1
|
Bianchi M, Avesani S, Bonato B, Dadda M, Guerra S, Ravazzolo L, Simonetti V, Castiello U. Plant behavior: Theoretical and technological advances. Curr Opin Psychol 2025; 64:102026. [PMID: 40107178 PMCID: PMC7617499 DOI: 10.1016/j.copsyc.2025.102026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/25/2025] [Accepted: 03/05/2025] [Indexed: 03/22/2025]
Abstract
The widespread disregard for plant behavior is gradually being overcome through more inclusive theoretical approaches and the development of appropriate and advanced technologies. In this paper we review scientific evidence on recent contributions to the study of plants, such as movement and communication as well as potential forms of attention. Some of the most recent contributions to the study of plant abilities come from comparative studies on biocommunication and research on the accuracy of plants in responding to different environmental stimuli through electrophysiological and kinematical analyses in different context (e.g., individual and social). Furthermore, an underexplored area that warrants further investigation is plants' multisensory perception and its potential link to multimodal communication capabilities. Research into this set of abilities could help to clarify the degree of behavioral flexibility in sessile organisms without a nervous system and enhance discussions on interactive behavior as expressed in nature. This, in turn, will help to bridge the gap between studies on animal organisms and the rest of the living world.
Collapse
Affiliation(s)
| | - Sara Avesani
- Department of General Psychology, University of Padua, Italy
| | - Bianca Bonato
- Department of General Psychology, University of Padua, Italy
| | - Marco Dadda
- Department of General Psychology, University of Padua, Italy
| | - Silvia Guerra
- Department of General Psychology, University of Padua, Italy
| | - Laura Ravazzolo
- DAFNAE-Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, Italy
| | | | | |
Collapse
|
2
|
Trewavas A. Plant intelligence dux: a comprehensive rebuttal of Kingsland and Taiz. PROTOPLASMA 2025; 262:255-266. [PMID: 39505772 PMCID: PMC11839692 DOI: 10.1007/s00709-024-02005-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/23/2024] [Indexed: 11/08/2024]
Abstract
Intelligence is a fundamental property for all life enabling an increased probability of survival and reproduction under wild circumstances. Kingsland and Taiz (2024) think that plants are not intelligent but seem unaware of the extensive literature about intelligence, memory, learning and chromatin topology in plants. Their views are consequently rejected. Their claim of fake quotations is shown to result from faulty reasoning and lack of understanding of practical biology. Their use of social media as scholarly evidence is unacceptable. Darwin's views on intelligence are described, and their pertinence to the adaptive responses of plants is discussed. Justifications for comments I have made concerning McClintock and her "thoughtful" cell, von Sachs writings as indicating purpose (teleonomy) to plant behaviour, Went and Thimann's allusions to plant intelligence and Bose legacy as the father of plant electrophysiology are described. These scientists were usually first in their field of knowledge, and their understanding was consequently deeper. The article finishes with a brief critical analysis of the 36 scientists who were used to condemn plant neurobiology as of no use. It is concluded that participants signed up to a false prospectus because contrary evidence was omitted.
Collapse
Affiliation(s)
- Anthony Trewavas
- Institute of Molecular Plant Science, Kings Buildings, University of Edinburgh, EH9 3JH, Edinburgh, Scotland.
| |
Collapse
|
3
|
Wagermaier W, Razghandi K, Fratzl P. A Bio-Inspired Perspective on Materials Sustainability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2413096. [PMID: 39757528 DOI: 10.1002/adma.202413096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/30/2024] [Indexed: 01/07/2025]
Abstract
The article explores materials sustainability through a bio-inspired lens and discusses paradigms that can reshape the understanding of material synthesis, processing, and usage. It addresses various technological fields, from structural engineering to healthcare, and emphasizes natural material cycles as a blueprint for efficient recycling and reuse. The study shows that material functionality depends on both chemical composition and structural modifications, which emphasizes the role of material processing. The article identifies strategies such as mono-materiality and multifunctionality, and explores how responsivity, adaptivity, modularity, and cellularity can simplify material assembly and disassembly. Bioinspired strategies for reusing materials, defect tolerance, maintenance, remodeling, and healing may extend product lifespans. The principles of circularity, longevity, and parsimony are reconsidered in the context of "active materiality", a dynamic bio-inspired paradigm. This concept expands the traditional focus of material science from structure-function relationships to include the development of materials capable of responding or adapting to external stimuli. Concrete examples demonstrate how bio-inspired strategies are being applied in engineering and technology to enhance the sustainability of materials. The article concludes by emphasizing interdisciplinary collaboration as a key factor for developing a sustainable and resilient materials economy in harmony with nature's material cycles.
Collapse
Affiliation(s)
- Wolfgang Wagermaier
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Khashayar Razghandi
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Peter Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| |
Collapse
|
4
|
Kessler A, Mueller MB. Induced resistance to herbivory and the intelligent plant. PLANT SIGNALING & BEHAVIOR 2024; 19:2345985. [PMID: 38687704 PMCID: PMC11062368 DOI: 10.1080/15592324.2024.2345985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
Plant induced responses to environmental stressors are increasingly studied in a behavioral ecology context. This is particularly true for plant induced responses to herbivory that mediate direct and indirect defenses, and tolerance. These seemingly adaptive alterations of plant defense phenotypes in the context of other environmental conditions have led to the discussion of such responses as intelligent behavior. Here we consider the concept of plant intelligence and some of its predictions for chemical information transfer in plant interaction with other organisms. Within this framework, the flow, perception, integration, and storage of environmental information are considered tunable dials that allow plants to respond adaptively to attacking herbivores while integrating past experiences and environmental cues that are predictive of future conditions. The predictive value of environmental information and the costs of acting on false information are important drivers of the evolution of plant responses to herbivory. We identify integrative priming of defense responses as a mechanism that allows plants to mitigate potential costs associated with acting on false information. The priming mechanisms provide short- and long-term memory that facilitates the integration of environmental cues without imposing significant costs. Finally, we discuss the ecological and evolutionary prediction of the plant intelligence hypothesis.
Collapse
Affiliation(s)
- André Kessler
- Cornell University, Department of Ecology and Evolutionary Biology, Ithaca, NY, USA
| | - Michael B. Mueller
- Cornell University, Department of Ecology and Evolutionary Biology, Ithaca, NY, USA
| |
Collapse
|
5
|
Herrera CM. Refrigerated flowers in the torrid Mediterranean summer. Ecology 2024; 105:e4268. [PMID: 38350709 DOI: 10.1002/ecy.4268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/30/2023] [Accepted: 01/19/2024] [Indexed: 02/15/2024]
Affiliation(s)
- Carlos M Herrera
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| |
Collapse
|
6
|
Chaudhury R, Chakraborty A, Rahaman F, Sarkar T, Dey S, Das M. Mycorrhization in trees: ecology, physiology, emerging technologies and beyond. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:145-156. [PMID: 38194349 DOI: 10.1111/plb.13613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024]
Abstract
Mycorrhization has been an integral part of plants since colonization by the early land plants. Over decades, substantial research has highlighted its potential role in improving nutritional efficiency and growth, development and survival of crop plants. However, the focus of this review is trees. Evidence have been provided to explain ecological and physiological significance of mycorrhization in trees. Advances in recent technologies (e.g., metagenomics, artificial intelligence, machine learning, agricultural drones) may open new windows to apply this knowledge in promoting tree growth in forest ecosystems. Dual mycorrhization relationships in trees and even triple relationships among trees, mycorrhizal fungi and bacteria offer an interesting physiological system to understand how plants interact with other organisms for better survival. Besides, studies indicate additional roles of mycorrhization in learning, memorizing and communication between host trees through a common mycorrhizal network (CMN). Recent observations in trees suggest that mycorrhization may even promote tolerance to multiple abiotic (e.g., drought, salt, heavy metal stress) and biotic (e.g. fungi) stresses. Due to the extent of physiological reliance, local adaptation of trees is heavily impacted by the mycorrhizal community. This knowledge opens the possibility of a non-GMO avenue to promote tree growth and development. Indeed, mycorrhization could impact growth of trees in nurserys and subsequent survival of the inoculated trees in field conditions. Future studies might integrate hyperspectral imaging and drone technologies to identify tree communities that are deficient in nitrogen and spray mycorrhizal spore formulations on them.
Collapse
Affiliation(s)
- R Chaudhury
- Department of Life Sciences, Presidency University, Kolkata, India
| | - A Chakraborty
- Department of Life Sciences, Presidency University, Kolkata, India
| | - F Rahaman
- Department of Life Sciences, Presidency University, Kolkata, India
| | - T Sarkar
- Department of Life Sciences, Presidency University, Kolkata, India
| | - S Dey
- Department of Life Sciences, Presidency University, Kolkata, India
| | - M Das
- Department of Life Sciences, Presidency University, Kolkata, India
| |
Collapse
|
7
|
Bonato B, Castiello U, Guerra S, Wang Q. Motor cognition in plants: from thought to real experiments. THEORETICAL AND EXPERIMENTAL PLANT PHYSIOLOGY 2024; 36:423-437. [PMID: 39132627 PMCID: PMC7616355 DOI: 10.1007/s40626-023-00304-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/15/2023] [Indexed: 08/13/2024]
Abstract
Motor cognition involves the process of planning and executing goal-directed movements and recognizing, anticipating, and interpreting others' actions. Motor cognitive functions are generally associated with the presence of a brain and are ascribed only to humans and other animal species. A growing body of evidence suggests that aneural organisms, like climbing plants, exhibit behaviors driven by the intention to achieve goals, challenging our understanding of cognition. Here, we propose an inclusive perspective under motor cognition to explain climbing plants' behavior. We will first review our empirical research based on kinematical analysis to understand movement in pea plants. Then, we situate this empirical research within the current theoretical debate aimed at extending the principles of cognition to aneural organisms. A novel comparative perspective that considers the perception-action cycle, involving transforming perceived environmental elements into intended movement patterns, is provided.
