1
|
Fritzer A, Suhrbier A, Hugo LE, Tang B, Devine G, Jost S, Meinke AL. Assessment of the transmission of live-attenuated chikungunya virus vaccine VLA1553 by Aedes albopictus mosquitoes. Parasit Vectors 2025; 18:171. [PMID: 40355954 PMCID: PMC12070702 DOI: 10.1186/s13071-025-06789-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 04/01/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Chikungunya virus (CHIKV) is a mosquito-transmitted, arthritogenic alphavirus that causes sporadic outbreaks of often debilitating rheumatic disease. The recently approved CHIKV vaccine, IXCHIQ, is based on a live-attenuated CHIKV strain (VLA1553), with viraemic vaccine recipients theoretically able to transmit VLA1553 to mosquitoes with ensuing onward transmission. We thus evaluated VLA1553 transmission from artificial blood meals to Aedes albopictus mosquitoes, and onward transmission to mice. METHODS Female A. albopictus mosquitoes were fed on defibrinated sheep blood containing wild-type CHIKV (viral titre: 7.50 log10CCID50/mL) or VLA1553 (viral titres: 7.85, 5.72, 4.58, and 3.79 log10CCID50/mL). Viral titres in mosquito bodies and saliva were determined using CCID50 assays 7-8 days after the blood meal. After providing CHIKV or VLA1553 (viral titres ~ 7-8 log10CCID50/mL) in blood meals to mosquitoes, infected mosquitoes were fed on highly susceptible Irf3/7-/- mice (n = 3 per group). Data were re-analysed using the same reverse transcription quantitative polymerase chain reaction (RT-qPCR) as for an earlier VLA1553 phase 1 clinical trial, to allow correlations between blood meal titres and viraemia in vaccine recipients. RESULTS Mosquito body viral titres were significantly higher (P < 0.0001) for CHIKV versus VLA1553-fed mosquitoes at blood meal viral titres of ~ 7-8 log10CCID50/mL. Mosquito body VLA1553 titres decreased with reducing blood meal titres, but there was no dose-dependent effect on saliva viral titres. No dissemination to salivary glands was seen at blood meal titres ≤ 3.875 log10CCID50/mL. CHIKV-fed mosquitoes were able to transmit virus, and induce viraemia in, 3/3 Irf3/7-/- mice via mosquito bites. In contrast, 0/3 Irf3/7-/- mice became infected after bites from VLA1553-fed mosquitoes. RT-qPCR comparisons with phase 1 clinical data for VLA1553-vaccinated individuals indicated that VLA1553 viraemia was at or below the aforementioned threshold for transmission. CONCLUSIONS The evidence presented herein argue that the low viraemia in VLA1553-vaccinated individuals would mitigate against transmission. In addition, replication of VLA1553 in mosquito bodies was also significantly attenuated. Overall, mosquito-borne transmission of VLA1553 from vaccinated individuals to others appears improbable.
Collapse
Affiliation(s)
- Andrea Fritzer
- Valneva Austria GmbH, Campus Vienna Biocenter 3, 1030, Vienna, Austria.
| | - Andreas Suhrbier
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
| | - Leon E Hugo
- Mosquito Control, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
| | - Bing Tang
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
| | - Greg Devine
- Mosquito Control, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
| | - Sandra Jost
- Valneva Austria GmbH, Campus Vienna Biocenter 3, 1030, Vienna, Austria
| | - Andreas L Meinke
- Valneva Austria GmbH, Campus Vienna Biocenter 3, 1030, Vienna, Austria
| |
Collapse
|
2
|
Khan MK, Rolff J. Insect immunity in the Anthropocene. Biol Rev Camb Philos Soc 2025; 100:698-723. [PMID: 39500735 PMCID: PMC11885697 DOI: 10.1111/brv.13158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 03/08/2025]
Abstract
Anthropogenic activities result in global change, including climate change, landscape degradation and pollution, that can alter insect physiology and immune defences. These changes may have contributed to global insect decline and the dynamics of insect-transmitted diseases. The ability of insects to mount immune responses upon infection is crucial for defence against pathogens and parasites. Suppressed immune defences reduce fitness by causing disease-driven mortality and elevated immune responses reduce energy available to invest in other fitness traits such as reproduction. Understanding the impact of anthropogenic factors on insect-pathogen interactions is therefore key to determining the contribution of anthropogenic global change to pathogen-driven global insect decline and the emergence and transmission of insect-borne diseases. Here, we synthesise evidence of the impact of anthropogenic factors on insect immunity. We found evidence that anthropogenic factors, such as insecticides and heavy metals, directly impacting insect immune responses by inhibiting immune activation pathways. Alternatively, factors such as global warming, heatwaves, elevated CO2 and landscape degradation can indirectly reduce insect immune responses via reducing the energy available for immune function. We further review how anthropogenic factors impact pathogen clearance and contribute to an increase in vector-borne diseases. We discuss the fitness cost of anthropogenic factors via pathogen-driven mortality and reduced reproductive output and how this can contribute to species extinction. We found that most research has determined the impact of a single anthropogenic factor on insect immune responses or pathogen resistance. We recommend studying the combined impact of multiple stressors on immune response and pathogen resistance to understand better how anthropogenic factors affect insect immunity. We conclude by highlighting the importance of initiatives to mitigate the impact of anthropogenic factors on insect immunity, to reduce the spread of vector-borne diseases, and to protect vulnerable ecosystems from emerging diseases.
Collapse
Affiliation(s)
- Md Kawsar Khan
- Institute of BiologyFreie Universität BerlinKönigin‐Luise‐Str. 1‐3Berlin14195Germany
- School of Natural SciencesMacquarie University18 Wally's Walk, North Ryde‐2109SydneyNSWAustralia
| | - Jens Rolff
- Institute of BiologyFreie Universität BerlinKönigin‐Luise‐Str. 1‐3Berlin14195Germany
| |
Collapse
|
3
|
Tafesh-Edwards G, Eleftherianos I. Recent advances in unveiling cellular host-Zika virus interactions in Drosophila. Cell Cycle 2025:1-3. [PMID: 40122049 DOI: 10.1080/15384101.2025.2482481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 03/25/2025] Open
Affiliation(s)
- Ghada Tafesh-Edwards
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | - Ioannis Eleftherianos
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, The George Washington University, Washington, DC, USA
| |
Collapse
|
4
|
Bhattacharyya J, Roelke DL. Wolbachia-based mosquito control: Environmental perspectives on population suppression and replacement strategies. Acta Trop 2025; 262:107517. [PMID: 39740726 DOI: 10.1016/j.actatropica.2024.107517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/02/2025]
Abstract
Mosquito-borne diseases pose a significant threat to global health, and traditional mosquito control methods often fall short of effectiveness. A promising alternative is the biological control strategy of transinfecting mosquitoes with Wolbachia, a bacterium capable of outcompeting harmful pathogens and reducing the ability of mosquitoes to transmit diseases. However, Wolbachia infections are sensitive to abiotic environmental factors such as temperature and humidity, which can affect their densities in mosquitoes and, consequently, their ability to block pathogens. This review evaluates the effectiveness of different Wolbachia strains transinfected into mosquitoes in reducing mosquito-borne diseases. It explores how Wolbachia contributes to mosquito population control and pathogen interference, highlighting the importance of mathematical models in understanding Wolbachia transmission dynamics. Additionally, the review addresses the potential impact on arboviral transmission and the challenges posed by environmental fluctuations in mosquito control programs.
Collapse
Affiliation(s)
- Joydeb Bhattacharyya
- Department of Mathematics, Karimpur Pannadevi College, Nadia, West Bengal 741152, India.
| | - Daniel L Roelke
- Department of Marine Biology, Texas A&M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77554, USA
| |
Collapse
|
5
|
Han Y, Pu Q, Fan T, Wei T, Xu Y, Zhao L, Liu S. Long non-coding RNAs as promising targets for controlling disease vector mosquitoes. INSECT SCIENCE 2025; 32:24-41. [PMID: 38783627 DOI: 10.1111/1744-7917.13383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024]
Abstract
Hematophagous female mosquitoes are important vectors of numerous devastating human diseases, posing a major public health threat. Effective prevention and control of mosquito-borne diseases rely considerably on progress in understanding the molecular mechanisms of various life activities, and accordingly, the molecules that regulate the various life activities of mosquitoes are potential targets for implementing future vector control strategies. Many long non-coding RNAs (lncRNAs) have been identified in mosquitoes and significant progress has been made in determining their functions. Here, we present a comprehensive overview of the research advances on mosquito lncRNAs, including their molecular identification, function, and interaction with other non-coding RNAs, as well as their synergistic regulatory roles in mosquito life activities. We also highlight the potential roles of competitive endogenous RNAs in mosquito growth and development, as well as in insecticide resistance and virus-host interactions. Insights into the biological functions and mechanisms of lncRNAs in mosquito life activities, viral replication, pathogenesis, and transmission will contribute to the development of novel drugs and safe vaccines.
