1
|
Muthumalage T, Noel A, Thanavala Y, Alcheva A, Rahman I. Challenges in current inhalable tobacco toxicity assessment models: A narrative review. Tob Induc Dis 2024; 22:TID-22-102. [PMID: 38860150 PMCID: PMC11163881 DOI: 10.18332/tid/188197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/17/2024] [Accepted: 05/01/2024] [Indexed: 06/12/2024] Open
Abstract
Emerging tobacco products such as electronic nicotine delivery systems (ENDS) and heated tobacco products (HTPs) have a dynamic landscape and are becoming widely popular as they claim to offer a low-risk alternative to conventional smoking. Most pre-clinical laboratories currently exploit in vitro, ex vivo, and in vivo experimental models to assess toxicological outcomes as well as to develop risk-estimation models. While most laboratories have produced a wide range of cell culture and mouse model data utilizing current smoke/aerosol generators and standardized puffing profiles, much variation still exists between research studies, hindering the generation of usable data appropriate for the standardization of these tobacco products. In this review, we discuss current state-of-the-art in vitro and in vivo models and their challenges, as well as insights into risk estimation of novel products and recommendations for toxicological parameters for reporting, allowing comparability of the research studies between laboratories, resulting in usable data for regulation of these products before approval by regulatory authorities.
Collapse
Affiliation(s)
| | - Alexandra Noel
- School of Veterinary Medicine Louisiana State University, Baton Rouge, United States
| | - Yasmin Thanavala
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, United States
| | - Aleksandra Alcheva
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, United States
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, United States
| |
Collapse
|
2
|
Singh R, Kumawat M, Gogoi H, Madhyastha H, Lichtfouse E, Daima HK. Engineered Nanomaterials for Immunomodulation: A Review. ACS APPLIED BIO MATERIALS 2024; 7:727-751. [PMID: 38166376 DOI: 10.1021/acsabm.3c00940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The immune system usually provides a defense against invading pathogenic microorganisms and any other particulate contaminants. Nonetheless, it has been recently reported that nanomaterials can evade the immune system and modulate immunological responses due to their unique physicochemical characteristics. Consequently, nanomaterial-based activation of immune components, i.e., neutrophils, macrophages, and other effector cells, may induce inflammation and alter the immune response. Here, it is essential to distinguish the acute and chronic modulations triggered by nanomaterials to determine the possible risks to human health. Nanomaterials size, shape, composition, surface charge, and deformability are factors controlling their uptake by immune cells and the resulting immune responses. The exterior corona of molecules adsorbed over nanomaterials surfaces also influences their immunological effects. Here, we review current nanoengineering trends for targeted immunomodulation with an emphasis on the design, safety, and potential toxicity of nanomaterials. First, we describe the characteristics of engineered nanomaterials that trigger immune responses. Then, the biocompatibility and immunotoxicity of nanoengineered particles are debated, because these factors influence applications. Finally, future nanomaterial developments in terms of surface modifications, synergistic approaches, and biomimetics are discussed.
Collapse
Affiliation(s)
| | - Mamta Kumawat
- Department of Biotechnology, School of Sciences, JECRC University, Sitapura Extension, Jaipur 303905, Rajasthan, India
| | - Himanshu Gogoi
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, University of Miyazaki, Miyazaki 8891692, Japan
| | - Eric Lichtfouse
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University Xi'an, Shaanxi 710049, China
| | - Hemant Kumar Daima
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindari 305817, Ajmer, India
| |
Collapse
|
3
|
Graf J, Trautmann-Rodriguez M, Sabnis S, Kloxin AM, Fromen CA. On the path to predicting immune responses in the lung: Modeling the pulmonary innate immune system at the air-liquid interface (ALI). Eur J Pharm Sci 2023; 191:106596. [PMID: 37770004 PMCID: PMC10658361 DOI: 10.1016/j.ejps.2023.106596] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/01/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
Chronic respiratory diseases and infections are among the largest contributors to death globally, many of which still have no cure, including chronic obstructive pulmonary disorder, idiopathic pulmonary fibrosis, and respiratory syncytial virus among others. Pulmonary therapeutics afford untapped potential for treating lung infection and disease through direct delivery to the site of action. However, the ability to innovate new therapeutic paradigms for respiratory diseases will rely on modeling the human lung microenvironment and including key cellular interactions that drive disease. One key feature of the lung microenvironment is the air-liquid interface (ALI). ALI interface modeling techniques, using cell-culture inserts, organoids, microfluidics, and precision lung slices (PCLS), are rapidly developing; however, one major component of these models is lacking-innate immune cell populations. Macrophages, neutrophils, and dendritic cells, among others, represent key lung cell populations, acting as the first responders during lung infection or injury. Innate immune cells respond to and modulate stromal cells and bridge the gap between the innate and adaptive immune system, controlling the bodies response to foreign pathogens and debris. In this article, we review the current state of ALI culture systems with a focus on innate immune cells and suggest ways to build on current models to add complexity and relevant immune cell populations.
Collapse
Affiliation(s)
- Jodi Graf
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | | | - Simone Sabnis
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - April M Kloxin
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA; Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA.
| | - Catherine A Fromen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
4
|
Kumah EA, Fopa RD, Harati S, Boadu P, Zohoori FV, Pak T. Human and environmental impacts of nanoparticles: a scoping review of the current literature. BMC Public Health 2023; 23:1059. [PMID: 37268899 PMCID: PMC10239112 DOI: 10.1186/s12889-023-15958-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 05/22/2023] [Indexed: 06/04/2023] Open
Abstract
Use of nanoparticles have established benefits in a wide range of applications, however, the effects of exposure to nanoparticles on health and the environmental risks associated with the production and use of nanoparticles are less well-established. The present study addresses this gap in knowledge by examining, through a scoping review of the current literature, the effects of nanoparticles on human health and the environment. We searched relevant databases including Medline, Web of Science, ScienceDirect, Scopus, CINAHL, Embase, and SAGE journals, as well as Google, Google Scholar, and grey literature from June 2021 to July 2021. After removing duplicate articles, the title and abstracts of 1495 articles were first screened followed by the full-texts of 249 studies, and this resulted in the inclusion of 117 studies in the presented review.In this contribution we conclude that while nanoparticles offer distinct benefits in a range of applications, they pose significant threats to humans and the environment. Using several biological models and biomarkers, the included studies revealed the toxic effects of nanoparticles (mainly zinc oxide, silicon dioxide, titanium dioxide, silver, and carbon nanotubes) to include cell death, production of oxidative stress, DNA damage, apoptosis, and induction of inflammatory responses. Most of the included studies (65.81%) investigated inorganic-based nanoparticles. In terms of biomarkers, most studies (76.9%) used immortalised cell lines, whiles 18.8% used primary cells as the biomarker for assessing human health effect of nanoparticles. Biomarkers that were used for assessing environmental impact of nanoparticles included soil samples and soybean seeds, zebrafish larvae, fish, and Daphnia magna neonates.From the studies included in this work the United States recorded the highest number of publications (n = 30, 25.64%), followed by China, India, and Saudi Arabia recording the same number of publications (n = 8 each), with 95.75% of the studies published from the year 2009. The majority of the included studies (93.16%) assessed impact of nanoparticles on human health, and 95.7% used experimental study design. This shows a clear gap exists in examining the impact of nanoparticles on the environment.
Collapse
Affiliation(s)
- Elizabeth Adjoa Kumah
- Depeartment of International Public Health, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Raoul Djou Fopa
- School of Computing, Engineering & Digital Technologies, Teesside University, Middlesbrough, TS1 3BX, UK
| | - Saeed Harati
- School of Computing, Engineering & Digital Technologies, Teesside University, Middlesbrough, TS1 3BX, UK
| | - Paul Boadu
- Department of Health Services Research and Policy, London School of Hygiene and Tropical Medicine, London, UK
| | | | - Tannaz Pak
- School of Computing, Engineering & Digital Technologies, Teesside University, Middlesbrough, TS1 3BX, UK.
| |
Collapse
|
5
|
Zhang Y, Mo Y, Zhang Y, Yuan J, Zhang Q. MMP-3-mediated cleavage of OPN is involved in copper oxide nanoparticle-induced activation of fibroblasts. Part Fibre Toxicol 2023; 20:22. [PMID: 37217992 PMCID: PMC10201731 DOI: 10.1186/s12989-023-00532-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Copper oxide nanoparticles (Nano-CuO) are one of the most produced and used nanomaterials. Previous studies have shown that exposure to Nano-CuO caused acute lung injury, inflammation, and fibrosis. However, the mechanisms underlying Nano-CuO-induced lung fibrosis are still unclear. Here, we hypothesized that exposure of human lung epithelial cells and macrophages to Nano-CuO would upregulate MMP-3, which cleaved osteopontin (OPN), resulting in fibroblast activation and lung fibrosis. METHODS A triple co-culture model was established to explore the mechanisms underlying Nano-CuO-induced fibroblast activation. Cytotoxicity of Nano-CuO on BEAS-2B, U937* macrophages, and MRC-5 fibroblasts were determined by alamarBlue and MTS assays. The expression or activity of MMP-3, OPN, and fibrosis-associated proteins was determined by Western blot or zymography assay. Migration of MRC-5 fibroblasts was evaluated by wound healing assay. MMP-3 siRNA and an RGD-containing peptide, GRGDSP, were used to explore the role of MMP-3 and cleaved OPN in fibroblast activation. RESULTS Exposure to non-cytotoxic doses of Nano-CuO (0.5 and 1 µg/mL) caused increased expression and activity of MMP-3 in the conditioned media of BEAS-2B and U937* cells, but not MRC-5 fibroblasts. Nano-CuO exposure also caused increased production of cleaved OPN fragments, which was abolished by MMP-3 siRNA transfection. Conditioned media from Nano-CuO-exposed BEAS-2B, U937*, or the co-culture of BEAS-2B and U937* caused activation of unexposed MRC-5 fibroblasts. However, direct exposure of MRC-5 fibroblasts to Nano-CuO did not induce their activation. In a triple co-culture system, exposure of BEAS-2B and U937* cells to Nano-CuO caused activation of unexposed MRC-5 fibroblasts, while transfection of MMP-3 siRNA in BEAS-2B and U937* cells significantly inhibited the activation and migration of MRC-5 fibroblasts. In addition, pretreatment with GRGDSP peptide inhibited Nano-CuO-induced activation and migration of MRC-5 fibroblasts in the triple co-culture system. CONCLUSIONS Our results demonstrated that Nano-CuO exposure caused increased production of MMP-3 from lung epithelial BEAS-2B cells and U937* macrophages, which cleaved OPN, resulting in the activation of lung fibroblasts MRC-5. These results suggest that MMP-3-cleaved OPN may play a key role in Nano-CuO-induced activation of lung fibroblasts. More investigations are needed to confirm whether these effects are due to the nanoparticles themselves and/or Cu ions.
Collapse
Affiliation(s)
- Yuanbao Zhang
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY 40202 USA
| | - Yiqun Mo
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY 40202 USA
| | - Yue Zhang
- Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Jiali Yuan
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY 40202 USA
| | - Qunwei Zhang
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY 40202 USA
| |
Collapse
|
6
|
Osborn RM, Leach J, Zanche M, Ashton JM, Chu C, Thakar J, Dewhurst S, Rosenberger S, Pavelka M, Pryhuber GS, Mariani TJ, Anderson CS. Preparation of noninfectious scRNAseq samples from SARS-CoV-2-infected epithelial cells. PLoS One 2023; 18:e0281898. [PMID: 36827401 PMCID: PMC9956660 DOI: 10.1371/journal.pone.0281898] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/03/2023] [Indexed: 02/26/2023] Open
Abstract
Coronavirus disease (COVID-19) is an infectious disease caused by the SARS coronavirus 2 (SARS-CoV-2) virus. Direct assessment, detection, and quantitative analysis using high throughput methods like single-cell RNA sequencing (scRNAseq) is imperative to understanding the host response to SARS-CoV-2. One barrier to studying SARS-CoV-2 in the laboratory setting is the requirement to process virus-infected cell cultures, and potentially infectious materials derived therefrom, under Biosafety Level 3 (BSL-3) containment. However, there are only 190 BSL3 laboratory facilities registered with the U.S. Federal Select Agent Program, as of 2020, and only a subset of these are outfitted with the equipment needed to perform high-throughput molecular assays. Here, we describe a method for preparing non-hazardous RNA samples from SARS-CoV-2 infected cells, that enables scRNAseq analyses to be conducted safely in a BSL2 facility-thereby making molecular assays of SARS-CoV-2 cells accessible to a much larger community of researchers. Briefly, we infected African green monkey kidney epithelial cells (Vero-E6) with SARS-CoV-2 for 96 hours, trypsin-dissociated the cells, and inactivated them with methanol-acetone in a single-cell suspension. Fixed cells were tested for the presence of infectious SARS-CoV-2 virions using the Tissue Culture Infectious Dose Assay (TCID50), and also tested for viability using flow cytometry. We then tested the dissociation and methanol-acetone inactivation method on primary human lung epithelial cells that had been differentiated on an air-liquid interface. Finally, we performed scRNAseq quality control analysis on the resulting cell populations to evaluate the effects of our virus inactivation and sample preparation protocol on the quality of the cDNA produced. We found that methanol-acetone inactivated SARS-CoV-2, fixed the lung epithelial cells, and could be used to obtain noninfectious, high-quality cDNA libraries. This methodology makes investigating SARS-CoV-2, and related high-containment RNA viruses at a single-cell level more accessible to an expanded community of researchers.