Collapse
Affiliation(s)
- Bianca Bonato
- Department of General Psychology (DPG), University of Padova, Padua, Italy
| | - Umberto Castiello
- Department of General Psychology (DPG), University of Padova, Padua, Italy
| | - Silvia Guerra
- Department of General Psychology (DPG), University of Padova, Padua, Italy
| | - Qiuran Wang
- Department of General Psychology (DPG), University of Padova, Padua, Italy
| |
Collapse
|
8
|
Slijepcevic P. Principles of cognitive biology and the concept of biocivilisations. Biosystems 2024; 235:105109. [PMID: 38157923 DOI: 10.1016/j.biosystems.2023.105109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/16/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024]
Abstract
A range of studies published in the last few decades promotes the cognitive aspects of life: all organisms, from bacteria to mammals, are capable of sensing/perception, decision-making, problem-solving, learning, and other cognitive functions, including sentience and consciousness. In this paper I present a scientific and philosophical synthesis of these studies, leading to an integrated view of cognitive biology. This view is expressed through the four principles applicable to all living systems: (1) sentience and consciousness, (2) autopoiesis, (3) free energy principle and relational biology, and (4) cognitive repertoire. The principles are circular, and they reinforce themselves. The circularity is not rigid, meaning that hierarchical and heterarchical shifts are widespread in the biosphere. The above principles emerged at the dawn of life, with the first cells, bacteria and archaea. All biogenic forms and functions that emerged since then can be traced to the first cells - indivisible units of biological agency. Following these principles, I developed the concept of biocivilisations to explain various forms of social intelligence in different kingdoms of life. The term biociviloisations draws on the human interpretation of the concept of civilisation, which searches for non-human equivalents of communication, engineering, science, medicine, art, and agriculture, in all kingdoms of life by applying the principles of cognitive biology. Potential avenues for testing the concept of biocivilisations are highlighted.
Collapse
Affiliation(s)
- Predrag Slijepcevic
- Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, England, UK.
| |
Collapse
|
9
|
Navarro J, Marijuán PC. Natural intelligence and the 'economy' of social emotions: A connection with AI sentiment analysis. Biosystems 2023; 233:105039. [PMID: 37743023 DOI: 10.1016/j.biosystems.2023.105039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
By approaching the concept of Natural Intelligence a new path may be open in a variety of theoretical and applied problems on social emotions. There is no doubt that intelligence emerges as a biological/informational phenomenon, although paradoxically a consistent elaboration of that concept has been missing. Regarding emotions, they have been keeping an unclear status, being often restricted to the anthropological or to ethological approaches closer to the behaviorist paradigm. Herein we propose a different track, centered in the life cycle advancement. The life cycle in its integrity becomes the nucleus of natural intelligence's informational processes, including the consistent expression of emotions along the maximization of fitness occasions. In human societies, the overall 'economy' of social emotions is manifest, showing up in the conspicuous interplay between bonding processes and different classes of social emotions. The essential link between natural intelligence, emotions, and the life cycle of individuals may harmonize with current progresses - and blind spots - of artificial intelligence fields such as 'sentiment analysis.'
Collapse
Affiliation(s)
- Jorge Navarro
- Grupo de Decisión Multicriterio Zaragoza (GDMZ), Faculty of Economics, University of Zaragoza, 50006, Zaragoza, Spain.
| | - Pedro C Marijuán
- Independent Scholar Affiliated to Bioinformation Group, Aragon Health Science Research Institute (IIS Aragon), Zaragoza, Spain
| |
Collapse
|
10
|
Masi M. An evidence-based critical review of the mind-brain identity theory. Front Psychol 2023; 14:1150605. [PMID: 37965649 PMCID: PMC10641890 DOI: 10.3389/fpsyg.2023.1150605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 09/18/2023] [Indexed: 11/16/2023] Open
Abstract
In the philosophy of mind, neuroscience, and psychology, the causal relationship between phenomenal consciousness, mentation, and brain states has always been a matter of debate. On the one hand, material monism posits consciousness and mind as pure brain epiphenomena. One of its most stringent lines of reasoning relies on a 'loss-of-function lesion premise,' according to which, since brain lesions and neurochemical modifications lead to cognitive impairment and/or altered states of consciousness, there is no reason to doubt the mind-brain identity. On the other hand, dualism or idealism (in one form or another) regard consciousness and mind as something other than the sole product of cerebral activity pointing at the ineffable, undefinable, and seemingly unphysical nature of our subjective qualitative experiences and its related mental dimension. Here, several neuroscientific findings are reviewed that question the idea that posits phenomenal experience as an emergent property of brain activity, and argue that the premise of material monism is based on a logical correlation-causation fallacy. While these (mostly ignored) findings, if considered separately from each other, could, in principle, be recast into a physicalist paradigm, once viewed from an integral perspective, they substantiate equally well an ontology that posits mind and consciousness as a primal phenomenon.
Collapse
Affiliation(s)
- Marco Masi
- Independent Researcher, Knetzgau, Germany
| |
Collapse
|
11
|
Castiello U. Plant Intelligence from a Comparative Psychology Perspective. BIOLOGY 2023; 12:819. [PMID: 37372104 DOI: 10.3390/biology12060819] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023]
Abstract
After being subjected to years of debates regarding the possibility that plants possess some form of intelligence, many admit to needing to close their eyes and to breathe mindfully when having to listen to the same arguments yet again [...].
Collapse
Affiliation(s)
- Umberto Castiello
- Dipartimento di Psicologia Generale, Università di Padova, 35121 Padova, Italy
| |
Collapse
|
12
|
Lee J, Segundo-Ortin M, Calvo P. Decision Making in Plants: A Rooted Perspective. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091799. [PMID: 37176857 PMCID: PMC10181133 DOI: 10.3390/plants12091799] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
This article discusses the possibility of plant decision making. We contend that recent work on bacteria provides a pertinent perspective for thinking about whether plants make choices. Specifically, the analogy between certain patterns of plant behaviour and apparent decision making in bacteria provides principled grounds for attributing decision making to the former. Though decision making is our focus, the discussion has implications for the wider issue of whether and why plants (and non-neural organisms more generally) are appropriate targets for cognitive abilities. Moreover, decision making is especially relevant to the issue of plant intelligence as it is commonly taken to be characteristic of cognition.
Collapse
Affiliation(s)
- Jonny Lee
- Minimal Intelligence Laboratory (MINT Lab), University of Murcia, 30100 Murcia, Spain
- Department of Philosophy, University of Murcia, 30100 Murcia, Spain
| | - Miguel Segundo-Ortin
- Minimal Intelligence Laboratory (MINT Lab), University of Murcia, 30100 Murcia, Spain
- Department of Philosophy, University of Murcia, 30100 Murcia, Spain
| | - Paco Calvo
- Minimal Intelligence Laboratory (MINT Lab), University of Murcia, 30100 Murcia, Spain
- Department of Philosophy, University of Murcia, 30100 Murcia, Spain
| |
Collapse
|
13
|
Aqeel M, Ran J, Hu W, Irshad MK, Dong L, Akram MA, Eldesoky GE, Aljuwayid AM, Chuah LF, Deng J. Plant-soil-microbe interactions in maintaining ecosystem stability and coordinated turnover under changing environmental conditions. CHEMOSPHERE 2023; 318:137924. [PMID: 36682633 DOI: 10.1016/j.chemosphere.2023.137924] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/07/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Ecosystem functions directly depend upon biophysical as well as biogeochemical reactions occurring at the soil-microbe-plant interface. Environment is considered as a major driver of any ecosystem and for the distributions of living organisms. Any changes in climate may potentially alter the composition of communities i.e., plants, soil microbes and the interactions between them. Since the impacts of global climate change are not short-term, it is indispensable to appraise its effects on different life forms including soil-microbe-plant interactions. This article highlights the crucial role that microbial communities play in interacting with plants under environmental disturbances, especially thermal and water stress. We reviewed that in response to the environmental changes, actions and reactions of plants and microbes vary markedly within an ecosystem. Changes in environment and climate like warming, CO2 elevation, and moisture deficiency impact plant and microbial performance, their diversity and ultimately community structure. Plant and soil feedbacks also affect interacting species and modify community composition. The interactive relationship between plants and soil microbes is critically important for structuring terrestrial ecosystems. The anticipated climate change is aggravating the living conditions for soil microbes and plants. The environmental insecurity and complications are not short-term and limited to any particular type of organism. We have appraised effects of climate change on the soil inhabiting microbes and plants in a broader prospect. This article highlights the unique qualities of tripartite interaction between plant-soil-microbe under climate change.
Collapse
Affiliation(s)
- Muhammad Aqeel
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu, PR China
| | - Jinzhi Ran
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu, PR China
| | - Weigang Hu
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu, PR China
| | - Muhammad Kashif Irshad
- Department of Environmental Sciences, Government College University Faisalabad, (38000), Pakistan
| | - Longwei Dong
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu, PR China
| | - Muhammad Adnan Akram
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu, PR China; Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven 3001, Belgium
| | - Gaber E Eldesoky
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ahmed Muteb Aljuwayid
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Lai Fatt Chuah
- Faculty of Maritime Studies, Universiti Malaysia Terengganu, Terengganu, Malaysia.
| | - Jianming Deng
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu, PR China.
| |
Collapse
|
14
|
Gallusci P, Agius DR, Moschou PN, Dobránszki J, Kaiserli E, Martinelli F. Deep inside the epigenetic memories of stressed plants. TRENDS IN PLANT SCIENCE 2023; 28:142-153. [PMID: 36404175 DOI: 10.1016/j.tplants.2022.09.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Recent evidence sheds light on the peculiar type of plant intelligence. Plants have developed complex molecular networks that allow them to remember, choose, and make decisions depending on the stress stimulus, although they lack a nervous system. Being sessile, plants can exploit these networks to optimize their resources cost-effectively and maximize their fitness in response to multiple environmental stresses. Even more interesting is the capability to transmit this experience to the next generation(s) through epigenetic modifications that add to the classical genetic inheritance. In this opinion article, we present concepts and perspectives regarding the capabilities of plants to sense, perceive, remember, re-elaborate, respond, and to some extent transmit to their progeny information to adapt more efficiently to climate change.
