1
|
Desmarini D, Truong D, Sethiya P, Liu G, Bowring B, Jessen H, Dinh H, Cain AK, Thompson PE, Djordjevic JT. Synthesis of a New Purine Analogue Class with Antifungal Activity and Improved Potency against Fungal IP 3-4K. ACS Infect Dis 2025; 11:940-953. [PMID: 40164150 PMCID: PMC11997995 DOI: 10.1021/acsinfecdis.4c00975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 04/02/2025]
Abstract
New antifungals are urgently needed to treat deadly fungal infections. Targeting the fungal inositol polyphosphate kinases IP3-4K (Arg1) and IP6K (Kcs1) is a promising strategy as it has been validated genetically to be crucial for fungal virulence but never pharmacologically. We now report the synthesis of DT-23, an analogue of N2-(m-trifluorobenzylamino)-N6-(p-nitrobenzylamino)purine (TNP), and demonstrate that it more potently inhibits recombinant Arg1 from the priority pathogen Cryptococcus neoformans (Cn) (IC50 = 0.6 μM) than previous analogues (IC50 = 10-30 μM). DT-23 also inhibits recombinant Kcs1 with similar potency (IC50 = 0.68 μM) and Arg1 and Kcs1 activity in vivo. Unlike previous analogues, DT-23 inhibits fungal growth (MIC50 = 15 μg/mL) and only 1.5 μg/mL synergizes with Amphotericin B to kill Cn in vitro. DT-23/Amphotericin B is also more protective against Cn infection in an insect model compared to each drug alone. Transcription profiling shows that DT-23 impacts early stages in IP synthesis and cellular functions impacted by IPK gene deletion, consistent with its targeted effect. This study establishes the first pharmacological link between inhibiting IPK activity and antifungal activity, providing tools for studying IPK function and a foundation to potentially develop a new class of antifungal drug.
Collapse
Affiliation(s)
- Desmarini Desmarini
- Centre
for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
- Sydney
Institute for Infectious Diseases, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Daniel Truong
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Pooja Sethiya
- Centre
for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
- Sydney
Institute for Infectious Diseases, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Guizhen Liu
- Institute
of Organic Chemistry, University of Freiburg, Albertstrasse 21, 79104 Freiburg i.B, Germany
- CIBSS-Centre
for Integrative Biological Signaling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg im Breisgau, Germany
| | - Bethany Bowring
- Centre
for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
- Sydney
Institute for Infectious Diseases, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Henning Jessen
- Institute
of Organic Chemistry, University of Freiburg, Albertstrasse 21, 79104 Freiburg i.B, Germany
- CIBSS-Centre
for Integrative Biological Signaling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg im Breisgau, Germany
| | - Hue Dinh
- ARC
Centre
of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, North Ryde, NSW 2019, Australia
| | - Amy K. Cain
- ARC
Centre
of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, North Ryde, NSW 2019, Australia
| | - Philip E. Thompson
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Julianne T. Djordjevic
- Centre
for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
- Sydney
Institute for Infectious Diseases, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
- Westmead
Hospital, Westmead, NSW 2145, Australia
| |
Collapse
|
2
|
Ng MY, Wang H, Zhang H, Prucker I, Perera L, Goncharova E, Wamiru A, Jessen HJ, Stanley RE, Shears SB, Luo J, O'Keefe BR, Wilson BAP. Biochemical and biophysical characterization of inositol-tetrakisphosphate 1-kinase inhibitors. J Biol Chem 2025; 301:108274. [PMID: 39922495 PMCID: PMC11927698 DOI: 10.1016/j.jbc.2025.108274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/23/2025] [Accepted: 01/25/2025] [Indexed: 02/10/2025] Open
Abstract
Inositol phosphates (IPs) and inositol pyrophosphate play critical roles in many biological processes such as signaling molecules in pathways responsible for cellular functions involved in growth and maintenance. The biosynthesis of IPs is carried out by a family of inositol phosphate kinases. In mammals, Inositol tetrakisphosphate kinase-1 (ITPK1) phosphorylates inositol-1,3,4-trisphosphate (Ins(1,3,4)P3) and inositol-3,4,5,6-tetrakisphosphate (IP4), generating inositol-1,3,4,5,6-pentakisphosphate (IP5), which can be further phosphorylated to become inositol hexakisphosphate (IP6). ITPK1 also possesses phosphatase activity that can convert IP5 back to IP4; therefore, ITPK1 may serve as a regulatory step in IP6 production. IP6 utilization has been implicated in processes fundamental to cellular sustainability that are severely perturbed in many disease states including RNA editing, DNA repair, chromatin structure organization, and ubiquitin ligation. Therefore, ITPK1, with no known inhibitors in the literature, is a potential molecular target for modulating important processes in several human diseases. By independently coupling ITPK1 phosphatase and kinase activities to luciferase activity, we have developed and used biochemical high-throughput assays to discover eight ITPK1 inhibitors. Further analysis revealed that three of these leads inhibit ITPK1 in an ATP-competitive manner, with low micromolar to nanomolar affinities. We further demonstrate that the most potent ITPK1 inhibitor can regulate cellular ITPK1 activity. We determined the crystal structure of ITPK1 in complex with this inhibitor at a resolution of 2.25 Å. This work provides insight into the design of potential next-generation inhibitors.
Collapse
Affiliation(s)
- Martin Y Ng
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Huanchen Wang
- Molecular and Cellular Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| | - Haibo Zhang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Isabel Prucker
- Institute of Organic Chemistry, University of Freiburg, Freiburg, Germany
| | - Lalith Perera
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| | - Ekaterina Goncharova
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA; Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Antony Wamiru
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Henning J Jessen
- Institute of Organic Chemistry, University of Freiburg, Freiburg, Germany; Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Robin E Stanley
- Molecular and Cellular Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| | - Stephen B Shears
- Molecular and Cellular Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| | - Ji Luo
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA.
| | - Barry R O'Keefe
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA; Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, Maryland, USA.
| | - Brice A P Wilson
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA.
| |
Collapse
|
3
|
Pullagurla NJ, Shome S, Liu G, Jessen HJ, Laha D. Orchestration of phosphate homeostasis by the ITPK1-type inositol phosphate kinase in the liverwort Marchantia polymorpha. PLANT PHYSIOLOGY 2025; 197:kiae454. [PMID: 39190827 DOI: 10.1093/plphys/kiae454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/25/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024]
Abstract
Land plants have evolved sophisticated sensing mechanisms and signaling pathways to adapt to phosphate-limited environments. While molecular players contributing to these adaptations in flowering plants have been described, how nonvascular bryophytes regulate phosphate (Pi) homeostasis remained largely unknown. In this study, we present findings that both male and female plants of the liverwort Marchantia polymorpha respond to altered phosphate availability through substantial developmental changes. We show that the second messenger inositol pyrophosphates (PP-InsPs) respond more quickly to changes in cellular Pi status than the lower inositol phosphates, highlighting a functional relationship between PP-InsP and Pi homeostasis in M. polymorpha. To further corroborate the possible involvement of PP-InsP in Pi homeostasis, we characterized M. polymorpha INOSITOL (1,3,4) TRIPHOSPHATE 5/6 KINASE1 (MpITPK1) that phosphorylates InsP6 to generate InsP7 both in vitro and in vivo. Consistent with the role of PP-InsPs in Pi homeostasis, M. polymorpha lines with enhanced MpITPK1 expression leading to the accumulation of 5-InsP7 and an InsP8 isomer, exhibit altered expression of phosphate starvation induced (PSI) genes and display attenuated responses to low phosphate. The characterization of MpPHO1-deficient plants with dramatically increased levels of 1,5-InsP8 further supports the role of PP-InsP in Pi homeostasis in this liverwort species. Notably, our study unveiled that MpITPK1 rescues the deregulated Pi homeostasis in Arabidopsis (Arabidopsis thaliana) ITPK1-deficient plants, suggesting that liverwort and eudicots share a functional ITPK1 homolog. In summary, our study provides insights into the regulation of Pi homeostasis by ITPK1-derived PP-InsPs in M. polymorpha.
Collapse
Affiliation(s)
- Naga Jyothi Pullagurla
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science (IISc), Bengaluru 560012, India
| | - Supritam Shome
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science (IISc), Bengaluru 560012, India
| | - Guizhen Liu
- Institute of Organic Chemistry & CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg 79104, Germany
| | - Henning J Jessen
- Institute of Organic Chemistry & CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg 79104, Germany
| | - Debabrata Laha
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science (IISc), Bengaluru 560012, India
| |
Collapse
|
4
|
Fedeli V, Wang J, Cantagrel V, Saiardi A. Human plasma inositol hexakisphosphate (InsP 6 ) phosphatase identified as the Multiple Inositol Polyphosphate Phosphatase 1 (MINPP1). MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001390. [PMID: 39665074 PMCID: PMC11633940 DOI: 10.17912/micropub.biology.001390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 12/13/2024]
Abstract
Inositol hexakisphosphate (InsP 6 ), also known as phytic acid, is a potent chelator of bivalent cations. Intracellular InsP 6 molecules are associated with magnesium. Calcium is the prevalent bivalent cation outside the cell and its association with InsP 6 could lead to the formation of insoluble complexes. To avoid the formation of dangerous InsP 6 /Calcium precipitates in the bloodstream, mammals must possess a robust InsP 6 phosphatase in their plasma. Here we identify the Multiple Inositol Polyphosphate Phosphatase 1 ( MINPP1 ) as the InsP 6 phosphatase present in human plasma.
Collapse
Affiliation(s)
- Valeria Fedeli
- Laboratory for Molecular Cell Biology, London WC1E 6BT, UK, University College London, London, England, United Kingdom
| | - Jingyi Wang
- Laboratory for Molecular Cell Biology, London WC1E 6BT, UK, University College London, London, England, United Kingdom
| | - Vincent Cantagrel
- Developmental Brain Disorders Laboratory, Université Paris Cité, INSERM UMR1163, Imagine Institute, 75015, Paris, France, Université Paris Cité, Paris, Île-de-France, France
| | - Adolfo Saiardi
- Laboratory for Molecular Cell Biology, London WC1E 6BT, UK, University College London, London, England, United Kingdom
| |
Collapse
|
5
|
Kim S, Bhandari R, Brearley CA, Saiardi A. The inositol phosphate signalling network in physiology and disease. Trends Biochem Sci 2024; 49:969-985. [PMID: 39317578 DOI: 10.1016/j.tibs.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/29/2024] [Accepted: 08/19/2024] [Indexed: 09/26/2024]
Abstract
Combinatorial substitution of phosphate groups on the inositol ring gives rise to a plethora of inositol phosphates (InsPs) and inositol pyrophosphates (PP-InsPs). These small molecules constitute an elaborate metabolic and signalling network that influences nearly every cellular function. This review delves into the knowledge accumulated over the past decades regarding the biochemical principles and significance of InsP metabolism. We focus on the biological actions of InsPs in mammals, with an emphasis on recent findings regarding specific target proteins. We further discuss the roles of InsP metabolism in contributing to physiological homeostasis and pathological conditions. A deeper understanding of InsPs and their metabolic pathways holds the potential to address unresolved questions and propel advances towards therapeutic applications.
Collapse
Affiliation(s)
- Seyun Kim
- Department of Biological Sciences, KAIST Stem Cell Center, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Rashna Bhandari
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad 500039, India.
| | - Charles A Brearley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| | - Adolfo Saiardi
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
6
|
Ekramzadeh M, Kalantar-Zadeh K, Kopple JD. The Relevance of Phytate for the Treatment of Chronic Kidney Disease. Clin J Am Soc Nephrol 2024; 19:1341-1355. [PMID: 39110986 PMCID: PMC11469791 DOI: 10.2215/cjn.0000000000000558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/30/2024] [Indexed: 10/13/2024]
Abstract
Diets high in plant-based foods are commonly recommended for people with CKD. One putative advantage of these diets is reduced intestinal phosphate absorption. This effect has been ascribed to phytic acid (myoinositol hexaphosphoric acid) and its anion, phytate, that are present in many plant foods, particularly in the seeds, nuts, grains, and fruits of plants. This article reviews the structure and many actions of phytate with particular reference to its potential effects on people with CKD. Phytate binds avidly to and can reduce gastrointestinal absorption of the phosphate anion and many macrominerals and trace elements including iron, zinc, calcium, and magnesium. This has led some opinion leaders to label phytate as an anti-nutrient. The human intestine lacks phytase; hence, phytate is essentially not degraded in the small intestine. A small amount of phytate is absorbed from the small intestine, although phytate bound to phosphate is poorly absorbed. Clinical trials in maintenance hemodialysis patients indicate that intravenously administered phytate may decrease hydroxyapatite formation, vascular calcification, and calciphylaxis. Orally administered phytate or in vitro studies indicate that phytate may also reduce osteoporosis, urinary calcium calculi formation, and dental plaque formation. Phytate seems to have anti-inflammatory and antioxidant effects, at least partly because of its ability to chelate iron. Other potential therapeutic roles for phytate, not definitively established, include suppression of cancer formation, reduction in cognitive decline that occurs with aging, and amelioration of certain neurodegenerative diseases and several gastrointestinal and metabolic disorders. These latter potential benefits of phytate are supported by cell or animal research or observational studies in humans. Many of the above disorders are particularly common in patients with CKD. Definitive clinical trials to identify potential therapeutic benefits of phytate in patients with CKD are clearly warranted.
Collapse
Affiliation(s)
- Maryam Ekramzadeh
- David Geffen School of Medicine at UCLA and the UCLA Fielding School of Public Health, Los Angeles, CA
| | - Kamyar Kalantar-Zadeh
- David Geffen School of Medicine at UCLA and the UCLA Fielding School of Public Health, Los Angeles, CA
| | - Joel D. Kopple
- David Geffen School of Medicine at UCLA and the UCLA Fielding School of Public Health, Los Angeles, CA
| |
Collapse
|
7
|
Kadhim IH, Oluremi AS, Chhetri BP, Ghosh A, Ali N. Encapsulation of Inositol Hexakisphosphate with Chitosan via Gelation to Facilitate Cellular Delivery and Programmed Cell Death in Human Breast Cancer Cells. Bioengineering (Basel) 2024; 11:931. [PMID: 39329673 PMCID: PMC11429465 DOI: 10.3390/bioengineering11090931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Inositol hexakisphosphate (InsP6) is the most abundant inositol polyphosphate both in plant and animal cells. Exogenous InsP6 is known to inhibit cell proliferation and induce apoptosis in cancerous cells. However, cellular entry of exogenous InsP6 is hindered due to the presence of highly negative charge on this molecule. Therefore, to enhance the cellular delivery of InsP6 in cancerous cells, InsP6 was encapsulated by chitosan (CS), a natural polysaccharide, via the ionic gelation method. Our hypothesis is that encapsulated InsP6 will enter the cell more efficiently to trigger its apoptotic effects. The incorporation of InsP6 into CS was optimized by varying the ratios of the two and confirmed by InsP6 analysis via polyacrylamide gel electrophoresis (PAGE) and atomic absorption spectrophotometry (AAS). The complex was further characterized by Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR) for physicochemical changes. The data indicated morphological changes and changes in the spectral properties of the complex upon encapsulation. The encapsulated InsP6 enters human breast cancer MCF-7 cells more efficiently than free InsP6 and triggers apoptosis via a mechanism involving the production of reactive oxygen species (ROS). This work has potential for developing cancer therapeutic applications utilizing natural compounds that are likely to overcome the severe toxic effects associated with synthetic chemotherapeutic drugs.
