2022] Open
Abstract
Background Sepsis is defined as a state of multisystem organ dysfunction secondary to a dysregulated host response to infection and causes millions of deaths worldwide annually. Novel ways to counteract this disease are needed and such tools may be heralded by a detailed understanding of its molecular pathogenesis. MiRNAs are small RNA molecules that target mRNAs to inhibit or degrade their translation and have important roles in several disease processes including sepsis. Main body The current review adopted a strategic approach to analyzing the widespread literature on the topic of miRNAs and sepsis. A pubmed search of “miRNA or microRNA or small RNA and sepsis not review” up to and including January 2021 led to 1140 manuscripts which were reviewed. Two hundred and thirty-three relevant papers were scrutinized for their content and important themes on the topic were identified and subsequently discussed, including an in-depth look at deregulated miRNAs in sepsis in peripheral blood, myeloid derived suppressor cells and extracellular vesicles. Conclusion Our analysis yielded important observations. Certain miRNAs, namely miR-150 and miR-146a, have consistent directional changes in peripheral blood of septic patients across numerous studies with strong data supporting a role in sepsis pathogenesis. Furthermore, a large body of literature show miRNA signatures of clinical relevance, and lastly, many miRNAs deregulated in sepsis are associated with the process of endothelial dysfunction. This review offers a widespread, up-to-date and detailed discussion of the role of miRNAs in sepsis and is meant to stimulate further work in the field due to the potential of these small miRNAs in prompt diagnostics, prognostication and therapeutic agency. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00527-z.
Collapse
|
14
|
Breakthrough of extracellular vesicles in pathogenesis, diagnosis and treatment of osteoarthritis. Bioact Mater 2022; 22:423-452. [PMID: 36311050 PMCID: PMC9588998 DOI: 10.1016/j.bioactmat.2022.10.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Osteoarthritis (OA) is a highly prevalent whole-joint disease that causes disability and pain and affects a patient's quality of life. However, currently, there is a lack of effective early diagnosis and treatment. Although stem cells can promote cartilage repair and treat OA, problems such as immune rejection and tumorigenicity persist. Extracellular vesicles (EVs) can transmit genetic information from donor cells and mediate intercellular communication, which is considered a functional paracrine factor of stem cells. Increasing evidences suggest that EVs may play an essential and complex role in the pathogenesis, diagnosis, and treatment of OA. Here, we introduced the role of EVs in OA progression by influencing inflammation, metabolism, and aging. Next, we discussed EVs from the blood, synovial fluid, and joint-related cells for diagnosis. Moreover, we outlined the potential of modified and unmodified EVs and their combination with biomaterials for OA therapy. Finally, we discuss the deficiencies and put forward the prospects and challenges related to the application of EVs in the field of OA.
Collapse
|
15
|
Antonakos N, Gilbert C, Théroude C, Schrijver IT, Roger T. Modes of action and diagnostic value of miRNAs in sepsis. Front Immunol 2022; 13:951798. [PMID: 35990654 PMCID: PMC9389448 DOI: 10.3389/fimmu.2022.951798] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Sepsis is a clinical syndrome defined as a dysregulated host response to infection resulting in life-threatening organ dysfunction. Sepsis is a major public health concern associated with one in five deaths worldwide. Sepsis is characterized by unbalanced inflammation and profound and sustained immunosuppression, increasing patient susceptibility to secondary infections and mortality. microRNAs (miRNAs) play a central role in the control of many biological processes, and deregulation of their expression has been linked to the development of oncological, cardiovascular, neurodegenerative and metabolic diseases. In this review, we discuss the role of miRNAs in sepsis pathophysiology. Overall, miRNAs are seen as promising biomarkers, and it has been proposed to develop miRNA-based therapies for sepsis. Yet, the picture is not so straightforward because of the versatile and dynamic features of miRNAs. Clearly, more research is needed to clarify the expression and role of miRNAs in sepsis, and to promote the use of miRNAs for sepsis management.
Collapse
Affiliation(s)
| | | | | | | | - Thierry Roger
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
16
|
Wang H, Zhang C, Zhang C, Wang Y, Zhai K, Tong Z. MicroRNA-122-5p regulates coagulation and inflammation through MASP1 and HO-1 genes. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 100:105268. [PMID: 35293311 DOI: 10.1016/j.meegid.2022.105268] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/28/2022] [Accepted: 03/09/2022] [Indexed: 04/11/2023]
Abstract
MiR-122-5p is a diagnostic and prognostic biomarker of sepsis and is correlated with coagulation abnormalities in sepsis. However, its functional aspects remain unknown. This study applied bioinformatics analysis to evaluate the coagulation-related target genes for miR-122-5p. THP-1, HUVEC, and LO-2 cell lines were used in this study. MiR-122-5p mimics were transfected into the three previously mentioned cell lines, which helped in detecting mRNA and protein levels by qRT-PCR and western blotting, respectively. Serum samples from 84 sepsis patients were collected to evaluate target gene code proteins. The protein and mRNA levels of Heme oxygenase1(HO-1), IL-1β, IL-6, monocyte chemoattractant protein 1(MCP-1), and TNF-α were also evaluated in three cell lines. Mannan binding lectin serine peptidase 1(MASP1) was a direct target gene of miR-122-5p, and levels of MASP1, C3, and C4 were all significantly lower in the sepsis with disseminated intravascular coagulopathy (DIC) group than in the sepsis without DIC group. MiR-122-5p mimics could down-regulate HO-1 in the three cell lines. HO-1, IL-1β, IL-6, MCP-1, and TNF-α gene and protein levels were decreased after miR-122-5p mimics were added. MiR-122-5p regulated coagulation and inflammation through MASP1 and HO-1, respectively.
Collapse
Affiliation(s)
- Huijuan Wang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing 100020, China
| | - Chunfang Zhang
- Department of Anesthesiology, Pain Medicine and Critical Care Medicine, Aviation General Hospital of China Medical University and Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing 100012, China
| | - Chao Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing 100020, China
| | - Yishan Wang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing 100020, China
| | - Kan Zhai
- Department of Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100012, China
| | - Zhaohui Tong
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing 100020, China.
| |
Collapse
|
17
|
Alkharfy K, Ahmad A, Jan B, Raish M, Rehman M. Thymoquinone modulates the expression of sepsis‑related microRNAs in a CLP model. Exp Ther Med 2022; 23:395. [PMID: 35495595 PMCID: PMC9047025 DOI: 10.3892/etm.2022.11322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Sepsis is a clinical syndrome common in critical care settings. In the present study, the therapeutic effect of thymoquinone (TQ) on the expression of sepsis-related microRNAs (miRNAs/miRs), levels of inflammatory markers, organ dysfunction and mortality were investigated in a cecal ligation and puncture (CLP) rat model. A single dose of TQ (1 mg/kg) was administered to animals 24 h after CLP and the mortality rate was assessed up to 7 days following the induction of sepsis. In addition, blood samples were collected at different time points and the expression levels of miRNAs (i.e. miR-16, miR-21, miR-27a and miR-34a) were examined, along with the levels of inflammatory cytokines (i.e. TNF-α, IL-1α, IL-2, IL-6 and IL-10) and sepsis markers (i.e. C-reactive protein, endothelial cell-specific molecule-1, VEGF, procalcitonin and D-dimer). Liver, kidney and lung tissues were also collected for further histological examination. Treatment with TQ significantly downregulated the miRNA expression levels, as well as the levels of inflammatory cytokines and early-stage sepsis biomarkers by 30-70% at 12-36 h (P<0.05). Furthermore, CLP model rats treated with TQ exhibited an ~80% increase in survival rate compared with that in the untreated CLP group. In addition, TQ induced the preservation of organ function and structure. In conclusion, the present study demonstrated a promising therapeutic effect of TQ against the sequelae of sepsis.
Collapse
Affiliation(s)
- Khalid Alkharfy
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Basit Jan
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Muneeb Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
18
|
Jouza M, Bohosova J, Stanikova A, Pecl J, Slaby O, Jabandziev P. MicroRNA as an Early Biomarker of Neonatal Sepsis. Front Pediatr 2022; 10:854324. [PMID: 35615626 PMCID: PMC9125080 DOI: 10.3389/fped.2022.854324] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/18/2022] [Indexed: 12/24/2022] Open
Abstract
Sepsis is a major cause of lethality in neonatal intensive care units. Despite significant advances in neonatal care and growing scientific knowledge about the disease, 4 of every 10 infants born in developed countries and suffering from sepsis die or experience considerable disability, including substantial and permanent neurodevelopmental impairment. Pharmacological treatment strategies for neonatal sepsis remain limited and mainly based upon early initiation of antibiotics and supportive treatment. In this context, numerous clinical and serum-based markers have been evaluated for diagnosing sepsis and evaluating its severity and etiology. MicroRNAs (miRNAs) do not encode for proteins but regulate gene expression by inhibiting the translation or transcription of their target mRNAs. Recently, it was demonstrated in adult patients that miRNAs are released into the circulation and that the spectrum of circulating miRNAs is altered during various pathologic conditions, such as inflammation, infection, and sepsis. Here, we summarize current findings on the role of circulating miRNAs in the diagnosis and staging of neonatal sepsis. The conclusions point to substantial diagnostic potential, and several miRNAs have been validated independently by different teams, namely miR-16a, miR-16, miR-96-5p, miR-141, miR-181a, and miR-1184.