Collapse
Affiliation(s)
- Yujiao Han
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| | - Qian Pu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| | - Ting Fan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| | - Tianqi Wei
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| | - Yankun Xu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| | - Lu Zhao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| | - Shiping Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| |
Collapse
|
6
|
Qu J, Schinkel M, Chiggiato L, Rosendo Machado S, Overheul GJ, Miesen P, van Rij RP. The Hsf1-sHsp cascade has pan-antiviral activity in mosquito cells. Commun Biol 2025; 8:123. [PMID: 39863754 PMCID: PMC11762766 DOI: 10.1038/s42003-024-07435-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
Aedes mosquitoes transmit pathogenic arthropod-borne (arbo) viruses, putting nearly half the world's population at risk. Blocking virus replication in mosquitoes is a promising approach to prevent arbovirus transmission, the development of which requires in-depth knowledge of virus-host interactions and mosquito immunity. By integrating multi-omics data, we find that heat shock factor 1 (Hsf1) regulates eight small heat shock protein (sHsp) genes within one topologically associated domain in the genome of the Aedes aegypti mosquito. This Hsf1-sHsp cascade acts as an early response against chikungunya virus infection and shows pan-antiviral activity against chikungunya, Sindbis, and dengue virus as well as the insect-specific Agua Salud alphavirus in Ae. aegypti cells and against chikungunya virus and O'nyong-nyong virus in Aedes albopictus and Anopheles gambiae cells, respectively. Our comprehensive in vitro data suggest that Hsf1 could serve as a promising target for the development of novel intervention strategies to limit arbovirus transmission by mosquitoes.
Collapse
Affiliation(s)
- Jieqiong Qu
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Michelle Schinkel
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lisa Chiggiato
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Samara Rosendo Machado
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gijs J Overheul
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Pascal Miesen
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ronald P van Rij
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
7
|
Pathak AK, Quek S, Sharma R, Shiau JC, Thomas MB, Hughes GL, Murdock CC. Thermal variation influences the transcriptome of the major malaria vector Anopheles stephensi. Commun Biol 2025; 8:112. [PMID: 39843499 PMCID: PMC11754467 DOI: 10.1038/s42003-025-07477-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 01/07/2025] [Indexed: 01/24/2025] Open
Abstract
The distribution and abundance of ectothermic mosquitoes are strongly affected by temperature, but mechanisms remain unexplored. We describe the effect of temperature on the transcriptome of Anopheles stephensi, an invasive vector of human malaria. Adult females were maintained across a range of mean temperatures (20 °C, 24 °C and 28 °C), with daily fluctuations of +5 °C and -4 °C at each mean temperature. Transcriptomes were described up to 19 days post-blood meal. Of the >3100 differentially expressed genes, we observed shared temporal expression profiles across all temperatures, suggesting their indispensability to mosquito life history. Tolerance to 20 and 28 ( + 5°C/-4°C) was associated with larger and more diverse transcriptomes compared to 24 ( + 5 °C/-4 °C). Finally, we identified two distinct trends in gene expression in response to blood meal ingestion, oxidative stress, and reproduction. Our work has implications for mosquitoes' response to thermal variation, mosquito immune-physiology, mosquito-malaria interactions and the development of vector control tools.
Collapse
Affiliation(s)
- Ashutosh K Pathak
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA.
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA.
- Center for Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA.
| | - Shannon Quek
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Ritu Sharma
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Justine C Shiau
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
- Center for Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Matthew B Thomas
- Department of Entomology & Nematology, Invasion Science Research Institute, University of Florida, Gainesville, FL, USA
| | - Grant L Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Courtney C Murdock
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
- Center for Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
- Department of Entomology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
8
|
Turner EA, Clark SD, Peña-García VH, Christofferson RC. Investigating the Effects of Microclimate on Arboviral Kinetics in Aedes aegypti. Pathogens 2024; 13:1105. [PMID: 39770364 PMCID: PMC11728849 DOI: 10.3390/pathogens13121105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
Aedes aegypti are indoor-dwelling vectors of many arboviruses, including Zika (ZIKV) and chikungunya (CHIKV). The dynamics of these viruses within the mosquito are known to be temperature-dependent, and models that address risk and predictions of the transmission efficiency and patterns typically use meteorological temperature data. These data do not differentiate the temperatures experienced by mosquitoes in different microclimates, such as indoor vs. outdoor. Using temperature data collected from Neiva Colombia, we investigated the impact of two microclimate temperature profiles on ZIKV and CHIKV infection dynamics in Ae. aegypti. We found that the vector mortality was not significantly impacted by the difference in temperature profiles. Further, we found that the infection and dissemination rates were largely unaffected, with only ZIKV experiencing a significant increase in infection at outdoor temperatures at 21 days post-infection (dpi). Further, there was a significant increase in viral titers in the abdomens of ZIKV-infected mosquitoes at 21 dpi. With CHIKV, there was a significant titer difference in the abdomens of mosquitoes at both 7 and 14 dpi. While there were differences in vector infection kinetics that were not statistically significant, we developed a simple stochastic SEIR-SEI model to determine if the observed differences might translate to notable differences in simulated outbreaks. With ZIKV, while the probability of secondary transmission was high (>90%) under both microenvironmental scenarios, there was often only one secondary case. However, CHIKV differences between microenvironments were more prominent. With over 90% probability of secondary transmission, at indoor conditions, the peak of transmission was higher (over 850 cases) compared to the outdoor conditions (<350 cases). Further, the time-to-peak for indoor was 130 days compared to 217 days for outdoor scenarios. Further investigations into microenvironmental conditions, including temperature, may be key to increasing our understanding of the nuances of CHIKV and ZIKV vectorial capacity, epidemiology, and risk assessment, especially as it affects other aspects of transmission, such as biting rate. Overall, it is critical to understand the variability of how extrinsic factors affect transmission systems, and these data add to the growing catalog of knowledge of how temperature affects arboviral systems.
Collapse
Affiliation(s)
- Erik A Turner
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Samantha D Clark
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Víctor Hugo Peña-García
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- School of Medicine, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
9
|
Rai P, Webb EM, Paulson SL, Kang L, Weger‐Lucarelli J. Obesity's Unexpected Influence: Reduced Alphavirus Transmission and Altered Immune Activation in the Vector. J Med Virol 2024; 96:e70032. [PMID: 39466902 PMCID: PMC11600488 DOI: 10.1002/jmv.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/26/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024]
Abstract
Chikungunya virus (CHIKV) and Mayaro virus (MAYV) are emerging/re-emerging alphaviruses transmitted by Aedes spp. mosquitoes and responsible for recent disease outbreaks in the Americas. The capacity of these viruses to cause epidemics is frequently associated with increased mosquito transmission, which in turn is governed by virus-host-vector interactions. Although many studies have explored virus-vector interactions, significant gaps remain in understanding how vertebrate host factors influence alphavirus transmission by mosquitoes. We previously showed that obesity, a ubiquitous vertebrate host biological factor, reduces alphavirus transmission potential in mosquitoes. We hypothesized that alphavirus-infected obese bloodmeals altered immune genes and/or pathways in mosquitoes, thereby inhibiting virus transmission. To test this, we conducted RNA sequencing (RNA-seq) and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) on midgut RNA from mosquitoes fed on alphavirus-infected lean and obese mice. This approach aimed to identify potential antiviral or proviral genes and pathways altered in mosquitoes after consuming infected obese bloodmeals. We found upregulation of the Toll pathway and downregulation of several metabolic and other genes in mosquitoes fed on alphavirus-infected obese bloodmeals. Through gene knockdown studies, we demonstrated the antiviral role of Toll pathway and proviral roles of AAEL009965 and fatty acid synthase (FASN) in the transmission of alphaviruses by mosquitoes. Therefore, this study utilized obesity to identify factors influencing alphavirus transmission by mosquitoes and this research approach may pave the way for designing broadly effective antiviral measures to combat mosquito-borne viruses, such as releasing transgenic mosquitoes deficient in the identified genes.