Collapse
Affiliation(s)
- Ilham H Kadhim
- Department of Biology, Donaghey College of Science, Engineering, Technology, and Mathematics, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, AR 72204, USA
| | - Adeolu S Oluremi
- Department of Biology, Donaghey College of Science, Engineering, Technology, and Mathematics, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, AR 72204, USA
| | - Bijay P Chhetri
- Department of Chemistry, Donaghey College of Science, Engineering, Technology, and Mathematics, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, AR 72204, USA
| | - Anindya Ghosh
- Department of Chemistry, Donaghey College of Science, Engineering, Technology, and Mathematics, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, AR 72204, USA
| | - Nawab Ali
- Department of Biology, Donaghey College of Science, Engineering, Technology, and Mathematics, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, AR 72204, USA
| |
Collapse
|
8
|
Borghi F, Azevedo C, Johnson E, Burden JJ, Saiardi A. A mammalian model reveals inorganic polyphosphate channeling into the nucleolus and induction of a hyper-condensate state. CELL REPORTS METHODS 2024; 4:100814. [PMID: 38981472 PMCID: PMC11294840 DOI: 10.1016/j.crmeth.2024.100814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/23/2024] [Accepted: 06/13/2024] [Indexed: 07/11/2024]
Abstract
Inorganic polyphosphate (polyP) is a ubiquitous polymer that controls fundamental processes. To overcome the absence of a genetically tractable mammalian model, we developed an inducible mammalian cell line expressing Escherichia coli polyphosphate kinase 1 (EcPPK1). Inducing EcPPK1 expression prompted polyP synthesis, enabling validation of polyP analytical methods. Virtually all newly synthesized polyP accumulates within the nucleus, mainly in the nucleolus. The channeled polyP within the nucleolus results in the redistribution of its markers, leading to altered rRNA processing. Ultrastructural analysis reveals electron-dense polyP structures associated with a hyper-condensed nucleolus resulting from an exacerbation of the liquid-liquid phase separation (LLPS) phenomena controlling this membraneless organelle. The selective accumulation of polyP in the nucleoli could be interpreted as an amplification of polyP channeling to where its physiological function takes place. Indeed, quantitative analysis of several mammalian cell lines confirms that endogenous polyP accumulates within the nucleolus.
Collapse
Affiliation(s)
- Filipy Borghi
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Cristina Azevedo
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Errin Johnson
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Jemima J Burden
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Adolfo Saiardi
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
9
|
De Vos WM, Nguyen Trung M, Davids M, Liu G, Rios-Morales M, Jessen H, Fiedler D, Nieuwdorp M, Bui TPN. Phytate metabolism is mediated by microbial cross-feeding in the gut microbiota. Nat Microbiol 2024; 9:1812-1827. [PMID: 38858593 DOI: 10.1038/s41564-024-01698-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 04/04/2024] [Indexed: 06/12/2024]
Abstract
Dietary intake of phytate has various reported health benefits. Previous work showed that the gut microbiota can convert phytate to short-chain fatty acids (SCFAs), but the microbial species and metabolic pathway are unclear. Here we identified Mitsuokella jalaludinii as an efficient phytate degrader, which works synergistically with Anaerostipes rhamnosivorans to produce the SCFA propionate. Analysis of published human gut taxonomic profiles revealed that Mitsuokella spp., in particular M. jalaludinii, are prevalent in human gut microbiomes. NMR spectroscopy using 13C-isotope labelling, metabolomic and transcriptomic analyses identified a complete phytate degradation pathway in M. jalaludinii, including production of the intermediate Ins(2)P/myo-inositol. The major end product, 3-hydroxypropionate, was converted into propionate via a synergistic interaction with Anaerostipes rhamnosivorans both in vitro and in mice. Upon [13C6]phytate administration, various 13C-labelled components were detected in mouse caecum in contrast with the absence of [13C6] InsPs or [13C6]myo-inositol in plasma. Caco-2 cells incubated with co-culture supernatants exhibited improved intestinal barrier integrity. These results suggest that the microbiome plays a major role in the metabolism of this phytochemical and that its fermentation to propionate by M. jalaludinii and A. rhamnosivorans may contribute to phytate-driven health benefits.
Collapse
Affiliation(s)
- Willem M De Vos
- Laboratory of Microbiology, Wageningen University, Wageningen, the Netherlands
| | - Minh Nguyen Trung
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Institute of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Mark Davids
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, the Netherlands
| | - Guizhen Liu
- Institute of Organic Chemistry & Centre for Integrative Biological Signaling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| | - Melany Rios-Morales
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, the Netherlands
| | - Henning Jessen
- Institute of Organic Chemistry & Centre for Integrative Biological Signaling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Institute of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Max Nieuwdorp
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, the Netherlands
- Department of Surgery, Spaarne Hospital, Hoofddorp, the Netherlands
| | - Thi Phuong Nam Bui
- Laboratory of Microbiology, Wageningen University, Wageningen, the Netherlands.
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, the Netherlands.
| |
Collapse
|
10
|
Li X, Kirkpatrick RB, Wang X, Tucker CJ, Shukla A, Jessen HJ, Wang H, Shears SB, Gu C. Homeostatic coordination of cellular phosphate uptake and efflux requires an organelle-based receptor for the inositol pyrophosphate IP8. Cell Rep 2024; 43:114316. [PMID: 38833370 PMCID: PMC11284862 DOI: 10.1016/j.celrep.2024.114316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/16/2024] [Accepted: 05/17/2024] [Indexed: 06/06/2024] Open
Abstract
Phosphate (Pi) serves countless metabolic pathways and is involved in macromolecule synthesis, energy storage, cellular signaling, and bone maintenance. Herein, we describe the coordination of Pi uptake and efflux pathways to maintain mammalian cell Pi homeostasis. We discover that XPR1, the presumed Pi efflux transporter, separately supervises rates of Pi uptake. This direct, regulatory interplay arises from XPR1 being a binding partner for the Pi uptake transporter PiT1, involving a predicted transmembrane helix/extramembrane loop in XPR1, and its hitherto unknown localization in a subset of intracellular LAMP1-positive puncta (named "XLPVs"). A pharmacological mimic of Pi homeostatic challenge is sensed by the inositol pyrophosphate IP8, which functionalizes XPR1 to respond in a temporally hierarchal manner, initially adjusting the rate of Pi efflux, followed subsequently by independent modulation of PiT1 turnover to reset the rate of Pi uptake. These observations generate a unifying model of mammalian cellular Pi homeostasis, expanding opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Xingyao Li
- Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental, Health Sciences, Research Triangle Park, NC 27709, USA
| | - Regan B Kirkpatrick
- Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental, Health Sciences, Research Triangle Park, NC 27709, USA
| | - Xiaodong Wang
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Charles J Tucker
- Fluorescence Microscopy and Imaging Center, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Anuj Shukla
- Institute of Organic Chemistry, and CIBSS - the Center for Integrative Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Henning J Jessen
- Institute of Organic Chemistry, and CIBSS - the Center for Integrative Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Huanchen Wang
- Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental, Health Sciences, Research Triangle Park, NC 27709, USA; Nucleolar Integrity Group, Signal Transduction Laboratory, National Institute of Environmental, Health Sciences, Research Triangle Park, NC 27709, USA
| | - Stephen B Shears
- Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental, Health Sciences, Research Triangle Park, NC 27709, USA
| | - Chunfang Gu
- Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental, Health Sciences, Research Triangle Park, NC 27709, USA; Synaptic & Developmental Plasticity Group, Neurobiology Laboratory, National Institute of Environmental, Health Sciences, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
11
|
Xu LL, Cui MQ, Xu C, Zhang MJ, Li GX, Xu JM, Wu XD, Mao CZ, Ding WN, Benhamed M, Ding ZJ, Zheng SJ. A clade of receptor-like cytoplasmic kinases and 14-3-3 proteins coordinate inositol hexaphosphate accumulation. Nat Commun 2024; 15:5107. [PMID: 38877001 PMCID: PMC11178898 DOI: 10.1038/s41467-024-49102-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/22/2024] [Indexed: 06/16/2024] Open
Abstract
Inositol hexaphosphate (InsP6) is the major storage form of phosphorus in seeds. Reducing seed InsP6 content is a breeding objective in agriculture, as InsP6 negatively impacts animal nutrition and the environment. Nevertheless, how InsP6 accumulation is regulated remains largely unknown. Here, we identify a clade of receptor-like cytoplasmic kinases (RLCKs), named Inositol Polyphosphate-related Cytoplasmic Kinases 1-6 (IPCK1-IPCK6), deeply involved in InsP6 accumulation. The InsP6 concentration is dramatically reduced in seeds of ipck quadruple (T-4m/C-4m) and quintuple (C-5m) mutants, accompanied with the obviously increase of phosphate (Pi) concentration. The plasma membrane-localized IPCKs recruit IPK1 involved in InsP6 synthesis, and facilitate its binding and activity via phosphorylation of GRF 14-3-3 proteins. IPCKs also recruit IPK2s and PI-PLCs required for InsP4/InsP5 and InsP3 biosynthesis respectively, to form a potential IPCK-GRF-PLC-IPK2-IPK1 complex. Our findings therefore uncover a regulatory mechanism of InsP6 accumulation governed by IPCKs, shedding light on the mechanisms of InsP biosynthesis in eukaryotes.
Collapse
Affiliation(s)
- Li Lin Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 310058, Hangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, 5100642, Guangzhou, China
| | - Meng Qi Cui
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 310058, Hangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, 5100642, Guangzhou, China
| | - Chen Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 310058, Hangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, 5100642, Guangzhou, China
| | - Miao Jing Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Gui Xin Li
- College of Agronomy and Biotechnology, Zhejiang University, 310058, Hangzhou, China
| | - Ji Ming Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Xiao Dan Wu
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Chuan Zao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Wo Na Ding
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, 315300, Ningbo, China
| | - Moussa Benhamed
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 10 91405, Orsay, France
| | - Zhong Jie Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 310058, Hangzhou, China.
| | - Shao Jian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 310058, Hangzhou, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, 5100642, Guangzhou, China.
| |
Collapse
|
12
|
Desmarini D, Liu G, Jessen H, Bowring B, Connolly A, Crossett B, Djordjevic JT. Arg1 from Cryptococcus neoformans lacks PI3 kinase activity and conveys virulence roles via its IP 3-4 kinase activity. mBio 2024; 15:e0060824. [PMID: 38742909 PMCID: PMC11237472 DOI: 10.1128/mbio.00608-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/18/2024] [Indexed: 05/16/2024] Open
Abstract
Inositol tris/tetrakis phosphate kinases (IP3-4K) in the human fungal priority pathogens, Cryptococcus neoformans (CnArg1) and Candida albicans (CaIpk2), convey numerous virulence functions, yet it is not known whether the IP3-4K catalytic activity or a scaffolding role is responsible. We therefore generated a C. neoformans strain with a non-functional kinase, referred to as the dead-kinase (dk) CnArg1 strain (dkArg1). We verified that, although dkARG1 cDNA cloned from this strain produced a protein with the expected molecular weight, dkArg1 was catalytically inactive with no IP3-4K activity. Using recombinant CnArg1 and CaIpk2, we confirmed that, unlike the IP3-4K homologs in humans and Saccharomyces cerevisiae, CnArg1 and CaIpk2 do not phosphorylate the lipid-based substrate, phosphatidylinositol 4,5-bisphosphate, and therefore do not function as class I PI3Ks. Inositol polyphosphate profiling using capillary electrophoresis-electrospray ionization-mass spectrometry revealed that IP3 conversion is blocked in the dkArg1 and ARG1 deletion (Cnarg1Δ) strains and that 1-IP7 and a recently discovered isomer (4/6-IP7) are made by wild-type C. neoformans. Importantly, the dkArg1 and Cnarg1Δ strains had similar virulence defects, including suppressed growth at 37°C, melanization, capsule production, and phosphate starvation response, and were avirulent in an insect model, confirming that virulence is dependent on IP3-4K catalytic activity. Our data also implicate the dkArg1 scaffold in transcriptional regulation of arginine metabolism but via a different mechanism to S. cerevisiae since CnArg1 is dispensable for growth on different nitrogen sources. IP3-4K catalytic activity therefore plays a dominant role in fungal virulence, and IPK pathway function has diverged in fungal pathogens.IMPORTANCEThe World Health Organization has emphasized the urgent need for global action in tackling the high morbidity and mortality rates stemming from invasive fungal infections, which are exacerbated by the limited variety and compromised effectiveness of available drug classes. Fungal IP3-4K is a promising target for new therapy, as it is critical for promoting virulence of the human fungal priority pathogens, Cryptococcus neoformans and Candida albicans, and impacts numerous functions, including cell wall integrity. This contrasts to current therapies, which only target a single function. IP3-4K enzymes exert their effect through their inositol polyphosphate products or via the protein scaffold. Here, we confirm that the IP3-4K catalytic activity of CnArg1 promotes all virulence traits in C. neoformans that are attenuated by ARG1 deletion, reinforcing our ongoing efforts to find inositol polyphosphate effector proteins and to create inhibitors targeting the IP3-4K catalytic site, as a new antifungal drug class.
Collapse
Affiliation(s)
- Desmarini Desmarini
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Sydney, Australia
- Faculty of Medicine and Health, Sydney Institute for Infectious Diseases, University of Sydney, Sydney, Australia
| | - Guizhen Liu
- Institute of Organic Chemistry, University of Freiburg, Freiburg im Breisgau, Germany
- Centre for Integrative Biological Signaling Studies, University of Freiburg, Freiburg im Breisgau, Germany
| | - Henning Jessen
- Institute of Organic Chemistry, University of Freiburg, Freiburg im Breisgau, Germany
- Centre for Integrative Biological Signaling Studies, University of Freiburg, Freiburg im Breisgau, Germany
| | - Bethany Bowring
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Sydney, Australia
- Faculty of Medicine and Health, Sydney Institute for Infectious Diseases, University of Sydney, Sydney, Australia
| | - Angela Connolly
- Sydney Mass Spectrometry, University of Sydney, Sydney, Australia
| | - Ben Crossett
- Sydney Mass Spectrometry, University of Sydney, Sydney, Australia
| | - Julianne Teresa Djordjevic
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Sydney, Australia
- Faculty of Medicine and Health, Sydney Institute for Infectious Diseases, University of Sydney, Sydney, Australia
- Westmead Hospital, Western Sydney Local Health District, Sydney, Australia
| |
Collapse
|
13
|
Ito M, Fujii N, Kohara S, Tanaka M, Takao M, Mihara B, Saito Y, Mizuma A, Nakayama T, Netsu S, Suzuki N, Kakita A, Nagata E. Elevation of inositol pyrophosphate IP 7 in the mammalian spinal cord of amyotrophic lateral sclerosis. Front Neurol 2024; 14:1334004. [PMID: 38274887 PMCID: PMC10808411 DOI: 10.3389/fneur.2023.1334004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Background Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder associated with progressive impairment of spinal motor neurons. Continuous research endeavor is underway to fully understand the molecular mechanisms associating with this disorder. Although several studies have implied the involvement of inositol pyrophosphate IP7 in ALS, there is no direct experimental evidence proving this notion. In this study, we analyzed inositol pyrophosphate IP7 and its precursor IP6 in the mouse and human ALS biological samples to directly assess whether IP7 level and/or its metabolism are altered in ALS disease state. Methods We used a liquid chromatography-mass spectrometry (LC-MS) protocol originally-designed for mammalian IP6 and IP7 analysis. We measured the abundance of these molecules in the central nervous system (CNS) of ALS mouse model SOD1(G93A) transgenic (TG) mice as well as postmortem spinal cord of ALS patients. Cerebrospinal fluid (CSF) and peripheral blood mononuclear cells (PBMCs) from ALS patients were also analyzed to assess if IP7 status in these biofluids is associated with ALS disease state. Results SOD1(G93A) TG mice showed significant increase of IP7 level in the spinal cord compared with control mice at the late stage of disease progression, while its level in cerebrum and cerebellum remains constant. We also observed significantly elevated IP7 level and its product-to-precursor ratio (IP7/IP6) in the postmortem spinal cord of ALS patients, suggesting enhanced enzymatic activity of IP7-synthesizing kinases in the human ALS spinal cord. In contrast, human CSF did not contain detectable level of IP6 and IP7, and neither the IP7 level nor the IP7/IP6 ratio in human PBMCs differentiated ALS patients from age-matched healthy individuals. Conclusion By directly analyzing IP7 in the CNS of ALS mice and humans, the findings of this study provide direct evidence that IP7 level and/or the enzymatic activity of IP7-generating kinases IP6Ks are elevated in ALS spinal cord. On the other hand, this study also showed that IP7 is not suitable for biofluid-based ALS diagnosis. Further investigation is required to elucidate a role of IP7 in ALS pathology and utilize IP7 metabolism on the diagnostic application of ALS.