Collapse
Affiliation(s)
- Raven M. Osborn
- Translational Biomedical Sciences Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Clinical and Translational Sciences Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Justin Leach
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Michelle Zanche
- Genomics Research Center, Center for Advanced Research Technologies, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - John M. Ashton
- Genomics Research Center, Center for Advanced Research Technologies, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - ChinYi Chu
- Department of Pediatrics and Center for Children’s Health Research, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Juilee Thakar
- Translational Biomedical Sciences Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Clinical and Translational Sciences Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Biophysics, Structural, and Computational Biology Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Stephen Dewhurst
- Clinical and Translational Sciences Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Sonia Rosenberger
- Department of Environmental Health and Safety, University of Rochester, Rochester, New York, United States of America
- Biosafety Level 3 Facility, Center for Advanced Research Technologies, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Martin Pavelka
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Biosafety Level 3 Facility, Center for Advanced Research Technologies, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Gloria S. Pryhuber
- Department of Pediatrics and Center for Children’s Health Research, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Thomas J. Mariani
- Department of Pediatrics and Center for Children’s Health Research, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Christopher S. Anderson
- Department of Pediatrics and Center for Children’s Health Research, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Division of Neonatology, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| |
Collapse
|
7
|
Kubczak M, Michlewska S, Bryszewska M, Aigner A, Ionov M. Nanoparticles for local delivery of siRNA in lung therapy. Adv Drug Deliv Rev 2021; 179:114038. [PMID: 34742826 DOI: 10.1016/j.addr.2021.114038] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 02/07/2023]
Abstract
An overview of the application of natural and synthetic, non-viral vectors for oligonucleotide delivery into the lung is presented in this review, with a special focus on lung cancer. Due to the specificity of the respiratory tract, its structure and natural barriers, the administration of drugs (especially those based on nucleic acids) is a particular challenge. Among widely tested non-viral drug and oligonucleotides carriers, synthetic polymers seem to be most promising. Unique properties of these nanoparticles allow for essentially unlimited possibilities regarding their design and modification. This gives hope that optimal nanoparticles with ideal nucleic acid carrier properties for lung cancer therapy will eventually emanate.
Collapse
|
8
|
Abdel-Wahhab MA, El-Nekeety AA, Mohammed HE, El-Messery TM, Roby MH, Abdel-Aziem SH, Hassan NS. Synthesis of encapsulated fish oil using whey protein isolate to prevent the oxidative damage and cytotoxicity of titanium dioxide nanoparticles in rats. Heliyon 2021; 7:e08456. [PMID: 34901503 PMCID: PMC8640477 DOI: 10.1016/j.heliyon.2021.e08456] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/30/2021] [Accepted: 11/18/2021] [Indexed: 12/27/2022] Open
Abstract
Fish oil exhibited several beneficial effects on human health; however, its applications face several challenges such as its effects on the organoleptic properties of food and its susceptibility to oxidation. Titanium dioxide NPs (TiO2-NPs) are utilized widely in pharmaceutical and food applications although there are some reports about their oxidative damage to living organisms. The current work was undertaken to identify fatty acids content in mullet fish oil, encapsulation, and characterization of the oil, and to assess the protective efficiency of the encapsulated mullet fish oil (EMFO) against the oxidative damage and genotoxicity of TiO2-NPs in rats. Sixty female Sprague-Dawley rats were distributed to 6 groups and treated for 21 days included the control group; TiO2-NPs-treated group (50 mg/kg b.w); the groups treated with EMFO (50 or 100 mg/kg b.w) and the groups received TiO2-NPs plus EMFO at the low or high dose. Samples of blood, liver, and kidney were taken for different assays and histological studies. The GC-FID analysis showed that a total of 14 different fatty acids were found in Mullet fish oil included 41.4% polyunsaturated fatty acids (PUFAs), 31.1% monounsaturated fatty acids (MUFAs), and 25.1% saturated fatty acids (SFAs). The structure of EMFO was spherical with an average diameter of 234.5 nm and a zeta potential of -6.24 mV and was stable up to 10 days at 25 °C with EE of 81.08%. The PV of EMFO was decreased at 5 days then increased at 15 days; however, TBARS was increased throughout the storage time over 15 days. The biological evaluation showed that TiO2-NPs disturb the hepato-nephro functions, lipid profile, inflammatory cytokines, oxidative stress markers, antioxidant enzymes activity, and their corresponding gene expression along with severe pathological alterations in both hepatic and renal tissue. Co-administration of EMFO induced a strong antioxidant role, and the high level could normalize the majority of the parameters tested and the histological picture of the hepatic and renal tissues. These results pointed out that the encapsulation technology enhances the protective role of EMFO against oxidative stress and genotoxicity of TiO2-NPs through the prevention of ω-3 PUFAs oxidation and controlling their release.
Collapse
Affiliation(s)
- Mosaad A. Abdel-Wahhab
- Food Toxicology & Contaminants Department, National Research Centre, Dokki, Cairo, Egypt
| | - Aziza A. El-Nekeety
- Food Toxicology & Contaminants Department, National Research Centre, Dokki, Cairo, Egypt
| | - Hagar E. Mohammed
- Zoology Department, Faculty of Science, Al-Arish University, Al-Arish, Egypt
| | | | - Mohamed H. Roby
- Food Science and Technology Department, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | | | - Nabila S. Hassan
- Pathology Department, National Research Centre, Dokki, Cairo, Egypt
| |
Collapse
|
9
|
Selo MA, Sake JA, Kim KJ, Ehrhardt C. In vitro and ex vivo models in inhalation biopharmaceutical research - advances, challenges and future perspectives. Adv Drug Deliv Rev 2021; 177:113862. [PMID: 34256080 DOI: 10.1016/j.addr.2021.113862] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 12/11/2022]
Abstract
Oral inhalation results in pulmonary drug targeting and thereby reduces systemic side effects, making it the preferred means of drug delivery for the treatment of respiratory disorders such as asthma, chronic obstructive pulmonary disease or cystic fibrosis. In addition, the high alveolar surface area, relatively low enzymatic activity and rich blood supply of the distal airspaces offer a promising pathway to the systemic circulation. This is particularly advantageous when a rapid onset of pharmacological action is desired or when the drug is suffering from stability issues or poor biopharmaceutical performance following oral administration. Several cell and tissue-based in vitro and ex vivo models have been developed over the years, with the intention to realistically mimic pulmonary biological barriers. It is the aim of this review to critically discuss the available models regarding their advantages and limitations and to elaborate further which biopharmaceutical questions can and cannot be answered using the existing models.
Collapse
|
10
|
Xie D, Hu J, Wu T, Cao K, Luo X. Four Immune-Related Genes (FN1, UGCG, CHPF2 and THBS2) as Potential Diagnostic and Prognostic Biomarkers for Carbon Nanotube-Induced Mesothelioma. Int J Gen Med 2021; 14:4987-5003. [PMID: 34511983 PMCID: PMC8412823 DOI: 10.2147/ijgm.s324365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/19/2021] [Indexed: 11/26/2022] Open
Abstract
Background Malignant pleural mesothelioma (MPM), a highly aggressive cancer, was mainly attributed to asbestos exposure. Carbon nanotubes (CNTs) share similar negative features to asbestos, provoking concerns about their contribution to MPM. This study was used to identify genes associated with CNT-induced MPM. Methods Microarray datasets were available in the Gene Expression Omnibus database. The limma method was used to identify differentially expressed genes (DEGs) in CNT-exposed MeT5A cells (GSE48855) or mice (GSE51636). Weighted correlation network analysis (WGCNA) and protein–protein interaction (PPI) network construction were conducted to screen hub DEGs. The mRNA expression levels of hub DEGs were validated on MPM samples of GSE51024, GSE2549 and GSE42977 datasets, and their diagnostic efficacy was determined by receiver operating characteristic curve analysis. The prognostic values of hub DEGs were assessed using online tools based on The Cancer Genome Atlas data. Their functions were annotated by Database for Annotation, Visualization and Integrated Discovery (DAVID) enrichment and correlation with immune cells and markers. Results WGCNA identified that two modules were associated with disease status. Thirty-one common DEGs in the GSE48855 and GSE51636 datasets were overlapped with the genes in these two modules. Twenty of them had a high degree centrality (≥4) in the PPI network. Four DEGs (FN1, fibronectin 1; UGCG, UDP-glucose ceramide glucosyltransferase; CHPF2, chondroitin polymerizing factor 2; and THBS2, thrombospondin 2) could predict the overall survival, and they were confirmed to be upregulated in MPM samples compared with controls. Also, they could effectively predict the MPM risk, with an overall accuracy of >0.9. DAVID analysis revealed FN1, CHPF2 and THBS2 functioned in cell-ECM interactions; UGCG influenced glycosphingolipid metabolism. All genes were positively associated with infiltrating levels of immune cells (macrophages or dendritic cells) and the expression of the dendritic cell marker (NRP1, neuropilin 1). Conclusion These four immune-related genes represent potential biomarkers for monitoring CNT-induced MPM and predicting the prognosis.
Collapse
Affiliation(s)
- Dongli Xie
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, People's Republic of China
| | - Jianchen Hu
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, People's Republic of China
| | - Tong Wu
- Shanghai LEVSON Nanotechnology Co., Ltd, Shanghai, 200444, People's Republic of China
| | - Kangli Cao
- Shanghai Institute of Spacecraft Equipment, Shanghai, 200240, People's Republic of China
| | - Xiaogang Luo
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, People's Republic of China
| |
Collapse
|
11
|
Arezki Y, Cornacchia J, Rapp M, Lebeau L, Pons F, Ronzani C. A Co-Culture Model of the Human Respiratory Tract to Discriminate the Toxicological Profile of Cationic Nanoparticles According to Their Surface Charge Density. TOXICS 2021; 9:210. [PMID: 34564361 PMCID: PMC8470030 DOI: 10.3390/toxics9090210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 12/16/2022]
Abstract
This study aimed at discriminating with sensitivity the toxicological effects of carbon dots (CDs) with various zeta potential (ζ) and charge density (Qek) in different cellular models of the human respiratory tract. One anionic and three cationic CDs were synthetized as follows: CD-COOH (ζ = -43.3 mV); CD-PEI600 (Qek = 4.70 µmol/mg; ζ = +31.8 mV); CD-PEHA (Qek = 3.30 µmol/mg; ζ = +29.2 mV) and CD-DMEDA (Qek = 0.01 µmol/mg; ζ = +11.1 mV). Epithelial cells (A549) and macrophages (THP-1) were seeded alone or as co-cultures with different A549:THP-1 ratios. The obtained models were characterized, and multiple biological responses evoked by CDs were assessed in the mono-cultures and the best co-culture model. With 14% macrophages, the 2:1 ratio co-culture best mimicked the in vivo conditions and responded to lipopolysaccharides. The anionic CD did not induce any effect in the mono-cultures nor in the co-culture. Among the cationic CDs, the one with the highest charge density (CD-PEI600) induced the most pronounced responses whatever the culture model. The cationic CDs of low charge density (CD-PEHA and CD-DMEDA) evoked similar responses in the mono-cultures, whereas in the co-culture, the three cationic CDs ranked according to their charge density (CD-PEI600 > CD-PEHA > CD-DMEDA), when taking into account their inflammatory effect. Thus, the co-culture system developed in this study appears to be a sensitive model for finely discriminating the toxicological profile of cationic nanoparticles differing by the density of their surface charges.
Collapse
Affiliation(s)
| | | | | | | | | | - Carole Ronzani
- Laboratoire de Conception et Application de Molécules Bioactives, Faculté de Pharmacie, UMR 7199, CNRS-Université de Strasbourg, 67400 Illkirch, France; (Y.A.); (J.C.); (M.R.); (L.L.); (F.P.)
| |
Collapse
|
12
|
Ternois M, Mougon M, Flahaut E, Dussutour A. Slime molds response to carbon nanotubes exposure: from internalization to behavior. Nanotoxicology 2021; 15:511-526. [PMID: 33705250 DOI: 10.1080/17435390.2021.1894615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Carbon nanotubes (CNTs) offer attractive opportunities due to their physical, electrical, mechanical, optical, and thermal properties. They are used in a wide range of applications and are found in numerous consumer products. On the downside, their increasing presence in the environment poses potential threats to living organisms and ecosystems. The aim of this study was to evaluate the toxicity of double-walled carbon nanotubes (DWCNTs) on a new model system: the acellular slime mold Physarum polycephalum. Despite its ecological significance, its simplicity of organization, and its behavioral complexity, exposure of such organisms to nanoparticles has been poorly investigated. Slime molds were exposed to DWCNTs using three routes of exposure (topical, food, environment). We first demonstrated that DWCNTs were rapidly internalized by slime molds especially when DWCNTs were mixed with the food or spread out in the environment. Secondly, we showed that a 6-week exposure to DWCNTs did not lead to bioaccumulation nor did it lead to persistence in the slime molds when they entered a resting stage. Thirdly, we revealed that 2 days following exposure, DWCNTs were almost entirely excreted from the slime molds. Lastly, we uncovered that DWCNTs exposure altered the migration speed, the pseudopods formation, and the expansion rate of the slime molds. Our results extend our current knowledge of CNTs cytotoxicity and introduce P. polycephalum as an ideal organism for nanotoxicology.
Collapse
Affiliation(s)
- Manon Ternois
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), UMR5169 CNRS, Toulouse University, Toulouse, France.,CIRIMAT, CNRS, INPT, UPS, UMR5085 CNRS-UPS-INPT, Toulouse University, Toulouse, France
| | - Maxence Mougon
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), UMR5169 CNRS, Toulouse University, Toulouse, France.,CIRIMAT, CNRS, INPT, UPS, UMR5085 CNRS-UPS-INPT, Toulouse University, Toulouse, France
| | - Emmanuel Flahaut
- CIRIMAT, CNRS, INPT, UPS, UMR5085 CNRS-UPS-INPT, Toulouse University, Toulouse, France
| | - Audrey Dussutour
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), UMR5169 CNRS, Toulouse University, Toulouse, France
| |
Collapse
|
13
|
Screening for Effects of Inhaled Nanoparticles in Cell Culture Models for Prolonged Exposure. NANOMATERIALS 2021; 11:nano11030606. [PMID: 33671010 PMCID: PMC7997552 DOI: 10.3390/nano11030606] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 12/24/2022]
Abstract
Respiratory exposure of humans to environmental and therapeutic nanoparticles repeatedly occurs at relatively low concentrations. To identify adverse effects of particle accumulation under realistic conditions, monocultures of Calu-3 and A549 cells and co-cultures of A549 and THP-1 macrophages in the air–liquid interphase culture were exposed repeatedly to 2 µg/cm2 20 nm and 200 nm polystyrene particles with different functionalization. Particle accumulation, transepithelial electrical resistance, dextran (3–70 kDa) uptake and proinflammatory cytokine secretion were determined over 28 days. Calu-3 cells showed constant particle uptake without any change in barrier function and cytokine release. A549 cells preferentially ingested amino- and not-functionalized particles combined with decreased endocytosis. Cytokine release was transiently increased upon exposure to all particles. Carboxyl-functionalized demonstrated higher uptake and higher cytokine release than the other particles in the A549/THP-1 co-cultures. The evaluated respiratory cells and co-cultures ingested different amounts and types of particles and caused small (partly transient) effects. The data suggest that the healthy cells can adapt to low doses of non-cytotoxic particles.