Collapse
Affiliation(s)
- Philippe Gallusci
- Ecophysiologie et Génomique Fonctionnelle de la Vigne (EGFV), University of Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d'Ornon, France
| | - Dolores R Agius
- Centre of Molecular Medicine and Biobanking, University of Malta, Msida, Malta; Ġ.F. Abela Junior College, Ġuzè Debono Square, Msida, Malta
| | - Panagiotis N Moschou
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden; Department of Biology, University of Crete, Heraklion, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Judit Dobránszki
- Centre for Agricultural Genomics and Biotechnology, University of Debrecen, Debrecen, Hungary
| | - Eirini Kaiserli
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | |
Collapse
|
15
|
Wang H, Hua J, Kang M, Wang X, Fan XR, Fourcaud T, de Reffye P. Stronger wind, smaller tree: Testing tree growth plasticity through a modeling approach. FRONTIERS IN PLANT SCIENCE 2022; 13:971690. [PMID: 36438108 PMCID: PMC9686872 DOI: 10.3389/fpls.2022.971690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Plants exhibit plasticity in response to various external conditions, characterized by changes in physiological and morphological features. Although being non-negligible, compared to the other environmental factors, the effect of wind on plant growth is less extensively studied, either experimentally or computationally. This study aims to propose a modeling approach that can simulate the impact of wind on plant growth, which brings a biomechanical feedback to growth and biomass distribution into a functional-structural plant model (FSPM). Tree reaction to the wind is simulated based on the hypothesis that plants tend to fit in the environment best. This is interpreted as an optimization problem of finding the best growth-regulation sink parameter giving the maximal plant fitness (usually seed weight, but expressed as plant biomass and size). To test this hypothesis in silico, a functional-structural plant model, which simulates both the primary and secondary growth of stems, is coupled with a biomechanical model which computes forces, moments of forces, and breakage location in stems caused by both wind and self-weight increment during plant growth. The Non-dominated Sorting Genetic Algorithm II (NSGA-II) is adopted to maximize the multi-objective function (stem biomass and tree height) by determining the key parameter value controlling the biomass allocation to the secondary growth. The digital trees show considerable phenotypic plasticity under different wind speeds, whose behavior, as an emergent property, is in accordance with experimental results from works of literature: the height and leaf area of individual trees decreased with wind speed, and the diameter at the breast height (DBH) increased at low-speed wind but declined at higher-speed wind. Stronger wind results in a smaller tree. Such response of trees to the wind is realistically simulated, giving a deeper understanding of tree behavior. The result shows that the challenging task of modeling plant plasticity may be solved by optimizing the plant fitness function. Adding a biomechanical model enriches FSPMs and opens a wider application of plant models.
Collapse
Affiliation(s)
- Haoyu Wang
- The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- Beijing Engineering Research Center of Intelligent Systems and Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Jing Hua
- The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- Beijing Engineering Research Center of Intelligent Systems and Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Mengzhen Kang
- The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Xiujuan Wang
- The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- Beijing Engineering Research Center of Intelligent Systems and Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Xing-Rong Fan
- Engineering Research Centre for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing, China
| | - Thierry Fourcaud
- CIRAD, AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Philippe de Reffye
- CIRAD, AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| |
Collapse
|
16
|
Khattar J, Calvo P, Vandebroek I, Pandolfi C, Dahdouh-Guebas F. Understanding interdisciplinary perspectives of plant intelligence: Is it a matter of science, language, or subjectivity? JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2022; 18:41. [PMID: 35637487 PMCID: PMC9153103 DOI: 10.1186/s13002-022-00539-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/04/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Evidence suggests that plants can behave intelligently by exhibiting the ability to learn, make associations between environmental cues, engage in complex decisions about resource acquisition, memorize, and adapt in flexible ways. However, plant intelligence is a disputed concept in the scientific community. Reasons for lack of consensus can be traced back to the history of Western philosophy, interpretation of terminology, and due to plants lacking neurons and a central nervous system. Plant intelligence thus constitutes a novel paradigm in the plant sciences. Therefore, the perspectives of scientists in plant-related disciplines need to be investigated in order to gain insight into the current state and future development of this concept. METHODS This study analyzed opinions of plant intelligence held by scientists from different plant-related disciplines, including ethnobiology and other biological sciences, through an online questionnaire. RESULTS Our findings show that respondents' personal belief systems and the frequency of taking into account other types of knowledge, such as traditional knowledge, in their own field(s) of study, were associated with their opinions of plant intelligence. Meanwhile, respondents' professional expertise, background (discipline), or familiarity with evidence provided on plant intelligence did not affect their opinions. CONCLUSIONS This study emphasizes the influential role of scientists' own subjective beliefs. In response, two approaches could facilitate transdisciplinary understanding among scientists: (1) effective communication designed to foster change in agreement based on presented information; and (2) holding space for an interdisciplinary dialogue where scientists can express their own subjectivities and open new opportunities for collaboration.
Collapse
Affiliation(s)
- Jennifer Khattar
- Systems Ecology and Resource Management, Department of Organism Biology, Faculté des Sciences, Université Libre de Bruxelles - ULB, Avenue F.D. Roosevelt 50, CPi 264/1, 1050, Brussels, Belgium.
- Ecology and Biodiversity, Laboratory of Plant Biology and Nature Management, Biology Department, Vrije Universiteit Brussel - VUB, Pleinlaan 2, VUB-APNA-WE, 1050, Brussels, Belgium.
- International Laboratory of Plant Neurobiology (LINV), Department of Plant, Soil and Environmental Science, Università degli Studi di Firenze, Viale delle Idee 30, 50019, Sesto Fiorentino, Tuscany, Italy.
| | - Paco Calvo
- Minimal Intelligence Lab, Department of Philosophy, University of Murcia, 30100, Murcia, Spain
| | - Ina Vandebroek
- Faculty of Science and Technology, Department of Life Sciences and Natural Products Institute, The University of the West Indies, Mona Campus, Kingston, Jamaica
- Institute of Economic Botany, The New York Botanical Garden, 2900 Southern Boulevard, Bronx, NY, 10458, USA
| | - Camilla Pandolfi
- International Laboratory of Plant Neurobiology (LINV), Department of Plant, Soil and Environmental Science, Università degli Studi di Firenze, Viale delle Idee 30, 50019, Sesto Fiorentino, Tuscany, Italy
| | - Farid Dahdouh-Guebas
- Systems Ecology and Resource Management, Department of Organism Biology, Faculté des Sciences, Université Libre de Bruxelles - ULB, Avenue F.D. Roosevelt 50, CPi 264/1, 1050, Brussels, Belgium
- Ecology and Biodiversity, Laboratory of Plant Biology and Nature Management, Biology Department, Vrije Universiteit Brussel - VUB, Pleinlaan 2, VUB-APNA-WE, 1050, Brussels, Belgium
- Interfaculty Institute of Social-Ecological Transitions - iiTSE, Université Libre de Bruxelles - ULB, Brussels, Belgium
| |
Collapse
|
17
|
Abstract
According to the current scientific paradigm, what we call ‘life’, ‘mind’, and ‘consciousness’ are considered epiphenomenal occurrences, or emergent properties or functions of matter and energy. Science does not associate these with an inherent and distinct existence beyond a materialistic/energetic conception. ‘Life’ is a word pointing at cellular and multicellular processes forming organisms capable of specific functions and skills. ‘Mind’ is a cognitive ability emerging from a matrix of complex interactions of neuronal processes, while ‘consciousness’ is an even more elusive concept, deemed a subjective epiphenomenon of brain activity. Historically, however, this has not always been the case, even in the scientific and academic context. Several prominent figures took vitalism seriously, while some schools of Western philosophical idealism and Eastern traditions promoted conceptions in which reality is reducible to mind or consciousness rather than matter. We will argue that current biological sciences did not falsify these alternative paradigms and that some forms of vitalism could be linked to some forms of idealism if we posit life and cognition as two distinct aspects of consciousness preeminent over matter. However, we will not argue in favor of vitalistic and idealistic conceptions. Rather, contrary to a physicalist doctrine, these were and remain coherent worldviews and cannot be ruled out by modern science.
Collapse
|
18
|
|
19
|
Wang Q, Guerra S, Ceccarini F, Bonato B, Castiello U. Sowing the seeds of intentionality: Motor intentions in plants. PLANT SIGNALING & BEHAVIOR 2021; 16:1949818. [PMID: 34346847 PMCID: PMC8525965 DOI: 10.1080/15592324.2021.1949818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 06/13/2023]
Abstract
Motor intention/intentionality has been investigated from a wide variety of perspectives: some researchers have, for example, been focusing on the purely physical and mechanical aspects underlying the control of action, while others have been concentrating on subjective intentionality. Basically, all approaches ranging from the neuroscientific to phenomenological-inspired ones have been used to investigate motor intentions. The current study set out to examine motor intentions in connection to plant behavior utilizing the final goal of plant action as the definition of its motor intention. Taking a wide-angle approach, the first part of the review is dedicated to examining philosophical and psychological studies on motor intentions. Recent data demonstrating that plant behavior does indeed seem goal-directed will then be reviewed as we ponder the possibility of purposeful or intentional plant responses to stimuli and stress conditions in their environment. The article will draw to a close as we examine current theories attempting to explain plants' overt behavior and corresponding covert representations.
