1
|
Walker-Hale N, Guerrero-Rubio MA, Brockington SF. Multiple transitions to high l-DOPA 4,5-dioxygenase activity reveal molecular pathways to convergent betalain pigmentation in Caryophyllales. THE NEW PHYTOLOGIST 2025. [PMID: 40325884 DOI: 10.1111/nph.70177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 04/04/2025] [Indexed: 05/07/2025]
Abstract
Many specialized metabolic pathways have evolved convergently in plants, but distinguishing multiple origins from alternative evolutionary scenarios can be difficult. Here, we explore the evolution of l-3,4-dihydroxyphenylalanine (l-DOPA) 4,5-dioxygenase (DODA) enzymes to better resolve the convergent evolution of the betalain biosynthetic pathway within the flowering plant order Caryophyllales. We use yeast-based heterologous assays to quantify enzymatic activity of extant proteins and then employ ancestral sequence reconstruction to resurrect and assay ancestral DODA enzymes. We use a combination of ancestral sequence reconstruction, model-based methods, and structural modelling to describe patterns of molecular convergence. We confirm that high l-DOPA 4,5-dioxygenase activity is polyphyletic and show that high activity DODAs evolved at least three times from ancestral proteins with low activity. We show that molecular convergence is concentrated proximally to the binding pockets but also appears distally to active sites. Moreover, our analysis also suggests that many unique and divergent substitutions contribute to the evolution of DODA. Given the key role of DODA in betalain biosynthesis, our analysis further supports the convergent origins of betalains and illustrates how the iterative evolution of betalain biosynthesis has drawn on a complex mixture of convergent, divergent, and unique variation.
Collapse
Affiliation(s)
- Nathanael Walker-Hale
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | | | - Samuel F Brockington
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| |
Collapse
|
2
|
Bravo-Arévalo JE. Tracing the evolutionary pathway: on the origin of mitochondria and eukaryogenesis. FEBS J 2025. [PMID: 40271811 DOI: 10.1111/febs.70109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/10/2025] [Accepted: 04/07/2025] [Indexed: 04/25/2025]
Abstract
The mito-early hypothesis posits that mitochondrial integration was a key driver in the evolution of defining eukaryotic characteristics (DECs). Building on previous work that identified endosymbiotic selective pressures as central to eukaryotic cell evolution, this study examines how endosymbiotic gene transfer (EGT) and the resulting genomic and bioenergetic constraints shaped mitochondrial protein import systems. These systems were crucial for maintaining cellular function in early eukaryotes and facilitated their subsequent diversification. A primary focus is the co-evolution of mitochondrial import mechanisms and eukaryotic endomembrane complexity. Specifically, I investigate how the necessity for nuclear-encoded mitochondrial protein import drove the adaptation of bacterial secretion components, alongside eukaryotic innovations, to refine translocation pathways. Beyond enabling bioenergetic expansion, mitochondrial endosymbiosis played a fundamental role in the emergence of compartmentalisation and cellular complexity in LECA, driving the evolution of organellar networks. By integrating genomic, structural and phylogenetic evidence, this study aimed to contribute to the mito-early framework, clarifying the mechanisms that linked mitochondrial acquisition to the origin of eukaryotic cells.
Collapse
Affiliation(s)
- J Ernesto Bravo-Arévalo
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| |
Collapse
|
3
|
Lobón-Rovira J, Marugán-Lobón J, Nebreda SM, Buckley D, Stanley EL, Köhnk S, Glaw F, Conradie W, Bauer AM. Adaptive or non-adaptive? Cranial evolution in a radiation of miniaturized day geckos. BMC Ecol Evol 2024; 24:150. [PMID: 39730989 DOI: 10.1186/s12862-024-02344-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/20/2024] [Indexed: 12/29/2024] Open
Abstract
Lygodactylus geckos represent a well-documented radiation of miniaturized lizards with diverse life-history traits that are widely distributed in Africa, Madagascar, and South America. The group has diversified into numerous species with high levels of morphological similarity. The evolutionary processes underlying such diversification remain enigmatic, because species live in different ecological biomes, ecoregions and microhabitats, while suggesting strikingly high levels of homoplasy. To underscore this evolutionary pattern, here we explore the shape variation of skull elements (i.e., cranium, jaw and inner ear) using 3D geometric morphometrics and phylogenetic comparative methods on computed tomography scans (CT-scan) of a sample encompassing almost all recognized taxa within Lygodactylus. The results of this work show that skull and inner ear shape variation is low (i.e., there is high overlapping on the morphospace) across geographic regions, macrohabitats and lifestyles, implying extensive homoplasy. Furthermore, we also found a strong influence of allometry shaping cranial variation both at intra and interspecific levels, suggesting a major constraint underlying skull architecture, probably as a consequence of its miniaturization. The remaining variation that is not allometric is independent of phylogeny and ecological adaptation and can probably be interpreted as the result of intrinsic developmental plasticity. This, in turn, supports the interpretation that speciation in this group is largely concordant with a non-adaptive hypothesis, which results mainly from vicariant processes.
Collapse
Affiliation(s)
- Javier Lobón-Rovira
- CIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Rua Padre Armando Quintas, Campus de Vairão, Vairão, 4485-661, Portugal.
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, 4485-661, Portugal.
| | - Jesus Marugán-Lobón
- Departamento de Biología, Unidad de Paleontología, Facultad de Ciencias, Universidad Autónoma de Madrid (UAM), c/Darwin 2, Madrid, 28049, Spain
- Centro para la Integración en Paleobiología, Universidad Autónoma de Madrid (UAM), Madrid, 28049, Spain
| | - Sergio M Nebreda
- Departamento de Biología, Unidad de Paleontología, Facultad de Ciencias, Universidad Autónoma de Madrid (UAM), c/Darwin 2, Madrid, 28049, Spain
- Centro para la Integración en Paleobiología, Universidad Autónoma de Madrid (UAM), Madrid, 28049, Spain
| | - David Buckley
- Departamento de Biología, Unidad de Genética, Facultad de Ciencias, Universidad Autónoma de Madrid (UAM), c/Darwin 2, Madrid, 28049, Spain
- Centro de Investigación en Biodiversidad y Cambio Global CIBC-UAM, Facultad de Ciencias, Universidad Autónoma de Madrid, c/Darwin 2, Madrid, 28049, Spain
| | - Edward L Stanley
- Division of Digital Imaging, Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - Stephanie Köhnk
- Morphology Lab, LIB - Leibniz Institute for the Analysis of Biodiversity Change, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
- Olive Ridley Project, 91 Padiham Road, Sabden, Clitheroe, Lancashire, BB7 9EX, UK
| | - Frank Glaw
- Zoologische Staatssammlung München (ZSM-SNSB), Münchhausenstraße 21, 81247, München, Germany
| | - Werner Conradie
- Port Elizabeth Museum (Bayworld), P.O. Box 13147, Humewood, Gqeberha, 6013, South Africa
- Department of Nature Conservation Management, Natural Resource Science and Management Cluster, Faculty of Science, Nelson Mandela University, George Campus, George, South Africa
| | - Aaron M Bauer
- Department of Biology and Center for Biodiversity and Ecosystem Stewardship, Villanova University, 800 Lancaster Avenue, Villanova, PA, 19085, USA
| |
Collapse
|
4
|
Delekta EM, Kolmann MA. Burrowing Constrains the Phenotypic Diversity of Fossorial Crayfish. Integr Comp Biol 2024; 64:1454-1466. [PMID: 38862199 DOI: 10.1093/icb/icae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/21/2024] [Accepted: 05/30/2024] [Indexed: 06/13/2024] Open
Abstract
Strong selective pressure on phenotype can arise when habitat transitions fundamentally alter the physical media in which animals live, such as the invasion of land by lobe-finned fishes and insects. When environmental gradients differ drastically among habitats and multiple lineages transition between these habitats, we expect phenotypic convergence to be prevalent. One transition where widespread convergence has been observed is the shift from aboveground to subterranean environments in fossorial animals. Subterranean environments are low-light, confined spaces and tend to be hypoxic or anoxic, not to mention that the act of burrowing itself demands morphological specializations for excavation. Research suggests burrowing promotes morphological convergence in crayfish, with non-burrowing forms having a dorsoventrally compressed carapace and long, slender claws (chelae), while primary burrowing forms have a dorsolaterally compressed carapace and shorter, more powerful claws. However, earlier ecomorphological comparisons relied on qualitative rather than quantitative assessments of phenotypic differences. This study tested for convergence in North American crayfishes using a geometric morphometric approach. We photographed the carapace and claw for representative species across 13 North American genera. We hypothesized that crayfishes that occur in similar habitats and exhibit similar burrowing behaviors, would converge in their carapace and claw shapes. We found evidence for convergence in carapace and claw morphologies in burrowing crayfishes. However, claw phenotypes did not converge as strongly as carapace shape, an example of "imperfect" or "incomplete" convergence we attribute to the multiple competing demands on claw form and function. We argue that nuances in habitat characteristics, like soil type or compaction, make complete convergence unlikely for range- and dispersal-limited fossorial crayfishes.
Collapse
Affiliation(s)
- Emmy M Delekta
- Department of Biology, University of Louisville, Louisville, KY 40292, USA
- Auburn University Museum of Natural History, Auburn, AL 36849, USA
| | - Matthew A Kolmann
- Department of Biology, University of Louisville, Louisville, KY 40292, USA
| |
Collapse
|
5
|
Kolmann MA, Poulin E, Rosen J, Hemraj-Naraine D, Burns MD. Phenotypic Convergence Is Stronger and More Frequent in Herbivorous Fishes. Integr Comp Biol 2024; 64:1467-1483. [PMID: 38724441 DOI: 10.1093/icb/icae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 11/22/2024] Open
Abstract
Constraints on phenotypic evolution can lead to patterns of convergent evolution, by limiting the "pool" of potential phenotypes in the face of endogenous (functional, developmental) or exogenous (competition, predation) selective pressures. Evaluation of convergence depends on integrating ecological and morphological data within a robust, comparative phylogenetic context. The staggering diversity of teleost fishes offers a multitude of lineages adapted for similar ecological roles and, therefore, offers numerous replicated evolutionary experiments for exploring phenotypic convergence. However, our understanding of fish feeding systems has been primarily shaped by marine species, with the monolithic exception of freshwater cichlids. Here we use piranhas and pacus (Serrasalmidae) to explore the evolution of different feeding ecologies and their morphological proxies in Neotropical freshwater environments. Specifically, we explore whether convergence is more widespread among plant-eating fishes, arising from strong constraints on phenotypic evolution in herbivores. Using osteological micro-computed tomographic imaging (μCT), we describe the major axes of morphological variation in pacus and piranhas, regarding their diet and feeding behaviors. Next, we evaluated whether herbivorous niches are less labile than other dietary guilds and whether herbivorous species' phenotypes evolve at a slower evolutionary rate than other taxa. We then assess how convergent herbivorous taxa are, using three different suites of morphological characters (dental, jaw, and abdominal morphometrics). Ecologically, herbivory is not a dead end, exhibiting similar observed transition rates as those between carnivores and omnivores. However, we documented widespread convergence in herbivores and that herbivores have slower rates of phenotypic evolution than carnivores. Most instances of convergence are found in herbivorous taxa, specifically in frugivores and folivores. Moreover, instances of "complete" convergence, indicated by positive convergence metrics observed in more than one morphometric dataset, were only found in herbivores. Herbivores do appear to evolve under constrained circumstances, but this has not limited their ecological ability.
Collapse
Affiliation(s)
- M A Kolmann
- Department of Biology, University of Louisville, Louisville, KY 40208, USA
| | - E Poulin
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA 92697, USA
| | - J Rosen
- Department of Biology, University of Louisville, Louisville, KY 40208, USA
| | - D Hemraj-Naraine
- Department of Biology, University of Louisville, Louisville, KY 40208, USA
| | - M D Burns
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| |
Collapse
|
6
|
Dal Pos D, Sharanowski BJ. A host driven parasitoid syndrome: Convergent evolution of multiple traits associated with woodboring hosts in Ichneumonidae (Hymenoptera, Ichneumonoidea). PLoS One 2024; 19:e0311365. [PMID: 39348351 PMCID: PMC11441683 DOI: 10.1371/journal.pone.0311365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/12/2024] [Indexed: 10/02/2024] Open
Abstract
The evolution of convergent phenotypes is of major interest in biology because of their omnipresence and ability to inform the study of evolutionary novelty and constraint. Convergent phenotypes can be combinations of traits that evolve concertedly, called syndromes, and these can be shaped by a common environmental pressure. Parasitoid wasps which use a wide variety of arthropod hosts have also repeatedly and convergently switched host use across their evolutionary history. They thus represent a natural laboratory for the evolution of trait syndromes that are associated with parasitism of specific hosts and host substrates. In this study, we tested the evolution of co-evolving characters in the highly diverse family Ichneumonidae associated with ovipositing in a specific and well-defined substrate: wood. Using a newly constructed phylogeny and an existing morphological dataset, we identified six traits correlated with the wood-boring lifestyle that demonstrate convergent evolution. At least one trait, the presence of teeth on the ovipositor, typically preceded the evolution of other traits and possibly the switch to parasitism of wood-boring hosts. For each trait, we provide a historical review of their associations with wood-boring parasitoids, reevaluate the function of some characters, and suggest future coding improvements. Overall, we demonstrate the convergent evolution of multiple traits associated with parasitism of woodboring hosts and propose a syndrome in a hyper diverse lineage of parasitoid wasps.
