1
|
Bagger SM, Schihada H, Walser ALS, Drzazga AK, Grätz L, Palmisano T, Kuhn CK, Mavri M, Mølleskov-Jensen AS, Tall GG, Schöneberg T, Mathiasen SJ, Javitch JA, Schulte G, Spiess K, Rosenkilde MM. Complex G-protein signaling of the adhesion GPCR, ADGRA3. J Biol Chem 2025; 301:108441. [PMID: 40127866 DOI: 10.1016/j.jbc.2025.108441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Accepted: 03/19/2025] [Indexed: 03/26/2025] Open
Abstract
ADGRA3 (GPR125) is an orphan adhesion G protein-coupled receptor (aGPCR) involved in planar cell polarity, primarily through recruitment of the signaling components disheveled (DVL) during vertebrate gastrulation and discs large homolog 1, implicated in cancer. Limited knowledge exists of the canonical G protein-coupled receptor pathways downstream of ADGRA3. Here, we employed a series of human cell line-based signaling assays to gain insight into the G protein-mediated signaling of ADGRA3. We designed ADGRA3 constructs based on transcript variant analysis in publicly available human liver and brain RNA-seq datasets. Cleavage in the GPCR autoproteolysis site (GPS) is an aGPCR hallmark; thus, we generated a truncated ADGRA3 (C-terminal fragment, CTF) corresponding to a potential cleavage at the GPS. We found low-level activation of Gi and Gs by ADGRA3 and slightly more by its CTF. As the N terminus of the CTF constitutes a class-defined tethered agonist (so-called stachel peptide), we removed the initial three amino acids of the CTF. This resulted in abrogated G protein-mediated signaling, as observed for other aGPCRs. Due to the central role of ADGRA3 in planar cell polarity signaling through DVL recruitment, we investigated the G-protein signaling in the absence of DVL1-3 and found it sustained. No transcriptional activation was observed in an assay of downstream β-catenin activity. Collectively, this establishes classical G protein-mediated signaling for ADGRA3.
Collapse
Affiliation(s)
- Sofie M Bagger
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hannes Schihada
- Department of Physiology and Pharmacology, Section of Receptor Biology and Signaling, Karolinska Institutet, Stockholm, Sweden
| | - Anna L S Walser
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna K Drzazga
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lukas Grätz
- Department of Physiology and Pharmacology, Section of Receptor Biology and Signaling, Karolinska Institutet, Stockholm, Sweden
| | - Tiago Palmisano
- Departments of Psychiatry and Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York, USA
| | - Christina K Kuhn
- Molecular Biochemistry, Medical Faculty, Rudolf Schönheimer Institute of Biochemistry, Leipzig, Germany
| | - Maša Mavri
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ann-Sophie Mølleskov-Jensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gregory G Tall
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Torsten Schöneberg
- Molecular Biochemistry, Medical Faculty, Rudolf Schönheimer Institute of Biochemistry, Leipzig, Germany
| | - Signe J Mathiasen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Departments of Psychiatry and Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York, USA
| | - Jonathan A Javitch
- Departments of Psychiatry and Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York, USA
| | - Gunnar Schulte
- Department of Physiology and Pharmacology, Section of Receptor Biology and Signaling, Karolinska Institutet, Stockholm, Sweden
| | - Katja Spiess
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Perry-Hauser NA, Du Rand JR, Lee KH, Shi L, Javitch JA. N-terminal fragment shedding contributes to signaling of the full-length adhesion receptor ADGRL3. J Biol Chem 2025; 301:108174. [PMID: 39798870 PMCID: PMC11849108 DOI: 10.1016/j.jbc.2025.108174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/15/2025] Open
Abstract
Most adhesion G protein-coupled receptors (GPCRs) undergo autoproteolytic cleavage during receptor biosynthesis, resulting in noncovalently bound N-terminal fragments (NTFs) and C-terminal fragments (CTFs) that remain associated during receptor trafficking to the plasma membrane. While substantial evidence supports increased G protein signaling when just the CTF is expressed, there is an ongoing debate about whether NTF removal is required to initiate signaling in the context of the WT receptor. Here, we use adhesion GPCR latrophilin-3 (ADGRL3) as a model receptor to investigate tethered agonist (TA)-mediated activation. First, we show that extending the N terminus of the TA in ADGRL3 CTF disrupts G protein signaling. This suggests that if the TA is not fully exposed, it is unlikely to interact with the orthosteric pocket in an optimal manner for G protein activation. Second, we show that when full-length ADGRL3 is expressed in heterologous cells, approximately 5% of the receptor population spontaneously sheds its NTF. We hypothesized that the signaling activity observed for full-length ADGRL3 is largely because of this shedding, which exposes the native TA. To test this hypothesis, we used a full-length cleavage-deficient ADGRL3 mutant. Compared with WT receptor, this mutant lost ∼80% of its signaling through Gα13 and showed a much lower level of spontaneous NTF shedding, approximately 20% of that observed for WT receptor. This loss of spontaneous NTF shedding likely explains its diminished signaling activity. These findings suggest that TA-mediated signal transduction by full-length ADGRL3 requires removal of its NTF.
Collapse
Affiliation(s)
- Nicole A Perry-Hauser
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA; Department of Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York, USA
| | - Jonathan R Du Rand
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA; Department of Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York, USA
| | - Kuo Hao Lee
- Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Lei Shi
- Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Jonathan A Javitch
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA; Department of Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York, USA.
| |
Collapse
|
3
|
Hogg DW, Reid AL, Dodsworth TL, Chen Y, Reid RM, Xu M, Husic M, Biga PR, Slee A, Buck LT, Barsyte-Lovejoy D, Locke M, Lovejoy DA. Skeletal muscle metabolism and contraction performance regulation by teneurin C-terminal-associated peptide-1. Front Physiol 2022; 13:1031264. [DOI: 10.3389/fphys.2022.1031264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
Skeletal muscle regulation is responsible for voluntary muscular movement in vertebrates. The genes of two essential proteins, teneurins and latrophilins (LPHN), evolving in ancestors of multicellular animals form a ligand-receptor pair, and are now shown to be required for skeletal muscle function. Teneurins possess a bioactive peptide, termed the teneurin C-terminal associated peptide (TCAP) that interacts with the LPHNs to regulate skeletal muscle contractility strength and fatigue by an insulin-independent glucose importation mechanism in rats. CRISPR-based knockouts and siRNA-associated knockdowns of LPHN-1 and-3 in the C2C12 mouse skeletal cell line shows that TCAP stimulates an LPHN-dependent cytosolic Ca2+ signal transduction cascade to increase energy metabolism and enhance skeletal muscle function via increases in type-1 oxidative fiber formation and reduce the fatigue response. Thus, the teneurin/TCAP-LPHN system is presented as a novel mechanism that regulates the energy requirements and performance of skeletal muscle.
Collapse
|
4
|
Lala T, Hall RA. Adhesion G protein-coupled receptors: structure, signaling, physiology, and pathophysiology. Physiol Rev 2022; 102:1587-1624. [PMID: 35468004 PMCID: PMC9255715 DOI: 10.1152/physrev.00027.2021] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 03/11/2022] [Accepted: 04/16/2022] [Indexed: 01/17/2023] Open
Abstract
Adhesion G protein-coupled receptors (AGPCRs) are a family of 33 receptors in humans exhibiting a conserved general structure but diverse expression patterns and physiological functions. The large NH2 termini characteristic of AGPCRs confer unique properties to each receptor and possess a variety of distinct domains that can bind to a diverse array of extracellular proteins and components of the extracellular matrix. The traditional view of AGPCRs, as implied by their name, is that their core function is the mediation of adhesion. In recent years, though, many surprising advances have been made regarding AGPCR signaling mechanisms, activation by mechanosensory forces, and stimulation by small-molecule ligands such as steroid hormones and bioactive lipids. Thus, a new view of AGPCRs has begun to emerge in which these receptors are seen as massive signaling platforms that are crucial for the integration of adhesive, mechanosensory, and chemical stimuli. This review article describes the recent advances that have led to this new understanding of AGPCR function and also discusses new insights into the physiological actions of these receptors as well as their roles in human disease.
Collapse
Affiliation(s)
- Trisha Lala
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Randy A Hall
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
5
|
Dodsworth TL, Lovejoy DA. Role of Teneurin C-Terminal Associated Peptides (TCAP) on Intercellular Adhesion and Communication. Front Neurosci 2022; 16:868541. [PMID: 35585927 PMCID: PMC9108700 DOI: 10.3389/fnins.2022.868541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/17/2022] [Indexed: 11/25/2022] Open
Abstract
The teneurin C-terminal associated peptides (TCAP) are encoded by the terminal exon of all metazoan teneurin genes. Evidence supports the liberation of a soluble TCAP peptide either by proteolytic cleavage from the mature transmembrane teneurin protein or by a separately transcribed mRNA. Synthetic versions of TCAP, based on its genomic structure, are efficacious at regulating intercellular communication by promoting neurite outgrowth and increasing dendritic spine density in vitro and in vivo in rodent models. This is achieved through cytoskeletal re-arrangement and metabolic upregulation. The putative receptors for TCAPs are the latrophilin (LPHN) family of adhesion G-protein coupled receptors, which facilitate TCAP’s actions through G-proteins associated with cAMP and calcium-regulating signalling pathways. The teneurin/TCAP and latrophilin genes are phylogenetically ancient, likely serving primitive functions in cell adhesion and energy regulation which have been since adapted for a more complex role in synaptogenesis in vertebrate nervous systems.
Collapse
|
6
|
Matúš D, Post WB, Horn S, Schöneberg T, Prömel S. Latrophilin-1 drives neuron morphogenesis and shapes chemo- and mechanosensation-dependent behavior in C. elegans via a trans function. Biochem Biophys Res Commun 2021; 589:152-158. [PMID: 34922196 DOI: 10.1016/j.bbrc.2021.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/02/2021] [Indexed: 11/02/2022]
Abstract
Latrophilins are highly conserved Adhesion GPCRs playing essential roles in the mammalian nervous system and are associated with severe neurological disorders. Recently, it has been shown that murine Latrophilins mediate classical G-protein signals to drive synaptogenesis. However, there is evidence that Latrophilins in the nematode Caenorhabditis elegans can also function independently of their seven-transmembrane domain and C terminus (trans function). Here, we show that Latrophilin-1 acts in trans to mediate morphogenesis of sensory structures in the C. elegans nervous system. This trans function is physiologically relevant in copulation behavior. Detailed expression and RNA-Seq analyses revealed specific LAT-1-positive neurons and first insights into the genetic network that is modulated by the receptor function. We conclude that 7TM-independent functions of Latrophilins are essential for neuronal physiology, possibly complementing canonical functions via G protein-mediated signaling.