Collapse
Affiliation(s)
- Martin Jouza
- Department of Pediatrics, University Hospital Brno, Brno, Czechia.,Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Julia Bohosova
- Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Andrea Stanikova
- Faculty of Medicine, Masaryk University, Brno, Czechia.,Department of Neonatology, University Hospital Brno, Brno, Czechia
| | - Jakub Pecl
- Department of Pediatrics, University Hospital Brno, Brno, Czechia.,Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, Brno, Czechia.,Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Petr Jabandziev
- Department of Pediatrics, University Hospital Brno, Brno, Czechia.,Faculty of Medicine, Masaryk University, Brno, Czechia.,Central European Institute of Technology, Masaryk University, Brno, Czechia
| |
Collapse
|
19
|
Long X, Huang Y, He J, Zhang X, Zhou Y, Wei Y, Tang Y, Liu L. Upregulation of miR‑335 exerts protective effects against sepsis‑induced myocardial injury. Mol Med Rep 2021; 24:806. [PMID: 34542164 PMCID: PMC8477184 DOI: 10.3892/mmr.2021.12446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 07/28/2021] [Indexed: 12/12/2022] Open
Abstract
Septicemia is associated with excessive inflammation, oxidative stress and apoptosis, causing myocardial injury that results in high mortality and disability rates worldwide. The abnormal expression of multiple microRNAs (miRNAs/miRs) is associated with more severe sepsis‑induced myocardial injury (SIMI) and miR‑335 has been shown to protect cardiomyocytes from oxidative stress. The present study aimed to investigate the role of miR‑335 in SIMI. An SIMI model was established by cecal ligation and puncture (CLP) in mice. An miRNA‑335 precursor (pre‑miR‑335) was transfected to accelerate miR‑335 expression and an miR‑335 inhibitor (anti‑miR‑335) was used to inhibit miR‑335 expression. CLP or sham surgery was performed on pre‑miR‑335, anti‑miR‑335 and wild‑type mice and miR‑335 expression was determined by reverse transcription‑quantitative PCR. Inflammatory factors (TNF‑α, IL‑6 and IL‑10) and troponin (cTNI), brain natriuretic peptide (BNP), creatine kinase (CK), lactate dehydrogenase (LDH) and aspartate aminotransferase (AST) were assessed using commercial kits. Apoptosis was detected by flow cytometry and cardiac function was assessed using a Langendorff isolated cardiac perfusion system. miR‑335 expression was upregulated and an elevation in inflammatory factors and cTNI, BNP, CK, LDH and AST was observed. Compared with the wild‑type control group, pre‑miR‑335 mice treated with CLP exhibited significantly reduced left ventricular development pressure, maximum pressure increased reduction rates, as well as decreased levels of TNF‑α, IL‑6 and IL‑10, myocardial injury and apoptosis; by contrast, these features were amplified in CLP‑treated anti‑miR‑335 mice. In conclusion, the upregulation of miR‑335 exerted ameliorative effects on myocardial injury following sepsis and may indicate a novel therapeutic intervention for SIMI.
Collapse
Affiliation(s)
- Xian Long
- Department of Clinic, Medicine School, Changsha Social Work College, Changsha, Hunan 410004, P.R. China
- Department of Pharmacology, Hunan Academy of Chinese Medicine, Changsha, Hunan 410008, P.R. China
- Department of Pharmacology, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - Yongpan Huang
- Department of Clinic, Medicine School, Changsha Social Work College, Changsha, Hunan 410004, P.R. China
| | - Jianbin He
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Huaihua, Affiliated to University of South China, Huaihua, Hunan 418000, P.R. China
| | - Xiang Zhang
- Department of Clinic, Medicine School, Changsha Social Work College, Changsha, Hunan 410004, P.R. China
| | - Yan Zhou
- Department of Clinic, Medicine School, Changsha Social Work College, Changsha, Hunan 410004, P.R. China
| | - Yingmin Wei
- Department of Clinic, Medicine School, Changsha Social Work College, Changsha, Hunan 410004, P.R. China
| | - Ying Tang
- Department of Clinic, Medicine School, Changsha Social Work College, Changsha, Hunan 410004, P.R. China
| | - Lijing Liu
- Department of Clinic, Medicine School, Changsha Social Work College, Changsha, Hunan 410004, P.R. China
| |
Collapse
|
20
|
Zhou YK, Patel HH, Roth DM. Extracellular Vesicles: A New Paradigm for Cellular Communication in Perioperative Medicine, Critical Care, and Pain Management. Anesth Analg 2021; 133:1162-1179. [PMID: 34304233 PMCID: PMC8542619 DOI: 10.1213/ane.0000000000005655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Extracellular vesicles (EVs) play critical roles in many health and disease states, including ischemia, inflammation, and pain, which are major concerns in the perioperative period and in critically ill patients. EVs are functionally active, nanometer-sized, membrane-bound vesicles actively secreted by all cells. Cell signaling is essential to physiological and pathological processes, and EVs have recently emerged as key players in intercellular communication. Recent studies in EV biology have improved our mechanistic knowledge of the pathophysiological processes in perioperative and critical care patients. Studies also show promise in using EVs in novel diagnostic and therapeutic clinical applications. This review considers the current advances and gaps in knowledge of EVs in the areas of ischemia, inflammation, pain, and in organ systems that are most relevant to anesthesiology, perioperative medicine, critical care, and pain management. We expect the reader will better understand the relationship between EVs and perioperative and critical care pathophysiological states and their potential use as novel diagnostic and therapeutic modalities.
Collapse
Affiliation(s)
- Yingqiu K. Zhou
- Veterans Administration San Diego Healthcare System, San Diego, CA, USA and Department of Anesthesiology, UCSD School of Medicine, San Diego, CA, USA
| | - Hemal H. Patel
- Veterans Administration San Diego Healthcare System, San Diego, CA, USA and Department of Anesthesiology, UCSD School of Medicine, San Diego, CA, USA
| | - David M. Roth
- Veterans Administration San Diego Healthcare System, San Diego, CA, USA and Department of Anesthesiology, UCSD School of Medicine, San Diego, CA, USA
| |
Collapse
|
21
|
Wang Q, Liu K, Jin C. Clinical value of microRNA-378a-3p in sepsis and its role in sepsis-induced inflammation and cardiac dysfunction. Bioengineered 2021; 12:8496-8504. [PMID: 34565302 PMCID: PMC8806767 DOI: 10.1080/21655979.2021.1985339] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This study explored the clinical meaning of miR-378a-3p in sepsis and its influence on sepsis-induced inflammation and cardiac dysfunction. Serum levels of miR-378a-3p were detected by quantitative Real-Time Polymerase Chain Reaction (qRT-PCR). The Receiver Operating Characteristic (ROC) curve was used to evaluate its diagnostic value. The effects of miR-378a-3p on inflammation and cardiac function were evaluated by monitoring left ventricular systolic pressure (LVSP), left ventricular and end-diastolic pressure (LVEDP), maximum rate of change in left ventricular pressure (± dp/dtmax) and detecting the levels of troponin I (cTnI), creatine kinase isoenzyme MB (CK-MB), tumor necrosis factor-a (TNF-a), interleukin-6 (IL-6), and interleukin-1β (IL-1β) via enzyme linked immunosorbent assay (ELISA). Serum miR-378a-3p was increased in sepsis patients and rat model. ROC curve indicated that miR-378a-3p might have diagnostic significance for sepsis miR-378a-3p antagomir improved the cardiac function by upregulating the levels of LVSP and ± dp/dtmax, and decreasing the levels of LVEDP, cTnI and CK-MB in rat model. miR-378a-3p antagomir also significantly alleviated the inflammatory responseby down-regulating the expression of TNF-a, IL-6, and IL-1β. Besides, logistics regression analysis illustrated that miR-378a-3p was an independent influencing factor for the onset of cardiac dysfunction in sepsis. miR-378a-3p has the potential as a diagnostic biomarker for sepsis and decreasing the level of miR-378a-3p had the ability to ameliorate cardiac dysfunction and inflammatory response caused by sepsis.
Collapse
Affiliation(s)
- Qing Wang
- Department Of Emergency, Emergency General Hospital, Beijing, China
| | - Kuo Liu
- Department Of Emergency, Emergency General Hospital, Beijing, China
| | - Changming Jin
- Department Of Emergency, Emergency General Hospital, Beijing, China
| |
Collapse
|
22
|
Circulating microRNAs as novel diagnostic biomarkers and prognostic predictors for septic patients. INFECTION GENETICS AND EVOLUTION 2021; 95:105082. [PMID: 34520874 DOI: 10.1016/j.meegid.2021.105082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/15/2021] [Accepted: 09/09/2021] [Indexed: 01/24/2023]
Abstract
This study was to find out novel miRNAs whether could be used as diagnostic or prognostic biomarkers in sepsis. We used miRNAs microarray assays and further confirmed the levels of miRNAs in 151 septic patients' plasma. 56 miRNAs were up-regulated and 74 miRNAs down-regulated in septic patients compared with the healthy volunteers. But only miR-519c-5p and miR-3622b-3p were up-regulated in both septic and septic shock patients. The levels of miR-519c-5p and miR-3622b-3p were statistically higher in 151 septic patients than healthy controls on day 1. The AUC for miR-519c-5p was 0.79 (95% CI, 0.688-0.892, p = 0.001) in the diagnosis of sepsis, and the AUC for miR-3622b-3p 0.752 (95% CI, 0.622-0.881, p = 0.003). The AUC for the combination of these two miRNAs was 0.831 (95% CI, 0.74-0.923, p < 0.001). Besides, the AUC for miR-519c-5p was 0.597 (p = 0.043) in predicting 28-day mortality. MiR-519c-5p, miR-3622b-3p were novel biomarkers for diagnosing septic patients. High miR-519c-5p levels suggest a worse short-term prognosis. CLINICAL TRIAL REGISTRATION INFORMATION: Name of the registry: Diagnostic and prognostic value of circulating miRNA in patients with sepsis; Trial registration ID: ChiCTR-DDD-17013150; registered 30 October 2017; http://www.chictr.org.cn/edit.aspx?pid=22528&htm=4.
Collapse
|
23
|
Pan J, Alexan B, Dennis D, Bettina C, Christoph LIM, Tang Y. microRNA-193-3p attenuates myocardial injury of mice with sepsis via STAT3/HMGB1 axis. J Transl Med 2021; 19:386. [PMID: 34503521 PMCID: PMC8428118 DOI: 10.1186/s12967-021-03022-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 08/04/2021] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Little is known regarding the functional role of microRNA-193-3p (miR-193-3p) in sepsis. Hence, the aim of the present study was to investigate the effect of miR-193-3p on myocardial injury in mice with sepsis and its mechanism through the regulation of signal transducers and activators of transcription 3 (STAT3). METHODS The mice model of sepsis was established by cecal ligation and puncture (CLP), septic mice were injected with miR-193-3p agomir, miR-193-3p antagomir or siRNA-STAT3. The expression of miR-193-3p, STAT3 and HMGB1 in the myocardial tissue of septic mice were detected. Cardiac ultrasound, hemodynamics, myocardial injury markers, inflammatory factors and cardiomyocyte apoptosis in septic mice were measured. RESULTS MiR-193-3p expression was reduced while STAT3 expression was increased in septic mice. Down-regulated STAT3 or up-regulated miR-193-3p improved cardiac function, attenuated myocardial injury, inflammation and cardiomyocyte apoptosis in septic mice. Knockdown STAT3 reversed the role of inhibited miR-193-3p for mice with sepsis. miR-193-3p targeted STAT3, thereby inhibiting HMGB1 expression. CONCLUSION This study provides evidence that miR-193-3p targets STAT3 expression to reduce HMGB1 expression, thereby reducing septic myocardial damage. MiR-193-3p might be a potential candidate marker and therapeutic target for sepsis.