Collapse
Affiliation(s)
- Masatoshi Ito
- Department of Neurology, Tokai University School of Medicine, Isehara, Japan
- Department of Legal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Natsuko Fujii
- Department of Neurology, Tokai University School of Medicine, Isehara, Japan
| | - Saori Kohara
- Department of Neurology, Tokai University School of Medicine, Isehara, Japan
| | - Masayuki Tanaka
- Support Center for Medical Research and Education, Tokai University, Isehara, Japan
| | - Masaki Takao
- Department of Clinical Laboratory, National Center of Neurology and Psychiatry, National Center Hospital, Tokyo, Japan
- Department of Neurology, Mihara Memorial Hospital, Isesaki, Japan
| | - Ban Mihara
- Department of Neurology, Mihara Memorial Hospital, Isesaki, Japan
| | - Yuko Saito
- Department of Neuropathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Atsushi Mizuma
- Department of Neurology, Tokai University School of Medicine, Isehara, Japan
| | - Taira Nakayama
- Department of Neurology, Tokai University School of Medicine, Isehara, Japan
| | - Shizuka Netsu
- Department of Neurology, Tokai University School of Medicine, Isehara, Japan
| | - Naoto Suzuki
- Department of Neurology, Tokai University School of Medicine, Isehara, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Eiichiro Nagata
- Department of Neurology, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
14
|
Eisenbeis VB, Qiu D, Gorka O, Strotmann L, Liu G, Prucker I, Su XB, Wilson MSC, Ritter K, Loenarz C, Groß O, Saiardi A, Jessen HJ. β-lapachone regulates mammalian inositol pyrophosphate levels in an NQO1- and oxygen-dependent manner. Proc Natl Acad Sci U S A 2023; 120:e2306868120. [PMID: 37579180 PMCID: PMC10450438 DOI: 10.1073/pnas.2306868120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/13/2023] [Indexed: 08/16/2023] Open
Abstract
Inositol pyrophosphates (PP-InsPs) are energetic signaling molecules with important functions in mammals. As their biosynthesis depends on ATP concentration, PP-InsPs are tightly connected to cellular energy homeostasis. Consequently, an increasing number of studies involve PP-InsPs in metabolic disorders, such as type 2 diabetes, aspects of tumorigenesis, and hyperphosphatemia. Research conducted in yeast suggests that the PP-InsP pathway is activated in response to reactive oxygen species (ROS). However, the precise modulation of PP-InsPs during cellular ROS signaling is unknown. Here, we report how mammalian PP-InsP levels are changing during exposure to exogenous (H2O2) and endogenous ROS. Using capillary electrophoresis electrospray ionization mass spectrometry (CE-ESI-MS), we found that PP-InsP levels decrease upon exposure to oxidative stressors in HCT116 cells. Application of quinone drugs, particularly β-lapachone (β-lap), under normoxic and hypoxic conditions enabled us to produce ROS in cellulo and to show that β-lap treatment caused PP-InsP changes that are oxygen-dependent. Experiments in MDA-MB-231 breast cancer cells deficient of NAD(P)H:quinone oxidoreductase-1 (NQO1) demonstrated that β-lap requires NQO1 bioactivation to regulate the cellular metabolism of PP-InsPs. Critically, significant reductions in cellular ATP concentrations were not directly mirrored in reduced PP-InsP levels as shown in NQO1-deficient MDA-MB-231 cells treated with β-lap. The data presented here unveil unique aspects of β-lap pharmacology and its impact on PP-InsP levels. The identification of different quinone drugs as modulators of PP-InsP synthesis will allow the overall impact on cellular function of such drugs to be better appreciated.
Collapse
Affiliation(s)
- Verena B. Eisenbeis
- Faculty of Chemistry and Pharmacy, Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau79104, Germany
| | - Danye Qiu
- Faculty of Chemistry and Pharmacy, Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau79104, Germany
- The Center for Integrative Biological Signaling Studies, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau79104, Germany
| | - Oliver Gorka
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg79106, Germany
| | - Lisa Strotmann
- Faculty of Chemistry and Pharmacy, Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau79104, Germany
| | - Guizhen Liu
- Faculty of Chemistry and Pharmacy, Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau79104, Germany
- The Center for Integrative Biological Signaling Studies, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau79104, Germany
| | - Isabel Prucker
- Faculty of Chemistry and Pharmacy, Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau79104, Germany
| | - Xue Bessie Su
- Medical Research Council, Laboratory for Molecular Cell Biology, University College London, WC1E 6BTLondon, United Kingdom
| | - Miranda S. C. Wilson
- Medical Research Council, Laboratory for Molecular Cell Biology, University College London, WC1E 6BTLondon, United Kingdom
| | - Kevin Ritter
- Faculty of Chemistry and Pharmacy, Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau79104, Germany
| | - Christoph Loenarz
- Faculty of Chemistry and Pharmacy, Institute for Pharmaceutical Sciences, Pharmaceutical and Medicinal Chemistry, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau79104, Germany
| | - Olaf Groß
- The Center for Integrative Biological Signaling Studies, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau79104, Germany
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg79106, Germany
| | - Adolfo Saiardi
- Medical Research Council, Laboratory for Molecular Cell Biology, University College London, WC1E 6BTLondon, United Kingdom
| | - Henning J. Jessen
- Faculty of Chemistry and Pharmacy, Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau79104, Germany
- The Center for Integrative Biological Signaling Studies, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau79104, Germany
| |
Collapse
|
15
|
Qiu D, Lange E, Haas TM, Prucker I, Masuda S, Wang YL, Felix G, Schaaf G, Jessen HJ. Bacterial Pathogen Infection Triggers Magic Spot Nucleotide Signaling in Arabidopsis thaliana Chloroplasts through Specific RelA/SpoT Homologues. J Am Chem Soc 2023. [PMID: 37437195 PMCID: PMC10375528 DOI: 10.1021/jacs.3c04445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Magic spot nucleotides (p)ppGpp are important signaling molecules in bacteria and plants. In the latter, RelA-SpoT homologue (RSH) enzymes are responsible for (p)ppGpp turnover. Profiling of (p)ppGpp is more difficult in plants than in bacteria due to lower concentrations and more severe matrix effects. Here, we report that capillary electrophoresis mass spectrometry (CE-MS) can be deployed to study (p)ppGpp abundance and identity in Arabidopsis thaliana. This goal is achieved by combining a titanium dioxide extraction protocol and pre-spiking with chemically synthesized stable isotope-labeled internal reference compounds. The high sensitivity and separation efficiency of CE-MS enables monitoring of changes in (p)ppGpp levels in A. thaliana upon infection with the pathogen Pseudomonas syringae pv. tomato (PstDC3000). We observed a significant increase of ppGpp post infection that is also stimulated by the flagellin peptide flg22 only. This increase depends on functional flg22 receptor FLS2 and its interacting kinase BAK1 indicating that pathogen-associated molecular pattern (PAMP) receptor-mediated signaling controls ppGpp levels. Transcript analyses showed an upregulation of RSH2 upon flg22 treatment and both RSH2 and RSH3 after PstDC3000 infection. Arabidopsis mutants deficient in RSH2 and RSH3 activity display no ppGpp accumulation upon infection and flg22 treatment, supporting the involvement of these synthases in PAMP-triggered innate immune responses to pathogens within the chloroplast.
Collapse
Affiliation(s)
- Danye Qiu
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg, 79104 Freiburg, Germany
- CIBSS─Centre for Integrative Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Esther Lange
- Institute of Crop Science and Resource Conservation, Department of Plant Nutrition, University of Bonn, 53115 Bonn, Germany
| | - Thomas M Haas
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg, 79104 Freiburg, Germany
| | - Isabel Prucker
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg, 79104 Freiburg, Germany
| | - Shinji Masuda
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Yan L Wang
- Institute of Plant Biochemistry, Center for Plant Molecular Biology (ZMBP), Department of Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Georg Felix
- Institute of Plant Biochemistry, Center for Plant Molecular Biology (ZMBP), Department of Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Gabriel Schaaf
- Institute of Crop Science and Resource Conservation, Department of Plant Nutrition, University of Bonn, 53115 Bonn, Germany
| | - Henning J Jessen
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg, 79104 Freiburg, Germany
- CIBSS─Centre for Integrative Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
16
|
Sprigg C, Leftwich PT, Burton E, Scholey D, Bedford MR, Brearley CA. Accentuating the positive and eliminating the negative: Efficacy of TiO2 as digestibility index marker for poultry nutrition studies. PLoS One 2023; 18:e0284724. [PMID: 37363920 DOI: 10.1371/journal.pone.0284724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/05/2023] [Indexed: 06/28/2023] Open
Abstract
Inert digestibility index markers such as titanium dioxide are universally accepted to provide simple measurement of digestive tract retention and relative digestibility in poultry feeding trials. Their use underpins industry practice: specifically dosing regimens for adjunct enzymes added to animal feed. Among these, phytases, enzymes that degrade dietary phytate, inositol hexakisphosphate, represent a billion-dollar sector in an industry that raises ca. 70 billion chickens/annum. Unbeknown to the feed enzyme sector, is the growth in cell biology of use of titanium dioxide for enrichment of inositol phosphates from extracts of cells and tissues. The adoption of titanium dioxide in cell biology arises from its affinity under acid conditions for phosphates, suggesting that in feeding trial contexts that target phytate degradation this marker may not be as inert as assumed. We show that feed grade titanium dioxide enriches a mixed population of higher and lower inositol phosphates from acid solutions. Additionally, we compared the extractable inositol phosphates in gizzard and ileal digesta of 21day old male Ross 308 broilers fed three phytase doses (0, 500 and 6000 FTU/kg feed) and one inositol dose (2g/kg feed). This experiment was performed with or without titanium dioxide added as a digestibility index marker at a level of 0.5%, with all diets fed for 21 days. Analysis yielded no significant difference in effect of phytase inclusion in the presence or absence of titanium dioxide. Thus, despite the utility of titanium dioxide for recovery of inositol phosphates from biological samples, it seems that its use as an inert marker in digestibility trials is justified-as its inclusion in mash diets does not interfere with the recovery of inositol phosphates from digesta samples.
Collapse
Affiliation(s)
- Colleen Sprigg
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Philip T Leftwich
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Emily Burton
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Southwell, United Kingdom
| | - Dawn Scholey
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Southwell, United Kingdom
| | | | - Charles A Brearley
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
17
|
Dilworth L, Stennett D, Omoruyi F. Cellular and Molecular Activities of IP6 in Disease Prevention and Therapy. Biomolecules 2023; 13:972. [PMID: 37371552 DOI: 10.3390/biom13060972] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
IP6 (phytic acid) is a naturally occurring compound in plant seeds and grains. It is a poly-phosphorylated inositol derivative that has been shown to exhibit many biological activities that accrue benefits in health and diseases (cancer, diabetes, renal lithiasis, cardiovascular diseases, etc.). IP6 has been shown to have several cellular and molecular activities associated with its potential role in disease prevention. These activities include anti-oxidant properties, chelation of metal ions, inhibition of inflammation, modulation of cell signaling pathways, and modulation of the activities of enzymes and hormones that are involved in carbohydrate and lipid metabolism. Studies have shown that IP6 has anti-oxidant properties and can scavenge free radicals known to cause cellular damage and contribute to the development of chronic diseases such as cancers and cardiovascular diseases, as well as diabetes mellitus. It has also been shown to possess anti-inflammatory properties that may modulate immune responses geared towards the prevention of inflammatory conditions. Moreover, IP6 exhibits anti-cancer properties through the induction of cell cycle arrest, promoting apoptosis and inhibiting cancer cell growth. Additionally, it has been shown to have anti-mutagenic properties, which reduce the risk of malignancies by preventing DNA damage and mutations. IP6 has also been reported to have a potential role in bone health. It inhibits bone resorption and promotes bone formation, which may help in the prevention of bone diseases such as osteoporosis. Overall, IP6's cellular and molecular activities make it a promising candidate for disease prevention. As reported in many studies, its anti-inflammatory, anti-oxidant, and anti-cancer properties support its inclusion as a dietary supplement that may protect against the development of chronic diseases. However, further studies are needed to understand the mechanisms of action of this dynamic molecule and its derivatives and determine the optimal doses and appropriate delivery methods for effective therapeutic use.
Collapse
Affiliation(s)
- Lowell Dilworth
- Department of Pathology, The University of the West Indies, Mona Campus, Kingston 7, Jamaica
| | - Dewayne Stennett
- The Transitional Year Programme, University of Toronto, Toronto, ON M5S 2E8, Canada
| | - Felix Omoruyi
- Department of Life Sciences, Texas A&M University, Corpus Christi, TX 78412, USA
- Department of Health Sciences, Texas A&M University, Corpus Christi, TX 78412, USA
| |
Collapse
|
18
|
Ito M, Fujii N, Kohara S, Hori S, Tanaka M, Wittwer C, Kikuchi K, Iijima T, Kakimoto Y, Hirabayashi K, Kurotaki D, Jessen HJ, Saiardi A, Nagata E. Inositol pyrophosphate profiling reveals regulatory roles of IP6K2-dependent enhanced IP 7 metabolism in the enteric nervous system. J Biol Chem 2023; 299:102928. [PMID: 36681123 PMCID: PMC9957762 DOI: 10.1016/j.jbc.2023.102928] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/20/2023] Open
Abstract
Inositol pyrophosphates regulate diverse physiological processes; to better understand their functional roles, assessing their tissue-specific distribution is important. Here, we profiled inositol pyrophosphate levels in mammalian organs using an originally designed liquid chromatography-mass spectrometry (LC-MS) protocol and discovered that the gastrointestinal tract (GIT) contained the highest levels of diphosphoinositol pentakisphosphate (IP7) and its precursor inositol hexakisphosphate (IP6). Although their absolute levels in the GIT are diet dependent, elevated IP7 metabolism still exists under dietary regimens devoid of exogenous IP7. Of the major GIT cells, enteric neurons selectively express the IP7-synthesizing enzyme IP6K2. We found that IP6K2-knockout mice exhibited significantly impaired IP7 metabolism in the various organs including the proximal GIT. In addition, our LC-MS analysis displayed that genetic ablation of IP6K2 significantly impaired IP7 metabolism in the gut and duodenal muscularis externa containing myenteric plexus. Whole transcriptome analysis of duodenal muscularis externa further suggested that IP6K2 inhibition significantly altered expression levels of the gene sets associated with mature neurons, neural progenitor/stem cells, and glial cells, as well as of certain genes modulating neuronal differentiation and functioning, implying critical roles of the IP6K2-IP7 axis in developmental and functional regulation of the enteric nervous system. These results collectively reveal an unexpected role of mammalian IP7-a highly active IP6K2-IP7 pathway is conducive to the enteric nervous system.
