1
|
Machida A, Banshoya K, Eto T, Kawamoto Y, Maehara S, Hieda Y, Hata T, Ohnishi M. Development of an Injectable Formulation of a Water-Insoluble Glycyrrhizin Derivative That Potently Inhibits High-Mobility Group Box 1 in Murine Intracerebral Hemorrhage. Mol Pharm 2025. [PMID: 40268479 DOI: 10.1021/acs.molpharmaceut.4c01515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
High-mobility group box (HMGB) 1, a nuclear protein that acts as an inflammatory mediator, exacerbates injury following intracerebral hemorrhage (ICH). Glycyrrhizin, a natural HMGB1 inhibitor derived from licorice, alleviates ICH-induced inflammatory responses, including brain edema formation. In our previous study, inspired by the bioconversion of endophytes living symbiotically in licorice, we discovered a glycyrrhizin derivative with more potent anti-HMGB1 activity than glycyrrhizin. However, this derivative is poorly soluble in water, and some issues remain to be resolved when applying it to treat ICH. The aim of this study was to develop an injectable formulation of a water-insoluble glycyrrhizin derivative (WIGLD) to treat acute ICH. Screening of Pluronic surfactants revealed that Pluronic P103 significantly improved the solubility of WIGLD. The micelles had a particle size of approximately 20 nm; therefore, this formulation was considered suitable for intravenous injection. Thus, we investigated the therapeutic efficacy of an intravenously injected solubilized WIGLD formulation in a murine model of ICH induced by intrastriatal collagenase injection. The injected WIGLD formulation increased brain penetration compared to that after oral administration. Additionally, it inhibited microglial activation by HMGB1, decreased brain edema, and ameliorated neurological deficits. These findings suggested that the injectable WIGLD formulation, with its potent anti-HMGB1 activity, represents a promising therapeutic strategy for managing ICH-related brain edema and associated injuries.
Collapse
Affiliation(s)
- Aoi Machida
- Department of Pharmacotherapeutics, Graduate School of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1, Sanzo, Higashimura-cho, Fukuyama, Hiroshima 729-0292, Japan
| | - Kengo Banshoya
- Department of Pharmacotherapeutics, Graduate School of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1, Sanzo, Higashimura-cho, Fukuyama, Hiroshima 729-0292, Japan
- Department of Pharmacotherapeutics, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1, Sanzo, Higashimura-cho, Fukuyama, Hiroshima 729-0292, Japan
| | - Tamaki Eto
- Department of Pharmacotherapeutics, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1, Sanzo, Higashimura-cho, Fukuyama, Hiroshima 729-0292, Japan
| | - Yui Kawamoto
- Department of Pharmacotherapeutics, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1, Sanzo, Higashimura-cho, Fukuyama, Hiroshima 729-0292, Japan
| | - Shoji Maehara
- Physical Chemistry for Bioactive Molecules, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1, Sanzo, Higashimura-cho, Fukuyama, Hiroshima 729-0292, Japan
| | - Yuhzo Hieda
- Common Resources Center, Fukuyama University, 985-1, Sanzo, Higashimura-cho, Fukuyama, Hiroshima 729-0292, Japan
| | - Toshiyuki Hata
- Physical Chemistry for Bioactive Molecules, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1, Sanzo, Higashimura-cho, Fukuyama, Hiroshima 729-0292, Japan
| | - Masatoshi Ohnishi
- Department of Pharmacotherapeutics, Graduate School of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1, Sanzo, Higashimura-cho, Fukuyama, Hiroshima 729-0292, Japan
- Department of Pharmacotherapeutics, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1, Sanzo, Higashimura-cho, Fukuyama, Hiroshima 729-0292, Japan
| |
Collapse
|
2
|
Rodrigues-Santos I, Dos-Santos RC, de Jesus A, Flores RA, Rosales RRC, Caliman IF, Anselmo-Franci JA, Antunes-Rodrigues J, Elias LLK. Increase of astrocyte apposition on GnRH neurons in early puberty onset induced by high fat diet. J Neuroendocrinol 2025:e70029. [PMID: 40235166 DOI: 10.1111/jne.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 03/17/2025] [Accepted: 03/26/2025] [Indexed: 04/17/2025]
Abstract
Puberty onset is driven by the activation of GnRH-secreting neurons and can be advanced by obesity. Astrocytes are dynamic cells that react to changes in the central nervous system environment and participate in the regulation of energy balance and reproduction. To assess the interaction of GnRH neurons and hypothalamic astrocytes during the puberty transition in HFD-treated mice, female and male mice were divided into three groups according to the diet offered at weaning: 42% high-fat diet (HFD42%), 60% high-fat diet (HFD60%), or regular diet (CHOW). The effects of HFD on reproductive tissue and fat content during the prepubertal and pubertal transition were assessed. The impact of HFD on astrocyte interaction with GnRH neurons in the medial preoptic area (MPOA) and arcuate/median eminence (ARC/ME) was assessed. HFD anticipated the first signs of puberty in both male and female mice. Furthermore, there was an increase in adipose and reproductive tissue content in early pubertal animals. Remarkably, the anticipation of puberty onset in females treated with HFD was associated with an increase in the astrocyte apposition on GnRH neurons in the MPOA. Also, there was an increase in astrocyte apposition on GnRH neurons and their fiber projections in the ARC/ME. This study suggests that the HFD-induced anticipation of puberty seems to be, at least partially, mediated by an increase in the morphological association between astrocytes and GnRH neurons in both the MPOA and ARC/EM, which may increase the excitability of GnRH neurons.
Collapse
Affiliation(s)
- Isabelle Rodrigues-Santos
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Raoni Conceição Dos-Santos
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Aline de Jesus
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rafael Appel Flores
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Roberta Ribeiro Costa Rosales
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Izabela Facco Caliman
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Janete A Anselmo-Franci
- Department of Basic and Oral Biology of Dentistry School of Ribeirão Preto, Laboratory of Neuroendocrinology, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - José Antunes-Rodrigues
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Lucila Leico K Elias
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
3
|
Alrouji M, Alshammari MS, Majrashi TA, Zuberi A, Shahwan M, Atiya A, Shamsi A. Unraveling human transferrin-tryptamine interactions: a computational and biophysical approach to Alzheimer's disease therapeutics. Front Pharmacol 2025; 16:1540736. [PMID: 40176911 PMCID: PMC11962429 DOI: 10.3389/fphar.2025.1540736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/25/2025] [Indexed: 04/05/2025] Open
Abstract
Neurodegeneration is a progressive loss of neurons that leads to affected cognitive and motor functions and is characterized by neurodegenerative disorders (NDs). Human transferrin (Htf) is a blood plasma glycoprotein that binds to iron and regulates the free iron in biological fluids. Free iron is a potent neurotoxin associated with the generation of Reactive oxygen species (ROS) and is ultimately linked to oxidative stress and neuronal damage. Thus, targeting iron homeostasis is an attractive strategy for the management of NDs, viz. Alzheimer's disease (AD). Tryptamine (Trp) is a naturally occurring monoamine, that has demonstrated promising roles in AD therapeutics. The present study aims to delineate the binding mechanism of Trp with Htf employing computational and spectroscopic approaches. Molecular docking ascertained the vital residues governing the Htf-Trp complex formation. Further, Molecular dynamic (MD) studies ascertained the structural dynamics and stability of the complex, implying that the binding of Trp causes minimal structural alterations in Htf, suggestive of the stability of the complex. The results from fluorescence spectroscopy demonstrated the binding of Trp with Htf with a binding constant (K) of 0.48 × 106 M-1, validating the in silico observations. This study provides a platform to understand the binding mechanism that may lead to novel therapeutic approaches targeting AD.
Collapse
Affiliation(s)
- Mohammed Alrouji
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
| | - Mohammed S. Alshammari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
| | - Taghreed A. Majrashi
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Azna Zuberi
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Moyad Shahwan
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Akhtar Atiya
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University (KKU), Muhayil, Asir, Saudi Arabia
| | - Anas Shamsi
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
4
|
Negi N, Ayyannan SR, Tripathi RKP. Multi-targeted benzylpiperidine-isatin hybrids: Design, synthesis, biological and in silico evaluation as monoamine oxidases and acetylcholinesterase inhibitors for neurodegenerative disease therapies. J Comput Aided Mol Des 2025; 39:10. [PMID: 40021503 DOI: 10.1007/s10822-025-00588-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 02/15/2025] [Indexed: 03/03/2025]
Abstract
Neurodegenerative diseases (NDDs) like Alzheimer's and Parkinson's, characterized by gradual loss of neuronal structure and function, results in cognitive and motor impairments. These complex disorders involve multiple pathogenic mechanisms, including neurotransmitter imbalances, oxidative stress, and protein misfolding, necessitating multifunctional therapeutic approaches. Piperidine and isatin are valuable scaffolds in drug design due to their favorable pharmacokinetic profiles, ability to cross blood-brain barrier, and ease of modification. This study focuses on design, synthesis, and evaluation of benzylpiperidine-isatin hybrids as dual inhibitors targeting key enzymes implicated in NDDs: monoamine oxidases (MAO-A/B) and acetylcholinesterase (AChE). Strategic hybridization of piperidine and isatin produced novel benzylpiperidine-isatin hybrids, combining pharmacological benefits of both scaffolds. Synthesized hybrids were tested for MAO-A/B and AChE inhibitory effects. 15 emerged as a lead inhibitor for both MAO-A (IC50 = 0.108 ± 0.004 μM, competitive and reversible) and AChE (IC50 = 0.034 ± 0.002 μM, mixed and reversible), outperforming donepezil in AChE inhibition. 4 showed significant MAO-B inhibition (IC50 = 0.057 ± 0.001 μM, competitive and reversible). SAR studies identified crucial structural elements for potency and selectivity, while molecular docking revealed key interactions stabilizing the enzyme-inhibitor complexes. MD simulations of lead molecules demonstrate the ligand's suitability for strong and consistent binding to the respective proteins. Lead compounds were non-neurotoxic, exhibited good antioxidant properties, and had favorable in silico ADMET predictions. These findings suggest that benzylpiperidine-isatin hybrids hold promise as multifunctional agents against NDDs, warranting further refinement to enhance their efficacy and safety.