Collapse
Affiliation(s)
- Jianyuan Pan
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Anhui, China
- Institute of Experimental Cardiology, Internal Medicine VIII, Heidelberg University, Heidelberg, Germany
| | - Buse Alexan
- Institute of Experimental Cardiology, Internal Medicine VIII, Heidelberg University, Heidelberg, Germany
| | - Dorn Dennis
- Institute of Experimental Cardiology, Internal Medicine VIII, Heidelberg University, Heidelberg, Germany
- Anatomy and Developmental Biology, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Chiristine Bettina
- Institute of Experimental Cardiology, Internal Medicine VIII, Heidelberg University, Heidelberg, Germany
- Anatomy and Developmental Biology, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Laeuf Ilona Mariya Christoph
- Anatomy and Developmental Biology, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Yongqin Tang
- Anatomy and Developmental Biology, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.
- Department of General surgery, Chuzhou Hospital affiliated to Anhui Medical University, 230001, Anhui, China.
| |
Collapse
|
24
|
Khan HN, Jongejan A, van Vught LA, Horn J, Schultz MJ, Zwinderman AH, Cremer OL, Bonten MJ, van der Poll T, Scicluna BP. The circulatory small non-coding RNA landscape in community-acquired pneumonia on intensive care unit admission. J Cell Mol Med 2021; 25:7621-7630. [PMID: 34272809 PMCID: PMC8358855 DOI: 10.1111/jcmm.16406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 12/11/2022] Open
Abstract
Community‐acquired pneumonia (CAP) is a major cause of sepsis. Despite several clinical trials targeting components of the inflammatory response, no specific treatment other than antimicrobial therapy has been approved. This argued for a deeper understanding of sepsis immunopathology, in particular factors that can modulate the host response. Small non‐coding RNA, for example, micro (mi)RNA, have been established as important modifiers of cellular phenotypes. Notably, miRNAs are not exclusive to the intracellular milieu but have also been detected extracellular in the circulation with functional consequences. Here, we sought to determine shifts in circulatory small RNA levels of critically ill patients with CAP‐associated sepsis and to determine the influence of clinical severity and causal pathogens on small RNA levels. Blood plasma was collected from 13 critically ill patients with sepsis caused by CAP on intensive care unit admission and from 5 non‐infectious control participants. Plasma small RNA‐sequencing identified significantly altered levels of primarily mature miRNAs in CAP relative to controls. Pathways analysis of high or low abundance miRNA identified various over‐represented cellular biological pathways. Analysis of small RNA levels against common clinical severity and inflammatory parameters indices showed direct and indirect correlations. Additionally, variance of plasma small RNA levels in CAP patients may be explained, at least in part, by differences in causal pathogens. Small nuclear RNA levels were specifically altered in CAP due to Influenza infection in contrast to Streptococcus pneumoniae infection. Pathway analysis of plasma miRNA signatures unique to Influenza or Streptococcus pneumoniae infections showed enrichment for specific proteoglycan, cell cycle, and immunometabolic pathways.
Collapse
Affiliation(s)
- Hina N Khan
- Center for Experimental Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, The Netherlands.,Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam University Medical Centers, location Academic Medical Center, Amsterdam, The Netherlands
| | - Aldo Jongejan
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam University Medical Centers, location Academic Medical Center, Amsterdam, The Netherlands
| | - Lonneke A van Vught
- Center for Experimental Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, The Netherlands
| | - Janneke Horn
- Department of Intensive Care & Laboratory of Experimental Intensive Care and Anesthesiology (L·E·I·C·A), Amsterdam University Medical Centers, location Academic Medical Center, Amsterdam, The Netherlands
| | - Marcus J Schultz
- Department of Intensive Care & Laboratory of Experimental Intensive Care and Anesthesiology (L·E·I·C·A), Amsterdam University Medical Centers, location Academic Medical Center, Amsterdam, The Netherlands.,Mahidol-Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand
| | - Aeilko H Zwinderman
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam University Medical Centers, location Academic Medical Center, Amsterdam, The Netherlands
| | - Olaf L Cremer
- Department of Intensive Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marc J Bonten
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tom van der Poll
- Center for Experimental Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, The Netherlands.,Division of Infectious Diseases, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Brendon P Scicluna
- Center for Experimental Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, The Netherlands.,Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam University Medical Centers, location Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
25
|
Fouda E, Elrazek Midan DA, Ellaban R, El-kousy S, Arafat E. The diagnostic and prognostic role of MiRNA 15b and MiRNA 378a in neonatal sepsis. Biochem Biophys Rep 2021; 26:100988. [PMID: 33817353 PMCID: PMC8010206 DOI: 10.1016/j.bbrep.2021.100988] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Sepsis is one of the major factors for both term and preterm babies with morbidity and mortality. On the basis of recent clinical trials, altered circulating micro-RNAs (miRNAs) may serve as possible biomarkers in sepsis for diagnosis and prognosis. The aim of this research is to assess the diagnostic and prognostic biomarkers of miRNA 15b and miRNA 378a for neonatal sepsis. SUBJECTS & METHODS This study was carried out 25 neonates with sepsis admitted to neonatal ICU of Menoufia University Hospital and 25 healthy controls from February 2019 to May 2020. The relative quantification (RQ) of miRNA-15b and miRNA-378a expression was assessed using real time PCR technique. Results: Our results demonstrated that patients with sepsis had significantly higher level of MiRNA-15b than the healthy volunteers. On the other hand, patients with sepsis had significantly lower level of MiRNA-378a than the healthy volunteers. The ROC curve showed that the serum MiRNA-15b was a significant discriminator of sepsis with a combined sensitivity and specificity of 76% and 88% with cutoff point of 3.24. In addition, serum MiRNA-378a was a significant discriminator of sepsis with a combined sensitivity and specificity of 60% and 88% with cutoff point of 0.361. The miRNA-15b expression significantly correlated positive with respiratory rate (r =0.415,p =0.039), WBCs (r = 0.408, p =0.043), and CRP (r =0.407, p=0.043). Likewise, miRNA-378a expression significantly correlated negative with respiratory rate (r =-0.415p =0.024), WBCs (r =- 0.442, p =0.027), and CRP (r =- 0.459, p=0.021). CONCLUSION Both MiRNA 15b and 378a are promising biomarker for neonatal sepsis.
Collapse
Affiliation(s)
- Eman Fouda
- Faculty of Science, Menoufia University, Egypt
| | | | - Rania Ellaban
- Diploma of Biochemistry, Faculty of Science, Menoufia University, Egypt
| | | | - Eman Arafat
- Faculty of Medicine, Menoufia University, Egypt
| |
Collapse
|
26
|
Ektesabi AM, Mori K, Tsoporis JN, Vaswani CM, Gupta S, Walsh C, Varkouhi AK, Mei SH, Stewart DJ, Liles WC, Marshall JC, Hu P, Parker TG, dos Santos CC. Mesenchymal Stem/Stromal Cells Increase Cardiac miR-187-3p Expression in a Polymicrobial Animal Model of Sepsis. Shock 2021; 56:133-141. [PMID: 33378320 PMCID: PMC8240645 DOI: 10.1097/shk.0000000000001701] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/14/2020] [Accepted: 11/19/2020] [Indexed: 12/27/2022]
Abstract
ABSTRACT Sepsis-induced myocardial dysfunction (MD) is an important pathophysiological feature of multiorgan failure caused by a dysregulated host response to infection. Patients with MD continue to be managed in intensive care units with limited understanding of the molecular mechanisms controlling disease pathogenesis. Emerging evidences support the use of mesenchymal stem/stromal cell (MSC) therapy for treating critically ill septic patients. Combining this with the known role that microRNAs (miRNAs) play in reversing sepsis-induced myocardial-dysfunction, this study sought to investigate how MSC administration alters miRNA expression in the heart. Mice were randomized to experimental polymicrobial sepsis induced by cecal ligation and puncture (CLP) or sham surgery, treated with either MSCs (2.5 × 105) or placebo (saline). Twenty-eight hours post-intervention, RNA was collected from whole hearts for transcriptomic and microRNA profiling. The top microRNAs differentially regulated in hearts by CLP and MSC administration were used to generate a putative mRNA-miRNA interaction network. Key genes, termed hub genes, within the network were then identified and further validated in vivo. Network analysis and RT-qPCR revealed that septic hearts treated with MSCs resulted in upregulation of five miRNAs, including miR-187, and decrease in three top hit putative hub genes (Itpkc, Lrrc59, and Tbl1xr1). Functionally, MSC administration decreased inflammatory and apoptotic pathways, while increasing cardiac-specific structural and functional, gene expression. Taken together, our data suggest that MSC administration regulates host-derived miRNAs production to protect cardiomyocytes from sepsis-induced MD.
Collapse
Affiliation(s)
- Amin M. Ektesabi
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Keisuke Mori
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - James N. Tsoporis
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Chirag M. Vaswani
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Sahil Gupta
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Chris Walsh
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Amir K. Varkouhi
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Shirley H.J. Mei
- Ottawa Hospital Research Institute and the University of Ottawa, Ottawa, ON, Canada
| | - Duncan J. Stewart
- Ottawa Hospital Research Institute and the University of Ottawa, Ottawa, ON, Canada
| | - W. Conrad Liles
- Department of Medicine and Sepsis Center of Research Excellence-UW (SCORE-UW), University of Washington, Seattle, Washington
| | - John C. Marshall
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Pingzhao Hu
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| | - Thomas G. Parker
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Claudia C. dos Santos
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
27
|
miREV: An Online Database and Tool to Uncover Potential Reference RNAs and Biomarkers in Small-RNA Sequencing Data Sets from Extracellular Vesicles Enriched Samples. J Mol Biol 2021; 433:167070. [PMID: 34052284 DOI: 10.1016/j.jmb.2021.167070] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/11/2021] [Accepted: 05/22/2021] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EVs) are nano-sized, membrane-enclosed vesicles released by cells for intercellular communication. EVs are involved in pathological processes and miRNAs in EVs have gained interest as easily accessible biomolecules in liquid biopsies for diagnostic purposes. To validate potential miRNA biomarker, transcriptome analyses must be carried out to detect suitable reference miRNAs. miREV is a database with over 400 miRNA sequencing data sets and helps the researcher to find suitable reference miRNAs for their individual experimental setup. The researcher can put together a specific sample set in miREV, which is similar to his own experimental concept in order to find the most suitable references. This allows to run validation experiments without having to carry out a complex and costly transcriptome analysis priorly. Additional read count tables of each generated sample set are downloadable for further analysis. miREV is freely available at https://www.physio.wzw.tum.de/mirev/.