Collapse
|
14
|
Hevia LG, Fanarraga ML. Microtubule cytoskeleton-disrupting activity of MWCNTs: applications in cancer treatment. J Nanobiotechnology 2020; 18:181. [PMID: 33317574 PMCID: PMC7734827 DOI: 10.1186/s12951-020-00742-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 11/30/2020] [Indexed: 12/28/2022] Open
Abstract
Microtubules and carbon nanotubes (CNTs), and more particularly multi-walled CNTs (MWCNTs), share many mechanical and morphological similarities that prompt their association into biosynthetic tubulin filaments both, in vitro and in vivo. Unlike CNTs, microtubules are highly dynamic protein polymers that, upon interaction with these nanomaterials, display enhanced stability that has critical consequences at the cellular level. Among others, CNTs prompt ectopic (acentrosomal) microtubule nucleation and the disassembly of the centrosome, causing a dramatic cytoskeletal reorganization. These changes in the microtubule pattern trigger the generation of ineffective biomechanical forces that result in migration defects, and ultimately in spindle-assembly checkpoint (SAC) blockage and apoptosis. In this review, we describe the molecular mechanism involved in the intrinsic interference of CNTs with the microtubule dynamics and illustrate the consequences of this effect on cell biomechanics. We also discuss the potential application of these synthetic microtubule-stabilizing agents as synergetic agents to boost the effect of classical chemotherapy that includes spindle poisons (i.e. paclitaxel) or DNA interfering agents (5-fluorouracil)-, and list some of the advantages of the use of MWCNTs as adjuvant agents in preventing cell resistance to chemotherapy.![]()
Collapse
Affiliation(s)
- Lorena García Hevia
- Nanomedicine Group, Valdecilla Research Institute-IDIVAL, University of Cantabria, Herrera Oria s/n, 39011, Santander, Spain
| | - Mónica L Fanarraga
- Nanomedicine Group, Valdecilla Research Institute-IDIVAL, University of Cantabria, Herrera Oria s/n, 39011, Santander, Spain.
| |
Collapse
|
15
|
Lim SK, Yoo J, Kim H, Lim YM, Kim W, Shim I, Kim HR, Kim P, Eom IC. Prediction of acute inhalation toxicity using cytotoxicity data from human lung epithelial cell lines. J Appl Toxicol 2020; 41:1038-1049. [PMID: 33085125 DOI: 10.1002/jat.4090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/16/2020] [Accepted: 09/28/2020] [Indexed: 11/06/2022]
Abstract
Recent research on in vitro systems has focused on mimicking the in vivo situation of cells within the respiratory system. However, few studies have predicted inhalation toxicity using conventional and simple submerged two-dimensional (2D) cell culture models. We investigated the conventional submerged 2-D cell culture model as a method for the prediction of acute inhalation toxicity. Median lethal concentration (LC50 ) (rat, inhalation, 4 h) and half maximal inhibitory concentration (IC50 ) (lung or bronchial cell, 24 h) data for 59 substances were obtained from the literature and by experiments. Cytotoxicity assays were performed on 44 substances with reported LC50 , but without IC50 , data to obtain the IC50 values. A weak correlation was observed between the IC50 and LC50 of all substances. Semi-volatile organic compounds (SVOCs) and non-VOCs (NVOCs) (16 substances) with a water solubility of ≥1 g/L were strongly correlated between 24-h IC50 and 4-h LC50 , and this had an excellent predictive ability to distinguish between Categories 1-3 and 4 (Globally Harmonized System classification for acute inhalation toxicity). Our results suggest that the submerged 2-D cell culture model may be used to predict in vivo acute inhalation toxicity for substances with a water solubility of ≥1 g/L in SVOCs and NVOCs.
Collapse
Affiliation(s)
- Seong Kwang Lim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Jean Yoo
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Haewon Kim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Yeon-Mi Lim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Woong Kim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Ilseob Shim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Ha Ryong Kim
- College of Pharmacy, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - Pilje Kim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Ig-Chun Eom
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, Republic of Korea
| |
Collapse
|
16
|
Nordberg M, Täubel M, Jalava PI, BéruBé K, Tervahauta A, Hyvärinen A, Huttunen K. Human airway construct model is suitable for studying transcriptome changes associated with indoor air particulate matter toxicity. INDOOR AIR 2020; 30:433-444. [PMID: 31883508 PMCID: PMC7217003 DOI: 10.1111/ina.12637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/18/2019] [Accepted: 12/23/2019] [Indexed: 05/08/2023]
Abstract
In vitro models mimicking the human respiratory system are essential when investigating the toxicological effects of inhaled indoor air particulate matter (PM). We present a pulmonary cell culture model for studying indoor air PM toxicity. We exposed normal human bronchial epithelial cells, grown on semi-permeable cell culture membranes, to four doses of indoor air PM in the air-liquid interface. We analyzed the chemokine interleukin-8 concentration from the cell culture medium, protein concentration from the apical wash, measured tissue electrical resistance, and imaged airway constructs using light and transmission electron microscopy. We sequenced RNA using a targeted RNA toxicology panel for 386 genes associated with toxicological responses. PM was collected from a non-complaint residential environment over 1 week. Sample collection was concomitant with monitoring size-segregated PM counts and determination of microbial levels and diversity. PM exposure was not acutely toxic for the cells, and we observed up-regulation of 34 genes and down-regulation of 17 genes when compared to blank sampler control exposure. The five most up-regulated genes were related to immunotoxicity. Despite indications of incomplete cell differentiation, this model enabled the comparison of a toxicological transcriptome associated with indoor air PM exposure.
Collapse
Affiliation(s)
- Maria‐Elisa Nordberg
- Department of Environmental and Biological SciencesUniversity of Eastern Finland (UEF)KuopioFinland
| | - Martin Täubel
- Environmental Health UnitNational Institute for Health and WelfareKuopioFinland
| | - Pasi I. Jalava
- Department of Environmental and Biological SciencesUniversity of Eastern Finland (UEF)KuopioFinland
| | - Kelly BéruBé
- Cardiff School of BiosciencesCardiff Institute Tissue Engineering and Repair (CITER)Cardiff UniversityWalesUK
| | - Arja Tervahauta
- Department of Environmental and Biological SciencesUniversity of Eastern Finland (UEF)KuopioFinland
| | - Anne Hyvärinen
- Environmental Health UnitNational Institute for Health and WelfareKuopioFinland
| | - Kati Huttunen
- Department of Environmental and Biological SciencesUniversity of Eastern Finland (UEF)KuopioFinland
| |
Collapse
|
17
|
Abstract
Sale of electronic cigarette (e-cigarette) products has exponentially increased in the past decade, which raise concerns about its safety. This updated review provides the available toxicology profile of e-cigarettes, summarizing evidence from in vitro and in vivo studies. Data regarding which components in e-liquids exhibit potential toxicities are inconsistent. Some studies have reported that nicotine plays a significant role in inducing adverse outcomes and that solvents alone do not induce any adverse effects. However, other studies have suggested that nicotine is not associated with any adverse outcomes, whereas solvents and flavorings are the key components to elicit considerable deleterious effects on cells or animals. In addition, most of the studies that have compared the toxicity of e-cigarettes with tobacco cigarettes have suggested that e-cigarettes are less toxic than tobacco cigarettes. Nevertheless, scientific evidence regarding the toxicity profile of e-cigarette is insufficient owing to the lack of a standardized research approach. In the future, scientific toxicology data derived from standardized testing protocols including nicotine, ingredients analysis, the various e-cigarette devices made from different materials are urgently needed for thorough toxicology assessment. This review aims to update the toxicity profiles, identify knowledge gaps, and outline future directions for e-cigarettes research, which would greatly benefit public health professionals.
Collapse
Affiliation(s)
- Guanghe Wang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Wenjing Liu
- Science and Technology Museum of Inner Mongolia , Hohhot, Inner Mongolia , China
| | - Weimin Song
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University , Shanghai , China
| |
Collapse
|
18
|
Snyder-Talkington BN, Dong C, Castranova V, Qian Y, Guo NL. Differential gene regulation in human small airway epithelial cells grown in monoculture versus coculture with human microvascular endothelial cells following multiwalled carbon nanotube exposure. Toxicol Rep 2019; 6:482-488. [PMID: 31194188 PMCID: PMC6554470 DOI: 10.1016/j.toxrep.2019.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 05/08/2019] [Accepted: 05/27/2019] [Indexed: 12/20/2022] Open
Abstract
Coculture gene expression may have opposite direction of changes than monoculture. Cells grow and treated in monoculture may exaggerate toxicological responses. Coculture of cells may provide a more in-depth assessment of toxicological responses.
Concurrent with rising production of carbon-based engineered nanomaterials is a potential increase in respiratory and cardiovascular diseases due to exposure to nanomaterials in the workplace atmosphere. While single-cell models of pulmonary exposure are often used to determine the potential toxicity of nanomaterials in vitro, previous studies have shown that coculture cell models better represent the cellular response and crosstalk that occurs in vivo. This study identified differential gene regulation in human small airway epithelial cells (SAECs) grown either in monoculture or in coculture with human microvascular endothelial cells following exposure of the SAECs to multiwalled carbon nanotubes (MWCNTs). SAEC genes that either changed their regulation direction from upregulated in monoculture to downregulated in coculture (or vice versa) or had a more than a two-fold changed in the same regulation direction were identified. Genes that changed regulation direction were most often involved in the processes of cellular growth and proliferation and cellular immune response and inflammation. Genes that had a more than a two-fold change in regulation in the same direction were most often involved in the inflammatory response. The direction and fold-change of this differential gene regulation suggests that toxicity testing in monoculture may exaggerate cellular responses to MWCNTs, and coculture of cells may provide a more in-depth assessment of toxicological responses.
Collapse
Affiliation(s)
- Brandi N Snyder-Talkington
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV, 26506, United States
| | - Chunlin Dong
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV, 26506, United States
| | - Vincent Castranova
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, 26506, United States
| | - Yong Qian
- National Institute for Occupational and Environmental Safety and Health, 1095 Willowdale Rd., Morgantown, WV, 26505, United States
| | - Nancy L Guo
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV, 26506, United States.,Department of Occupational and Environmental Health Sciences, School of Public Health, West Virginia University, Morgantown, WV, 26506, United States
| |
Collapse
|
19
|
Evans SJ, Clift MJD, Singh N, Wills JW, Hondow N, Wilkinson TS, Burgum MJ, Brown AP, Jenkins GJ, Doak SH. In vitro detection of in vitro secondary mechanisms of genotoxicity induced by engineered nanomaterials. Part Fibre Toxicol 2019; 16:8. [PMID: 30760282 PMCID: PMC6374901 DOI: 10.1186/s12989-019-0291-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 01/29/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND It is well established that toxicological evaluation of engineered nanomaterials (NMs) is vital to ensure the health and safety of those exposed to them. Further, there is a distinct need for the development of advanced physiologically relevant in vitro techniques for NM hazard prediction due to the limited predictive power of current in vitro models and the unsustainability of conducting nano-safety evaluations in vivo. Thus, the purpose of this study was to develop alternative in vitro approaches to assess the potential of NMs to induce genotoxicity by secondary mechanisms. RESULTS This was first undertaken by a conditioned media-based technique, whereby cell culture media was transferred from differentiated THP-1 (dTHP-1) macrophages treated with γ-Fe2O3 or Fe3O4 superparamagnetic iron oxide nanoparticles (SPIONs) to the bronchial cell line 16HBE14o-. Secondly construction and SPION treatment of a co-culture model comprising of 16HBE14o- cells and dTHP-1 macrophages. For both of these approaches no cytotoxicity was detected and chromosomal damage was evaluated by the in vitro micronucleus assay. Genotoxicity assessment was also performed using 16HBE14o- monocultures, which demonstrated only γ-Fe2O3 nanoparticles to be capable of inducing chromosomal damage. In contrast, immune cell conditioned media and dual cell co-culture SPION treatments showed both SPION types to be genotoxic to 16HBE14o- cells due to secondary genotoxicity promoted by SPION-immune cell interaction. CONCLUSIONS The findings of the present study demonstrate that the approach of using single in vitro cell test systems precludes the ability to consider secondary genotoxic mechanisms. Consequently, the use of multi-cell type models is preferable as they better mimic the in vivo environment and thus offer the potential to enhance understanding and detection of a wider breadth of potential damage induced by NMs.