Collapse
Affiliation(s)
- Nikita Negi
- Department of Pharmaceutical Chemistry, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, 391760, India
| | - Senthil R Ayyannan
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Rati K P Tripathi
- Department of Pharmaceutical Sciences, Sushruta School of Medical and Paramedical Sciences, Assam University (A Central University), Silchar, Assam, 788011, India.
| |
Collapse
|
5
|
Choudhary A, Kumar A, Jindal M, Rhuthuparna M, Munshi A. MicroRNA signatures in neuroplasticity, neuroinflammation and neurotransmission in association with depression. J Physiol Biochem 2025; 81:85-97. [PMID: 39695016 DOI: 10.1007/s13105-024-01065-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024]
Abstract
Depression is a multifactorial disorder that occurs mainly on account of the dysregulation of neuroplasticity, neurotransmission and neuroinflammation in the brain. In addition to environmental /lifestyle factors, the pathogenesis of disease has been associated with genetic and epigenetic factors that affect the reprogramming of normal brain function. MicroRNA (miRNAs), a type of non-coding RNAs, are emerging as significant players that play a vital role in the regulation of gene expression and have been extensively explored in neurodegenerative disorders. Recent studies have also shown the role of gut microbiota that forms a complex bidirectional network with gut brain axis, impacting neuroinflammation in case of Parkinson's disease and depression. Translating targeted miRNA-based therapies for the treatment of neurological disorders including depression, into clinical practice remains challenging due to the ineffective delivery of the therapeutic molecules and off-target effects of the specific miRNAs. This review provides significant insights into how miRNAs are emerging as vital players in the development of depression, especially the ones involved in three important processes including neuroplasticity, neurotransmission and neuroinflammation. In this review, the current status of miRNAs as biomarkers for therapeutic interventions in the case of depression has been discussed along with an overview of future perspectives, like use of nanotechnology and gene editing, keeping in view other multifactorial disorders where such interventions by mimics and inhibitors have already reached clinical trials. The challenges for targeting the specific miRNAs for therapeutic outcomes have also been highlighted.
Collapse
Affiliation(s)
- Anita Choudhary
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India
| | - Anil Kumar
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India
| | - Manav Jindal
- Department of Radiodiagnosis, All India Institute of Medical Sciences, Bathinda, India
| | - M Rhuthuparna
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India.
| |
Collapse
|
6
|
Shangase KB, Luvuno M, Mabandla M. Effects of combined postweaning social isolation and ketamine administration on schizophrenia-like behaviour in male Sprague Dawley rats. Behav Brain Res 2025; 476:115214. [PMID: 39182622 DOI: 10.1016/j.bbr.2024.115214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
The pathophysiology behind negative and cognitive symptoms of schizophrenia is not well understood, thus limiting the effectiveness of treatment on these symptoms. Developing reliable animal model of schizophrenia is vital to advance our understanding on the neurobiological basis of the disorder. Double hit is used to refer to the use of two schizophrenia inducing interventions viz ketamine exposure and social isolation. In this study we aim to investigate the robustness of double hit model of schizophrenia in inducing negative and cognitive symptoms of schizophrenia. On postnatal day (PND) 23, thirty-two male Sprague Dawley rats were randomly grouped into four equal groups as follows: group housed + saline (GH), group housed + ketamine (GHK), isolated + saline (SI), and isolated + ketamine (SIK). A single ketamine dose (16 mg/kg) was administered 3 times a week for four weeks. Isolated animals were housed singly throughout the study. The following behavioural tests were carried out: elevated plus maze, three chamber social interaction, resident intruder tests, and novel object recognition (NOR). The SIK group exhibited high anxiety levels, with increased ACTH, corticosterone and norepinephrine concentration when compared to the other groups. The SIK animals also presented with reduced social interaction and decreased oxytocin concentration. SIK rats were more aggressive towards a juvenile intruder but had low testosterone concentration. The SIK group or double hit model showed impaired visual learning and memory and increased expression of proinflammatory cytokines. This suggest that the double hit model is more robust in inducing negative and cognitive symptoms of schizophrenia than each treatment alone.
Collapse
Affiliation(s)
- Khanyiso Bright Shangase
- Department of Human Physiology, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa.
| | - Mluleki Luvuno
- Department of Human Physiology, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Musa Mabandla
- Department of Human Physiology, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| |
Collapse
|
7
|
Machida A, Banshoya K, Miyamaru A, Eto T, Maehara S, Hieda Y, Hata T, Ohnishi M. A Glycyrrhizin Derivative with a More Potent Inhibitory Activity against High-Mobility Group Box 1 Efficiently Discovered by Chemical Synthesis Inspired by the Bioconversion Products of an Endophytic Fungus Isolated from Licorice. J Med Chem 2024; 67:16328-16337. [PMID: 39231005 DOI: 10.1021/acs.jmedchem.4c01213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Glycyrrhizin (GL) from licorice alleviates intracerebral hemorrhage (ICH) injuries by interacting with high-mobility group box (HMGB) 1, an inflammatory factor. We found that GL is bioconverted by endophyte coexisting with licorice and succeeded in isolating two derivatives. The aim of this study was to identify the compound with more potent HMGB1 inhibitory activity inspired by these GL derivatives. We took advantage of a ketone introduced by an endophyte at the C-3 position and attempted methyl esterification at the C-30 position because it was suggested that the water or lipid solubility of the molecule plays an important role. Among three derivatives synthesized, the product that is both ketonized and esterified showed more potent HMGB1 inhibitory activity than GL in macrophages and significantly improved adverse events occurred in ICH in vivo. These results suggest that modification of the hydrophilicity of GL, particularly at the C-3 and C-30 positions, enhances the HMGB1 inhibitory activity.
Collapse
Affiliation(s)
- Aoi Machida
- Department of Pharmacotherapeutics, Graduate School of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1, Sanzo, Higashimura-cho, Fukuyama, Hiroshima 729-0292, Japan
| | - Kengo Banshoya
- Department of Pharmacotherapeutics, Graduate School of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1, Sanzo, Higashimura-cho, Fukuyama, Hiroshima 729-0292, Japan
- Department of Pharmacotherapeutics, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1, Sanzo, Higashimura-cho, Fukuyama, Hiroshima 729-0292, Japan
| | - Akiho Miyamaru
- Department of Pharmacotherapeutics, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1, Sanzo, Higashimura-cho, Fukuyama, Hiroshima 729-0292, Japan
| | - Tamaki Eto
- Department of Pharmacotherapeutics, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1, Sanzo, Higashimura-cho, Fukuyama, Hiroshima 729-0292, Japan
| | - Shoji Maehara
- Department of Physical Chemistry for Bioactive Molecules, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1, Sanzo, Higashimura-cho, Fukuyama, Hiroshima 729-0292, Japan
| | - Yuhzo Hieda
- Common Resources Center, Fukuyama University, 985-1, Sanzo, Higashimura-cho, Fukuyama, Hiroshima 729-0292, Japan
| | - Toshiyuki Hata
- Department of Physical Chemistry for Bioactive Molecules, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1, Sanzo, Higashimura-cho, Fukuyama, Hiroshima 729-0292, Japan
| | - Masatoshi Ohnishi
- Department of Pharmacotherapeutics, Graduate School of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1, Sanzo, Higashimura-cho, Fukuyama, Hiroshima 729-0292, Japan
- Department of Pharmacotherapeutics, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1, Sanzo, Higashimura-cho, Fukuyama, Hiroshima 729-0292, Japan
| |
Collapse
|
8
|
Leavy A, Phelan J, Jimenez-Mateos EM. Contribution of microglia to the epileptiform activity that results from neonatal hypoxia. Neuropharmacology 2024; 253:109968. [PMID: 38692453 DOI: 10.1016/j.neuropharm.2024.109968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/13/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
Microglia are described as the immune cells of the brain, their immune properties have been extensively studied since first described, however, their neural functions have only been explored over the last decade. Microglia have an important role in maintaining homeostasis in the central nervous system by surveying their surroundings to detect pathogens or damage cells. While these are the classical functions described for microglia, more recently their neural functions have been defined; they are critical to the maturation of neurons during embryonic and postnatal development, phagocytic microglia remove excess synapses during development, a process called synaptic pruning, which is important to overall neural maturation. Furthermore, microglia can respond to neuronal activity and, together with astrocytes, can regulate neural activity, contributing to the equilibrium between excitation and inhibition through a feedback loop. Hypoxia at birth is a serious neurological condition that disrupts normal brain function resulting in seizures and epilepsy later in life. Evidence has shown that microglia may contribute to this hyperexcitability after neonatal hypoxia. This review will summarize the existing data on the role of microglia in the pathogenesis of neonatal hypoxia and the plausible mechanisms that contribute to the development of hyperexcitability after hypoxia in neonates. This article is part of the Special Issue on "Microglia".
Collapse
Affiliation(s)
- Aisling Leavy
- Discipline of Physiology, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Jessie Phelan
- Discipline of Physiology, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Eva M Jimenez-Mateos
- Discipline of Physiology, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland.
| |
Collapse
|
9
|
Araújo JAA, Gomes TC, Lima VCN, Silva YBD, Lino Junior RDS, Vinaud MC. Oxfendazole Nitazoxanide combination in experimental neurocysticercosis - Anti-inflammatory and cysticidal effects. Exp Parasitol 2024; 262:108764. [PMID: 38677580 DOI: 10.1016/j.exppara.2024.108764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Neurocysticercosis (NCC) is a parasitic infection caused by the larval stage of the pork tapeworm, Taenia solium. The complications of NCC include seizures, headaches, cognitive impairment, and focal neurological deficits. In addition to antiparasitic drugs and surgery, the management of NCC includes the use of corticosteroids to reduce inflammation and control symptoms. The traditional treatment with albendazole and praziquantel has not been altered over 30 years and present several side effects. There are other anti-helminthic drugs such as oxfendazole and nitazoxanide that may show efficacy in NCC treatment. The aim of this study was to determine the histopathologic aspects of experimental NCC after in vivo treatment with the combination of oxfendazole and nitazoxanide. Balb/c mice were infected with T. crassiceps cysticerci and divided into groups of 10 animals each that received a single dose through gavage as follows: group treated with NaCl 0.9% (control group); group treated by monotherapy of the anti-helminthic drugs, 30 mg/kg in single dose of oxfendazole (OXF) or nitazoxanide (NTZ); and groups treated with the combination of the drugs (OXF/NTZ group). Macroscopic and microscopic analysis were performed. There was greater presence of final stage cysticerci after treatment. The microscopic analysis of the general pathological processes showed that the monotherapy with all treatment groups induced higher perivasculitis than what was observed in the control group. In contrast, the combination treatment showed a lower observation of PMN and MN inflammatory infiltration in comparison to the other treatments and to the control one. These results show that indeed the association of benzimidazole derivatives which present both anti-helminthic and anti-inflammatory properties with other cysticidal drugs are beneficial for the NCC treatment in which the aim is to destroy parasite without inducing inflammatory damage in the brain tissue.