Collapse
Affiliation(s)
- Masatoshi Ito
- Support Center for Medical Research and Education, Tokai University, Isehara, Japan.
| | - Natsuko Fujii
- Department of Neurology, Tokai University School of Medicine, Isehara, Japan
| | - Saori Kohara
- Department of Neurology, Tokai University School of Medicine, Isehara, Japan
| | - Shuho Hori
- Support Center for Medical Research and Education, Tokai University, Isehara, Japan
| | - Masayuki Tanaka
- Support Center for Medical Research and Education, Tokai University, Isehara, Japan
| | | | - Kenta Kikuchi
- Laboratory of Chromatin Organization in Immune Cell Development, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takatoshi Iijima
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
| | - Yu Kakimoto
- Department of Forensic Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Kenichi Hirabayashi
- Department of Pathology, Tokai University School of Medicine, Isehara, Japan
| | - Daisuke Kurotaki
- Laboratory of Chromatin Organization in Immune Cell Development, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Henning J Jessen
- Institute of Organic Chemistry, University of Freiburg, Freiburg, Germany
| | - Adolfo Saiardi
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Eiichiro Nagata
- Department of Neurology, Tokai University School of Medicine, Isehara, Japan.
| |
Collapse
|
19
|
Qiu D, Gu C, Liu G, Ritter K, Eisenbeis VB, Bittner T, Gruzdev A, Seidel L, Bengsch B, Shears SB, Jessen HJ. Capillary electrophoresis mass spectrometry identifies new isomers of inositol pyrophosphates in mammalian tissues. Chem Sci 2023; 14:658-667. [PMID: 36741535 PMCID: PMC9847636 DOI: 10.1039/d2sc05147h] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Technical challenges have to date prevented a complete profiling of the levels of myo-inositol phosphates (InsPs) and pyrophosphates (PP-InsPs) in mammalian tissues. Here, we have deployed capillary electrophoresis mass spectrometry to identify and record the levels of InsPs and PP-InsPs in several tissues obtained from wild type mice and a newly created PPIP5K2 knockout strain. We observe that the mouse colon harbours unusually high levels of InsPs and PP-InsPs. Additionally, the PP-InsP profile is considerably more complex than previously reported for animal cells: using chemically synthesized internal stable isotope references and high-resolution mass spectra, we characterize two new PP-InsP isomers as 4/6-PP-InsP5 and 2-PP-InsP5. The latter has not previously been described in nature. The analysis of feces and the commercial mouse diet suggests that the latter is one potential source of noncanonical isomers in the colon. However, we also identify both molecules in the heart, indicating unknown synthesis pathways in mammals. We also demonstrate that the CE-MS method is sensitive enough to measure PP-InsPs from patient samples such as colon biopsies and peripheral blood mononuclear cells (PBMCs). Strikingly, PBMCs also contain 4/6-PP-InsP5 and 2-PP-InsP5. In summary, our study substantially expands PP-InsP biology in mammals.
Collapse
Affiliation(s)
- Danye Qiu
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg79104FreiburgGermany,CIBSS – Centre for Integrative Biological Signaling Studies, University of FreiburgGermany
| | - Chunfang Gu
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of HealthResearch Triangle ParkNC27709USA
| | - Guizhen Liu
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg79104FreiburgGermany
| | - Kevin Ritter
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg79104FreiburgGermany
| | - Verena B. Eisenbeis
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg79104FreiburgGermany
| | - Tamara Bittner
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg79104FreiburgGermany
| | - Artiom Gruzdev
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of HealthResearch Triangle ParkNC27709USA
| | - Lea Seidel
- CIBSS – Centre for Integrative Biological Signaling Studies, University of FreiburgGermany,Clinic for Internal Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of FreiburgFreiburgGermany,SGBM – Spemann Graduate School of Biology and Medicine, University of FreiburgGermany
| | - Bertram Bengsch
- CIBSS – Centre for Integrative Biological Signaling Studies, University of FreiburgGermany,Clinic for Internal Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Stephen B. Shears
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of HealthResearch Triangle ParkNC27709USA
| | - Henning J. Jessen
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg79104FreiburgGermany,CIBSS – Centre for Integrative Biological Signaling Studies, University of FreiburgGermany
| |
Collapse
|
20
|
Nguyen Trung M, Kieninger S, Fandi Z, Qiu D, Liu G, Mehendale NK, Saiardi A, Jessen H, Keller B, Fiedler D. Stable Isotopomers of myo-Inositol Uncover a Complex MINPP1-Dependent Inositol Phosphate Network. ACS CENTRAL SCIENCE 2022; 8:1683-1694. [PMID: 36589890 PMCID: PMC9801504 DOI: 10.1021/acscentsci.2c01032] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Indexed: 05/04/2023]
Abstract
The water-soluble inositol phosphates (InsPs) represent a functionally diverse group of small-molecule messengers involved in a myriad of cellular processes. Despite their centrality, our understanding of human InsP metabolism is incomplete because the available analytical toolset to characterize and quantify InsPs in complex samples is limited. Here, we have synthesized and applied symmetrically and unsymmetrically 13C-labeled myo-inositol and inositol phosphates. These probes were utilized in combination with nuclear magnetic resonance spectroscopy (NMR) and capillary electrophoresis mass spectrometry (CE-MS) to investigate InsP metabolism in human cells. The labeling strategy provided detailed structural information via NMR-down to individual enantiomers-which overcomes a crucial blind spot in the analysis of InsPs. We uncovered a novel branch of InsP dephosphorylation in human cells which is dependent on MINPP1, a phytase-like enzyme contributing to cellular homeostasis. Detailed characterization of MINPP1 activity in vitro and in cells showcased the unique reactivity of this phosphatase. Our results demonstrate that metabolic labeling with stable isotopomers in conjunction with NMR spectroscopy and CE-MS constitutes a powerful tool to annotate InsP networks in a variety of biological contexts.
Collapse
Affiliation(s)
- Minh Nguyen Trung
- Leibniz-Forschungsinstitut
für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
- Institut
für Chemie, Humboldt-Universität
zu Berlin, Brook-Taylor-Strasse
2, 12489 Berlin, Germany
| | - Stefanie Kieninger
- Institut
für Chemie und Biochemie, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Zeinab Fandi
- Leibniz-Forschungsinstitut
für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Danye Qiu
- Institut
für Organische Chemie, Albert-Ludwigs-Universität
Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Guizhen Liu
- Institut
für Organische Chemie, Albert-Ludwigs-Universität
Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Neelay K. Mehendale
- Leibniz-Forschungsinstitut
für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Adolfo Saiardi
- MRC
Laboratory for Molecular Cell Biology, University
College London, WC1E 6BT London, United Kingdom
| | - Henning Jessen
- Institut
für Organische Chemie, Albert-Ludwigs-Universität
Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Bettina Keller
- Institut
für Chemie und Biochemie, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut
für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
- Institut
für Chemie, Humboldt-Universität
zu Berlin, Brook-Taylor-Strasse
2, 12489 Berlin, Germany
| |
Collapse
|
21
|
Sprigg C, Whitfield H, Burton E, Scholey D, Bedford MR, Brearley CA. Phytase dose-dependent response of kidney inositol phosphate levels in poultry. PLoS One 2022; 17:e0275742. [PMID: 36260560 PMCID: PMC9581429 DOI: 10.1371/journal.pone.0275742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 09/22/2022] [Indexed: 12/02/2022] Open
Abstract
Phytases, enzymes that degrade phytate present in feedstuffs, are widely added to the diets of monogastric animals. Many studies have correlated phytase addition with improved animal productivity and a subset of these have sought to correlate animal performance with phytase-mediated generation of inositol phosphates in different parts of the gastro-intestinal tract or with release of inositol or of phosphate, the absorbable products of phytate degradation. Remarkably, the effect of dietary phytase on tissue inositol phosphates has not been studied. The objective of this study was to determine effect of phytase supplementation on liver and kidney myo-inositol and myo-inositol phosphates in broiler chickens. For this, methods were developed to measure inositol phosphates in chicken tissues. The study comprised wheat/soy-based diets containing one of three levels of phytase (0, 500 and 6,000 FTU/kg of modified E. coli 6-phytase). Diets were provided to broilers for 21 D and on day 21 digesta were collected from the gizzard and ileum. Liver and kidney tissue were harvested. Myo-inositol and inositol phosphates were measured in diet, digesta, liver and kidney. Gizzard and ileal content inositol was increased progressively, and total inositol phosphates reduced progressively, by phytase supplementation. The predominant higher inositol phosphates detected in tissues, D-and/or L-Ins(3,4,5,6)P4 and Ins(1,3,4,5,6)P5, differed from those (D-and/or L-Ins(1,2,3,4)P4, D-and/or L-Ins(1,2,5,6)P4, Ins(1,2,3,4,6)P5, D-and/or L-Ins(1,2,3,4,5)P5 and D-and/or L-Ins(1,2,4,5,6)P5) generated from phytate (InsP6) degradation by E. coli 6-phytase or endogenous feed phytase, suggesting tissue inositol phosphates are not the result of direct absorption. Kidney inositol phosphates were reduced progressively by phytase supplementation. These data suggest that tissue inositol phosphate concentrations can be influenced by dietary phytase inclusion rate and that such effects are tissue specific, though the consequences for physiology of such changes have yet to be elucidated.
Collapse
Affiliation(s)
- Colleen Sprigg
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Hayley Whitfield
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Emily Burton
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Southwell, United Kingdom
| | - Dawn Scholey
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Southwell, United Kingdom
| | | | - Charles A. Brearley
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
- * E-mail:
| |
Collapse
|
22
|
Kobayashi A, Abe SI, Watanabe M, Moritoh Y. Liquid chromatography-mass spectrometry measurements of blood diphosphoinositol pentakisphosphate levels. J Chromatogr A 2022; 1681:463450. [DOI: 10.1016/j.chroma.2022.463450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/10/2022] [Accepted: 08/24/2022] [Indexed: 10/15/2022]
|
23
|
Piskin E, Cianciosi D, Gulec S, Tomas M, Capanoglu E. Iron Absorption: Factors, Limitations, and Improvement Methods. ACS OMEGA 2022; 7:20441-20456. [PMID: 35755397 PMCID: PMC9219084 DOI: 10.1021/acsomega.2c01833] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/20/2022] [Indexed: 05/04/2023]
Abstract
Iron is an essential element for human life since it participates in many functions in the human body, including oxygen transport, immunity, cell division and differentiation, and energy metabolism. Iron homeostasis is mainly controlled by intestinal absorption because iron does not have active excretory mechanisms for humans. Thus, efficient intestinal iron bioavailability is essential to reduce the risk of iron deficiency anemia. There are two forms of iron, heme and nonheme, found in foods. The average daily dietary iron intake is 10 to 15 mg in humans since only 1 to 2 mg is absorbed through the intestinal system. Nutrient-nutrient interactions may play a role in dietary intestinal iron absorption. Dietary inhibitors such as calcium, phytates, polyphenols and enhancers such as ascorbic acid and proteins mainly influence iron bioavailability. Numerous studies have been carried out for years to enhance iron bioavailability and combat iron deficiency. In addition to traditional methods, innovative techniques are being developed day by day to enhance iron bioavailability. This review will provide information about iron bioavailability, factors affecting absorption, iron deficiency, and recent studies on improving iron bioavailability.
Collapse
Affiliation(s)
- Elif Piskin
- Faculty of Engineering and Natural Sciences, Food Engineering Department, Istanbul Sabahattin Zaim University, Halkali, 34303 Istanbul, Turkey
| | - Danila Cianciosi
- Faculty of Medicine, Department of Clinical Sciences, Polytechnic University of Marche, via Pietro Ranieri, 60131 Ancona, Italy
| | - Sukru Gulec
- Molecular Nutrition and Human Physiology Laboratory, Department of Food Engineering, İzmir Institute of Technology, 35430 Urla, İzmir
| | - Merve Tomas
- Faculty of Engineering and Natural Sciences, Food Engineering Department, Istanbul Sabahattin Zaim University, Halkali, 34303 Istanbul, Turkey
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| |
Collapse
|
24
|
Tu-Sekine B, Kim SF. The Inositol Phosphate System-A Coordinator of Metabolic Adaptability. Int J Mol Sci 2022; 23:6747. [PMID: 35743190 PMCID: PMC9223660 DOI: 10.3390/ijms23126747] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
All cells rely on nutrients to supply energy and carbon building blocks to support cellular processes. Over time, eukaryotes have developed increasingly complex systems to integrate information about available nutrients with the internal state of energy stores to activate the necessary processes to meet the immediate and ongoing needs of the cell. One such system is the network of soluble and membrane-associated inositol phosphates that coordinate the cellular responses to nutrient uptake and utilization from growth factor signaling to energy homeostasis. In this review, we discuss the coordinated interactions of the inositol polyphosphates, inositol pyrophosphates, and phosphoinositides in major metabolic signaling pathways to illustrate the central importance of the inositol phosphate signaling network in nutrient responses.
Collapse
Affiliation(s)
- Becky Tu-Sekine
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University, Baltimore, MD 21224, USA;
| | - Sangwon F. Kim
- Department of Medicine and Neuroscience, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| |
Collapse
|
25
|
Michell RH. The reliability of biomedical science: A case history of a maturing experimental field. Bioessays 2022; 44:e2200020. [PMID: 35393713 DOI: 10.1002/bies.202200020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 11/10/2022]
Abstract
There is much discussion in the media and some of the scientific literature of how many of the conclusions from scientific research should be doubted. These critiques often focus on studies, typically in non-experimental spheres of biomedical and social sciences - that search large datasets for novel correlations, with a risk that inappropriate statistical evaluations might yield dubious conclusions. By contrast, results from experimental biological research can often be interpreted largely without statistical analysis. Typically: novel observation(s) are reported, and an explanatory hypothesis is offered; multiple labs undertake experiments to test the hypothesis; interpretation of the results may refute the hypothesis, support it or provoke its modification; the test/revise sequence is reiterated many times; and the field moves forward. I illustrate this experimental/non-experimental dichotomy by examining the contrasting recent histories of: (a) our remarkable and growing understanding of how several inositol-containing phospholipids contribute to the lives of eukaryote cells; and (b) the difficulty of achieving any agreed mechanistic understanding of why consuming dietary supplements of inositol is clinically beneficial in some metabolic diseases.
Collapse
|
26
|
Whitfield H, Laurendon C, Rochell S, Dridi S, Lee S, Dale T, York T, Kuehn I, Bedford M, Brearley C. Effect of phytase supplementation on plasma and organ myo-inositol content and erythrocyte inositol phosphates as pertaining to breast meat quality issues in chickens. JOURNAL OF APPLIED ANIMAL NUTRITION 2022. [DOI: 10.3920/jaan2021.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
‘Woody breast’ (WB) and ‘white striping’ in broiler meat is a global problem. With unknown etiology, WB negatively impacts bird health, welfare and is a significant economic burden to the poultry industry. New evidence has shown that WB is associated with dysregulation in systemic and breast muscle-oxygen homeostasis, resulting in hypoxia and anaemia. However, it has been observed that phytase (Quantum Blue (QB) a modified, E. coli-derived 6-phytase) super dosing can reverse dysregulation of muscle-oxygen homeostasis and reduces WB severity by ~5%. The objective of this study was to assess whether levels of Ins(1,3,4,5,6)P5, the main allosteric regulator of haemoglobin, are influenced by changes in plasma myo-inositol arising from super dosing with phytase. To enable this, methods suitable for measurement of myo-inositol in tissues and inositol phosphates in blood were developed. Data were collected from independent trials, including male Ross 308 broilers fed low and adequate calcium/available phosphate (Ca/AvP) diets supplemented with QB at 1,500 phytase units (FTU)/kg, which simultaneously decreased gizzard InsP6 (P<0.001) and increased gizzard myo-inositol (P<0.001). Similarly, male Cobb 500 broiler chicks fed a negative control (NC) diet deficient in AvP, Ca and sodium or diet supplemented with the QB phytase at 500, 1000 or 2,000 FTU/kg increased plasma (P<0.001) and liver (P=0.007) myo-inositol of 18d-old birds at 2,000 FTU/kg. Finally, QB supplementation of Cobb 500 breeder flock diet at 1,250 FTU/kg increased blood myo-inositol (P<0.001) and erythrocyte Ins(1,3,4,5,6)P5 (P=0.011) of their 1d-old hatchlings. These data confirmed the ability of phytase to modulate inositol phosphate pathways by provision of metabolic precursors of important signalling molecules. The ameliorations of WB afforded by super doses of phytase may include modulation of hypoxia pathways that also involve inositol signalling molecules. Elevations of erythrocyte Ins(1,3,4,5,6)P5 by phytase supplementation may enhance systemic oxygen carrying capacity, an important factor in the amelioration of WB and WS myopathy.