Collapse
|
28
|
Zhang W, Li J, Yao H, Li T. Restoring microRNA-499-5p Protects Sepsis-Induced Lung Injury Mice Via Targeting Sox6. NANOSCALE RESEARCH LETTERS 2021; 16:89. [PMID: 34019224 PMCID: PMC8140057 DOI: 10.1186/s11671-021-03534-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 04/20/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND MicroRNAs (miRs) are known to participate in sepsis; hence, we aim to discuss the protective effect of miR-499-5p targeting sex-determining region Y-related high-mobility-group box 6 (Sox6) on sepsis-induced lung injury in mice. METHODS The sepsis-induced lung injury model was established by cecal ligation and puncture. The wet/dry weight (W/D) ratio, miR-499-5p, Sox6, Caspase-3 and Caspase-9 expression in lung tissues of mice were tested. Lung injury score, collagen fibers and the degree of pulmonary fibrosis in lung tissues were determined. Further, the cell apoptosis in lung tissues was measured. The inflammatory factors contents and oxidative stress indices in bronchoalveolar lavage fluid (BALF) and lung tissues were detected via loss- and gain-of-function assays. The targeting relation between miR-499-5p and Sox6 was verified. RESULTS W/D ratio and Sox6 were increased while miR-499-5p was decreased in lung tissues of sepsis-induced lung injury mice. Restored miR-499-5p or depleted Sox6 alleviated lung tissues pathology, reduced lung injury score, collagen fibers, the degree of pulmonary fibrosis, TUNEL positive cells, Caspase-3 and Caspase-9 protein expression and inflammatory factors contents in BALF and lung tissues as well as oxidative stress response in lung tissues of sepsis-induced lung injury mice. miR-499-5p targeted Sox6. CONCLUSION High expression of miR-499-5p can attenuate cell apoptosis in lung tissues and inhibit inflammation of sepsis-induced lung injury mice via depleting Sox6, and it is a potential candidate marker and therapeutic target for sepsis-induced lung injury.
Collapse
Affiliation(s)
- Wenjie Zhang
- Intensive Care Unit (ICU), Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, No. 70, Heping Road, Weihai, 264200, Shandong, China
| | - Jing Li
- Preventive Medicine Ward, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, 264200, Shandong, China
| | - Hui Yao
- Intensive Care Unit (ICU), Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, No. 70, Heping Road, Weihai, 264200, Shandong, China
| | - Tianmin Li
- Intensive Care Unit (ICU), Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, No. 70, Heping Road, Weihai, 264200, Shandong, China.
| |
Collapse
|
29
|
Desjarlais M, Wirth M, Lahaie I, Ruknudin P, Hardy P, Rivard A, Chemtob S. Nutraceutical Targeting of Inflammation-Modulating microRNAs in Severe Forms of COVID-19: A Novel Approach to Prevent the Cytokine Storm. Front Pharmacol 2020; 11:602999. [PMID: 33362557 PMCID: PMC7759543 DOI: 10.3389/fphar.2020.602999] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has become the number one health problem worldwide. As of August 2020, it has affected more than 18 million humans and caused over 700,000 deaths worldwide. COVID-19 is an infectious disease that can lead to severe acute respiratory syndrome. Under certain circumstances, the viral infection leads to excessive and uncontrolled inflammatory response, which is associated with the massive release of inflammatory cytokines in pulmonary alveolar structures. This phenomenon has been referred to as the “cytokine storm,” and it is closely linked to lung injury, acute respiratory syndrome and mortality. Unfortunately, there is currently no vaccine available to prevent the infection, and no effective treatment is available to reduce the mortality associated with the severe form of the disease. The cytokine storm associate with COVID-19 shows similarities with those observed in other pathologies such as sepsis, acute respiratory distress syndrome, acute lung injury and other viral infection including severe cases of influenza. However, the specific mechanisms that cause and modulate the cytokine storm in the different conditions remain to be determined. micro-RNAs are important regulators of gene expression, including key inflammatory cytokines involved in the massive recruitment of immune cells to the lungs such as IL1β, IL6, and TNFα. In recent years, it has been shown that nutraceutical agents can modulate the expression of miRs involved in the regulation of cytokines in various inflammatory diseases. Here we review the potential role of inflammatory-regulating-miRs in the cytokine storm associated with COVID-19, and propose that nutraceutical agents may represent a supportive therapeutic approach to modulate dysregulated miRs in this condition, providing benefits in severe respiratory diseases.
Collapse
Affiliation(s)
- Michel Desjarlais
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, Université de Montréal, Montréal, QC, Canada.,Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Maëlle Wirth
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, Université de Montréal, Montréal, QC, Canada.,Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Isabelle Lahaie
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, Université de Montréal, Montréal, QC, Canada
| | - Pakiza Ruknudin
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, Université de Montréal, Montréal, QC, Canada
| | - Pierre Hardy
- Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Alain Rivard
- Department of Medicine, Centre Hospitalier de l'Université de Montréal (CHUM) Research Center, Montréal, QC, Canada
| | - Sylvain Chemtob
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, Université de Montréal, Montréal, QC, Canada.,Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| |
Collapse
|
30
|
Li N, Wu S, Yu L. The associations of long non-coding RNA taurine upregulated gene 1 and microRNA-223 with general disease severity and mortality risk in sepsis patients. Medicine (Baltimore) 2020; 99:e23444. [PMID: 33327275 PMCID: PMC7738135 DOI: 10.1097/md.0000000000023444] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
This study aimed to investigate the correlation of long non-coding RNA taurine upregulated gene 1 (lncRNA TUG1) with microRNA-223 (miR-223) as well as their associations with risk, severity, and mortality of sepsis.Totally122 sepsis patients and 122 healthy controls were enrolled. Plasma lncRNA TUG1 and miR-223 levels were detected by reverse transcription quantitative polymerase chain reaction. General severity of sepsis was assessed within 24 hours after admission using acute pathologic and chronic health evaluation (APACHE) II score and sequential organ failure assessment (SOFA) score. Patients were intensively followed up until death or 28 days after enrollment to assess mortality.LncRNA TUG1 expression was decreased (P < .001) but miR-223 expression (P < .001) was elevated in sepsis patients. Additionally, a negative correlation of lncRNA TUG1 expression with miR-223 expression was observed in sepsis patients (P < .001). Moreover, in sepsis patients, lncRNA TUG1 expression was negatively correlated with respiratory infection, serum creatinine (Scr), white blood cell (WBC), C-reactive protein (CRP), APACHE II score, and SOFA score but positively correlated with albumin (all P < .05); miR-223 expression was negatively correlated with skin and soft tissue infection and albumin but positively correlated with Scr, WBC, CRP, APACHE II score, and SOFA score (all P < 0.05). As to mortality, lncRNA TUG1 expression was decreased (P = .001) but miR-223 was elevated (P < .001) in 28-day sepsis deaths compared with 28-day sepsis survivors.Our findings offer the potential of lncRNA TUG1 and miR-223 as biomarkers for progression and prognosis of sepsis.
Collapse
|
31
|
Sygitowicz G, Sitkiewicz D. Molecular mechanisms of organ damage in sepsis: an overview. Braz J Infect Dis 2020; 24:552-560. [PMID: 33169675 PMCID: PMC9392098 DOI: 10.1016/j.bjid.2020.09.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/11/2020] [Accepted: 09/30/2020] [Indexed: 02/08/2023] Open
|
32
|
Lee LK, Medzikovic L, Eghbali M, Eltzschig HK, Yuan X. The Role of MicroRNAs in Acute Respiratory Distress Syndrome and Sepsis, From Targets to Therapies: A Narrative Review. Anesth Analg 2020; 131:1471-1484. [PMID: 33079870 PMCID: PMC8532045 DOI: 10.1213/ane.0000000000005146] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is a significant cause of morbidity and mortality in the intensive care unit (ICU) and is characterized by lung epithelial and endothelial cell injury, with increased permeability of the alveolar-capillary membrane, leading to pulmonary edema, severe hypoxia, and difficulty with ventilation. The most common cause of ARDS is sepsis, and currently, treatment of ARDS and sepsis has consisted mostly of supportive care because targeted therapies have largely been unsuccessful. The molecular mechanisms behind ARDS remain elusive. Recently, a number of microRNAs (miRNAs) identified through high-throughput screening studies in ARDS patients and preclinical animal models have suggested a role for miRNA in the pathophysiology of ARDS. miRNAs are small noncoding RNAs ranging from 18 to 24 nucleotides that regulate gene expression via inhibition of the target mRNA translation or by targeting complementary mRNA for early degradation. Unsurprisingly, some miRNAs that are differentially expressed in ARDS overlap with those important in sepsis. In addition, circulatory miRNA may be useful as biomarkers or as targets for pharmacologic therapy. This can be revolutionary in a syndrome that has neither a measurable indicator of the disease nor a targeted therapy. While there are currently no miRNA-based therapies targeted for ARDS, therapies targeting miRNA have reached phase II clinical trials for the treatment of a wide range of diseases. Further studies may yield a unique miRNA profile pattern that serves as a biomarker or as targets for miRNA-based pharmacologic therapy. In this review, we discuss miRNAs that have been found to play a role in ARDS and sepsis, the potential mechanism of how particular miRNAs may contribute to the pathophysiology of ARDS, and strategies for pharmacologically targeting miRNA as therapy.
Collapse
Affiliation(s)
- Lisa K. Lee
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California
| | - Lejla Medzikovic
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California
| | - Mansoureh Eghbali
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California
| | - Holger K. Eltzschig
- Department of Anesthesiology, The University of Texas Health Science Center, McGovern Medical School, Houston, Texas
| | - Xiaoyi Yuan
- Department of Anesthesiology, The University of Texas Health Science Center, McGovern Medical School, Houston, Texas
| |
Collapse
|
33
|
Fatmi A, Rebiahi SA, Chabni N, Zerrouki H, Azzaoui H, Elhabiri Y, Benmansour S, Ibáñez-Cabellos JS, Smahi MCE, Aribi M, García-Giménez JL, Pallardó FV. miRNA-23b as a biomarker of culture-positive neonatal sepsis. Mol Med 2020; 26:94. [PMID: 33032520 PMCID: PMC7542968 DOI: 10.1186/s10020-020-00217-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/10/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Neonatal sepsis remains an important cause of morbidity and mortality. The ability to quickly and accurately diagnose neonatal sepsis based on clinical assessments and laboratory blood tests remains difficult, where haemoculture is the gold standard for detecting bacterial sepsis in blood culture. It is also very difficult to study because neonatal samples are lacking. METHODS Forty-eight newborns suspected of sepsis admitted to the Neonatology Department of the Mother-Child Specialized Hospital of Tlemcen. From each newborn, a minimum of 1-2 ml of blood was drawn by standard sterile procedures for blood culture. The miRNA-23b level in haemoculture was evaluated by RT-qPCR. RESULTS miR-23b levels increased in premature and full-term newborns in early onset sepsis (p < 0.001 and p < 0.005 respectively), but lowered in late onset sepsis in full-term neonates (p < 0.05) compared to the respective negative controls. miR-23b levels also increased in late sepsis in the negative versus early sepsis negative controls (p < 0.05). miR-23b levels significantly lowered in the newborns who died from both sepsis types (p < 0.0001 and p < 0.05 respectively). In early sepsis, miR-23b and death strongly and negatively correlated (correlation coefficient = - 0.96, p = 0.0019). In late sepsis, miRNA-23b and number of survivors (correlation coefficient = 0.70, p = 0.506) positively correlated. CONCLUSIONS Lowering miR-23b levels is an important factor that favours sepsis development, which would confirm their vital protective role, and strongly suggest that they act as a good marker in molecular diagnosis and patient monitoring.