Collapse
Affiliation(s)
- Davide Dal Pos
- Department of Biology, University of Central Florida, Orlando, Florida, United States of America
| | - Barbara J. Sharanowski
- Department of Biology, University of Central Florida, Orlando, Florida, United States of America
| |
Collapse
|
7
|
Agrawal AA, Hastings AP, Lenhart PA, Blecher M, Duplais C, Petschenka G, Hawlena D, Wagschal V, Dobler S. Convergence and Divergence among Herbivorous Insects Specialized on Toxic Plants: Revealing Syndromes among the Cardenolide Feeders across the Insect Tree of Life. Am Nat 2024; 204:201-220. [PMID: 39179235 DOI: 10.1086/731277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
AbstractRepeatable macroevolutionary patterns provide hope for rules in biology, especially when we can decipher the underlying mechanisms. Here we synthesize natural history, genetic adaptations, and toxin sequestration in herbivorous insects that specialize on plants with cardiac glycoside defenses. Work on the monarch butterfly provided a model for evolution of the "sequestering specialist syndrome," where specific amino acid substitutions in the insect's Na+/K+-ATPase are associated with (1) high toxin resistance (target site insensitivity [TSI]), (2) sequestration of toxins, and (3) aposematic coloration. We evaluate convergence for these traits within and between Lepidoptera, Coleoptera, Diptera, Hemiptera, Hymenoptera, and Orthoptera, encompassing hundreds of toxin-adapted species. Using new and existing data on ∼28 origins of specialization, we show that the monarch model evolved independently in five taxonomic orders (but not Diptera). An additional syndrome occurs in five orders (all but Hymenoptera): aposematic sequesterers with modest to medium TSI. Indeed, all sequestering species were aposematic, and all but one had at least modest TSI. Additionally, several species were aposematic nonsequesterers (potential Batesian mimics), and this combination evolved in species with a range of TSI levels. Finally, we identified some biases among these strategies within taxonomic orders. Biodiversity in this microcosm of life evolved repeatedly with a high degree of similarity across six taxonomic orders, yet we identified alternative trait combinations as well as lineage-specific outcomes.
Collapse
|
8
|
Houghton CJ, Coelho NC, Chiang A, Hedayati S, Parikh SB, Ozbaki-Yagan N, Wacholder A, Iannotta J, Berger A, Carvunis AR, O’Donnell AF. Cellular processing of beneficial de novo emerging proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.610198. [PMID: 39257767 PMCID: PMC11384008 DOI: 10.1101/2024.08.28.610198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Novel proteins can originate de novo from non-coding DNA and contribute to species-specific adaptations. It is challenging to conceive how de novo emerging proteins may integrate pre-existing cellular systems to bring about beneficial traits, given that their sequences are previously unseen by the cell. To address this apparent paradox, we investigated 26 de novo emerging proteins previously associated with growth benefits in yeast. Microscopy revealed that these beneficial emerging proteins preferentially localize to the endoplasmic reticulum (ER). Sequence and structure analyses uncovered a common protein organization among all ER-localizing beneficial emerging proteins, characterized by a short hydrophobic C-terminus immediately preceded by a transmembrane domain. Using genetic and biochemical approaches, we showed that ER localization of beneficial emerging proteins requires the GET and SND pathways, both of which are evolutionarily conserved and known to recognize transmembrane domains to promote post-translational ER insertion. The abundance of ER-localizing beneficial emerging proteins was regulated by conserved proteasome- and vacuole-dependent processes, through mechanisms that appear to be facilitated by the emerging proteins' C-termini. Consequently, we propose that evolutionarily conserved pathways can convergently govern the cellular processing of de novo emerging proteins with unique sequences, likely owing to common underlying protein organization patterns.
Collapse
Affiliation(s)
- Carly J. Houghton
- Pittsburgh Center for Evolutionary Biology and Medicine (CEBaM), Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, United States
| | - Nelson Castilho Coelho
- Pittsburgh Center for Evolutionary Biology and Medicine (CEBaM), Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, United States
| | - Annette Chiang
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Stefanie Hedayati
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Saurin B. Parikh
- Pittsburgh Center for Evolutionary Biology and Medicine (CEBaM), Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, United States
| | - Nejla Ozbaki-Yagan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Aaron Wacholder
- Pittsburgh Center for Evolutionary Biology and Medicine (CEBaM), Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, United States
| | - John Iannotta
- Pittsburgh Center for Evolutionary Biology and Medicine (CEBaM), Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, United States
| | - Alexis Berger
- Pittsburgh Center for Evolutionary Biology and Medicine (CEBaM), Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, United States
| | - Anne-Ruxandra Carvunis
- Pittsburgh Center for Evolutionary Biology and Medicine (CEBaM), Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, United States
| | - Allyson F. O’Donnell
- Pittsburgh Center for Evolutionary Biology and Medicine (CEBaM), Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, United States
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States
| |
Collapse
|
9
|
Grossnickle DM, Brightly WH, Weaver LN, Stanchak KE, Roston RA, Pevsner SK, Stayton CT, Polly PD, Law CJ. Challenges and advances in measuring phenotypic convergence. Evolution 2024; 78:1355-1371. [PMID: 38771219 DOI: 10.1093/evolut/qpae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 05/22/2024]
Abstract
Tests of phenotypic convergence can provide evidence of adaptive evolution, and the popularity of such studies has grown in recent years due to the development of novel, quantitative methods for identifying and measuring convergence. These methods include the commonly applied C1-C4 measures of Stayton (2015a), which measure morphological distances between lineages, and Ornstein-Uhlenbeck (OU) model-fitting analyses, which test whether lineages converged on shared adaptive peaks. We test the performance of C-measures and other convergence measures under various evolutionary scenarios and reveal a critical issue with C-measures: they often misidentify divergent lineages as convergent. We address this issue by developing novel convergence measures-Ct1-Ct4-measures-that calculate distances between lineages at specific points in time, minimizing the possibility of misidentifying divergent taxa as convergent. Ct-measures are most appropriate when focal lineages are of the same or similar geologic ages (e.g., extant taxa), meaning that the lineages' evolutionary histories include considerable overlap in time. Beyond C-measures, we find that all convergence measures are influenced by the position of focal taxa in phenotypic space, with morphological outliers often statistically more likely to be measured as strongly convergent. Further, we mimic scenarios in which researchers assess convergence using OU models with a priori regime assignments (e.g., classifying taxa by ecological traits) and find that multiple-regime OU models with phenotypically divergent lineages assigned to a shared selective regime often outperform simpler models. This highlights that model support for these multiple-regime OU models should not be assumed to always reflect convergence among focal lineages of a shared regime. Our new Ct1-Ct4-measures provide researchers with an improved comparative tool, but we emphasize that all available convergence measures are imperfect, and researchers should recognize the limitations of these methods and use multiple lines of evidence to test convergence hypotheses.
Collapse
Affiliation(s)
- David M Grossnickle
- Natural Sciences Department, Oregon Institute of Technology, Klamath Falls, OR, United States
| | - William H Brightly
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Lucas N Weaver
- Museum of Paleontology and Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Kathryn E Stanchak
- Department of Biology, University of Washington, Seattle, WA, United States
| | - Rachel A Roston
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, United States
| | - Spencer K Pevsner
- Department of Earth Sciences, University of Oxford, Oxford, United Kingdom
| | - C Tristan Stayton
- Department of Biology, Bucknell University, Lewisburg, PA, United States
| | - P David Polly
- Department of Earth and Atmospheric Sciences, Indiana University, Bloomington, IN, United States
| | - Chris J Law
- Department of Biology, University of Washington, Seattle, WA, United States
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
10
|
Konno N, Maeno S, Tanizawa Y, Arita M, Endo A, Iwasaki W. Evolutionary paths toward multi-level convergence of lactic acid bacteria in fructose-rich environments. Commun Biol 2024; 7:902. [PMID: 39048718 PMCID: PMC11269746 DOI: 10.1038/s42003-024-06580-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 07/11/2024] [Indexed: 07/27/2024] Open
Abstract
Convergence provides clues to unveil the non-random nature of evolution. Intermediate paths toward convergence inform us of the stochasticity and the constraint of evolutionary processes. Although previous studies have suggested that substantial constraints exist in microevolutionary paths, it remains unclear whether macroevolutionary convergence follows stochastic or constrained paths. Here, we performed comparative genomics for hundreds of lactic acid bacteria (LAB) species, including clades showing a convergent gene repertoire and sharing fructose-rich habitats. By adopting phylogenetic comparative methods we showed that the genomic convergence of distinct fructophilic LAB (FLAB) lineages was caused by parallel losses of more than a hundred orthologs and the gene losses followed significantly similar orders. Our results further suggested that the loss of adhE, a key gene for phenotypic convergence to FLAB, follows a specific evolutionary path of domain architecture decay and amino acid substitutions in multiple LAB lineages sharing fructose-rich habitats. These findings unveiled the constrained evolutionary paths toward the convergence of free-living bacterial clades at the genomic and molecular levels.
Collapse
Affiliation(s)
- Naoki Konno
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| | - Shintaro Maeno
- Research Center for Advance Science and Innovation Organization for Research Initiatives, Yamaguchi University, Yamaguchi, Yamaguchi, Japan
| | - Yasuhiro Tanizawa
- Department of Informatics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Masanori Arita
- Department of Informatics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Akihito Endo
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Wataru Iwasaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan.
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan.
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan.
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
11
|
Gerolamo CS, Pereira L, Costa FRC, Jansen S, Angyalossy V, Nogueira A. Lianas in tropical dry seasonal forests have a high hydraulic efficiency but not always a higher embolism resistance than lianas in rainforests. ANNALS OF BOTANY 2024; 134:337-350. [PMID: 38721801 PMCID: PMC11232521 DOI: 10.1093/aob/mcae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/07/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND AND AIMS Lianas have higher relative abundance and biomass in drier seasonal forests than in rainforests, but whether this difference is associated with their hydraulic strategies is unclear. Here, we investigate whether lianas of seasonally dry forests are safer and more efficient in water transport than rainforest lianas, explaining patterns of liana abundance. METHODS We measured hydraulic traits on five pairs of congeneric lianas of the tribe Bignonieae in two contrasting forest sites: the wet 'Dense Ombrophilous Forest' in Central Amazonia (~2 dry months) and the drier 'Semideciduous Seasonal Forest' in the inland Atlantic Forest (~6 dry months). We also gathered a broader database, including 197 trees and 58 liana species from different tropical forests, to compare hydraulic safety between habits and forest types. KEY RESULTS Bignonieae lianas from both forests had high and similar hydraulic efficiency but exhibited variability in resistance to embolism across forest types when phylogenetic relationships were taken into account. Three genera had higher hydraulic safety in the seasonal forest than in the rainforest, but species across both forests had similar positive hydraulic safety margins despite lower predawn water potential values of seasonal forest lianas. We did not find the safety-efficiency trade-off. Merging our results with previously published data revealed a high variability of resistance to embolism in both trees and lianas, independent of forest types. CONCLUSIONS The high hydraulic efficiency of lianas detected here probably favours their rapid growth across tropical forests, but differences in hydraulic safety highlight that some species are highly vulnerable and may rely on other mechanisms to cope with drought. Future research on the lethal dehydration threshold and the connection between hydraulic resistance strategies and liana abundance could offer further insights into tropical forest dynamics under climatic threats.