Collapse
Affiliation(s)
- H. Whitfield
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - C. Laurendon
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - S.J. Rochell
- University of Arkansas, Center of Excellence for Poultry Science, University of Arkansas, 1260 W. Maple, POSC O-406, Fayetteville, AR 72701, USA
| | - S. Dridi
- University of Arkansas, Center of Excellence for Poultry Science, University of Arkansas, 1260 W. Maple, POSC O-406, Fayetteville, AR 72701, USA
| | - S.A. Lee
- AB Vista, Woodstock Ct, Marlborough, Wiltshire, SN8 4AN, United Kingdom
| | - T. Dale
- AB Vista, Woodstock Ct, Marlborough, Wiltshire, SN8 4AN, United Kingdom
| | - T. York
- AB Vista, Woodstock Ct, Marlborough, Wiltshire, SN8 4AN, United Kingdom
| | - I. Kuehn
- AB Vista, Feldbergstrasse 78, 64293 Darmstadt, Germany
| | - M.R. Bedford
- AB Vista, Woodstock Ct, Marlborough, Wiltshire, SN8 4AN, United Kingdom
| | - C.A Brearley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
27
|
Zubair M, Hamzah R, Griffin R, Ali N. Identification and functional characterization of multiple inositol polyphosphate phosphatase1 (Minpp1) isoform-2 in exosomes with potential to modulate tumor microenvironment. PLoS One 2022; 17:e0264451. [PMID: 35235602 PMCID: PMC8890658 DOI: 10.1371/journal.pone.0264451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 02/10/2022] [Indexed: 01/06/2023] Open
Abstract
Inositol polyphosphates (InsPs) play key signaling roles in diverse cellular functions, including calcium homeostasis, cell survival and death. Multiple inositol polyphosphate phosphatase 1 (Minpp1) affects the cellular levels of InsPs and cell functions. The Minpp1 is an endoplasmic reticulum (ER) resident but localizes away from its cytosolic InsPs substrates. The current study examines the heterogeneity of Minpp1 and the potential physiologic impact of Minpp1 isoforms, distinct motifs, subcellular distribution, and enzymatic potential. The NCBI database was used to analyze the proteome diversity of Minpp1 using bioinformatics tools. The analysis revealed that translation of three different Minpp1 variants resulted in three isoforms of Minpp1 of varying molecular weights. A link between the minpp1 variant-2 gene and ER-stress, using real-time PCR, suggests a functional similarity between minpp1 variant-1 and variant-2. A detailed study on motifs revealed Minpp1 isoform-2 is the only other isoform, besides isoform-1, that carries a phosphatase motif for InsPs hydrolysis but no ER-retention signal. The confocal microscopy revealed that the Minpp1 isoform-1 predominantly localized near the nucleus with a GRP-78 ER marker, while Minpp1 isoform-2 was scattered more towards the cell periphery where it co-localizes with the plasma membrane-destined multivesicular bodies biomarker CD63. MCF-7 cells were used to establish that Minpp1 isoform-2 is secreted into exosomes. Brefeldin A treatment resulted in overexpression of the exosome-associated Minpp1 isoform-2, suggesting its secretion via an unconventional route involving endocytic-generated vesicles and a link to ER stress. Results further demonstrated that the exosome-associated Minpp1 isoform-2 was enzymatically active. Overall, the data support the possibility that an extracellular form of enzymatically active Minpp1 isoform-2 mitigates any anti-proliferative actions of extracellular InsPs, thereby also impacting the makeup of the tumor microenvironment.
Collapse
Affiliation(s)
- Mohd Zubair
- Department of Biology, University of Arkansas at Little Rock, Little Rock, AR, United States of America
| | - Rabab Hamzah
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR, United States of America
| | - Robert Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Nawab Ali
- Department of Biology, University of Arkansas at Little Rock, Little Rock, AR, United States of America
| |
Collapse
|
28
|
Isomer-selective analysis of inositol phosphates with differential isotope labelling by phosphate methylation using liquid chromatography with tandem mass spectrometry. Anal Chim Acta 2022; 1191:339286. [PMID: 35033253 DOI: 10.1016/j.aca.2021.339286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/08/2021] [Accepted: 11/14/2021] [Indexed: 11/21/2022]
Abstract
Inositol phosphates belong to a family of structurally diverse signaling molecules playing crucial role in Ca2+ release from intracellular storage vesicles. There are many possibilities of phosphorylation, including their degree and position. Inositol (1,4,5) trisphosphate has been well recognized as the most important second messenger among this family. It remains a challenge to analyse the entire inositol phosphate metabolite family due to its structural complexity, high polarity, and high phosphate density. In this study, we have established an improved UHPLC-ESI-MS/MS method based on a differential isotope labelling methylation strategy. An SPE extraction kit composed of TiO2 and PTFE filter was employed for sample preparation which provided good extraction performance. Samples were methylated (light label) to neutralize the phosphate groups and give better performance in liquid chromatography. Regioisomers and inositol phosphates differing in their number of phosphate residues were successfully separated after optimization on a core-shell cholesterylether-bonded RP-type column (Cosmocore 2.6Cholester) using methanol as organic modifier. Triple quadrupole MS detection was based on selected reaction monitoring (SRM) acquisition with characteristic fragments. Stable isotope labeling methylation was performed to generate internal standards (heavy label). Limits of quantification from 0.32 to 0.89 pmol on column was achieved. This method was validated to be suitable for inositol phosphate profiling in biological samples. After application in cultured HeLa cells, NIST SRM1950 plasma, and human platelets, distinct inositol profiles were obtained. This newly established method exhibited improved analytical performance, holding the potential to advance the understanding of inositol phosphate signaling.
Collapse
|
29
|
Losa A, Vorster J, Cominelli E, Sparvoli F, Paolo D, Sala T, Ferrari M, Carbonaro M, Marconi S, Camilli E, Reboul E, Waswa B, Ekesa B, Aragão F, Kunert K. Drought and heat affect common bean minerals and human diet—What we know and where to go. Food Energy Secur 2021. [DOI: 10.1002/fes3.351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Alessia Losa
- Council for Research in Agriculture and Economics Research Centre for Genomics and Bioinformatics (CREA‐GB) Montanaso Italy
| | - Juan Vorster
- Department Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute University of Pretoria Pretoria South Africa
| | - Eleonora Cominelli
- National Research Council Institute of Agricultural Biology and Biotechnology (CNR‐IBBA) Milan Italy
| | - Francesca Sparvoli
- National Research Council Institute of Agricultural Biology and Biotechnology (CNR‐IBBA) Milan Italy
| | - Dario Paolo
- National Research Council Institute of Agricultural Biology and Biotechnology (CNR‐IBBA) Milan Italy
| | - Tea Sala
- Council for Research in Agriculture and Economics Research Centre for Genomics and Bioinformatics (CREA‐GB) Montanaso Italy
| | - Marika Ferrari
- Council for Agricultural Research and Economics Research Centre for Food and Nutrition (CREA‐AN) Rome Italy
| | - Marina Carbonaro
- Council for Agricultural Research and Economics Research Centre for Food and Nutrition (CREA‐AN) Rome Italy
| | - Stefania Marconi
- Council for Agricultural Research and Economics Research Centre for Food and Nutrition (CREA‐AN) Rome Italy
| | - Emanuela Camilli
- Council for Agricultural Research and Economics Research Centre for Food and Nutrition (CREA‐AN) Rome Italy
| | | | - Boaz Waswa
- International Center for Tropical Agriculture (CIAT) CIAT Regional Office for Africa Nairobi Kenya
| | - Beatrice Ekesa
- International Center for Tropical Agriculture (CIAT) CIAT Regional Office for Africa Nairobi Kenya
| | | | - Karl Kunert
- Department Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute University of Pretoria Pretoria South Africa
| |
Collapse
|
30
|
Phytic Acid and Whole Grains for Health Controversy. Nutrients 2021; 14:nu14010025. [PMID: 35010899 PMCID: PMC8746346 DOI: 10.3390/nu14010025] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 12/20/2022] Open
Abstract
Phytate (PA) serves as a phosphate storage molecule in cereals and other plant foods. In food and in the human body, PA has a high affinity to chelate Zn2+ and Fe2+, Mg2+, Ca2+, K+, Mn2+ and Cu2+. As a consequence, minerals chelated in PA are not bio-available, which is a concern for public health in conditions of poor food availability and low mineral intakes, ultimately leading to an impaired micronutrient status, growth, development and increased mortality. For low-income countries this has resulted in communications on how to reduce the content of PA in food, by appropriate at home food processing. However, claims that a reduction in PA in food by processing per definition leads to a measurable improvement in mineral status and that the consumption of grains rich in PA impairs mineral status requires nuance. Frequently observed decreases of PA and increases in soluble minerals in in vitro food digestion (increased bio-accessibility) are used to promote food benefits. However, these do not necessarily translate into an increased bioavailability and mineral status in vivo. In vitro essays have limitations, such as the absence of blood flow, hormonal responses, neural regulation, gut epithelium associated factors and the presence of microbiota, which mutually influence the in vivo effects and should be considered. In Western countries, increased consumption of whole grain foods is associated with improved health outcomes, which does not justify advice to refrain from grain-based foods because they contain PA. The present commentary aims to clarify these seemingly controversial aspects.
Collapse
|
31
|
Ricaña CL, Dick RA. Inositol Phosphates and Retroviral Assembly: A Cellular Perspective. Viruses 2021; 13:2516. [PMID: 34960784 PMCID: PMC8703376 DOI: 10.3390/v13122516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 12/13/2022] Open
Abstract
Understanding the molecular mechanisms of retroviral assembly has been a decades-long endeavor. With the recent discovery of inositol hexakisphosphate (IP6) acting as an assembly co-factor for human immunodeficiency virus (HIV), great strides have been made in retroviral research. In this review, the enzymatic pathways to synthesize and metabolize inositol phosphates (IPs) relevant to retroviral assembly are discussed. The functions of these enzymes and IPs are outlined in the context of the cellular biology important for retroviruses. Lastly, the recent advances in understanding the role of IPs in retroviral biology are surveyed.
Collapse
Affiliation(s)
| | - Robert A. Dick
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA;
| |
Collapse
|
32
|
Shukla A, Kaur M, Kanwar S, Kaur G, Sharma S, Ganguli S, Kumari V, Mazumder K, Pandey P, Rouached H, Rishi V, Bhandari R, Pandey AK. Wheat inositol pyrophosphate kinase TaVIH2-3B modulates cell-wall composition and drought tolerance in Arabidopsis. BMC Biol 2021; 19:261. [PMID: 34895221 PMCID: PMC8665518 DOI: 10.1186/s12915-021-01198-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/22/2021] [Indexed: 02/08/2023] Open
Abstract
Background Inositol pyrophosphates (PP-InsPs) are high-energy derivatives of inositol, involved in different signalling and regulatory responses of eukaryotic cells. Distinct PP-InsPs species are characterized by the presence of phosphate at a variable number of the 6-carbon inositol ring backbone, and two distinct classes of inositol phosphate kinases responsible for their synthesis have been identified in Arabidopsis, namely ITPKinase (inositol 1,3,4 trisphosphate 5/6 kinase) and PP-IP5Kinase (diphosphoinositol pentakisphosphate kinases). Plant PP-IP5Ks are capable of synthesizing InsP8 and were previously shown to control defense against pathogens and phosphate response signals. However, other potential roles of plant PP-IP5Ks, especially towards abiotic stress, remain poorly understood. Results Here, we characterized the physiological functions of two Triticum aestivum L. (hexaploid wheat) PPIP5K homologs, TaVIH1 and TaVIH2. We demonstrate that wheat VIH proteins can utilize InsP7 as the substrate to produce InsP8, a process that requires the functional VIH-kinase domains. At the transcriptional level, both TaVIH1 and TaVIH2 are expressed in different wheat tissues, including developing grains, but show selective response to abiotic stresses during drought-mimic experiments. Ectopic overexpression of TaVIH2-3B in Arabidopsis confers tolerance to drought stress and rescues the sensitivity of Atvih2 mutants. RNAseq analysis of TaVIH2-3B-expressing transgenic lines of Arabidopsis shows genome-wide reprogramming with remarkable effects on genes involved in cell-wall biosynthesis, which is supported by the observation of enhanced accumulation of polysaccharides (arabinogalactan, cellulose, and arabinoxylan) in the transgenic plants. Conclusions Overall, this work identifies a novel function of VIH proteins, implicating them in modulation of the expression of cell-wall homeostasis genes, and tolerance to water-deficit stress. This work suggests that plant VIH enzymes may be linked to drought tolerance and opens up the possibility of future research into using plant VIH-derived products to generate drought-resistant plants. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01198-8.
Collapse
Affiliation(s)
- Anuj Shukla
- National Agri-Food Biotechnology Institute (Department of Biotechnology), Sector 81, Knowledge City, S.A.S. Nagar, Mohali-140306, Punjab, India.,Regional Centre for Biotechnology, Faridabad - 121001 Haryana (NCR), Delhi, India
| | - Mandeep Kaur
- National Agri-Food Biotechnology Institute (Department of Biotechnology), Sector 81, Knowledge City, S.A.S. Nagar, Mohali-140306, Punjab, India
| | - Swati Kanwar
- National Agri-Food Biotechnology Institute (Department of Biotechnology), Sector 81, Knowledge City, S.A.S. Nagar, Mohali-140306, Punjab, India
| | - Gazaldeep Kaur
- National Agri-Food Biotechnology Institute (Department of Biotechnology), Sector 81, Knowledge City, S.A.S. Nagar, Mohali-140306, Punjab, India
| | - Shivani Sharma
- National Agri-Food Biotechnology Institute (Department of Biotechnology), Sector 81, Knowledge City, S.A.S. Nagar, Mohali-140306, Punjab, India
| | - Shubhra Ganguli
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, 500039, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Vandana Kumari
- National Agri-Food Biotechnology Institute (Department of Biotechnology), Sector 81, Knowledge City, S.A.S. Nagar, Mohali-140306, Punjab, India
| | - Koushik Mazumder
- National Agri-Food Biotechnology Institute (Department of Biotechnology), Sector 81, Knowledge City, S.A.S. Nagar, Mohali-140306, Punjab, India
| | - Pratima Pandey
- Department of Biological Sciences, Indian Institute of Education and Research, Mohali, 140306, India
| | - Hatem Rouached
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA.,Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| | - Vikas Rishi
- National Agri-Food Biotechnology Institute (Department of Biotechnology), Sector 81, Knowledge City, S.A.S. Nagar, Mohali-140306, Punjab, India
| | - Rashna Bhandari
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, 500039, India
| | - Ajay Kumar Pandey
- National Agri-Food Biotechnology Institute (Department of Biotechnology), Sector 81, Knowledge City, S.A.S. Nagar, Mohali-140306, Punjab, India.
| |
Collapse
|
33
|
Wang Z, Kuo HF, Chiou TJ. Intracellular phosphate sensing and regulation of phosphate transport systems in plants. PLANT PHYSIOLOGY 2021; 187:2043-2055. [PMID: 35235674 PMCID: PMC8644344 DOI: 10.1093/plphys/kiab343] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/29/2021] [Indexed: 05/04/2023]
Abstract
Recent research on the regulation of cellular phosphate (Pi) homeostasis in eukaryotes has collectively made substantial advances in elucidating inositol pyrophosphates (PP-InsP) as Pi signaling molecules that are perceived by the SPX (Syg1, Pho81, and Xpr1) domains residing in multiple proteins involved in Pi transport and signaling. The PP-InsP-SPX signaling module is evolutionarily conserved across eukaryotes and has been elaborately adopted in plant Pi transport and signaling systems. In this review, we have integrated these advances with prior established knowledge of Pi and PP-InsP metabolism, intracellular Pi sensing, and transcriptional responses according to the dynamics of cellular Pi status in plants. Anticipated challenges and pending questions as well as prospects are also discussed.