Collapse
Affiliation(s)
- Jefferson Aber Alves Araújo
- Tropical Pathology and Public Health Institute, Federal University of Goias, Goiânia, Goiás, CEP: 74605-050, Brazil
| | - Taynara Cristina Gomes
- Tropical Pathology and Public Health Institute, Federal University of Goias, Goiânia, Goiás, CEP: 74605-050, Brazil
| | - Vanessa Cindy Neres Lima
- Tropical Pathology and Public Health Institute, Federal University of Goias, Goiânia, Goiás, CEP: 74605-050, Brazil
| | - Yngrid Batista da Silva
- Tropical Pathology and Public Health Institute, Federal University of Goias, Goiânia, Goiás, CEP: 74605-050, Brazil
| | - Ruy de Souza Lino Junior
- Tropical Pathology and Public Health Institute, Federal University of Goias, Goiânia, Goiás, CEP: 74605-050, Brazil
| | - Marina Clare Vinaud
- Tropical Pathology and Public Health Institute, Federal University of Goias, Goiânia, Goiás, CEP: 74605-050, Brazil.
| |
Collapse
|
10
|
Li Y, Wang J, Zhang X, Ye Q, Yang Y, Cui X, Feng J, Li J. Correlation between serum inflammatory factors and cognitive function in patients with high-altitude polycythemia: A case-control study. Medicine (Baltimore) 2024; 103:e37983. [PMID: 38669375 PMCID: PMC11049725 DOI: 10.1097/md.0000000000037983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
The purpose of this study is to investigate the serum inflammatory factors in patients with high-altitude polycythemia (HAPC) and their correlation with cognitive function. The subjects were recruited and placed into a HAPC group and control group. Serum samples were collected, and inflammatory factors (interleukin-1beta [IL-1β], monocyte chemoattractant protein-1 [MCP-1], and tumor necrosis factor-alpha [TNF-α]) were measured using ELISA kits. The mini-mental State Examination (MMSE) was used to assess cognitive function. According to the MMSE scores, HAPC group was further divided into normal cognitive function group (HNCF) and cognitive dysfunction group (HCDF). In comparison with the control group, the MMSE scores in the HAPC group were significantly low (P < .05), whereas the serum levels of IL-1β, MCP-1, and TNF-α were significantly high (P < .01). Among the HAPC group (n = 60), 21 belonged to the HCDF and 39 belonged to the HNCF. Compared with the HNCF, the IL-1β, MCP-1, and TNF-α in the HCDF were significantly increased (P < .01). The Pearson correlation analysis showed that inflammatory factors were positively correlated with hemoglobin, and negatively correlated with MMSE. Serum inflammatory cytokines IL-1, MCP-1, and TNF-α were increased in HAPC, and HAPC exhibited cognitive dysfunction. Considering chronic hypoxia environment influences the change of the red blood cell metabolic and inflammatory factor, red blood cells and inflammatory factor in plateau is likely to be affected by patients with vascular lesions, increase cognitive impairment.
Collapse
Affiliation(s)
- Yinglan Li
- General Department, Qinghai Provincial People’s Hospital, Xining, China
| | - Jiabing Wang
- General Department, Qinghai Provincial People’s Hospital, Xining, China
| | - Xiuxin Zhang
- General Department, Qinghai Provincial People’s Hospital, Xining, China
| | - Qiong Ye
- General Department, Qinghai Provincial People’s Hospital, Xining, China
| | - Yuan Yang
- General Department, Qinghai Provincial People’s Hospital, Xining, China
| | - Xiaoshan Cui
- General Department, Qinghai Provincial People’s Hospital, Xining, China
| | - Jinhua Feng
- General Department, Qinghai Provincial People’s Hospital, Xining, China
| | - Jimei Li
- General Department, Qinghai Provincial People’s Hospital, Xining, China
| |
Collapse
|
11
|
Sullivan D, Vaglio BJ, Cararo-Lopes MM, Wong RDP, Graudejus O, Firestein BL. Stretch-Induced Injury Affects Cortical Neuronal Networks in a Time- and Severity-Dependent Manner. Ann Biomed Eng 2024; 52:1021-1038. [PMID: 38294641 DOI: 10.1007/s10439-023-03438-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/22/2023] [Indexed: 02/01/2024]
Abstract
Traumatic brain injury (TBI) is the leading cause of accident-related death and disability in the world and can lead to long-term neuropsychiatric symptoms, such as a decline in cognitive function and neurodegeneration. TBI includes primary and secondary injury, with head trauma and deformation of the brain caused by the physical force of the impact as primary injury, and cellular and molecular cascades that lead to cell death as secondary injury. Currently, there is no treatment for TBI-induced cell damage and neural circuit dysfunction in the brain, and thus, it is important to understand the underlying cellular mechanisms that lead to cell damage. In the current study, we use stretchable microelectrode arrays (sMEAs) to model the primary injury of TBI to study the electrophysiological effects of physically injuring cortical cells. We recorded electrophysiological activity before injury and then stretched the flexible membrane of the sMEAs to injure the cells to varying degrees. At 1, 24, and 72 h post-stretch, we recorded activity to analyze differences in spike rate, Fano factor, burstlet rate, burstlet width, synchrony of firing, local network efficiency, and Q statistic. Our results demonstrate that mechanical injury changes the firing properties of cortical neuron networks in culture in a time- and severity-dependent manner. Our results suggest that changes to electrophysiological properties after stretch are dependent on the strength of synchronization between neurons prior to injury.
Collapse
Affiliation(s)
- Dylan Sullivan
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Cell and Developmental Biology Graduate Program, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Brandon J Vaglio
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Biomedical Engineering Graduate Program, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Marina M Cararo-Lopes
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Cell and Developmental Biology Graduate Program, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Ruben D Ponce Wong
- BioMedical Sustainable Elastic Electronic Devices (BMSEED), Mesa, AZ, USA
| | - Oliver Graudejus
- BioMedical Sustainable Elastic Electronic Devices (BMSEED), Mesa, AZ, USA
- School of Molecular Science, Arizona State University, Tempe, AZ, USA
| | - Bonnie L Firestein
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854-8082, USA.
| |
Collapse
|
12
|
Dean TT, Jelú-Reyes J, Allen AC, Moore TW. Peptide-Drug Conjugates: An Emerging Direction for the Next Generation of Peptide Therapeutics. J Med Chem 2024; 67:1641-1661. [PMID: 38277480 PMCID: PMC10922862 DOI: 10.1021/acs.jmedchem.3c01835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Building on recent advances in peptide science, medicinal chemists have developed a hybrid class of bioconjugates, called peptide-drug conjugates, that demonstrate improved efficacy compared to peptides and small molecules independently. In this Perspective, we discuss how the conjugation of synergistic peptides and small molecules can be used to overcome complex disease states and resistance mechanisms that have eluded contemporary therapies because of their multi-component activity. We highlight how peptide-drug conjugates display a multi-factor therapeutic mechanism similar to that of antibody-drug conjugates but also demonstrate improved therapeutic properties such as less-severe off-target effects and conjugation strategies with greater site-specificity. The many considerations that go into peptide-drug conjugate design and optimization, such as peptide/small-molecule pairing and chemo-selective chemistries, are discussed. We also examine several peptide-drug conjugate series that demonstrate notable activity toward complex disease states such as neurodegenerative disorders and inflammation, as well as viral and bacterial targets with established resistance mechanisms.
Collapse
|
13
|
Cabral-França T, Cruz FF, Silva PC, Pannain VLN, Fernandes A, Eulálio JMR, Paiva MM, Macedo-Ramos H, Manso JEF, Baetas-da-Cruz W. Hippocampal Microglia Activation Induced by Acute Pancreatic Injury in Rats. Dig Dis Sci 2024; 69:148-160. [PMID: 37957410 DOI: 10.1007/s10620-023-08167-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Acute pancreatitis is an inflammation of the pancreatic glandular parenchyma that causes injury with or without the destruction of pancreatic acini. Clinical and experimental evidence suggest that certain systemic proinflammatory mediators may be responsible for initiating the fundamental mechanisms involved in microglial reactivity. Here, we investigated the possible repercussions of acute pancreatitis (AP) on the production of inflammatory mediators in the brain parenchyma focusing on microglial activation in the hippocampus. METHODS The acute pancreatic injury in rats was induced by a pancreas ligation surgical procedure (PLSP) on the splenic lobe, which corresponds to approximately 10% of total mass of the pancreas. Blood samples were collected via intracardiac puncture for the measurement of serum amylase. After euthanasia, frozen or paraffin-embedded brains and pancreas were analyzed using qRT-PCR or immunohistochemistry, respectively. RESULTS Immunohistochemistry assays showed a large number of Iba1 and PU.1-positive cells in the CA1, CA3, and dentate gyrus (DG) regions of the hippocampus of the PLSP group. TNF-α mRNA expression was significantly higher in the brain from PLSP group. NLRP3 inflammasome expression was found to be significantly increased in the pancreas and brain of rats of the PLSP group. High levels of BNDF mRNA were found in the rat brain of PLSP group. In contrast, NGF mRNA levels were significantly higher in the control group versus PLSP group. CONCLUSION Our findings suggest that AP has the potential to induce morphological changes in microglia consistent with an activated phenotype.