Collapse
Affiliation(s)
- Stephen J Evans
- In Vitro Toxicology Group, Institute of Life Science, Swansea Univeristy Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Martin J D Clift
- In Vitro Toxicology Group, Institute of Life Science, Swansea Univeristy Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Neenu Singh
- Faculty of Health Sciences and Life Sciences, School of Allied Health Sciences, De Montfort University, The Gateway, Leicester, LE1 9BH, UK
| | - John W Wills
- Department of Veterinary Medicine, School of Biological Sciences, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Nicole Hondow
- School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Thomas S Wilkinson
- In Vitro Toxicology Group, Institute of Life Science, Swansea Univeristy Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Michael J Burgum
- In Vitro Toxicology Group, Institute of Life Science, Swansea Univeristy Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Andy P Brown
- School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Gareth J Jenkins
- In Vitro Toxicology Group, Institute of Life Science, Swansea Univeristy Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Shareen H Doak
- In Vitro Toxicology Group, Institute of Life Science, Swansea Univeristy Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, UK.
| |
Collapse
|
20
|
Bonetta S, Bonetta S, Schilirò T, Ceretti E, Feretti D, Covolo L, Vannini S, Villarini M, Moretti M, Verani M, Carducci A, Bagordo F, De Donno A, Bonizzoni S, Bonetti A, Pignata C, Carraro E, Gelatti U. Mutagenic and genotoxic effects induced by PM 0.5 of different Italian towns in human cells and bacteria: The MAPEC_LIFE study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 245:1124-1135. [PMID: 30682747 DOI: 10.1016/j.envpol.2018.11.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/15/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
Particulate matter (PM) is considered an atmospheric pollutant that mostly affects human health. The finest fractions of PM (PM2.5 or less) play a major role in causing chronic diseases. The aim of this study was to investigate the genotoxic effects of PM0.5 collected in five Italian towns using different bioassays. The role of chemical composition on the genotoxicity induced was also evaluated. The present study was included in the multicentre MAPEC_LIFE project, which aimed to evaluate the associations between air pollution exposure and early biological effects in Italian children. PM10 samples were collected in 2 seasons (winter and spring) using a high-volume multistage cascade impactor. The results showed that PM0.5 represents a very high proportion of PM10 (range 10-63%). PM0.5 organic extracts were chemically analysed (PAHs, nitro-PAHs) and tested by the comet assay (A549 and BEAS-2B cells), MN test (A549 cells) and Ames test on Salmonella strains (TA100, TA98, TA98NR and YG1021). The highest concentrations of PAHs and nitro-PAHs in PM0.5 were observed in the Torino, Brescia and Pisa samples in winter. The Ames test showed low mutagenic activity. The highest net revertants/m3 were observed in the Torino and Brescia samples (winter), and the mutagenic effect was associated with PM0.5 (p < 0.01), PAH and nitro-PAH (p < 0.05) concentrations. The YG1021 strain showed the highest sensitivity to PM0.5 samples. No genotoxic effect of PM0.5 extracts was observed using A549 cells except for some samples in winter (comet assay), while BEAS-2B cells showed light DNA damage in the Torino, Brescia and Pisa samples in winter, highlighting the higher sensitivity of BEAS-2B cells, which was consistent with the Ames test (p < 0.01). The results obtained showed that it is important to further investigate the finest fractions of PM, which represent a relevant percentage of PM10, taking into account the chemical composition and the biological effects induced.
Collapse
Affiliation(s)
- Sara Bonetta
- Department of Public Health and Pediatrics, University of Torino, 94 Piazza Polonia, 10126 Torino, Italy.
| | - Silvia Bonetta
- Department of Public Health and Pediatrics, University of Torino, 94 Piazza Polonia, 10126 Torino, Italy.
| | - Tiziana Schilirò
- Department of Public Health and Pediatrics, University of Torino, 94 Piazza Polonia, 10126 Torino, Italy.
| | - Elisabetta Ceretti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 11 Viale Europa, 25123 Brescia, Italy.
| | - Donatella Feretti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 11 Viale Europa, 25123 Brescia, Italy.
| | - Loredana Covolo
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 11 Viale Europa, 25123 Brescia, Italy.
| | - Samuele Vannini
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| | - Milena Villarini
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| | - Massimo Moretti
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| | - Marco Verani
- Department of Biology, University of Pisa, 35/39 Via S. Zeno, 56127 Pisa, Italy.
| | - Annalaura Carducci
- Department of Biology, University of Pisa, 35/39 Via S. Zeno, 56127 Pisa, Italy.
| | - Francesco Bagordo
- Department of Biological and Environmental Science and Technology, University of Salento, 165 Via Monteroni, 73100 Lecce, Italy.
| | - Antonella De Donno
- Department of Biological and Environmental Science and Technology, University of Salento, 165 Via Monteroni, 73100 Lecce, Italy.
| | | | - Alberto Bonetti
- Centro Servizi Multisettoriale e Tecnologico - CSMT Gestione S.c.a.r.l., 45 Via Branze, 25123 Brescia, Italy.
| | - Cristina Pignata
- Department of Public Health and Pediatrics, University of Torino, 94 Piazza Polonia, 10126 Torino, Italy.
| | - Elisabetta Carraro
- Department of Public Health and Pediatrics, University of Torino, 94 Piazza Polonia, 10126 Torino, Italy.
| | - Umberto Gelatti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 11 Viale Europa, 25123 Brescia, Italy.
| |
Collapse
|
21
|
Ambient fine particulate matter induce toxicity in lung epithelial-endothelial co-culture models. Toxicol Lett 2019; 301:133-145. [DOI: 10.1016/j.toxlet.2018.11.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/13/2018] [Accepted: 11/22/2018] [Indexed: 01/09/2023]
|
22
|
Fizeșan I, Chary A, Cambier S, Moschini E, Serchi T, Nelissen I, Kiss B, Pop A, Loghin F, Gutleb AC. Responsiveness assessment of a 3D tetra-culture alveolar model exposed to diesel exhaust particulate matter. Toxicol In Vitro 2018; 53:67-79. [PMID: 30081072 DOI: 10.1016/j.tiv.2018.07.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/09/2018] [Accepted: 07/31/2018] [Indexed: 01/12/2023]
Abstract
The aim of the current study was to evaluate the responses of a 3D tetra-culture alveolar model cultivated at the air-liquid-interface (ALI) after apical exposure to diesel exhaust particulate matter (DEPM) based on the three-tiered oxidative stress concept. The alveolar model exposed to increasing doses of DEPM (1.75-5 μg/cm2) responded with increasing activity of the anti-oxidant defense mechanisms (Nrf2 translocation, increased gene expression for anti-oxidant proteins and increased HMOX-1 synthesis) (tier 1). Higher exposure generated a proinflammatory response (NF-kB translocation, increased gene expression of pro-inflammatory cytokines and adhesion molecules, and increased IL-6 and IL-8 synthesis) (tier 2) and, finally, the highest doses applied resulted in a decrease of cell viability due to necrosis (extra-cellular release of LDH) or apoptosis (increased expression of the pro-apoptotic genes CASP7 and FAS) (tier 3). Overall, the results of our study demonstrate that the 3D tetra-culture model when directly exposed to DEPM potently generates a realistic response according to the three-tiered oxidative stress concept. Further evaluation and benchmarking against currently used in vivo rodent models is needed to show its suitability, and to serve in the future as an alternative for in vivo studies in the hazard evaluation of inhalable irritants.
Collapse
Affiliation(s)
- Ionel Fizeșan
- Toxicology Department, Iuliu Hațieganu University of Medicine and Pharmacy, Faculty of Pharmacy, Cluj-Napoca, Romania
| | - Aline Chary
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Sébastien Cambier
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Elisa Moschini
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Tommaso Serchi
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Inge Nelissen
- Health Unit, Flemish Institute for Technological Research (VITO NV), Mol, Belgium
| | - Béla Kiss
- Toxicology Department, Iuliu Hațieganu University of Medicine and Pharmacy, Faculty of Pharmacy, Cluj-Napoca, Romania
| | - Anca Pop
- Toxicology Department, Iuliu Hațieganu University of Medicine and Pharmacy, Faculty of Pharmacy, Cluj-Napoca, Romania
| | - Felicia Loghin
- Toxicology Department, Iuliu Hațieganu University of Medicine and Pharmacy, Faculty of Pharmacy, Cluj-Napoca, Romania
| | - Arno C Gutleb
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg.
| |
Collapse
|
23
|
Cho CC, Hsieh WY, Tsai CH, Chen CY, Chang HF, Lin CS. In Vitro and In Vivo Experimental Studies of PM 2.5 on Disease Progression. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E1380. [PMID: 29966381 PMCID: PMC6068560 DOI: 10.3390/ijerph15071380] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/22/2018] [Accepted: 06/23/2018] [Indexed: 12/14/2022]
Abstract
Air pollution is a very critical issue worldwide, particularly in developing countries. Particulate matter (PM) is a type of air pollution that comprises a heterogeneous mixture of different particle sizes and chemical compositions. There are various sources of fine PM (PM2.5), and the components may also have different effects on people. The pathogenesis of PM2.5 in several diseases remains to be clarified. There is a long history of epidemiological research on PM2.5 in several diseases. Numerous studies show that PM2.5 can induce a variety of chronic diseases, such as respiratory system damage, cardiovascular dysfunction, and diabetes mellitus. However, the epidemiological evidence associated with potential mechanisms in the progression of diseases need to be proved precisely through in vitro and in vivo investigations. Suggested mechanisms of PM2.5 that lead to adverse effects and chronic diseases include increasing oxidative stress, inflammatory responses, and genotoxicity. The aim of this review is to provide a brief overview of in vitro and in vivo experimental studies of PM2.5 in the progression of various diseases from the last decade. The summarized research results could provide clear information about the mechanisms and progression of PM2.5-induced disease.
Collapse
Affiliation(s)
- Ching-Chang Cho
- Department of Biological Science and Technology, National Chiao Tung University, 75 Boai Street, Hsinchu 300, Taiwan.
| | - Wen-Yeh Hsieh
- Division of Chest Medicine, Department of Internal Medicine, Hsinchu Mackay Memorial Hospital, 690 Section 2, Guangfu Road, Hsinchu 300, Taiwan.
| | - Chin-Hung Tsai
- Department of Biological Science and Technology, National Chiao Tung University, 75 Boai Street, Hsinchu 300, Taiwan.
- Division of Pulmonary Medicine, Department of Internal Medicine, Tungs' Taichung Metro Harbor Hospital, 699 Section 8, Taiwan Blvd., Taichung 435, Taiwan.
| | - Cheng-Yi Chen
- Department of Biological Science and Technology, National Chiao Tung University, 75 Boai Street, Hsinchu 300, Taiwan.
- Division of Nephrology, Department of Internal Medicine, Hsinchu Mackay Memorial Hospital, 690 Section 2, Guangfu Road, Hsinchu 300, Taiwan.
| | - Hui-Fang Chang
- Department of Biological Science and Technology, National Chiao Tung University, 75 Boai Street, Hsinchu 300, Taiwan.
- Division of Endocrinology, Department of Internal Medicine, Hsinchu Mackay Memorial Hospital, 690 Section 2, Guangfu Road, Hsinchu 300, Taiwan.
| | - Chih-Sheng Lin
- Department of Biological Science and Technology, National Chiao Tung University, 75 Boai Street, Hsinchu 300, Taiwan.
| |
Collapse
|
24
|
Upadhyay S, Palmberg L. Air-Liquid Interface: Relevant In Vitro Models for Investigating Air Pollutant-Induced Pulmonary Toxicity. Toxicol Sci 2018. [DOI: 10.1093/toxsci/kfy053] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Swapna Upadhyay
- Institute of Environmental Medicine, Unit of Work Environment Toxicology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Lena Palmberg
- Institute of Environmental Medicine, Unit of Work Environment Toxicology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| |
Collapse
|
25
|
Bisig C, Petri-Fink A, Rothen-Rutishauser B. A realistic in vitro exposure revealed seasonal differences in (pro-)inflammatory effects from ambient air in Fribourg, Switzerland. Inhal Toxicol 2018; 30:40-48. [DOI: 10.1080/08958378.2018.1441926] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Christoph Bisig
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
| | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
- Department of Chemistry, University of Fribourg, Fribourg, Switzerland
| | | |
Collapse
|
26
|
Gasoline particle filter reduces oxidative DNA damage in bronchial epithelial cells after whole gasoline exhaust exposure in vitro. Sci Rep 2018; 8:2297. [PMID: 29396482 PMCID: PMC5797118 DOI: 10.1038/s41598-018-20736-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/23/2018] [Indexed: 01/03/2023] Open
Abstract
A substantial amount of traffic-related particle emissions is released by gasoline cars, since most diesel cars are now equipped with particle filters that reduce particle emissions. Little is known about adverse health effects of gasoline particles, and particularly, whether a gasoline particle filter (GPF) influences the toxicity of gasoline exhaust emissions. We drove a dynamic test cycle with a gasoline car and studied the effect of a GPF on exhaust composition and airway toxicity. We exposed human bronchial epithelial cells (ECs) for 6 hours, and compared results with and without GPF. Two hours later, primary human natural killer cells (NKs) were added to ECs to form cocultures, while some ECs were grown as monocultures. The following day, cells were analyzed for cytotoxicity, cell surface receptor expression, intracellular markers, oxidative DNA damage, gene expression, and oxidative stress. The particle amount was significantly reduced due to GPF application. While most biological endpoints did not differ, oxidative DNA damage was significantly reduced in EC monocultures exposed to GPF compared to reference exhaust. Our findings indicate that a GPF has beneficial effects on exhaust composition and airway toxicity. Further studies are needed to assess long-term effects, also in other cell types of the lung.
Collapse
|
27
|
Huang KJ, Lee CY, Lin YC, Lin CY, Perevedentseva E, Hung SF, Cheng CL. Phagocytosis and immune response studies of Macrophage-Nanodiamond Interactions in vitro and in vivo. JOURNAL OF BIOPHOTONICS 2017; 10:1315-1326. [PMID: 28067461 DOI: 10.1002/jbio.201600202] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/31/2016] [Accepted: 11/22/2016] [Indexed: 06/06/2023]
Abstract
The applications of nanodiamond as drug delivery and bio-imaging can require the relinquishing ND-drug conjugate via blood flow, where interaction with immune cells may occur. In this work, we investigated the ND penetration in macrophage and the immune response using the tissue-resident murine macrophages (RAW 264.7). Confocal fluorescence imaging, immunofluorescence analysis of nuclear translocation of interferon regulatory factor IRF-3 and transcriptional factor NF-κΒ, analysis of pro-inflammatory cytokines production IL-1β, IL-6 IL-10 with a reverse transcription-polymerase chain reaction technique were applied. The TNF-α factor production has been studied both in vitro at ND interaction with the macrophage and in vivo after ND injection in the mice blood system using immunoassay. The macrophage antibacterial function was estimated through E. coli bacterial colony formation. ND didn't stimulate the immune response and functionality of the macrophage was not altered. Using MTT test, ND was found negligibly cytotoxic to macrophages. Thus, ND can serve as a biocompatible platform for bio-medical applications. Left: Graphic representation of Nanodiamond internalization in macrophage. Right: (a) Fluorescence images of lysosomes, (b) nanodiamond and (c) merged image of nanodiamond internalization in macrophage.