Collapse
Affiliation(s)
- Qiuran Wang
- Department of General Psychology, University of Padua, Padua, Italy
| | - Silvia Guerra
- Department of General Psychology, University of Padua, Padua, Italy
| | | | - Bianca Bonato
- Department of General Psychology, University of Padua, Padua, Italy
| | | |
Collapse
|
20
|
Meristematic Connectome: A Cellular Coordinator of Plant Responses to Environmental Signals? Cells 2021; 10:cells10102544. [PMID: 34685524 PMCID: PMC8533771 DOI: 10.3390/cells10102544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 11/30/2022] Open
Abstract
Mechanical stress in tree roots induces the production of reaction wood (RW) and the formation of new branch roots, both functioning to avoid anchorage failure and limb damage. The vascular cambium (VC) is the factor responsible for the onset of these responses as shown by their occurrence when all primary tissues and the root tips are removed. The data presented confirm that the VC is able to evaluate both the direction and magnitude of the mechanical forces experienced before coordinating the most fitting responses along the root axis whenever and wherever these are necessary. The coordination of these responses requires intense crosstalk between meristematic cells of the VC which may be very distant from the place where the mechanical stress is first detected. Signaling could be facilitated through plasmodesmata between meristematic cells. The mechanism of RW production also seems to be well conserved in the stem and this fact suggests that the VC could behave as a single structure spread along the plant body axis as a means to control the relationship between the plant and its environment. The observation that there are numerous morphological and functional similarities between different meristems and that some important regulatory mechanisms of meristem activity, such as homeostasis, are common to several meristems, supports the hypothesis that not only the VC but all apical, primary and secondary meristems present in the plant body behave as a single interconnected structure. We propose to name this structure “meristematic connectome” given the possibility that the sequence of meristems from root apex to shoot apex could represent a pluricellular network that facilitates long-distance signaling in the plant body. The possibility that the “meristematic connectome” could act as a single structure active in adjusting the plant body to its surrounding environment throughout the life of a plant is now proposed.
Collapse
|
21
|
Segundo-Ortin M, Calvo P. Consciousness and cognition in plants. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2021; 13:e1578. [PMID: 34558231 DOI: 10.1002/wcs.1578] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022]
Abstract
Unlike animal behavior, behavior in plants is traditionally assumed to be completely determined either genetically or environmentally. Under this assumption, plants are usually considered to be noncognitive organisms. This view nonetheless clashes with a growing body of empirical research that shows that many sophisticated cognitive capabilities traditionally assumed to be exclusive to animals are exhibited by plants too. Yet, if plants can be considered cognitive, even in a minimal sense, can they also be considered conscious? Some authors defend that the quest for plant consciousness is worth pursuing, under the premise that sentience can play a role in facilitating plant's sophisticated behavior. The goal of this article is not to provide a positive argument for plant cognition and consciousness, but to invite a constructive, empirically informed debate about it. After reviewing the empirical literature concerning plant cognition, we introduce the reader to the emerging field of plant neurobiology. Research on plant electrical and chemical signaling can help shed light into the biological bases for plant sentience. To conclude, we shall present a series of approaches to scientifically investigate plant consciousness. In sum, we invite the reader to consider the idea that if consciousness boils down to some form of biological adaptation, we should not exclude a priori the possibility that plants have evolved their own phenomenal experience of the world. This article is categorized under: Cognitive Biology > Evolutionary Roots of Cognition Philosophy > Consciousness Neuroscience > Cognition.
Collapse
Affiliation(s)
- Miguel Segundo-Ortin
- Department of Philosophy and Religious Studies, Faculty of Humanities, Utrecht University, Utrecht, The Netherlands
| | - Paco Calvo
- Minimal Intelligence Laboratory, Universidad de Murcia, Murcia, Spain
| |
Collapse
|
22
|
Ceccarini F, Guerra S, Peressotti A, Peressotti F, Bulgheroni M, Baccinelli W, Bonato B, Castiello U. On-line control of movement in plants. Biochem Biophys Res Commun 2021; 564:86-91. [PMID: 32747088 DOI: 10.1016/j.bbrc.2020.06.160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/23/2020] [Accepted: 06/30/2020] [Indexed: 11/19/2022]
Abstract
At first glance, plants seem relatively immobile and, unlike animals, unable to interact with the surroundings or escape stressful environments. But, although markedly different from those of animals, movement pervades all aspects of plant behaviour. Here, we focused our investigation on the approaching movement of climbing plants, that is the movement they perform to reach-to-climb a support. In particular, we examined whether climbing plants evolved a motor accuracy mechanism as to improve the precision of their movement and how this eventually differs from animal species. For this purpose, by means of three-dimensional kinematical analysis, we investigated whether climbing plants have the ability to correct online their movement by means of secondary submovements, and if their frequency production is influenced by the difficulty of the task. Results showed, not only that plants correct their movement in flight, but also that they strategically increase the production of secondary submovements when the task requires more precision, exactly as humans do. These findings support the hypothesis that the movement of plants is far cry from being a simple cause-effect mechanism, but rather is appropriately planned, controlled and eventually corrected.
Collapse
Affiliation(s)
| | - Silvia Guerra
- Department of General Psychology, University of Padova, Italy
| | - Alessandro Peressotti
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università Degli Studi di Udine, Udine, Italy
| | - Francesca Peressotti
- Dipartimento di Psicologia Dello Sviluppo e Della Socializzazione, Università Degli Studi di Padova, Padova, Italy
| | | | | | - Bianca Bonato
- Department of General Psychology, University of Padova, Italy
| | | |
Collapse
|
23
|
Can Plants Move Like Animals? A Three-Dimensional Stereovision Analysis of Movement in Plants. Animals (Basel) 2021; 11:ani11071854. [PMID: 34206479 PMCID: PMC8300309 DOI: 10.3390/ani11071854] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Intrigued by the ability of climbing peas to detect and grasp structures such as garden reeds, we adapted a method classically used to investigate the grasping movement of animals to the study of grasping movements in plants. We used time-lapse photography to document the behavior of pea plants, grown in the vicinity of a support pole. Using this footage, we analyzed the kinematics of tendrils growth and found that their approach and grasp exhibited movement signatures comparable to those characterizing the reach-to-grasp movement of animals. Through our method it may be possible to demonstrate that plants may be more sentient than we give them credit for: namely, they may possess the ability to act intentionally. Abstract In this article we adapt a methodology customarily used to investigate movement in animals to study the movement of plants. The targeted movement is circumnutation, a helical organ movement widespread among plants. It is variable due to a different magnitude of the trajectory (amplitude) exhibited by the organ tip, duration of one cycle (period), circular, elliptical, pendulum-like or irregular shape and the clockwise and counterclockwise direction of rotation. The acquisition setup consists of two cameras used to obtain a stereoscopic vision for each plant. Cameras switch to infrared recording mode for low light level conditions, allowing continuous motion acquisition during the night. A dedicated software enables semi-automatic tracking of key points of the plant and reconstructs the 3D trajectory of each point along the whole movement. Three-dimensional trajectories for different points undergo a specific processing to compute those features suitable to describe circumnutation (e.g., maximum speed, circumnutation center, circumnutation length, etc.). By applying our method to the approach-to-grasp movement exhibited by climbing plants (Pisum sativum L.) it appears clear that the plants scale movement kinematics according to the features of the support in ways that are adaptive, flexible, anticipatory and goal-directed, reminiscent of how animals would act.
Collapse
|
24
|
Slijepcevic P, Wickramasinghe C. Reconfiguring SETI in the microbial context: Panspermia as a solution to Fermi's paradox. Biosystems 2021; 206:104441. [PMID: 33965445 DOI: 10.1016/j.biosystems.2021.104441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/20/2021] [Accepted: 04/30/2021] [Indexed: 11/26/2022]
Abstract
All SETI (Search for Extraterrestrial Intelligence) programmes that were conceived and put into practice since the 1960s have been based on anthropocentric ideas concerning the definition of intelligence on a cosmic-wide scale. Brain-based neuronal intelligence, augmented by AI, are currently thought of as being the only form of intelligence that can engage in SETI-type interactions, and this assumption is likely to be connected with the dilemma of the famous Fermi paradox. We argue that high levels of intelligence and cognition inherent in ensembles of bacteria are much more likely to be the dominant form of cosmic intelligence, and the transfer of such intelligence is enabled by the processes of panspermia. We outline the main principles of bacterial intelligence, and how this intelligence may be used by the planetary-scale bacterial system, or the bacteriosphere, through processes of biological tropism, to connect to any extra-terrestrial microbial forms, independently of human interference.
Collapse
Affiliation(s)
- Predrag Slijepcevic
- Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK.
| | - Chandra Wickramasinghe
- Buckingham Centre for Astrobiology, University of Buckingham, UK; Centre for Astrobiology, University of Ruhuna, Matara, Sri Lanka; National Institute of Fundamental Studies, Kandy, Sri Lanka
| |
Collapse
|
25
|
Baluška F, Mancuso S. Individuality, self and sociality of vascular plants. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190760. [PMID: 33550947 DOI: 10.1098/rstb.2019.0760] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Vascular plants are integrated into coherent bodies via plant-specific synaptic adhesion domains, action potentials (APs) and other means of long-distance signalling running throughout the plant bodies. Plant-specific synapses and APs are proposed to allow plants to generate their self identities having unique ways of sensing and acting as agents with their own goals guiding their future activities. Plants move their organs with a purpose and with obvious awareness of their surroundings and require APs to perform and control these movements. Self-identities allow vascular plants to act as individuals enjoying sociality via their self/non-self-recognition and kin recognition. Flowering plants emerge as cognitive and intelligent organisms when the major strategy is to attract and control their animal pollinators as well as seed dispersers by providing them with food enriched with nutritive and manipulative/addictive compounds. Their goal in interactions with animals is manipulation for reproduction, dispersal and defence. This article is part of the theme issue 'Basal cognition: multicellularity, neurons and the cognitive lens'.