Collapse
Affiliation(s)
- Tamires Cabral-França
- Postgraduate Program in Surgical Science, Department of Surgery, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Surgery, Centre for Experimental Surgery, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Translational Laboratory in Molecular Physiology, Department of Surgery, School of Medicine, Centre for Experimental Surgery, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Ferreira Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulo Cesar Silva
- Department of Surgery, Centre for Experimental Surgery, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vera Lucia Nunes Pannain
- Postgraduate Program in Surgical Science, Department of Surgery, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Pathology, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Arlete Fernandes
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Pathology, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Marcus Raso Eulálio
- Postgraduate Program in Surgical Science, Department of Surgery, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Surgery, Centre for Experimental Surgery, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Hugo Macedo-Ramos
- Translational Laboratory in Molecular Physiology, Department of Surgery, School of Medicine, Centre for Experimental Surgery, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jose Eduardo Ferreira Manso
- Postgraduate Program in Surgical Science, Department of Surgery, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Surgery, Centre for Experimental Surgery, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wagner Baetas-da-Cruz
- Postgraduate Program in Surgical Science, Department of Surgery, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
- Department of Surgery, Centre for Experimental Surgery, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
- Translational Laboratory in Molecular Physiology, Department of Surgery, School of Medicine, Centre for Experimental Surgery, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
- Laboratório Translacional em Fisiologia Molecular, Faculdade de Medicina, Centro de Cirurgia Experimental, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, CCS, Bloco J, 2º and, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
14
|
Ni H, Ren J, Wang Q, Li X, Wu Y, Liu D, Wang J. Electroacupuncture at ST 36 ameliorates cognitive impairment and beta-amyloid pathology by inhibiting NLRP3 inflammasome activation in an Alzheimer's disease animal model. Heliyon 2023; 9:e16755. [PMID: 37292305 PMCID: PMC10245255 DOI: 10.1016/j.heliyon.2023.e16755] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 04/09/2023] [Accepted: 05/25/2023] [Indexed: 06/10/2023] Open
Abstract
Background Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder leading to cognitive impairment in the elderly, and no effective treatment exists. Increasing evidence has demonstrated that physical therapy and electroacupuncture (EA) effectively improve spatial learning and memory abilities. Nevertheless, the mechanism underlying the effects of EA on AD pathology is largely unexplored. Acupuncture at Zusanli (ST 36) has previously been shown to improve cognitive impairment in AD, but the mechanism is unclear. According to recent studies, EA drives the vagal-adrenal axis from the hindlimb ST 36 acupoint but not from the abdominal Tianshu (ST 25) to curb severe inflammation in mice. This study examined whether ST 36 acupuncture improves cognitive dysfunction in AD model mice by improving neuroinflammation and its underlying mechanism. Methods Male 5xFAD mice (aged 3, 6, and 9 months) were used as the AD animal model and were randomly divided into three groups: the AD model group (AD group), the electroacupuncture at ST 36 acupoint group (EA-ST 36 group), and the electroacupuncture at ST 25 acupoint group (EA-ST 25 group). Age-matched wild-type mice were used as the normal control (WT) group. EA (10 Hz, 0.5 mA) was applied to the acupoints on both sides for 15 min, 5 times per week for 4 weeks. Motor ability and cognitive ability were assessed by the open field test, the novel object recognition task, and the Morris water maze test. Thioflavin S staining and immunofluorescence were used to mark Aβ plaques and microglia. The levels of NLRP3, caspase-1, ASC, interleukin (IL)-1β, and IL-18 in the hippocampus were assayed by Western blotting or qRT-PCR. Results EA at ST 36, but not ST 25, significantly improved motor function and cognitive ability and reduced both Aβ deposition and microglia and NLRP3 inflammasome activation in 5×FAD mice. Conclusion EA stimulation at ST 36 effectively improved memory impairment in 5×FAD mice by a mechanism that regulated microglia activation and alleviated neuroinflammation by inhibiting the NLRP3 inflammatory response in the hippocampus. This study shows that ST 36 may be a specific acupoint to improve the condition of AD patients.
Collapse
Affiliation(s)
- Hong Ni
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Jiaoqi Ren
- Department of Geriatrics, Huashan Hospital, National Clinical Research Center for Aging and Medicine, Fudan University, 200040, Shanghai, China
| | - Qimeng Wang
- Department of Acupuncture, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Xing Li
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Yue Wu
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Dezhi Liu
- Department of Neurology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Jie Wang
- Endocrinology department of Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
- Department of Peripheral Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| |
Collapse
|
15
|
Bykowski EA, Petersson JN, Dukelow S, Ho C, Debert CT, Montina T, Metz GAS. Identification of Serum Metabolites as Prognostic Biomarkers Following Spinal Cord Injury: A Pilot Study. Metabolites 2023; 13:metabo13050605. [PMID: 37233646 DOI: 10.3390/metabo13050605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/06/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
The assessment, management, and prognostication of spinal cord injury (SCI) mainly rely upon observer-based ordinal scales measures. 1H nuclear magnetic resonance (NMR) spectroscopy provides an effective approach for the discovery of objective biomarkers from biofluids. These biomarkers have the potential to aid in understanding recovery following SCI. This proof-of-principle study determined: (a) If temporal changes in blood metabolites reflect the extent of recovery following SCI; (b) whether changes in blood-derived metabolites serve as prognostic indicators of patient outcomes based on the spinal cord independence measure (SCIM); and (c) whether metabolic pathways involved in recovery processes may provide insights into mechanisms that mediate neural damage and repair. Morning blood samples were collected from male complete and incomplete SCI patients (n = 7) following injury and at 6 months post-injury. Multivariate analyses were used to identify changes in serum metabolic profiles and were correlated to clinical outcomes. Specifically, acetyl phosphate, 1,3,7-trimethyluric acid, 1,9-dimethyluric acid, and acetic acid significantly related to SCIM scores. These preliminary findings suggest that specific metabolites may serve as proxy measures of the SCI phenotype and prognostic markers of recovery. Thus, serum metabolite analysis combined with machine learning holds promise in understanding the physiology of SCI and aiding in prognosticating outcomes following injury.
Collapse
Affiliation(s)
- Elani A Bykowski
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Jamie N Petersson
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Sean Dukelow
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Chester Ho
- Division of Physical Medicine and Rehabilitation, University of Alberta, Edmonton, AB T6G 2R7, Canada
| | - Chantel T Debert
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Tony Montina
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Gerlinde A S Metz
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
16
|
Zeng CW. Multipotent Mesenchymal Stem Cell-Based Therapies for Spinal Cord Injury: Current Progress and Future Prospects. BIOLOGY 2023; 12:biology12050653. [PMID: 37237467 DOI: 10.3390/biology12050653] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023]
Abstract
Spinal cord injury (SCI) represents a significant medical challenge, often resulting in permanent disability and severely impacting the quality of life for affected individuals. Traditional treatment options remain limited, underscoring the need for novel therapeutic approaches. In recent years, multipotent mesenchymal stem cells (MSCs) have emerged as a promising candidate for SCI treatment due to their multifaceted regenerative capabilities. This comprehensive review synthesizes the current understanding of the molecular mechanisms underlying MSC-mediated tissue repair in SCI. Key mechanisms discussed include neuroprotection through the secretion of growth factors and cytokines, promotion of neuronal regeneration via MSC differentiation into neural cell types, angiogenesis through the release of pro-angiogenic factors, immunomodulation by modulating immune cell activity, axonal regeneration driven by neurotrophic factors, and glial scar reduction via modulation of extracellular matrix components. Additionally, the review examines the various clinical applications of MSCs in SCI treatment, such as direct cell transplantation into the injured spinal cord, tissue engineering using biomaterial scaffolds that support MSC survival and integration, and innovative cell-based therapies like MSC-derived exosomes, which possess regenerative and neuroprotective properties. As the field progresses, it is crucial to address the challenges associated with MSC-based therapies, including determining optimal sources, intervention timing, and delivery methods, as well as developing standardized protocols for MSC isolation, expansion, and characterization. Overcoming these challenges will facilitate the translation of preclinical findings into clinical practice, providing new hope and improved treatment options for individuals living with the devastating consequences of SCI.
Collapse
Affiliation(s)
- Chih-Wei Zeng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
17
|
Shvachiy L, Amaro-Leal Â, Outeiro TF, Rocha I, Geraldes V. Intermittent Lead Exposure Induces Behavioral and Cardiovascular Alterations Associated with Neuroinflammation. Cells 2023; 12:cells12050818. [PMID: 36899953 PMCID: PMC10000953 DOI: 10.3390/cells12050818] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
The nervous system is the primary target for lead exposure and the developing brain appears to be especially susceptible, namely the hippocampus. The mechanisms of lead neurotoxicity remain unclear, but microgliosis and astrogliosis are potential candidates, leading to an inflammatory cascade and interrupting the pathways involved in hippocampal functions. Moreover, these molecular changes can be impactful as they may contribute to the pathophysiology of behavioral deficits and cardiovascular complications observed in chronic lead exposure. Nevertheless, the health effects and the underlying influence mechanism of intermittent lead exposure in the nervous and cardiovascular systems are still vague. Thus, we used a rat model of intermittent lead exposure to determine the systemic effects of lead and on microglial and astroglial activation in the hippocampal dentate gyrus throughout time. In this study, the intermittent group was exposed to lead from the fetal period until 12 weeks of age, no exposure (tap water) until 20 weeks, and a second exposure from 20 to 28 weeks of age. A control group (without lead exposure) matched in age and sex was used. At 12, 20 and 28 weeks of age, both groups were submitted to a physiological and behavioral evaluation. Behavioral tests were performed for the assessment of anxiety-like behavior and locomotor activity (open-field test), and memory (novel object recognition test). In the physiological evaluation, in an acute experiment, blood pressure, electrocardiogram, and heart and respiratory rates were recorded, and autonomic reflexes were evaluated. The expression of GFAP, Iba-1, NeuN and Synaptophysin in the hippocampal dentate gyrus was assessed. Intermittent lead exposure induced microgliosis and astrogliosis in the hippocampus of rats and changes in behavioral and cardiovascular function. We identified increases in GFAP and Iba1 markers together with presynaptic dysfunction in the hippocampus, concomitant with behavioral changes. This type of exposure produced significant long-term memory dysfunction. Regarding physiological changes, hypertension, tachypnea, baroreceptor reflex impairment and increased chemoreceptor reflex sensitivity were observed. In conclusion, the present study demonstrated the potential of lead intermittent exposure inducing reactive astrogliosis and microgliosis, along with a presynaptic loss that was accompanied by alterations of homeostatic mechanisms. This suggests that chronic neuroinflammation promoted by intermittent lead exposure since fetal period may increase the susceptibility to adverse events in individuals with pre-existing cardiovascular disease and/or in the elderly.
Collapse
Affiliation(s)
- Liana Shvachiy
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany
- Cardiovascular Centre of the University of Lisbon, 1649-028 Lisbon, Portugal
- Institute of Physiology, Faculty of Medicine of the University of Lisbon, 1649-028 Lisbon, Portugal
| | - Ângela Amaro-Leal
- Cardiovascular Centre of the University of Lisbon, 1649-028 Lisbon, Portugal
- Institute of Physiology, Faculty of Medicine of the University of Lisbon, 1649-028 Lisbon, Portugal
| | - Tiago F. Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany
- Max Planck Institute for Natural Science, 37075 Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, UK
- Scientific Employee with an Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 37073 Göttingen, Germany
| | - Isabel Rocha
- Cardiovascular Centre of the University of Lisbon, 1649-028 Lisbon, Portugal
- Institute of Physiology, Faculty of Medicine of the University of Lisbon, 1649-028 Lisbon, Portugal
| | - Vera Geraldes
- Cardiovascular Centre of the University of Lisbon, 1649-028 Lisbon, Portugal
- Institute of Physiology, Faculty of Medicine of the University of Lisbon, 1649-028 Lisbon, Portugal
- Correspondence: ; Tel.: +351-217999435
| |
Collapse
|
18
|
Astrocytosis, Inflammation, Axonal Damage and Myelin Impairment in the Internal Capsule following Striatal Ischemic Injury. Cells 2023; 12:cells12030457. [PMID: 36766798 PMCID: PMC9913724 DOI: 10.3390/cells12030457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/29/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Secondary degeneration is defined as a set of destructive events that damage cells and structures that were initially spared or only peripherally affected by the primary insult, constituting a key factor for functional impairment after traumatic brain injury or stroke. In the present study, we evaluated the patterns of astrocytosis, inflammatory response, axonal damage and oligodendrocytes/myelin impairment in the internal capsule following a focal injection of endothelin-1 (ET-1) into the dorsal striatum. Animals were perfused at 1, 3 and 7 post-lesion days (PLD), and tissue was processed to immunohistochemistry for neutrophils (MBS1), macrophages/microglia (ED1), astrocytes (GFAP), axonal lesion (βAPP), oligodendrocytes (Tau) and myelin (MBP). A significant number of neutrophils was observed at 1PLD, followed by intense recruitment/activation of macrophages/microglia at 3PLD and astrocytic reaction with a peak at 7PLD. Oligodendrocyte damage was pronounced at 3PLD, remaining at 7PLD. Progressive myelin impairment was observed, with reduction of immunoreactivity at 7PLD. Axonal lesion was also identified, mainly at 7PLD. Our results indicate that acute inflammatory response elicited by the ischemic insult in the striatum can be associated with the axonal impairment and damage of both oligodendrocytes and myelin sheath identified in the internal capsule, which may be related to loss of tissue functionality observed in secondary degeneration.