Collapse
Affiliation(s)
- Daniel Matúš
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103, Leipzig, Germany
| | - Willem Berend Post
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103, Leipzig, Germany; Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Susanne Horn
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103, Leipzig, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103, Leipzig, Germany
| | - Simone Prömel
- Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.
| |
Collapse
|
7
|
Regan SL, Pitzer EM, Hufgard JR, Sugimoto C, Williams MT, Vorhees CV. A novel role for the ADHD risk gene latrophilin-3 in learning and memory in Lphn3 knockout rats. Neurobiol Dis 2021; 158:105456. [PMID: 34352385 PMCID: PMC8440465 DOI: 10.1016/j.nbd.2021.105456] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/21/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
Latrophilins (LPHNs) are adhesion G protein-coupled receptors with three isoforms but only LPHN3 is brain specific (caudate, prefrontal cortex, dentate, amygdala, and cerebellum). Variants of LPHN3 are associated with ADHD. Null mutations of Lphn3 in rat, mouse, zebrafish, and Drosophila result in hyperactivity, but its role in learning and memory (L&M) is largely unknown. Using our Lphn3 knockout (KO) rats we examined the cognitive abilities, long-term potentiation (LTP) in CA1, NMDA receptor expression, and neurohistology from heterozygous breeding pairs. KO rats were impaired in egocentric L&M in the Cincinnati water maze, spatial L&M and cognitive flexibility in the Morris water maze (MWM), with no effects on conditioned freezing, novel object recognition, or temporal order recognition. KO-associated locomotor hyperactivity had no effect on swim speed. KO rats had reduced early-LTP but not late-LTP and had reduced hippocampal NMDA-NR1 expression. In a second experiment, KO rats responded to a light prepulse prior to an acoustic startle pulse, reflecting visual signal detection. In a third experiment, KO rats given extra MWM pretraining and hidden platform overtraining showed no evidence of reaching WT rats' levels of learning. Nissl histology revealed no structural abnormalities in KO rats. LPHN3 has a selective effect on egocentric and allocentric L&M without effects on conditioned freezing or recognition memory.
Collapse
Affiliation(s)
- Samantha L Regan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA; Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA.
| | - Emily M Pitzer
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA; Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA.
| | - Jillian R Hufgard
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA; Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA
| | - Chiho Sugimoto
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA; Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA
| | - Michael T Williams
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA; Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA.
| | - Charles V Vorhees
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA; Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA.
| |
Collapse
|
8
|
Regan SL, Williams MT, Vorhees CV. Latrophilin-3 disruption: Effects on brain and behavior. Neurosci Biobehav Rev 2021; 127:619-629. [PMID: 34022279 DOI: 10.1016/j.neubiorev.2021.04.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/20/2021] [Accepted: 04/24/2021] [Indexed: 12/22/2022]
Abstract
Latrophilin-3 (LPHN3), a G-protein-coupled receptor belonging to the adhesion subfamily, is a regulator of synaptic function and maintenance in brain regions that mediate locomotor activity, attention, and memory for location and path. Variants of LPHN3 are associated with increased risk for attention deficit hyperactivity disorder (ADHD) in some patients. Here we review the role of LPHN3 in the central nervous system (CNS). We describe synaptic localization of LPHN3, its trans-synaptic binding partners, links to neurodevelopmental disorders, animal models of Lphn3 disruption in different species, and evidence that LPHN3 is involved in cognition as well as activity and attention. The evidence shows that LPHN3 plays a more significant role in neuroplasticity than previously appreciated.
Collapse
Affiliation(s)
- Samantha L Regan
- Neuroscience Graduate Program, University of Cincinnati, Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA
| | - Michael T Williams
- Neuroscience Graduate Program, University of Cincinnati, Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA
| | - Charles V Vorhees
- Neuroscience Graduate Program, University of Cincinnati, Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA.
| |
Collapse
|
9
|
Mathiasen S, Palmisano T, Perry NA, Stoveken HM, Vizurraga A, McEwen DP, Okashah N, Langenhan T, Inoue A, Lambert NA, Tall GG, Javitch JA. G12/13 is activated by acute tethered agonist exposure in the adhesion GPCR ADGRL3. Nat Chem Biol 2020; 16:1343-1350. [PMID: 32778842 PMCID: PMC7990041 DOI: 10.1038/s41589-020-0617-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 07/08/2020] [Indexed: 02/06/2023]
Abstract
The adhesion G-protein-coupled receptor (GPCR) latrophilin 3 (ADGRL3) has been associated with increased risk of attention deficit hyperactivity disorder (ADHD) and substance use in human genetic studies. Knockdown in multiple species leads to hyperlocomotion and altered dopamine signaling. Thus, ADGRL3 is a potential target for treatment of neuropsychiatric disorders that involve dopamine dysfunction, but its basic signaling properties are poorly understood. Identification of adhesion GPCR signaling partners has been limited by a lack of tools to acutely activate these receptors in living cells. Here, we design a novel acute activation strategy to characterize ADGRL3 signaling by engineering a receptor construct in which we could trigger acute activation enzymatically. Using this assay, we found that ADGRL3 signals through G12/G13 and Gq, with G12/13 the most robustly activated. Gα12/13 is a new player in ADGRL3 biology, opening up unexplored roles for ADGRL3 in the brain. Our methodological advancements should be broadly useful in adhesion GPCR research.
Collapse
MESH Headings
- Activating Transcription Factor 6/agonists
- Activating Transcription Factor 6/chemistry
- Activating Transcription Factor 6/genetics
- Activating Transcription Factor 6/metabolism
- Animals
- Arrestin/chemistry
- Arrestin/genetics
- Arrestin/metabolism
- CRISPR-Cas Systems
- Cell Engineering
- GTP-Binding Protein alpha Subunits, G12-G13/chemistry
- GTP-Binding Protein alpha Subunits, G12-G13/genetics
- GTP-Binding Protein alpha Subunits, G12-G13/metabolism
- GTP-Binding Protein alpha Subunits, Gq-G11/chemistry
- GTP-Binding Protein alpha Subunits, Gq-G11/genetics
- GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
- Gene Expression
- HEK293 Cells
- Humans
- Kinetics
- Mice
- Mitogen-Activated Protein Kinase 1/chemistry
- Mitogen-Activated Protein Kinase 1/genetics
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/chemistry
- Mitogen-Activated Protein Kinase 3/genetics
- Mitogen-Activated Protein Kinase 3/metabolism
- Peptides/chemistry
- Peptides/metabolism
- Peptides/pharmacology
- Protein Binding
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Peptide/chemistry
- Receptors, Peptide/genetics
- Receptors, Peptide/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Signe Mathiasen
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Tiago Palmisano
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Nicole A Perry
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Hannah M Stoveken
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Alex Vizurraga
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Dyke P McEwen
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Najeah Okashah
- Department of Pharmacology and Toxicology, Augusta University Medical College of Georgia, Augusta, GA, USA
| | - Tobias Langenhan
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Nevin A Lambert
- Department of Pharmacology and Toxicology, Augusta University Medical College of Georgia, Augusta, GA, USA
| | - Gregory G Tall
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan A Javitch
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA.
- Department of Pharmacology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
10
|
Lovejoy DA, Hogg DW. Information Processing in Affective Disorders: Did an Ancient Peptide Regulating Intercellular Metabolism Become Co‐Opted for Noxious Stress Sensing? Bioessays 2020; 42:e2000039. [DOI: 10.1002/bies.202000039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/20/2020] [Indexed: 12/28/2022]
Affiliation(s)
- David A. Lovejoy
- Department of Cell and Systems Biology University of Toronto Toronto Ontario M5S 3H4 Canada
| | - David W. Hogg
- Department of Cell and Systems Biology University of Toronto Toronto Ontario M5S 3H4 Canada
| |
Collapse
|
11
|
Vizurraga A, Adhikari R, Yeung J, Yu M, Tall GG. Mechanisms of adhesion G protein-coupled receptor activation. J Biol Chem 2020; 295:14065-14083. [PMID: 32763969 DOI: 10.1074/jbc.rev120.007423] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/31/2020] [Indexed: 12/19/2022] Open
Abstract
Adhesion G protein-coupled receptors (AGPCRs) are a thirty-three-member subfamily of Class B GPCRs that control a wide array of physiological processes and are implicated in disease. AGPCRs uniquely contain large, self-proteolyzing extracellular regions that range from hundreds to thousands of residues in length. AGPCR autoproteolysis occurs within the extracellular GPCR autoproteolysis-inducing (GAIN) domain that is proximal to the N terminus of the G protein-coupling seven-transmembrane-spanning bundle. GAIN domain-mediated self-cleavage is constitutive and produces two-fragment holoreceptors that remain bound at the cell surface. It has been of recent interest to understand how AGPCRs are activated in relation to their two-fragment topologies. Dissociation of the AGPCR fragments stimulates G protein signaling through the action of the tethered-peptide agonist stalk that is occluded within the GAIN domain in the holoreceptor form. AGPCRs can also signal independently of fragment dissociation, and a few receptors possess GAIN domains incapable of self-proteolysis. This has resulted in complex theories as to how these receptors are activated in vivo, complicating pharmacological advances. Currently, there is no existing structure of an activated AGPCR to support any of the theories. Further confounding AGPCR research is that many of the receptors remain orphans and lack identified activating ligands. In this review, we provide a detailed layout of the current theorized modes of AGPCR activation with discussion of potential parallels to mechanisms used by other GPCR classes. We provide a classification means for the ligands that have been identified and discuss how these ligands may activate AGPCRs in physiological contexts.
Collapse
Affiliation(s)
- Alexander Vizurraga
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Rashmi Adhikari
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Jennifer Yeung
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Maiya Yu
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Gregory G Tall
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| |
Collapse
|
12
|
Maser RL, Calvet JP. Adhesion GPCRs as a paradigm for understanding polycystin-1 G protein regulation. Cell Signal 2020; 72:109637. [PMID: 32305667 DOI: 10.1016/j.cellsig.2020.109637] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 12/21/2022]
Abstract
Polycystin-1, whose mutation is the most frequent cause of autosomal dominant polycystic kidney disease, is an extremely large and multi-faceted membrane protein whose primary or proximal cyst-preventing function remains undetermined. Accumulating evidence supports the idea that modulation of cellular signaling by heterotrimeric G proteins is a critical function of polycystin-1. The presence of a cis-autocatalyzed, G protein-coupled receptor (GPCR) proteolytic cleavage site, or GPS, in its extracellular N-terminal domain immediately preceding the first transmembrane domain is one of the notable conserved features of the polycystin-1-like protein family, and also of the family of cell adhesion GPCRs. Adhesion GPCRs are one of five families within the GPCR superfamily and are distinguished by a large N-terminal extracellular region consisting of multiple adhesion modules with a GPS-containing GAIN domain and bimodal functions in cell adhesion and signal transduction. Recent advances from studies of adhesion GPCRs provide a new paradigm for unraveling the mechanisms by which polycystin-1-associated G protein signaling contributes to the pathogenesis of polycystic kidney disease. This review highlights the structural and functional features shared by polycystin-1 and the adhesion GPCRs and discusses the implications of such similarities for our further understanding of the functions of this complicated protein.