Collapse
Affiliation(s)
- Ahlam Fatmi
- Laboratory of Applied Molecular Biology and Immunology, W0414100, Tlemcen, Algeria
| | - Sid Ahmed Rebiahi
- Laboratory of Microbiology Applied in Food, Biomedical and Environment, Tlemcen, Algeria
| | - Nafissa Chabni
- Faculty of Medicine, Tlemcen Medical Centre University, 13000, Tlemcen, Algeria
| | - Hanane Zerrouki
- Laboratory of Microbiology Applied in Food, Biomedical and Environment, Tlemcen, Algeria
| | - Hafsa Azzaoui
- Laboratory of Applied Molecular Biology and Immunology, W0414100, Tlemcen, Algeria
| | - Yamina Elhabiri
- Laboratory of Microbiology Applied in Food, Biomedical and Environment, Tlemcen, Algeria
| | - Souheila Benmansour
- Laboratory of Applied Molecular Biology and Immunology, W0414100, Tlemcen, Algeria.,Neonatal Department of Specialized Maternal and Child Hospital of Tlemcen, 13000, Tlemcen, Algeria
| | - José Santiago Ibáñez-Cabellos
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain.,INCLIVA Health Research Institute, Mixed Unit for rare diseases INCLIVA-CIPF, Valencia, Spain.,Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Avenida Blasco Ibañez 15, 46010, Valencia, Spain
| | - Mohammed Chems-Eddine Smahi
- Laboratory of Applied Molecular Biology and Immunology, W0414100, Tlemcen, Algeria.,Neonatal Department of Specialized Maternal and Child Hospital of Tlemcen, 13000, Tlemcen, Algeria
| | - Mourad Aribi
- Laboratory of Applied Molecular Biology and Immunology, W0414100, Tlemcen, Algeria
| | - José Luis García-Giménez
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain.,INCLIVA Health Research Institute, Mixed Unit for rare diseases INCLIVA-CIPF, Valencia, Spain.,Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Avenida Blasco Ibañez 15, 46010, Valencia, Spain
| | - Federico V Pallardó
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain. .,INCLIVA Health Research Institute, Mixed Unit for rare diseases INCLIVA-CIPF, Valencia, Spain. .,Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Avenida Blasco Ibañez 15, 46010, Valencia, Spain.
| |
Collapse
|
34
|
Link F, Krohn K, Burgdorff AM, Christel A, Schumann J. Sepsis Diagnostics: Intensive Care Scoring Systems Superior to MicroRNA Biomarker Testing. Diagnostics (Basel) 2020; 10:diagnostics10090701. [PMID: 32948040 PMCID: PMC7555112 DOI: 10.3390/diagnostics10090701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/14/2020] [Indexed: 01/28/2023] Open
Abstract
Sepsis represents a serious medical problem accounting for numerous deaths of critically ill patients in intensive care units (ICUs). An early, sensitive, and specific diagnosis is considered a key element for improving the outcome of sepsis patients. In addition to classical laboratory markers, ICU scoring systems and serum miRNAs are discussed as potential sepsis biomarkers. In the present prospective observational study, the suitability of miRNAs in sepsis diagnosis was tested based on proper validated and normalized data (i.e., absolute quantification by means of Droplet Digital PCR (ddPCR)) in direct comparison to classical sepsis markers and ICU scores within the same patient cohort. Therefore, blood samples of septic intensive care patients (n = 12) taken at day of admission at ICU were compared to non-septic intensive care patients (n = 12) and a healthy control group (n = 12). Our analysis indicates that all tested biomarkers have only a moderate informative power and do not allow an unequivocal differentiation between septic and non-septic ICU patients. In conclusion, there is no standalone laboratory parameter that enables a reliable diagnosis of sepsis. miRNAs are not superior to classical parameters in this respect. It seems recommendable to measure multiple parameters and scores and to interpret them with regard to the clinical presentation.
Collapse
Affiliation(s)
- Fabian Link
- Clinic for Anesthesiology and Surgical Intensive Care, University Hospital Halle (Saale), 06120 Halle, Germany; (F.L.); (A.-M.B.); (A.C.)
| | - Knut Krohn
- Core Unit DNA Technologies, Medical Faculty, Leipzig University, 04103 Leipzig, Germany;
| | - Anna-Maria Burgdorff
- Clinic for Anesthesiology and Surgical Intensive Care, University Hospital Halle (Saale), 06120 Halle, Germany; (F.L.); (A.-M.B.); (A.C.)
| | - Annett Christel
- Clinic for Anesthesiology and Surgical Intensive Care, University Hospital Halle (Saale), 06120 Halle, Germany; (F.L.); (A.-M.B.); (A.C.)
| | - Julia Schumann
- Clinic for Anesthesiology and Surgical Intensive Care, University Hospital Halle (Saale), 06120 Halle, Germany; (F.L.); (A.-M.B.); (A.C.)
- Correspondence: ; Tel.: +49-(345)-557-1776; Fax: +49-(345)-557-1781
| |
Collapse
|
35
|
Hashemian SM, Pourhanifeh MH, Fadaei S, Velayati AA, Mirzaei H, Hamblin MR. Non-coding RNAs and Exosomes: Their Role in the Pathogenesis of Sepsis. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:51-74. [PMID: 32506014 PMCID: PMC7272511 DOI: 10.1016/j.omtn.2020.05.012] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/16/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022]
Abstract
Sepsis is characterized as an uncontrolled host response to infection, and it represents a serious health challenge, causing excess mortality and morbidity worldwide. The discovery of sepsis-related epigenetic and molecular mechanisms could result in improved diagnostic and therapeutic approaches, leading to a reduced overall risk for affected patients. Accumulating data show that microRNAs, non-coding RNAs, and exosomes could all be considered as novel diagnostic markers for sepsis patients. These biomarkers have been demonstrated to be involved in regulation of sepsis pathophysiology. However, epigenetic modifications have not yet been widely reported in actual clinical settings, and further investigation is required to determine their importance in intensive care patients. Further studies should be carried out to explore tissue-specific or organ-specific epigenetic RNA-based biomarkers and their therapeutic potential in sepsis patients.
Collapse
Affiliation(s)
- Seyed MohammadReza Hashemian
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran; Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sara Fadaei
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Velayati
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran; Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA 02114, USA; Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| |
Collapse
|
36
|
Wu Y, Li P, Goodwin AJ, Cook JA, Halushka PV, Zingarelli B, Fan H. miR-145a Regulation of Pericyte Dysfunction in a Murine Model of Sepsis. J Infect Dis 2020; 222:1037-1045. [PMID: 32285112 PMCID: PMC7430167 DOI: 10.1093/infdis/jiaa184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/10/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Sepsis is a life-threatening systemic disease with severe microvascular dysfunction. Pericytes preserve vascular homeostasis. To our knowledge, the potential roles of microRNAs in sepsis-induced pericyte dysfunction have not been explored. METHODS We determined lung pericyte expression of miR-145a in cecal ligation and puncture (CLP)-induced sepsis. Mouse lung pericytes were isolated and transfected with a miR-145a mimic, followed by stimulation with lipopolysaccharide (LPS). We measured inflammatory cytokine levels. To assess the functions of miR-145a in vivo, we generated a pericyte-specific miR-145a-knockout mouse and determined sepsis-induced organ injury, lung and renal vascular leakage, and mouse survival rates. We used RNA sequencing and Western blotting to analyze the signaling pathways regulated by miR-145a. RESULTS CLP led to decreased miR-145a expression in lung pericytes. The miR-145a mimic inhibited LPS-induced increases in cytokines. In CLP-induced sepsis, pericytes lacking miR-145a exhibited increased lung and kidney vascular leakage and reduced survival rates. We found that miR-145a could suppress LPS-induced NF-κB activation. In addition, we confirmed that the transcription factor Friend leukemia virus integration 1 (Fli-1) is a target of miR-145a and that Fli-1 activates NF-κB signaling. CONCLUSION Our results demonstrated that pericyte miR-145a mediates sepsis-associated microvascular dysfunction, potentially by means of Fli-1-mediated modulation of NF-κB signaling.
Collapse
Affiliation(s)
- Yan Wu
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Pengfei Li
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Andrew J Goodwin
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - James A Cook
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Perry V Halushka
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Pharmacology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Basilia Zingarelli
- Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Hongkuan Fan
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
37
|
Beltrán-García J, Osca-Verdegal R, Romá-Mateo C, Carbonell N, Ferreres J, Rodríguez M, Mulet S, García-López E, Pallardó FV, García-Giménez JL. Epigenetic biomarkers for human sepsis and septic shock: insights from immunosuppression. Epigenomics 2020; 12:617-646. [PMID: 32396480 DOI: 10.2217/epi-2019-0329] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Sepsis is a life-threatening condition that occurs when the body responds to an infection damaging its own tissues. Sepsis survivors sometimes suffer from immunosuppression increasing the risk of death. To our best knowledge, there is no 'gold standard' for defining immunosuppression except for a composite clinical end point. As the immune system is exposed to epigenetic changes during and after sepsis, research that focuses on identifying new biomarkers to detect septic patients with immunoparalysis could offer new epigenetic-based strategies to predict short- and long-term pathological events related to this life-threatening state. This review describes the most relevant epigenetic mechanisms underlying alterations in the innate and adaptive immune responses described in sepsis and septic shock, and their consequences for immunosuppression states, providing several candidates to become epigenetic biomarkers that could improve sepsis management and help predict immunosuppression in postseptic patients.