Collapse
|
19
|
Cognitive Impairments and blood-brain Barrier Damage in a Mouse Model of Chronic Cerebral Hypoperfusion. Neurochem Res 2022; 47:3817-3828. [DOI: 10.1007/s11064-022-03799-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/07/2022] [Accepted: 10/16/2022] [Indexed: 10/31/2022]
Abstract
AbstractChronic cerebral hypoperfusion (CCH) is commonly involved in various brain diseases. Tight junction proteins (TJs) are key components constituting the anatomical substrate of the blood-brain barrier (BBB). Changes in cognitive function and BBB after CCH and their relationship need further exploration. To investigate the effect of CCH on cognition and BBB, we developed a bilateral common carotid artery stenosis (BCAS) model in Tie2-GFP mice. Mice manifested cognitive impairments accompanied with increased microglia after the BCAS operation. BCAS mice also exhibited increased BBB permeability at all time points set from D1 to D42. Furthermore, BCAS mice showed reduced expression of TJs 42 d after the operation. In addition, correct entrances of mice in radial arm maze test had a moderate negative correlation with EB extravasation. Our data suggested that BCAS could lead to cognitive deficits, microglia increase and BBB dysfunction characterized by increased BBB permeability and reduced TJs expression level. BBB permeability may be involved in the cognitive impairments induced by CCH.
Collapse
|
20
|
Microelectrode implants, inflammatory response and long-lasting effects on NADPH diaphorase neurons in the rat frontal cortex. Exp Brain Res 2022; 240:2569-2580. [PMID: 35947168 DOI: 10.1007/s00221-022-06434-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/03/2022] [Indexed: 11/04/2022]
Abstract
At present, one of the main therapeutic challenges comprises the development of technologies to improve the life quality of people suffering from different types of body paralysis, through the reestablishment of sensory and motor functions. In this regard, brain-machine interfaces (BMI) offer hope to effectively mitigate body paralysis through the control of paralyzed body parts by brain activity. Invasive BMI use chronic multielectrode implants to record neural activity directly from the brain tissue. While such invasive devices provide the highest amount of usable neural activity for BMI control, they also involve direct damage to the nervous tissue. In the cerebral cortex, high levels of the enzyme NADPH diaphorase (NADPH-d) characterize a particular class of interneurons that regulates neuronal excitability and blood supply. To gain insight into the biocompatibility of invasive BMI, we assessed the impact of chronic implanted tungsten multielectrode bundles on the distribution and morphology of NADPH-d-reactive neurons in the rat frontal cortex. NADPH-d neuronal labeling was correlated with glial response markers and with indices of healthy neuronal activity measured by electrophysiological recordings performed up to 3 months after multielectrode implantation. Chronic electrode arrays caused a small and quite localized structural disturbance on the implanted site, with neuronal loss and glial activation circumscribed to the site of implant. Electrodes remained viable during the entire period of implantation. Moreover, neither the distribution nor the morphology of NADPH-d neurons was altered. Overall, our findings provide additional evidence that tungsten multielectrodes can be employed as a viable element for long-lasting therapeutic BMI applications.
Collapse
|
21
|
Cardoso FDS, de Souza Oliveira Tavares C, Araujo BHS, Mansur F, Lopes-Martins RÁB, Gomes da Silva S. Improved Spatial Memory And Neuroinflammatory Profile Changes in Aged Rats Submitted to Photobiomodulation Therapy. Cell Mol Neurobiol 2022; 42:1875-1886. [PMID: 33704604 PMCID: PMC11421705 DOI: 10.1007/s10571-021-01069-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/23/2021] [Indexed: 01/11/2023]
Abstract
Recent evidences have shown the therapeutic potential of transcranial photobiomodulation on traumatic brain injury and Alzheimer's disease. Despite the promising benefits in the brain, little is known about the laser's effects in the absence of pathological conditions. We submitted young (4 months old) and aged (20 months old) rats to transcranial low-level laser and evaluated their exploratory activity and habituation in open field, anxiety in elevated plus maze, spatial memory in Barnes maze, and aversive memory in a step-down inhibitory avoidance task. Additionally, the levels of a panel of inflammatory cytokines and chemokines were quantified in two different brain regions: the cerebral cortex and the hippocampus. Young and aged rats submitted to transcranial laser exhibited better cognitive performance in Barnes maze than did control rats. Transcranial laser therapy decreased cortical levels of GM-CSF, IL-10, MCP-1, LIX, and TNFα in young rats and IL-5 in aged rats. High levels of IL-6, IL-10, and TNF-alpha were found in the cerebral cortex of aged rats submitted to transcranial laser. In the hippocampus, a decrease in IP-10 and fractalkine levels was observed in the aged rats from the laser group when compared to the aged rats from the control group. Our data indicate that transcranial photobiomodulation improves spatial learning and memory and alters the neuroinflammatory profile of young and aged rats' brains.
Collapse
Affiliation(s)
- Fabrízio Dos Santos Cardoso
- Núcleo de Pesquisas Tecnológicas, Universidade de Mogi das Cruzes, Av. Cândido Xavier de Almeida e Souza, 200, Mogi das Cruzes, São Paulo, SP, CEP 08780-911, Brazil
| | - Cristiane de Souza Oliveira Tavares
- Núcleo de Pesquisas Tecnológicas, Universidade de Mogi das Cruzes, Av. Cândido Xavier de Almeida e Souza, 200, Mogi das Cruzes, São Paulo, SP, CEP 08780-911, Brazil
| | - Bruno Henrique Silva Araujo
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa Em Energia E Materiais (CNPEM), Campinas, SP, Brazil
| | - Fernanda Mansur
- Center for Experimental Research, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | | | - Sérgio Gomes da Silva
- Núcleo de Pesquisas Tecnológicas, Universidade de Mogi das Cruzes, Av. Cândido Xavier de Almeida e Souza, 200, Mogi das Cruzes, São Paulo, SP, CEP 08780-911, Brazil.
- Centro Universitário UNIFAMINAS (UNIFAMINAS), Muriaé, MG, Brazil.
- Hospital Do Câncer de Muriaé, Fundação Cristiano Varella (FCV), Muriaé, MG, Brazil.
| |
Collapse
|
22
|
The Role of Concomitant Nrf2 Targeting and Stem Cell Therapy in Cerebrovascular Disease. Antioxidants (Basel) 2022; 11:antiox11081447. [PMID: 35892653 PMCID: PMC9332234 DOI: 10.3390/antiox11081447] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 02/01/2023] Open
Abstract
Despite the reality that a death from cerebrovascular accident occurs every 3.5 min in the United States, there are few therapeutic options which are typically limited to a narrow window of opportunity in time for damage mitigation and recovery. Novel therapies have targeted pathological processes secondary to the initial insult, such as oxidative damage and peripheral inflammation. One of the greatest challenges to therapy is the frequently permanent damage within the CNS, attributed to a lack of sufficient neurogenesis. Thus, recent use of cell-based therapies for stroke have shown promising results. Unfortunately, stroke-induced inflammatory and oxidative damage limit the therapeutic potential of these stem cells. Nuclear factor erythroid 2-related factor 2 (Nrf2) has been implicated in endogenous antioxidant and anti-inflammatory activity, thus presenting an attractive target for novel therapeutics to enhance stem cell therapy and promote neurogenesis. This review assesses the current literature on the concomitant use of stem cell therapy and Nrf2 targeting via pharmaceutical and natural agents, highlighting the need to elucidate both upstream and downstream pathways in optimizing Nrf2 treatments in the setting of cerebrovascular disease.
Collapse
|
23
|
Abstract
The inflammation is an important biological response induced by various harmful stimuli, like viruses, bacterial infections, toxins, toxic compounds, tissue injury. During inflammation inflammatory cytokines and reactive oxygen species are produced. Inflammatory cytokines act on various receptors present on the plasma membrane of target cells. To initiate signaling cascade, and activate transcription factors, receptors should be internalized and enter the early endosomes, where the members of the signaling cascade can meet. The further cytoplasmic fate of the receptor plays crucial role in the progression and the course of inflammation. Usually acute inflammation removes injurious stimuli and helps to regain the normal healthy status of the organism. In contrast to this the uncontrolled chronic inflammation—stimulating other than immune cells, inducing transdifferentiation—can provide base of various serious diseases. This paper draws the attention of the long-lasting consequence of chronic inflammation, pointing out that one of the most important step in medication is to identify in time the factors initiating and maintaining inflammation.
Collapse
Affiliation(s)
- Anna L Kiss
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
24
|
Lamptey RNL, Chaulagain B, Trivedi R, Gothwal A, Layek B, Singh J. A Review of the Common Neurodegenerative Disorders: Current Therapeutic Approaches and the Potential Role of Nanotherapeutics. Int J Mol Sci 2022; 23:ijms23031851. [PMID: 35163773 PMCID: PMC8837071 DOI: 10.3390/ijms23031851] [Citation(s) in RCA: 298] [Impact Index Per Article: 99.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/16/2022] Open
Abstract
Neurodegenerative disorders are primarily characterized by neuron loss. The most common neurodegenerative disorders include Alzheimer’s and Parkinson’s disease. Although there are several medicines currently approved for managing neurodegenerative disorders, a large majority of them only help with associated symptoms. This lack of pathogenesis-targeting therapies is primarily due to the restrictive effects of the blood–brain barrier (BBB), which keeps close to 99% of all “foreign substances” out of the brain. Since their discovery, nanoparticles have been successfully used for targeted delivery into many organs, including the brain. This review briefly describes the pathophysiology of Alzheimer’s, Parkinson’s disease, and amyotrophic lateral sclerosis, and their current management approaches. We then highlight the major challenges of brain-drug delivery, followed by the role of nanotherapeutics for the diagnosis and treatment of various neurological disorders.