Collapse
Affiliation(s)
- Caian S Gerolamo
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, 05508-090, Brazil
| | - Luciano Pereira
- Institute of Botany, Ulm University, Albert-Einstein-Allee 11, Ulm D-89081, Germany
| | - Flavia R C Costa
- Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, AM, 69011-970, Brazil
| | - Steven Jansen
- Institute of Botany, Ulm University, Albert-Einstein-Allee 11, Ulm D-89081, Germany
| | - Veronica Angyalossy
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, 05508-090, Brazil
| | - Anselmo Nogueira
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC, São Bernardo do Campo, SP, 09606-070, Brazil
| |
Collapse
|
12
|
Chatar N, Michaud M, Tamagnini D, Fischer V. Evolutionary patterns of cat-like carnivorans unveil drivers of the sabertooth morphology. Curr Biol 2024; 34:2460-2473.e4. [PMID: 38759651 DOI: 10.1016/j.cub.2024.04.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/10/2024] [Accepted: 04/24/2024] [Indexed: 05/19/2024]
Abstract
The sabertooth morphology stands as a classic case of convergence, manifesting recurrently across various vertebrate groups, prominently within two carnivorans clades: felids and nimravids. Nonetheless, the evolutionary mechanisms driving these recurring phenotypes remain insufficiently understood, lacking a robust phylogenetic and spatiotemporal framework. We reconstruct the tempo and mode of craniomandibular evolution of Felidae and Nimravidae and evaluate the strength of the dichotomy between conical and saber-toothed species, as well as within saber-toothed morphotypes. To do so, we investigate morphological variation, convergence, phenotypic integration, and evolutionary rates, employing a comprehensive dataset of nearly 200 3D models encompassing mandibles and crania from both extinct and extant feline-like carnivorans, spanning their entire evolutionary timeline. Our results reject the hypothesis of a distinctive sabertooth morphology, revealing instead a continuous spectrum of feline-like phenotypes in both the cranium and mandible, with sporadic instances of unequivocal convergence. Disparity peaked at the end of the Miocene and is usually higher in clades containing taxa with extreme sabertoothed adaptations. We show that taxa with saberteeth exhibit a lower degree of craniomandibular integration, allowing to exhibit a greater range of phenotypes. Those same groups usually show a burst of morphological evolutionary rate at the beginning of their evolutionary history. Consequently, we propose that a reduced degree of integration coupled with rapid evolutionary rates emerge as key components in the development of a sabertooth morphology in multiple clades.
Collapse
Affiliation(s)
- Narimane Chatar
- Evolution and Diversity Dynamics Lab, Université de Liège, Allée du six août 14, 4000 Liège, Belgium; Functional Anatomy and Vertebrate Evolution Lab, Department of Integrative Biology, University of California, Berkeley, 3040 Valley Life Sciences Building, Berkeley, CA 94720, USA.
| | - Margot Michaud
- Evolution and Diversity Dynamics Lab, Université de Liège, Allée du six août 14, 4000 Liège, Belgium; Département Formation et Recherche Sciences et Technologie, Université de Guyane, WMMX+5Q3, Cayenne 97300, Guyane
| | - Davide Tamagnini
- Department of Biology and Biotechnologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Valentin Fischer
- Evolution and Diversity Dynamics Lab, Université de Liège, Allée du six août 14, 4000 Liège, Belgium
| |
Collapse
|
13
|
Lau ES, Goodheart JA, Anderson NT, Liu VL, Mukherjee A, Oakley TH. Similar enzymatic functions in distinct bioluminescence systems: Evolutionary recruitment of sulfotransferases in ostracod light organs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.12.536614. [PMID: 37090632 PMCID: PMC10120648 DOI: 10.1101/2023.04.12.536614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Genes from ancient families are sometimes involved in the convergent evolutionary origins of similar traits, even across vast phylogenetic distances. Sulfotransferases are an ancient family of enzymes that transfer sulfate from a donor to a wide variety of substrates, including probable roles in some bioluminescence systems. Here we demonstrate multiple sulfotransferases, highly expressed in light organs of the bioluminescent ostracod Vargula tsujii , transfer sulfate in vivo to the luciferin substrate, vargulin. We find luciferin sulfotransferases of ostracods are not orthologous to known luciferin sulfotransferases of fireflies or sea pansies; animals with distinct and convergently evolved bioluminescence systems compared to ostracods. Therefore, distantly related sulfotransferases were independently recruited at least three times, leading to parallel evolution of luciferin metabolism in three highly diverged organisms. Re-use of homologous genes is surprising in these bioluminescence systems because the other components, including luciferins and luciferases, are completely distinct. Whether convergently evolved traits incorporate ancient genes with similar functions or instead use distinct, often newer, genes may be constrained by how many genetic solutions exist for a particular function. When fewer solutions exist, as in genetic sulfation of small molecules, evolution may be more constrained to use the same genes time and again.
Collapse
|
14
|
Springer MS, Emerling CA, Gatesy J. Three Blind Moles: Molecular Evolutionary Insights on the Tempo and Mode of Convergent Eye Degeneration in Notoryctes typhlops (Southern Marsupial Mole) and Two Chrysochlorids (Golden Moles). Genes (Basel) 2023; 14:2018. [PMID: 38002961 PMCID: PMC10671557 DOI: 10.3390/genes14112018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Golden moles (Chrysochloridae) and marsupial moles (Notoryctidae) are textbook examples of convergent evolution. Both taxa are highly adapted to subterranean lifestyles and have powerful limbs for digging through the soil/sand, ears that are adapted for low-frequency hearing, vestigial eyes that are covered by skin and fur, and the absence of optic nerve connections between the eyes and the brain. The eyes of marsupial moles also lack a lens as well as retinal rods and cones. Two hypotheses have been proposed to account for the greater degeneracy of the eyes of marsupial moles than golden moles. First, marsupial moles may have had more time to adapt to their underground habitat than other moles. Second, the eyes of marsupial moles may have been rapidly and recently vestigialized to (1) reduce the injurious effects of sand getting into the eyes and (2) accommodate the enlargement of lacrimal glands that keep the nasal cavity moist and prevent the entry of sand into the nasal passages during burrowing. Here, we employ molecular evolutionary methods on DNA sequences for 38 eye genes, most of which are eye-specific, to investigate the timing of relaxed selection (=neutral evolution) for different groups of eye-specific genes that serve as proxies for distinct functional components of the eye (rod phototransduction, cone phototransduction, lens/cornea). Our taxon sampling included 12 afrothere species, of which two are golden moles (Amblysomus hottentotus, Chrysochloris asiatica), and 28 marsupial species including two individuals of the southern marsupial mole (Notoryctes typhlops). Most of the sequences were mined from databases, but we also provide new genome data for A. hottentotus and one of the two N. typhlops individuals. Even though the eyes of golden moles are less degenerate than the eyes of marsupial moles, there are more inactivating mutations (e.g., frameshift indels, premature stop codons) in their cone phototransduction and lens/cornea genes than in orthologous genes of the marsupial mole. We estimate that cone phototransduction recovery genes were inactivated first in each group, followed by lens/cornea genes and then cone phototransduction activation genes. All three groups of genes were inactivated earlier in golden moles than in marsupial moles. For the latter, we estimate that lens/cornea genes were inactivated ~17.8 million years ago (MYA) when stem notoryctids were burrowing in the soft soils of Australian rainforests. Selection on phototransduction activation genes was relaxed much later (5.38 MYA), during the early stages of Australia's aridification that produced coastal sand plains and eventually sand dunes. Unlike cone phototransduction activation genes, rod phototransduction activation genes are intact in both golden moles and one of the two individuals of N. typhlops. A second marsupial mole individual has just a single inactivating mutation in one of the rod phototransduction activation genes (PDE6B). One explanation for this result is that some rod phototransduction activation genes are pleiotropic and are expressed in extraocular tissues, possibly in conjunction with sperm thermotaxis.
Collapse
Affiliation(s)
- Mark S. Springer
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | | | - John Gatesy
- Division of Vertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA;
| |
Collapse
|
15
|
Aristide L, Fernández R. Genomic Insights into Mollusk Terrestrialization: Parallel and Convergent Gene Family Expansions as Key Facilitators in Out-of-the-Sea Transitions. Genome Biol Evol 2023; 15:evad176. [PMID: 37793176 PMCID: PMC10581543 DOI: 10.1093/gbe/evad176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/08/2023] [Accepted: 09/28/2023] [Indexed: 10/06/2023] Open
Abstract
Animals abandoned their marine niche and successfully adapted to life on land multiple times throughout evolution, providing a rare opportunity to study the mechanisms driving large scale macroevolutionary convergence. However, the genomic factors underlying this process remain largely unknown. Here, we investigate the macroevolutionary dynamics of gene repertoire evolution during repeated transitions out of the sea in mollusks, a lineage that has transitioned to freshwater and terrestrial environments multiple independent times. Through phylogenomics and phylogenetic comparative methods, we examine ∼100 genomic data sets encompassing all major molluskan lineages. We introduce a conceptual framework for identifying and analyzing parallel and convergent evolution at the orthogroup level (groups of genes derived from a single ancestral gene in the species in question) and explore the extent of these mechanisms. Despite deep temporal divergences, we found that parallel expansions of ancient gene families played a major role in facilitating adaptation to nonmarine habitats, highlighting the relevance of the preexisting genomic toolkit in facilitating adaptation to new environments. The expanded functions primarily involve metabolic, osmoregulatory, and defense-related systems. We further found functionally convergent lineage-exclusive gene gains, while family contractions appear to be driven by neutral processes. Also, genomic innovations likely contributed to fuel independent habitat transitions. Overall, our study reveals that various mechanisms of gene repertoire evolution-parallelism, convergence, and innovation-can simultaneously contribute to major evolutionary transitions. Our results provide a genome-wide gene repertoire atlas of molluskan terrestrialization that paves the way toward further understanding the functional and evolutionary bases of this process.
Collapse
Affiliation(s)
- Leandro Aristide
- Metazoa Phylogenomics Laboratory Biodiversity Program, Institute of Evolutionary Biology (Spanish Research Council-University Pompeu Fabra), BarcelonaSpain
| | - Rosa Fernández
- Metazoa Phylogenomics Laboratory Biodiversity Program, Institute of Evolutionary Biology (Spanish Research Council-University Pompeu Fabra), BarcelonaSpain
| |
Collapse
|
16
|
Gómez JM, Gónzalez-Megías A, Verdú M. The evolution of same-sex sexual behaviour in mammals. Nat Commun 2023; 14:5719. [PMID: 37788987 PMCID: PMC10547684 DOI: 10.1038/s41467-023-41290-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 08/29/2023] [Indexed: 10/05/2023] Open
Abstract
Same-sex sexual behaviour has attracted the attention of many scientists working in disparate areas, from sociology and psychology to behavioural and evolutionary biology. Since it does not contribute directly to reproduction, same-sex sexual behaviour is considered an evolutionary conundrum. Here, using phylogenetic analyses, we explore the evolution of same-sex sexual behaviour in mammals. According to currently available data, this behaviour is not randomly distributed across mammal lineages, but tends to be particularly prevalent in some clades, especially primates. Ancestral reconstruction suggests that same-sex sexual behaviour may have evolved multiple times, with its appearance being a recent phenomenon in most mammalian lineages. Our phylogenetically informed analyses testing for associations between same-sex sexual behaviour and other species characteristics suggest that it may play an adaptive role in maintaining social relationships and mitigating conflict.
Collapse
Affiliation(s)
- José M Gómez
- Dpto de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (EEZA-CSIC), Carretera de Sacramento s/n, La Cañada de San Urbano, 0-4120, Almería, Spain.
- Research Unit Modeling Nature (MNat), Facultad de Ciencias, Universidad de Granada, Granada, Spain.
| | - A Gónzalez-Megías
- Research Unit Modeling Nature (MNat), Facultad de Ciencias, Universidad de Granada, Granada, Spain.
- Dpto de Zoología, Facultad de Ciencias, Universidad de Granada, Avda Fuentenueva s/n, 18071, Granada, Spain.
| | - M Verdú
- Centro de Investigaciones sobre Desertificación (CSIC-UV-GV), Crta Moncada-Náquera km 4.5, 46113 Moncada, Valencia, Spain.
| |
Collapse
|
17
|
Nanglu K, de Carle D, Cullen TM, Anderson EB, Arif S, Castañeda RA, Chang LM, Iwama RE, Fellin E, Manglicmot RC, Massey MD, Astudillo‐Clavijo V. The nature of science: The fundamental role of natural history in ecology, evolution, conservation, and education. Ecol Evol 2023; 13:e10621. [PMID: 37877102 PMCID: PMC10591213 DOI: 10.1002/ece3.10621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/26/2023] Open
Abstract
There is a contemporary trend in many major research institutions to de-emphasize the importance of natural history education in favor of theoretical, laboratory, or simulation-based research programs. This may take the form of removing biodiversity and field courses from the curriculum and the sometimes subtle maligning of natural history research as a "lesser" branch of science. Additional threats include massive funding cuts to natural history museums and the maintenance of their collections, the extirpation of taxonomists across disciplines, and a critical under-appreciation of the role that natural history data (and other forms of observational data, including Indigenous knowledge) play in the scientific process. In this paper, we demonstrate that natural history knowledge is integral to any competitive science program through a comprehensive review of the ways in which they continue to shape modern theory and the public perception of science. We do so by reviewing how natural history research has guided the disciplines of ecology, evolution, and conservation and how natural history data are crucial for effective education programs and public policy. We underscore these insights with contemporary case studies, including: how understanding the dynamics of evolutionary radiation relies on natural history data; methods for extracting novel data from museum specimens; insights provided by multi-decade natural history programs; and how natural history is the most logical venue for creating an informed and scientifically literate society. We conclude with recommendations aimed at students, university faculty, and administrators for integrating and supporting natural history in their mandates. Fundamentally, we are all interested in understanding the natural world, but we can often fall into the habit of abstracting our research away from its natural contexts and complexities. Doing so risks losing sight of entire vistas of new questions and insights in favor of an over-emphasis on simulated or overly controlled studies.