Collapse
Affiliation(s)
- Pallavi Rai
- Department of Biomedical Sciences and PathobiologyVirginia TechBlacksburgVirginiaUSA
- Center for Emerging, Zoonotic, and Arthropod‐Borne PathogensVirginia TechBlacksburgVirginiaUSA
| | - Emily M. Webb
- Center for Emerging, Zoonotic, and Arthropod‐Borne PathogensVirginia TechBlacksburgVirginiaUSA
- Department of EntomologyFralin Life Sciences Institute, Virginia TechBlacksburgVirginiaUSA
| | - Sally L. Paulson
- Department of EntomologyFralin Life Sciences Institute, Virginia TechBlacksburgVirginiaUSA
| | - Lin Kang
- Department of Biomedical Sciences and PathobiologyVirginia TechBlacksburgVirginiaUSA
- Biomedical ResearchEdward Via College of Osteopathic MedicineMonroeLos AngelesUSA
- College of PharmacyUniversity of Louisiana MonroeMonroeLos AngelesUSA
| | - James Weger‐Lucarelli
- Department of Biomedical Sciences and PathobiologyVirginia TechBlacksburgVirginiaUSA
- Center for Emerging, Zoonotic, and Arthropod‐Borne PathogensVirginia TechBlacksburgVirginiaUSA
| |
Collapse
|
10
|
Martin LE, Ruiz M, Hillyer JF. Senescence of humoral antimicrobial immunity occurs in infected mosquitoes when the temperature is higher. J Exp Biol 2024; 227:jeb248149. [PMID: 39319457 DOI: 10.1242/jeb.248149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024]
Abstract
Mosquitoes cannot use metabolism to regulate their body temperature and therefore climate warming is altering their physiology. Mosquitoes also experience a physiological decline with aging, a phenomenon called senescence. Because both high temperature and aging are detrimental to mosquitoes, we hypothesized that high temperatures accelerate senescence. Here, we investigated how temperature and aging, independently and interactively, shape the antimicrobial immune response of the mosquito Anopheles gambiae. Using a zone-of-inhibition assay that measures the antimicrobial activity of hemolymph, we found that antimicrobial activity increases following infection. Moreover, in infected mosquitoes, antimicrobial activity weakens as the temperature rises to 32°C, and antimicrobial activity increases from 1 to 5 days of age and stabilizes with further aging. Importantly, in E. coli-infected mosquitoes, higher temperature causes an aging-dependent decline in antimicrobial activity. Altogether, this study demonstrates that higher temperature can accelerate immune senescence in infected mosquitoes, thereby interactively shaping their ability to fight an infection.
Collapse
Affiliation(s)
- Lindsay E Martin
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Monzerrat Ruiz
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Julián F Hillyer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
11
|
Barr JS, Martin LE, Tate AT, Hillyer JF. Warmer environmental temperature accelerates aging in mosquitoes, decreasing longevity and worsening infection outcomes. Immun Ageing 2024; 21:61. [PMID: 39261928 PMCID: PMC11389126 DOI: 10.1186/s12979-024-00465-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Most insects are poikilotherms and ectotherms, so their body temperature is predicated by environmental temperature. With climate change, insect body temperature is rising, which affects how insects develop, survive, and respond to infection. Aging also affects insect physiology by deteriorating body condition and weakening immune proficiency via senescence. Aging is usually considered in terms of time, or chronological age, but it can also be conceptualized in terms of body function, or physiological age. We hypothesized that warmer temperature decouples chronological and physiological age in insects by accelerating senescence. To investigate this, we reared the African malaria mosquito, Anopheles gambiae, at 27 °C, 30 °C and 32 °C, and measured survival starting at 1-, 5-, 10- and 15-days of adulthood after no manipulation, injury, or a hemocoelic infection with Escherichia coli or Micrococcus luteus. Then, we measured the intensity of an E. coli infection to determine how the interaction between environmental temperature and aging shapes a mosquito's response to infection. RESULTS We demonstrate that longevity declines when a mosquito is infected with bacteria, mosquitoes have shorter lifespans when the temperature is warmer, older mosquitoes are more likely to die, and warmer temperature marginally accelerates the aging-dependent decline in survival. Furthermore, we discovered that E. coli infection intensity increases when the temperature is warmer and with aging, and that warmer temperature accelerates the aging-dependent increase in infection intensity. Finally, we uncovered that warmer temperature affects both bacterial and mosquito physiology. CONCLUSIONS Warmer environmental temperature accelerates aging in mosquitoes, negatively affecting both longevity and infection outcomes. These findings have implications for how insects will serve as pollinators, agricultural pests, and disease vectors in our warming world.
Collapse
Affiliation(s)
- Jordyn S Barr
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Lindsay E Martin
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Ann T Tate
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Julián F Hillyer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
12
|
Klepac P, Hsieh JL, Ducker CL, Assoum M, Booth M, Byrne I, Dodson S, Martin DL, Turner CMR, van Daalen KR, Abela B, Akamboe J, Alves F, Brooker SJ, Ciceri-Reynolds K, Cole J, Desjardins A, Drakeley C, Ediriweera DS, Ferguson NM, Gabrielli AF, Gahir J, Jain S, John MR, Juma E, Kanayson P, Deribe K, King JD, Kipingu AM, Kiware S, Kolaczinski J, Kulei WJ, Laizer TL, Lal V, Lowe R, Maige JS, Mayer S, McIver L, Mosser JF, Nicholls RS, Nunes-Alves C, Panjwani J, Parameswaran N, Polson K, Radoykova HS, Ramani A, Reimer LJ, Reynolds ZM, Ribeiro I, Robb A, Sanikullah KH, Smith DRM, Shirima GG, Shott JP, Tidman R, Tribe L, Turner J, Vaz Nery S, Velayudhan R, Warusavithana S, Wheeler HS, Yajima A, Abdilleh AR, Hounkpatin B, Wangmo D, Whitty CJM, Campbell-Lendrum D, Hollingsworth TD, Solomon AW, Fall IS. Climate change, malaria and neglected tropical diseases: a scoping review. Trans R Soc Trop Med Hyg 2024; 118:561-579. [PMID: 38724044 PMCID: PMC11367761 DOI: 10.1093/trstmh/trae026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 09/03/2024] Open
Abstract
To explore the effects of climate change on malaria and 20 neglected tropical diseases (NTDs), and potential effect amelioration through mitigation and adaptation, we searched for papers published from January 2010 to October 2023. We descriptively synthesised extracted data. We analysed numbers of papers meeting our inclusion criteria by country and national disease burden, healthcare access and quality index (HAQI), as well as by climate vulnerability score. From 42 693 retrieved records, 1543 full-text papers were assessed. Of 511 papers meeting the inclusion criteria, 185 studied malaria, 181 dengue and chikungunya and 53 leishmaniasis; other NTDs were relatively understudied. Mitigation was considered in 174 papers (34%) and adaption strategies in 24 (5%). Amplitude and direction of effects of climate change on malaria and NTDs are likely to vary by disease and location, be non-linear and evolve over time. Available analyses do not allow confident prediction of the overall global impact of climate change on these diseases. For dengue and chikungunya and the group of non-vector-borne NTDs, the literature privileged consideration of current low-burden countries with a high HAQI. No leishmaniasis papers considered outcomes in East Africa. Comprehensive, collaborative and standardised modelling efforts are needed to better understand how climate change will directly and indirectly affect malaria and NTDs.