Collapse
Affiliation(s)
| | - Stefano Mancuso
- Department of Agrifood Production and Environmental Sciences, University of Florence, Florence, Italy
| |
Collapse
|
26
|
Mallatt J, Taiz L, Draguhn A, Blatt MR, Robinson DG. Integrated information theory does not make plant consciousness more convincing. Biochem Biophys Res Commun 2021; 564:166-169. [PMID: 33485631 DOI: 10.1016/j.bbrc.2021.01.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/25/2020] [Accepted: 01/11/2021] [Indexed: 11/27/2022]
Abstract
It has been proposed by some plant scientists that plants are cognitive and conscious organisms, although this is a minority view. Here we present a brief summary of some of the arguments against this view, followed by a critique of an article in this same issue of Biochemical and Biophysical Research Communications by Calvo, Baluska, and Trewavas (2020) that cites Integrated Information Theory (IIT) as providing additional support for plant consciousness. The authors base their argument on the assumptions that all cells are conscious and that consciousness is confined to life. However, IIT allows for consciousness in various nonliving systems, and thus does not restrict consciousness to living organisms. Therefore, IIT cannot be used to prove plant consciousness, for which there is neither empirical evidence nor support from other, neuron-based, theories of consciousness.
Collapse
Affiliation(s)
- Jon Mallatt
- The University of Washington WWAMI Medical Education Program at the University of Idaho, Moscow, ID 83844, USA.
| | - Lincoln Taiz
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Cruz, CA 95064, USA.
| | - Andreas Draguhn
- Institute for Physiology and Pathophysiology, Medical Faculty, University of Heidelberg, 69120 Heidelberg, Germany.
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK.
| | - David G Robinson
- Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
27
|
Abstract
In this article we advance a cutting-edge methodology for the study of the dynamics of plant movements of nutation. Our approach, unlike customary kinematic analyses of shape, period, or amplitude, is based on three typical signatures of adaptively controlled processes and motions, as reported in the biological and behavioral dynamics literature: harmonicity, predictability, and complexity. We illustrate the application of a dynamical methodology to the bending movements of shoots of common beans (Phaseolus vulgaris L.) in two conditions: with and without a support to climb onto. The results herewith reported support the hypothesis that patterns of nutation are influenced by the presence of a support to climb in their vicinity. The methodology is in principle applicable to a whole range of plant movements.
Collapse
Affiliation(s)
- Vicente Raja
- Rotman Institute of Philosophy, Western University, London, Canada.
| | - Paula L Silva
- Department of Psychology, University of Cincinnati, Cincinnati, USA
| | - Roghaieh Holghoomi
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
- Minimal Intelligence Lab, University of Murcia, Murcia, Spain
| | - Paco Calvo
- Minimal Intelligence Lab, University of Murcia, Murcia, Spain
| |
Collapse
|
28
|
Kumar A, Memo M, Mastinu A. Plant behaviour: an evolutionary response to the environment? PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:961-970. [PMID: 32557960 DOI: 10.1111/plb.13149] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/01/2020] [Indexed: 05/21/2023]
Abstract
Plants are not just passive living beings that exist in nature. They are complex and highly adaptable species that react sensitively to environmental forces/stimuli with movement, morphological changes and through the communication via volatile molecules. In a way, plants mimic some traits of animal and human behaviour; they compete for limited resources by gaining more area for more sunlight and spread their roots underground. Furthermore, in order to survive and thrive, they evolve and 'learn' to control various environmental stress factors in order to increase the yield of flowering, fertilization and germination processes. The concept of associating complex behaviour, such as intelligence, with plants is still a highly debatable topic among researchers worldwide. Recent studies have shown that plants are able to discriminate between positive and negative experiences and 'learn' from them. Some botanists have interpreted these behavioural data as a form of primitive cognitive processes. Others have evaluated these responses as biological automatisms of plants determined by adaptation to the environment and absence of intelligence. This review aims to explore adaptive behavioural aspects of various plant species distributed in different ecosystems by emphasizing their biological complexity and survival instincts.
Collapse
Affiliation(s)
- A Kumar
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden
| | - M Memo
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - A Mastinu
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
29
|
Calvo P, Baluška F, Trewavas A. Integrated information as a possible basis for plant consciousness. Biochem Biophys Res Commun 2020; 564:158-165. [PMID: 33081970 DOI: 10.1016/j.bbrc.2020.10.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/23/2020] [Accepted: 10/09/2020] [Indexed: 12/29/2022]
Abstract
It is commonly assumed that plants do not possess consciousness. Since the criterion for this assumption is usually human consciousness this assumption represents a top down attitude. It is obvious that plants are not animals and using animal criteria of consciousness will lead to its rejection in plants. However using a bottom up evolutionary approach and a leading theory of consciousness, Integrated Information Theory, we report that we find evidence that indicates that plant meristems act in a conscious fashion although probably at the level of minimal consciousness. Since many plants contain multiple meristems these observations highlight a very different evolutionary approach to consciousness in biological organisms.
Collapse
Affiliation(s)
- Paco Calvo
- Minimal Intelligence Laboratory, Universidad de Murcia, Murcia, Spain.
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - Anthony Trewavas
- Institute of Molecular Plant Science, Kings Buildings, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| |
Collapse
|
30
|
Cognition in some surprising places. Biochem Biophys Res Commun 2020; 564:150-157. [PMID: 32950231 DOI: 10.1016/j.bbrc.2020.08.115] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023]
Abstract
The most widely accepted view in the biopsychological sciences is that the cognitive functions that are diagnostic of mental operations, sentience or, more commonly, consciousness emerged fairly late in evolution, most likely in the Cambrian period. Our position dovetails with James's below - subjectivity, feeling, consciousness has a much longer evolutionary history, one that goes back to the first appearance of life. The Cellular Basis of Consciousness (CBC) model is founded on the presumption that sentience and life are coterminous; that all organisms, based on inherent cellular activities via processes that take place in excitable membranes of their cells, are sentient, have subjective experiences and feelings. These, in turn, guide the context-relevant behaviors essential for their survival in often hostile environments in constant flux. The CBC framework is reductionistic, mechanistic, and calls for bottom-up research programs into the evolutionary origin of biological consciousness.
Collapse
|
31
|
Calvo P, Trewavas A. Cognition and intelligence of green plants. Information for animal scientists. Biochem Biophys Res Commun 2020; 564:78-85. [PMID: 32838964 DOI: 10.1016/j.bbrc.2020.07.139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Paco Calvo
- Minimal Intelligence Laboratory, Universidad de Murcia, Murcia, Spain.
| | - Anthony Trewavas
- Institute of Molecular Plant Science, Kings Buildings, University of Edinburgh, Edinburgh, Scotland, UK
| |
Collapse
|
32
|
Frazier PA, Jamone L, Althoefer K, Calvo P. Plant Bioinspired Ecological Robotics. Front Robot AI 2020; 7:79. [PMID: 33501246 PMCID: PMC7805641 DOI: 10.3389/frobt.2020.00079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/08/2020] [Indexed: 12/30/2022] Open
Abstract
Plants are movers, but the nature of their movement differs dramatically from that of creatures that move their whole body from point A to point B. Plants grow to where they are going. Bio-inspired robotics sometimes emulates plants' growth-based movement; but growing is part of a broader system of movement guidance and control. We argue that ecological psychology's conception of "information" and "control" can simultaneously make sense of what it means for a plant to navigate its environment and provide a control scheme for the design of ecological plant-inspired robotics. In this effort, we will outline several control laws and give special consideration to the class of control laws identified by tau theory, such as time to contact.
Collapse
Affiliation(s)
- P. Adrian Frazier
- MINTLab - Minimal Intelligence Lab, Universidad de Murcia, Murcia, Spain
- Center for the Ecological Study of Perception and Action University of Connecticut, Storrs, CT, United States
| | - Lorenzo Jamone
- Centre for Advanced Robotics @ Queen Mary (ARQ), School of Electronic Engineering and Computer Science, Queen Mary University of London, London, United Kingdom
| | - Kaspar Althoefer
- Centre for Advanced Robotics @ Queen Mary (ARQ), School of Electronic Engineering and Computer Science, Queen Mary University of London, London, United Kingdom
| | - Paco Calvo
- MINTLab - Minimal Intelligence Lab, Universidad de Murcia, Murcia, Spain
| |
Collapse
|
33
|
Abstract
Gagliano et al. (Learning by association in plants, 2016) reported associative learning in pea plants. Associative learning has long been considered a behavior performed only by animals, making this claim particularly newsworthy and interesting. In the experiment, plants were trained in Y-shaped mazes for 3 days with fans and lights attached at the top of the maze. Training consisted of wind consistently preceding light from either the same or the opposite arm of the maze. When plant growth forced a decision between the two arms of the maze, fans alone were able to influence growth direction, whereas the growth direction of untrained plants was not affected by fans. However, a replication of their protocol failed to demonstrate the same result, calling for further verification and study before mainstream acceptance of this paradigm-shifting phenomenon. This replication attempt used a larger sample size and fully blinded analysis.