Collapse
Affiliation(s)
- Karma Nanglu
- Museum of Comparative Zoology and Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMassachusettsUSA
| | - Danielle de Carle
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoOntarioCanada
- Department of Invertebrate ZoologyRoyal Ontario MuseumTorontoOntarioCanada
| | - Thomas M. Cullen
- Department of GeosciencesAuburn UniversityAuburnAlabamaUSA
- Negaunee Integrative Research CenterField Museum of Natural HistoryChicagoIllinoisUSA
| | - Erika B. Anderson
- The HunterianUniversity of GlasgowGlasgowUK
- Department of Earth and SpaceRoyal Ontario MuseumTorontoOntarioCanada
| | - Suchinta Arif
- Department of BiologyDalhousie UniversityHalifaxNova ScotiaCanada
| | - Rowshyra A. Castañeda
- Ecosystems and Ocean SciencesPacific Region, Fisheries and Oceans CanadaSidneyBritish ColumbiaCanada
| | | | - Rafael Eiji Iwama
- Departamento de Genética e Biologia Evolutiva, Instituto de BiociênciasUniversidade de São PauloSão PauloBrazil
| | - Erica Fellin
- Department of BiologyMcGill UniversityMontrealQuebecCanada
| | | | | | | |
Collapse
|
18
|
Alfieri F, Botton-Divet L, Wölfer J, Nyakatura JA, Amson E. A macroevolutionary common-garden experiment reveals differentially evolvable bone organization levels in slow arboreal mammals. Commun Biol 2023; 6:995. [PMID: 37770611 PMCID: PMC10539518 DOI: 10.1038/s42003-023-05371-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 09/18/2023] [Indexed: 09/30/2023] Open
Abstract
Eco-morphological convergence, i.e., similar phenotypes evolved in ecologically convergent taxa, naturally reproduces a common-garden experiment since it allows researchers to keep ecological factors constant, studying intrinsic evolutionary drivers. The latter may result in differential evolvability that, among individual anatomical parts, causes mosaic evolution. Reconstructing the evolutionary morphology of the humerus and femur of slow arboreal mammals, we addressed mosaicism at different bone anatomical spatial scales. We compared convergence strength, using it as indicator of evolvability, between bone external shape and inner structure, with the former expected to be less evolvable and less involved in convergent evolution, due to anatomical constraints. We identify several convergent inner structural traits, while external shape only loosely follows this trend, and we find confirmation for our assumption in measures of convergence magnitude. We suggest that future macroevolutionary reconstructions based on bone morphology should include structural traits to better detect ecological effects on vertebrate diversification.
Collapse
Affiliation(s)
- Fabio Alfieri
- Comparative Zoology, Institute for Biology, Humboldt-Universität zu Berlin, Unter den Linden 6, 10117, Berlin, Germany.
- Museum Für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstraße 43, 10115, Berlin, Germany.
| | - Léo Botton-Divet
- Comparative Zoology, Institute for Biology, Humboldt-Universität zu Berlin, Unter den Linden 6, 10117, Berlin, Germany
| | - Jan Wölfer
- Comparative Zoology, Institute for Biology, Humboldt-Universität zu Berlin, Unter den Linden 6, 10117, Berlin, Germany
| | - John A Nyakatura
- Comparative Zoology, Institute for Biology, Humboldt-Universität zu Berlin, Unter den Linden 6, 10117, Berlin, Germany
| | - Eli Amson
- Paleontology Department, Staatliches Museum für Naturkunde, Rosenstein 1-3, 70191, Stuttgart, Germany
| |
Collapse
|
19
|
Chatelain P, Elias M, Fontaine C, Villemant C, Dajoz I, Perrard A. Müllerian mimicry among bees and wasps: a review of current knowledge and future avenues of research. Biol Rev Camb Philos Soc 2023; 98:1310-1328. [PMID: 36994698 DOI: 10.1111/brv.12955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023]
Abstract
Many bees and stinging wasps, or aculeates, exhibit striking colour patterns or conspicuous coloration, such as black and yellow stripes. Such coloration is often interpreted as an aposematic signal advertising aculeate defences: the venomous sting. Aposematism can lead to Müllerian mimicry, the convergence of signals among different species unpalatable to predators. Müllerian mimicry has been extensively studied, notably on Neotropical butterflies and poison frogs. However, although a very high number of aculeate species harbour putative aposematic signals, aculeates are under-represented in mimicry studies. Here, we review the literature on mimicry rings that include bee and stinging wasp species. We report over a hundred described mimicry rings, involving a thousand species that belong to 19 aculeate families. These mimicry rings are found all throughout the world. Most importantly, we identify remaining knowledge gaps and unanswered questions related to the study of Müllerian mimicry in aculeates. Some of these questions are specific to aculeate models, such as the impact of sociality and of sexual dimorphism in defence levels on mimicry dynamics. Our review shows that aculeates may be one of the most diverse groups of organisms engaging in Müllerian mimicry and that the diversity of aculeate Müllerian mimetic interactions is currently under-explored. Thus, aculeates represent a new and major model system to study the evolution of Müllerian mimicry. Finally, aculeates are important pollinators and the global decline of pollinating insects raises considerable concern. In this context, a better understanding of the impact of Müllerian mimicry on aculeate communities may help design strategies for pollinator conservation, thereby providing future directions for evolutionary research.
Collapse
Affiliation(s)
- Paul Chatelain
- Institute of Ecology and Environmental Sciences-Paris (iEES-Paris), Sorbonne Université, CNRS, IRD, INRAE, Université Paris Cité, UPEC, 4 Place Jussieu, Paris, 75005, France
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP 50, 57 rue Cuvier, Paris, 75005, France
| | - Marianne Elias
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP 50, 57 rue Cuvier, Paris, 75005, France
- Smithsonian Tropical Research Institute, Gamboa, Panama
| | - Colin Fontaine
- Centre d'Ecologie et des Sciences de la conservation, CESCO UMR 7204, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, 43 rue Cuvier, Paris, 75005, France
| | - Claire Villemant
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP 50, 57 rue Cuvier, Paris, 75005, France
| | - Isabelle Dajoz
- Institute of Ecology and Environmental Sciences-Paris (iEES-Paris), Sorbonne Université, CNRS, IRD, INRAE, Université Paris Cité, UPEC, 4 Place Jussieu, Paris, 75005, France
- Université Paris Cité, 45 Rue des Saints-Pères, Paris, F-75006, France
| | - Adrien Perrard
- Institute of Ecology and Environmental Sciences-Paris (iEES-Paris), Sorbonne Université, CNRS, IRD, INRAE, Université Paris Cité, UPEC, 4 Place Jussieu, Paris, 75005, France
- Université Paris Cité, 45 Rue des Saints-Pères, Paris, F-75006, France
| |
Collapse
|
20
|
Uluar O, Yahyaoğlu Ö, Başıbüyük HH, Çıplak B. Taxonomy of the rear-edge populations: the case of genus Anterastes (Orthoptera, Tettigoniidae). ORG DIVERS EVOL 2023. [DOI: 10.1007/s13127-023-00602-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
21
|
Grenade NL, Chiriac DS, Pasternak ARO, Babulic JL, Rowland BE, Howe GW, Ross AC. Discovery of a Tambjamine Gene Cluster in Streptomyces Suggests Convergent Evolution in Bipyrrole Natural Product Biosynthesis. ACS Chem Biol 2023; 18:223-229. [PMID: 36599132 DOI: 10.1021/acschembio.2c00685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
While bacterial natural products are a valuable source of therapeutics, the molecules produced by most biosynthetic gene clusters remain unknown. Tambjamine YP1, produced by Pseudoalteromonas tunicata, is partially derived from fatty acids siphoned from primary metabolism. A structurally similar tambjamine produced by Streptomyces, BE-18591, had not been linked to a gene cluster. Using enzymes putatively implicated in the construction of these two tambjamines, we used sequence similarity networks and gene knockout experiments to identify the biosynthetic gene cluster responsible for the production of tambjamine BE-18591 in Streptomyces albus. Despite the structural similarities between YP1 and BE-18591, the biosynthesis of the alkylamine tails of these molecules differs significantly, with the S. albus gene cluster putatively encoding a dedicated system for the construction of the fatty acid precursor to BE-18591. These different pathways in Pseudoalteromonas and Streptomyces suggest that evolutionary convergence is operative, with similar selective pressures leading to the emergence of structurally similar tambjamine natural products using different biosynthetic logic.
Collapse
Affiliation(s)
- Neil L Grenade
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Dragos S Chiriac
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - A R Ola Pasternak
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Jonathan L Babulic
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Bronwyn E Rowland
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Graeme W Howe
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Avena C Ross
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
22
|
Deepak V, Gower DJ, Cooper N. Diet and habit explain head-shape convergences in natricine snakes. J Evol Biol 2023; 36:399-411. [PMID: 36511814 DOI: 10.1111/jeb.14139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/24/2022] [Accepted: 11/14/2022] [Indexed: 12/15/2022]
Abstract
The concept of ecomorphs, whereby species with similar ecologies have similar phenotypes regardless of their phylogenetic relatedness, is often central to discussions regarding the relationship between ecology and phenotype. However, some aspects of the concept have been questioned, and sometimes species have been grouped as ecomorphs based on phenotypic similarity without demonstrating ecological similarity. Within snakes, similar head shapes have convergently evolved in species living in comparable environments and/or with similar diets. Therefore, ecomorphs could exist in some snake lineages, but this assertion has rarely been tested for a wide-ranging group within a single framework. Natricine snakes (Natricinae) are ecomorphologically diverse and currently distributed in Asia, Africa, Europe and north-central America. They are primarily semiaquatic or ground-dwelling terrestrial snakes, but some are aquatic, burrowing or aquatic and burrowing in habit and may be generalist or specialist in diet. Thus, natricines present an interesting system to test whether snakes from different major habit categories represent ecomorphs. We quantify morphological similarity and disparity in head shape among 191 of the ca. 250 currently recognized natricine species and apply phylogenetic comparative methods to test for convergence. Natricine head shape is largely correlated with habit, but in some burrowers is better explained by dietary specialism. Convergence in head shape is especially strong for aquatic burrowing, semiaquatic and terrestrial ecomorphs and less strong for aquatic and burrowing ecomorphs. The ecomorph concept is useful for understanding natricine diversity and evolution, though would benefit from further refinement, especially for aquatic and burrowing taxa.
Collapse
Affiliation(s)
- V Deepak
- Science Group, Natural History Museum London, London, UK.,Senckenberg Dresden, Museum of Zoology (Museum für Tierkunde), Dresden, Germany
| | - David J Gower
- Science Group, Natural History Museum London, London, UK
| | - Natalie Cooper
- Science Group, Natural History Museum London, London, UK
| |
Collapse
|
23
|
Wilson JD, Bond JE, Harvey MS, Ramírez MJ, Rix MG. Correlation with a limited set of behavioral niches explains the convergence of somatic morphology in mygalomorph spiders. Ecol Evol 2023; 13:e9706. [PMID: 36636427 PMCID: PMC9830016 DOI: 10.1002/ece3.9706] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/06/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
Understanding the drivers of morphological convergence requires investigation into its relationship with behavior and niche space, and such investigations in turn provide insights into evolutionary dynamics, functional morphology, and life history. Mygalomorph spiders (trapdoor spiders and their kin) have long been associated with high levels of morphological homoplasy, and many convergent features can be intuitively associated with different behavioral niches. Using genus-level phylogenies based on recent genomic studies and a newly assembled matrix of discrete behavioral and somatic morphological characters, we reconstruct the evolution of burrowing behavior in the Mygalomorphae, compare the influence of behavior and evolutionary history on somatic morphology, and test hypotheses of correlated evolution between specific morphological features and behavior. Our results reveal the simplicity of the mygalomorph adaptive landscape, with opportunistic, web-building taxa at one end, and burrowing/nesting taxa with structurally modified burrow entrances (e.g., a trapdoor) at the other. Shifts in behavioral niche, in both directions, are common across the evolutionary history of the Mygalomorphae, and several major clades include taxa inhabiting both behavioral extremes. Somatic morphology is heavily influenced by behavior, with taxa inhabiting the same behavioral niche often more similar morphologically than more closely related but behaviorally divergent taxa, and we were able to identify a suite of 11 somatic features that show significant correlation with particular behaviors. We discuss these findings in light of the function of particular morphological features, niche dynamics within the Mygalomorphae, and constraints on the mygalomorph adaptive landscape relative to other spiders.