Collapse
Affiliation(s)
- Petra Klepac
- Big Data Institute, Oxford University, Oxford, UK
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK
| | - Jennifer L Hsieh
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Camilla L Ducker
- Global Neglected Tropical Diseases Programme, World Health Organization, Geneva, Switzerland
| | - Mohamad Assoum
- The Kirby Institute, University of New South Wales, Sydney, Australia
| | - Mark Booth
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Isabel Byrne
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | | | - Diana L Martin
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - C Michael R Turner
- Global Neglected Tropical Diseases Programme, World Health Organization, Geneva, Switzerland
- Division of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Kim R van Daalen
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Bernadette Abela
- Global Neglected Tropical Diseases Programme, World Health Organization, Geneva, Switzerland
| | - Jennifer Akamboe
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Fabiana Alves
- Drugs for Neglected Diseases initiative, Geneva, Switzerland
| | - Simon J Brooker
- Neglected Tropical Diseases, Bill & Melinda Gates Foundation, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Karen Ciceri-Reynolds
- Global Neglected Tropical Diseases Programme, World Health Organization, Geneva, Switzerland
| | | | - Aidan Desjardins
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Chris Drakeley
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Dileepa S Ediriweera
- CHICAS, Lancaster University, Lancaster, UK
- Faculty of Medicine, University of Kelaniya, Kelaniya, Sri Lanka
| | - Neil M Ferguson
- School of Public Health, Imperial College London, London, UK
| | | | - Joshua Gahir
- Queen Elizabeth Hospital, Lewisham and Greenwich NHS Trust, London, UK
| | - Saurabh Jain
- Global Neglected Tropical Diseases Programme, World Health Organization, Geneva, Switzerland
| | - Mbaraka R John
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Dar es Salaam, United Republic of Tanzania
| | - Elizabeth Juma
- Expanded Special Project for Elimination of Neglected Tropical Diseases, Regional Office for Africa, World Health Organization, Brazzaville, Republic of Congo
| | - Priya Kanayson
- Global Institute for Disease Elimination, Abu Dhabi, United Arab Emirates
| | - Kebede Deribe
- Department of Neglected Tropical Diseases, Children's Investment Fund Foundation, Addis Ababa, Ethiopia
| | - Jonathan D King
- Global Neglected Tropical Diseases Programme, World Health Organization, Geneva, Switzerland
| | - Andrea M Kipingu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Dar es Salaam, United Republic of Tanzania
| | - Samson Kiware
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Dar es Salaam, United Republic of Tanzania
- Research and Knowledge Management, Pan-African Mosquito Control Association, Nairobi, Kenya
| | - Jan Kolaczinski
- Global Malaria Programme, World Health Organization, Geneva, Switzerland
| | - Winnie J Kulei
- Pure and Applied Mathematics, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
- Mathematics, Statistics and Actuarial Science, Karatina University, Karatina, Kenya
| | - Tajiri L Laizer
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Dar es Salaam, United Republic of Tanzania
| | - Vivek Lal
- Global Leprosy Programme, World Health Organization, New Delhi, India
| | - Rachel Lowe
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- Centre on Climate Change & Planetary Health and Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Janice S Maige
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Dar es Salaam, United Republic of Tanzania
| | - Sam Mayer
- Global Strategic Partnerships, The END Fund, New York, NY, USA
| | - Lachlan McIver
- Médecins Sans Frontières, Operational Centre Geneva, Geneva, Switzerland
| | - Jonathan F Mosser
- Institute for Health Metrics and Evaluation, University of Washington, Seattle WA, USA
| | - Ruben Santiago Nicholls
- Department of Communicable Diseases Prevention, Control and Elimination, Pan American Health Organization, Washington DC, USA
| | | | | | - Nishanth Parameswaran
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Karen Polson
- Department of Social and Environmental Determinants of Health Equity, Pan American Health Organization, Washington DC, USA
| | | | - Aditya Ramani
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, UK
| | - Lisa J Reimer
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Isabela Ribeiro
- Drugs for Neglected Diseases initiative, Geneva, Switzerland
| | - Alastair Robb
- Global Malaria Programme, World Health Organization, Geneva, Switzerland
| | - Kazim Hizbullah Sanikullah
- Integrated Communicable Disease Unit, Regional Office for the Western Pacific, World Health Organization, Manilla, Philippines
| | - David R M Smith
- Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, UK
| | - GloriaSalome G Shirima
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Dar es Salaam, United Republic of Tanzania
- School of Computational and Communication Science and Engineering, The Nelson Mandela African Institution of Science and Technology, Arusha, United Republic of Tanzania
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Joseph P Shott
- Division of Neglected Tropical Diseases, Global Health Bureau, United States Agency for International Development, Washington DC, USA
| | - Rachel Tidman
- Science Department, World Organisation for Animal Health, Paris, France
| | - Louisa Tribe
- Department of Communications, Uniting to Combat Neglected Tropical Diseases, London, UK
| | | | - Susana Vaz Nery
- The Kirby Institute, University of New South Wales, Sydney, Australia
| | - Raman Velayudhan
- Global Neglected Tropical Diseases Programme, World Health Organization, Geneva, Switzerland
| | - Supriya Warusavithana
- Neglected Tropical Disease Control, Regional Office for the Eastern Mediterranean, World Health Organization, Cairo, Egypt
| | - Holly S Wheeler
- Office of Development Affairs, Presidential Court, Abu Dhabi, United Arab Emirates
| | - Aya Yajima
- Vector-Borne and Neglected Tropical Diseases Control, Regional Office for South-East Asia, World Health Organization, New Delhi, India
| | | | | | | | | | | | | | - Anthony W Solomon
- Global Neglected Tropical Diseases Programme, World Health Organization, Geneva, Switzerland
| | - Ibrahima Socé Fall
- Global Neglected Tropical Diseases Programme, World Health Organization, Geneva, Switzerland
| |
Collapse
|
13
|
Pruszynski CA, Buckner EA, Burkett-Cadena ND, Hugo LE, Leal AL, Caragata EP. Estimation of population age structure, daily survival rates, and potential to support dengue virus transmission for Florida Keys Aedes aegypti via transcriptional profiling. PLoS Negl Trop Dis 2024; 18:e0012350. [PMID: 39137188 PMCID: PMC11321583 DOI: 10.1371/journal.pntd.0012350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/08/2024] [Indexed: 08/15/2024] Open
Abstract
Aedes aegypti is an important vector of dengue virus and other arboviruses that affect human health. After being ingested in an infectious bloodmeal, but before being transmitted from mosquito to human, dengue virus must disseminate from the vector midgut into the hemocoel and then the salivary glands. This process, the extrinsic incubation period, typically takes 6-14 days. Since older mosquitoes are responsible for transmission, understanding the age structure of vector populations is important. Transcriptional profiling can facilitate predictions of the age structures of mosquito populations, critical for estimating their potential for pathogen transmission. In this study, we utilized a two-gene transcript model to assess the age structure and daily survival rates of three populations (Key West, Marathon, and Key Largo) of Ae. aegypti from the Florida Keys, United States, where repeated outbreaks of autochthonous dengue transmission have recently occurred. We found that Key Largo had the youngest Ae. aegypti population with the lowest daily survival rate, while Key West had the oldest population and highest survival rate. Across sites, 22.67% of Ae. aegypti females were likely old enough to transmit dengue virus (at least 15 days post emergence). Computed estimates of the daily survival rate (0.8364 using loglinear and 0.8660 using non-linear regression), indicate that dengue vectors in the region experienced relatively low daily mortality. Collectively, our data suggest that Ae. aegypti populations across the Florida Keys harbor large numbers of older individuals, which likely contributes to the high risk of dengue transmission in the area.
Collapse
Affiliation(s)
- Catherine A. Pruszynski
- Florida Keys Mosquito Control District, Marathon, Florida, United States of America
- University of Florida, Institute of Food and Agricultural Sciences, Department of Entomology and Nematology, Florida Medical Entomology Laboratory, Vero Beach, Florida, United States of America
| | - Eva A. Buckner
- University of Florida, Institute of Food and Agricultural Sciences, Department of Entomology and Nematology, Florida Medical Entomology Laboratory, Vero Beach, Florida, United States of America
| | - Nathan D. Burkett-Cadena
- University of Florida, Institute of Food and Agricultural Sciences, Department of Entomology and Nematology, Florida Medical Entomology Laboratory, Vero Beach, Florida, United States of America
| | - Leon E. Hugo
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Andrea L. Leal
- Florida Keys Mosquito Control District, Marathon, Florida, United States of America
| | - Eric P. Caragata
- University of Florida, Institute of Food and Agricultural Sciences, Department of Entomology and Nematology, Florida Medical Entomology Laboratory, Vero Beach, Florida, United States of America
| |
Collapse
|
14
|
Garambois C, Boulesteix M, Fablet M. Effects of Arboviral Infections on Transposable Element Transcript Levels in Aedes aegypti. Genome Biol Evol 2024; 16:evae092. [PMID: 38695057 PMCID: PMC11110940 DOI: 10.1093/gbe/evae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 05/23/2024] Open
Abstract
Transposable elements are mobile repeated sequences found in all genomes. Transposable elements are controlled by RNA interference pathways in most organisms, and this control involves the PIWI-interacting RNA pathway and the small interfering RNA pathway, which is also known to be the first line of antiviral defense in invertebrates. Using Drosophila, we recently showed that viral infections result in the modulation of transposable element transcript levels through modulation of the small RNA repertoire. The Aedes aegypti mosquito is of particular interest because almost half of its genome is made of transposable elements, and it is described as a major vector of viruses (such as the dengue [DENV], Zika [ZIKV], and chikungunya [CHIKV] arboviruses). Moreover, Aedes mosquitoes are unique among insects in that the PIWI-interacting RNA pathway is also involved in the somatic antiviral response, in addition to the transposable element control and PIWI-interacting RNA pathway genes expanded in the mosquito genome. For these reasons, we studied the impacts of viral infections on transposable element transcript levels in A. aegypti samples. We retrieved public datasets corresponding to RNA-seq data obtained from viral infections by DENV, ZIKV, and CHIKV in various tissues. We found that transposable element transcripts are moderately modulated following viral infection and that the direction of the modulation varies greatly across tissues and viruses. These results highlight the need for an in-depth investigation of the tightly intertwined interactions between transposable elements and viruses.