Collapse
Affiliation(s)
- K-J Huang
- Department of Life Sciences, National Dong Hwa University, 1, Sec. 2 Da Hsueh Rd, Shoufeng, Hualien, 97401, Taiwan
- Institute of Biologicals, Development Center for Biotechnology (DCB), New Taipei City, 22180, Taiwan
| | - C-Y Lee
- Department of Physics, National Dong Hwa University, 1, Sec. 2 Da Hsueh Rd, Shoufeng, Hualien,, 97401, Taiwan
| | - Y-C Lin
- Department of Physics, National Dong Hwa University, 1, Sec. 2 Da Hsueh Rd, Shoufeng, Hualien,, 97401, Taiwan
| | - C-Y Lin
- Department of Life Sciences, National Dong Hwa University, 1, Sec. 2 Da Hsueh Rd, Shoufeng, Hualien, 97401, Taiwan
| | - E Perevedentseva
- Department of Physics, National Dong Hwa University, 1, Sec. 2 Da Hsueh Rd, Shoufeng, Hualien,, 97401, Taiwan
- P.N. Lebedev Physics Institute, Moscow, 119991, Russia
| | - S-F Hung
- Department of Life Sciences, National Dong Hwa University, 1, Sec. 2 Da Hsueh Rd, Shoufeng, Hualien, 97401, Taiwan
| | - C-L Cheng
- Department of Physics, National Dong Hwa University, 1, Sec. 2 Da Hsueh Rd, Shoufeng, Hualien,, 97401, Taiwan
| |
Collapse
|
28
|
Berger M, de Boer JD, Lutter R, Makkee M, Sterk PJ, Kemper EM, van der Zee JS. Pulmonary challenge with carbon nanoparticles induces a dose-dependent increase in circulating leukocytes in healthy males. BMC Pulm Med 2017; 17:121. [PMID: 28877711 PMCID: PMC5588713 DOI: 10.1186/s12890-017-0463-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 08/24/2017] [Indexed: 12/22/2022] Open
Abstract
Background Inhalation of particulate matter, as part of air pollution, is associated with increased morbidity and mortality. Nanoparticles (< 100 nm) are likely candidates for triggering inflammatory responses and activation of coagulation pathways because of their ability to enter lung cells and pass bronchial mucosa. We tested the hypothesis that bronchial segmental instillation of carbon nanoparticles causes inflammation and activation of coagulation pathways in healthy humans in vivo. Methods This was an investigator-initiated, randomized controlled, dose-escalation study in 26 healthy males. Participants received saline (control) in one lung segment and saline (placebo) or carbon nanoparticles 10 μg, 50 μg, or 100 μg in the contra-lateral lung. Six hours later, blood and bronchoalveolar lavage fluid (BALF) was collected for inflammation and coagulation parameters. Results There was a significant dose-dependent increase in blood neutrophils (p = 0.046) after challenge with carbon nanoparticles. The individual top-dose of 100 μg showed a significant (p = 0.05) increase in terms of percentage neutrophils in blood as compared to placebo. Conclusions This study shows a dose-dependent effect of bronchial segmental challenge with carbon nanoparticles on circulating neutrophils of healthy volunteers. This suggests that nanoparticles in the respiratory tract induce systemic inflammation. Trial registration Dutch Trial Register no. 2976. 11 July 2011. http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=2976 Electronic supplementary material The online version of this article (10.1186/s12890-017-0463-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marieke Berger
- Department of Respiratory Medicine, Academic Medical Center, University of Amsterdam, Room F-5-260, Amsterdam, The Netherlands.
| | - Johannes D de Boer
- Center for Experimental and Molecular Medicine (CEMM), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - René Lutter
- Department of Respiratory Medicine, Academic Medical Center, University of Amsterdam, Room F-5-260, Amsterdam, The Netherlands.,Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Michiel Makkee
- Catalysis Engineering, Chemical Engineering, Technical University of Delft, Delft, The Netherlands
| | - Peter J Sterk
- Department of Respiratory Medicine, Academic Medical Center, University of Amsterdam, Room F-5-260, Amsterdam, The Netherlands
| | - Elles M Kemper
- Department of Pharmacy, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jaring S van der Zee
- Department of Respiratory Medicine, Academic Medical Center, University of Amsterdam, Room F-5-260, Amsterdam, The Netherlands.,Department of Respiratory Medicine, Onze Lieve Vrouwe Gasthuis, Amsterdam, The Netherlands
| |
Collapse
|
29
|
Lankoff A, Brzoska K, Czarnocka J, Kowalska M, Lisowska H, Mruk R, Øvrevik J, Wegierek-Ciuk A, Zuberek M, Kruszewski M. A comparative analysis of in vitro toxicity of diesel exhaust particles from combustion of 1st- and 2nd-generation biodiesel fuels in relation to their physicochemical properties-the FuelHealth project. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:19357-19374. [PMID: 28674953 PMCID: PMC5556143 DOI: 10.1007/s11356-017-9561-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/14/2017] [Indexed: 05/05/2023]
Abstract
Biodiesels represent more carbon-neutral fuels and are introduced at an increasing extent to reduce emission of greenhouse gases. However, the potential impact of different types and blend concentrations of biodiesel on the toxicity of diesel engine emissions are still relatively scarce and to some extent contradictory. The objective of the present work was to compare the toxicity of diesel exhaust particles (DEP) from combustion of two 1st-generation fuels: 7% fatty acid methyl esters (FAME; B7) and 20% FAME (B20) and a 2nd-generation 20% FAME/HVO (synthetic hydrocarbon biofuel (SHB)) fuel. Our findings indicate that particulate emissions of each type of biodiesel fuel induce cytotoxic effects in BEAS-2B and A549 cells, manifested as cell death (apoptosis or necrosis), decreased protein concentrations, intracellular ROS production, as well as increased expression of antioxidant genes and genes coding for DNA damage-response proteins. The different biodiesel blend percentages and biodiesel feedstocks led to marked differences in chemical composition of the emitted DEP. The different DEPs also displayed statistically significant differences in cytotoxicity in A549 and BEAS-2B cells, but the magnitude of these variations was limited. Overall, it seems that increasing biodiesel blend concentrations from the current 7 to 20% FAME, or substituting 1st-generation FAME biodiesel with 2nd-generation HVO biodiesel (at least below 20% blends), affects the in vitro toxicity of the emitted DEP to some extent, but the biological significance of this may be moderate.
Collapse
Affiliation(s)
- Anna Lankoff
- Department of Radiobiology and Immunology, Institute of Biology, Jan Kochanowski University, 15 Swietokrzyska Str., 25-406, Kielce, Poland.
- Center for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, 16 Dorodna Str., 03-195, Warsaw, Poland.
| | - Kamil Brzoska
- Center for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, 16 Dorodna Str., 03-195, Warsaw, Poland
| | - Joanna Czarnocka
- Automotive Industry Institute, 55 Jagiellońska Str., 03-301, Warsaw, Poland
| | - Magdalena Kowalska
- Department of Radiobiology and Immunology, Institute of Biology, Jan Kochanowski University, 15 Swietokrzyska Str., 25-406, Kielce, Poland
| | - Halina Lisowska
- Department of Radiobiology and Immunology, Institute of Biology, Jan Kochanowski University, 15 Swietokrzyska Str., 25-406, Kielce, Poland
| | - Remigiusz Mruk
- Faculty of Production Engineering, Warsaw University of Life Sciences, 166 Nowoursynowska Str., 02-787, Warsaw, Poland
| | - Johan Øvrevik
- Division of Environmental Medicine Norwegian Institute of Public Health, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, 0403, Oslo, Norway
| | - Aneta Wegierek-Ciuk
- Department of Radiobiology and Immunology, Institute of Biology, Jan Kochanowski University, 15 Swietokrzyska Str., 25-406, Kielce, Poland
| | - Mariusz Zuberek
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, 141/143 Pomorska St., 90-236, Lodz, Poland
| | - Marcin Kruszewski
- Center for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, 16 Dorodna Str., 03-195, Warsaw, Poland
- Independent Laboratory of Molecular Biology, Institute of Rural Health, Jaczewskiego 2, 20-090, Lublin, Poland
| |
Collapse
|
30
|
Boonruksa P, Bello D, Zhang J, Isaacs JA, Mead JL, Woskie SR. Exposures to nanoparticles and fibers during injection molding and recycling of carbon nanotube reinforced polycarbonate composites. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2017; 27:379-390. [PMID: 27189256 DOI: 10.1038/jes.2016.26] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 04/05/2016] [Indexed: 06/05/2023]
Abstract
In this study, the characteristics of airborne particles generated during injection molding and grinding processes of carbon nanotube reinforced polycarbonate composites (CNT-PC) were investigated. Particle number concentration, size distribution, and morphology of particles emitted from the processes were determined using real-time particle sizers and transmission electron microscopy. The air samples near the operator's breathing zone were collected on filters and analyzed using scanning electron microscope for particle morphology and respirable fiber count. Processing and grinding during recycling of CNT-PC released airborne nanoparticles (NPs) with a geometric mean (GM) particle concentration from 4.7 × 103 to 1.7 × 106 particles/cm3. The ratios of the GM particle concentration measured during the injection molding process with exhaust ventilation relative to background were up to 1.3 (loading), 1.9 (melting), and 1.4 (molding), and 101.4 for grinding process without exhaust ventilation, suggesting substantial NP exposures during these processes. The estimated mass concentration was in the range of 1.6-95.2 μg/m3. Diverse particle morphologies, including NPs, NP agglomerates, particles with embedded or protruding CNTs and fibers, were observed. No free CNTs were found during any of the investigated processes. The breathing zone respirable fiber concentration during the grinding process ranged from non-detectable to 0.13 fiber/cm3. No evidence was found that the emissions were affected by the number of recycling cycles. Institution of exposure controls is recommended during these processes to limit exposures to airborne NPs and CNT-containing fibers.
Collapse
Affiliation(s)
- Pongsit Boonruksa
- Department of Work Environment, University of Massachusetts Lowell, Lowell, Massachusetts, USA
- School of Occupational Health and Safety, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Dhimiter Bello
- Department of Work Environment, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Jinde Zhang
- Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Jacqueline A Isaacs
- Department of Mechanical &Industrial Engineering, Northeastern University, Boston, Massachusetts, USA
| | - Joey L Mead
- Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Susan R Woskie
- Department of Work Environment, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| |
Collapse
|
31
|
Movia D, Di Cristo L, Alnemari R, McCarthy JE, Moustaoui H, Lamy de la Chapelle M, Spadavecchia J, Volkov Y, Prina-Mello A. The curious case of how mimicking physiological complexity in in vitro models of the human respiratory system influences the inflammatory responses. A preliminary study focused on gold nanoparticles. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/jin2.25] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Dania Movia
- Laboratory for Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute; School of Medicine, Trinity College; Dublin Ireland
| | - Luisana Di Cristo
- Laboratory for Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute; School of Medicine, Trinity College; Dublin Ireland
| | - Roaa Alnemari
- Department of Clinical Medicine; School of Medicine, Trinity College; Dublin Ireland
| | | | - Hanane Moustaoui
- CNRS, UMR 7244, CSPBAT; Laboratoire de Chimie, Structures et Propriétés de Biomateriaux et d'Agents Therapeutiques Université Paris 13, Sorbonne Paris Cité, Bobigny, France CNRS; Paris France
| | - Marc Lamy de la Chapelle
- CNRS, UMR 7244, CSPBAT; Laboratoire de Chimie, Structures et Propriétés de Biomateriaux et d'Agents Therapeutiques Université Paris 13, Sorbonne Paris Cité, Bobigny, France CNRS; Paris France
| | - Jolanda Spadavecchia
- CNRS, UMR 7244, CSPBAT; Laboratoire de Chimie, Structures et Propriétés de Biomateriaux et d'Agents Therapeutiques Université Paris 13, Sorbonne Paris Cité, Bobigny, France CNRS; Paris France
| | - Yuri Volkov
- Laboratory for Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute; School of Medicine, Trinity College; Dublin Ireland
- Department of Clinical Medicine; School of Medicine, Trinity College; Dublin Ireland
- CRANN Institute, AMBER Centre; Trinity College; Dublin Ireland
| | - Adriele Prina-Mello
- Laboratory for Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute; School of Medicine, Trinity College; Dublin Ireland
- Department of Clinical Medicine; School of Medicine, Trinity College; Dublin Ireland
- CRANN Institute, AMBER Centre; Trinity College; Dublin Ireland
| |
Collapse
|
32
|
Jia YY, Wang Q, Liu T. Toxicity Research of PM 2.5 Compositions In Vitro. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14030232. [PMID: 28245639 PMCID: PMC5369068 DOI: 10.3390/ijerph14030232] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/10/2017] [Accepted: 02/23/2017] [Indexed: 12/25/2022]
Abstract
According to the published literature, we surmise that particulate matter (PM) concentration, individually, may be less important than components in explaining health effects. PM2.5 (aerodynamic diameter < 2.5 μm) had similar cytotoxicity (e.g., cell viability reduction, oxidative damage, inflammatory effects and genetic toxicity) on different types of cells. The studies of cells are readily available for detailed mechanistic investigations, which is more appropriate for learning and comparing the mechanism caused by single or mixed ingredients coating a carbon core. No review exists that holistically examines the evidence from all components-based in vitro studies. We reviewed published studies that focus on the cytotoxicity of normal PM2.5. Those studies suggested that the toxicity of mixed compositions differs greatly from the single ingredients in mixed components and the target cells. The cytotoxic responses caused by PM2.5 components have not shown a consistent association with clear, specific health effects. The results may be beneficial for providing new targets for drugs for the treatment of PM2.5-related diseases.