Collapse
Affiliation(s)
- Jeremy D. Wilson
- Biodiversity and Geosciences ProgramQueensland Museum Collections and Research CentreHendraQueenslandAustralia
| | - Jason E. Bond
- Department of Entomology and NematologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Mark S. Harvey
- Collections and ResearchWestern Australian MuseumWelshpoolWestern AustraliaAustralia
- School of Biological SciencesUniversity of Western AustraliaCrawleyWestern AustraliaAustralia
| | - Martín J. Ramírez
- Museo Argentino de Ciencias NaturalesConsejo Nacional de Investigaciones Científicas y TécnicasBuenos AiresArgentina
| | - Michael G. Rix
- Biodiversity and Geosciences ProgramQueensland Museum Collections and Research CentreHendraQueenslandAustralia
| |
Collapse
|
24
|
Petersen KB, Kellogg EA. Diverse ecological functions and the convergent evolution of grass awns. AMERICAN JOURNAL OF BOTANY 2022; 109:1331-1345. [PMID: 36048829 PMCID: PMC9828495 DOI: 10.1002/ajb2.16060] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
The awn of grasses is a long, conspicuous outgrowth of the floral bracts in a grass spikelet. It is known to impact agricultural yield, but we know little about its broader ecological function, nor the selective forces that lead to its evolution. Grass awns are phenotypically diverse across the extant ~12,000 species of Poaceae. Awns have been lost and gained repeatedly over evolutionary time, between and within lineages, suggesting that they could be under selection and might provide adaptive benefit in some environments. Despite the phylogenetic context, we know of no studies that have tested whether the origin of awns correlates with putative selective forces on their form and function. Presence or absence of awns is not plastic; rather, heritability is high. The awns of grasses often are suggested as adaptations for dispersal, and most experimental work has been aimed at testing this hypothesis. Proposed dispersal functions include soil burial, epizoochory, and aerial orientation. Awns may also protect the seed from drought, herbivores, or fire by helping it become buried in soil. We do not fully understand the fitness or nutrient costs of awn production, but in some species awns function in photosynthesis, providing carbon to the seed. Here we show that awns likely provide an adaptive advantage, but argue that studies on awn function have lacked critical phylogenetic information to demonstrate adaptive convergent evolution, are taxonomically biased, and often lack clear alternative hypotheses.
Collapse
|
25
|
Reimche JS, Del Carlo RE, Brodie ED, McGlothlin JW, Schlauch K, Pfrender ME, Brodie ED, Leblanc N, Feldman CR. The road not taken: Evolution of tetrodotoxin resistance in the Sierra garter snake (Thamnophis couchii) by a path less traveled. Mol Ecol 2022; 31:3827-3843. [PMID: 35596742 DOI: 10.1111/mec.16538] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/28/2022] [Accepted: 05/12/2022] [Indexed: 11/27/2022]
Abstract
The repeated evolution of tetrodotoxin (TTX) resistance provides a model for testing hypotheses about the mechanisms of convergent evolution. This poison is broadly employed as a potent antipredator defense, blocking voltage-gated sodium channels (Nav ) in muscles and nerves, paralyzing and sometimes killing predators. Resistance in taxa bearing this neurotoxin and a few predators appears to come from convergent replacements in specific Nav residues that interact with TTX. This stereotyped genetic response suggests molecular and phenotypic evolution may be constrained and predictable. Here, we investigate the extent of mechanistic convergence in garter snakes (Thamnophis) that prey on TTX-bearing newts (Taricha) by examining the physiological and genetic basis of TTX resistance in the Sierra garter snake (Th. couchii). We characterize variation in this predatory adaptation across populations at several biological scales: whole-animal TTX resistance; skeletal muscle resistance, functional genetic variation in three Nav encoding loci; and levels of gene expression for one of these loci. We found Th. couchii possess extensive geographic variation in resistance at the whole-animal and skeletal muscle levels. As in other Thamnophis, resistance at both levels is highly correlated, suggesting convergence across the biological levels linking organism to organ. However, Th. couchii shows no functional variation in Nav loci among populations or difference in candidate gene expression. Local variation in TTX resistance in Th. couchii cannot be explained by the same relationship between genotype and phenotype seen in other taxa. Thus, historical contingencies may lead different species of Thamnophis down alternative routes to local adaptation.
Collapse
Affiliation(s)
- Jessica S Reimche
- Department of Biology, Evolution, and Conservation Biology, University of Nevada, Reno, NV, USA.,Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV, USA
| | - Robert E Del Carlo
- Department of Pharmacology and 4Program in Cellular and Molecular Pharmacology and Physiology, University of Nevada, Reno, NV, USA
| | - Edmund D Brodie
- Department of Biology, Utah State University, Logan, UT, USA
| | - Joel W McGlothlin
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | | | - Michael E Pfrender
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Edmund D Brodie
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Normand Leblanc
- Department of Pharmacology and 4Program in Cellular and Molecular Pharmacology and Physiology, University of Nevada, Reno, NV, USA
| | - Chris R Feldman
- Department of Biology, Evolution, and Conservation Biology, University of Nevada, Reno, NV, USA.,Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV, USA
| |
Collapse
|
26
|
Miler K, Scharf I. Behavioral differences between pit-building antlions and wormlions suggest limits to convergent evolution. Integr Zool 2022. [PMID: 35500247 DOI: 10.1111/1749-4877.12654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Antlions and wormlions are distantly related insect taxa, both digging pits in loose soil and ambushing arthropod prey. Their hunting method, which is rare in the animal kingdom, is a clear example of convergent evolution. There is little research directly comparing the 2 pit-building taxa. Using the same experimental platform to investigate how they respond to biotic and abiotic environmental factors enables an examination of their convergence and its limits. We investigated the response of antlions and wormlions to 3 factors common in their daily life: disturbance to the pits, prey arrival, and conspecific competitors. Although both increased the pit size following disturbance, wormlions increased it faster than antlions. Antlions responded to prey faster than wormlions, but wormlions improved their response time over days. The most diverging response was toward conspecifics. Whereas antlions relocated their pits fast in response to increasing conspecific density, wormlions never relocated. We suggest explanations for the behavioral differences between the taxa. Our results imply that despite the similar hunting method of the 2 taxa they may differ greatly in their behavior, which in turn might have consequences for their habitat use and population dynamics.
Collapse
Affiliation(s)
- Krzysztof Miler
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Kraków, Poland.,School of Zoology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Inon Scharf
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
27
|
Kuhar F, Terzzoli L, Nouhra E, Robledo G, Mercker M. Pattern formation features might explain homoplasy: fertile surfaces in higher fungi as an example. Theory Biosci 2022; 141:1-11. [PMID: 35174438 DOI: 10.1007/s12064-022-00363-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 01/20/2022] [Indexed: 11/25/2022]
Abstract
Fungi show a high degree of morphological convergence. Regarded for a long time as an obstacle for phylogenetic studies, homoplasy has also been proposed as a source of information about underlying morphogenetic patterning mechanisms. The "local-activation and long-range inhibition principle" (LALIP), underlying the famous reaction-diffusion model proposed by Alan Turing in 1952, appears to be one of the universal phenomena that can explain the ontogenetic origin of seriate patterns in living organisms. Reproductive structures of fungi in the class Agaricomycetes show a highly periodic structure resulting in, for example, poroid, odontoid, lamellate or labyrinthic hymenophores. In this paper, we claim that self-organized patterns might underlie the basic ontogenetic processes of these structures. Simulations based on LALIP-driven models and covering a wide range of parameters show an absolute mutual correspondence with the morphospace explored by extant agaricomycetes. This could not only explain geometric particularities but could also account for the limited possibilities displayed by hymenial configurations, thus making homoplasy a direct consequence of the limited morphospace resulting from the proposed patterning dynamics.
Collapse
Affiliation(s)
- Francisco Kuhar
- Instituto Multidisciplinario de Biología Vegetal (CONICET-UNC), Universidad Nacional de Córdoba, Av. Vélez Sársfield 1611 CC. 4955000, Córdoba, Argentina.
| | - Leticia Terzzoli
- Instituto Multidisciplinario de Biología Vegetal (CONICET-UNC), Universidad Nacional de Córdoba, Av. Vélez Sársfield 1611 CC. 4955000, Córdoba, Argentina
| | - Eduardo Nouhra
- Instituto Multidisciplinario de Biología Vegetal (CONICET-UNC), Universidad Nacional de Córdoba, Av. Vélez Sársfield 1611 CC. 4955000, Córdoba, Argentina
| | - Gerardo Robledo
- Facultad de Ciencias Agropecuarias BioTecA3 - Centro de Biotecnología Aplicada Al Agro Y Alimentos, Universidad Nacionel de Córdoba, Ing. Agr. Félix Aldo Marrone 746, CC509 - CP 5000, Córdoba, Argentina.,CONICET, Consejo Nacional de Investigaciones Científicas Y Técnicas, Godoy Cruz 2290, (C1425FQB), CABA, Argentina
| | - Moritz Mercker
- Institute of Applied Mathematics (IAM), Heidelberg University, Im Neuenheimer Feld 205, 69120, Heidelberg, Germany
| |
Collapse
|
28
|
Convergent evolution of antlions and wormlions: similarities and differences in the behavioural ecology of unrelated trap-building predators. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-021-03106-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
29
|
OUP accepted manuscript. J Mammal 2022. [DOI: 10.1093/jmammal/gyac015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
30
|
Martínez-Gil H, Martínez-Freiría F, Perera A, Enriquez-Urzelai U, Martínez-Solano Í, Velo-Antón G, Kaliontzopoulou A. Morphological diversification of Mediterranean anurans: the roles of evolutionary history and climate. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Investigation of the ecological and evolutionary mechanisms governing the origin and diversification of species requires integrative approaches that often have to accommodate strong discordance among datasets. A common source of conflict is the combination of morphological and molecular characters with different evolutionary rates. Resolution of these discordances is crucial to assess the relative roles of different processes in generating and maintaining biodiversity. Anuran amphibians provide many examples of morphologically similar, genetically divergent lineages, posing questions about the relative roles of phylogeny and ecological factors in phenotypic evolution. We focused on three circum-Mediterranean anuran genera (Hyla, Alytes and Discoglossus), characterizing morphological and environmental disparity and comparing diversity patterns across biological levels of organization. Using a comparative phylogenetic framework, we tested how shared ancestry and climatic factors come together to shape phenotypic diversity. We found higher morphological differentiation within Hyla and Alytes than in Discoglossus. Body size and limb morphology contributed most to inter- and intraspecific morphological variation in Hyla and Alytes, but there was no strong phylogenetic signal, indicating that shared ancestry does not predict patterns of phenotypic divergence. In contrast, we uncovered a significant association between morphology and climatic descriptors, supporting the hypothesis that morphological disparity between species results from adaptive evolution.
Collapse
Affiliation(s)
- Helena Martínez-Gil
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, C/ José Gutiérrez Abascal, 2, 28006 Madrid, Spain
| | - Fernando Martínez-Freiría
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Ana Perera
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
| | - Urtzi Enriquez-Urzelai
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- Czech Academy of Sciences, Institute of Vertebrate Biology, Květná 8, 60365 Brno, Czech Republic
| | - Íñigo Martínez-Solano
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, C/ José Gutiérrez Abascal, 2, 28006 Madrid, Spain
| | - Guillermo Velo-Antón
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, Grupo de Ecoloxía Animal, Torre Cacti (Lab 97), E-36310, Vigo, Spain
| | - Antigoni Kaliontzopoulou
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- Department of Evolutionary Biology, Ecology and Environmental Sciences, and Biodiversity Research Institute (IRBio), Universitat de Barcelona, E-08028 Barcelona, Catalonia, Spain
| |
Collapse
|
31
|
Integrative Approach Uncovers New Patterns of Ecomorphological Convergence in Slow Arboreal Xenarthrans. J MAMM EVOL 2021. [DOI: 10.1007/s10914-021-09590-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractIdentifying ecomorphological convergence examples is a central focus in evolutionary biology. In xenarthrans, slow arboreality independently arose at least three times, in the two genera of ‘tree sloths’, Bradypus and Choloepus, and the silky anteater, Cyclopes. This specialized locomotor ecology is expectedly reflected by distinctive morpho-functional convergences. Cyclopes, although sharing several ecological features with ‘tree sloths’, do not fully mirror the latter in their outstandingly similar suspensory slow arboreal locomotion. We hypothesized that the morphology of Cyclopes is closer to ‘tree sloths’ than to anteaters, but yet distinct, entailing that slow arboreal xenarthrans evolved through ‘incomplete’ convergence. In a multivariate trait space, slow arboreal xenarthrans are hence expected to depart from their sister taxa evolving toward the same area, but not showing extensive phenotypical overlap, due to the distinct position of Cyclopes. Conversely, a pattern of ‘complete’ convergence (i.e., widely overlapping morphologies) is hypothesized for ‘tree sloths’. Through phylogenetic comparative methods, we quantified humeral and femoral convergence in slow arboreal xenarthrans, including a sample of extant and extinct non-slow arboreal xenarthrans. Through 3D geometric morphometrics, cross-sectional properties (CSP) and trabecular architecture, we integratively quantified external shape, diaphyseal anatomy and internal epiphyseal structure. Several traits converged in slow arboreal xenarthrans, especially those pertaining to CSP. Phylomorphospaces and quantitative convergence analyses substantiated the expected patterns of ‘incomplete’ and ‘complete’ convergence for slow arboreal xenarthrans and ‘tree sloths’, respectively. This work, highlighting previously unidentified convergence patterns, emphasizes the value of an integrative multi-pronged quantitative approach to cope with complex mechanisms underlying ecomorphological convergence.