Collapse
Affiliation(s)
- Chloé Garambois
- Universite Claude Bernard Lyon 1, Laboratoire de Biométrie et Biologie Evolutive (LBBE), UMR 5558, CNRS, VAS, Villeurbanne 69622, France
| | - Matthieu Boulesteix
- Universite Claude Bernard Lyon 1, Laboratoire de Biométrie et Biologie Evolutive (LBBE), UMR 5558, CNRS, VAS, Villeurbanne 69622, France
| | - Marie Fablet
- Universite Claude Bernard Lyon 1, Laboratoire de Biométrie et Biologie Evolutive (LBBE), UMR 5558, CNRS, VAS, Villeurbanne 69622, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
15
|
Hixson B, Huot L, Morejon B, Yang X, Nagy P, Michel K, Buchon N. The transcriptional response in mosquitoes distinguishes between fungi and bacteria but not Gram types. BMC Genomics 2024; 25:353. [PMID: 38594632 PMCID: PMC11003161 DOI: 10.1186/s12864-024-10153-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/22/2024] [Indexed: 04/11/2024] Open
Abstract
Mosquitoes are prolific vectors of human pathogens, therefore a clear and accurate understanding of the organization of their antimicrobial defenses is crucial for informing the development of transmission control strategies. The canonical infection response in insects, as described in the insect model Drosophila melanogaster, is pathogen type-dependent, with distinct stereotypical responses to Gram-negative bacteria and Gram-positive bacteria/fungi mediated by the activation of the Imd and Toll pathways, respectively. To determine whether this pathogen-specific discrimination is shared by mosquitoes, we used RNAseq to capture the genome-wide transcriptional response of Aedes aegypti and Anopheles gambiae (s.l.) to systemic infection with Gram-negative bacteria, Gram-positive bacteria, yeasts, and filamentous fungi, as well as challenge with heat-killed Gram-negative, Gram-positive, and fungal pathogens. From the resulting data, we found that Ae. aegypti and An. gambiae both mount a core response to all categories of infection, and this response is highly conserved between the two species with respect to both function and orthology. When we compared the transcriptomes of mosquitoes infected with different types of bacteria, we observed that the intensity of the transcriptional response was correlated with both the virulence and growth rate of the infecting pathogen. Exhaustive comparisons of the transcriptomes of Gram-negative-challenged versus Gram-positive-challenged mosquitoes yielded no difference in either species. In Ae. aegypti, however, we identified transcriptional signatures specific to bacterial infection and to fungal infection. The bacterial infection response was dominated by the expression of defensins and cecropins, while the fungal infection response included the disproportionate upregulation of an uncharacterized family of glycine-rich proteins. These signatures were also observed in Ae. aegypti challenged with heat-killed bacteria and fungi, indicating that this species can discriminate between molecular patterns that are specific to bacteria and to fungi.
Collapse
Affiliation(s)
- Bretta Hixson
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Louise Huot
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Bianca Morejon
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Xiaowei Yang
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
- Current address: State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute for Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Peter Nagy
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Kristin Michel
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Nicolas Buchon
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
16
|
Krol L, Remmerswaal L, Groen M, van der Beek JG, Sikkema RS, Dellar M, van Bodegom PM, Geerling GW, Schrama M. Landscape level associations between birds, mosquitoes and microclimates: possible consequences for disease transmission? Parasit Vectors 2024; 17:156. [PMID: 38532512 DOI: 10.1186/s13071-024-06239-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Mosquito-borne diseases are on the rise. While climatic factors have been linked to disease occurrences, they do not explain the non-random spatial distribution in disease outbreaks. Landscape-related factors, such as vegetation structure, likely play a crucial but hitherto unquantified role. METHODS We explored how three critically important factors that are associated with mosquito-borne disease outbreaks: microclimate, mosquito abundance and bird communities, vary at the landscape scale. We compared the co-occurrence of these three factors in two contrasting habitat types (forest versus grassland) across five rural locations in the central part of the Netherlands between June and September 2021. RESULTS Our results show that forest patches provide a more sheltered microclimate, and a higher overall abundance of birds. When accounting for differences in landscape characteristics, we also observed that the number of mosquitoes was higher in isolated forest patches. CONCLUSIONS Our findings indicate that, at the landscape scale, variation in tree cover coincides with suitable microclimate and high Culex pipiens and bird abundance. Overall, these factors can help understand the non-random spatial distribution of mosquito-borne disease outbreaks.
Collapse
Affiliation(s)
- Louie Krol
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands.
- Deltares, Daltonlaan 600, Utrecht, The Netherlands.
| | - Laure Remmerswaal
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
| | - Marvin Groen
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
| | - Jordy G van der Beek
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Reina S Sikkema
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Martha Dellar
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
- Deltares, Daltonlaan 600, Utrecht, The Netherlands
| | - Peter M van Bodegom
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
| | - Gertjan W Geerling
- Deltares, Daltonlaan 600, Utrecht, The Netherlands
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Maarten Schrama
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
| |
Collapse
|
17
|
Martin LE, Hillyer JF. Higher temperature accelerates the aging-dependent weakening of the melanization immune response in mosquitoes. PLoS Pathog 2024; 20:e1011935. [PMID: 38198491 PMCID: PMC10805325 DOI: 10.1371/journal.ppat.1011935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/23/2024] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
The body temperature of mosquitoes, like most insects, is dictated by the environmental temperature. Climate change is increasing the body temperature of insects and thereby altering physiological processes such as immune proficiency. Aging also alters insect physiology, resulting in the weakening of the immune system in a process called senescence. Although both temperature and aging independently affect the immune system, it is unknown whether temperature alters the rate of immune senescence. Here, we evaluated the independent and combined effects of temperature (27°C, 30°C and 32°C) and aging (1, 5, 10 and 15 days old) on the melanization immune response of the adult female mosquito, Anopheles gambiae. Using a spectrophotometric assay that measures phenoloxidase activity (a rate limiting enzyme) in hemolymph, and therefore, the melanization potential of the mosquito, we discovered that the strength of melanization decreases with higher temperature, aging, and infection. Moreover, when the temperature is higher, the aging-dependent decline in melanization begins at a younger age. Using an optical assay that measures melanin deposition on the abdominal wall and in the periostial regions of the heart, we found that melanin is deposited after infection, that this deposition decreases with aging, and that this aging-dependent decline is accelerated by higher temperature. This study demonstrates that higher temperature accelerates immune senescence in mosquitoes, with higher temperature uncoupling physiological age from chronological age. These findings highlight the importance of investigating the consequences of climate change on how disease transmission by mosquitoes is affected by aging.
Collapse
Affiliation(s)
- Lindsay E. Martin
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Julián F. Hillyer
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
18
|
Liu Z, Zhang Q, Li L, He J, Guo J, Wang Z, Huang Y, Xi Z, Yuan F, Li Y, Li T. The effect of temperature on dengue virus transmission by Aedes mosquitoes. Front Cell Infect Microbiol 2023; 13:1242173. [PMID: 37808907 PMCID: PMC10552155 DOI: 10.3389/fcimb.2023.1242173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
Dengue is prevalent in tropical and subtropical regions. As an arbovirus disease, it is mainly transmitted by Aedes aegypti and Aedes albopictus. According to the previous studies, temperature is closely related to the survival of Aedes mosquitoes, the proliferation of dengue virus (DENV) and the vector competence of Aedes to transmit DENV. This review describes the correlations between temperature and dengue epidemics, and explores the potential reasons including the distribution and development of Aedes mosquitoes, the structure of DENV, and the vector competence of Aedes mosquitoes. In addition, the immune and metabolic mechanism are discussed on how temperature affects the vector competence of Aedes mosquitoes to transmit DENV.
Collapse
Affiliation(s)
- Zhuanzhuan Liu
- Department of Pathogen Biology, Center for Tropical Disease Control and Research, School of Basic Medical Sciences and Life Sciences, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
- Department of Pathogen Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Qingxin Zhang
- School of Imaging Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Liya Li
- School of Imaging Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Junjie He
- School of Imaging Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Jinyang Guo
- School of Imaging Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Zichen Wang
- School of Imaging Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Yige Huang
- School of Imaging Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Zimeng Xi
- School of Imaging Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Fei Yuan
- Department of Pathogen Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Yiji Li
- Department of Pathogen Biology, Center for Tropical Disease Control and Research, School of Basic Medical Sciences and Life Sciences, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Tingting Li
- Department of Pathogen Biology, Center for Tropical Disease Control and Research, School of Basic Medical Sciences and Life Sciences, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| |
Collapse
|
19
|
Delrieu M, Martinet JP, O’Connor O, Viennet E, Menkes C, Burtet-Sarramegna V, Frentiu FD, Dupont-Rouzeyrol M. Temperature and transmission of chikungunya, dengue, and Zika viruses: A systematic review of experimental studies on Aedes aegypti and Aedes albopictus. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2023; 4:100139. [PMID: 37719233 PMCID: PMC10500480 DOI: 10.1016/j.crpvbd.2023.100139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 09/19/2023]
Abstract
Mosquito-borne viruses are leading causes of morbidity and mortality in many parts of the world. In recent years, modelling studies have shown that climate change strongly influences vector-borne disease transmission, particularly rising temperatures. As a result, the risk of epidemics has increased, posing a significant public health risk. This review aims to summarize all published laboratory experimental studies carried out over the years to determine the impact of temperature on the transmission of arboviruses by the mosquito vector. Given their high public health importance, we focus on dengue, chikungunya, and Zika viruses, which are transmitted by the mosquitoes Aedes aegypti and Aedes albopictus. Following PRISMA guidelines, 34 papers were included in this systematic review. Most studies found that increasing temperatures result in higher rates of infection, dissemination, and transmission of these viruses in mosquitoes, although several studies had differing findings. Overall, the studies reviewed here suggest that rising temperatures due to climate change would alter the vector competence of mosquitoes to increase epidemic risk, but that some critical research gaps remain.