Collapse
Affiliation(s)
- Jesús Beltrán-García
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia 46010, Spain.,Department of Physiology, Faculty of Medicine & Dentistry, University of Valencia, Valencia 46010, Spain.,INCLIVA Biomedical Research Institute, Valencia 46010, Spain.,EpiDisease S.L. (Spin-Off CIBER-ISCIII), Parc Científic de la Universitat de València, Paterna 46980, Valencia, Spain
| | - Rebeca Osca-Verdegal
- Department of Physiology, Faculty of Medicine & Dentistry, University of Valencia, Valencia 46010, Spain
| | - Carlos Romá-Mateo
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia 46010, Spain.,Department of Physiology, Faculty of Medicine & Dentistry, University of Valencia, Valencia 46010, Spain.,INCLIVA Biomedical Research Institute, Valencia 46010, Spain
| | - Nieves Carbonell
- INCLIVA Biomedical Research Institute, Valencia 46010, Spain.,Intensive Care Unit, Clinical University Hospital of Valencia, Valencia 46010, Spain
| | - José Ferreres
- INCLIVA Biomedical Research Institute, Valencia 46010, Spain.,Intensive Care Unit, Clinical University Hospital of Valencia, Valencia 46010, Spain
| | - María Rodríguez
- INCLIVA Biomedical Research Institute, Valencia 46010, Spain.,Intensive Care Unit, Clinical University Hospital of Valencia, Valencia 46010, Spain
| | - Sandra Mulet
- INCLIVA Biomedical Research Institute, Valencia 46010, Spain.,Intensive Care Unit, Clinical University Hospital of Valencia, Valencia 46010, Spain
| | - Eva García-López
- EpiDisease S.L. (Spin-Off CIBER-ISCIII), Parc Científic de la Universitat de València, Paterna 46980, Valencia, Spain
| | - Federico V Pallardó
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia 46010, Spain.,Department of Physiology, Faculty of Medicine & Dentistry, University of Valencia, Valencia 46010, Spain.,INCLIVA Biomedical Research Institute, Valencia 46010, Spain
| | - José Luis García-Giménez
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia 46010, Spain.,Department of Physiology, Faculty of Medicine & Dentistry, University of Valencia, Valencia 46010, Spain.,INCLIVA Biomedical Research Institute, Valencia 46010, Spain.,EpiDisease S.L. (Spin-Off CIBER-ISCIII), Parc Científic de la Universitat de València, Paterna 46980, Valencia, Spain
| |
Collapse
|
38
|
Goodwin AJ, Li P, Halushka PV, Cook JA, Sumal AS, Fan H. Circulating miRNA 887 is differentially expressed in ARDS and modulates endothelial function. Am J Physiol Lung Cell Mol Physiol 2020; 318:L1261-L1269. [PMID: 32321279 DOI: 10.1152/ajplung.00494.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Circulating microRNAs (miRNAs) can be taken up by recipient cells and have been recently associated with the acute respiratory distress syndrome (ARDS). Their role in host predisposition to the syndrome is unknown. The objective of the study was to identify circulating miRNAs associated with the development of sepsis-related ARDS and examine their impact on endothelial cell gene expression and function. We determined miRNA levels in plasma collected from subjects during the first 24 h of admission to a tertiary intensive care unit for sepsis. A miRNA that was differentially expressed between subjects who did and did not develop ARDS was identified and was transfected into human pulmonary microvascular endothelial cells (HPMECs). RNA sequencing, in silico analysis, cytokine expression, and leukocyte migration assays were used to determine the impact of this miRNA on gene expression and cell function. In two cohorts, circulating miR-887-3p levels were elevated in septic patients who developed ARDS compared with those who did not. Transfection of miR-887-3p into HPMECs altered gene expression, including the upregulation of several genes previously associated with ARDS (e.g., CXCL10, CCL5, CX3CL1, VCAM1, CASP1, IL1B, IFNB, and TLR2), and activation of cellular pathways relevant to the response to infection. Functionally, miR-887-3p increased the endothelial release of chemokines and facilitated trans-endothelial leukocyte migration. Circulating miR-887-3p is associated with ARDS in critically ill patients with sepsis. In vitro, miR-887-3p regulates the expression of genes relevant to ARDS and neutrophil tracking. This miRNA may contribute to ARDS pathogenesis and could represent a novel therapeutic target.
Collapse
Affiliation(s)
- Andrew J Goodwin
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Pengfei Li
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Perry V Halushka
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina.,Department of Pharmacology, Medical University of South Carolina, Charleston, South Carolina
| | - James A Cook
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| | - Aman S Sumal
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Hongkuan Fan
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
39
|
Wang Y, Wang H, Zhang C, Zhang C, Yang H, Gao R, Tong Z. Plasma Hsa-miR-92a-3p in correlation with lipocalin-2 is associated with sepsis-induced coagulopathy. BMC Infect Dis 2020; 20:155. [PMID: 32075600 PMCID: PMC7031893 DOI: 10.1186/s12879-020-4853-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/06/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Sepsis is a life-threatening situation, and it can be rendered more severe by coagulopathy. We here examine a novel plasma biomarker for sepsis-induced coagulopathy. METHODS A total of 116 patients diagnosed with sepsis were recruited and divided into two groups by whether they also had coagulopathy. Plasma samples were collected on arrival at the intensive care unit. Fifteen sepsis-alone and 15 sepsis-induced coagulopathy plasma samples were mixed and sent for microRNA sequencing. Differently expressed microRNAs were then validated by quantitative reverse transcriptase polymerase chain reaction in 52 sepsis-alone and 34 sepsis-induced coagulopathy patients; plasma lipocalin-2 was measured as well. RESULTS Four microRNAs were selected from microRNA sequencing. Only hsa-mir-92a-3p was differently expressed in the validation set. Its level of expression was significantly lower in sepsis-induced coagulopathy group. Hsa-mir-92a-3p had an area under a receiver operating characteristic curve of 0.660 (95% confidence interval, 0.537, 0.782). The plasma Hsa-mir-92a-3p level was related to activated partial thromboplastin time, prothrombin activity, and plasma lipocalin-2 level. A binary logistic model showed an association between hsa-mir-92a-3p and fibrinogen with SIC. CONCLUSIONS The utility of hsa-mir-92a-3p as a biomarker for sepsis-induced coagulopathy needs more verification, and the regulatory mechanism of hsa-mir-92a-3p in coagulation disorder and its potency as a therapeutic target must be confirmed.
Collapse
Affiliation(s)
- Yishan Wang
- Department of Respiratory and Critical Care Medicine, Beijing Engineering Research Center of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing Institute of Respiratory Medicine, NO. 8, Gong Ti South Road, Chao-Yang District, Beijing, 100020, China
| | - Huijuan Wang
- Department of Respiratory and Critical Care Medicine, Beijing Engineering Research Center of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing Institute of Respiratory Medicine, NO. 8, Gong Ti South Road, Chao-Yang District, Beijing, 100020, China
| | - Chunfang Zhang
- Department of Anesthesiology, Pain Medicine and Critical Care Medicine, Aviation General Hospital of China Medical University and Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing, 100012, China
| | - Chao Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Engineering Research Center of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing Institute of Respiratory Medicine, NO. 8, Gong Ti South Road, Chao-Yang District, Beijing, 100020, China
| | - Huqin Yang
- Department of Respiratory and Critical Care Medicine, Beijing Engineering Research Center of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing Institute of Respiratory Medicine, NO. 8, Gong Ti South Road, Chao-Yang District, Beijing, 100020, China
| | - Ruiyue Gao
- Department of Respiratory and Critical Care Medicine, Beijing Engineering Research Center of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing Institute of Respiratory Medicine, NO. 8, Gong Ti South Road, Chao-Yang District, Beijing, 100020, China
| | - Zhaohui Tong
- Department of Respiratory and Critical Care Medicine, Beijing Engineering Research Center of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing Institute of Respiratory Medicine, NO. 8, Gong Ti South Road, Chao-Yang District, Beijing, 100020, China.
| |
Collapse
|
40
|
Serum Levels of miR-143 Predict Survival in Critically Ill Patients. DISEASE MARKERS 2019; 2019:4850472. [PMID: 31772686 PMCID: PMC6854254 DOI: 10.1155/2019/4850472] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 07/27/2019] [Accepted: 09/07/2019] [Indexed: 12/31/2022]
Abstract
Background and Aims Recent data suggested a potential role of miR-143 as a biomarker for systemic inflammation and infection. However, its role in critical illness and sepsis is only poorly understood. Methods We determined circulating levels of miR-143 in 218 critically ill patients, of which 135 fulfilled sepsis criteria, and compared them to 76 healthy controls. Results were correlated with clinical records. Results In the total cohort of critically ill patients from a medical intensive care unit (ICU), miR-143 serum levels tended to be lower compared to healthy control samples, but this difference did not reach statistical significance. In ICU patients, serum levels of miR-143 were independent of disease etiology, including the presence of sepsis, or severity of disease. Importantly, low miR-143 serum levels were associated with an unfavorable short- and long-term prognosis in ICU patients. Our study identified different optimal cut-off values at which low miR-143 serum levels predicted mortality with a high diagnostic accuracy. In line with this, concentrations of circulating miR-143 correlated with markers of organ failure such as creatinine, bilirubin, or lactate in our cohort of critically ill patients. Conclusion Low miR-143 serum levels are indicative for an unfavorable short- and long-term prognosis in critically ill patients admitted to a medical ICU. Our data suggest a previously unrecognized role for miR-143 measurements as a novel prognostic marker in critically ill patients.
Collapse
|
41
|
Roderburg C, Benz F, Koch A, Loosen SH, Spehlmann M, Luedde M, Wree A, Vucur M, Trautwein C, Tacke F, Luedde T. A Combined Score of Circulating miRNAs Allows Outcome Prediction in Critically Ill Patients. J Clin Med 2019; 8:E1644. [PMID: 31601014 PMCID: PMC6832199 DOI: 10.3390/jcm8101644] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND AND AIMS Identification of patients with increased risk of mortality represents an important prerequisite for an adapted adequate and individualized treatment of critically ill patients. Circulating micro-RNA (miRNA) levels have been suggested as potential biomarkers at the intensive care unit (ICU), but none of the investigated miRNAs displayed a sufficient sensitivity or specificity to be routinely employed as a single marker in clinical practice. METHODS AND RESULTS We recently described alterations in serum levels of 7 miRNAs (miR-122, miR-133a, miR-143, miR-150, miR-155, miR-192, and miR-223) in critically ill patients at a medical ICU. In this study, we re-analyzed these previously published data and performed a combined analysis of these markers to unravel their potential as a prognostic scoring system in the context of critical illness. Based on the Youden's index method, cut-off values were systematically defined for dysregulated miRNAs, and a "miRNA survival score" was calculated. Patients with high scores displayed a dramatically impaired prognosis compared to patients with low values. Additionally, the predictive power of our score could be further increased when the patient's age was additionally incorporated into this score. CONCLUSIONS We describe the first miRNA-based biomarker score for prediction of medical patients' outcome during and after ICU treatment. Adding the patients' age into this score was associated with a further increase in its predictive power. Further studies are needed to validate the clinical utility of this score in risk-stratifying critically ill patients.