Collapse
Affiliation(s)
- Yi-Yang Jia
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130021, China.
| | - Qi Wang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130021, China.
| | - Te Liu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China.
| |
Collapse
|
33
|
Wang J, Schlagenhauf L, Setyan A. Transformation of the released asbestos, carbon fibers and carbon nanotubes from composite materials and the changes of their potential health impacts. J Nanobiotechnology 2017; 15:15. [PMID: 28219381 PMCID: PMC5319145 DOI: 10.1186/s12951-017-0248-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/10/2017] [Indexed: 12/11/2022] Open
Abstract
Composite materials with fibrous reinforcement often provide superior mechanical, thermal, electrical and optical properties than the matrix. Asbestos, carbon fibers and carbon nanotubes (CNTs) have been widely used in composites with profound impacts not only on technology and economy but also on human health and environment. A large number of studies have been dedicated to the release of fibrous particles from composites. Here we focus on the transformation of the fibrous fillers after their release, especially the change of the properties essential for the health impacts. Asbestos fibers exist in a large number of products and the end-of-the-life treatment of asbestos-containing materials poses potential risks. Thermal treatment can transform asbestos to non-hazardous phase which provides opportunities of safe disposal of asbestos-containing materials by incineration, but challenges still exist. Carbon fibers with diameters in the range of 5–10 μm are not considered to be respirable, however, during the release process from composites, the carbon fibers may be split along the fiber axis, generating smaller and respirable fibers. CNTs may be exposed on the surface of the composites or released as free standing fibers, which have lengths shorter than the original ones. CNTs have high thermal stability and may be exposed after thermal treatment of the composites and still keep their structural integrity. Due to the transformation of the fibrous fillers during the release process, their toxicity may be significantly different from the virgin fibers, which should be taken into account in the risk assessment of fiber-containing composites.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Environmental Engineering, ETH Zurich, 8093, Zurich, Switzerland. .,Advanced Analytical Technologies, Empa, Ueberlandstrasse 129, 8600, Dübendorf, Switzerland.
| | - Lukas Schlagenhauf
- Institute of Environmental Engineering, ETH Zurich, 8093, Zurich, Switzerland.,Advanced Analytical Technologies, Empa, Ueberlandstrasse 129, 8600, Dübendorf, Switzerland
| | - Ari Setyan
- Institute of Environmental Engineering, ETH Zurich, 8093, Zurich, Switzerland.,Advanced Analytical Technologies, Empa, Ueberlandstrasse 129, 8600, Dübendorf, Switzerland
| |
Collapse
|
34
|
Padmore T, Stark C, Turkevich LA, Champion JA. Quantitative analysis of the role of fiber length on phagocytosis and inflammatory response by alveolar macrophages. Biochim Biophys Acta Gen Subj 2017; 1861:58-67. [PMID: 27784615 PMCID: PMC5228597 DOI: 10.1016/j.bbagen.2016.09.031] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/16/2016] [Accepted: 09/20/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND In the lung, macrophages attempt to engulf inhaled high aspect ratio pathogenic materials, secreting inflammatory molecules in the process. The inability of macrophages to remove these materials leads to chronic inflammation and disease. How the biophysical and biochemical mechanisms of these effects are influenced by fiber length remains undetermined. This study evaluates the role of fiber length on phagocytosis and molecular inflammatory responses to non-cytotoxic fibers, enabling development of quantitative length-based models. METHODS Murine alveolar macrophages were exposed to short and long populations of JM-100 glass fibers, produced by successive sedimentation and repeated crushing, respectively. Interactions between fibers and macrophages were observed using time-lapse video microscopy, and quantified by flow cytometry. Inflammatory biomolecules (TNF-α, IL-1α, COX-2, PGE2) were measured. RESULTS Uptake of short fibers occurred more readily than for long, but long fibers were more potent stimulators of inflammatory molecules. Stimulation resulted in dose-dependent secretion of inflammatory biomolecules but no cytotoxicity or strong ROS production. Linear cytokine dose-response curves evaluated with length-dependent potency models, using measured fiber length distributions, resulted in identification of critical fiber lengths that cause frustrated phagocytosis and increased inflammatory biomolecule production. CONCLUSION Short fibers played a minor role in the inflammatory response compared to long fibers. The critical lengths at which frustrated phagocytosis occurs can be quantified by fitting dose-response curves to fiber distribution data. GENERAL SIGNIFICANCE The single physical parameter of length can be used to directly assess the contributions of length against other physicochemical fiber properties to disease endpoints.
Collapse
Affiliation(s)
- Trudy Padmore
- Chemical & Biomolecular Engineering, Georgia Institute of Technology, United States
| | - Carahline Stark
- Chemical & Biomolecular Engineering, Georgia Institute of Technology, United States
| | | | - Julie A Champion
- Chemical & Biomolecular Engineering, Georgia Institute of Technology, United States.
| |
Collapse
|
35
|
Evans SJ, Clift MJD, Singh N, de Oliveira Mallia J, Burgum M, Wills JW, Wilkinson TS, Jenkins GJS, Doak SH. Critical review of the current and future challenges associated with advanced in vitro systems towards the study of nanoparticle (secondary) genotoxicity. Mutagenesis 2017; 32:233-241. [PMID: 27815329 PMCID: PMC5180173 DOI: 10.1093/mutage/gew054] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
With the need to understand the potential biological impact of the plethora of nanoparticles (NPs) being manufactured for a wide range of potential human applications, due to their inevitable human exposure, research activities in the field of NP toxicology has grown exponentially over the last decade. Whilst such increased research efforts have elucidated an increasingly significant knowledge base pertaining to the potential human health hazard posed by NPs, understanding regarding the possibility for NPs to elicit genotoxicity is limited. In vivo models are unable to adequately discriminate between the specific modes of action associated with the onset of genotoxicity. Additionally, in line with the recent European directives, there is an inherent need to move away from invasive animal testing strategies. Thus, in vitro systems are an important tool for expanding our mechanistic insight into NP genotoxicity. Yet uncertainty remains concerning their validity and specificity for this purpose due to the unique challenges presented when correlating NP behaviour in vitro and in vivo This review therefore highlights the current state of the art in advanced in vitro systems and their specific advantages and disadvantages from a NP genotoxicity testing perspective. Key indicators will be given related to how these systems might be used or improved to enhance understanding of NP genotoxicity.
Collapse
Affiliation(s)
- Stephen J Evans
- In Vitro Toxicology Group, Institute of Life Science and Centre for NanoHealth, Swansea Univeristy Medical School, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, UK
| | - Martin J D Clift
- In Vitro Toxicology Group, Institute of Life Science and Centre for NanoHealth, Swansea Univeristy Medical School, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, UK
| | - Neenu Singh
- Faculty of Health Sciences and Life Sciences, School of Allied Health Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| | - Jefferson de Oliveira Mallia
- In Vitro Toxicology Group, Institute of Life Science and Centre for NanoHealth, Swansea Univeristy Medical School, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, UK
| | - Michael Burgum
- In Vitro Toxicology Group, Institute of Life Science and Centre for NanoHealth, Swansea Univeristy Medical School, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, UK
| | - John W Wills
- Environmental Health Sciences and Research Bureau, Health Canada, 50 Colombine Driveway, Ottawa, Ontario K1A 0K9, Canada and
| | - Thomas S Wilkinson
- Microbiology and Infectious Diseases, Institute of Life Science, MRC CLIMB Centre, Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK
| | - Gareth J S Jenkins
- In Vitro Toxicology Group, Institute of Life Science and Centre for NanoHealth, Swansea Univeristy Medical School, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, UK
| | - Shareen H Doak
- In Vitro Toxicology Group, Institute of Life Science and Centre for NanoHealth, Swansea Univeristy Medical School, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, UK,
| |
Collapse
|
36
|
Tomašek I, Horwell CJ, Damby DE, Barošová H, Geers C, Petri-Fink A, Rothen-Rutishauser B, Clift MJD. Combined exposure of diesel exhaust particles and respirable Soufrière Hills volcanic ash causes a (pro-)inflammatory response in an in vitro multicellular epithelial tissue barrier model. Part Fibre Toxicol 2016; 13:67. [PMID: 27955700 PMCID: PMC5153918 DOI: 10.1186/s12989-016-0178-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 11/29/2016] [Indexed: 01/09/2023] Open
Abstract
Background There are justifiable health concerns regarding the potential adverse effects associated with human exposure to volcanic ash (VA) particles, especially when considering communities living in urban areas already exposed to heightened air pollution. The aim of this study was, therefore, to gain an imperative, first understanding of the biological impacts of respirable VA when exposed concomitantly with diesel particles. Methods A sophisticated in vitro 3D triple cell co-culture model of the human alveolar epithelial tissue barrier was exposed to either a single or repeated dose of dry respirable VA (deposited dose of 0.26 ± 0.09 or 0.89 ± 0.29 μg/cm2, respectively) from Soufrière Hills volcano, Montserrat for a period of 24 h at the air-liquid interface (ALI). Subsequently, co-cultures were exposed to co-exposures of single or repeated VA and diesel exhaust particles (DEP; NIST SRM 2975; 0.02 mg/mL), a model urban pollutant, at the pseudo-ALI. The biological impact of each individual particle type was also analysed under these precise scenarios. The cytotoxic (LDH release), oxidative stress (depletion of intracellular GSH) and (pro-)inflammatory (TNF-α, IL-8 and IL-1β) responses were assessed after the particulate exposures. The impact of VA exposure upon cell morphology, as well as its interaction with the multicellular model, was visualised via confocal laser scanning microscopy (LSM) and scanning electron microscopy (SEM), respectively. Results The combination of respirable VA and DEP, in all scenarios, incited an heightened release of TNF-α and IL-8 as well as significant increases in IL-1β, when applied at sub-lethal doses to the co-culture compared to VA exposure alone. Notably, the augmented (pro-)inflammatory responses observed were not mediated by oxidative stress. LSM supported the quantitative assessment of cytotoxicity, with no changes in cell morphology within the barrier model evident. A direct interaction of the VA with all three cell types of the multicellular system was observed by SEM. Conclusions Combined exposure of respirable Soufrière Hills VA with DEP causes a (pro-)inflammatory effect in an advanced in vitro multicellular model of the epithelial airway barrier. This finding suggests that the combined exposure to volcanic and urban particulate matter should be further investigated in order to deduce the potential human health hazard, especially how it may influence the respiratory function of susceptible individuals (i.e. with pre-existing lung diseases) in the population. Electronic supplementary material The online version of this article (doi:10.1186/s12989-016-0178-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ines Tomašek
- Institute of Hazard, Risk and Resilience, Department of Earth Sciences, Durham University, Science Labs, Durham, DH1 3LE, UK. .,BioNanomaterials, Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland.
| | - Claire J Horwell
- Institute of Hazard, Risk and Resilience, Department of Earth Sciences, Durham University, Science Labs, Durham, DH1 3LE, UK
| | - David E Damby
- Department of Earth and Environmental Sciences, Section for Mineralogy, Petrology and Geochemistry, Ludwig-Maximilians-Universität München, Theresienstrasse 41, 80333, Munich, Germany.,United States Geological Survey, 345 Middlefield Road, Menlo Park, CA, 94025, USA
| | - Hana Barošová
- BioNanomaterials, Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland
| | - Christoph Geers
- BioNanomaterials, Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland
| | - Alke Petri-Fink
- BioNanomaterials, Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland.,Chemistry Department, University of Fribourg, Chemin des Musee, CH-1700, Fribourg, Switzerland
| | - Barbara Rothen-Rutishauser
- BioNanomaterials, Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland
| | - Martin J D Clift
- BioNanomaterials, Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland. .,In Vitro Toxicology Group, Institute of Life Sciences, Swansea University Medical School, Singleton Park Campus, Swansea, SA2 8PP, Wales, UK.