Collapse
Affiliation(s)
- Zhengrui Wang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Hui-Fen Kuo
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Tzyy-Jen Chiou
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
34
|
The inositol pyrophosphate metabolism of Dictyostelium discoideum does not regulate inorganic polyphosphate (polyP) synthesis. Adv Biol Regul 2021; 83:100835. [PMID: 34782304 PMCID: PMC8885430 DOI: 10.1016/j.jbior.2021.100835] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 10/28/2021] [Indexed: 11/23/2022]
Abstract
Initial studies on the inositol phosphates metabolism were enabled by the social amoeba Dictyostelium discoideum. The abundant amount of inositol hexakisphosphate (IP6 also known as Phytic acid) present in the amoeba allowed the discovery of the more polar inositol pyrophosphates, IP7 and IP8, possessing one or two high energy phosphoanhydride bonds, respectively. Considering the contemporary growing interest in inositol pyrophosphates, it is surprising that in recent years D. discoideum, has contributed little to our understanding of their metabolism and function. This work fulfils this lacuna, by analysing the ip6k, ppip5k and ip6k-ppip5K amoeba null strains using PAGE, 13C-NMR and CE-MS analysis. Our study reveals an inositol pyrophosphate metabolism more complex than previously thought. The amoeba Ip6k synthesizes the 4/6-IP7 in contrast to the 5-IP7 isomer synthesized by the mammalian homologue. The amoeba Ppip5k synthesizes the same 1/3-IP7 as the mammalian enzyme. In D. discoideum, the ip6k strain possesses residual amounts of IP7. The residual IP7 is also present in the ip6k-ppip5K strain, while the ppip5k single mutant shows a decrease in both IP7 and IP8 levels. This phenotype is in contrast to the increase in IP7 observable in the yeast vip1Δ strain. The presence of IP8 in ppip5k and the presence of IP7 in ip6k-ppip5K indicate the existence of an additional inositol pyrophosphate synthesizing enzyme. Additionally, we investigated the existence of a metabolic relationship between inositol pyrophosphate synthesis and inorganic polyphosphate (polyP) metabolism as observed in yeast. These studies reveal that contrary to the yeast, Ip6k and Ppip5k do not control polyP cellular level in amoeba.
Collapse
|
35
|
Riemer E, Qiu D, Laha D, Harmel RK, Gaugler P, Gaugler V, Frei M, Hajirezaei MR, Laha NP, Krusenbaum L, Schneider R, Saiardi A, Fiedler D, Jessen HJ, Schaaf G, Giehl RFH. ITPK1 is an InsP 6/ADP phosphotransferase that controls phosphate signaling in Arabidopsis. MOLECULAR PLANT 2021; 14:1864-1880. [PMID: 34274522 PMCID: PMC8573591 DOI: 10.1016/j.molp.2021.07.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/28/2021] [Accepted: 07/13/2021] [Indexed: 05/20/2023]
Abstract
In plants, phosphate (Pi) homeostasis is regulated by the interaction of PHR transcription factors with stand-alone SPX proteins, which act as sensors for inositol pyrophosphates. In this study, we combined different methods to obtain a comprehensive picture of how inositol (pyro)phosphate metabolism is regulated by Pi and dependent on the inositol phosphate kinase ITPK1. We found that inositol pyrophosphates are more responsive to Pi than lower inositol phosphates, a response conserved across kingdoms. Using the capillary electrophoresis electrospray ionization mass spectrometry (CE-ESI-MS) we could separate different InsP7 isomers in Arabidopsis and rice, and identify 4/6-InsP7 and a PP-InsP4 isomer hitherto not reported in plants. We found that the inositol pyrophosphates 1/3-InsP7, 5-InsP7, and InsP8 increase several fold in shoots after Pi resupply and that tissue-specific accumulation of inositol pyrophosphates relies on ITPK1 activities and MRP5-dependent InsP6 compartmentalization. Notably, ITPK1 is critical for Pi-dependent 5-InsP7 and InsP8 synthesis in planta and its activity regulates Pi starvation responses in a PHR-dependent manner. Furthermore, we demonstrated that ITPK1-mediated conversion of InsP6 to 5-InsP7 requires high ATP concentrations and that Arabidopsis ITPK1 has an ADP phosphotransferase activity to dephosphorylate specifically 5-InsP7 under low ATP. Collectively, our study provides new insights into Pi-dependent changes in nutritional and energetic states with the synthesis of regulatory inositol pyrophosphates.
Collapse
Affiliation(s)
- Esther Riemer
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Danye Qiu
- Department of Chemistry and Pharmacy and CIBSS-Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University Freiburg, 79104 Freiburg, Germany
| | - Debabrata Laha
- Medical Research Council Laboratory for Molecular Cell Biology (MRC-LMCB), University College London, London WC1E 6BT, UK; Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka 560 012, India
| | - Robert K Harmel
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany; Department of Chemistry, Humboldt Universität zu Berlin, 12489 Berlin, Germany
| | - Philipp Gaugler
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Verena Gaugler
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Michael Frei
- Institute of Agronomy and Crop Physiology, Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Mohammad-Reza Hajirezaei
- Department of Physiology & Cell Biology, Leibniz-Institute of Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany
| | - Nargis Parvin Laha
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Lukas Krusenbaum
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Robin Schneider
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Adolfo Saiardi
- Medical Research Council Laboratory for Molecular Cell Biology (MRC-LMCB), University College London, London WC1E 6BT, UK
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany; Department of Chemistry, Humboldt Universität zu Berlin, 12489 Berlin, Germany
| | - Henning J Jessen
- Department of Chemistry and Pharmacy and CIBSS-Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University Freiburg, 79104 Freiburg, Germany
| | - Gabriel Schaaf
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany.
| | - Ricardo F H Giehl
- Department of Physiology & Cell Biology, Leibniz-Institute of Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany.
| |
Collapse
|
36
|
Zhang X, Li N, Zhang J, Zhang Y, Yang X, Luo Y, Zhang B, Xu Z, Zhu Z, Yang X, Yan Y, Lin B, Wang S, Chen D, Ye C, Ding Y, Lou M, Wu Q, Hou Z, Zhang K, Liang Z, Wei A, Wang B, Wang C, Jiang N, Zhang W, Xiao G, Ma C, Ren Y, Qi X, Han W, Wang C, Rao F. 5-IP 7 is a GPCR messenger mediating neural control of synaptotagmin-dependent insulin exocytosis and glucose homeostasis. Nat Metab 2021; 3:1400-1414. [PMID: 34663975 DOI: 10.1038/s42255-021-00468-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 09/02/2021] [Indexed: 11/08/2022]
Abstract
5-diphosphoinositol pentakisphosphate (5-IP7) is a signalling metabolite linked to various cellular processes. How extracellular stimuli elicit 5-IP7 signalling remains unclear. Here we show that 5-IP7 in β cells mediates parasympathetic stimulation of synaptotagmin-7 (Syt7)-dependent insulin release. Mechanistically, vagal stimulation and activation of muscarinic acetylcholine receptors triggers Gαq-PLC-PKC-PKD-dependent signalling and activates IP6K1, the 5-IP7 synthase. Whereas both 5-IP7 and its precursor IP6 compete with PIP2 for binding to Syt7, Ca2+ selectively binds 5-IP7 with high affinity, freeing Syt7 to enable fusion of insulin-containing vesicles with the cell membrane. β-cell-specific IP6K1 deletion diminishes insulin secretion and glucose clearance elicited by muscarinic stimulation, whereas mice carrying a phosphorylation-mimicking, hyperactive IP6K1 mutant display augmented insulin release, congenital hyperinsulinaemia and obesity. These phenotypes are absent in mice lacking Syt7. Our study proposes a new conceptual framework for inositol pyrophosphate physiology in which 5-IP7 acts as a GPCR second messenger at the interface between peripheral nervous system and metabolic organs, transmitting Gq-coupled GPCR stimulation to unclamp Syt7-dependent, and perhaps other, exocytotic events.
Collapse
Affiliation(s)
- Xiaozhe Zhang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Na Li
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Jun Zhang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yanshen Zhang
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiaoli Yang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yifan Luo
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Bobo Zhang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Zhixue Xu
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Zhenhua Zhu
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Xiuyan Yang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yuan Yan
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Biao Lin
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Shen Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Da Chen
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Caichao Ye
- Department of Physics and Shenzhen Institute for Quantum Science & Technology, Southern University of Science and Technology, Shenzhen, China
| | - Yan Ding
- National Institute of Biological Sciences, Beijing, China
| | - Mingliang Lou
- National Institute of Biological Sciences, Beijing, China
| | - Qingcui Wu
- National Institute of Biological Sciences, Beijing, China
| | - Zhanfeng Hou
- National Institute of Biological Sciences, Beijing, China
| | - Keren Zhang
- BGI-Shenzhen, Beishan Industrial Zone 11th building, Shenzhen, China
| | - Ziming Liang
- Department of Hepatic Surgery, the Third People's Hospital of Shenzhen and the Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Anqi Wei
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Bianbian Wang
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Changhe Wang
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Nan Jiang
- Department of Hepatic Surgery, the Third People's Hospital of Shenzhen and the Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Wenqing Zhang
- Department of Physics and Shenzhen Institute for Quantum Science & Technology, Southern University of Science and Technology, Shenzhen, China
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, China
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Ren
- BGI-Shenzhen, Beishan Industrial Zone 11th building, Shenzhen, China
| | - Xiangbing Qi
- National Institute of Biological Sciences, Beijing, China
| | - Weiping Han
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Singapore, Singapore
- Center for Neuro-Metabolism and Regeneration Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Chao Wang
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Feng Rao
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
37
|
Inositol phosphates promote HIV-1 assembly and maturation to facilitate viral spread in human CD4+ T cells. PLoS Pathog 2021; 17:e1009190. [PMID: 33476323 PMCID: PMC7853515 DOI: 10.1371/journal.ppat.1009190] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/02/2021] [Accepted: 11/26/2020] [Indexed: 11/19/2022] Open
Abstract
Gag polymerization with viral RNA at the plasma membrane initiates HIV-1 assembly. Assembly processes are inefficient in vitro but are stimulated by inositol (1,3,4,5,6) pentakisphosphate (IP5) and inositol hexakisphosphate (IP6) metabolites. Previous studies have shown that depletion of these inositol phosphate species from HEK293T cells reduced HIV-1 particle production but did not alter the infectivity of the resulting progeny virions. Moreover, HIV-1 substitutions bearing Gag/CA mutations ablating IP6 binding are noninfectious with destabilized viral cores. In this study, we analyzed the effects of cellular depletion of IP5 and IP6 on HIV-1 replication in T cells in which we disrupted the genes encoding the kinases required for IP6 generation, IP5 2-kinase (IPPK) and Inositol Polyphosphate Multikinase (IPMK). Knockout (KO) of IPPK from CEM and MT-4 cells depleted cellular IP6 in both T cell lines, and IPMK disruption reduced the levels of both IP5 and IP6. In the KO lines, HIV-1 spread was delayed relative to parental wild-type (WT) cells and was rescued by complementation. Virus release was decreased in all IPPK or IPMK KO lines relative to WT cells. Infected IPMK KO cells exhibited elevated levels of intracellular Gag protein, indicative of impaired particle assembly. IPMK KO compromised virus production to a greater extent than IPPK KO suggesting that IP5 promotes HIV-1 particle assembly in IPPK KO cells. HIV-1 particles released from infected IPPK or IPMK KO cells were less infectious than those from WT cells. These viruses exhibited partially cleaved Gag proteins, decreased virion-associated p24, and higher frequencies of aberrant particles, indicative of a maturation defect. Our data demonstrate that IP6 enhances the quantity and quality of virions produced from T cells, thereby preventing defects in HIV-1 replication.
Collapse
|
38
|
Analytical Methods for Determination of Phytic Acid and Other Inositol Phosphates: A Review. Molecules 2020; 26:molecules26010174. [PMID: 33396544 PMCID: PMC7795710 DOI: 10.3390/molecules26010174] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022] Open
Abstract
From the early precipitation-based techniques, introduced more than a century ago, to the latest development of enzymatic bio- and nano-sensor applications, the analysis of phytic acid and/or other inositol phosphates has never been a straightforward analytical task. Due to the biomedical importance, such as antinutritional, antioxidant and anticancer effects, several types of methodologies were investigated over the years to develop a reliable determination of these intriguing analytes in many types of biological samples; from various foodstuffs to living cell organisms. The main aim of the present work was to critically overview the development of the most relevant analytical principles, separation and detection methods that have been applied in order to overcome the difficulties with specific chemical properties of inositol phosphates, their interferences, absence of characteristic signal (e.g., absorbance), and strong binding interactions with (multivalent) metals and other biological molecules present in the sample matrix. A systematical and chronological review of the applied methodology and the detection system is given, ranging from the very beginnings of the classical gravimetric and titrimetric analysis, through the potentiometric titrations, chromatographic and electrophoretic separation techniques, to the use of spectroscopic methods and of the recently reported fluorescence and voltammetric bio- and nano-sensors.
Collapse
|
39
|
Laha D, Portela-Torres P, Desfougères Y, Saiardi A. Inositol phosphate kinases in the eukaryote landscape. Adv Biol Regul 2020; 79:100782. [PMID: 33422459 PMCID: PMC8024741 DOI: 10.1016/j.jbior.2020.100782] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 01/01/2023]
Abstract
Inositol phosphate encompasses a large multifaceted family of signalling molecules that originate from the combinatorial attachment of phosphate groups to the inositol ring. To date, four distinct inositol kinases have been identified, namely, IPK, ITPK, IPPK (IP5-2K), and PPIP5K. Although, ITPKs have recently been identified in archaea, eukaryotes have taken advantage of these enzymes to create a sophisticated signalling network based on inositol phosphates. However, it remains largely elusive what fundamental biochemical principles control the signalling cascade. Here, we present an evolutionary approach to understand the development of the 'inositol phosphate code' in eukaryotes. Distribution analyses of these four inositol kinase groups throughout the eukaryotic landscape reveal the loss of either ITPK, or of PPIP5K proteins in several species. Surprisingly, the loss of IPPK, an enzyme thought to catalyse the rate limiting step of IP6 (phytic acid) synthesis, was also recorded. Furthermore, this study highlights a noteworthy difference between animal (metazoan) and plant (archaeplastida) lineages. While metazoan appears to have a substantial amplification of IPK enzymes, archaeplastida genomes show a considerable increase in ITPK members. Differential evolution of IPK and ITPK between plant and animal lineage is likely reflective of converging functional adaptation of these two types of inositol kinases. Since, the IPK family comprises three sub-types IPMK, IP6K, and IP3-3K each with dedicated enzymatic specificity in metazoan, we propose that the amplified ITPK group in plant could be classified in sub-types with distinct enzymology.