Collapse
Affiliation(s)
- Christoph Roderburg
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany.
- Department of Gastroenterology/Hepatology, Campus Virchow Klinikum and Charité Campus Mitte, Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Fabian Benz
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany.
- Department of Gastroenterology/Hepatology, Campus Virchow Klinikum and Charité Campus Mitte, Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Alexander Koch
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany.
| | - Sven H Loosen
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany.
| | - Martina Spehlmann
- Department of Cardiology and Angiology, University of Kiel, Schittenhelmstrasse 12, 24105 Kiel, Germany.
| | - Mark Luedde
- Department of Cardiology and Angiology, University of Kiel, Schittenhelmstrasse 12, 24105 Kiel, Germany.
| | - Alexander Wree
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany.
- Department of Gastroenterology/Hepatology, Campus Virchow Klinikum and Charité Campus Mitte, Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Mihael Vucur
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany.
| | - Christian Trautwein
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany.
| | - Frank Tacke
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany.
- Department of Gastroenterology/Hepatology, Campus Virchow Klinikum and Charité Campus Mitte, Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Tom Luedde
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany.
| |
Collapse
|
42
|
Huang J, Fu X, Chen X, Xu S, Yu J. Silencing of miR-486 alleviates LPS-stimulated inflammatory response of macrophages through targeting SIRT1. RSC Adv 2019; 9:17057-17064. [PMID: 35519896 PMCID: PMC9064473 DOI: 10.1039/c9ra01374a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 05/07/2019] [Indexed: 12/13/2022] Open
Abstract
Previous studies identified that microRNAs (miRNAs) have promising diagnostic and prognostic value against sepsis. MiR-486 was demonstrated to be upregulated in sepsis. However, the detailed role and underlying mechanism of miR-486 in the inflammatory response of sepsis are still unclear. In this research, macrophages were stimulated with lipopolysaccharide (LPS) to establish a sepsis model in vitro. qRT-PCR was used to detect miR-486 expression and the mRNA levels of sirtuin (SIRT1), tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1β. ELISA assay was performed to measure the levels of TNF-α, IL-6 and IL-1β. SIRT1 protein expression was determined by Western blot analysis. The targeted relationship of miR-486 and SIRT1 was confirmed by dual-luciferase reporter assay. Our data supported that miR-486 was upregulated in the serum of sepsis patients. MiR-486 expression and inflammatory response were elevated by LPS stimulation in macrophages. MiR-486 silencing or SIRT1 overexpression alleviated inflammatory response in LPS-stimulated macrophages. Moreover, SIRT1 was a direct target of miR-486. Anti-miR-486-mediated anti-inflammatory response in LPS-stimulated macrophages was antagonized by SIRT1 inhibition. Our data suggested that miR-486 silencing alleviated inflammatory response in macrophages under LPS stimulation at least partly through targeting SIRT1. Targeting miR-486 may provide a novel way to protect against dysregulated inflammatory response in sepsis patients.
Collapse
Affiliation(s)
- Jie Huang
- Department of Severe Medicine, The Central Hospital of Wuhan Wuhan China
| | - Xinlei Fu
- Department of Severe Medicine, Dongguan Donghua Hospital Dongguan Guangdong China
| | - Xue Chen
- Department of Severe Medicine, The Second Affiliated Hospital of Dalian Medical University No. 467, Zhongshan Rd, Shahekou 116000 Dalian China +86-0411-8467129
| | - Shuang Xu
- Department of Severe Medicine, The Second Affiliated Hospital of Dalian Medical University No. 467, Zhongshan Rd, Shahekou 116000 Dalian China +86-0411-8467129
| | - Jian Yu
- Department of Severe Medicine, The Second Affiliated Hospital of Dalian Medical University No. 467, Zhongshan Rd, Shahekou 116000 Dalian China +86-0411-8467129
| |
Collapse
|
43
|
Early sepsis diagnosis via protein and miRNA biomarkers using a novel point-of-care photonic biosensor. Anal Chim Acta 2019; 1077:232-242. [PMID: 31307714 DOI: 10.1016/j.aca.2019.05.038] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 12/14/2022]
Abstract
Sepsis is a condition characterized by a severe stage of blood-infection often leading to tissue damage, organ failure and finally death. Fast diagnosis and identification of the sepsis stage (sepsis, severe sepsis or septic shock) is critical for the patient's evolution and could help in defining the most adequate treatment in order to reduce its mortality. The combined detection of several biomarkers in a timely, specific and simultaneous way could ensure a more accurate diagnosis. We have designed a new optical point-of-care (POC) device based on a phase-sensitive interferometric biosensor with a label-free microarray configuration for potential high-throughput evaluation of specific sepsis biomarkers. The sensor chip, which relies on the use of metallic nanostructures, provides versatility in terms of biofunctionalization, allowing the efficient immobilization of different kind of receptors such as antibodies or oligonucleotides. We have focused on two structurally different types of biomarkers: proteins, including C-reactive protein (CRP) and Interleukin 6 (IL6), and miRNAs, using miRNA-16 as an example. Limits of Detection (LoD) of 18 μg mL-1, 88 μg mL-1 and 1 μM (6 μg mL-1) have been respectively obtained for CRP, IL6 and miRNA-16 in individual assays, with high accuracy and reproducibility. The multiplexing capabilities have also been assessed with the simultaneous analysis of both protein biomarkers.
Collapse
|
44
|
Zhang W, Jia J, Liu Z, Si D, Ma L, Zhang G. Circulating microRNAs as biomarkers for Sepsis secondary to pneumonia diagnosed via Sepsis 3.0. BMC Pulm Med 2019; 19:93. [PMID: 31088429 PMCID: PMC6518454 DOI: 10.1186/s12890-019-0836-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 03/24/2019] [Indexed: 12/21/2022] Open
Abstract
Background Sepsis biomarkers have limited specificity and sensitivity. Few studies have investigated microRNA (miRNA) biomarkers for sepsis secondary to pneumonia. This study aims to investigate the diagnostic and prognostic values of miRNAs in sepsis secondary to pneumonia. Methods Sepsis 3.0 was used to diagnose sepsis. Screening was performed through the Agilent miRNA chip technology by using the following criteria: p < 0.05, fold ≥2 or < 0.5, or copy number > 50 change. This study recruited 52 patients with pneumonia, including 31 males (59.6%) and 21 females (40.4%), 44 patients with sepsis secondary to pneumonia were diagnosed via Sepsis 3.0 (34 [77.3%] males and 10 [22.7%] females), and 21 healthy controls were used for miRNA verification. The miRNA levels were detected through fluorescence real-time quantitative polymerase chain reaction (qRT-PCR). Results: Fluorescence qRT-PCR detection showed that the miR-7110-5p and miR-223-3p expression levels in both patient groups were upregulated compared with those in the healthy controls. The expression levels differed between patients with pneumonia and those with sepsis secondary to pneumonia. The sensitivity and specificity of miR-7110-5p to differentiate sepsis from healthy controls were 84.2 and 90.5%, whereas those of miR-223-3p were 82.9 and 100%, respectively. Multivariate analysis of variance suggested that the presence of sepsis affected the miR-223-3p level (p = 0.041), whereas the presence of sepsis (p = 0.000) and the underlying disease (p = 0.025) influenced the miR-7110-5p level. Conclusions MiR-223-3p could be utilized to predict sepsis secondary to pneumonia.
Collapse
Affiliation(s)
- Wenping Zhang
- Department of Respiratory and Critical Care Medicine, The People's Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, No.1, East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Jianchao Jia
- Department of Respiratory and Critical Care Medicine, The People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zi Liu
- Department of Respiratory and Critical Care Medicine, The People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dan Si
- Department of Respiratory and Critical Care Medicine, The People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lijun Ma
- Department of Respiratory and Critical Care Medicine, The People's Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Guojun Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, No.1, East Jianshe Road, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
45
|
Ahmad A, Vieira JDC, de Mello AH, de Lima TM, Ariga SK, Barbeiro DF, Barbeiro HV, Szczesny B, Törö G, Druzhyna N, Randi EB, Marcatti M, Toliver-Kinsky T, Kiss A, Liaudet L, Salomao R, Soriano FG, Szabo C. The PARP inhibitor olaparib exerts beneficial effects in mice subjected to cecal ligature and puncture and in cells subjected to oxidative stress without impairing DNA integrity: A potential opportunity for repurposing a clinically used oncological drug for the experimental therapy of sepsis. Pharmacol Res 2019; 145:104263. [PMID: 31071432 DOI: 10.1016/j.phrs.2019.104263] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/25/2019] [Accepted: 05/03/2019] [Indexed: 12/15/2022]
Abstract
Poly(ADP-ribose) polymerase (PARP) is involved in the pathogenesis of cell dysfunction, inflammation and organ failure during septic shock. The goal of the current study was to investigate the efficacy and safety of the clinically approved PARP inhibitor olaparib in experimental models of oxidative stress in vitro and in sepsis in vivo. In mice subjected to cecal ligation and puncture (CLP) organ injury markers, circulating and splenic immune cell distributions, circulating mediators, DNA integrity and survival was measured. In U937 cells subjected to oxidative stress, cellular bioenergetics, viability and DNA integrity were measured. Olaparib was used to inhibit PARP. The results show that in adult male mice subjected to CLP, olaparib (1-10 mg/kg i.p.) improved multiorgan dysfunction. Olaparib treatment reduced the degree of bacterial CFUs. Olaparib attenuated the increases in the levels of several circulating mediators in the plasma. In the spleen, the number of CD4+ and CD8+ lymphocytes were reduced in response to CLP; this reduction was inhibited by olaparib treatment. Treg but not Th17 lymphocytes increased in response to CLP; these cell populations were reduced in sepsis when the animals received olaparib. The Th17/Treg ratio was lower in CLP-olaparib group than in the CLP control group. Analysis of miRNA expression identified a multitude of changes in spleen and circulating white blood cell miRNA levels after CLP; olaparib treatment selectively modulated these responses. Olaparib extended the survival rate of mice subjected to CLP. In contrast to males, in female mice olaparib did not have significant protective effects in CLP. In aged mice olaparib exerted beneficial effects that were less pronounced than the effects obtained in young adult males. In in vitro experiments in U937 cells subjected to oxidative stress, olaparib (1-100 μM) inhibited PARP activity, protected against the loss of cell viability, preserved NAD+ levels and improved cellular bioenergetics. In none of the in vivo or in vitro experiments did we observe any adverse effects of olaparib on nuclear or mitochondrial DNA integrity. In conclusion, olaparib improves organ function and extends survival in septic shock. Repurposing and eventual clinical introduction of this clinically approved PARP inhibitor may be warranted for the experimental therapy of septic shock.