| |
Collapse
|
37
|
Chen R, Hu B, Liu Y, Xu J, Yang G, Xu D, Chen C. Beyond PM2.5: The role of ultrafine particles on adverse health effects of air pollution. Biochim Biophys Acta Gen Subj 2016; 1860:2844-55. [DOI: 10.1016/j.bbagen.2016.03.019] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/04/2016] [Accepted: 03/11/2016] [Indexed: 12/29/2022]
|
38
|
Latvala S, Hedberg J, Möller L, Odnevall Wallinder I, Karlsson HL, Elihn K. Optimization of an air-liquid interface exposure system for assessing toxicity of airborne nanoparticles. J Appl Toxicol 2016; 36:1294-301. [PMID: 26935862 PMCID: PMC5069579 DOI: 10.1002/jat.3304] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 12/28/2015] [Accepted: 01/13/2016] [Indexed: 11/17/2022]
Abstract
The use of refined toxicological methods is currently needed for characterizing the risks of airborne nanoparticles (NPs) to human health. To mimic pulmonary exposure, we have developed an air-liquid interface (ALI) exposure system for direct deposition of airborne NPs on to lung cell cultures. Compared to traditional submerged systems, this allows more realistic exposure conditions for characterizing toxicological effects induced by airborne NPs. The purpose of this study was to investigate how the deposition of silver NPs (AgNPs) is affected by different conditions of the ALI system. Additionally, the viability and metabolic activity of A549 cells was studied following AgNP exposure. Particle deposition increased markedly with increasing aerosol flow rate and electrostatic field strength. The highest amount of deposited particles (2.2 μg cm(-2) ) at cell-free conditions following 2 h exposure was observed for the highest flow rate (390 ml min(-1) ) and the strongest electrostatic field (±2 kV). This was estimated corresponding to deposition efficiency of 94%. Cell viability was not affected after 2 h exposure to clean air in the ALI system. Cells exposed to AgNPs (0.45 and 0.74 μg cm(-2) ) showed significantly (P < 0.05) reduced metabolic activities (64 and 46%, respectively). Our study shows that the ALI exposure system can be used for generating conditions that were more realistic for in vitro exposures, which enables improved mechanistic and toxicological studies of NPs in contact with human lung cells.Copyright © 2016 The Authors Journal of Applied Toxicology Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Siiri Latvala
- Department of Environmental Science and Analytical Chemistry, Atmospheric Science UnitStockholm UniversitySE‐106 91StockholmSweden
| | - Jonas Hedberg
- Division of Surface and Corrosion Science, School of Chemical Science and EngineeringKTH Royal Institute of TechnologySE‐100 44StockholmSweden
| | - Lennart Möller
- Department of Biosciences and Nutrition, Unit for Analytical ToxicologyKarolinska InstituteSE‐141 83HuddingeSweden
| | - Inger Odnevall Wallinder
- Division of Surface and Corrosion Science, School of Chemical Science and EngineeringKTH Royal Institute of TechnologySE‐100 44StockholmSweden
| | - Hanna L. Karlsson
- Division of Biochemical ToxicologyKarolinska Institute, Institute of Environmental MedicineSE‐171 77StockholmSweden
| | - Karine Elihn
- Department of Environmental Science and Analytical Chemistry, Atmospheric Science UnitStockholm UniversitySE‐106 91StockholmSweden
| |
Collapse
|
39
|
A Triple Co-Culture Model of the Human Respiratory Tract to Study Immune-Modulatory Effects of Liposomes and Virosomes. PLoS One 2016; 11:e0163539. [PMID: 27685460 PMCID: PMC5042471 DOI: 10.1371/journal.pone.0163539] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 09/09/2016] [Indexed: 12/19/2022] Open
Abstract
The respiratory tract with its ease of access, vast surface area and dense network of antigen-presenting cells (APCs) represents an ideal target for immune-modulation. Bio-mimetic nanocarriers such as virosomes may provide immunomodulatory properties to treat diseases such as allergic asthma. In our study we employed a triple co-culture model of epithelial cells, macrophages and dendritic cells to simulate the human airway barrier. The epithelial cell line 16HBE was grown on inserts and supplemented with human blood monocyte-derived macrophages (MDMs) and dendritic cells (MDDCs) for exposure to influenza virosomes and liposomes. Additionally, primary human nasal epithelial cells (PHNEC) and EpCAM+ epithelial progenitor cell mono-cultures were utilized to simulate epithelium from large and smaller airways, respectively. To assess particle uptake and phenotype change, cell cultures were analyzed by flow cytometry and pro-inflammatory cytokine concentrations were measured by ELISA. All cell types internalized virosomes more efficiently than liposomes in both mono- and co-cultures. APCs like MDMs and MDDCs showed the highest uptake capacity. Virosome and liposome treatment caused a moderate degree of activation in MDDCs from mono-cultures and induced an increased cytokine production in co-cultures. In epithelial cells, virosome uptake was increased compared to liposomes in both mono- and co-cultures with EpCAM+ epithelial progenitor cells showing highest uptake capacity. In conclusion, all cell types successfully internalized both nanocarriers with virosomes being taken up by a higher proportion of cells and at a higher rate inducing limited activation of MDDCs. Thus virosomes may represent ideal carrier antigen systems to modulate mucosal immune responses in the respiratory tract without causing excessive inflammatory changes.
Collapse
|
40
|
Parveen A, Rizvi SHM, Sushma, Mahdi F, Ahmad I, Singh PP, Mahdi AA. Intranasal exposure to silica nanoparticles induces alterations in pro-inflammatory environment of rat brain. Toxicol Ind Health 2016; 33:119-132. [DOI: 10.1177/0748233715602985] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Silica nanoparticles (SiNPs) are being used increasingly in biomedical and industrial fields; however, their adverse effects on human health have not been fully investigated. In this study, we focused on some of the toxicological aspects of SiNPs by studying oxidative stress and pro-inflammatory responses in the frontal cortex, corpus striatum and hippocampus regions of rat brain. Wistar rats were exposed to SiNPs of size 80 nm and 10 nm at a dose of 150 µg/50 µL phosphate-buffered saline/rat for 30 days. The results indicated a significant increase of lipid peroxide levels and hydrogen peroxide content in various regions of the treated rat brain. Moreover, these changes were accompanied with a significant decrease in the activities of manganese superoxide dismutase, glutathione reductase, catalase and reduced glutathione in different brain regions, suggesting impaired antioxidant defence system. Furthermore, SiNPs exposure not only increased messenger RNA (mRNA) and protein expression of nuclear factor-κB (NF-κB) but also significantly increased the mRNA and protein levels of tumour necrosis factor α (TNF-α), interleukin 1β (IL-1β) and monocyte chemoattractant protein 1 (MCP-1) in different regions of rat brain. Cumulatively, these data suggest that SiNPs induced the activation of NF-κB and increased the expression of TNF-α, IL-1β and MCP-1 in rat brain, possibly via redox-sensitive cellular signalling pathways.
Collapse
Affiliation(s)
- Arshiya Parveen
- Department of Biochemistry, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | | | - Sushma
- Fibre Toxicology Division, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Farzana Mahdi
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Lucknow, Uttar Pradesh, India
| | - Iqbal Ahmad
- Fibre Toxicology Division, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Prem Prakhash Singh
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Lucknow, Uttar Pradesh, India
| | - Abbas Ali Mahdi
- Department of Biochemistry, King George’s Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
41
|
Winkler HC, Suter M, Naegeli H. Critical review of the safety assessment of nano-structured silica additives in food. J Nanobiotechnology 2016; 14:44. [PMID: 27287345 PMCID: PMC4903002 DOI: 10.1186/s12951-016-0189-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 05/03/2016] [Indexed: 12/23/2022] Open
Abstract
The development of nano-materials is viewed as one of the most important technological advances of the 21st century and new applications of nano-sized particles in the production, processing, packaging or storage of food are expected to emerge soon. This trend of growing commercialization of engineered nano-particles as part of modern diet will substantially increase oral exposure. Contrary to the proven benefits of nano-materials, however, possible adverse health effects have generally received less attention. This problem is very well illustrated by nano-structured synthetic amorphous silica (SAS), which is a common food additive since several decades although the relevant risk assessment has never been satisfactorily completed. A no observed adverse effect level of 2500 mg SAS particles/kg body weight per day was derived from the only available long-term administration study in rodents. However, extrapolation to a safe daily intake for humans is problematic due to limitations of this chronic animal study and knowledge gaps as to possible local intestinal effects of SAS particles, primarily on the gut-associated lymphoid system. This uncertainty is aggravated by digestion experiments indicating that dietary SAS particles preserve their nano-sized structure when reaching the intestinal lumen. An important aspect is whether food-borne particles like SAS alter the function of dendritic cells that, embedded in the intestinal mucosa, act as first-line sentinels of foreign materials. We conclude that nano-particles do not represent a completely new threat and that most potential risks can be assessed following procedures established for conventional chemical hazards. However, specific properties of food-borne nano-particles should be further examined and, for that purpose, in vitro tests with decision-making cells of the immune system are needed to complement existing in vivo studies.
Collapse
Affiliation(s)
- Hans Christian Winkler
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Winterthurerstrasse 260, 8057, Zurich, Switzerland
| | - Mark Suter
- Immunology Division, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057, Zurich, Switzerland
| | - Hanspeter Naegeli
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Winterthurerstrasse 260, 8057, Zurich, Switzerland.
| |
Collapse
|
42
|
García-Hevia L, Valiente R, Martín-Rodríguez R, Renero-Lecuna C, González J, Rodríguez-Fernández L, Aguado F, Villegas JC, Fanarraga ML. Nano-ZnO leads to tubulin macrotube assembly and actin bundling, triggering cytoskeletal catastrophe and cell necrosis. NANOSCALE 2016; 8:10963-10973. [PMID: 27228212 DOI: 10.1039/c6nr00391e] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Zinc is a crucial element in biology that plays chief catalytic, structural and protein regulatory roles. Excess cytoplasmic zinc is toxic to cells so there are cell-entry and intracellular buffering mechanisms that control intracellular zinc availability. Tubulin and actin are two zinc-scavenging proteins that are essential components of the cellular cytoskeleton implicated in cell division, migration and cellular architecture maintenance. Here we demonstrate how exposure to different ZnO nanostructures, namely ZnO commercial nanoparticles and custom-made ZnO nanowires, produce acute cytotoxic effects in human keratinocytes (HaCat) and epithelial cells (HeLa) triggering a dose-dependent cell retraction and collapse. We show how engulfed ZnO nanoparticles dissolve intracellularly, triggering actin filament bundling and structural changes in microtubules, transforming these highly dynamic 25 nm diameter polymers into rigid macrotubes of tubulin, severely affecting cell proliferation and survival. Our results demonstrate that nano-ZnO causes acute cytoskeletal collapse that triggers necrosis, followed by a late reactive oxygen species (ROS)-dependent apoptotic process.
Collapse
Affiliation(s)
- Lorena García-Hevia
- Grupo de Nanomedicina-IDIVAL, Facultad de Medicina, Herrera Oria s/n, 39011 Santander, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Webster CA, Di Silvio D, Devarajan A, Bigini P, Micotti E, Giudice C, Salmona M, Wheeler GN, Sherwood V, Bombelli FB. An early developmental vertebrate model for nanomaterial safety: bridging cell-based and mammalian toxicity assessment. Nanomedicine (Lond) 2016; 11:643-56. [PMID: 27003295 DOI: 10.2217/nnm.15.219] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
AIM With the rise in production of nanoparticles (NPs) for an ever-increasing number of applications, there is an urgent need to efficiently assess their potential toxicity. We propose a NP hazard assessment protocol that combines mammalian cytotoxicity data with embryonic vertebrate abnormality scoring to determine an overall toxicity index. RESULTS We observed that, after exposure to a range of NPs, Xenopus phenotypic scoring showed a strong correlation with cell based in vitro assays. Magnetite-cored NPs, negative for toxicity in vitro and Xenopus, were further confirmed as nontoxic in mice. CONCLUSION The results highlight the potential of Xenopus embryo analysis as a fast screening approach for toxicity assessment of NPs, which could be introduced for the routine testing of nanomaterials.
Collapse
Affiliation(s)
- Carl A Webster
- School of Pharmacy, University of East Anglia, Norwich, UK
| | | | | | - Paolo Bigini
- IRCCS-Istituto di Ricerche Farmacologiche 'Mario Negri', Milan, Italy
| | - Edoardo Micotti
- IRCCS-Istituto di Ricerche Farmacologiche 'Mario Negri', Milan, Italy
| | | | - Mario Salmona
- IRCCS-Istituto di Ricerche Farmacologiche 'Mario Negri', Milan, Italy
| | - Grant N Wheeler
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Victoria Sherwood
- School of Pharmacy, University of East Anglia, Norwich, UK
- Skin Tumour Laboratory, Jacqui Wood Cancer Centre, University of Dundee, Dundee, UK
| | - Francesca Baldelli Bombelli
- School of Pharmacy, University of East Anglia, Norwich, UK
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", NFMLab, Politecnico di Milano, Milano, Italy
| |
Collapse
|
44
|
Braakhuis HM, Giannakou C, Peijnenburg WJGM, Vermeulen J, van Loveren H, Park MVDZ. Simple in vitro models can predict pulmonary toxicity of silver nanoparticles. Nanotoxicology 2016; 10:770-9. [PMID: 26809698 DOI: 10.3109/17435390.2015.1127443] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To study the effects of nanomaterials after inhalation, a large number of in vitro lung models have been reported in literature. Although the in vitro models contribute to the reduction of animal studies, insufficient data exists to determine the predictive value of these in vitro models for the in vivo situation. The aim of this study was to determine the correlation between in vitro and in vivo data by comparing the dose metrics of silver nanoparticles in an in vitro lung model of increasing complexity to our previously published in vivo inhalation study. In vivo, the previously published study showed that the alveolar dose expressed as particle surface area is the most suitable dose metric to describe the toxicity of silver nanoparticles after inhalation. The results of the present study show that particle surface area is a suitable dose metric to describe the effects of silver nanoparticles when using a simple monolayer of lung epithelial cells. The dose metric shifted from particle surface area to particle mass when adding an increasing number of macrophages. In addition, a co-culture of endothelial cells, epithelial cells and macrophages on a Transwell® insert correlated less well to the in vivo results compared to the epithelial monolayer. We conclude that for studying the acute pulmonary toxicity of nanoparticles simple in vitro models using an epithelial monolayer better predict the in vivo response compared to complex co-culture models.
Collapse
Affiliation(s)
- Hedwig M Braakhuis
- a Department of Toxicogenomics , Maastricht University , Maastricht , the Netherlands .,b National Institute for Public Health and the Environment (RIVM) , Bilthoven , the Netherlands , and
| | - Christina Giannakou
- a Department of Toxicogenomics , Maastricht University , Maastricht , the Netherlands .,b National Institute for Public Health and the Environment (RIVM) , Bilthoven , the Netherlands , and
| | - Willie J G M Peijnenburg
- b National Institute for Public Health and the Environment (RIVM) , Bilthoven , the Netherlands , and.,c Centre for Environmental Sciences, University Leiden , Leiden , the Netherlands
| | - Jolanda Vermeulen
- b National Institute for Public Health and the Environment (RIVM) , Bilthoven , the Netherlands , and
| | - Henk van Loveren
- a Department of Toxicogenomics , Maastricht University , Maastricht , the Netherlands .,b National Institute for Public Health and the Environment (RIVM) , Bilthoven , the Netherlands , and
| | - Margriet V D Z Park
- b National Institute for Public Health and the Environment (RIVM) , Bilthoven , the Netherlands , and
| |
Collapse
|
45
|
Schlagenhauf L, Kianfar B, Buerki-Thurnherr T, Kuo YY, Wichser A, Nüesch F, Wick P, Wang J. Weathering of a carbon nanotube/epoxy nanocomposite under UV light and in water bath: impact on abraded particles. NANOSCALE 2015; 7:18524-18536. [PMID: 26490158 DOI: 10.1039/c5nr05387k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Weathering processes can influence the surface properties of composites with incorporated nanoparticles. These changes may affect the release behavior of nanoparticles when an abrasion process is applied. Therefore, the influence of two different weathering processes, immersion in water and exposure to UV light, on the properties of abraded particles from a carbon nanotube (CNT)/epoxy nanocomposite was investigated. The investigation included the measurement of the weathering impact on the surface chemistry of the exposed samples, the particle size of abraded particles, the quantity of exposed CNTs in the respirable part of the abraded particles, and the toxicity of abraded particles, measured by in vitro toxicity tests using the THP-1 monocyte-derived macrophages. The results showed that weathering by immersion in water had no influence on the properties of abraded particles. The exposure to UV light caused a degradation of the epoxy on the surface, followed by delamination of an approx. 2.5 μm thick layer. An increased quantity of exposed CNTs in abraded particles was not found; on the contrary, longer UV exposure times decreased the released fraction of CNTs from 0.6% to 0.4%. The toxicity tests revealed that abraded particles from the nanocomposites did not induce additional acute cytotoxic effects compared to particles from the neat epoxy.