Collapse
Affiliation(s)
- Kasey Markel
- Plant Biology, University of California, DavisDavisUnited States
| |
Collapse
|
34
|
Markel K. Pavlov’s pea plants? Not so fast. An attempted replication of Gagliano et al. (December 2016).. [PMID: 0 DOI: 10.1101/2020.04.05.026823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
AbstractGaglianoet al. (Learning by association in plants, 2016) reported associative learning in pea plants. Associative learning has long been considered a behavior performed only by animals, making this claim particularly newsworthy and interesting. In the experiment, plants were trained in Y-shaped mazes for three days with fans and lights attached at the top of the maze. Training consisted of wind consistently preceding light from either the same or the opposite arm of the maze. When plant growth forced a decision between the two arms of the maze, fans alone were able to influence growth direction, whereas the growth direction of untrained plants was not affected by fans. Importantly, some plants were trained to grow towards the fan and others to grow away, demonstrating the flexibility of associative learning. However, a replication of their protocol failed to demonstrate the same result, calling for further verification and study before mainstream acceptance of this paradigm-shifting phenomenon. This replication attempt used a larger sample size and fully blinded analysis.
Collapse
|
35
|
Boussard A, Delescluse J, Pérez-Escudero A, Dussutour A. Memory inception and preservation in slime moulds: the quest for a common mechanism. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180368. [PMID: 31006372 DOI: 10.1098/rstb.2018.0368] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Learning and memory are indisputably key features of animal success. Using information about past experiences is critical for optimal decision-making in a fluctuating environment. Those abilities are usually believed to be limited to organisms with a nervous system, precluding their existence in non-neural organisms. However, recent studies showed that the slime mould Physarum polycephalum, despite being unicellular, displays habituation, a simple form of learning. In this paper, we studied the possible substrate of both short- and long-term habituation in slime moulds. We habituated slime moulds to sodium, a known repellent, using a 6 day training and turned them into a dormant state named sclerotia. Those slime moulds were then revived and tested for habituation. We showed that information acquired during the training was preserved through the dormant stage as slime moulds still showed habituation after a one-month dormancy period. Chemical analyses indicated a continuous uptake of sodium during the process of habituation and showed that sodium was retained throughout the dormant stage. Lastly, we showed that memory inception via constrained absorption of sodium for 2 h elicited habituation. Our results suggest that slime moulds absorbed the repellent and used it as a 'circulating memory'. This article is part of the theme issue 'Liquid brains, solid brains: How distributed cognitive architectures process information'.
Collapse
Affiliation(s)
- A Boussard
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), Toulouse University, CNRS, UPS , Toulouse 31062 , France
| | - J Delescluse
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), Toulouse University, CNRS, UPS , Toulouse 31062 , France
| | - A Pérez-Escudero
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), Toulouse University, CNRS, UPS , Toulouse 31062 , France
| | - A Dussutour
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), Toulouse University, CNRS, UPS , Toulouse 31062 , France
| |
Collapse
|
36
|
Tresca G, Marcus O, Politi M. Evaluating herbal medicine preparation from a traditional perspective: insights from an ethnopharmaceutical survey in the Peruvian Amazon. Anthropol Med 2020; 27:268-284. [PMID: 31958994 DOI: 10.1080/13648470.2019.1669939] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The field of medical ethnobotany has historically contributed to the advancement of modern pharmaceutical and biomedical science through bringing discoveries from the field into the laboratory. In ethnopharmacology, a sub-field of ethnobotany, there is a concerning lack of ethnographic methods reported in the literature. The ethnographic approach is essential for detailing traditional methods of preparation and administration of plant medicines, yet pharmaceutical researchers overemphasize western epistemologies of medicinal discovery and production. In the present work, we propose an ethnopharmaceutical survey as a model to investigate the culturally recognized standards necessary for the formulation of herbal medicines. Fieldwork based on participant observation and semi-structured interviews examined the modes of preparation employed by traditional healers in the Amazonian region of San Martín, Peru. The authors draw on anthropological insight into plural epistemological encounters and propose an ethnopharmaceutical approach that takes seriously the Amazonian methods and perceptions for the preparation of traditional plant medicines.
Collapse
Affiliation(s)
- Giorgia Tresca
- Center for Drug Addiction Treatment and Research on Traditional Medicines - Takiwasi, Tarapoto, Peru
| | - Olivia Marcus
- Department of Anthropology, University of Connecticut, Storrs, CT, USA
| | - Matteo Politi
- Center for Drug Addiction Treatment and Research on Traditional Medicines - Takiwasi, Tarapoto, Peru
| |
Collapse
|
37
|
Calvo P, Gagliano M, Souza GM, Trewavas A. Plants are intelligent, here's how. ANNALS OF BOTANY 2020; 125:11-28. [PMID: 31563953 PMCID: PMC6948212 DOI: 10.1093/aob/mcz155] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/01/2019] [Accepted: 09/26/2019] [Indexed: 05/07/2023]
Abstract
HYPOTHESES The drive to survive is a biological universal. Intelligent behaviour is usually recognized when individual organisms including plants, in the face of fiercely competitive or adverse, real-world circumstances, change their behaviour to improve their probability of survival. SCOPE This article explains the potential relationship of intelligence to adaptability and emphasizes the need to recognize individual variation in intelligence showing it to be goal directed and thus being purposeful. Intelligent behaviour in single cells and microbes is frequently reported. Individual variation might be underpinned by a novel learning mechanism, described here in detail. The requirements for real-world circumstances are outlined, and the relationship to organic selection is indicated together with niche construction as a good example of intentional behaviour that should improve survival. Adaptability is important in crop development but the term may be complex incorporating numerous behavioural traits some of which are indicated. CONCLUSION There is real biological benefit to regarding plants as intelligent both from the fundamental issue of understanding plant life but also from providing a direction for fundamental future research and in crop breeding.
Collapse
Affiliation(s)
- Paco Calvo
- Minimal Intelligence Laboratory, Universidad de Murcia, Murcia, Spain
| | - Monica Gagliano
- Biological Intelligence Laboratory, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Gustavo M Souza
- Laboratory of Plant Cognition and Electrophysiology, Federal University of Pelotas, Pelotas - RS, Brazil
| | - Anthony Trewavas
- Institute of Molecular Plant Science, Kings Buildings, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
38
|
Taiz L, Alkon D, Draguhn A, Murphy A, Blatt M, Hawes C, Thiel G, Robinson DG. Plants Neither Possess nor Require Consciousness. TRENDS IN PLANT SCIENCE 2019; 24:677-687. [PMID: 31279732 DOI: 10.1016/j.tplants.2019.05.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/08/2019] [Accepted: 05/20/2019] [Indexed: 05/07/2023]
Abstract
In claiming that plants have consciousness, 'plant neurobiologists' have consistently glossed over the remarkable degree of structural and functional complexity that the brain had to evolve for consciousness to emerge. Here, we outline a new hypothesis proposed by Feinberg and Mallat for the evolution of consciousness in animals. Based on a survey of the brain anatomy, functional complexity, and behaviors of a broad spectrum of animals, criteria were established for the emergence of consciousness. The only animals that satisfied these criteria were the vertebrates (including fish), arthropods (e.g., insects, crabs), and cephalopods (e.g., octopuses, squids). In light of Feinberg and Mallat's analysis, we consider the likelihood that plants, with their relative organizational simplicity and lack of neurons and brains, have consciousness to be effectively nil.
Collapse
Affiliation(s)
- Lincoln Taiz
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.
| | - Daniel Alkon
- Neurotrope, Inc., 1185 Avenue of the Americas, 3rd Floor, New York, NY 10036, USA
| | - Andreas Draguhn
- Institut für Physiologie und Pathophysiologie, Medizinische Fakultät Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Angus Murphy
- Department of Plant Science and Landscape Architecture, 2104 Plant Sciences Building, College Park, MD 20742, USA
| | - Michael Blatt
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Chris Hawes
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Gerhard Thiel
- Department of Biology, Technische Universität Darmstadt, Schnittspahnstraße 3, 64287, Darmstadt, Germany
| | - David G Robinson
- Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
39
|
Pinto CF, Torrico-Bazoberry D, Penna M, Cossio-Rodríguez R, Cocroft R, Appel H, Niemeyer HM. Chemical Responses of Nicotiana tabacum (Solanaceae) Induced by Vibrational Signals of a Generalist Herbivore. J Chem Ecol 2019; 45:708-714. [PMID: 31313135 DOI: 10.1007/s10886-019-01089-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 07/01/2019] [Accepted: 07/07/2019] [Indexed: 12/26/2022]
Abstract
Plants are able to sense their environment and respond appropriately to different stimuli. Vibrational signals (VS) are one of the most widespread yet understudied ways of communication between organisms. Recent research into the perception of VS by plants showed that they are ecologically meaningful signals involved in different interactions of plants with biotic and abiotic agents. We studied changes in the concentration of alkaloids in tobacco plants induced by VS produced by Phthorimaea operculella (Lepidoptera: Gelechiidae), a generalist caterpillar that naturally feeds on the plant. We measured the concentration of nicotine, nornicotine, anabasine and anatabine in four treatments applied to 11-weeks old tobacco plant: a) Co = undamaged plants, b) Eq = Playback equipment attached to the plant without VS, c) Ca = Plants attacked by P. operculella herbivory and d) Pl = playback of VS of P. operculella feeding on tobacco. We found that nicotine, the most abundant alkaloid, increased more than 2.6 times in the Ca and Pl treatments as compared with the Co and Eq treatments, which were similar between them. Nornicotine, anabasine and anatabine were mutually correlated and showed similar concentration patterns, being higher in the Eq treatment. Results are discussed in terms of the adaptive significance of plant responses to ecologically important VS stimuli.