Collapse
Affiliation(s)
- Debabrata Laha
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, WC1E6BT, London, UK
| | - Paloma Portela-Torres
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, WC1E6BT, London, UK
| | - Yann Desfougères
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, WC1E6BT, London, UK
| | - Adolfo Saiardi
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, WC1E6BT, London, UK.
| |
Collapse
|
40
|
Ucuncu E, Rajamani K, Wilson MSC, Medina-Cano D, Altin N, David P, Barcia G, Lefort N, Banal C, Vasilache-Dangles MT, Pitelet G, Lorino E, Rabasse N, Bieth E, Zaki MS, Topcu M, Sonmez FM, Musaev D, Stanley V, Bole-Feysot C, Nitschké P, Munnich A, Bahi-Buisson N, Fossoud C, Giuliano F, Colleaux L, Burglen L, Gleeson JG, Boddaert N, Saiardi A, Cantagrel V. MINPP1 prevents intracellular accumulation of the chelator inositol hexakisphosphate and is mutated in Pontocerebellar Hypoplasia. Nat Commun 2020; 11:6087. [PMID: 33257696 PMCID: PMC7705663 DOI: 10.1038/s41467-020-19919-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 10/29/2020] [Indexed: 12/13/2022] Open
Abstract
Inositol polyphosphates are vital metabolic and secondary messengers, involved in diverse cellular functions. Therefore, tight regulation of inositol polyphosphate metabolism is essential for proper cell physiology. Here, we describe an early-onset neurodegenerative syndrome caused by loss-of-function mutations in the multiple inositol-polyphosphate phosphatase 1 gene (MINPP1). Patients are found to have a distinct type of Pontocerebellar Hypoplasia with typical basal ganglia involvement on neuroimaging. We find that patient-derived and genome edited MINPP1−/− induced stem cells exhibit an inefficient neuronal differentiation combined with an increased cell death. MINPP1 deficiency results in an intracellular imbalance of the inositol polyphosphate metabolism. This metabolic defect is characterized by an accumulation of highly phosphorylated inositols, mostly inositol hexakisphosphate (IP6), detected in HEK293 cells, fibroblasts, iPSCs and differentiating neurons lacking MINPP1. In mutant cells, higher IP6 level is expected to be associated with an increased chelation of intracellular cations, such as iron or calcium, resulting in decreased levels of available ions. These data suggest the involvement of IP6-mediated chelation on Pontocerebellar Hypoplasia disease pathology and thereby highlight the critical role of MINPP1 in the regulation of human brain development and homeostasis. Tight regulation of inositol polyphosphate metabolism is essential for proper cell physiology. Here, the authors describe an early-onset neurodegenerative syndrome caused by loss-of-function mutations in the MINPP1 gene, characterised by intracellular imbalance of inositol polyphosphate metabolism.
Collapse
Affiliation(s)
- Ekin Ucuncu
- Université de Paris, Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, F-75015, Paris, France
| | - Karthyayani Rajamani
- Université de Paris, Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, F-75015, Paris, France
| | - Miranda S C Wilson
- MRC Laboratory for Molecular Cell Biology, University College London, WC1E 6BT, London, UK
| | - Daniel Medina-Cano
- Université de Paris, Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, F-75015, Paris, France
| | - Nami Altin
- Université de Paris, Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, F-75015, Paris, France
| | - Pierre David
- Transgenesis Platform, Laboratoire d'Expérimentation Animale et Transgenèse (LEAT), Imagine Institute, Structure Fédérative de Recherche Necker INSERM US24/CNRS UMS3633, 75015, Paris, France
| | - Giulia Barcia
- Université de Paris, Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, F-75015, Paris, France.,Département de Génétique Médicale, AP-HP, Hôpital Necker-Enfants Malades, F-75015, Paris, France
| | - Nathalie Lefort
- Université de Paris, iPSC Core Facility, Imagine Institute, INSERM UMR 1163, F-75015, Paris, France
| | - Céline Banal
- Université de Paris, iPSC Core Facility, Imagine Institute, INSERM UMR 1163, F-75015, Paris, France
| | | | - Gaële Pitelet
- Service de Neuropédiatrie, CHU Nice, 06200, Nice, France
| | - Elsa Lorino
- ESEAN, 44200 Nantes, Service de maladies chroniques de l'enfant, CHU Nantes, 44093, Nantes, France
| | - Nathalie Rabasse
- Service de pédiatrie, hôpital d'Antibes-Juan-les-Pins, 06600, Antibes-Juan-les-Pins, France
| | - Eric Bieth
- Service de Génétique Médicale, CHU Toulouse, 31059, Toulouse, France
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, 12311, Egypt
| | - Meral Topcu
- Department of Child Neurology, Faculty of Medicine, Hacettepe University, Ankara, 06100, Turkey
| | - Fatma Mujgan Sonmez
- Guven Hospital, Child Neurology Department, Ankara, Turkey.,Department of Child Neurology, Faculty of Medicine, Karadeniz Technical University, Trabzon, 61080, Turkey
| | - Damir Musaev
- Laboratory for Pediatric Brain Diseases, Rady Children's Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Valentina Stanley
- Laboratory for Pediatric Brain Diseases, Rady Children's Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Christine Bole-Feysot
- Université de Paris, Genomics Platform, Imagine Institute, INSERM UMR 1163, F-75015, Paris, France
| | - Patrick Nitschké
- Université de Paris, Bioinformatics Core Facility, Imagine Institute, INSERM UMR 1163, F-75015, Paris, France
| | - Arnold Munnich
- Université de Paris, Translational Genetics Laboratory, Imagine Institute, INSERM UMR 1163, F-75015, Paris, France
| | - Nadia Bahi-Buisson
- Université de Paris, Genetics and Development of the Cerebral Cortex Laboratory, Imagine Institute, INSERM UMR 1163, F-75015, Paris, France
| | - Catherine Fossoud
- Centre de Référence des Troubles des Apprentissages, Hôpitaux Pédiatriques de Nice CHU-Lenval, 06200, Nice, France
| | - Fabienne Giuliano
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nice, 06202, Nice, France
| | - Laurence Colleaux
- Université de Paris, Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, F-75015, Paris, France
| | - Lydie Burglen
- Université de Paris, Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, F-75015, Paris, France.,Centre de Référence des Malformations et Maladies Congénitales du Cervelet, Département de Génétique, AP-HP, Sorbonne Université, Hôpital Trousseau, 75012, Paris, France
| | - Joseph G Gleeson
- Laboratory for Pediatric Brain Diseases, Rady Children's Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Nathalie Boddaert
- Département de radiologie pédiatrique, INSERM UMR 1163 and INSERM U1000, AP-HP, Hôpital Necker-Enfants Malades, F-75015, Paris, France
| | - Adolfo Saiardi
- MRC Laboratory for Molecular Cell Biology, University College London, WC1E 6BT, London, UK.
| | - Vincent Cantagrel
- Université de Paris, Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, F-75015, Paris, France.
| |
Collapse
|
41
|
Qiu D, Wilson MS, Eisenbeis VB, Harmel RK, Riemer E, Haas TM, Wittwer C, Jork N, Gu C, Shears SB, Schaaf G, Kammerer B, Fiedler D, Saiardi A, Jessen HJ. Analysis of inositol phosphate metabolism by capillary electrophoresis electrospray ionization mass spectrometry. Nat Commun 2020; 11:6035. [PMID: 33247133 PMCID: PMC7695695 DOI: 10.1038/s41467-020-19928-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/06/2020] [Indexed: 12/22/2022] Open
Abstract
The analysis of myo-inositol phosphates (InsPs) and myo-inositol pyrophosphates (PP-InsPs) is a daunting challenge due to the large number of possible isomers, the absence of a chromophore, the high charge density, the low abundance, and the instability of the esters and anhydrides. Given their importance in biology, an analytical approach to follow and understand this complex signaling hub is desirable. Here, capillary electrophoresis (CE) coupled to electrospray ionization mass spectrometry (ESI-MS) is implemented to analyze complex mixtures of InsPs and PP-InsPs with high sensitivity. Stable isotope labeled (SIL) internal standards allow for matrix-independent quantitative assignment. The method is validated in wild-type and knockout mammalian cell lines and in model organisms. SIL-CE-ESI-MS enables the accurate monitoring of InsPs and PP-InsPs arising from compartmentalized cellular synthesis pathways, by feeding cells with either [13C6]-myo-inositol or [13C6]-D-glucose. In doing so, we provide evidence for the existence of unknown inositol synthesis pathways in mammals, highlighting the potential of this method to dissect inositol phosphate metabolism and signalling. Myo-Inositol phosphates (InsPs) and pyrophosphates (PP-InsPs) are important second messengers but their analysis remains challenging. Here, the authors develop a capillary electrophoresis-mass spectrometry method for the identification and quantitation of InsP and PP-InsP isomers in cells and tissues.
Collapse
Affiliation(s)
- Danye Qiu
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104, Freiburg, Germany.
| | - Miranda S Wilson
- Medical Research Council, Laboratory for Molecular Cell Biology, University College London, London, WC1E 6BT, UK
| | - Verena B Eisenbeis
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Robert K Harmel
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Esther Riemer
- Institute of Crop Science and Resource Conservation, Department of Plant Nutrition, Rheinische Friedrich-Wilhelms-University Bonn, 53115, Bonn, Germany
| | - Thomas M Haas
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Christopher Wittwer
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Nikolaus Jork
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Chunfang Gu
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Stephen B Shears
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Gabriel Schaaf
- Institute of Crop Science and Resource Conservation, Department of Plant Nutrition, Rheinische Friedrich-Wilhelms-University Bonn, 53115, Bonn, Germany
| | - Bernd Kammerer
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Adolfo Saiardi
- Medical Research Council, Laboratory for Molecular Cell Biology, University College London, London, WC1E 6BT, UK.
| | - Henning J Jessen
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104, Freiburg, Germany. .,CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
42
|
Wang Z, Jork N, Bittner T, Wang H, Jessen HJ, Shears SB. Rapid stimulation of cellular Pi uptake by the inositol pyrophosphate InsP 8 induced by its photothermal release from lipid nanocarriers using a near infra-red light-emitting diode. Chem Sci 2020; 11:10265-10278. [PMID: 33659052 PMCID: PMC7891704 DOI: 10.1039/d0sc02144j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/07/2020] [Indexed: 11/21/2022] Open
Abstract
Inositol pyrophosphates (PP-InsPs), including diphospho-myo-inositol pentakisphosphate (5-InsP7) and bis-diphospho-myo-inositol tetrakisphosphate (1,5-InsP8), are highly polar, membrane-impermeant signaling molecules that control many homeostatic responses to metabolic and bioenergetic imbalance. To delineate their molecular activities, there is an increasing need for a toolbox of methodologies for real-time modulation of PP-InsP levels inside large populations of cultured cells. Here, we describe procedures to package PP-InsPs into thermosensitive phospholipid nanocapsules that are impregnated with a near infra-red photothermal dye; these liposomes are readily accumulated into cultured cells. The PP-InsPs remain trapped inside the liposomes until the cultures are illuminated with a near infra-red light-emitting diode (LED) which permeabilizes the liposomes to promote PP-InsP release. Additionally, so as to optimize these procedures, a novel stably fluorescent 5-InsP7 analogue (i.e., 5-FAM-InsP7) was synthesized with the assistance of click-chemistry; the delivery and deposition of the analogue inside cells was monitored by flow cytometry and by confocal microscopy. We describe quantitatively-controlled PP-InsP release inside cells within 5 min of LED irradiation, without measurable effect upon cell integrity, using a collimated 22 mm beam that can irradiate up to 106 cultured cells. Finally, to interrogate the biological value of these procedures, we delivered 1,5-InsP8 into HCT116 cells and showed it to dose-dependently stimulate the rate of [33P]-Pi uptake; these observations reveal a rheostatic range of concentrations over which 1,5-InsP8 is biologically functional in Pi homeostasis.
Collapse
Affiliation(s)
- Zhenzhen Wang
- Signal Transduction Laboratory , National Institute of Environmental Health Sciences , National Institutes of Health , Research Triangle Park , NC 27709 , USA . ; Tel: +1-984-287-3483
| | - Nikolaus Jork
- Institute of Organic Chemistry , CIBSS , Center for Integrative Biological Signalling Studies , University of Freiburg , 79104 Freiburg , Germany
| | - Tamara Bittner
- Institute of Organic Chemistry , CIBSS , Center for Integrative Biological Signalling Studies , University of Freiburg , 79104 Freiburg , Germany
| | - Huanchen Wang
- Signal Transduction Laboratory , National Institute of Environmental Health Sciences , National Institutes of Health , Research Triangle Park , NC 27709 , USA . ; Tel: +1-984-287-3483
| | - Henning J Jessen
- Institute of Organic Chemistry , CIBSS , Center for Integrative Biological Signalling Studies , University of Freiburg , 79104 Freiburg , Germany
| | - Stephen B Shears
- Signal Transduction Laboratory , National Institute of Environmental Health Sciences , National Institutes of Health , Research Triangle Park , NC 27709 , USA . ; Tel: +1-984-287-3483
| |
Collapse
|
43
|
Minini M, Senni A, Unfer V, Bizzarri M. The Key Role of IP 6K: A Novel Target for Anticancer Treatments? Molecules 2020; 25:molecules25194401. [PMID: 32992691 PMCID: PMC7583815 DOI: 10.3390/molecules25194401] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 12/29/2022] Open
Abstract
Inositol and its phosphate metabolites play a pivotal role in several biochemical pathways and gene expression regulation: inositol pyrophosphates (PP-IPs) have been increasingly appreciated as key signaling modulators. Fluctuations in their intracellular levels hugely impact the transfer of phosphates and the phosphorylation status of several target proteins. Pharmacological modulation of the proteins associated with PP-IP activities has proved to be beneficial in various pathological settings. IP7 has been extensively studied and found to play a key role in pathways associated with PP-IP activities. Three inositol hexakisphosphate kinase (IP6K) isoforms regulate IP7 synthesis in mammals. Genomic deletion or enzymic inhibition of IP6K1 has been shown to reduce cell invasiveness and migration capacity, protecting against chemical-induced carcinogenesis. IP6K1 could therefore be a useful target in anticancer treatment. Here, we summarize the current understanding that established IP6K1 and the other IP6K isoforms as possible targets for cancer therapy. However, it will be necessary to determine whether pharmacological inhibition of IP6K is safe enough to begin clinical study. The development of safe and selective inhibitors of IP6K isoforms is required to minimize undesirable effects.