Collapse
Affiliation(s)
- Lukas Schlagenhauf
- Laboratory for Functional Polymers, Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Boonruksa P, Bello D, Zhang J, Isaacs JA, Mead JL, Woskie SR. Characterization of Potential Exposures to Nanoparticles and Fibers during Manufacturing and Recycling of Carbon Nanotube Reinforced Polypropylene Composites. ANNALS OF OCCUPATIONAL HYGIENE 2015; 60:40-55. [PMID: 26447230 DOI: 10.1093/annhyg/mev073] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 08/04/2015] [Indexed: 12/30/2022]
Abstract
Carbon nanotube (CNT) polymer composites are widely used as raw materials in multiple industries because of their excellent properties. This expansion, however, is accompanied by realistic concerns over potential release of CNTs and associated nanoparticles during the manufacturing, recycling, use, and disposal of CNT composite products. Such data continue to be limited, especially with regards to post-processing of CNT-enabled products, recycling and handling of nanowaste, and end-of-life disposal. This study investigated for the first time airborne nanoparticle and fibers exposures during injection molding and recycling of CNT polypropylene composites (CNT-PP) relative to that of PP. Exposure characterization focused on source emissions during loading, melting, molding, grinding, and recycling of scrap material over 20 cycles and included real-time characterization of total particle number concentration and size distribution, nanoparticle and fiber morphology, and fiber concentrations near the operator. Total airborne nanoparticle concentration emitted during loading, melting, molding, and grinding of CNT-PP had geometric mean ranging from 1.2 × 10(3) to 4.3 × 10(5) particles cm(-3), with the highest exposures being up to 2.9 and 300.7 times above the background for injection molding and grinding, respectively. Most of these emissions were similar to PP synthesis. Melting and molding of CNT-PP and PP produced exclusively nanoparticles. Grinding of CNT-PP but not PP generated larger particles with encapsulated CNTs, particles with CNT extrusions, and respirable fiber (up to 0.2 fibers cm(-3)). No free CNTs were found in any of the processes. The number of recycling runs had no significant impact on exposures. Further research into the chemical composition of the emitted nanoparticles is warranted. In the meanwhile, exposure controls should be instituted during processing and recycling of CNT-PP.
Collapse
Affiliation(s)
- Pongsit Boonruksa
- 1.Department of Work Environment, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Dhimiter Bello
- 1.Department of Work Environment, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Jinde Zhang
- 2.Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Jacqueline A Isaacs
- 3.Department of Mechanical & Industrial Engineering, Northeastern University, Boston, MA 02115, USA
| | - Joey L Mead
- 2.Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Susan R Woskie
- 1.Department of Work Environment, University of Massachusetts Lowell, Lowell, MA 01854, USA
| |
Collapse
|
47
|
Borgie M, Dagher Z, Ledoux F, Verdin A, Cazier F, Martin P, Hachimi A, Shirali P, Greige-Gerges H, Courcot D. Comparison between ultrafine and fine particulate matter collected in Lebanon: Chemical characterization, in vitro cytotoxic effects and metabolizing enzymes gene expression in human bronchial epithelial cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 205:250-260. [PMID: 26093079 DOI: 10.1016/j.envpol.2015.05.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/22/2015] [Accepted: 05/28/2015] [Indexed: 06/04/2023]
Abstract
During the last few years, the induction of toxicological mechanisms by atmospheric ultrafine particles (UFP) has become one of the most studied topics in toxicology and a subject of huge debates. Fine particles (FP) and UFP collected at urban and rural sites in Lebanon were studied for their chemical composition and toxicological effects. UFP were found more enriched in trace elements, secondary inorganic ions, total carbon and organic compounds than FP. For toxicological analysis, BEAS-2B cells were exposed for 24, 48 and 72 h to increasing concentrations of FP, water-UFP suspension (UFPw) and UFP organic extract (UFPorg). Our findings showed that UFP caused earlier alterations of mitochondrial metabolism and membrane integrity from the lowest concentrations. Moreover, a significant induction of CYP1A1, CYP1B1 and AhRR genes expression was showed after cells exposure to UFPorg and to a lesser extent to UFPw and FP samples.
Collapse
Affiliation(s)
- Mireille Borgie
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA 4492, Maison de la Recherche en Environnement Industriel, Université du Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140 Dunkerque, France; Bioactive Molecules Research Group, Doctoral School of Sciences and Technologies, Lebanese University, Beirut, Lebanon
| | - Zeina Dagher
- Bioactive Molecules Research Group, Doctoral School of Sciences and Technologies, Lebanese University, Beirut, Lebanon; Department of Biology, Faculty of Sciences-2, Lebanese University, Beirut, Lebanon
| | - Frédéric Ledoux
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA 4492, Maison de la Recherche en Environnement Industriel, Université du Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140 Dunkerque, France
| | - Anthony Verdin
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA 4492, Maison de la Recherche en Environnement Industriel, Université du Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140 Dunkerque, France
| | - Fabrice Cazier
- Centre Commun de Mesures, Maison de la Recherche en Environnement Industriel 1, Université du Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140 Dunkerque, France
| | - Perrine Martin
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA 4492, Maison de la Recherche en Environnement Industriel, Université du Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140 Dunkerque, France
| | - Adam Hachimi
- Micropolluants Technologie, 4 Rue de Bort Les Orgues, 57070 Saint Julien Les Metz, France
| | - Pirouz Shirali
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA 4492, Maison de la Recherche en Environnement Industriel, Université du Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140 Dunkerque, France
| | - Hélène Greige-Gerges
- Bioactive Molecules Research Group, Doctoral School of Sciences and Technologies, Lebanese University, Beirut, Lebanon; Department of Chemistry and Biochemistry, Faculty of Sciences-2, Lebanese University, Beirut, Lebanon
| | - Dominique Courcot
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA 4492, Maison de la Recherche en Environnement Industriel, Université du Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140 Dunkerque, France.
| |
Collapse
|
48
|
Braakhuis HM, Kloet SK, Kezic S, Kuper F, Park MVDZ, Bellmann S, van der Zande M, Le Gac S, Krystek P, Peters RJB, Rietjens IMCM, Bouwmeester H. Progress and future of in vitro models to study translocation of nanoparticles. Arch Toxicol 2015; 89:1469-95. [PMID: 25975987 PMCID: PMC4551544 DOI: 10.1007/s00204-015-1518-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 04/01/2015] [Indexed: 10/28/2022]
Abstract
The increasing use of nanoparticles in products likely results in increased exposure of both workers and consumers. Because of their small size, there are concerns that nanoparticles unintentionally cross the barriers of the human body. Several in vivo rodent studies show that, dependent on the exposure route, time, and concentration, and their characteristics, nanoparticles can cross the lung, gut, skin, and placental barrier. This review aims to evaluate the performance of in vitro models that mimic the barriers of the human body, with a focus on the lung, gut, skin, and placental barrier. For these barriers, in vitro models of varying complexity are available, ranging from single-cell-type monolayer to multi-cell (3D) models. Only a few studies are available that allow comparison of the in vitro translocation to in vivo data. This situation could change since the availability of analytical detection techniques is no longer a limiting factor for this comparison. We conclude that to further develop in vitro models to be used in risk assessment, the current strategy to improve the models to more closely mimic the human situation by using co-cultures of different cell types and microfluidic approaches to better control the tissue microenvironments are essential. At the current state of the art, the in vitro models do not yet allow prediction of absolute transfer rates but they do support the definition of relative transfer rates and can thus help to reduce animal testing by setting priorities for subsequent in vivo testing.
Collapse
Affiliation(s)
- Hedwig M. Braakhuis
- />Department of Toxicogenomics, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
- />Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven, The Netherlands
| | - Samantha K. Kloet
- />Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, The Netherlands
| | - Sanja Kezic
- />AMC, Coronel Institute of Occupational Health, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Frieke Kuper
- />TNO, Utrechtseweg 48, 3704 HE Zeist, The Netherlands
| | - Margriet V. D. Z. Park
- />Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven, The Netherlands
| | | | | | - Séverine Le Gac
- />UT BIOS, Lab on a Chip Group, MESA+ Institute for Nanotechnology, MIRA Institute for Biomedical Engineering and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Petra Krystek
- />Philips Innovation Services, High Tech Campus 11, 5656 AE Eindhoven, The Netherlands
| | - Ruud J. B. Peters
- />RIKILT- Wageningen UR, PO Box 230, 6700 AE Wageningen, The Netherlands
| | - Ivonne M. C. M. Rietjens
- />Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, The Netherlands
| | - Hans Bouwmeester
- />RIKILT- Wageningen UR, PO Box 230, 6700 AE Wageningen, The Netherlands
| |
Collapse
|
49
|
Zhou EH, Watson C, Pizzo R, Cohen J, Dang Q, Ferreira de Barros PM, Park CY, Chen C, Brain JD, Butler JP, Ruberti JW, Fredberg JJ, Demokritou P. Assessing the impact of engineered nanoparticles on wound healing using a novel in vitro bioassay. Nanomedicine (Lond) 2015; 9:2803-15. [PMID: 24823434 DOI: 10.2217/nnm.14.40] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM As engineered nanoparticles (ENPs) increasingly enter consumer products, humans become increasingly exposed. The first line of defense against ENPs is the epithelium, the integrity of which can be compromised by wounds induced by trauma, infection, or surgery, but the implications of ENPs on wound healing are poorly understood. MATERIALS & METHODS Herein, we developed an in vitro assay to assess the impact of ENPs on the wound healing of cells from human cornea. RESULTS & DISCUSSION We show that industrially relevant ENPs impeded wound healing and cellular migration in a manner dependent on the composition, dose and size of the ENPs as well as cell type. CuO and ZnO ENPs impeded both viability and wound healing for both fibroblasts and epithelial cells. Carboxylated polystyrene ENPs retarded wound healing of corneal fibroblasts without affecting viability. CONCLUSION Our results highlight the impact of ENPs on cellular wound healing and provide useful tools for studying the physiological impact of ENPs.
Collapse
Affiliation(s)
- Enhua H Zhou
- Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Bachler G, Losert S, Umehara Y, von Goetz N, Rodriguez-Lorenzo L, Petri-Fink A, Rothen-Rutishauser B, Hungerbuehler K. Translocation of gold nanoparticles across the lung epithelial tissue barrier: Combining in vitro and in silico methods to substitute in vivo experiments. Part Fibre Toxicol 2015; 12:18. [PMID: 26116549 PMCID: PMC4483206 DOI: 10.1186/s12989-015-0090-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 05/14/2015] [Indexed: 11/16/2022] Open
Abstract
Background The lung epithelial tissue barrier represents the main portal for entry of inhaled nanoparticles (NPs) into the systemic circulation. Thus great efforts are currently being made to determine adverse health effects associated with inhalation of NPs. However, to date very little is known about factors that determine the pulmonary translocation of NPs and their subsequent distribution to secondary organs. Methods A novel two-step approach to assess the biokinetics of inhaled NPs is presented. In a first step, alveolar epithelial cellular monolayers (CMLs) at the air-liquid interface (ALI) were exposed to aerosolized NPs to determine their translocation kinetics across the epithelial tissue barrier. Then, in a second step, the distribution to secondary organs was predicted with a physiologically based pharmacokinetic (PBPK) model. Monodisperse, spherical, well-characterized, negatively charged gold nanoparticles (AuNP) were used as model NPs. Furthermore, to obtain a comprehensive picture of the translocation kinetics in different species, human (A549) and mouse (MLE-12) alveolar epithelial CMLs were exposed to ionic gold and to various doses (i.e., 25, 50, 100, 150, 200 ng/cm2) and sizes (i.e., 2, 7, 18, 46, 80 nm) of AuNP, and incubated post-exposure for different time periods (i.e., 0, 2, 8, 24, 48, 72 h). Results The translocation kinetics of the AuNP across A549 and MLE-12 CMLs was similar. The translocated fraction was (1) inversely proportional to the particle size, and (2) independent of the applied dose (up to 100 ng/cm2). Furthermore, supplementing the A549 CML with two immune cells, i.e., macrophages and dendritic cells, did not significantly change the amount of translocated AuNP. Comparison of the measured translocation kinetics and modeled biodistribution with in vivo data from literature showed that the combination of in vitro and in silico methods can accurately predict the in vivo biokinetics of inhaled/instilled AuNP. Conclusion Our approach to combine in vitro and in silico methods for assessing the pulmonary translocation and biodistribution of NPs has the potential to replace short-term animal studies which aim to assess the pulmonary absorption and biodistribution of NPs, and to serve as a screening tool to identify NPs of special concern. Electronic supplementary material The online version of this article (doi:10.1186/s12989-015-0090-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gerald Bachler
- ETH Zürich, Institute for Chemical and Bioengineering, 8093, Zürich, Switzerland. .,University of Fribourg, Adolphe Merkle Institute, 1700, Fribourg, Switzerland.
| | - Sabrina Losert
- ETH Zürich, Institute for Chemical and Bioengineering, 8093, Zürich, Switzerland. .,EMPA, Swiss Federal Laboratories for Material Science and Technology, 8600, Dübendorf, Switzerland.
| | - Yuki Umehara
- University of Fribourg, Adolphe Merkle Institute, 1700, Fribourg, Switzerland.
| | - Natalie von Goetz
- ETH Zürich, Institute for Chemical and Bioengineering, 8093, Zürich, Switzerland.
| | | | - Alke Petri-Fink
- University of Fribourg, Adolphe Merkle Institute, 1700, Fribourg, Switzerland.
| | | | - Konrad Hungerbuehler
- ETH Zürich, Institute for Chemical and Bioengineering, 8093, Zürich, Switzerland.
| |
Collapse
|