Collapse
Affiliation(s)
- Méryl Delrieu
- Institut Pasteur de Nouvelle-Calédonie, Institut Pasteur International
Network, URE Dengue et Arborises, Nouméa 98845, New Caledonia
| | - Jean-Philippe Martinet
- Institut Pasteur de Nouvelle-Calédonie, Institut Pasteur International
Network, URE Dengue et Arborises, Nouméa 98845, New Caledonia
| | - Olivia O’Connor
- Institut Pasteur de Nouvelle-Calédonie, Institut Pasteur International
Network, URE Dengue et Arborises, Nouméa 98845, New Caledonia
| | - Elvina Viennet
- School of Biomedical Sciences, Queensland University of Technology,
Kelvin Grove, QLD 4059, Australia
| | - Christophe Menkes
- ENTROPIE, IRD, University of New Caledonia, University of La Réunion,
CNRS, Ifremer, Nouméa, New Caledonia
| | - Valérie Burtet-Sarramegna
- Institute of Exact and Applied Sciences (ISEA), University of New
Caledonia, 45 Avenue James Cook - BP R4 98 851 - Nouméa Cedex, New
Caledonia
| | - Francesca D. Frentiu
- School of Biomedical Sciences, And Centre for Immunology and Infection
Control, Queensland University of Technology, Brisbane, QLD 4000,
Australia
| | - Myrielle Dupont-Rouzeyrol
- Institut Pasteur de Nouvelle-Calédonie, Institut Pasteur International
Network, URE Dengue et Arborises, Nouméa 98845, New Caledonia
| |
Collapse
|
20
|
Hixson B, Huot L, Morejon B, Yang X, Nagy P, Michel K, Buchon N. The transcriptional response in mosquitoes distinguishes between fungi and bacteria but not Gram types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.26.550663. [PMID: 37546902 PMCID: PMC10402080 DOI: 10.1101/2023.07.26.550663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Mosquitoes are prolific vectors of human pathogens; a clear and accurate understanding of the organization of their antimicrobial defenses is crucial for informing the development of transmission control strategies. The canonical infection response in insects, as described in the insect model Drosophila melanogaster , is pathogen type-dependent, with distinct stereotypical responses to Gram-negative bacteria and Gram-positive bacteria/fungi mediated by the activation of the Imd and Toll pathways, respectively. To determine whether this pathogen-specific discrimination is shared by mosquitoes, we used RNAseq to capture the genome-wide transcriptional response of Aedes aegypti and Anopheles gambiae ( s.l. ) to systemic infection with Gram-negative bacteria, Gram-positive bacteria, yeasts, and filamentous fungi, as well as challenge with heat-killed Gram-negative, Gram-positive, and fungal pathogens. From the resulting data, we found that Ae. aegypti and An. gambiae both mount a core response to all categories of infection, and this response is highly conserved between the two species with respect to both function and orthology. When we compared the transcriptomes of mosquitoes infected with different types of bacteria, we observed that the intensity of the transcriptional response was correlated with both the virulence and growth rate of the infecting pathogen. Exhaustive comparisons of the transcriptomes of Gram-negative-challenged versus Gram-positive-challenged mosquitoes yielded no difference in either species. In Ae. aegypti , however, we identified transcriptional signatures specific to bacterial infection and to fungal infection. The bacterial infection response was dominated by the expression of defensins and cecropins, while the fungal infection response included the disproportionate upregulation of an uncharacterized family of glycine-rich proteins. These signatures were also observed in Ae. aegypti challenged with heat-killed bacteria and fungi, indicating that this species can discriminate between molecular patterns that are specific to bacteria and to fungi.
Collapse
|
21
|
Bellone R, Lechat P, Mousson L, Gilbart V, Piorkowski G, Bohers C, Merits A, Kornobis E, Reveillaud J, Paupy C, Vazeille M, Martinet JP, Madec Y, De Lamballerie X, Dauga C, Failloux AB. Climate change and vector-borne diseases: a multi-omics approach of temperature-induced changes in the mosquito. J Travel Med 2023; 30:taad062. [PMID: 37171132 DOI: 10.1093/jtm/taad062] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/14/2023] [Accepted: 04/22/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Climate change and globalization contribute to the expansion of mosquito vectors and their associated pathogens. Long spared, temperate regions have had to deal with the emergence of arboviruses traditionally confined to tropical regions. Chikungunya virus (CHIKV) was reported for the first time in Europe in 2007, causing a localized outbreak in Italy, which then recurred repeatedly over the years in other European localities. This raises the question of climate effects, particularly temperature, on the dynamics of vector-borne viruses. The objective of this study is to improve the understanding of the molecular mechanisms set up in the vector in response to temperature. METHODS We combine three complementary approaches by examining Aedes albopictus mosquito gene expression (transcriptomics), bacterial flora (metagenomics) and CHIKV evolutionary dynamics (genomics) induced by viral infection and temperature changes. RESULTS We show that temperature alters profoundly mosquito gene expression, bacterial microbiome and viral population diversity. We observe that (i) CHIKV infection upregulated most genes (mainly in immune and stress-related pathways) at 20°C but not at 28°C, (ii) CHIKV infection significantly increased the abundance of Enterobacteriaceae Serratia marcescens at 28°C and (iii) CHIKV evolutionary dynamics were different according to temperature. CONCLUSION The substantial changes detected in the vectorial system (the vector and its bacterial microbiota, and the arbovirus) lead to temperature-specific adjustments to reach the ultimate goal of arbovirus transmission; at 20°C and 28°C, the Asian tiger mosquito Ae. albopictus was able to transmit CHIKV at the same efficiency. Therefore, CHIKV is likely to continue its expansion in the northern regions and could become a public health problem in more countries than those already affected in Europe.
Collapse
Affiliation(s)
- Rachel Bellone
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors Unit, Paris, France
- Institut Pasteur, Collège Doctoral, Sorbonne Université, Paris, France
| | - Pierre Lechat
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Laurence Mousson
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors Unit, Paris, France
| | - Valentine Gilbart
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors Unit, Paris, France
| | | | - Chloé Bohers
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors Unit, Paris, France
| | - Andres Merits
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Etienne Kornobis
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Julie Reveillaud
- UMR MIVEGEC (IRD 224-CNRS 5290-UM), IRD, INRAe, Montpellier, France
| | - Christophe Paupy
- UMR MIVEGEC (IRD 224-CNRS 5290-UM), IRD, INRAe, Montpellier, France
| | - Marie Vazeille
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors Unit, Paris, France
| | - Jean-Philippe Martinet
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors Unit, Paris, France
| | - Yoann Madec
- Institut Pasteur, Université Paris Cité, Emerging Diseases Epidemiology Unit, Paris, France
| | | | - Catherine Dauga
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors Unit, Paris, France
| | - Anna-Bella Failloux
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors Unit, Paris, France
| |
Collapse
|
22
|
Field EN, Smith RC. Seasonality influences key physiological components contributing to Culex pipiens vector competence. FRONTIERS IN INSECT SCIENCE 2023; 3:1144072. [PMID: 38469495 PMCID: PMC10926469 DOI: 10.3389/finsc.2023.1144072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/12/2023] [Indexed: 03/13/2024]
Abstract
Mosquitoes are the most important animal vector of disease on the planet, transmitting a variety of pathogens of both medical and veterinary importance. Mosquito-borne diseases display distinct seasonal patterns driven by both environmental and biological variables. However, an important, yet unexplored component of these patterns is the potential for seasonal influences on mosquito physiology that may ultimately influence vector competence. To address this question, we selected Culex pipiens, a primary vector of the West Nile virus (WNV) in the temperate United States, to examine the seasonal impacts on mosquito physiology by examining known immune and bacterial components implicated in mosquito arbovirus infection. Semi-field experiments were performed under spring, summer, and late-summer conditions, corresponding to historically low-, medium-, and high-intensity periods of WNV transmission, respectively. Through these experiments, we observed differences in the expression of immune genes and RNA interference (RNAi) pathway components, as well as changes in the distribution and abundance of Wolbachia in the mosquitoes across seasonal cohorts. Together, these findings support the conclusion that seasonal changes significantly influence mosquito physiology and components of the mosquito microbiome, suggesting that seasonality may impact mosquito susceptibility to pathogen infection, which could account for the temporal patterns in mosquito-borne disease transmission.