Collapse
Affiliation(s)
| | | | | | | | - Buddhadev Layek
- Correspondence: (B.L.); (J.S.); Tel.: +1-701-231-7906 (B.L.); +1-701-231-7943 (J.S.); Fax: +1-701-231-8333 (B.L. & J.S.)
| | - Jagdish Singh
- Correspondence: (B.L.); (J.S.); Tel.: +1-701-231-7906 (B.L.); +1-701-231-7943 (J.S.); Fax: +1-701-231-8333 (B.L. & J.S.)
| |
Collapse
|
25
|
Liew SL, Lin DJ, Cramer SC. Interventions to Improve Recovery After Stroke. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00061-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Ponroy Bally B, Murai KK. Astrocytes in Down Syndrome Across the Lifespan. Front Cell Neurosci 2021; 15:702685. [PMID: 34483840 PMCID: PMC8416355 DOI: 10.3389/fncel.2021.702685] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/30/2021] [Indexed: 11/23/2022] Open
Abstract
Down Syndrome (DS) is the most common genetic cause of intellectual disability in which delays and impairments in brain development and function lead to neurological and cognitive phenotypes. Traditionally, a neurocentric approach, focusing on neurons and their connectivity, has been applied to understanding the mechanisms involved in DS brain pathophysiology with an emphasis on how triplication of chromosome 21 leads to alterations in neuronal survival and homeostasis, synaptogenesis, brain circuit development, and neurodegeneration. However, recent studies have drawn attention to the role of non-neuronal cells, especially astrocytes, in DS. Astrocytes comprise a large proportion of cells in the central nervous system (CNS) and are critical for brain development, homeostasis, and function. As triplication of chromosome 21 occurs in all cells in DS (with the exception of mosaic DS), a deeper understanding of the impact of trisomy 21 on astrocytes in DS pathophysiology is warranted and will likely be necessary for determining how specific brain alterations and neurological phenotypes emerge and progress in DS. Here, we review the current understanding of the role of astrocytes in DS, and discuss how specific perturbations in this cell type can impact the brain across the lifespan from early brain development to adult stages. Finally, we highlight how targeting, modifying, and/or correcting specific molecular pathways and properties of astrocytes in DS may provide an effective therapeutic direction given the important role of astrocytes in regulating brain development and function.
Collapse
Affiliation(s)
- Blandine Ponroy Bally
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - Keith K Murai
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| |
Collapse
|
27
|
Bykowski EA, Petersson JN, Dukelow S, Ho C, Debert CT, Montina T, Metz GA. Urinary biomarkers indicative of recovery from spinal cord injury: A pilot study. IBRO Neurosci Rep 2021; 10:178-185. [PMID: 33842921 PMCID: PMC8020035 DOI: 10.1016/j.ibneur.2021.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 02/15/2021] [Indexed: 12/21/2022] Open
Abstract
Current assessments of recovery following spinal cord injury (SCI) focus on clinical outcome measures. These assessments bear an inherent risk of bias, emphasizing the need for more reliable prognostic biomarkers to measure SCI severity. This study evaluated fluid biomarkers as an objective tool to aid with prognosticating outcomes following SCI. Using a 1H nuclear magnetic resonance (NMR)-based quantitative metabolomics approach of urine samples, the objectives were to determine (a) if alterations in metabolic profiles reflect the extent of recovery of individual SCI patients, (b) whether changes in urine metabolites correlate to patient outcomes, and (c) whether biological pathway analysis reflects mechanisms of neural damage and repair. An inception cohort exploratory pilot study collected morning urine samples from male SCI patients (n=6) following injury and again at 6-months post-injury. A 700 MHz Bruker Avance III HD NMR spectrometer was used to acquire the metabolic signatures of urine samples, which were used to derive metabolic pathways. Multivariate statistical analyses were used to identify changes in metabolic signatures, which were correlated to clinical outcomes in the Spinal Cord Independence Measure (SCIM). Among SCI-induced metabolic changes, biomarkers which significantly correlated to patient SCIM scores included caffeine (R = -0.76, p < 0.01), 3-hydroxymandelic acid (R= -0.85, p < 0.001), L-valine (R = 0.90, p < 0.001; R = -0.64, p < 0.05), and N-methylhydantoin (R = -0.90, p < 0.001). The most affected pathway was purine metabolism. These findings indicate that urinary metabolites reflect SCI lesion severity and recovery and provide potentially prognostic biomarkers of SCI outcome in precision medicine approaches.
Collapse
Affiliation(s)
- Elani A. Bykowski
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Jamie N. Petersson
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, Alberta, Canada
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Sean Dukelow
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Chester Ho
- Division of Physical Medicine and Rehabilitation, University of Alberta, Edmonton, Alberta, Canada
| | - Chantel T. Debert
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Tony Montina
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, Alberta, Canada
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Gerlinde A.S. Metz
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
28
|
Ozaki M, Suda K, Konomi T, Harmon SM, Komatsu M, Minami A, Matsumoto M, Nakamura M, Takahata M, Iwasaki N. Serum C-reactive protein is an early, simple and inexpensive prognostic marker for the progression of intramedullary lesion on magnetic resonance imaging from acute to subacute stage in patients with spinal cord injury. Spinal Cord 2021; 59:1155-1161. [PMID: 34045666 DOI: 10.1038/s41393-021-00640-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN Retrospective chart audit. OBJECTIVES This study aimed to identify conventional routine blood testing biomarkers associated with the progression of intramedullary injured area in patients with spinal cord injury (SCI). SETTING A spinal cord injury center in Hokkaido, Japan. METHODS We retrospectively reviewed 71 consecutive adults with acute SCI who were admitted within 24 h after injury and diagnosed as American Spinal Injury Association Impairment Scale Grade A or B at admission. Participants were divided into the progression (P group) and no progression group (NP group) based on the change of the hyperintense signal abnormality in the spinal cord on magnetic resonance imaging from the time of admission to 4 weeks after injury. Individual characteristics and blood testing data obtained in the first 4 weeks after injury were compared between groups. RESULTS The P and NP groups were comprised of 16 and 55 participants, respectively. In univariate analyses, white blood cell (WBC) count on day 3 was significantly higher in group P than group NP (P = 0.021), as was serum C-reactive protein (CRP) level on day 3 (P = 0.015) and day 7 (P = 0.047). Multivariable analysis identified serum CRP level on day 3 as a significant independent prognostic factor for the progression of secondary SCI (OR, 1.138; 95% confidence interval, 1.01-1.28; P = 0.034). CONCLUSIONS Serum CRP level on day 3 after injury was a good predictor for the progression of intramedullary signal intensity change on MRI from acute to subacute stage in patients with SCI.
Collapse
Affiliation(s)
- Masahiro Ozaki
- Department of Orthopaedic Surgery, Hokkaido Spinal Cord Injury Center, Hokkaido, Japan. .,Department of Orthopaedic Surgery, Saiseikai Yokohamashi Tobu Hospital, Kanagawa, Japan.
| | - Kota Suda
- Department of Orthopaedic Surgery, Hokkaido Spinal Cord Injury Center, Hokkaido, Japan
| | - Tsunehiko Konomi
- Department of Orthopaedic Surgery, Hokkaido Spinal Cord Injury Center, Hokkaido, Japan.,Department of Orthopaedic Surgery, Murayama Medical Center, National Hospital Organization, Tokyo, Japan
| | | | - Miki Komatsu
- Department of Orthopaedic Surgery, Hokkaido Spinal Cord Injury Center, Hokkaido, Japan
| | - Akio Minami
- Department of Orthopaedic Surgery, Hokkaido Spinal Cord Injury Center, Hokkaido, Japan
| | - Morio Matsumoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Masahiko Takahata
- Department of Orthopaedic Surgery, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
| |
Collapse
|
29
|
Seo JH, Dalal MS, Contreras JE. Pannexin-1 Channels as Mediators of Neuroinflammation. Int J Mol Sci 2021; 22:ijms22105189. [PMID: 34068881 PMCID: PMC8156193 DOI: 10.3390/ijms22105189] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 02/06/2023] Open
Abstract
Neuroinflammation is a major component of central nervous system (CNS) injuries and neurological diseases, including Alzheimer’s disease, multiple sclerosis, neuropathic pain, and brain trauma. The activation of innate immune cells at the damage site causes the release of pro-inflammatory cytokines and chemokines, which alter the functionality of nearby tissues and might mediate the recruitment of leukocytes to the injury site. If this process persists or is exacerbated, it prevents the adequate resolution of the inflammation, and ultimately enhances secondary damage. Adenosine 5′ triphosphate (ATP) is among the molecules released that trigger an inflammatory response, and it serves as a chemotactic and endogenous danger signal. Extracellular ATP activates multiple purinergic receptors (P2X and P2Y) that have been shown to promote neuroinflammation in a variety of CNS diseases. Recent studies have shown that Pannexin-1 (Panx1) channels are the principal conduits of ATP release from dying cells and innate immune cells in the brain. Herein, we review the emerging evidence that directly implicates Panx-1 channels in the neuroinflammatory response in the CNS.
Collapse
Affiliation(s)
- Joon Ho Seo
- Department of Neurology and Nash Family, Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine, Mount Sinai, New York, NY 10029, USA;
| | - Miloni S. Dalal
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA;
| | - Jorge E. Contreras
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA;
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA 95616, USA
- Correspondence: ; Tel.: +1-530-754-2770
| |
Collapse
|
30
|
Carvalho IC, Mansur HS, Leonel AG, Mansur AAP, Lobato ZIP. Soft matter polysaccharide-based hydrogels as versatile bioengineered platforms for brain tissue repair and regeneration. Int J Biol Macromol 2021; 182:1091-1111. [PMID: 33892028 DOI: 10.1016/j.ijbiomac.2021.04.116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/12/2021] [Accepted: 04/17/2021] [Indexed: 01/08/2023]
Abstract
Acute or chronic brain injuries promote deaths and the life-long debilitating neurological status where, despite advances in therapeutic strategies, clinical outcome hardly achieves total patient recovery. In recent decades, brain tissue engineering emerged as an encouraging area of research for helping in damaged central nervous system (CNS) recovery. Polysaccharides are abundant naturally occurring biomacromolecules with a great potential enhancement of advanced technologies in brain tissue repair and regeneration (BTRR). Besides carrying rich biological information, polysaccharides can interact and communicate with biomolecules, including glycosaminoglycans present in cell membranes and many signaling moieties, growth factors, chemokines, and axon guidance molecules. This review includes a comprehensive investigation of the current progress on designing and developing polysaccharide-based soft matter biomaterials for BTRR. Although few interesting reviews concerning BTRR have been reported, this is the first report specifically focusing on covering multiple polysaccharides and polysaccharide-based functionalized biomacromolecules in this emerging and intriguing field of multidisciplinary knowledge. This review aims to cover the state of art challenges and prospects of this fascinating field while presenting the richness of possibilities of using these natural biomacromolecules for advanced biomaterials in prospective neural tissue engineering applications.