Collapse
|
32
|
Wong JM, Eirin-Lopez JM. Evolution of methyltransferase like (METTL) proteins in Metazoa: A complex gene family involved in epitranscriptomic regulation and other epigenetic processes. Mol Biol Evol 2021; 38:5309-5327. [PMID: 34480573 PMCID: PMC8662637 DOI: 10.1093/molbev/msab267] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The methyltransferase-like (METTL) proteins constitute a family of seven-beta-strand methyltransferases with S-adenosyl methionine-binding domains that modify DNA, RNA, and proteins. Methylation by METTL proteins contributes to the epigenetic, and in the case of RNA modifications, epitranscriptomic regulation of a variety of biological processes. Despite their functional importance, most investigations of the substrates and functions of METTLs within metazoans have been restricted to model vertebrate taxa. In the present work, we explore the evolutionary mechanisms driving the diversification and functional differentiation of 33 individual METTL proteins across Metazoa. Our results show that METTLs are nearly ubiquitous across the animal kingdom, with most having arisen early in metazoan evolution (i.e., occur in basal metazoan phyla). Individual METTL lineages each originated from single independent ancestors, constituting monophyletic clades, which suggests that each METTL was subject to strong selective constraints driving its structural and/or functional specialization. Interestingly, a similar process did not extend to the differentiation of nucleoside-modifying and protein-modifying METTLs (i.e., each METTL type did not form a unique monophyletic clade). The members of these two types of METTLs also exhibited differences in their rates of evolution. Overall, we provide evidence that the long-term evolution of METTL family members was driven by strong purifying selection, which in combination with adaptive selection episodes, led to the functional specialization of individual METTL lineages. This work contributes useful information regarding the evolution of a gene family that fulfills a variety of epigenetic functions, and can have profound influences on molecular processes and phenotypic traits.
Collapse
Affiliation(s)
- Juliet M Wong
- Environmental Epigenetics Laboratory, Institute of Environment, Florida International University, Miami, FL, United States
| | - Jose M Eirin-Lopez
- Environmental Epigenetics Laboratory, Institute of Environment, Florida International University, Miami, FL, United States
| |
Collapse
|
33
|
Melstrom KM, Angielczyk KD, Ritterbush KA, Irmis RB. The limits of convergence: the roles of phylogeny and dietary ecology in shaping non-avian amniote crania. ROYAL SOCIETY OPEN SCIENCE 2021; 8:202145. [PMID: 34540239 PMCID: PMC8441121 DOI: 10.1098/rsos.202145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 08/17/2021] [Indexed: 05/28/2023]
Abstract
Cranial morphology is remarkably varied in living amniotes and the diversity of shapes is thought to correspond with feeding ecology, a relationship repeatedly demonstrated at smaller phylogenetic scales, but one that remains untested across amniote phylogeny. Using a combination of morphometric methods, we investigate the links between phylogenetic relationships, diet and skull shape in an expansive dataset of extant toothed amniotes: mammals, lepidosaurs and crocodylians. We find that both phylogeny and dietary ecology have statistically significant effects on cranial shape. The three major clades largely partition morphospace with limited overlap. Dietary generalists often occupy clade-specific central regions of morphospace. Some parallel changes in cranial shape occur in clades with distinct evolutionary histories but similar diets. However, members of a given clade often present distinct cranial shape solutions for a given diet, and the vast majority of species retain the unique aspects of their ancestral skull plan, underscoring the limits of morphological convergence due to ecology in amniotes. These data demonstrate that certain cranial shapes may provide functional advantages suited to particular dietary ecologies, but accounting for both phylogenetic history and ecology can provide a more nuanced approach to inferring the ecology and functional morphology of cryptic or extinct amniotes.
Collapse
Affiliation(s)
- Keegan M. Melstrom
- Dinosaur Institute, Natural History Museum of Los Angeles County, 900 W Exposition Boulevard, Los Angeles, CA 90007, USA
- Department of Geology and Geophysics, University of Utah, 115 S 1460 E, Salt Lake City, UT 84112-0102, USA
- Natural History Museum of Utah, University of Utah, 301 Wakara Way, Salt Lake City, UT 84108-1214, USA
| | - Kenneth D. Angielczyk
- Negaunee Integrative Research Center, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL 60605-2496, USA
| | - Kathleen A. Ritterbush
- Department of Geology and Geophysics, University of Utah, 115 S 1460 E, Salt Lake City, UT 84112-0102, USA
| | - Randall B. Irmis
- Department of Geology and Geophysics, University of Utah, 115 S 1460 E, Salt Lake City, UT 84112-0102, USA
- Natural History Museum of Utah, University of Utah, 301 Wakara Way, Salt Lake City, UT 84108-1214, USA
| |
Collapse
|
34
|
Tamagnini D, Canestrelli D, Meloro C, Raia P, Maiorano L. New Avenues for Old Travellers: Phenotypic Evolutionary Trends Meet Morphodynamics, and Both Enter the Global Change Biology Era. Evol Biol 2021. [DOI: 10.1007/s11692-021-09545-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AbstractEvolutionary trends (ETs) are traditionally defined as substantial changes in the state of traits through time produced by a persistent condition of directional evolution. ETs might also include directional responses to ecological, climatic or biological gradients and represent the primary evolutionary pattern at high taxonomic levels and over long-time scales. The absence of a well-supported operative definition of ETs blurred the definition of conceptual differences between ETs and other key concepts in evolution such as convergence, parallel evolution, and divergence. Also, it prevented the formulation of modern guidelines for studying ETs and evolutionary dynamics related to them. In phenotypic evolution, the theory of morphodynamics states that the interplay between evolutionary factors such as phylogeny, evo-devo constraints, environment, and biological function determines morphological evolution. After introducing a new operative definition, here we provide a morphodynamics-based framework for studying phenotypic ETs, discussing how understanding the impact of these factors on ETs improves the explanation of links between biological patterns and processes underpinning directional evolution. We envisage that adopting a quantitative, pattern-based, and multifactorial approach will pave the way to new potential applications for this field of evolutionary biology. In this framework, by exploiting the catalysing effect of climate change on evolution, research on ETs induced by global change might represent an ideal arena for validating hypotheses about the predictability of evolution.
Collapse
|
35
|
Waters JM, McCulloch GA. Reinventing the wheel? Reassessing the roles of gene flow, sorting and convergence in repeated evolution. Mol Ecol 2021; 30:4162-4172. [PMID: 34133810 DOI: 10.1111/mec.16018] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 12/31/2022]
Abstract
Biologists have long been intrigued by apparently predictable and repetitive evolutionary trajectories inferred across a variety of lineages and systems. In recent years, high-throughput sequencing analyses have started to transform our understanding of such repetitive shifts. While researchers have traditionally categorized such shifts as either "convergent" or "parallel," based on relatedness of the lineages involved, emerging genomic insights provide an opportunity to better describe the actual evolutionary mechanisms at play. A synthesis of recent genomic analyses confirms that convergence is the predominant driver of repetitive evolution among species, whereas repeated sorting of standing variation is the major driver of repeated shifts within species. However, emerging data reveal numerous notable exceptions to these expectations, with recent examples of de novo mutations underpinning convergent shifts among even very closely related lineages, while repetitive sorting processes have occurred among even deeply divergent taxa, sometimes via introgression. A number of very recent analyses have found evidence for both processes occurring on different scales within taxa. We suggest that the relative importance of convergent versus sorting processes depends on the interplay between gene flow among populations, and phylogenetic relatedness of the lineages involved.
Collapse
|
36
|
Tamagnini D, Meloro C, Raia P, Maiorano L. Testing the occurrence of convergence in the craniomandibular shape evolution of living carnivorans. Evolution 2021; 75:1738-1752. [PMID: 33844288 PMCID: PMC8359831 DOI: 10.1111/evo.14229] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 03/10/2021] [Accepted: 03/28/2021] [Indexed: 12/28/2022]
Abstract
Convergence consists in the independent evolution of similar traits in distantly related species. The mammalian craniomandibular complex constitutes an ideal biological structure to investigate ecomorphological dynamics and the carnivorans, due to their phenotypic variability and ecological flexibility, offer an interesting case study to explore the occurrence of convergent evolution. Here, we applied multiple pattern‐based metrics to test the occurrence of convergence in the craniomandibular shape of extant carnivorans. To this aim, we tested for convergence in many dietary groups and analyzed several cases of carnivoran convergence concerning either ecologically equivalent species or ecologically similar species of different body sizes described in the literature. Our results validate the occurrence of convergence in ecologically equivalent species in a few cases (as well as in the case of giant and red pandas), but almost never support the occurrence of convergent evolution in dietary categories of living carnivorans. Therefore, convergent evolution in this clade appears to be a rare phenomenon. This is probably the consequence of a complex interplay of one‐to‐many, many‐to‐one, and many‐to‐many relationships taking place between ecology, biomechanics, and morphology.
Collapse
Affiliation(s)
- Davide Tamagnini
- Department of Biology and Biotechnologies "Charles Darwin,", University of Rome "La Sapienza,", Rome, 00185, Italy.,Museum of Zoology, Sapienza Museum Centre, University of Rome "La Sapienza,", Rome, 00185, Italy
| | - Carlo Meloro
- Research Centre in Evolutionary Anthropology and Palaeoecology, School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, L3 3AF, United Kingdom
| | - Pasquale Raia
- Dipartimento di Scienze della Terra, dell'Ambiente e delle Risorse, University of Naples Federico II, Napoli, 80126, Italy
| | - Luigi Maiorano
- Department of Biology and Biotechnologies "Charles Darwin,", University of Rome "La Sapienza,", Rome, 00185, Italy.,Museum of Zoology, Sapienza Museum Centre, University of Rome "La Sapienza,", Rome, 00185, Italy
| |
Collapse
|
37
|
Di Nezio F, Beney C, Roman S, Danza F, Buetti-Dinh A, Tonolla M, Storelli N. Anoxygenic photo- and chemo-synthesis of phototrophic sulfur bacteria from an alpine meromictic lake. FEMS Microbiol Ecol 2021; 97:6123714. [PMID: 33512460 PMCID: PMC7947596 DOI: 10.1093/femsec/fiab010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/27/2021] [Indexed: 12/11/2022] Open
Abstract
Meromictic lakes are interesting ecosystems to study anaerobic microorganisms due their permanent stratification allowing the formation of a stable anoxic environment. The crenogenic meromictic Lake Cadagno harbors an important community of anoxygenic phototrophic sulfur bacteria responsible for almost half of its total productivity. Besides their ability to fix CO2 through photosynthesis, these microorganisms also showed high rates of dark carbon fixation via chemosyntesis. Here, we grew in pure cultures three populations of anoxygenic phototrophic sulfur bacteria previously isolated from the lake, accounting for 72.8% of the total microbial community and exibiting different phenotypes: (1) the motile, large-celled purple sulfur bacterium (PSB) Chromatium okenii, (2) the small-celled PSB Thiodictyon syntrophicum and (3) the green sulfur bacterium (GSB) Chlorobium phaeobacteroides. We measured their ability to fix CO2 through photo- and chemo-synthesis, both in situ in the lake and in laboratory under different incubation conditions. We also evaluated the efficiency and velocity of H2S photo-oxidation, an important reaction in the anoxygenic photosynthesis process. Our results confirm that phototrophic sulfur bacteria strongly fix CO2 in the presence of light and that oxygen increases chemosynthesis at night, in laboratory conditions. Moreover, substancial differences were displayed between the three selected populations in terms of activity and abundance.