Collapse
Affiliation(s)
- Robin L Maser
- Department of Clinical Laboratory Sciences, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, Kansas 66160, USA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, Kansas 66160, USA; Jared Grantham Kidney Institute, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, Kansas 66160, USA.
| | - James P Calvet
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, Kansas 66160, USA; Jared Grantham Kidney Institute, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, Kansas 66160, USA.
| |
Collapse
|
13
|
Rahman MA, Manser C, Benlaouer O, Suckling J, Blackburn JK, Silva JP, Ushkaryov YA. C-terminal phosphorylation of latrophilin-1/ADGRL1 affects the interaction between its fragments. Ann N Y Acad Sci 2019; 1456:122-143. [PMID: 31553068 DOI: 10.1111/nyas.14242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/22/2019] [Accepted: 09/05/2019] [Indexed: 12/21/2022]
Abstract
Latrophilin-1 is an adhesion G protein-coupled receptor that mediates the effect of α-latrotoxin, causing massive release of neurotransmitters from nerve terminals and endocrine cells. Autoproteolysis cleaves latrophilin-1 into two parts: the extracellular N-terminal fragment (NTF) and the heptahelical C-terminal fragment (CTF). NTF and CTF can exist as independent proteins in the plasma membrane, but α-latrotoxin binding to NTF induces their association and G protein-mediated signaling. We demonstrate here that CTF in synapses is phosphorylated on multiple sites. Phosphorylated CTF has a high affinity for NTF and copurifies with it on affinity columns and sucrose density gradients. Dephosphorylated CTF has a lower affinity for NTF and can behave as a separate protein. α-Latrotoxin (and possibly other ligands of latrophilin-1) binds both to the NTF-CTF complex and receptor-like protein tyrosine phosphatase σ, bringing them together. This leads to CTF dephosphorylation and facilitates CTF release from the complex. We propose that ligand-dependent phosphorylation-dephosphorylation of latrophilin-1 could affect the interaction between its fragments and functions as a G protein-coupled receptor.
Collapse
Affiliation(s)
- M Atiqur Rahman
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Catherine Manser
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Ouafa Benlaouer
- School of Pharmacy, University of Kent, Chatham, United Kingdom
| | - Jason Suckling
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | | - John-Paul Silva
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Yuri A Ushkaryov
- Department of Life Sciences, Imperial College London, London, United Kingdom
- School of Pharmacy, University of Kent, Chatham, United Kingdom
| |
Collapse
|
14
|
PharmGKB summary: methylphenidate pathway, pharmacokinetics/pharmacodynamics. Pharmacogenet Genomics 2019; 29:136-154. [PMID: 30950912 DOI: 10.1097/fpc.0000000000000376] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Langenhan T. Adhesion G protein–coupled receptors—Candidate metabotropic mechanosensors and novel drug targets. Basic Clin Pharmacol Toxicol 2019; 126 Suppl 6:5-16. [DOI: 10.1111/bcpt.13223] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 02/26/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Tobias Langenhan
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty Leipzig University Leipzig Germany
| |
Collapse
|
16
|
Ushkaryov YA, Lelianova V, Vysokov NV. Catching Latrophilin With Lasso: A Universal Mechanism for Axonal Attraction and Synapse Formation. Front Neurosci 2019; 13:257. [PMID: 30967757 PMCID: PMC6438917 DOI: 10.3389/fnins.2019.00257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 03/05/2019] [Indexed: 11/24/2022] Open
Abstract
Latrophilin-1 (LPHN1) was isolated as the main high-affinity receptor for α-latrotoxin from black widow spider venom, a powerful presynaptic secretagogue. As an adhesion G-protein-coupled receptor, LPHN1 is cleaved into two fragments, which can behave independently on the cell surface, but re-associate upon binding the toxin. This triggers intracellular signaling that involves the Gαq/phospholipase C/inositol 1,4,5-trisphosphate cascade and an increase in cytosolic Ca2+, leading to vesicular exocytosis. Using affinity chromatography on LPHN1, we isolated its endogenous ligand, teneurin-2/Lasso. Both LPHN1 and Ten2/Lasso are expressed early in development and are enriched in neurons. LPHN1 primarily resides in axons, growth cones and presynaptic terminals, while Lasso largely localizes on dendrites. LPHN1 and Ten2/Lasso form a trans-synaptic receptor pair that has both structural and signaling functions. However, Lasso is proteolytically cleaved at multiple sites and its extracellular domain is partially released into the intercellular space, especially during neuronal development, suggesting that soluble Lasso has additional functions. We discovered that the soluble fragment of Lasso can diffuse away and bind to LPHN1 on axonal growth cones, triggering its redistribution on the cell surface and intracellular signaling which leads to local exocytosis. This causes axons to turn in the direction of spatio-temporal Lasso gradients, while LPHN1 knockout blocks this effect. These results suggest that the LPHN1-Ten2/Lasso pair can participate in long- and short-distance axonal guidance and synapse formation.
Collapse
Affiliation(s)
- Yuri A Ushkaryov
- Medway School of Pharmacy, University of Kent, Chatham, United Kingdom
| | - Vera Lelianova
- Medway School of Pharmacy, University of Kent, Chatham, United Kingdom
| | | |
Collapse
|
17
|
Neurobiology and therapeutic applications of neurotoxins targeting transmitter release. Pharmacol Ther 2019; 193:135-155. [DOI: 10.1016/j.pharmthera.2018.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Vysokov NV, Silva JP, Lelianova VG, Suckling J, Cassidy J, Blackburn JK, Yankova N, Djamgoz MB, Kozlov SV, Tonevitsky AG, Ushkaryov YA. Proteolytically released Lasso/teneurin-2 induces axonal attraction by interacting with latrophilin-1 on axonal growth cones. eLife 2018; 7:37935. [PMID: 30457553 PMCID: PMC6245728 DOI: 10.7554/elife.37935] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 10/19/2018] [Indexed: 11/15/2022] Open
Abstract
A presynaptic adhesion G-protein-coupled receptor, latrophilin-1, and a postsynaptic transmembrane protein, Lasso/teneurin-2, are implicated in trans-synaptic interaction that contributes to synapse formation. Surprisingly, during neuronal development, a substantial proportion of Lasso is released into the intercellular space by regulated proteolysis, potentially precluding its function in synaptogenesis. We found that released Lasso binds to cell-surface latrophilin-1 on axonal growth cones. Using microfluidic devices to create stable gradients of soluble Lasso, we show that it induces axonal attraction, without increasing neurite outgrowth. Using latrophilin-1 knockout in mice, we demonstrate that latrophilin-1 is required for this effect. After binding latrophilin-1, Lasso causes downstream signaling, which leads to an increase in cytosolic calcium and enhanced exocytosis, processes that are known to mediate growth cone steering. These findings reveal a novel mechanism of axonal pathfinding, whereby latrophilin-1 and Lasso mediate both short-range interaction that supports synaptogenesis, and long-range signaling that induces axonal attraction. The brain is a complex mesh of interconnected neurons, with each cell making tens, hundreds, or even thousands of connections. These links can stretch over long distances, and establishing them correctly during development is essential. Developing neurons send out long and thin structures, called axons, to reach distant cells. To guide these growing axons, neurons release molecules that work as traffic signals: some attract axons whilst others repel them, helping the burgeoning structures to twist and turn along their travel paths. When an axon reaches its target cell, the two cells join to each other by forming a structure called a synapse. To make the connection, surface proteins on the axon latch onto matching proteins on the target cell, zipping up the synapse. There are many different types of synapses in the brain, but we only know a few of the surface molecules involved in their creation – not enough to explain synaptic variety. Two of these surface proteins are latrophilin-1, which is produced by the growing axon, and Lasso, which sits on the membrane of the target cell. The two proteins interact strongly, anchoring the axon to the target cell and allowing the synapse to form. However, a previous recent discovery by Vysokov et al. has revealed that an enzyme can also cut Lasso from the membrane of the target cell. The ‘free’ protein can still interact with latrophilin-1, but as it is shed by the target cell, it can no longer serve as an anchor for the synapse. Could it be that free Lasso acts as a traffic signal instead? Here, Vysokov et al. tried to answer this by growing neurons from a part of the brain called the hippocampus in a special labyrinth dish. When free Lasso was gradually introduced in the culture through microscopic channels, it interacted with latrophilin-1 on the surface of the axons. This triggered internal changes that led the axons to add more membrane where they had sensed Lasso, making them grow towards the source of the signal. The results demonstrate that a target cell can both carry and release Lasso, using this duplicitous protein to help attract growing axons as well as anchor them. The work by Vysokov et al. contributes to our knowledge of how neurons normally connect, which could shed light on how this process can go wrong. This may be relevant to understand conditions such as schizophrenia and ADHD, where patients’ brains often show incorrect wiring.
Collapse
Affiliation(s)
- Nickolai V Vysokov
- School of Pharmacy, University of Kent, Chatham, United Kingdom.,Department of Life Sciences, Imperial College London, London, United Kingdom.,Wolfson Centre for Age Related Diseases, King's College London, London, United Kingdom.,BrainPatch Ltd, London, United Kingdom
| | - John-Paul Silva
- Department of Life Sciences, Imperial College London, London, United Kingdom.,Department of Bioanalytical Sciences, Non-clinical development, UCB-Pharma, Berkshire, United Kingdom
| | - Vera G Lelianova
- School of Pharmacy, University of Kent, Chatham, United Kingdom.,Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Jason Suckling
- Department of Life Sciences, Imperial College London, London, United Kingdom.,Thomsons Online Benefits, London, United Kingdom
| | - John Cassidy
- Department of Life Sciences, Imperial College London, London, United Kingdom.,Arix Bioscience, London, United Kingdom
| | - Jennifer K Blackburn
- School of Pharmacy, University of Kent, Chatham, United Kingdom.,Division of Molecular Psychiatry, Yale University School of Medicine, New Haven, United States
| | - Natalia Yankova
- Department of Life Sciences, Imperial College London, London, United Kingdom.,Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, King's College London, London, United Kingdom
| | - Mustafa Ba Djamgoz
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Serguei V Kozlov
- Center for Advanced Preclinical Research, National Cancer Institute, Frederick, United States
| | - Alexander G Tonevitsky
- Higher School of Economics, Moscow, Russia.,Scientific Research Centre Bioclinicum, Moscow, Russia
| | - Yuri A Ushkaryov
- School of Pharmacy, University of Kent, Chatham, United Kingdom.,Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
19
|
Abstract
The adhesion G protein-coupled receptors (aGPCRs) are an evolutionarily ancient family of receptors that play key roles in many different physiological processes. These receptors are notable for their exceptionally long ectodomains, which span several hundred to several thousand amino acids and contain various adhesion-related domains, as well as a GPCR autoproteolysis-inducing (GAIN) domain. The GAIN domain is conserved throughout almost the entire family and undergoes autoproteolysis to cleave the receptors into two noncovalently-associated protomers. Recent studies have revealed that the signaling activity of aGPCRs is largely determined by changes in the interactions among these protomers. We review recent advances in understanding aGPCR activation mechanisms and discuss the physiological roles and pharmacological properties of aGPCRs, with an eye toward the potential utility of these receptors as drug targets.