Collapse
Affiliation(s)
- Akbar Ahmad
- Department of Anesthesiology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA.
| | - Juliana de Camargo Vieira
- Laboratório de Investigação Médica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
| | - Aline Haas de Mello
- Department of Anesthesiology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA.
| | - Thais Martins de Lima
- Laboratório de Investigação Médica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
| | - Suely Kubo Ariga
- Laboratório de Investigação Médica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
| | - Denise Frediani Barbeiro
- Laboratório de Investigação Médica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
| | - Hermes Vieira Barbeiro
- Laboratório de Investigação Médica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
| | - Bartosz Szczesny
- Department of Anesthesiology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA.
| | - Gábor Törö
- Department of Anesthesiology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA.
| | - Nadiya Druzhyna
- Department of Anesthesiology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA.
| | - Elisa B Randi
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| | - Michela Marcatti
- Department of Anesthesiology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA.
| | - Tracy Toliver-Kinsky
- Department of Anesthesiology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA.
| | - András Kiss
- Second Department of Pathology, Semmelweis University Medical School, Budapest, Hungary.
| | - Lucas Liaudet
- Department of Intensive Care Medicine and Burns, Lausanne University Hospital Medical Center, Lausanne, Switzerland.
| | - Reinaldo Salomao
- Division of Infectious Diseases, Department of Medicine, Hospital São Paulo, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.
| | - Francisco Garcia Soriano
- Laboratório de Investigação Médica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
| | - Csaba Szabo
- Department of Anesthesiology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA; Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
46
|
Yuan FH, Chen YL, Zhao Y, Liu ZM, Nan CC, Zheng BL, Liu XY, Chen XY. microRNA-30a inhibits the liver cell proliferation and promotes cell apoptosis through the JAK/STAT signaling pathway by targeting SOCS-1 in rats with sepsis. J Cell Physiol 2019; 234:17839-17853. [PMID: 30972748 DOI: 10.1002/jcp.28410] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 12/15/2022]
Abstract
Sepsis is a systemic inflammatory response that may be induced by trauma, infection, surgery, and burns. With the aim of discovering novel treatment targets for sepsis, this current study was conducted to investigate the effect and potential mechanism by which microRNA-30a (miR-30a) controls sepsis-induced liver cell proliferation and apoptosis. Rat models of sepsis were established by applying the cecal ligation and puncture (CLP) method to simulate sepsis models. The binding site between miR-30a and suppressor of cytokine signaling protein 1 (SOCS-1) was determined by dual luciferase reporter gene assay. The gain-of-and-loss-of-function experiments were applied to analyze the effects of miR-30a and SOCS-1 on liver cell proliferation and apoptosis of the established sepsis rat models. The expression of miR-30a, SOCS-1, Janus kinase 2 (JAK2), signal transducer and activator of transcription 3 (STAT3), Bcl-2 associated X protein (Bax), B cell lymphoma-2 (Bcl-2), toll-like receptor 4 (TLR4), and high-mobility group box 1 (HMGB1), and the extent of JAK2 and STAT3 phosphorylation were all determined. Sepsis led to an elevation of miR-30a and also a decline of SOCS-1 in the liver cells. SOCS-1 was negatively regulated by miR-30a. Upregulated miR-30a and downregulated SOCS-1 increased the expression of JAK2, STAT3, Bax, TLR4, and HMGB1 as well as the extent of JAK2 and STAT3 phosphorylation whereas impeding the expression of SOCS-1 and Bcl-2. More important, either miR-30a elevation or SOCS-1 silencing suppressed liver cell proliferation and also promoted apoptosis. On the contrary, the inhibition of miR-30a exhibited the opposite effects. Altogether, we come to the conclusion that miR-30a inhibited the liver cell proliferation and promoted cell apoptosis by targeting and negatively regulating SOCS-1 via the JAK/STAT signaling pathway in rats with sepsis.
Collapse
Affiliation(s)
- Feng-Hua Yuan
- Department of Critical Care Medicine, The Second Clinical Medicine College, Shenzhen People's Hospital, Jinan University, Shenzhen, People's Republic of China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Shenzhen, People's Republic of China
| | - You-Lian Chen
- Department of Critical Care Medicine, The Second Clinical Medicine College, Shenzhen People's Hospital, Jinan University, Shenzhen, People's Republic of China
| | - Ying Zhao
- Department of Critical Care Medicine, The Second Clinical Medicine College, Shenzhen People's Hospital, Jinan University, Shenzhen, People's Republic of China
| | - Zhen-Mi Liu
- Department of Critical Care Medicine, The Second Clinical Medicine College, Shenzhen People's Hospital, Jinan University, Shenzhen, People's Republic of China
| | - Chuan-Chuan Nan
- Department of Critical Care Medicine, The Second Clinical Medicine College, Shenzhen People's Hospital, Jinan University, Shenzhen, People's Republic of China
| | - Biao-Lin Zheng
- Department of Critical Care Medicine, The Second Clinical Medicine College, Shenzhen People's Hospital, Jinan University, Shenzhen, People's Republic of China
| | - Xue-Yan Liu
- Department of Critical Care Medicine, The Second Clinical Medicine College, Shenzhen People's Hospital, Jinan University, Shenzhen, People's Republic of China
| | - Xiao-Yin Chen
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Shenzhen, People's Republic of China.,Department of Traditional Chinese Medicine, Medical College, Jinan University, Guangzhou, People's Republic of China
| |
Collapse
|
47
|
From traditional biochemical signals to molecular markers for detection of sepsis after burn injuries. Burns 2019; 45:16-31. [DOI: 10.1016/j.burns.2018.04.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/28/2018] [Accepted: 04/24/2018] [Indexed: 12/22/2022]
|
48
|
Halushka PV, Goodwin AJ, Halushka MK. Opportunities for microRNAs in the Crowded Field of Cardiovascular Biomarkers. ANNUAL REVIEW OF PATHOLOGY 2019; 14:211-238. [PMID: 30332561 PMCID: PMC6442682 DOI: 10.1146/annurev-pathmechdis-012418-012827] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cardiovascular diseases exist across all developed countries. Biomarkers that can predict or diagnose diseases early in their pathogeneses can reduce their morbidity and mortality in afflicted individuals. microRNAs are small regulatory RNAs that modulate translation and have been identified as potential fluid-based biomarkers across numerous maladies. We describe the current state of cardiovascular disease biomarkers across a range of diseases, including myocardial infarction, acute coronary syndrome, myocarditis, hypertension, heart failure, heart transplantation, aortic stenosis, diabetic cardiomyopathy, atrial fibrillation, and sepsis. We present the current understanding of microRNAs as possible biomarkers in these categories and where their best opportunities exist to enter clinical practice.
Collapse
Affiliation(s)
- Perry V Halushka
- Department of Pharmacology, South Carolina Clinical and Translational Research Institute, Medical University of South Carolina, Charleston, South Carolina 29425, USA;
- Department of Medicine, South Carolina Clinical and Translational Research Institute, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Andrew J Goodwin
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, USA;
| | - Marc K Halushka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA;
| |
Collapse
|
49
|
Möhnle P, Hirschberger S, Hinske LC, Briegel J, Hübner M, Weis S, Dimopoulos G, Bauer M, Giamarellos-Bourboulis EJ, Kreth S. MicroRNAs 143 and 150 in whole blood enable detection of T-cell immunoparalysis in sepsis. Mol Med 2018; 24:54. [PMID: 30332984 PMCID: PMC6191918 DOI: 10.1186/s10020-018-0056-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/04/2018] [Indexed: 12/25/2022] Open
Abstract
Background Currently, no suitable clinical marker for detection of septic immunosuppression is available. We aimed at identifying microRNAs that could serve as biomarkers of T-cell mediated immunoparalysis in sepsis. Methods RNA was isolated from purified T-cells or from whole blood cells obtained from septic patients and healthy volunteers. Differentially regulated miRNAs were identified by miRNA Microarray (n = 7). Validation was performed via qPCR (n = 31). Results T-cells of septic patients revealed characteristics of immunosuppression: Pro-inflammatory miR-150 and miR-342 were downregulated, whereas anti-inflammatory miR-15a, miR-16, miR-93, miR-143, miR-223 and miR-424 were upregulated. Assessment of T-cell effector status showed significantly reduced mRNA-levels of IL2, IL7R and ICOS, and increased levels of IL4, IL10 and TGF-β. The individual extent of immunosuppression differed markedly. MicroRNA-143, − 150 and − 223 independently indicated T-cell immunoparalysis and significantly correlated with patient’s IL7R-/ICOS-expression and SOFA-scores. In whole blood, composed of innate and adaptive immune cells, both traits of immunosuppression and hyperinflammation were detected. Importantly, miR-143 and miR-150 – both predominantly expressed in T-cells – retained strong power of discrimination also in whole blood samples. Conclusions These findings suggest miR-143 and miR-150 as promising markers for detection of T-cell immunosuppression in whole blood and may help to develop new approaches for miRNA-based diagnostic in sepsis. Electronic supplementary material The online version of this article (10.1186/s10020-018-0056-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- P Möhnle
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital, Ludwig Maximilian University (LMU), Marchioninistraße 15, 81377, Munich, Germany
| | - S Hirschberger
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital, Ludwig Maximilian University (LMU), Marchioninistraße 15, 81377, Munich, Germany.,Walter-Brendel-Center of Experimental Medicine, Ludwig Maximilian University (LMU), Munich, Germany
| | - L C Hinske
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital, Ludwig Maximilian University (LMU), Marchioninistraße 15, 81377, Munich, Germany
| | - J Briegel
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital, Ludwig Maximilian University (LMU), Marchioninistraße 15, 81377, Munich, Germany
| | - M Hübner
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital, Ludwig Maximilian University (LMU), Marchioninistraße 15, 81377, Munich, Germany.,Walter-Brendel-Center of Experimental Medicine, Ludwig Maximilian University (LMU), Munich, Germany
| | - S Weis
- Department of Anaesthesiology and Intensive Care Medicine, Friedrich-Schiller University, Jena, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany.,Center for Infectious Disease and Infection Control, Jena University Hospital, Jena, Germany
| | - G Dimopoulos
- 2nd Department of Critical Care Medicine, ATTIKON University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - M Bauer
- Department of Anaesthesiology and Intensive Care Medicine, Friedrich-Schiller University, Jena, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - E J Giamarellos-Bourboulis
- 4th Department of Internal Medicine, ATTIKON University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - S Kreth
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital, Ludwig Maximilian University (LMU), Marchioninistraße 15, 81377, Munich, Germany. .,Walter-Brendel-Center of Experimental Medicine, Ludwig Maximilian University (LMU), Munich, Germany.
| |
Collapse
|
50
|
|