Collapse
Affiliation(s)
- Carlos F Pinto
- Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | | | - M Penna
- Programa de Fisiología y Biofísica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | - R Cocroft
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - H Appel
- Department of Environmental Sciences, University of Toledo, Toledo, OH, 43606, USA
| | - H M Niemeyer
- Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
40
|
Heinrich MK, von Mammen S, Hofstadler DN, Wahby M, Zahadat P, Skrzypczak T, Soorati MD, Krela R, Kwiatkowski W, Schmickl T, Ayres P, Stoy K, Hamann H. Constructing living buildings: a review of relevant technologies for a novel application of biohybrid robotics. J R Soc Interface 2019; 16:20190238. [PMID: 31362616 PMCID: PMC6685033 DOI: 10.1098/rsif.2019.0238] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 07/02/2019] [Indexed: 12/22/2022] Open
Abstract
Biohybrid robotics takes an engineering approach to the expansion and exploitation of biological behaviours for application to automated tasks. Here, we identify the construction of living buildings and infrastructure as a high-potential application domain for biohybrid robotics, and review technological advances relevant to its future development. Construction, civil infrastructure maintenance and building occupancy in the last decades have comprised a major portion of economic production, energy consumption and carbon emissions. Integrating biological organisms into automated construction tasks and permanent building components therefore has high potential for impact. Live materials can provide several advantages over standard synthetic construction materials, including self-repair of damage, increase rather than degradation of structural performance over time, resilience to corrosive environments, support of biodiversity, and mitigation of urban heat islands. Here, we review relevant technologies, which are currently disparate. They span robotics, self-organizing systems, artificial life, construction automation, structural engineering, architecture, bioengineering, biomaterials, and molecular and cellular biology. In these disciplines, developments relevant to biohybrid construction and living buildings are in the early stages, and typically are not exchanged between disciplines. We, therefore, consider this review useful to the future development of biohybrid engineering for this highly interdisciplinary application.
Collapse
Affiliation(s)
- Mary Katherine Heinrich
- Institute of Computer Engineering, University of Lübeck, Lübeck, Germany
- School of Architecture, Centre for IT and Architecture, Royal Danish Academy, Copenhagen, Denmark
| | - Sebastian von Mammen
- Human–Computer Interaction, Julius Maximilian University of Würzburg, Würzburg, Germany
| | | | - Mostafa Wahby
- Institute of Computer Engineering, University of Lübeck, Lübeck, Germany
| | - Payam Zahadat
- Institute of Biology, Artificial Life Lab, University of Graz, Graz, Austria
- Department of Computer Science, IT University of Copenhagen, Kobenhavn, Denmark
| | - Tomasz Skrzypczak
- Department of Molecular and Cellular Biology, Adam Mickiewicz University, Poznan, Poland
| | | | - Rafał Krela
- Department of Molecular and Cellular Biology, Adam Mickiewicz University, Poznan, Poland
| | - Wojciech Kwiatkowski
- Department of Molecular and Cellular Biology, Adam Mickiewicz University, Poznan, Poland
| | - Thomas Schmickl
- Institute of Biology, Artificial Life Lab, University of Graz, Graz, Austria
| | - Phil Ayres
- School of Architecture, Centre for IT and Architecture, Royal Danish Academy, Copenhagen, Denmark
| | - Kasper Stoy
- Department of Computer Science, IT University of Copenhagen, Kobenhavn, Denmark
| | - Heiko Hamann
- Institute of Computer Engineering, University of Lübeck, Lübeck, Germany
| |
Collapse
|
41
|
Fromm H. Root Plasticity in the Pursuit of Water. PLANTS (BASEL, SWITZERLAND) 2019; 8:E236. [PMID: 31336579 PMCID: PMC6681320 DOI: 10.3390/plants8070236] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 01/22/2023]
Abstract
One of the greatest challenges of terrestrial vegetation is to acquire water through soil-grown roots. Owing to the scarcity of high-quality water in the soil and the environment's spatial heterogeneity and temporal variability, ranging from extreme flooding to drought, roots have evolutionarily acquired tremendous plasticity regarding their geometric arrangement of individual roots and their three-dimensional organization within the soil. Water deficiency has also become an increasing threat to agriculture and dryland ecosystems due to climate change. As a result, roots have become important targets for genetic selection and modification in an effort to improve crop resilience under water-limiting conditions. This review addresses root plasticity from different angles: Their structures and geometry in response to the environment, potential genetic control of root traits suitable for water-limiting conditions, and contemporary and future studies of the principles underlying root plasticity post-Darwin's 'root-brain' hypothesis. Our increasing knowledge of different disciplines of plant sciences and agriculture should contribute to a sustainable management of natural and agricultural ecosystems for the future of mankind.
Collapse
Affiliation(s)
- Hillel Fromm
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
42
|
Bellini E, De Tullio MC. Ascorbic Acid and Ozone: Novel Perspectives to Explain an Elusive Relationship. PLANTS 2019; 8:plants8050122. [PMID: 31075980 PMCID: PMC6572677 DOI: 10.3390/plants8050122] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 12/23/2022]
Abstract
A huge amount of studies highlighted the importance of high ascorbic acid (AA) content in ozone tolerance, yet the relationship between them appears more complex than a simple direct correlation. Sometimes the connection is clear, for example, two Arabidopsis mutants defective in the main AA biosynthetic pathway (vtc mutants) were identified by means of their ozone sensitivity. However, some low-AA containing mutants are relatively tolerant, suggesting that AA location/availability could be more relevant than total content. A clear distinction should also be made between ozone tolerance obtained when AA content is increased by experimental supplementation (exogenous AA), and the physiological role of plant-synthesized AA (endogenous AA), whose amount is apparently subjected to tight regulation. Recent findings about the role of AA in signal transduction and epigenetic regulation of gene expression open new routes to further research.
Collapse
Affiliation(s)
- Erika Bellini
- Department of Biology, University of Rome 'Tor Vergata', 00133 Rome, Italy.
- Department of Biology, University of Pisa, 56126 Pisa, Italy.
| | - Mario C De Tullio
- Department of Earth and Environmental Sciences, University of Bari, 70125 Bari, Italy.
| |
Collapse
|
43
|
Agathokleous E, Belz RG, Calatayud V, De Marco A, Hoshika Y, Kitao M, Saitanis CJ, Sicard P, Paoletti E, Calabrese EJ. Predicting the effect of ozone on vegetation via linear non-threshold (LNT), threshold and hormetic dose-response models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 649:61-74. [PMID: 30172135 DOI: 10.1016/j.scitotenv.2018.08.264] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/19/2018] [Accepted: 08/20/2018] [Indexed: 05/03/2023]
Abstract
UNLABELLED The nature of the dose-response relationship in the low dose zone and how this concept may be used by regulatory agencies for science-based policy guidance and risk assessment practices are addressed here by using the effects of surface ozone (O3) on plants as a key example for dynamic ecosystems sustainability. This paper evaluates the current use of the linear non-threshold (LNT) dose-response model for O3. The LNT model has been typically applied in limited field studies which measured damage from high exposures, and used to estimate responses to lower concentrations. This risk assessment strategy ignores the possibility of biological acclimation to low doses of stressor agents. The upregulation of adaptive responses by low O3 concentrations typically yields pleiotropic responses, with some induced endpoints displaying hormetic-like biphasic dose-response relationships. Such observations recognize the need for risk assessment flexibility depending upon the endpoints measured, background responses, as well as possible dose-time compensatory responses. Regulatory modeling strategies would be significantly improved by the adoption of the hormetic dose response as a formal/routine risk assessment option based on its substantial support within the literature, capacity to describe the entire dose-response continuum, documented explanatory dose-dependent mechanisms, and flexibility to default to a threshold feature when background responses preclude application of biphasic dose responses. CAPSULE The processes of ozone hazard and risk assessment can be enhanced by incorporating hormesis into their principles and practices.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), Forest Research and Management Organization, 7 Hitsujigaoka, Sapporo, Hokkaido 062-8516, Japan; Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Sapporo, Hokkaido 060-8589, Japan.
| | - Regina G Belz
- University of Hohenheim, Agroecology Unit, Hans-Ruthenberg Institute, 70593 Stuttgart, Germany.
| | - Vicent Calatayud
- Instituto Universitario CEAM-UMH, Charles R. Darwin 14, Parc Tecnològic, 46980 Paterna, Valencia, Spain.
| | - Alessandra De Marco
- Italian National Agency for New Technologies, Energy and the Environment (ENEA), C.R. Casaccia, S. Maria di Galeria, Rome 00123, Italy.
| | - Yasutomo Hoshika
- National Council of Research, Via Madonna del Piano 10, Sesto Fiorentino, Florence 50019, Italy.
| | - Mitsutoshi Kitao
- Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), Forest Research and Management Organization, 7 Hitsujigaoka, Sapporo, Hokkaido 062-8516, Japan.
| | - Costas J Saitanis
- Lab of Ecology and Environmental Science, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece.
| | - Pierre Sicard
- ARGANS, 260 route du Pin Montard, BP 234, Sophia Antipolis Cedex 06904, France.
| | - Elena Paoletti
- National Council of Research, Via Madonna del Piano 10, Sesto Fiorentino, Florence 50019, Italy.