Collapse
Affiliation(s)
- Ryan H Purcell
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia, 30322, USA;
| | - Randy A Hall
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia, 30322, USA;
| |
Collapse
|
20
|
Prashanth JR, Hasaballah N, Vetter I. Pharmacological screening technologies for venom peptide discovery. Neuropharmacology 2017; 127:4-19. [PMID: 28377116 DOI: 10.1016/j.neuropharm.2017.03.038] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/11/2017] [Accepted: 03/31/2017] [Indexed: 01/13/2023]
Abstract
Venomous animals occupy one of the most successful evolutionary niches and occur on nearly every continent. They deliver venoms via biting and stinging apparatuses with the aim to rapidly incapacitate prey and deter predators. This has led to the evolution of venom components that act at a number of biological targets - including ion channels, G-protein coupled receptors, transporters and enzymes - with exquisite selectivity and potency, making venom-derived components attractive pharmacological tool compounds and drug leads. In recent years, plate-based pharmacological screening approaches have been introduced to accelerate venom-derived drug discovery. A range of assays are amenable to this purpose, including high-throughput electrophysiology, fluorescence-based functional and binding assays. However, despite these technological advances, the traditional activity-guided fractionation approach is time-consuming and resource-intensive. The combination of screening techniques suitable for miniaturization with sequence-based discovery approaches - supported by advanced proteomics, mass spectrometry, chromatography as well as synthesis and expression techniques - promises to further improve venom peptide discovery. Here, we discuss practical aspects of establishing a pipeline for venom peptide drug discovery with a particular emphasis on pharmacology and pharmacological screening approaches. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
Affiliation(s)
- Jutty Rajan Prashanth
- Centre for Pain Research, Institute for Molecular Bioscience, 306 Carmody Rd, The University of Queensland, St Lucia, Qld 4072, Australia
| | - Nojod Hasaballah
- Centre for Pain Research, Institute for Molecular Bioscience, 306 Carmody Rd, The University of Queensland, St Lucia, Qld 4072, Australia
| | - Irina Vetter
- Centre for Pain Research, Institute for Molecular Bioscience, 306 Carmody Rd, The University of Queensland, St Lucia, Qld 4072, Australia; School of Pharmacy, 20 Cornwall St, Woolloongabba, Qld 4102, Australia.
| |
Collapse
|
21
|
Bruxel EM, Salatino-Oliveira A, Akutagava-Martins GC, Tovo-Rodrigues L, Genro JP, Zeni CP, Polanczyk GV, Chazan R, Schmitz M, Arcos-Burgos M, Rohde LA, Hutz MH. LPHN3 and attention-deficit/hyperactivity disorder: a susceptibility and pharmacogenetic study. GENES BRAIN AND BEHAVIOR 2016; 14:419-27. [PMID: 25989180 DOI: 10.1111/gbb.12224] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/28/2015] [Accepted: 05/13/2015] [Indexed: 12/22/2022]
Abstract
Latrophilin 3 (LPHN3) is a brain-specific member of the G-protein coupled receptor family associated to both attention-deficit/hyperactivity disorder (ADHD) genetic susceptibility and methylphenidate (MPH) pharmacogenetics. Interactions of LPHN3 variants with variants harbored in the 11q chromosome improve the prediction of ADHD development and medication response. The aim of this study was to evaluate the role of LPHN3 variants in childhood ADHD susceptibility and treatment response in a naturalistic clinical cohort. The association between LPHN3 and ADHD was evaluated in 523 children and adolescents with ADHD and 132 controls. In the pharmacogenetic study, 172 children with ADHD were investigated. The primary outcome measure was the parent-rated Swanson, Nolan and Pelham Scale - version IV applied at baseline, first and third months of treatment with MPH. The results reported herein suggest the CGC haplotype derived from single nucleotide polymorphisms (SNPs) rs6813183, rs1355368 and rs734644 as an ADHD risk haplotype (P = 0.02, OR = 1.46). Although non-significant after multiple testing correction, its interaction with the 11q chromosome SNP rs965560 slightly increases risk (P = 0.03, OR = 1.55). Homozygous individuals for the CGC haplotype showed faster response to MPH treatment as a significant interaction effect between CGC haplotype and treatment over time was observed (P < 0.001). Homozygous individuals for the GT haplotype derived from SNPs rs6551665 and rs1947275 showed a nominally significant interaction with treatment over time (P = 0.04). Our findings replicate previous findings reporting that LPHN3 confers ADHD susceptibility, and moderates MPH treatment response in children and adolescents with ADHD.
Collapse
Affiliation(s)
- E M Bruxel
- Genetics Department, Federal University of Rio Grande do Sul, Porto Alegre, RS
| | - A Salatino-Oliveira
- Genetics Department, Federal University of Rio Grande do Sul, Porto Alegre, RS
| | | | - L Tovo-Rodrigues
- Genetics Department, Federal University of Rio Grande do Sul, Porto Alegre, RS
| | - J P Genro
- Genetics Department, Federal University of Rio Grande do Sul, Porto Alegre, RS
| | - C P Zeni
- Division of Child and Adolescent Psychiatry, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, RS
| | - G V Polanczyk
- Institute for Developmental Psychiatry for Children and Adolescents, Porto Alegre, RS.,Department of Psychiatry, University of São Paulo Medical School, São Paulo, SP, Brazil
| | - R Chazan
- Division of Child and Adolescent Psychiatry, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, RS
| | - M Schmitz
- Division of Child and Adolescent Psychiatry, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, RS
| | - M Arcos-Burgos
- Genome Biology Department, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - L A Rohde
- Division of Child and Adolescent Psychiatry, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, RS.,Institute for Developmental Psychiatry for Children and Adolescents, Porto Alegre, RS
| | - M H Hutz
- Genetics Department, Federal University of Rio Grande do Sul, Porto Alegre, RS
| |
Collapse
|
22
|
Orsini CA, Setlow B, DeJesus M, Galaviz S, Loesch K, Ioerger T, Wallis D. Behavioral and transcriptomic profiling of mice null for Lphn3, a gene implicated in ADHD and addiction. Mol Genet Genomic Med 2016; 4:322-43. [PMID: 27247960 PMCID: PMC4867566 DOI: 10.1002/mgg3.207] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/13/2016] [Accepted: 01/15/2016] [Indexed: 01/08/2023] Open
Abstract
Background The Latrophilin 3 (LPHN3) gene (recently renamed Adhesion G protein‐coupled receptor L3 (ADGRL3)) has been linked to susceptibility to attention deficit/hyperactivity disorder (ADHD) and vulnerability to addiction. However, its role and function are not well understood as there are no known functional variants. Methods To characterize the function of this little known gene, we phenotyped Lphn3 null mice. We assessed motivation for food reward and working memory via instrumental responding tasks, motor coordination via rotarod, and depressive‐like behavior via forced swim. We also measured neurite outgrowth of primary hippocampal and cortical neuron cultures. Standard blood chemistries and blood counts were performed. Finally, we also evaluated the transcriptome in several brain regions. Results Behaviorally, loss of Lphn3 increases both reward motivation and activity levels. Lphn3 null mice display significantly greater instrumental responding for food than wild‐type mice, particularly under high response ratios, and swim incessantly during a forced swim assay. However, loss of Lphn3 does not interfere with working memory or motor coordination. Primary hippocampal and cortical neuron cultures demonstrate that null neurons display comparatively enhanced neurite outgrowth after 2 and 3 days in vitro. Standard blood chemistry panels reveal that nulls have low serum calcium levels. Finally, analysis of the transcriptome from prefrontal cortical, striatal, and hippocampal tissue at different developmental time points shows that loss of Lphn3 results in genotype‐dependent differential gene expression (DGE), particularly for cell adhesion molecules and calcium signaling proteins. Much of the DGE is attenuated with age, and is consistent with the idea that ADHD is associated with delayed cortical maturation. Conclusions Transcriptome changes likely affect neuron structure and function, leading to behavioral anomalies consistent with both ADHD and addiction phenotypes. The data should further motivate analyses of Lphn3 function in the developmental timing of altered gene expression and calcium signaling, and their effects on neuronal structure/function during development.
Collapse
Affiliation(s)
- Caitlin A Orsini
- Department of Psychiatry McKnight Brain Institute University of Florida College of Medicine Gainesville Florida 32610
| | - Barry Setlow
- Department of Psychiatry McKnight Brain Institute University of Florida College of Medicine Gainesville Florida 32610
| | - Michael DeJesus
- Department of Computer Science and Engineering Texas A&M University College Station Texas 77843
| | - Stacy Galaviz
- Department of Biochemistry and Biophysics Texas A&M University College Station Texas 77843
| | - Kimberly Loesch
- Department of Biochemistry and Biophysics Texas A&M University College Station Texas 77843
| | - Thomas Ioerger
- Department of Computer Science and Engineering Texas A&M University College Station Texas 77843
| | - Deeann Wallis
- Department of Biochemistry and Biophysics Texas A&M University College Station Texas 77843
| |
Collapse
|
23
|
Emerging Roles of BAI Adhesion-GPCRs in Synapse Development and Plasticity. Neural Plast 2016; 2016:8301737. [PMID: 26881134 PMCID: PMC4736325 DOI: 10.1155/2016/8301737] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/06/2015] [Accepted: 10/12/2015] [Indexed: 12/17/2022] Open
Abstract
Synapses mediate communication between neurons and enable the brain to change in response to experience, which is essential for learning and memory. The sites of most excitatory synapses in the brain, dendritic spines, undergo rapid remodeling that is important for neural circuit formation and synaptic plasticity. Abnormalities in synapse and spine formation and plasticity are associated with a broad range of brain disorders, including intellectual disabilities, autism spectrum disorders (ASD), and schizophrenia. Thus, elucidating the mechanisms that regulate these neuronal processes is critical for understanding brain function and disease. The brain-specific angiogenesis inhibitor (BAI) subfamily of adhesion G-protein-coupled receptors (adhesion-GPCRs) has recently emerged as central regulators of synapse development and plasticity. In this review, we will summarize the current knowledge regarding the roles of BAIs at synapses, highlighting their regulation, downstream signaling, and physiological functions, while noting the roles of other adhesion-GPCRs at synapses. We will also discuss the relevance of BAIs in various neurological and psychiatric disorders and consider their potential importance as pharmacological targets in the treatment of these diseases.