Collapse
Affiliation(s)
| | - Ryan C. Smith
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, United States
| |
Collapse
|
23
|
Sex dependent transcriptome responses of the diamondback moth, Plutella xylostella L. to cold stress. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 45:101053. [PMID: 36527761 DOI: 10.1016/j.cbd.2022.101053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 11/04/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022]
Abstract
Temperature has fundamental influences on the performance and distribution of insects. While considerable attention has been devoted to extreme conditions, particularly extreme cold conditions, few studies have investigated effects of mild cold conditions on insects. We examined the transcriptomic changes in mid-fourth instar larvae of both sexes reared at 10 °C and 25 °C to investigate sex-dependent responses of Plutella xylostella to mild cold stress. There were 624 differentially expressed genes (DEGs) in females, the majority of which (n = 386) were down-regulated. In males 3239 genes were differentially expressed and the majority (n = 2341) were up-regulated. Only 280 DEGs were common to both sexes. In females, there were no DEGs encoding heat shock or cold shock proteins, but six of these DEGs were found in males. These differences suggest that females and males might adopt some different strategies to cope with cold stress and/or that they were affected by rearing under cold conditions to different degrees and in different ways. In addition, DEGs encoding antimicrobial peptides, cytochrome P450 monooxygenases, fatty acid-related enzymes, cuticle proteins, myofilament, and hormone-related proteins were found in both sexes under cold stress. The transcriptome study reveals unexpected sex-dependent thermal responses and provides new information of how an insect that does not diapause copes with low temperatures.
Collapse
|
24
|
Dumenil T, Le TT, Rawle DJ, Yan K, Tang B, Nguyen W, Bishop C, Suhrbier A. Warmer ambient air temperatures reduce nasal turbinate and brain infection, but increase lung inflammation in the K18-hACE2 mouse model of COVID-19. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160163. [PMID: 36395835 PMCID: PMC9659553 DOI: 10.1016/j.scitotenv.2022.160163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Warmer climatic conditions have been associated with fewer COVID-19 cases. Herein we infected K18-hACE2 mice housed at the standard animal house temperature of ∼22 °C, or at ∼31 °C, which is considered to be thermoneutral for mice. On day 2 post infection, RNA-Seq analyses showed no significant differential gene expression lung in lungs of mice housed at the two temperatures, with almost identical viral loads and type I interferon responses. There was also no significant difference in viral loads in lungs on day 5, but RNA-Seq and histology analyses showed clearly elevated inflammatory signatures and infiltrates. Thermoneutrality thus promoted lung inflammation. On day 2 post infection mice housed at 31 °C showed reduced viral loads in nasal turbinates, consistent with increased mucociliary clearance at the warmer ambient temperature. These mice also had reduced virus levels in the brain, and an ensuing amelioration of weight loss and a delay in mortality. Warmer air temperatures may thus reduce infection of the upper respiratory track and the olfactory epithelium, resulting in reduced brain infection. Potential relevance for anosmia and neurological sequelae in COVID-19 patients is discussed.
Collapse
Affiliation(s)
- Troy Dumenil
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Thuy T Le
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Daniel J Rawle
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Kexin Yan
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Bing Tang
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Wilson Nguyen
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Cameron Bishop
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Andreas Suhrbier
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia; Australian Infectious Disease Research Centre, GVN Center of Excellence, Brisbane, Queensland 4029, 4072, Australia.
| |
Collapse
|
25
|
Abstract
RNA viruses include respiratory viruses, such as coronaviruses and influenza viruses, as well as vector-borne viruses, like dengue and West Nile virus. RNA viruses like these encounter various environments when they copy themselves and spread from cell to cell or host to host. Ex vivo differences, such as geographical location and humidity, affect their stability and transmission, while in vivo differences, such as pH and host gene expression, impact viral receptor binding, viral replication, and the host immune response against the viral infection. A critical factor affecting RNA viruses both ex vivo and in vivo, and defining the outcome of viral infections and the direction of viral evolution, is temperature. In this minireview, we discuss the impact of temperature on viral replication, stability, transmission, and adaptation, as well as the host innate immune response. Improving our understanding of how RNA viruses function, survive, and spread at different temperatures will improve our models of viral replication and transmission risk analyses.
Collapse
Affiliation(s)
- Karishma Bisht
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | | |
Collapse
|
26
|
Shu B, Lin Y, Qian G, Cai X, Liu L, Lin J. Integrated miRNA and transcriptome profiling to explore the molecular mechanism of Spodoptera frugiperda larval midgut in response to azadirachtin exposure. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 187:105192. [PMID: 36127051 DOI: 10.1016/j.pestbp.2022.105192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
As a destructive agricultural pest, Spodoptera frugiperda has spread worldwide in the past few years. Azadirachtin, an environmentally friendly and most promising compound, showed adverse effects, including mortality and growth inhibition, against S. frugiperda. While the effects of azadirachtin on the midgut of this pest remain to be determined. In this study, structural damage was observed in the larval midguts of S. frugiperda with azadirachtin exposure. RNA-seq on the larval midguts with different azadirachtin treatments was performed. Compared to the control group, a total of 3344 and 4759 differentially expressed genes (DEGs) were identified in the midguts with 0.1 and 0.5 μg/g azadirachtin exposure, respectively. Among them, the DEGs encoding detoxification enzymes/proteins, immune-related proteins, digestion and absorption-related proteins, and transcript factors were further analyzed. High-throughput sequencing was also used for the identification of differentially expressed microRNAs in different treatments. A total of 153 conserved miRNAs and 147 novel miRNAs were identified, of which 11 and 29 miRNAs were affected by 0.1 and 0.5 μg/g azadirachtin treatments, respectively. The integrated analysis found that 13 and 178 miRNA versus mRNA pairs were acquired in the samples with 0.1 and 0.5 μg/g azadirachtin treatments, respectively. The results of high-throughput sequencing were confirmed by real-time quantitative polymerase chain reaction (RT-qPCR). These results provide useful information for revealing the molecular mechanism of S. frugiperda larval midgut in response to azadirachtin.
Collapse
Affiliation(s)
- Benshui Shu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, PR China
| | - Yanzheng Lin
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, PR China
| | - Guozhao Qian
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, PR China
| | - Xueming Cai
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, PR China
| | - Luyang Liu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, PR China
| | - Jintian Lin
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, PR China.
| |
Collapse
|
27
|
Suhrbier A. Phase 1 success for a trivalent vaccine for the equine encephalitis viruses. THE LANCET. INFECTIOUS DISEASES 2022; 22:1100-1102. [PMID: 35568050 DOI: 10.1016/s1473-3099(22)00122-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, Australia; Australian Infectious Disease Research Centre, GVN Centre of Excellence, Brisbane, Australia.
| |
Collapse
|
28
|
Liu Z, Xu Y, Li Y, Xu S, Li Y, Xiao L, Chen X, He C, Zheng K. Transcriptome analysis of Aedes albopictus midguts infected by dengue virus identifies a gene network module highly associated with temperature. Parasit Vectors 2022; 15:173. [PMID: 35590344 PMCID: PMC9118615 DOI: 10.1186/s13071-022-05282-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dengue is prevalent worldwide and is transmitted by Aedes mosquitoes. Temperature is a strong driver of dengue transmission. However, little is known about the underlying mechanisms. METHODS Aedes albopictus mosquitoes exposed or not exposed to dengue virus serotype 2 (DENV-2) were reared at 23 °C, 28 °C and 32 °C, and midguts and residual tissues were evaluated at 7 days after infection. RNA sequencing of midgut pools from the control group, midgut breakthrough group and midgut nonbreakthrough group at different temperatures was performed. The transcriptomic profiles were analyzed using the R package, followed by weighted gene correlation network analysis (WGCNA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis to identify the important molecular mechanisms regulated by temperature. RESULTS The midgut infection rate and midgut breakthrough rate at 28 °C and 32 °C were significantly higher than those at 23 °C, which indicates that high temperature facilitates DENV-2 breakthrough in the Ae. albopictus midgut. Transcriptome sequencing was performed to investigate the antiviral mechanism in the midgut. The midgut gene expression datasets clustered with respect to temperature, blood-feeding and midgut breakthrough. Over 1500 differentially expressed genes were identified by pairwise comparisons of midguts at different temperatures. To assess key molecules regulated by temperature, we used WGCNA, which identified 28 modules of coexpressed genes; the ME3 module correlated with temperature. KEGG analysis indicated that RNA degradation, Toll and immunodeficiency factor signaling and other pathways are regulated by temperature. CONCLUSIONS Temperature affects the infection and breakthrough of Ae. albopictus midguts invaded by DENV-2, and Ae. albopictus midgut transcriptomes change with temperature. The candidate genes and key pathways regulated by temperature provide targets for the prevention and control of dengue.