Collapse
Affiliation(s)
- Francesco Di Nezio
- Laboratory of Applied Microbiology (LMA), Department of Environmental Constructions and Design (DACD), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), via Mirasole 22a, 6500 Bellinzona, Switzerland.,Microbiology Unit, Department of Botany and Plant Biology (BIVEG), University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, 1211 Geneva, Switzerland
| | - Clarisse Beney
- Laboratory of Applied Microbiology (LMA), Department of Environmental Constructions and Design (DACD), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), via Mirasole 22a, 6500 Bellinzona, Switzerland.,Microbiology Unit, Department of Botany and Plant Biology (BIVEG), University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, 1211 Geneva, Switzerland
| | - Samuele Roman
- Laboratory of Applied Microbiology (LMA), Department of Environmental Constructions and Design (DACD), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), via Mirasole 22a, 6500 Bellinzona, Switzerland.,Alpine Biology Center Foundation, via Mirasole 22a, 6500 Bellinzona, Switzerland
| | - Francesco Danza
- Laboratory of Applied Microbiology (LMA), Department of Environmental Constructions and Design (DACD), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), via Mirasole 22a, 6500 Bellinzona, Switzerland
| | - Antoine Buetti-Dinh
- Laboratory of Applied Microbiology (LMA), Department of Environmental Constructions and Design (DACD), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), via Mirasole 22a, 6500 Bellinzona, Switzerland
| | - Mauro Tonolla
- Laboratory of Applied Microbiology (LMA), Department of Environmental Constructions and Design (DACD), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), via Mirasole 22a, 6500 Bellinzona, Switzerland.,Microbiology Unit, Department of Botany and Plant Biology (BIVEG), University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, 1211 Geneva, Switzerland.,Alpine Biology Center Foundation, via Mirasole 22a, 6500 Bellinzona, Switzerland
| | - Nicola Storelli
- Laboratory of Applied Microbiology (LMA), Department of Environmental Constructions and Design (DACD), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), via Mirasole 22a, 6500 Bellinzona, Switzerland
| |
Collapse
|
38
|
Arai T, Yamauchi A, Miura A, Kondo H, Nishimiya Y, Sasaki YC, Tsuda S. Discovery of Hyperactive Antifreeze Protein from Phylogenetically Distant Beetles Questions Its Evolutionary Origin. Int J Mol Sci 2021; 22:3637. [PMID: 33807342 PMCID: PMC8038014 DOI: 10.3390/ijms22073637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 03/28/2021] [Accepted: 03/28/2021] [Indexed: 11/16/2022] Open
Abstract
Beetle hyperactive antifreeze protein (AFP) has a unique ability to maintain a supercooling state of its body fluids, however, less is known about its origination. Here, we found that a popular stag beetle Dorcus hopei binodulosus (Dhb) synthesizes at least 6 isoforms of hyperactive AFP (DhbAFP). Cold-acclimated Dhb larvae tolerated -5 °C chilled storage for 24 h and fully recovered after warming, suggesting that DhbAFP facilitates overwintering of this beetle. A DhbAFP isoform (~10 kDa) appeared to consist of 6-8 tandem repeats of a 12-residue consensus sequence (TCTxSxNCxxAx), which exhibited 3 °C of high freezing point depression and the ability of binding to an entire surface of a single ice crystal. Significantly, these properties as well as DNA sequences including the untranslated region, signal peptide region, and an AFP-encoding region of Dhb are highly similar to those identified for a known hyperactive AFP (TmAFP) from the beetle Tenebrio molitor (Tm). Progenitor of Dhb and Tm was branched off approximately 300 million years ago, so no known evolution mechanism hardly explains the retainment of the DNA sequence for such a lo-ng divergence period. Existence of unrevealed gene transfer mechanism will be hypothesized between these two phylogenetically distant beetles to acquire this type of hyperactive AFP.
Collapse
Affiliation(s)
- Tatsuya Arai
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Japan; (T.A.); (A.M.); (H.K.); (Y.N.)
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Japan;
| | - Akari Yamauchi
- Graduate School of Life Sciences, Hokkaido University, Sapporo 060-0810, Japan;
| | - Ai Miura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Japan; (T.A.); (A.M.); (H.K.); (Y.N.)
| | - Hidemasa Kondo
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Japan; (T.A.); (A.M.); (H.K.); (Y.N.)
- Graduate School of Life Sciences, Hokkaido University, Sapporo 060-0810, Japan;
| | - Yoshiyuki Nishimiya
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Japan; (T.A.); (A.M.); (H.K.); (Y.N.)
| | - Yuji C. Sasaki
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Japan;
- OPERANDO Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8563, Japan
| | - Sakae Tsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Japan; (T.A.); (A.M.); (H.K.); (Y.N.)
- Graduate School of Life Sciences, Hokkaido University, Sapporo 060-0810, Japan;
- OPERANDO Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8563, Japan
| |
Collapse
|
39
|
Lau ES, Oakley TH. Multi-level convergence of complex traits and the evolution of bioluminescence. Biol Rev Camb Philos Soc 2020; 96:673-691. [PMID: 33306257 DOI: 10.1111/brv.12672] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022]
Abstract
Evolutionary convergence provides natural opportunities to investigate how, when, and why novel traits evolve. Many convergent traits are complex, highlighting the importance of explicitly considering convergence at different levels of biological organization, or 'multi-level convergent evolution'. To investigate multi-level convergent evolution, we propose a holistic and hierarchical framework that emphasizes breaking down traits into several functional modules. We begin by identifying long-standing questions on the origins of complexity and the diverse evolutionary processes underlying phenotypic convergence to discuss how they can be addressed by examining convergent systems. We argue that bioluminescence, a complex trait that evolved dozens of times through either novel mechanisms or conserved toolkits, is particularly well suited for these studies. We present an updated estimate of at least 94 independent origins of bioluminescence across the tree of life, which we calculated by reviewing and summarizing all estimates of independent origins. Then, we use our framework to review the biology, chemistry, and evolution of bioluminescence, and for each biological level identify questions that arise from our systematic review. We focus on luminous organisms that use the shared luciferin substrates coelenterazine or vargulin to produce light because these organisms convergently evolved bioluminescent proteins that use the same luciferins to produce bioluminescence. Evolutionary convergence does not necessarily extend across biological levels, as exemplified by cases of conservation and disparity in biological functions, organs, cells, and molecules associated with bioluminescence systems. Investigating differences across bioluminescent organisms will address fundamental questions on predictability and contingency in convergent evolution. Lastly, we highlight unexplored areas of bioluminescence research and advances in sequencing and chemical techniques useful for developing bioluminescence as a model system for studying multi-level convergent evolution.
Collapse
Affiliation(s)
- Emily S Lau
- Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, 93106, U.S.A
| | - Todd H Oakley
- Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, 93106, U.S.A
| |
Collapse
|
40
|
Grenade NL, Howe GW, Ross AC. The convergence of bacterial natural products from evolutionarily distinct pathways. Curr Opin Biotechnol 2020; 69:17-25. [PMID: 33296737 DOI: 10.1016/j.copbio.2020.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/21/2020] [Accepted: 10/05/2020] [Indexed: 10/22/2022]
Abstract
As bacteria readily convert simple starting materials into a diverse array of complex molecules with useful bioactivities, these microorganisms and their biosynthetic machinery represent attractive alternatives to traditional chemical syntheses. While the well-documented divergent evolution of biosynthesis has allowed bacteria to explore wide swaths of natural product chemical space, the convergent evolution of these pathways remains a comparably rare phenomenon. The emergence of similar phenotypes within disparate genetic contexts provides a unique opportunity to probe the limitations of natural selection and the predictability and reproducibility of evolution under different constraints. Here, we report several recent examples of functional and structural convergence of bacterial natural products, as well as intra- and inter-domain convergence of bacterial biosynthetic machinery. While the genetic underpinnings of biosynthetic pathway evolution are of fundamental interest, the evolutionary constraints exemplified by phenotypic convergence also have immediate implications for efforts to engineer microorganisms for therapeutic small molecule production.
Collapse
Affiliation(s)
- Neil L Grenade
- Department of Chemistry, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Graeme W Howe
- Department of Chemistry, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Avena C Ross
- Department of Chemistry, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
41
|
Ebel R, Müller J, Ramm T, Hipsley C, Amson E. First evidence of convergent lifestyle signal in reptile skull roof microanatomy. BMC Biol 2020; 18:185. [PMID: 33250048 PMCID: PMC7702674 DOI: 10.1186/s12915-020-00908-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/23/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The study of convergently acquired adaptations allows fundamental insight into life's evolutionary history. Within lepidosaur reptiles-i.e. lizards, tuatara, and snakes-a fully fossorial ('burrowing') lifestyle has independently evolved in most major clades. However, despite their consistent use of the skull as a digging tool, cranial modifications common to all these lineages are yet to be found. In particular, bone microanatomy, although highly diagnostic for lifestyle, remains unexplored in the lepidosaur cranium. This constitutes a key gap in our understanding of their complexly interwoven ecology, morphology, and evolution. In order to bridge this gap, we reconstructed the acquisition of a fossorial lifestyle in 2813 lepidosaurs and assessed the skull roof compactness from microCT cross-sections in a representative subset (n = 99). We tested this and five macroscopic morphological traits for their convergent evolution. RESULTS We found that fossoriality evolved independently in 54 lepidosaur lineages. Furthermore, a highly compact skull roof, small skull diameter, elongate cranium, and low length ratio of frontal and parietal were repeatedly acquired in concert with a fossorial lifestyle. CONCLUSIONS We report a novel case of convergence that concerns lepidosaur diversity as a whole. Our findings further indicate an early evolution of fossorial modifications in the amphisbaenian 'worm-lizards' and support a fossorial origin for snakes. Nonetheless, our results suggest distinct evolutionary pathways between fossorial lizards and snakes through different contingencies. We thus provide novel insights into the evolutionary mechanisms and constraints underlying amniote diversity and a powerful tool for the reconstruction of extinct reptile ecology.
Collapse
Affiliation(s)
- Roy Ebel
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany.
- Institute for Biology, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Johannes Müller
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
- Institute for Biology, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Till Ramm
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
- Institute for Biology, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- School of BioSciences, The University of Melbourne, Parkville, Victoria, 3052, Australia
- Sciences Department, Museums Victoria, Carlton, Victoria, 3053, Australia
| | - Christy Hipsley
- School of BioSciences, The University of Melbourne, Parkville, Victoria, 3052, Australia
- Sciences Department, Museums Victoria, Carlton, Victoria, 3053, Australia
| | - Eli Amson
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| |
Collapse
|
42
|
Wang H, Zhang W, Bado I, Zhang XHF. Bone Tropism in Cancer Metastases. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a036848. [PMID: 31615871 DOI: 10.1101/cshperspect.a036848] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Bone is a frequent site of metastases in many cancers. Both bone properties and the tumor-intrinsic traits are associated with the metastatic propensity to bone (i.e., the bone tropism). Whereas an increasing body of mechanistic studies expanded our understanding on bone tropism, they also revealed complexity across the bone lesions originated from different cancer types. In this review, we will discuss the physical, chemical, and biological properties of bone microenvironment, identify potential players in every stage of bone metastases, and introduce some of the known mechanisms regulating the bone colonization. Our objectives are to integrate the knowledge established in different biological contexts and highlight the determinants of bone tropism.