Collapse
Affiliation(s)
- Isadora C Carvalho
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627 Belo Horizonte/M.G., Brazil
| | - Herman S Mansur
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627 Belo Horizonte/M.G., Brazil.
| | - Alice G Leonel
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627 Belo Horizonte/M.G., Brazil
| | - Alexandra A P Mansur
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627 Belo Horizonte/M.G., Brazil
| | - Zelia I P Lobato
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais - UFMG, Brazil
| |
Collapse
|
31
|
Lin DJ, Cramer SC. Principles of Neural Repair and Their Application to Stroke Recovery Trials. Semin Neurol 2021; 41:157-166. [PMID: 33663003 DOI: 10.1055/s-0041-1725140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Neural repair is the underlying therapeutic strategy for many treatments currently under investigation to improve recovery after stroke. Repair-based therapies are distinct from acute stroke strategies: instead of salvaging threatened brain tissue, the goal is to improve behavioral outcomes on the basis of experience-dependent brain plasticity. Furthermore, timing, concomitant behavioral experiences, modality specific outcome measures, and careful patient selection are fundamental concepts for stroke recovery trials that can be deduced from principles of neural repair. Here we discuss core principles of neural repair and their implications for stroke recovery trials, highlighting related issues from key studies in humans. Research suggests a future in which neural repair therapies are personalized based on measures of brain structure and function, genetics, and lifestyle factors.
Collapse
Affiliation(s)
- David J Lin
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts.,VA RR&D Center for Neurorestoration and Neurotechnology, Rehabilitation R&D Service, Department of VA Medical Center, Providence, Rhode Island
| | - Steven C Cramer
- Department of Neurology, University of California, Los Angeles, California.,California Rehabilitation Institute, Los Angeles, California
| |
Collapse
|
32
|
Leláková V, Béraud-Dufour S, Hošek J, Šmejkal K, Prachyawarakorn V, Pailee P, Widmann C, Václavík J, Coppola T, Mazella J, Blondeau N, Heurteaux C. Therapeutic potential of prenylated stilbenoid macasiamenene F through its anti-inflammatory and cytoprotective effects on LPS-challenged monocytes and microglia. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:113147. [PMID: 32736058 DOI: 10.1016/j.jep.2020.113147] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Macaranga Thou. (Euphorbiaceae) is a large genus that comprises over 300 species distributed between Western Africa and the islands of the South Pacific. Plants of this genus have a long-standing history of use in traditional medicine for different purposes, including the treatment of inflammation. Fresh and dried leaves of certain Macaranga species (e.g. M. tanarius (L.) Müll.Arg.), have been used to treat cuts, bruises, boils, swellings, sores and covering of wounds in general. Several reports described Macaranga spp. being a rich source of polyphenols, such as prenylated stilbenoids and flavonoids, mostly responsible for its biological activity. Similarly, an abundant content of prenylated stilbenes was also described in M. siamensis S.J.Davies, species recently identified (2001) in Thailand. While the respective biological activity of the prenylated stilbenes from M. siamensis was poorly investigated to date, our recent study pointed out the interest as the natural source of several novel anti-inflammatory stilbenoids isolated from this species. AIM OF THE STUDY This work investigated the potential anti-inflammatory effects of the stilbenoid macasiamenene F (MF) isolated from M. siamensis S.J.Davies (Euphorbiaceae) on the lipopolysaccharide (LPS)-induced inflammation-like response of monocytes and microglia, major cells involved in the peripheral and central inflammatory response, respectively. MATERIALS AND METHODS LPS-induced stimulation of TLR4 signaling led to the activation of inflammatory pathways in in vitro models of THP-1 and THP-1-XBlue™-MD2-CD14 human monocytes, BV-2 mouse microglia, and an ex vivo model of brain-sorted mouse microglia. The ability of the stilbenoid MF to intervene in the IкB/NF-кB and MAPKs/AP-1 inflammatory cascade was investigated. The gene and protein expressions of the pro-inflammatory cytokines IL-1β and TNF-α were evaluated at the transcription and translation levels. The protective effect of MF against LPS-triggered microglial loss was assessed by cell counting and the LDH assay. RESULTS MF demonstrated beneficial effects, reducing both monocyte and microglial inflammation as assessed in vitro. It efficiently inhibited the degradation of IкBα, thereby reducing the NF-кB activity and TNF-α expression in human monocytes. Furthermore, the LPS-induced expression of IL-1β and TNF-α in microglia was dampened by pre-, co-, or post-treatment with MF. In addition to its anti-inflammatory effect, MF demonstrated a cytoprotective effect against the LPS-induced death of BV-2 microglia. CONCLUSION Our research into anti-inflammatory and protective effects of MF has shown that it is a promising candidate for further in vitro and in vivo investigations of MF interventions with respect to acute and chronic inflammation, including potentially beneficial effects on the inflammatory component of brain diseases such as stroke and Alzheimer's disease.
Collapse
Affiliation(s)
- Veronika Leláková
- Université Côte D'Azur, CNRS, IPMC, UMR7275, 660 Route des Lucioles, Sophia Antipolis, F-06560, Valbonne, France; Department of Molecular Pharmacy, Faculty of Pharmacy, Masaryk University, Palackého tř. 1946/1, CZ-612 00, Brno, Czech Republic.
| | - Sophie Béraud-Dufour
- Université Côte D'Azur, CNRS, IPMC, UMR7275, 660 Route des Lucioles, Sophia Antipolis, F-06560, Valbonne, France.
| | - Jan Hošek
- Department of Molecular Pharmacy, Faculty of Pharmacy, Masaryk University, Palackého tř. 1946/1, CZ-612 00, Brno, Czech Republic; Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic.
| | - Karel Šmejkal
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Palackého tř. 1946/1, CZ-612 00, Brno, Czech Republic.
| | | | - Phanruethai Pailee
- Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Laksi, TH-10210, Bangkok, Thailand.
| | - Catherine Widmann
- Université Côte D'Azur, CNRS, IPMC, UMR7275, 660 Route des Lucioles, Sophia Antipolis, F-06560, Valbonne, France.
| | - Jiří Václavík
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Palackého tř. 1946/1, CZ-612 00, Brno, Czech Republic.
| | - Thierry Coppola
- Université Côte D'Azur, CNRS, IPMC, UMR7275, 660 Route des Lucioles, Sophia Antipolis, F-06560, Valbonne, France.
| | - Jean Mazella
- Université Côte D'Azur, CNRS, IPMC, UMR7275, 660 Route des Lucioles, Sophia Antipolis, F-06560, Valbonne, France.
| | - Nicolas Blondeau
- Université Côte D'Azur, CNRS, IPMC, UMR7275, 660 Route des Lucioles, Sophia Antipolis, F-06560, Valbonne, France.
| | - Catherine Heurteaux
- Université Côte D'Azur, CNRS, IPMC, UMR7275, 660 Route des Lucioles, Sophia Antipolis, F-06560, Valbonne, France.
| |
Collapse
|
33
|
Xu F, Ma X, Zhu Y, Sutterland A, Cheng R, Miao S, Chen J, Qiu L, Zhou Y. Effects of Toxoplasma gondii infection and schizophrenia comorbidity on serum lipid profile: A population retrospective study from Eastern China. Microb Pathog 2020; 149:104587. [PMID: 33091579 DOI: 10.1016/j.micpath.2020.104587] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Toxoplasma gondii (T. gondii), a parasitic protozoa that is associated with various psychiatric disorders. Both T. gondii infection and disturbed host's lipid profile are common in schizophrenia patients. However, the underlying pathophysiological mechanisms remain speculative. Also, the characteristics of serum lipid levels in schizophrenia patients comorbid with T. gondii infection are not clear. Therefore, it is necessary to explore the influence of chronic T. gondii infection on the characteristic physiological indexes of schizophrenia patients so as to provide some insights into finding target therapeutic drugs. METHODS In this study, the effect of chronic T. gondii infection on serum lipid profile was retrospectively analysed in 1719 schizophrenic patients and 1552 healthy subjects from Eastern China. RESULTS The overall prevalence of Immunoglobulin G (IgG) antibodies against T. gondii (17.98%) in schizophrenia patients was significantly higher than healthy controls (7.35%, χ2 = 81.831, P = 0.000). Compared to T. gondii IgG-seronegative schizophrenia patients, IgG-seropositive group had higher high-density lipoprotein (HDL) (P = 0.000) and triglycerides (TG) (P = 0.000) levels, while total cholesterol (TC) (P = 0.000) levels showed an opposite tendency in IgG-seropositive cases. We also found significant correlation between T. gondii seropositivity and increased TG (P = 0.000) and TC levels (P = 0.000) in schizophrenia patients. Binary regression analysis also showed that decreased TC level was more common among schizophrenia patients with T. gondii seropositivity compared to seronegative subjects (OR = 0.617, 95%CI = 0.509-0.749, P = 0.000). CONCLUSION Patients with chronic T. gondii infection and comorbid schizophrenia had higher HDL and TG levels, while cholesterol levels showed an opposite trend. To the best of our knowledge, this is the first report focus on the host's lipid profile of chronic T. gondii infection and comorbid schizophrenia patients.
Collapse
Affiliation(s)
- Fei Xu
- Department of Basic Medicine, Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; Key Laboratory of National Health Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control, Jiangsu Institute of Parasitic Diseases and Public Health Research Center of Jiangnan University, Wuxi, 214064, Jiangsu, China
| | - Xinyu Ma
- Department of Basic Medicine, Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Yuwei Zhu
- Department of Basic Medicine, Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Arjen Sutterland
- Department of Psychiatry, Academic Center (AMC), University of Amsterdam, Meibergdreef 5, 1105 AZ, Amsterdam, the Netherlands
| | - Ruitang Cheng
- Department of Basic Medicine, Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Sunhan Miao
- Department of Basic Medicine, Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Jialu Chen
- Department of Basic Medicine, Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Liying Qiu
- Department of Basic Medicine, Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Yonghua Zhou
- Key Laboratory of National Health Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control, Jiangsu Institute of Parasitic Diseases and Public Health Research Center of Jiangnan University, Wuxi, 214064, Jiangsu, China.