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
44
|
Segundo-Ortin M, Calvo P. Are plants cognitive? A reply to Adams. STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE 2019; 73:64-71. [PMID: 30914125 DOI: 10.1016/j.shpsa.2018.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/16/2018] [Accepted: 12/05/2018] [Indexed: 05/21/2023]
Abstract
According to F. Adams [this journal, vol. 68, 2018] cognition cannot be realized in plants or bacteria. In his view, plants and bacteria respond to the here-and-now in a hardwired, inflexible manner, and are therefore incapable of cognitive activity. This article takes issue with the pursuit of plant cognition from the perspective of an empirically informed philosophy of plant neurobiology. As we argue, empirical evidence shows, contra Adams, that plant behavior is in many ways analogous to animal behavior. This renders plants suitable to be described as cognitive agents in a non-metaphorical way. Sections two to four review the arguments offered by Adams in light of scientific evidence on plant adaptive behavior, decision-making, anticipation, as well as learning and memory. Section five introduces the 'phyto-nervous' system of plants. To conclude, section six resituates the quest for plant cognition into a broader approach in cognitive science, as represented by enactive and ecological schools of thought. Overall, we aim to motivate the idea that plants may be considered genuine cognitive agents. Our hope is to help propel public awareness and discussion of plant intelligence once appropriately stripped of anthropocentric preconceptions of the sort that Adams' position appears to exemplify.
Collapse
Affiliation(s)
| | - Paco Calvo
- Minimal Intelligence Lab (MINT Lab), Universidad de Murcia, Spain.
| |
Collapse
|
45
|
Latzel V, Münzbergová Z. Anticipatory Behavior of the Clonal Plant Fragaria vesca. FRONTIERS IN PLANT SCIENCE 2018; 9:1847. [PMID: 30619415 PMCID: PMC6297673 DOI: 10.3389/fpls.2018.01847] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/28/2018] [Indexed: 05/07/2023]
Abstract
Active foraging for patchy resources is a crucial feature of many clonal plant species. It has been recently shown that plants' foraging for resources can be facilitated by anticipatory behavior via association of resource position with other environmental cues. We therefore tested whether clones of Fragaria vesca are able to associate and memorize positions of soil nutrients with particular light intensity, which will consequently enable them anticipating nutrients in new environment. We trained clones of F. vesca for nutrients to occur either in shade or in light. Consequently, we tested their growth response to differing light intensity in the absence of soil nutrients. We also manipulated epigenetic status of a subset of the clones to test the role of DNA methylation in the anticipatory behavior. Clones of F. vesca were able to associate presence of nutrients with particular light intensity, which enabled them to anticipate nutrient positions in the new environment based on its light intensity. Clones that had been trained for nutrients to occur in shade increased placement of ramets to shade whereas clones trained for nutrients to occur in light increased biomass of ramets in light. Our study clearly shows that the clonal plant F. vesca is able to relate two environmental factors, light and soil nutrients, and use this connection in anticipatory behavior. We conclude that anticipatory behavior can substantially improve the ability of clonal plants to utilize scarce and unevenly distributed resources.
Collapse
Affiliation(s)
- Vít Latzel
- Department of Population Ecology, Institute of Botany, The Czech Academy of Sciences, Průhonice, Czechia
| | - Zuzana Münzbergová
- Department of Population Ecology, Institute of Botany, The Czech Academy of Sciences, Průhonice, Czechia
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
46
|
Yokawa K, Kagenishi T, Pavlovič A, Gall S, Weiland M, Mancuso S, Baluška F. Anaesthetics stop diverse plant organ movements, affect endocytic vesicle recycling and ROS homeostasis, and block action potentials in Venus flytraps. ANNALS OF BOTANY 2018; 122:747-756. [PMID: 29236942 PMCID: PMC6215046 DOI: 10.1093/aob/mcx155] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/18/2017] [Indexed: 05/09/2023]
Abstract
Background and Aims Anaesthesia for medical purposes was introduced in the 19th century. However, the physiological mode of anaesthetic drug actions on the nervous system remains unclear. One of the remaining questions is how these different compounds, with no structural similarities and even chemically inert elements such as the noble gas xenon, act as anaesthetic agents inducing loss of consciousness. The main goal here was to determine if anaesthetics affect the same or similar processes in plants as in animals and humans. Methods A single-lens reflex camera was used to follow organ movements in plants before, during and after recovery from exposure to diverse anaesthetics. Confocal microscopy was used to analyse endocytic vesicle trafficking. Electrical signals were recorded using a surface AgCl electrode. Key Results Mimosa leaves, pea tendrils, Venus flytraps and sundew traps all lost both their autonomous and touch-induced movements after exposure to anaesthetics. In Venus flytrap, this was shown to be due to the loss of action potentials under diethyl ether anaesthesia. The same concentration of diethyl ether immobilized pea tendrils. Anaesthetics also impeded seed germination and chlorophyll accumulation in cress seedlings. Endocytic vesicle recycling and reactive oxygen species (ROS) balance, as observed in intact Arabidopsis root apex cells, were also affected by all anaesthetics tested. Conclusions Plants are sensitive to several anaesthetics that have no structural similarities. As in animals and humans, anaesthetics used at appropriate concentrations block action potentials and immobilize organs via effects on action potentials, endocytic vesicle recycling and ROS homeostasis. Plants emerge as ideal model objects to study general questions related to anaesthesia, as well as to serve as a suitable test system for human anaesthesia.
Collapse
Affiliation(s)
- K Yokawa
- IZMB, University of Bonn, Bonn, Germany
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan
| | - T Kagenishi
- IZMB, University of Bonn, Bonn, Germany
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan
| | - A Pavlovič
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Olomouc, Czech Republic
| | - S Gall
- IZMB, University of Bonn, Bonn, Germany
| | - M Weiland
- IZMB, University of Bonn, Bonn, Germany
- Department of Plant, Soil and Environmental Science & LINV, University of Florence, Sesto Fiorentino, Italy
| | - S Mancuso
- Department of Plant, Soil and Environmental Science & LINV, University of Florence, Sesto Fiorentino, Italy
| | - F Baluška
- IZMB, University of Bonn, Bonn, Germany
| |
Collapse
|
47
|
Watahiki M, Trewavas A. Systems, variation, individuality and plant hormones. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 146:3-22. [PMID: 30312622 DOI: 10.1016/j.pbiomolbio.2018.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/06/2018] [Indexed: 02/02/2023]
Abstract
Inter-individual variation in plants and particularly in hormone content, figures strongly in evolution and behaviour. Homo sapiens and Arabidopsis exhibit similar and substantial phenotypic and molecular variation. Whereas there is a very substantial degree of hormone variation in mankind, reports of inter-individual variation in plant hormone content are virtually absent but are likely to be as large if not larger than that in mankind. Reasons for this absence are discussed. Using an example of inter-individual variation in ethylene content in ripening, the article shows how biological time is compressed by hormones. It further resolves an old issue of very wide hormone dose response that result directly from negative regulation in hormone (and light) transduction. Negative regulation is used because of inter-individual variability in hormone synthesis, receptors and ancillary proteins, a consequence of substantial genomic and environmental variation. Somatic mosaics have been reported for several plant tissues and these too contribute to tissue variation and wide variation in hormone response. The article concludes by examining what variation exists in gravitropic responses. There are multiple sensing systems of gravity vectors and multiple routes towards curvature. These are an aspect of the need for reliability in both inter-individual variation and unpredictable environments. Plant hormone inter-individuality is a new area for research and is likely to change appreciation of the mechanisms that underpin individual behaviour.
Collapse
Affiliation(s)
- Masaaki Watahiki
- Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.
| | - Anthony Trewavas
- Institute of Plant Molecular Science, University of Edinburgh, Kings Buildings, Mayfield Road, Edinburgh, EH9 3 JH, Scotland, United Kingdom.
| |
Collapse
|
48
|
Affiliation(s)
- Daniel A Chamovitz
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
49
|
Baluška F, Mancuso S. Plant Cognition and Behavior: From Environmental Awareness to Synaptic Circuits Navigating Root Apices. MEMORY AND LEARNING IN PLANTS 2018. [DOI: 10.1007/978-3-319-75596-0_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
50
|
Slijepcevic P. Evolutionary epistemology: Reviewing and reviving with new data the research programme for distributed biological intelligence. Biosystems 2017; 163:23-35. [PMID: 29199093 DOI: 10.1016/j.biosystems.2017.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 02/06/2023]
Abstract
Numerous studies in microbiology, eukaryotic cell biology, plant biology, biomimetics, synthetic biology, and philosophy of science appear to support the principles of the epistemological theory inspired by evolution, also known as "Evolutionary Epistemology", or EE. However, that none of the studies acknowledged EE suggests that its principles have not been formulated with sufficient clarity and depth to resonate with the interests of the empirical research community. In this paper I review evidence in favor of EE, and also reformulate EE principles to better inform future research. The revamped programme may be tentatively called Research Programme for Distributed Biological Intelligence. Intelligence I define as the capacity of organisms to gain information about their environment, process that information internally, and translate it into phenotypic forms. This multistage progression may be expressed through the acronym IGPT (information-gain-process-translate). The key principles of the programme may be summarized as follows. (i) Intelligence, a universal biological phenomenon promoting individual fitness, is required for effective organism-environment interactions. Given that animals represent less than 0.01% of the planetary biomass, neural intelligence is not the evolutionary norm. (ii) The basic unit of intelligence is a single cell prokaryote. All other forms of intelligence are derived. (iii) Intelligence is hierarchical. It ranges from bacteria to the biosphere or Gaia. (iv) The concept of "information" acquires a new meaning because information processing is at the heart of biological intelligence. All biological systems, from bacteria to Gaia, are intelligent, open thermodynamic systems that exchange information, matter and energy with the environment. (v) The organism-environment interaction is cybernetic. As much as the organism changes due to the influence of the environment, the organism's responses to induced changes affect the environment and subsequent organism-environment interactions. Based on the above principles a new research agenda can be formulated to explore different forms of biological intelligence.
Collapse
Affiliation(s)
- Predrag Slijepcevic
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, United Kingdom.
| |
Collapse
|