Collapse
Affiliation(s)
- Hai Wang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Weijie Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Igor Bado
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.,McNair Medical Institute, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
43
|
Grossnickle DM, Chen M, Wauer JGA, Pevsner SK, Weaver LN, Meng Q, Liu D, Zhang Y, Luo Z. Incomplete convergence of gliding mammal skeletons*. Evolution 2020; 74:2662-2680. [DOI: 10.1111/evo.14094] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 01/22/2023]
Affiliation(s)
| | - Meng Chen
- School of Earth Sciences and Engineering Nanjing University Nanjing 210023 China
- State Key Laboratory of Palaeobiology and Stratigraphy Nanjing Institute of Geology and Palaeontology Chinese Academy of Sciences Nanjing 100864 China
| | - James G. A. Wauer
- Department of Organismal Biology & Anatomy University of Chicago Chicago Illinois 60637
| | - Spencer K. Pevsner
- Department of Organismal Biology & Anatomy University of Chicago Chicago Illinois 60637
- School of Earth Sciences University of Bristol Bristol BS8 1TH United Kingdom
| | - Lucas N. Weaver
- Department of Biology University of Washington Seattle Washington 98195
| | - Qing‐Jin Meng
- Beijing Museum of Natural History Beijing 100050 China
| | - Di Liu
- Beijing Museum of Natural History Beijing 100050 China
| | | | - Zhe‐Xi Luo
- Department of Organismal Biology & Anatomy University of Chicago Chicago Illinois 60637
| |
Collapse
|
44
|
Kolmann MA, Hughes LC, Hernandez LP, Arcila D, Betancur-R R, Sabaj MH, López-Fernández H, Ortí G. Phylogenomics of Piranhas and Pacus (Serrasalmidae) Uncovers How Dietary Convergence and Parallelism Obfuscate Traditional Morphological Taxonomy. Syst Biol 2020; 70:576-592. [PMID: 32785670 DOI: 10.1093/sysbio/syaa065] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 02/06/2023] Open
Abstract
The Amazon and neighboring South American river basins harbor the world's most diverse assemblages of freshwater fishes. One of the most prominent South American fish families is the Serrasalmidae (pacus and piranhas), found in nearly every continental basin. Serrasalmids are keystone ecological taxa, being some of the top riverine predators as well as the primary seed dispersers in the flooded forest. Despite their widespread occurrence and notable ecologies, serrasalmid evolutionary history and systematics are controversial. For example, the sister taxon to serrasalmids is contentious, the relationships of major clades within the family are inconsistent across different methodologies, and half of the extant serrasalmid genera are suggested to be non-monophyletic. We analyzed exon capture to reexamine the evolutionary relationships among 63 (of 99) species across all 16 serrasalmid genera and their nearest outgroups, including multiple individuals per species to account for cryptic lineages. To reconstruct the timeline of serrasalmid diversification, we time-calibrated this phylogeny using two different fossil-calibration schemes to account for uncertainty in taxonomy with respect to fossil teeth. Finally, we analyzed diet evolution across the family and comment on associated changes in dentition, highlighting the ecomorphological diversity within serrasalmids. We document widespread non-monophyly of genera within Myleinae, as well as between Serrasalmus and Pristobrycon, and propose that reliance on traits like teeth to distinguish among genera is confounded by ecological homoplasy, especially among herbivorous and omnivorous taxa. We clarify the relationships among all serrasalmid genera, propose new subfamily affiliations, and support hemiodontids as the sister taxon to Serrasalmidae. [Characiformes; exon capture; ichthyochory; molecular time-calibration; piscivory.].
Collapse
Affiliation(s)
- M A Kolmann
- Dept of Biological Sciences, George Washington University, 2029 G St. NW, Washington, DC 20052, USA.,Dept of Natural History, Royal Ontario Museum, 100 Queens Park, Toronto, ON M5S 2C6, Canada
| | - L C Hughes
- Dept of Biological Sciences, George Washington University, 2029 G St. NW, Washington, DC 20052, USA.,Dept of Ichthyology, Smithsonian National Museum of Natural History, 10th St. & Constitution Ave. NW, Washington, DC 20560, USA
| | - L P Hernandez
- Dept of Biological Sciences, George Washington University, 2029 G St. NW, Washington, DC 20052, USA
| | - D Arcila
- Dept of Ichthyology, Sam Noble Museum, 2401 Chautauqua Ave, Norman, OK 73072, USA.,Dept of Biology, University of Oklahoma, 660 Parrington Oval, Norman, OK 73019, USA
| | - R Betancur-R
- Dept of Ichthyology, Sam Noble Museum, 2401 Chautauqua Ave, Norman, OK 73072, USA.,Dept of Biology, University of Oklahoma, 660 Parrington Oval, Norman, OK 73019, USA
| | - M H Sabaj
- Dept of Ichthyology, The Academy of Natural Sciences of Drexel University, 1900 Benjamin Franklin Pkwy, Philadelphia, PA 19103, USA
| | - H López-Fernández
- Museum of Zoology, University of Michigan, 1105 North University Dr., Ann Arbor, MI 48109, USA
| | - G Ortí
- Dept of Biological Sciences, George Washington University, 2029 G St. NW, Washington, DC 20052, USA.,Dept of Ichthyology, Smithsonian National Museum of Natural History, 10th St. & Constitution Ave. NW, Washington, DC 20560, USA
| |
Collapse
|
45
|
Feinberg TE, Mallatt J. Phenomenal Consciousness and Emergence: Eliminating the Explanatory Gap. Front Psychol 2020; 11:1041. [PMID: 32595555 PMCID: PMC7304239 DOI: 10.3389/fpsyg.2020.01041] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/27/2020] [Indexed: 01/13/2023] Open
Abstract
The role of emergence in the creation of consciousness has been debated for over a century, but it remains unresolved. In particular there is controversy over the claim that a "strong" or radical form of emergence is required to explain phenomenal consciousness. In this paper we use some ideas of complex system theory to trace the emergent features of life and then of complex brains through three progressive stages or levels: Level 1 (life), Level 2 (nervous systems), and Level 3 (special neurobiological features), each representing increasing biological and neurobiological complexity and ultimately leading to the emergence of phenomenal consciousness, all in physical systems. Along the way we show that consciousness fits the criteria of an emergent property-albeit one with extreme complexity. The formulation Life + Special neurobiological features → Phenomenal consciousness expresses these relationships. Then we consider the implications of our findings for some of the philosophical conundrums entailed by the apparent "explanatory gap" between the brain and phenomenal consciousness. We conclude that consciousness stems from the personal life of an organism with the addition of a complex nervous system that is ideally suited to maximize emergent neurobiological features and that it is an example of standard ("weak") emergence without a scientific explanatory gap. An "experiential" or epistemic gap remains, although this is ontologically untroubling.
Collapse
Affiliation(s)
- Todd E. Feinberg
- Icahn School of Medicine at Mount Sinai, Psychiatry and Neurology, New York, NY, United States
| | - Jon Mallatt
- The University of Washington, WWAMI Medical Education Program, The University of Idaho, Moscow, ID, United States
| |
Collapse
|
46
|
Morton B, Leung PT, Wei J, Lee GY. Phylogenetic relationships of Asian freshwater Mytiloidea (Bivalvia): a morphological and genetic comparison of Sinomytilus harmandi, Limnoperna fortunei and Septifer bilocularis. MOLLUSCAN RESEARCH 2020. [DOI: 10.1080/13235818.2020.1735984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Brian Morton
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Priscilla T.Y. Leung
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Jiehong Wei
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Gabriel Y. Lee
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, People’s Republic of China
| |
Collapse
|
47
|
Beeby M, Ferreira JL, Tripp P, Albers SV, Mitchell DR. Propulsive nanomachines: the convergent evolution of archaella, flagella and cilia. FEMS Microbiol Rev 2020; 44:253-304. [DOI: 10.1093/femsre/fuaa006] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 03/06/2020] [Indexed: 02/06/2023] Open
Abstract
ABSTRACT
Echoing the repeated convergent evolution of flight and vision in large eukaryotes, propulsive swimming motility has evolved independently in microbes in each of the three domains of life. Filamentous appendages – archaella in Archaea, flagella in Bacteria and cilia in Eukaryotes – wave, whip or rotate to propel microbes, overcoming diffusion and enabling colonization of new environments. The implementations of the three propulsive nanomachines are distinct, however: archaella and flagella rotate, while cilia beat or wave; flagella and cilia assemble at their tips, while archaella assemble at their base; archaella and cilia use ATP for motility, while flagella use ion-motive force. These underlying differences reflect the tinkering required to evolve a molecular machine, in which pre-existing machines in the appropriate contexts were iteratively co-opted for new functions and whose origins are reflected in their resultant mechanisms. Contemporary homologies suggest that archaella evolved from a non-rotary pilus, flagella from a non-rotary appendage or secretion system, and cilia from a passive sensory structure. Here, we review the structure, assembly, mechanism and homologies of the three distinct solutions as a foundation to better understand how propulsive nanomachines evolved three times independently and to highlight principles of molecular evolution.
Collapse
Affiliation(s)
- Morgan Beeby
- Department of Life Sciences, Frankland Road, Imperial College of London, London, SW7 2AZ, UK
| | - Josie L Ferreira
- Department of Life Sciences, Frankland Road, Imperial College of London, London, SW7 2AZ, UK
| | - Patrick Tripp
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Schaenzlestrasse 1, 79211 Freiburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Schaenzlestrasse 1, 79211 Freiburg, Germany
| | - David R Mitchell
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA
| |
Collapse
|
48
|
Baeckens S, Goeyers C, Van Damme R. Convergent Evolution of Claw Shape in a Transcontinental Lizard Radiation. Integr Comp Biol 2019; 60:10-23. [DOI: 10.1093/icb/icz151] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AbstractSpecies occupying similar selective environments often share similar phenotypes as the result of natural selection. Recent discoveries, however, have led to the understanding that phenotypes may also converge for other reasons than recurring selection. We argue that the vertebrate claw system constitutes a promising but understudied model system for testing the adaptive nature of phenotypic, functional, and genetic convergence. In this study, we combine basic morphometrics and advanced techniques in form analysis to examine claw shape divergence in a transcontinental lizard radiation (Lacertidae). We find substantial interspecific variation in claw morphology and phylogenetic comparative statistics reveal a strong correlation with structural habitat use: ground-dwelling species living in open areas are equipped with long, thick, weakly curved, slender-bodied claws, whereas climbing species carry high, short, strongly curved, full-bodied claws. Species occupying densely vegetated habitats tend to carry intermediately shaped claws. Evolutionary models suggest that claw shape evolves toward multiple adaptive peaks, with structural habitat use pulling species toward a specific selective optimum. Contrary to findings in several other vertebrate taxa, our analyses indicate that environmental pressures, not phylogenetic relatedness, drive convergent evolution of similarly shaped claws in lacertids. Overall, our study suggests that lacertids independently evolved similarly shaped claws as an adaptation to similar structural environments in order to cope with the specific locomotory challenges posed by the habitat. Future biomechanical studies that link form and function in combination with genomic and development research will prove valuable in better understanding the adaptive significance of claw shape divergence.
Collapse
Affiliation(s)
- Simon Baeckens
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, Belgium
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | - Charlotte Goeyers
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Raoul Van Damme
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
49
|
Affiliation(s)
- David Jablonski
- Department of Geophysical Sciences University of Chicago Chicago Illinois
| |
Collapse
|
50
|
Louzada NSV, Nogueira MR, Pessôa LM. Comparative morphology and scaling of the femur in yangochiropteran bats. J Anat 2019; 235:124-150. [PMID: 31155714 DOI: 10.1111/joa.12996] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2019] [Indexed: 02/06/2023] Open
Abstract
Better known by their remarkable forelimb morphology, bats are also unique among mammals with respect to their hindlimbs. Their legs are rotated through 180°, generally reduced in size, and in some extant taxa particular bones (e.g. fibula) can even be absent. The femur is the main leg bone, but to date few bat studies have considered its morphology in detail, none in a wide-scale comparative study. Yangochiroptera is the largest bat taxon, spans nearly three orders of magnitude in body mass, and is highly diverse both in ecology and behavior, representing a good model for comparative analyses. Here, we describe the anatomy of the femur in a large sample of yangochiropteran bats (125 species, 70 genera, and 12 families), and explore major trends of morphological variation and scaling patterns in this bone. We used 13 categorical characters in the anatomical description and five linear dimensions in the quantitative analyses. Based on the categorical data, each family studied here was diagnosed, and those from the Neotropical region were included in an identification key. From the phylogenetic principal component analysis (pPCA) we showed that, in addition to size, major axes of variation in bat femur are related to robusticity and head morphology, features that are clearly distinct among some families. We also generated a phylomorphospace based on pPCA scores, highlighting convergences in femur shape. Molossidae, Mystacinidae, and Desmodontinae were grouped based on their greater robusticity, a pattern that was also recovered from categorical data. In these families, we found anatomical features (e.g. presence of tubercles and posterior ridges on the greater trochanter, long or medially/distally displaced lateral ridges on the shaft) that are well-known from their functional link with quadrupedal locomotion. Using phylogenetic regressions, we found out that compared with body mass, femur length scaled with negative allometry, as expected, but that femur width scaled isometrically, counter to expectations. As a result, robusticity index (the ratio of width to length), scaled with positive allometry - larger bats tended to have more robust hindlimbs. At species level, our most remarkable finding was related to Myotis simus, which presented the most robust femur (for its size) among yangochiropterans. Our results reinforce the informative potential of the chiropteran femur from both taxonomic and functional perspectives. Furthermore, the allometric trends seen in this bone may help understand the strategies adopted by flying vertebrates to deal with the high energetic cost of flight and, at the same time, evolve diversified foraging behaviors.
Collapse
Affiliation(s)
- Nathália Siqueira Veríssimo Louzada
- Programa de Pós-graduação em Biodiversidade e Biologia Evolutiva, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Laboratório de Mastozoologia, Departamento de Zoologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Marcelo Rodrigues Nogueira
- Programa de Pós-graduação em Ecologia e Recursos Naturais, Laboratório de Ciências Ambientais, CBB, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ, Brazil
| | - Leila Maria Pessôa
- Laboratório de Mastozoologia, Departamento de Zoologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|