Collapse
|
24
|
Abstract
The adhesion G protein-coupled receptors (aGPCRs) are a family of 33 receptors in humans that are widely expressed in various tissues and involved in many diverse biological processes. These receptors possess extremely large N-termini (NT) containing a variety of adhesion domains. A distinguishing feature of these receptors is the presence within the NT of a highly conserved GPCR autoproteolysis-inducing (GAIN) domain, which mediates autoproteolysis of the receptors into N-terminal and C-terminal fragments that stay non-covalently associated. The downstream signaling pathways and G protein-coupling preferences of many aGPCRs have recently been elucidated, and putative endogenous ligands for some aGPCRs have also been discovered and characterized in recent years. A pivotal observation for aGPCRs has been that deletion or removal of the NT up the point of GAIN cleavage results in constitutive receptor activation. For at least some aGPCRs, this activation is dependent on the unmasking of specific agonistic peptide sequences within the N-terminal stalk region (i.e., the region between the site of GAIN domain cleavage and the first transmembrane domain). However, the specific peptide sequences involved and the overall importance of the stalk region for activation can vary greatly from receptor to receptor. An emerging theme of work in this area is that aGPCRs are capable of versatile signaling activity that may be fine-tuned to suit the specific physiological roles played by the various members of this family.
Collapse
Affiliation(s)
- Ayush Kishore
- Department of Pharmacology, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta, GA, 30322, USA
| | - Randy A Hall
- Department of Pharmacology, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta, GA, 30322, USA.
| |
Collapse
|
25
|
Monk KR, Hamann J, Langenhan T, Nijmeijer S, Schöneberg T, Liebscher I. Adhesion G Protein-Coupled Receptors: From In Vitro Pharmacology to In Vivo Mechanisms. Mol Pharmacol 2015; 88:617-23. [PMID: 25956432 PMCID: PMC4551055 DOI: 10.1124/mol.115.098749] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/08/2015] [Indexed: 12/19/2022] Open
Abstract
The adhesion family of G protein-coupled receptors (aGPCRs) comprises 33 members in humans. aGPCRs are characterized by their enormous size and complex modular structures. While the physiologic importance of many aGPCRs has been clearly demonstrated in recent years, the underlying molecular functions have only recently begun to be elucidated. In this minireview, we present an overview of our current knowledge on aGPCR activation and signal transduction with a focus on the latest findings regarding the interplay between ligand binding, mechanical force, and the tethered agonistic Stachel sequence, as well as implications on translational approaches that may derive from understanding aGPCR pharmacology.
Collapse
Affiliation(s)
- Kelly R Monk
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri (K.R.M.); Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (J.H.); Department of Neurophysiology, Institute of Physiology, University of Würzburg, Würzburg, Germany (T.L.); Department of Medicinal Chemistry/Amsterdam Institute for Molecules, Medicines and Systems, VU University, Amsterdam, The Netherlands (S.N.); and Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany (T.S., I.L.)
| | - Jörg Hamann
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri (K.R.M.); Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (J.H.); Department of Neurophysiology, Institute of Physiology, University of Würzburg, Würzburg, Germany (T.L.); Department of Medicinal Chemistry/Amsterdam Institute for Molecules, Medicines and Systems, VU University, Amsterdam, The Netherlands (S.N.); and Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany (T.S., I.L.)
| | - Tobias Langenhan
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri (K.R.M.); Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (J.H.); Department of Neurophysiology, Institute of Physiology, University of Würzburg, Würzburg, Germany (T.L.); Department of Medicinal Chemistry/Amsterdam Institute for Molecules, Medicines and Systems, VU University, Amsterdam, The Netherlands (S.N.); and Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany (T.S., I.L.)
| | - Saskia Nijmeijer
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri (K.R.M.); Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (J.H.); Department of Neurophysiology, Institute of Physiology, University of Würzburg, Würzburg, Germany (T.L.); Department of Medicinal Chemistry/Amsterdam Institute for Molecules, Medicines and Systems, VU University, Amsterdam, The Netherlands (S.N.); and Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany (T.S., I.L.)
| | - Torsten Schöneberg
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri (K.R.M.); Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (J.H.); Department of Neurophysiology, Institute of Physiology, University of Würzburg, Würzburg, Germany (T.L.); Department of Medicinal Chemistry/Amsterdam Institute for Molecules, Medicines and Systems, VU University, Amsterdam, The Netherlands (S.N.); and Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany (T.S., I.L.)
| | - Ines Liebscher
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri (K.R.M.); Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (J.H.); Department of Neurophysiology, Institute of Physiology, University of Würzburg, Würzburg, Germany (T.L.); Department of Medicinal Chemistry/Amsterdam Institute for Molecules, Medicines and Systems, VU University, Amsterdam, The Netherlands (S.N.); and Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany (T.S., I.L.)
| |
Collapse
|
26
|
Hwang IW, Lim MH, Kwon HJ, Jin HJ. Association of LPHN3 rs6551665 A/G polymorphism with attention deficit and hyperactivity disorder in Korean children. Gene 2015; 566:68-73. [PMID: 25871512 DOI: 10.1016/j.gene.2015.04.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 04/07/2015] [Accepted: 04/10/2015] [Indexed: 11/27/2022]
Abstract
Attention deficit hyperactivity disorder (ADHD) is a common and highly heritable disorder of school-age children. Its heritability was estimated at 80-90% but the genetic component underpinning this disorder remains to be disclosed. Recently, a highly consistent association between latrophilin3 (LPHN3) gene and ADHD was reported. In the present study, we examined the association between the LPHN3 rs6551665 A/G polymorphism and ADHD in Korea. The samples used in the study consisted of 150 ADHD children and 322 controls. The ADHD children were diagnosed according to DSM-IV. ADHD symptoms were evaluated with Dupaul Parent ADHD Rating Scales. LPHN3 rs6551665 SNP was determined by PCR-RFLP. Hardy-Weinberg equilibrium, genotype and allele frequency differences between the case and the control, and odds ratio were examined using the chi-square and exact tests. The LPHN3 gene locus was found to have no deviation from the Hardy-Weinberg expectation. We observed a significant association between the ADHD children and control group in genotype frequency (p=0.01) and allele frequency (p=0.02). The ADHD children appeared to have a surplus of GG genotype (OR 2.959, 95% CI 1.416-6.184, p=0.003) and G allele (OR 1.44, 95% CI 1.062-1.945, p=0.02). The association was more distinctive when analysis was confined to male samples (p=0.005), the OR of male controls and cases was 4.029 (95% CI 1.597-10.164, p=0.002) and the OR having G allele vs. A allele was 1.46 (95% CI 1.002-2.127, p=0.048). Thus our results imply that the LPHN3 rs6551665 GG genotype and G allele may provide a significant effect on the ADHD, although larger sample sizes and functional studies are necessary to further elucidate these findings.
Collapse
Affiliation(s)
- In Wook Hwang
- Department of Nanobiomedical Science, College of Natural Science, Dankook University, Cheonan, South Korea; Environmental Health Center, Dankook Medical Hospital, Cheonan, South Korea
| | - Myung Ho Lim
- Environmental Health Center, Dankook Medical Hospital, Cheonan, South Korea; Department of Psychology, College of Public Welfare, Dankook University, Cheonan, South Korea
| | - Ho Jang Kwon
- Environmental Health Center, Dankook Medical Hospital, Cheonan, South Korea; Department of Preventive Medicine, College of Medicine, Dankook University, Cheonan, South Korea
| | - Han Jun Jin
- Department of Nanobiomedical Science, College of Natural Science, Dankook University, Cheonan, South Korea; Environmental Health Center, Dankook Medical Hospital, Cheonan, South Korea.
| |
Collapse
|
27
|
Bruxel EM, Akutagava-Martins GC, Salatino-Oliveira A, Contini V, Kieling C, Hutz MH, Rohde LA. ADHD pharmacogenetics across the life cycle: New findings and perspectives. Am J Med Genet B Neuropsychiatr Genet 2014; 165B:263-82. [PMID: 24804845 DOI: 10.1002/ajmg.b.32240] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 04/14/2014] [Indexed: 12/17/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a complex and heterogeneous disorder, affecting individuals across the life cycle. Although its etiology is not yet completely understood, genetics plays a substantial role. Pharmacological treatment is considered effective and safe for children and adults, but there is considerable inter-individual variability among patients regarding response to medication, required doses, and adverse events. We present here a systematic review of the literature on ADHD pharmacogenetics to provide a critical discussion of the existent findings, new approaches, limitations, and recommendations for future research. Our main findings are: first, the number of studies continues to grow, making ADHD one of the mental health areas with more pharmacogenetic studies. Second, there has been a focus shift on ADHD pharmacogenetic studies in the last years. There is an increasing number of studies assessing gene-gene and gene-environment interactions, using genome-wide association approaches, neuroimaging, and assessing pharmacokinetic properties. Third and most importantly, the heterogeneity in methodological strategies employed by different studies remains impressive. The question whether pharmacogenetics studies of ADHD will improve clinical management by shifting from trial-and-error approach to a pharmacological regimen that takes into account the individual variability remains unanswered. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Estela Maria Bruxel
- Genetics Department, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | | | | | | | | |
Collapse
|
28
|
Stephenson JR, Purcell RH, Hall RA. The BAI subfamily of adhesion GPCRs: synaptic regulation and beyond. Trends Pharmacol Sci 2014; 35:208-15. [PMID: 24642458 DOI: 10.1016/j.tips.2014.02.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 01/30/2014] [Accepted: 02/02/2014] [Indexed: 01/19/2023]
Abstract
The brain-specific angiogenesis inhibitors 1-3 (BAI1-3) comprise a subfamily of adhesion G-protein-coupled receptors (GPCRs). These receptors are highly expressed in the brain and were first studied for their ability to inhibit angiogenesis and tumor formation. Subsequently, BAI1 was found to play roles in apoptotic cell phagocytosis and myoblast fusion. Until recently, however, little was known about the physiological importance of the BAI subfamily in the context of normal brain function. Recent work has provided evidence for key roles of BAI1-3 in the regulation of synaptogenesis and dendritic spine formation. In this review, we summarize the current understanding of the BAI subfamily with regard to downstream signaling pathways, physiological actions, and potential importance as novel drug targets in the treatment of psychiatric and neurological diseases.