Collapse
Affiliation(s)
- Zhuanzhuan Liu
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Ye Xu
- Department of Pathogen Biology, Key Laboratory of Tropical Disease Research of Guangdong Province, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yudi Li
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Shihong Xu
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Yiji Li
- Department of Pathogen Biology, Hainan Medical University, Haikou, Hainan, China
| | - Ling Xiao
- Taiyuan Central Hospital, Shanxi, China
| | - Xiaoguang Chen
- Department of Pathogen Biology, Key Laboratory of Tropical Disease Research of Guangdong Province, School of Public Health, Southern Medical University, Guangzhou, China
| | - Cheng He
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China.
| | - Kuiyang Zheng
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
29
|
Temperature-Mediated Effects on Mayaro Virus Vector Competency of Florida Aedes aegypti Mosquito Vectors. Viruses 2022; 14:v14050880. [PMID: 35632622 PMCID: PMC9144726 DOI: 10.3390/v14050880] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/09/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
Mayaro virus (MAYV) is an emerging mosquito-borne arbovirus and public health concern. We evaluated the influence of temperature on Aedes aegypti responses to MAYV oral infection and transmission at two constant temperatures (20 °C and 30 °C). Infection of mosquito tissues (bodies and legs) and salivary secretions with MAYV was determined at 3, 9, 15, 21, and 27 days post ingestion. At both temperatures, we observed a trend of increase in progression of MAYV infection and replication kinetics over time, followed by a decline during later periods. Peaks of MAYV infection, titer, and dissemination from the midgut were detected at 15 and 21 days post ingestion at 30 °C and 20 °C, respectively. Mosquitoes were able to transmit MAYV as early as day 3 at 30 °C, but MAYV was not detectable in salivary secretions until day 15 at 20 °C. Low rates of MAYV in salivary secretions collected from infected mosquitoes provided evidence supporting the notion that a substantial salivary gland barrier(s) in Florida Ae. aegypti can limit the risk of MAYV transmission. Our results provide insights into the effects of temperature and time on the progression of infection and replication of MAYV in Ae. aegypti vectors.
Collapse
|
30
|
Wu S, He Y, Wei Y, Fan P, Ni W, Zhong D, Zhou G, Zheng X. Effects of Guangzhou seasonal climate change on the development of Aedes albopictus and its susceptibility to DENV-2. PLoS One 2022; 17:e0266128. [PMID: 35363810 PMCID: PMC8975156 DOI: 10.1371/journal.pone.0266128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 03/15/2022] [Indexed: 12/21/2022] Open
Abstract
The susceptibility of Asian tiger mosquitoes to DENV-2 in different seasons was observed in simulated field environments as a reference to design dengue fever control strategies in Guangzhou. The life table experiments of mosquitoes in four seasons were carried out in the field. The susceptibility of Ae. albopictus to dengue virus was observed in both environments in Guangzhou in summer and winter. Ae. albopictus was infected with dengue virus by oral feeding. On day 7 and 14 after infection, the viral load in the head, ovary, and midgut of the mosquito was detected using real-time fluorescent quantitative PCR. Immune-associated gene expression in infected mosquitoes was performed using quantitative real-time reverse transcriptase PCR. The hatching rate and pupation rate of Ae. albopictus larvae in different seasons differed significantly. The winter hatching rate of larvae was lower than that in summer, and the incubation time was longer than in summer. In the winter field environment, Ae. albopictus still underwent basic growth and development processes. Mosquitoes in the simulated field environment were more susceptible to DENV-2 than those in the simulated laboratory environment. In the midgut, viral RNA levels on day 7 in summer were higher than those on day 7 in winter (F = 14.459, P = 0.01); ovarian viral RNA levels on day 7 in summer were higher than those on day 7 in winter (F = 8.656, P < 0.001), but there was no significant difference in the viral load at other time points (P > 0.05). Dicer-2 mRNA expression on day 7 in winter was 4.071 times than that on day 7 in summer: the viral load and Dicer-2 expression correlated moderately. Ae. albopictus could still develop and transmit dengue virus in winter in Guangzhou. Mosquitoes under simulated field conditions were more susceptible to DENV-2 than those under simulated laboratory conditions.
Collapse
Affiliation(s)
- Shanshan Wu
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yulan He
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yong Wei
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Peiyang Fan
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Weigui Ni
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Daibin Zhong
- Program in Public Health, College of Health Sciences, University of California, Irvine, CA, United States of America
| | - Guofa Zhou
- Program in Public Health, College of Health Sciences, University of California, Irvine, CA, United States of America
| | - Xueli Zheng
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
31
|
Leitner M, Etebari K, Asgari S. Transcriptional response of Wolbachia-transinfected Aedes aegypti mosquito cells to dengue virus at early stages of infection. J Gen Virol 2022; 103:001694. [PMID: 35006065 PMCID: PMC8895618 DOI: 10.1099/jgv.0.001694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/06/2021] [Indexed: 11/18/2022] Open
Abstract
Mosquito-borne flaviviruses are responsible for viral infections and represent a considerable public health burden. Aedes aegypti is the principal vector of dengue virus (DENV), therefore understanding the intrinsic virus-host interactions is vital, particularly in the presence of the endosymbiont Wolbachia, which blocks virus replication in mosquitoes. Here, we examined the transcriptional response of Wolbachia-transinfected Ae. aegypti Aag2 cells to DENV infection. We identified differentially expressed immune genes that play a key role in the activation of anti-viral defence such as the Toll and immune deficiency pathways. Further, genes encoding cytosine and N6-adenosine methyltransferases and SUMOylation, involved in post-transcriptional modifications, an antioxidant enzyme, and heat-shock response were up-regulated at the early stages of DENV infection and are reported here for the first time. Additionally, several long non-coding RNAs were among the differentially regulated genes. Our results provide insight into Wolbachia-transinfected Ae. aegypti's initial virus recognition and transcriptional response to DENV infection.
Collapse
Affiliation(s)
- Michael Leitner
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Australia
| | - Kayvan Etebari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Australia
| | - Sassan Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
32
|
Parry R, James ME, Asgari S. Uncovering the Worldwide Diversity and Evolution of the Virome of the Mosquitoes Aedes aegypti and Aedes albopictus. Microorganisms 2021; 9:1653. [PMID: 34442732 PMCID: PMC8398489 DOI: 10.3390/microorganisms9081653] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/13/2021] [Accepted: 07/27/2021] [Indexed: 12/16/2022] Open
Abstract
Aedes aegypti, the yellow fever mosquito, and Aedes albopictus, the Asian tiger mosquito, are the most significant vectors of dengue, Zika, and Chikungunya viruses globally. Studies examining host factors that control arbovirus transmission demonstrate that insect-specific viruses (ISVs) can modulate mosquitoes' susceptibility to arbovirus infection in both in vivo and in vitro co-infection models. While research is ongoing to implicate individual ISVs as proviral or antiviral factors, we have a limited understanding of the composition and diversity of the Aedes virome. To address this gap, we used a meta-analysis approach to uncover virome diversity by analysing ~3000 available RNA sequencing libraries representing a worldwide geographic range for both mosquitoes. We identified ten novel viruses and previously characterised viruses, including mononegaviruses, orthomyxoviruses, negeviruses, and a novel bi-segmented negev-like group. Phylogenetic analysis suggests close relatedness to mosquito viruses implying likely insect host range except for one arbovirus, the multi-segmented Jingmen tick virus (Flaviviridae) in an Italian colony of Ae. albopictus. Individual mosquito transcriptomes revealed remarkable inter-host variation of ISVs within individuals from the same colony and heterogeneity between different laboratory strains. Additionally, we identified striking virus diversity in Wolbachia infected Aedes cell lines. This study expands our understanding of the virome of these important vectors. It provides a resource for further assessing the ecology, evolution, and interaction of ISVs with their mosquito hosts and the arboviruses they transmit.
Collapse
Affiliation(s)
- Rhys Parry
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Maddie E James
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; (M.E.J.); (S.A.)
| | - Sassan Asgari
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; (M.E.J.); (S.A.)
| |
Collapse
|