Collapse
Affiliation(s)
- Mirko Minini
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
- Department of Surgery ‘P. Valdoni’, Sapienza University of Rome, 00161 Rome, Italy
- Systems Biology Group Lab, Sapienza University of Rome, 00185 Rome, Italy;
- Correspondence: (M.M.); (M.B.)
| | - Alice Senni
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
- Department of Surgery ‘P. Valdoni’, Sapienza University of Rome, 00161 Rome, Italy
| | - Vittorio Unfer
- Systems Biology Group Lab, Sapienza University of Rome, 00185 Rome, Italy;
| | - Mariano Bizzarri
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
- Systems Biology Group Lab, Sapienza University of Rome, 00185 Rome, Italy;
- Correspondence: (M.M.); (M.B.)
| |
Collapse
|
44
|
Ricana CL, Lyddon TD, Dick RA, Johnson MC. Primate lentiviruses require Inositol hexakisphosphate (IP6) or inositol pentakisphosphate (IP5) for the production of viral particles. PLoS Pathog 2020; 16:e1008646. [PMID: 32776974 PMCID: PMC7446826 DOI: 10.1371/journal.ppat.1008646] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/20/2020] [Accepted: 06/26/2020] [Indexed: 11/18/2022] Open
Abstract
Inositol hexakisphosphate (IP6) potently stimulates HIV-1 particle assembly in vitro and infectious particle production in vivo. However, knockout cells lacking inositol-pentakisphosphate 2-kinase (IPPK-KO), the enzyme that produces IP6 by phosphorylation of inositol pentakisphosphate (IP5), were still able to produce infectious HIV-1 particles at a greatly reduced rate. HIV-1 in vitro assembly can also be stimulated to a lesser extent with IP5, but until recently, it was not known if IP5 could also function in promoting assembly in vivo. Here we addressed whether there is an absolute requirement for IP6 or IP5 in the production of infectious HIV-1 particles. IPPK-KO cells expressed no detectable IP6 but elevated IP5 levels and displayed a 20-100-fold reduction in infectious particle production, correlating with lost virus release. Transient transfection of an IPPK expression vector stimulated infectious particle production and release in IPPK-KO but not wildtype cells. Several attempts to make IP6/IP5 deficient stable cells were not successful, but transient expression of the enzyme multiple inositol polyphosphate phosphatase-1 (MINPP1) into IPPK-KOs resulted in near ablation of IP6 and IP5. Under these conditions, we found that HIV-1 infectious particle production and virus release were essentially abolished (1000-fold reduction) demonstrating an IP6/IP5 requirement. However, other retroviruses including a Gammaretrovirus, a Betaretrovirus, and two non-primate Lentiviruses displayed only a modest (3-fold) reduction in infectious particle production from IPPK-KOs and were not significantly altered by expression of IPPK or MINPP1. The only other retrovirus found to show a clear IP6/IP5 dependence was the primate (macaque) Lentivirus Simian Immunodeficiency Virus, which displayed similar sensitivity as HIV-1. We were not able to determine if producer cell IP6/IP5 is required at additional steps beyond assembly because viral particles devoid of both molecules could not be generated. Finally, we found that loss of IP6/IP5 in viral target cells had no effect on permissivity to HIV-1 infection.
Collapse
Affiliation(s)
- Clifton L Ricana
- Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| | - Terri D Lyddon
- Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| | - Robert A Dick
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Marc C Johnson
- Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| |
Collapse
|
45
|
InsP 7 is a small-molecule regulator of NUDT3-mediated mRNA decapping and processing-body dynamics. Proc Natl Acad Sci U S A 2020; 117:19245-19253. [PMID: 32727897 DOI: 10.1073/pnas.1922284117] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Regulation of enzymatic 5' decapping of messenger RNA (mRNA), which normally commits transcripts to their destruction, has the capacity to dynamically reshape the transcriptome. For example, protection from 5' decapping promotes accumulation of mRNAs into processing (P) bodies-membraneless, biomolecular condensates. Such compartmentalization of mRNAs temporarily removes them from the translatable pool; these repressed transcripts are stabilized and stored until P-body dissolution permits transcript reentry into the cytosol. Here, we describe regulation of mRNA stability and P-body dynamics by the inositol pyrophosphate signaling molecule 5-InsP7 (5-diphosphoinositol pentakisphosphate). First, we demonstrate 5-InsP7 inhibits decapping by recombinant NUDT3 (Nudix [nucleoside diphosphate linked moiety X]-type hydrolase 3) in vitro. Next, in intact HEK293 and HCT116 cells, we monitored the stability of a cadre of NUDT3 mRNA substrates following CRISPR-Cas9 knockout of PPIP5Ks (diphosphoinositol pentakisphosphate 5-kinases type 1 and 2, i.e., PPIP5K KO), which elevates cellular 5-InsP7 levels by two- to threefold (i.e., within the physiological rheostatic range). The PPIP5K KO cells exhibited elevated levels of NUDT3 mRNA substrates and increased P-body abundance. Pharmacological and genetic attenuation of 5-InsP7 synthesis in the KO background reverted both NUDT3 mRNA substrate levels and P-body counts to those of wild-type cells. Furthermore, liposomal delivery of a metabolically resistant 5-InsP7 analog into wild-type cells elevated levels of NUDT3 mRNA substrates and raised P-body abundance. In the context that cellular 5-InsP7 levels normally fluctuate in response to changes in the bioenergetic environment, regulation of mRNA structure by this inositol pyrophosphate represents an epitranscriptomic control process. The associated impact on P-body dynamics has relevance to regulation of stem cell differentiation, stress responses, and, potentially, amelioration of neurodegenerative diseases and aging.
Collapse
|
46
|
Abstract
The specific non-invasive control of intracellular signaling events requires advanced tools that enter cells by diffusion and are controllable by light. Here, we detail the synthesis and application of membrane-permeant caged inositol pyrophosphates with respect to cell entry and cell distribution. We recently published the synthesis of these tools as well as their effect on PH-domain localization in HeLa cells and oscillations of the intracellular calcium concentration in β-cells, which are known to drive insulin secretion. In this chapter, we discuss the possibilities and limitations when using cell-penetrating inositol pyrophosphates. We provide a detailed protocol for the application in live mouse β-cells and we discuss the image analysis needed for following effects on calcium signaling.
Collapse
|
47
|
Bittner T, Wittwer C, Hauke S, Wohlwend D, Mundinger S, Dutta AK, Bezold D, Dürr T, Friedrich T, Schultz C, Jessen HJ. Photolysis of Caged Inositol Pyrophosphate InsP 8 Directly Modulates Intracellular Ca 2+ Oscillations and Controls C2AB Domain Localization. J Am Chem Soc 2020; 142:10606-10611. [PMID: 32459478 DOI: 10.1021/jacs.0c01697] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inositol pyrophosphates constitute a family of hyperphosphorylated signaling molecules involved in the regulation of glucose uptake and insulin sensitivity. While our understanding of the biological roles of inositol heptaphosphates (PP-InsP5) has greatly improved, the functions of the inositol octaphosphates ((PP)2-InsP4) have remained unclear. Here we present the synthesis of two enantiomeric cell-permeant and photocaged (PP)2-InsP4 derivatives and apply them to study the functions in living β-cells. Photorelease of the naturally occurring isomer 1,5-(PP)2-InsP4 led to an immediate and concentration-dependent reduction of intracellular calcium oscillations, while other caged inositol pyrophosphates (3,5-(PP)2-InsP4, 5-PP-InsP5, 1-PP-InsP5, 3-PP-InsP5) showed no immediate effect. Furthermore, uncaging of 1,5-(PP)2-InsP4 but not 3,5-(PP)2-InsP4 induced translocation of the C2AB domain of granuphilin from the plasma membrane to the cytosol. Granuphilin is involved in membrane docking of secretory vesicles. This suggests that 1,5-(PP)2-InsP4 impacts β-cell activity by regulating granule localization and/or priming and calcium signaling in concert.
Collapse
Affiliation(s)
- Tamara Bittner
- Department of Chemistry and Pharmacy, Albert-Ludwigs University Freiburg, Albertstrasse 21, 79104 Freiburg i.B., Germany
| | - Christopher Wittwer
- Department of Chemistry and Pharmacy, Albert-Ludwigs University Freiburg, Albertstrasse 21, 79104 Freiburg i.B., Germany
| | - Sebastian Hauke
- Cell Biology & Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Daniel Wohlwend
- Department of Chemistry and Pharmacy, Albert-Ludwigs University Freiburg, Albertstrasse 21, 79104 Freiburg i.B., Germany
| | - Stephan Mundinger
- Department of Chemistry and Pharmacy, Albert-Ludwigs University Freiburg, Albertstrasse 21, 79104 Freiburg i.B., Germany
| | - Amit K Dutta
- Department of Chemistry and Pharmacy, Albert-Ludwigs University Freiburg, Albertstrasse 21, 79104 Freiburg i.B., Germany
| | - Dominik Bezold
- Department of Chemistry and Pharmacy, Albert-Ludwigs University Freiburg, Albertstrasse 21, 79104 Freiburg i.B., Germany
| | - Tobias Dürr
- Department of Chemistry and Pharmacy, Albert-Ludwigs University Freiburg, Albertstrasse 21, 79104 Freiburg i.B., Germany
| | - Thorsten Friedrich
- Department of Chemistry and Pharmacy, Albert-Ludwigs University Freiburg, Albertstrasse 21, 79104 Freiburg i.B., Germany
| | - Carsten Schultz
- Cell Biology & Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany.,Department of Chemical Physiology and Biochemistry, Oregon Health & Science University (OHSU), Sam Jackson Park Road, Portland, Oregon 97239-3098, United States
| | - Henning J Jessen
- Department of Chemistry and Pharmacy, Albert-Ludwigs University Freiburg, Albertstrasse 21, 79104 Freiburg i.B., Germany.,CIBSS-Centre for Integrative Biological Signalling Studies, 79104 Freiburg i.B., Germany.,Freiburg Research Institute for Advanced Studies (FRIAS), Albert-Ludwigs University Freiburg, Albertstrasse 19, 79104 Freiburg i.B., Germany
| |
Collapse
|
48
|
Thakur S, Goswami K, Rao P, Kaushik S, Singh BP, Kain P, Asthana S, Bhattacharjee S, Guchhait P, Eswaran SV. Fluoresceinated Aminohexanol Tethered Inositol Hexakisphosphate: Studies on Arabidopsis thaliana and Drosophila melanogaster and Docking with 2P1M Receptor. ACS OMEGA 2020; 5:9585-9597. [PMID: 32363311 PMCID: PMC7191843 DOI: 10.1021/acsomega.0c00961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/01/2020] [Indexed: 05/17/2023]
Abstract
Inositol hexakisphosphate (InsP6; phytic acid) is considered as the second messenger and plays a very important role in plants, animals, and human beings. It is the principal storage form of phosphorus in many plant tissues, especially in dry fruits, bran, and seeds. The resulting anion is a colorless species that plays a critical role in nutrition and is believed to cure many diseases. A fluoresceinated aminohexanol tethered inositol hexakisphosphate (III) had been synthesized earlier involving many complicated steps. We describe here a simple two-step synthesis of (III) and its characterization using different techniques such as matrix-assisted laser desorption ionization mass spectrometry, tandem mass spectrometry, and Fourier transform infrared, ultraviolet-visible, ultraviolet-fluorescence, 1H nuclear magnetic resonance (NMR), and two-dimensional NMR spectroscopies. The effect of (III) has been investigated in the model systems, Arabidopsis thaliana and Drosophila melanogaster. Using Schrodinger software, computational studies on the binding of (III) with the protein 2P1M (Auxin-receptor TIR1-adaptor ASK1 complex) has revealed strong binding propensity with this compound. These studies on the fluoresceinated tethered phytic acid could have far reaching implications on its efficacy for human health and treatment of diseases (cancer/tumor and glioblastoma) and for understanding phosphorous recycling in the environment, especially for plant systems.
Collapse
Affiliation(s)
- Sujeet
Kumar Thakur
- TERI
School of Advanced Studies, Plot No. 10, Vasant Kunj Institutional Area, Vasant
Kunj, Institutional Area, New Delhi 110070, India
| | - Krishnendu Goswami
- Regional
Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon
Expressway, Faridabad, 121001 Haryana, India
| | - Pallavi Rao
- Amity
University, Noida, 201313 Uttar Pradesh, India
| | - Shivam Kaushik
- Regional
Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon
Expressway, Faridabad, 121001 Haryana, India
| | - Bhanu Pratap Singh
- Translational
Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon
Expressway, Faridabad, 121001 Haryana, India
| | - Pinky Kain
- Regional
Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon
Expressway, Faridabad, 121001 Haryana, India
| | - Shailendra Asthana
- Translational
Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon
Expressway, Faridabad, 121001 Haryana, India
| | - Saikat Bhattacharjee
- Regional
Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon
Expressway, Faridabad, 121001 Haryana, India
| | - Prasenjit Guchhait
- Regional
Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon
Expressway, Faridabad, 121001 Haryana, India
| | - Sambasivan V. Eswaran
- Teri
Deakin Nano Biotechnology Centre (TDNBC), Teri Gram, Gwal Pahari, Gurgaon- Faridabad Expressway, Gurugram, 122002 Haryana, India
| |
Collapse
|
49
|
Phytic Acid and Mineral Biofortification Strategies: From Plant Science to Breeding and Biotechnological Approaches. PLANTS 2020; 9:plants9050553. [PMID: 32357504 PMCID: PMC7285160 DOI: 10.3390/plants9050553] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/24/2020] [Indexed: 01/03/2023]
Abstract
Mineral deficiencies, particularly for iron and zinc, affect over two billion people worldwide, mainly in developing countries where diets are based on the consumption of staple crops. Mineral biofortification includes different approaches aimed to increase mineral concentration and to improve mineral bioavailability in the edible parts of plants, particularly the seeds. A multidisciplinary approach, including agronomic, genetic, physiological, and molecular expertise, is necessary to obtain detailed knowledge of the complex homeostatic mechanisms that tightly regulate seed mineral concentrations and the molecules and mechanisms that determine mineral bioavailability, necessary to reach the biofortification objectives. To increase bioavailability, one strategy is to decrease seed content of phytic acid, a highly electronegative molecule present in the cell that chelates positively charged metal ions, many of which are important for human nutrition. All the contributions of the current Special Issue aim at describing new results, reviewing the literature, and also commenting on some of the economic and sociological aspects concerning biofortification research. A number of contributions are related to the study of mineral transport, seed accumulation, and approaches to increase seed micronutrient concentration. The remaining ones are mainly focused on the study of low phytic acid mutants.
Collapse
|
50
|
Mukherjee S, Haubner J, Chakraborty A. Targeting the Inositol Pyrophosphate Biosynthetic Enzymes in Metabolic Diseases. Molecules 2020; 25:molecules25061403. [PMID: 32204420 PMCID: PMC7144392 DOI: 10.3390/molecules25061403] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/12/2022] Open
Abstract
In mammals, a family of three inositol hexakisphosphate kinases (IP6Ks) synthesizes the inositol pyrophosphate 5-IP7 from IP6. Genetic deletion of Ip6k1 protects mice from high fat diet induced obesity, insulin resistance and fatty liver. IP6K1 generated 5-IP7 promotes insulin secretion from pancreatic β-cells, whereas it reduces insulin signaling in metabolic tissues by inhibiting the protein kinase Akt. Thus, IP6K1 promotes high fat diet induced hyperinsulinemia and insulin resistance in mice while its deletion has the opposite effects. IP6K1 also promotes fat accumulation in the adipose tissue by inhibiting the protein kinase AMPK mediated energy expenditure. Genetic deletion of Ip6k3 protects mice from age induced fat accumulation and insulin resistance. Accordingly, the pan IP6K inhibitor TNP [N2-(m-trifluorobenzyl), N6-(p-nitrobenzyl)purine] ameliorates obesity, insulin resistance and fatty liver in diet induced obese mice by improving Akt and AMPK mediated insulin sensitivity and energy expenditure. TNP also protects mice from bone loss, myocardial infarction and ischemia reperfusion injury. Thus, the IP6K pathway is a potential target in obesity and other metabolic diseases. Here, we summarize the studies that established IP6Ks as a potential target in metabolic diseases. Further studies will reveal whether inhibition of this pathway has similar pleiotropic benefits on metabolic health of humans.
Collapse
|