Collapse
Affiliation(s)
- Jason R Stephenson
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ryan H Purcell
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Randy A Hall
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
29
|
Stephenson JR, Paavola KJ, Schaefer SA, Kaur B, Van Meir EG, Hall RA. Brain-specific angiogenesis inhibitor-1 signaling, regulation, and enrichment in the postsynaptic density. J Biol Chem 2013; 288:22248-56. [PMID: 23782696 DOI: 10.1074/jbc.m113.489757] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Brain-specific angiogenesis inhibitor-1 (BAI1) is an adhesion G protein-coupled receptor that has been studied primarily for its anti-angiogenic and anti-tumorigenic properties. We found that overexpression of BAI1 results in activation of the Rho pathway via a Gα(12/13)-dependent mechanism, with truncation of the BAI1 N terminus resulting in a dramatic enhancement in receptor signaling. This constitutive activity of the truncated BAI1 mutant also resulted in enhanced downstream phosphorylation of ERK as well as increased receptor association with β-arrestin2 and increased ubiquitination of the receptor. To gain insights into the regulation of BAI1 signaling, we screened the C terminus of BAI1 against a proteomic array of PDZ domains to identify novel interacting partners. These screens revealed that the BAI1 C terminus interacts with a variety of PDZ domains from synaptic proteins, including MAGI-3. Removal of the BAI1 PDZ-binding motif resulted in attenuation of receptor signaling to Rho but had no effect on ERK activation. Conversely, co-expression with MAGI-3 was found to potentiate signaling to ERK by constitutively active BAI1 in a manner that was dependent on the PDZ-binding motif of the receptor. Biochemical fractionation studies revealed that BAI1 is highly enriched in post-synaptic density fractions, a finding consistent with our observations that BAI1 can interact with PDZ proteins known to be concentrated in the post-synaptic density. These findings demonstrate that BAI1 is a synaptic receptor that can activate both the Rho and ERK pathways, with the N-terminal and C-terminal regions of the receptor playing key roles in the regulation of BAI1 signaling activity.
Collapse
Affiliation(s)
- Jason R Stephenson
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | |
Collapse
|
30
|
Lesch KP, Merker S, Reif A, Novak M. Dances with black widow spiders: dysregulation of glutamate signalling enters centre stage in ADHD. Eur Neuropsychopharmacol 2013; 23:479-91. [PMID: 22939004 DOI: 10.1016/j.euroneuro.2012.07.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 07/10/2012] [Accepted: 07/24/2012] [Indexed: 11/26/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder with impairments across the lifespan. The persistence of ADHD is associated with considerable liability to neuropsychiatric co-morbidity such as depression, anxiety and substance use disorder. The substantial heritability of ADHD is well documented and recent genome-wide analyses for risk genes revealed synaptic adhesion molecules (e.g. latrophilin-3, LPHN3; fibronectin leucine-rich repeat transmembrane protein-3, FLRT3), glutamate receptors (e.g. metabotropic glutamate receptor-5, GRM5) and mediators of intracellular signalling pathways (e.g. nitric oxide synthase-1, NOS1). These genes encode principal components of the molecular machinery that connects pre- and postsynaptic neurons, facilitates glutamatergic transmission, controls synaptic plasticity and empowers intersecting neural circuits to process and refine information. Thus, identification of genetic variation affecting molecules essential for the formation, specification and function of excitatory synapses is refocusing research efforts on ADHD pathogenesis to include the long-neglected glutamate system.
Collapse
Affiliation(s)
- K P Lesch
- Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, ADHD Clinical Research Network, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Füchsleinstr. 15, 97080 Würzburg, Germany.
| | | | | | | |
Collapse
|
31
|
Langenhan T, Aust G, Hamann J. Sticky Signaling--Adhesion Class G Protein-Coupled Receptors Take the Stage. Sci Signal 2013; 6:re3. [DOI: 10.1126/scisignal.2003825] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
Paavola KJ, Hall RA. Adhesion G protein-coupled receptors: signaling, pharmacology, and mechanisms of activation. Mol Pharmacol 2012; 82:777-83. [PMID: 22821233 PMCID: PMC3477231 DOI: 10.1124/mol.112.080309] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 07/20/2012] [Indexed: 11/22/2022] Open
Abstract
The adhesion G protein-coupled receptors (GPCRs) are a distinct family of more than 30 receptors in vertebrate genomes. These receptors have been shown to play pivotal roles in a diverse range of biological functions and are characterized by extremely large N termini featuring various adhesion domains capable of mediating cell-cell and cell-matrix interactions. The adhesion GPCR N termini also contain GPCR proteolytic site motifs that undergo autocatalytic cleavage during receptor processing to create mature GPCRs existing as noncovalently attached complexes between the N terminus and transmembrane regions. There is mounting evidence that adhesion GPCRs can couple to G proteins to activate a variety of different downstream signaling pathways. Furthermore, recent studies have demonstrated that adhesion GPCR N termini can bind to multiple ligands, which may differentially activate receptor signaling and/or mediate cell adhesion. In addition, studies on several distinct adhesion GPCRs have revealed that truncations of the N termini result in constitutively active receptors, suggesting a model of receptor activation in which removal of the N terminus may be a key event in stimulating receptor signaling. Because mutations to certain adhesion GPCRs cause human disease and because many members of this receptor family exhibit highly discrete distribution patterns in different tissues, the adhesion GPCRs represent a class of potentially important drug targets that have not yet been exploited. For this reason, understanding the mechanisms of activation for these receptors and elucidating their downstream signaling pathways can provide insights with the potential to lead to novel therapeutic agents.
Collapse
Affiliation(s)
- Kevin J Paavola
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
33
|
Labbe A, Liu A, Atherton J, Gizenko N, Fortier MÈ, Sengupta SM, Ridha J. Refining psychiatric phenotypes for response to treatment: contribution of LPHN3 in ADHD. Am J Med Genet B Neuropsychiatr Genet 2012; 159B:776-85. [PMID: 22851411 DOI: 10.1002/ajmg.b.32083] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 07/05/2012] [Indexed: 11/10/2022]
Abstract
Attention deficit/hyperactivity disorder (ADHD) is a heterogeneous disorder characterized by inappropriate levels of attention, hyperactivity, and impulsivity. Although a strong genetic component to the disorder has been established, the molecular genetic underpinnings of this disorder remain elusive. Recently, several studies have reported an association between polymorphisms within the latrophilin 3 gene (LPHN3) and ADHD. Interestingly, the same single-nucleotide polymorphism conferring susceptibility to ADHD has also been found to predict efficacy of stimulant medication in children. The main objectives of the current article are: (i) To tackle the phenotype heterogeneity issue in ADHD by defining an objective and quantitative measure of response to treatment in a sample of ADHD children based on a hand held automatic device (Actiwatch) and (ii) to use this measure to reproduce for the first time the association between LPHN3 variants and response to methylphenidate (MPH) using a double-blind, placebo-controlled crossover experimental design. The results of our study confirm the hypothesis that LPHN3 is associated with response to MPH in ADHD children. Although this will require further validation, our work suggests that the use of an objective measure of response to treatment, such as the change in the child's motor activity measured by Actiwatch, has the potential to uncover genetic association signals that in some conditions might not be obtained using more subjective measures, such as the clinical consensus rating, for example.
Collapse
Affiliation(s)
- Aurelie Labbe
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, Québec, Canada.
| | | | | | | | | | | | | |
Collapse
|
34
|
Choudhry Z, Sengupta SM, Grizenko N, Fortier ME, Thakur GA, Bellingham J, Joober R. LPHN3 and attention-deficit/hyperactivity disorder: interaction with maternal stress during pregnancy. J Child Psychol Psychiatry 2012; 53:892-902. [PMID: 22486528 DOI: 10.1111/j.1469-7610.2012.02551.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Attention-deficit/hyperactivity disorder (ADHD) is a heterogeneous behavioral disorder, complex both in etiology and clinical expression. Both genetic and environmental factors have been implicated, and it has been suggested that gene-environment interactions may play a pivotal role in the disorder. Recently, a significant association was reported between ADHD and LPHN3 (which codes for latrophilin 3), and replicated in independent samples. METHODS We have examined the association between tag single nucleotide polymorphisms (SNPs) in LPHN3 within the region previously implicated in ADHD. Family based association tests (FBAT) were conducted (n = 380 families) with the categorical diagnosis of ADHD, behavioral and cognitive phenotypes related to ADHD, and response to treatment (given a fixed dose of methylphenidate, 0.5 mg/day). Stratified FBAT analyses, based on maternal smoking and stress during pregnancy, was conducted. RESULTS Whereas limited association was observed in the total sample, highly significant interaction between four LPHN3 tag SNPs (rs6551665, rs1947274, rs6858066, rs2345039) and maternal stress during pregnancy was noted. Analysis conducted in the sub-group of mothers exposed to minimal stress during pregnancy showed significant associations with ADHD, behavioral and cognitive dimensions related to ADHD, as well as treatment response. Although extensive association was observed with the candidate SNPs, the findings are partially inconsistent with previously published results with the opposite alleles over-transmitted in these studies. CONCLUSIONS These results provide evidence for the interaction between a genetic and environmental factor independently shown to be associated with ADHD. If confirmed in independent large studies, they may present a step forward in unraveling the complex etiology of ADHD.
Collapse
Affiliation(s)
- Zia Choudhry
- Douglas Mental Health University Institute, McGill University, Verdun, QC, Canada
| | | | | | | | | | | | | |
Collapse
|
35
|
Davletov B, Ferrari E, Ushkaryov Y. Presynaptic neurotoxins: an expanding array of natural and modified molecules. Cell Calcium 2012; 52:234-40. [PMID: 22658826 DOI: 10.1016/j.ceca.2012.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 05/04/2012] [Accepted: 05/13/2012] [Indexed: 11/15/2022]
Abstract
The process of neurotransmitter release from nerve terminals is a target for a wide array of presynaptic toxins produced by various species, from humble bacteria to arthropods to vertebrate animals. Unlike other toxins, most presynaptic neurotoxins do not kill cells but simply inhibit or activate synaptic transmission. In this review, we describe two types of presynaptic neurotoxins: clostridial toxins and latrotoxins, which are, respectively, the most potent blockers and stimulators of neurotransmitter release. These toxins have been instrumental in defining presynaptic functions and are now widely used in research and medicine. Here, we would like to analyse the diversity of these toxins and demonstrate how the knowledge of their structures and mechanisms of action can help us to design better tools for research and medical applications. We will look at natural and synthetic variations of these exquisite molecular machines, highlighting recent advances in our understanding of presynaptic toxins and questions that remain to be answered. If we can decipher how a given biomolecule is modified by nature to target different species, we will be able to design new variants that carry only desired characteristics to achieve specific therapeutic, agricultural or research goals. Indeed, a number of research groups have already initiated a quest to harness the power of natural toxins with the aim of making them more specifically targeted and safer for future research and medical applications.
Collapse
Affiliation(s)
- Bazbek Davletov
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| | | | | |
Collapse
|
36
|
Mizuno N, Itoh H. Signal transduction mediated through adhesion-GPCRs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 706:157-66. [PMID: 21618835 DOI: 10.1007/978-1-4419-7913-1_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
The signaling cascade of most adhesion-GPCRs remains uncharacterized, as the majority are still orphan receptors and further complicated by their unique structure containing a cleaved long extracellular domain (ECD) and a seven-transmembrane domain (7TM). In this chapter, we review previous reports which suggest G protein-dependent and -independent signaling pathways of adhesion-GPCRs and present our approach to investigate the signal transduction of the adhesion-GPCR, GPR56.
Collapse
|
37
|
Martinez AF, Muenke M, Arcos-Burgos M. From the black widow spider to human behavior: Latrophilins, a relatively unknown class of G protein-coupled receptors, are implicated in psychiatric disorders. Am J Med Genet B Neuropsychiatr Genet 2011; 156B:1-10. [PMID: 21184579 PMCID: PMC4101183 DOI: 10.1002/ajmg.b.31137] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 09/28/2010] [Indexed: 12/24/2022]
Abstract
The findings of a recent study associate LPHN3, a member of the latrophilin family, with an increased risk of developing attention deficit/hyperactivity disorder (ADHD), the most common psychiatric disorder in childhood and adolescence. Latrophilins comprise a new family of G protein-coupled receptors of unknown native physiological function that mediate the neurotoxic effects of α-latrotoxin, a potent toxin found in black widow spider venom. This receptor-toxin interaction has helped to elucidate the mechanistic aspects of neurotransmitter and hormone release in vertebrates. Such unprecedented discovery points to a new direction in the assessment of ADHD and suggest that further study of this receptor family may provide novel insights into the etiology and treatment of ADHD and other related psychiatric conditions.
Collapse
Affiliation(s)
| | | | - Mauricio Arcos-Burgos
- Correspondence to: Dr. Mauricio Arcos-Burgos, M.D., Ph.D., National Human Genome Research Institute, National Institutes of Health, 35 Convent Drive, MSC 3717, Building 35, Room 1B209, Bethesda, MD 20892.
| |
Collapse
|
38
|
Hiramatsu H, Tadokoro S, Nakanishi M, Hirashima N. Latrotoxin-induced exocytosis in mast cells transfected with latrophilin. Toxicon 2010; 56:1372-80. [DOI: 10.1016/j.toxicon.2010.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 08/03/2010] [Accepted: 08/03/2010] [Indexed: 11/27/2022]
|
39
|
Davletov B, Montecucco C. Lipid function at synapses. Curr Opin Neurobiol 2010; 20:543-9. [DOI: 10.1016/j.conb.2010.06.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2010] [Revised: 05/27/2010] [Accepted: 06/26/2010] [Indexed: 11/25/2022]
|
40
|
Presynaptic roles of intracellular Ca(2+) stores in signalling and exocytosis. Biochem Soc Trans 2010; 38:529-35. [PMID: 20298216 DOI: 10.1042/bst0380529] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The signalling roles of Ca(2+)(ic) (intracellular Ca(2+)) stores are well established in non-neuronal and neuronal cells. In neurons, although Ca(2+)(ic) stores have been assigned a pivotal role in postsynaptic responses to G(q)-coupled receptors, or secondarily to extracellular Ca(2+) influx, the functions of dynamic Ca(2+)(ic) stores in presynaptic terminals remain to be fully elucidated. In the present paper, we review some of the recent evidence supporting an involvement of Ca(2+)(ic) in presynaptic function, and discuss loci at which this source of Ca(2+) may impinge. Nerve terminal preparations provide good models for functionally examining putative Ca(2+)(ic) stores under physiological and pathophysiological stimulation paradigms, using Ca(2+)-dependent activation of resident protein kinases as sensors for fine changes in intracellular Ca(2+) levels. We conclude that intraterminal Ca(2+)(ic) stores may, directly or indirectly, enhance neurotransmitter release following nerve terminal depolarization and/or G-protein-coupled receptor activation. During conditions that prevail following neuronal ischaemia, increased glutamate release instigated by Ca(2+)(ic) store activation may thereby contribute to excitotoxicity and eventual synaptopathy.
Collapse
|
41
|
Silva JP, Ushkaryov YA. The latrophilins, "split-personality" receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 706:59-75. [PMID: 21618826 DOI: 10.1007/978-1-4419-7913-1_5] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Latrophilin, a neuronal "adhesion-G protein-coupled receptor", is the major brain receptor for alpha-latrotoxin, a black widow spidertoxin which stimulates strong neuronal exocytosis in vertebrates. Latrophilin has an unusual structure consisting of two fragments that are produced by the proteolytic cleavage of the parental molecule and that behave independently in the plasma membrane. On binding an agonist, the fragments reassociate and send an intracellular signal. This signal, transduced by a heterotrimeric G protein, causes release of calcium from intracellular stores and massive release of neurotransmitters. Latrophilin represents a phylogenetically conserved family of receptors, with orthologues found in all animals and up to three homologues present in most chordate species. From mammalian homologues, latrophilins 1 and 3 are expressed in neurons, while latrophilin 2 is ubiquitous. Latrophilin 1 may control synapse maturation and exocytosis, whereas latrophilin 2 may be involved in breast cancer. Latrophilins may play different roles during development and in adult animals: thus, LAT-1 determines cell fate in early embryogenesis in Caenorhabditis elegans and controls neurotransmitter release in adult nematodes. This diversity suggests that the functions of latrophilins may be determined by their interactions with respective ligands. The finding of the ligand of latrophilin 1, the large postsynaptic protein lasso, is the first step in the quest for the physiological functions of latrophilins.
Collapse
|
42
|
Abstract
For more than three decades, the venom of the black widow spider and its principal active components, latrotoxins, have been used to induce release of neurotransmitters and hormones and to study the mechanisms of exocytosis. Given the complex nature of alpha--latrotoxin (alpha-LTX) actions, this research has been continuously overshadowed by many enigmas, misconceptions and perpetual changes of the underlying hypotheses. Some of the toxin's mechanisms of action are still not completely understood. Despite all these difficulties, the extensive work of several generations of neurobiologists has brought about a great deal of fascinating insights into pre-synaptic processes and has led to the discovery of several novel proteins and synaptic systems. For example, alpha-LTX studies have contributed to the widespread acceptance of the vesicular theory of transmitter release. Pre-synaptic receptors for alpha-LTX--neurexins, latrophilins and protein tyrosine phosphatase sigma--and their endogenous ligands have now become centrepieces of their own areas of research, with a potential of uncovering new mechanisms of synapse formation and regulation that may have medical implications. However, any future success of alpha-LTX research will require a better understanding of this unusual natural tool and a more precise dissection of its multiple mechanisms.
Collapse
Affiliation(s)
- John-Paul Silva
- Division of Cell and Molecular Biology, Imperial College London, Exhibition Road, London, UK
| | | | | |
Collapse
|
43
|
Xing Y, Nakamura Y, Rainey WE. G protein-coupled receptor expression in the adult and fetal adrenal glands. Mol Cell Endocrinol 2009; 300:43-50. [PMID: 19027826 PMCID: PMC2679220 DOI: 10.1016/j.mce.2008.10.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2008] [Revised: 10/22/2008] [Accepted: 10/22/2008] [Indexed: 10/21/2022]
Abstract
Hormonal regulation of adrenal function occurs primarily through G protein-coupled receptors (GPCR), which may play different roles in fetal vs. adult adrenal glands. In this study, we compared the transcript levels of GPCR between fetal and adult adrenal and found that gonadotropin-releasing hormone receptor (GnRHR), latrophilin 3 receptor, G protein-coupled receptor 37, angiotensin II receptor type 2, latrophilin 2 receptor and melanocortin receptor were expressed at significantly higher levels in fetal adrenal. High GnRHR protein expression was also detected in fetal adrenal using immunohistochemical analysis. To define potential ligand sources for fetal adrenal GnRHR, we demonstrated that GnRH1 mRNA was expressed at high levels in the placenta, while fetal adrenal had high expression of GnRH2. In summary, certain GPCR particularly GnRHR were highly expressed in fetal adrenal and the expression of GnRH mRNA in the placenta and the fetal adrenal raises the possibility of endocrine and/or paracrine/autocrine influences on fetal adrenal function. However, the exact function of GnRHR in fetal adrenal remains to be determined.
Collapse
MESH Headings
- Adrenal Glands/cytology
- Adrenal Glands/physiology
- Female
- Fetus/anatomy & histology
- Fetus/physiology
- Gene Expression Regulation, Developmental
- Humans
- Oligonucleotide Array Sequence Analysis
- Pregnancy
- Receptor, Angiotensin, Type 2/genetics
- Receptor, Angiotensin, Type 2/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, LHRH/genetics
- Receptors, LHRH/metabolism
- Receptors, Melanocortin/genetics
- Receptors, Melanocortin/metabolism
- Receptors, Peptide/genetics
- Receptors, Peptide/metabolism
Collapse
Affiliation(s)
| | | | - William E. Rainey
- Corresponding author: William E Rainey, Ph.D., Address: Department of Physiology, Medical College of Georgia, 1120 15th Street, CA Building – Room 3094, Augusta, GA 30912, Phone: 706-721-7665, Fax: 706-721-8360,
| |
Collapse
|
44
|
Silva JP, Lelianova V, Hopkins C, Volynski KE, Ushkaryov Y. Functional cross-interaction of the fragments produced by the cleavage of distinct adhesion G-protein-coupled receptors. J Biol Chem 2009; 284:6495-506. [PMID: 19124473 DOI: 10.1074/jbc.m806979200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The unusual adhesion G-protein-coupled receptors (aGPCRs) contain large extracellular N-terminal domains, which resemble cell-adhesion receptors, and C-terminal heptahelical domains, which may couple to G-proteins. These receptors are cleaved post-translationally between these domains into two fragments (NTF and CTF). Using the aGPCR latrophilin 1, we previously demonstrated that the fragments behave as independent cell-surface proteins. Upon binding the agonist, alpha-latrotoxin (LTX), latrophilin fragments reassemble and induce intracellular signaling. Our observations raised important questions: is the aGPCR signaling mediated by reassembled fragments or by any non-cleaved receptors? Also, can the fragments originating from distinct aGPCRs form hybrid complexes? To answer these questions, we created two types of chimerical constructs. One contained the CTF of latrophilin joined to the NTF of another aGPCR, EMR2; the resulting protein did not bind LTX but, similar to latrophilin, could couple to G-proteins. In another construct, the NTF of latrophilin was fused with the C terminus of neurexin; this chimera bound LTX but could not signal via G-proteins. Both constructs were efficiently cleaved in cells. When the two constructs were co-expressed, their fragments could cross-interact, as shown by immunoprecipitation. Furthermore, LTX(N4C) induced intracellular Ca2+ signaling only in cells expressing both constructs but not each individual construct. Finally, we demonstrated that fragments of unrelated aGPCRs can be cross-immunoprecipitated from live tissues. Thus, (i) aGPCR fragments behave as independent proteins, (ii) the complementary fragments from distinct aGPCRs can cross-interact, and (iii) these cross-complexes are functionally active. This unusual cross-assembly of aGPCR fragments could couple cell-surface interactions to multiple signaling pathways.
Collapse
Affiliation(s)
- John-Paul Silva
- Division of Cell and Molecular Biology, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | | | | | | | | |
Collapse
|
45
|
Abstract
alpha-Latrotoxin (alpha-LTX) from black widow spider venom induces exhaustive release of neurotransmitters from vertebrate nerve terminals and endocrine cells. This 130-kDa protein has been employed for many years as a molecular tool to study exocytosis. However, its action is complex: in neurons, alpha-LTX induces massive secretion both in the presence of extracellular Ca(2+) (Ca(2+) (e)) and in its absence; in endocrine cells, it usually requires Ca(2+) (e). To use this toxin for further dissection of secretory mechanisms, one needs an in-depth understanding of its functions. One such function that explains some alpha-LTX effects is its ability to form cation-permeable channels in artificial lipid bilayers. The mechanism of alpha-LTX pore formation, revealed by cryo-electron microscopy, involves toxin assembly into homotetrameric complexes which harbor a central channel and can insert into lipid membranes. However, in biological membranes, alpha-LTX cannot exert its actions without binding to specific receptors of the plasma membrane. Three proteins with distinct structures have been found to bind alpha-LTX: neurexin Ialpha, latrophilin 1, and receptor-like protein tyrosine phosphatase sigma. Upon binding a receptor, alpha-LTX forms channels permeable to cations and small molecules; the toxin may also activate the receptor. To distinguish between the pore- and receptor-mediated effects, and to study structure-function relationships in the toxin, alpha-LTX mutants have been used.
Collapse
Affiliation(s)
- Yuri A Ushkaryov
- Division of Cell and Molecular Biology, Imperial College London, London, SW7 2AY, UK.
| | | | | |
Collapse
|
46
|
Salio C, Lossi L, Ferrini F, Merighi A. Neuropeptides as synaptic transmitters. Cell Tissue Res 2006; 326:583-98. [PMID: 16847638 DOI: 10.1007/s00441-006-0268-3] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Accepted: 05/31/2006] [Indexed: 12/20/2022]
Abstract
Neuropeptides are small protein molecules (composed of 3-100 amino-acid residues) that have been localized to discrete cell populations of central and peripheral neurons. In most instances, they coexist with low-molecular-weight neurotransmitters within the same neurons. At the subcellular level, neuropeptides are selectively stored, singularly or more frequently in combinations, within large granular vesicles. Release occurs through mechanisms different from classical calcium-dependent exocytosis at the synaptic cleft, and thus they account for slow synaptic and/or non-synaptic communication in neurons. Neuropeptide co-storage and coexistence can be observed throughout the central nervous system and are responsible for a series of functional interactions that occur at both pre- and post-synaptic levels. Thus, the subcellular site(s) of storage and sorting mechanisms into different neuronal compartments are crucial to the mode of release and the function of neuropeptides as neuronal messengers.
Collapse
Affiliation(s)
- Chiara Salio
- Dipartimento di Morfofisiologia Veterinaria and Rita Levi Montalcini Center for Brain Repair, Via Leonardo da Vinci 44, 10095, Grugliasco (TO), Italy
| | | | | | | |
Collapse
|
47
|
Zhang BX, Ma X, Zhang W, Yeh CK, Lin A, Luo J, Sprague EA, Swerdlow RH, Katz MS. Polyunsaturated fatty acids mobilize intracellular Ca2+in NT2 human teratocarcinoma cells by causing release of Ca2+from mitochondria. Am J Physiol Cell Physiol 2006; 290:C1321-33. [PMID: 16601147 DOI: 10.1152/ajpcell.00335.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In a variety of disorders, overaccumulation of lipid in nonadipose tissues, including the heart, skeletal muscle, kidney, and liver, is associated with deterioration of normal organ function, and is accompanied by excessive plasma and cellular levels of free fatty acids (FA). Increased concentrations of FA may lead to defects in mitochondrial function found in diverse diseases. One of the most important regulators of mitochondrial function is mitochondrial Ca2+([Ca2+]m), which fluctuates in coordination with intracellular Ca2+([Ca2+]i). Polyunsaturated FA (PUFA) have been shown to cause [Ca2+]imobilization albeit by unknown mechanisms. We have found that PUFA but not monounsaturated or saturated FA cause [Ca2+]imobilization in NT2 human teratocarcinoma cells. Unlike the [Ca2+]iresponse to the muscarinic G protein-coupled receptor agonist carbachol, PUFA-mediated [Ca2+]imobilization in NT2 cells is independent of phospholipase C and inositol-1,4,5-trisphospate (IP3) receptor activation, as well as IP3-sensitive internal Ca2+stores. Furthermore, PUFA-mediated [Ca2+]imobilization is inhibited by the mitochondria uncoupler carboxyl cyanide m-chlorophenylhydrozone. Direct measurements of [Ca2+]mwith X-rhod-1 and45Ca2+indicate that PUFA induce Ca2+efflux from mitochondria. Further studies show that ruthenium red, an inhibitor of the mitochondrial Ca2+uniporter, blocks PUFA-induced Ca2+efflux from mitochondria, whereas inhibitors of the mitochondrial permeability transition pore cyclosporin A and bongkrekic acid have no effect. Thus PUFA-gated Ca2+release from mitochondria, possibly via the Ca2+uniporter, appears to be the underlying mechanism for PUFA-induced [Ca2+]imobilization in NT2 cells.
Collapse
Affiliation(s)
- Bin-Xian Zhang
- Geriatric Research, Education and Clinical Center (182), South Texas Veterans Health Care System, Audie L. Murphy Division, 7400 Merton Minter Blvd., San Antonio, TX 78229, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
α-LTX and α-LTXN4C induce [Ca2+]i elevation through different mechanisms in pancreatic β cells. ACTA ACUST UNITED AC 2006. [DOI: 10.1007/s11434-005-1029-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
49
|
Hu ZT, Zhao P, Liu J, Wu ZX, Xu T. Alpha-latrotoxin triggers extracellular Ca(2+)-dependent exocytosis and sensitizes fusion machinery in endocrine cells. Acta Biochim Biophys Sin (Shanghai) 2006; 38:8-14. [PMID: 16395521 DOI: 10.1111/j.1745-7270.2006.00129.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
alpha-Latrotoxin from the venom of black widow spider induces and augments neurotransmitter and hormone release by way of extracellular Ca(2+) influx and cellular signal transduction pathways. By using whole cell current and capacitance recording, the photolysis of caged Ca(2+), and Ca(2+) microfluorometry and amperometry, we investigated the stimulating effect and mechanism of alpha-latrotoxin on exocytosis in rat pancreatic beta cells, LbetaT2 cells and latrophilin plasmid-transfected INS-1 cells. Our data indicated that: (1) alpha-latrotoxin increased cytosolic Ca(2+) concentration through the formation of cation-permitting pores and subsequent Ca(2+) influx with the presence of extracellular Ca(2+); (2) alpha-latrotoxin stimulated exocytosis in normal bath solution and its stimulating effect on secretion was eradicated in Ca(2+)-free bath solution; and (3) alpha-latrotoxin sensitized the molecular machinery of fusion through activation of protein kinase C and increased the response of cells to Ca(2+) photolyzed by a flash of ultraviolet light. In summary, alpha-latrotoxin induced exocytosis by way of Ca(2+) influx and accelerated vesicle fusion by the sensitization of fusion machinery.
Collapse
Affiliation(s)
- Zhi-Tao Hu
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | | | | | |
Collapse
|
50
|
Liu J, Wan Q, Lin X, Zhu H, Volynski K, Ushkaryov Y, Xu T. α-Latrotoxin Modulates the Secretory Machinery via Receptor-Mediated Activation of Protein Kinase C. Traffic 2005; 6:756-65. [PMID: 16101679 DOI: 10.1111/j.1600-0854.2005.00313.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The hypothesis whether alpha-latrotoxin (LTX) could directly regulate the secretory machinery was tested in pancreatic beta cells using combined techniques of membrane capacitance (Cm) measurement and Ca2+ uncaging. Employing ramp increase in [Ca2+]i to stimulate exocytosis, we found that LTX lowers the Ca2+ threshold required for exocytosis without affecting the size of the readily releasable pool (RRP). The burst component of exocytosis in response to step-like [Ca2+]i increase generated by flash photolysis of caged Ca2+ was also speeded up by LTX treatment. LTX increased the maximum rate of exocytosis compared with control responses with similar postflash [Ca2+]i and shifted the Ca2+ dependence of the exocytotic machinery toward lower Ca2+ concentrations. LTXN4C, a LTX mutant which cannot form membrane pores or penetrate through the plasma membrane but has similar affinity for the receptors as the wild-type LTX, mimicked the effect of LTX. Moreover, the effects of both LTX and LTXN4C) were independent of intracellular or extracellular Ca2+ but required extracellular Mg2+. Our data propose that LTX, by binding to the membrane receptors, sensitizes the fusion machinery to Ca2+ and, hence, may permit release at low [Ca2+]i level. This sensitization is mediated by activation of protein kinase C.
Collapse
Affiliation(s)
- Jie Liu
- Institute of Biophysics and Biochemistry, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074. P. R. China
| | | | | | | | | | | | | |
Collapse
|