| |
Collapse
|
34
|
Arrais AC, Melo LHMF, Norrara B, Almeida MAB, Freire KF, Melo AMMF, Oliveira LCD, Lima FOV, Engelberth RCGJ, Cavalcante JDS, Araújo DPD, Guzen FP, Freire MAM, Cavalcanti JRLP. S100B protein: general characteristics and pathophysiological implications in the Central Nervous System. Int J Neurosci 2020; 132:313-321. [DOI: 10.1080/00207454.2020.1807979] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ana Cristina Arrais
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, University of the State of Rio Grande do Norte, Mossoró, RN, Brazil
| | - Lívia Helena M. F. Melo
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, University of the State of Rio Grande do Norte, Mossoró, RN, Brazil
| | - Bianca Norrara
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, University of the State of Rio Grande do Norte, Mossoró, RN, Brazil
| | - Marina Abuquerque B. Almeida
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, University of the State of Rio Grande do Norte, Mossoró, RN, Brazil
| | - Kalina Fernandes Freire
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, University of the State of Rio Grande do Norte, Mossoró, RN, Brazil
| | - Acydalia Madruga M. F. Melo
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, University of the State of Rio Grande do Norte, Mossoró, RN, Brazil
| | - Lucidio Clebeson de Oliveira
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, University of the State of Rio Grande do Norte, Mossoró, RN, Brazil
| | - Francisca Overlânia Vieira Lima
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, University of the State of Rio Grande do Norte, Mossoró, RN, Brazil
| | - Rovena Clara G. J. Engelberth
- Laboratory of Neurochemical Studies, Department of Physiology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Jeferson de Souza Cavalcante
- Laboratory of Neurochemical Studies, Department of Physiology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Dayane Pessoa de Araújo
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, University of the State of Rio Grande do Norte, Mossoró, RN, Brazil
| | - Fausto Pierdoná Guzen
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, University of the State of Rio Grande do Norte, Mossoró, RN, Brazil
| | - Marco Aurelio M. Freire
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, University of the State of Rio Grande do Norte, Mossoró, RN, Brazil
| | - José Rodolfo L. P. Cavalcanti
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, University of the State of Rio Grande do Norte, Mossoró, RN, Brazil
| |
Collapse
|
35
|
Johnson BZ, McAlister S, McGuire HM, Palanivelu V, Stevenson A, Richmond P, Palmer DJ, Metcalfe J, Prescott SL, Wood FM, Fazekas de St Groth B, Linden MD, Fear MW, Fear VS. Pediatric Burn Survivors Have Long-Term Immune Dysfunction With Diminished Vaccine Response. Front Immunol 2020; 11:1481. [PMID: 32793203 PMCID: PMC7385079 DOI: 10.3389/fimmu.2020.01481] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/08/2020] [Indexed: 01/04/2023] Open
Abstract
Epidemiological studies have demonstrated that survivors of acute burn trauma are at long-term increased risk of developing a range of morbidities. The mechanisms underlying this increased risk remain unknown. This study aimed to determine whether burn injury leads to sustained immune dysfunction that may underpin long-term morbidity. Plasma and peripheral blood mononuclear cells were collected from 36 pediatric burn survivors >3 years after a non-severe burn injury (<10% total body surface area) and from age/sex-matched non-injured controls. Circulating cytokine and vaccine antibody levels were assessed using multiplex immunoassays and cell profiles compared using a panel of 40 metal-conjugated antibodies and mass cytometry. TNF-α (1.31-fold change from controls), IL-2 (1.18-fold), IL-7 (1.63-fold), and IFN-γ (1.18-fold) were all significantly elevated in the burn cohort. Additionally, burn survivors demonstrated diminished antibody responses to the diphtheria, tetanus, and pertussis vaccine antigens. Comparisons between groups using unsupervised clustering identified differences in proportions of clusters within T-cells, B-cells and myeloid cells. Manual gating confirmed increased memory T-regulatory and central memory CD4+ T-cells, with altered expression of T-cell, B-cell, and dendritic cell markers. Conclusions: This study demonstrates a lasting change to the immune profile of pediatric burn survivors, and highlights the need for further research into post-burn immune suppression and regulation.
Collapse
Affiliation(s)
- Blair Z Johnson
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Sonia McAlister
- School of Medicine, The University of Western Australia, Perth, WA, Australia.,Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, WA, Australia
| | - Helen M McGuire
- Ramaciotti Facility for Human Systems Biology and the Charles Perkins Centre, Discipline of Pathology, The University of Sydney, Sydney, NSW, Australia
| | | | - Andrew Stevenson
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Peter Richmond
- School of Medicine, The University of Western Australia, Perth, WA, Australia.,Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, WA, Australia
| | - Debra J Palmer
- School of Medicine, The University of Western Australia, Perth, WA, Australia.,Centre for Allergy and Immunology Research, Telethon Kids Institute, Perth, WA, Australia
| | - Jessica Metcalfe
- School of Medicine, The University of Western Australia, Perth, WA, Australia.,Centre for Allergy and Immunology Research, Telethon Kids Institute, Perth, WA, Australia
| | - Susan L Prescott
- School of Medicine, The University of Western Australia, Perth, WA, Australia.,Centre for Allergy and Immunology Research, Telethon Kids Institute, Perth, WA, Australia
| | - Fiona M Wood
- School of Medicine, The University of Western Australia, Perth, WA, Australia.,Department of Health WA, Perth, WA, Australia
| | - Barbara Fazekas de St Groth
- Ramaciotti Facility for Human Systems Biology and the Charles Perkins Centre, Discipline of Pathology, The University of Sydney, Sydney, NSW, Australia
| | - Matthew D Linden
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Mark W Fear
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Vanessa S Fear
- Genetic and Rare Diseases, Telethon Kids Institute, Perth, WA, Australia
| |
Collapse
|
36
|
Tandon PN. Unsolved Problems of Brain Trauma. Neurol India 2020; 68:534-539. [PMID: 32643658 DOI: 10.4103/0028-3886.288988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Prakash N Tandon
- National Brain Research Centre, Manesar, Gurugram, Haryana, India
| |
Collapse
|
37
|
Nagy EE, Frigy A, Szász JA, Horváth E. Neuroinflammation and microglia/macrophage phenotype modulate the molecular background of post-stroke depression: A literature review. Exp Ther Med 2020; 20:2510-2523. [PMID: 32765743 PMCID: PMC7401670 DOI: 10.3892/etm.2020.8933] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/05/2020] [Indexed: 12/16/2022] Open
Abstract
Increasing evidence hints to the central role of neuroinflammation in the development of post-stroke depression. Danger signals released in the acute phase of ischemia trigger microglial activation, along with the infiltration of neutrophils and macrophages. The increased secretion of proinflammatory cytokines interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor α (TNFα) provokes neuronal degeneration and apoptosis, whereas IL-6, interferon γ (IFNγ), and TNFα induce aberrant tryptophane degradation with the accumulation of the end-product quinolinic acid in resident glial cells. This promotes glutamate excitotoxicity via hyperexcitation of N-methyl-D-aspartate receptors and antagonizes 5-hydroxy-tryptamine, reducing synaptic plasticity and neuronal survival, thus favoring depression. In the post-stroke period, CX3CL1 and the CD200-CD200R interaction mediates the activation of glial cells, whereas CCL-2 attracts infiltrating macrophages. CD206 positive cells grant the removal of excessive danger signals; the high number of regulatory T cells, IL-4, IL-10, transforming growth factor β (TGFβ), and intracellular signaling via cAMP response element-binding protein (CREB) support the M2 type differentiation. In favorable conditions, these cells may exert efficient clearance, mediate tissue repair, and might be essential players in the downregulation of molecular pathways that promote post-stroke depression.
Collapse
Affiliation(s)
- Előd Ernő Nagy
- Department of Biochemistry and Environmental Chemistry, 'George Emil Palade' University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Attila Frigy
- Department of Internal Medicine IV, 'George Emil Palade' University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540103 Targu Mures, Romania
| | - József Attila Szász
- Neurology Clinic II, 'George Emil Palade' University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Emőke Horváth
- Department of Pathology, 'George Emil Palade' University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| |
Collapse
|
38
|
Disdier C, Awa F, Chen X, Dhillon SK, Galinsky R, Davidson JO, Lear CA, Bennet L, Gunn AJ, Stonestreet BS. Lipopolysaccharide-induced changes in the neurovascular unit in the preterm fetal sheep brain. J Neuroinflammation 2020; 17:167. [PMID: 32466771 PMCID: PMC7257152 DOI: 10.1186/s12974-020-01852-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/21/2020] [Indexed: 02/06/2023] Open
Abstract
Background Exposure to inflammation during pregnancy can predispose to brain injury in premature infants. In the present study, we investigated the effects of prolonged exposure to inflammation on the cerebrovasculature of preterm fetal sheep. Methods Chronically instrumented fetal sheep at 103–104 days of gestation (full term is ~ 147 days) received continuous low-dose lipopolysaccharide (LPS) infusions (100 ng/kg over 24 h, followed by 250 ng/kg/24 h for 96 h plus boluses of 1 μg LPS at 48, 72, and 96 h) or the same volume of normal saline (0.9%, w/v). Ten days after the start of LPS exposure at 113–114 days of gestation, the sheep were killed, and the fetal brain perfused with formalin in situ. Vessel density, pericyte and astrocyte coverage of the blood vessels, and astrogliosis in the cerebral cortex and white matter were determined using immunohistochemistry. Results LPS exposure reduced (P < 0.05) microvascular vessel density and pericyte vascular coverage in the cerebral cortex and white matter of preterm fetal sheep, and increased the activation of perivascular astrocytes, but decreased astrocytic vessel coverage in the white matter. Conclusions Prolonged exposure to LPS in preterm fetal sheep resulted in decreased vessel density and neurovascular remodeling, suggesting that chronic inflammation adversely affects the neurovascular unit and, therefore, could contribute to long-term impairment of brain development.
Collapse
Affiliation(s)
- Clémence Disdier
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, Alpert Medical School of Brown University, 101 Dudley Street, Providence, RI, 02905, USA
| | - Fares Awa
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, Alpert Medical School of Brown University, 101 Dudley Street, Providence, RI, 02905, USA
| | - Xiaodi Chen
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, Alpert Medical School of Brown University, 101 Dudley Street, Providence, RI, 02905, USA
| | | | - Robert Galinsky
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Christopher A Lear
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Barbara S Stonestreet
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, Alpert Medical School of Brown University, 101 Dudley Street, Providence, RI, 02905, USA.
| |
Collapse
|
39
|
Rhie SJ, Jung EY, Shim I. The role of neuroinflammation on pathogenesis of affective disorders. J Exerc Rehabil 2020; 16:2-9. [PMID: 32161729 PMCID: PMC7056473 DOI: 10.12965/jer.2040016.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 02/10/2020] [Indexed: 12/31/2022] Open
Abstract
Accumulating evidence suggests that neuroinflammation plays an important role in etiology of psychiatric disorders. Neuronflammation involves a combination of psychological, neuroendocrine, and nervous systems resulting in changes of neurotransmitter metabolism, dysregulation of the hypothalamuspituitary-adrenal axis, pathologic microglial cell activation, impaired neuroplasticity, and structural and functional brain changes affecting cognition and emotional behavior. Inflammatory cytokines have been postulated to be the possible link and culprit in the disruption of these systems. The outcome of any type of dysregulation of the immune system in the brain might lead to occurrence of depression, anxiety. This review focuses on the possible impact of dysregulated cytokine networks which may cause pathogenesis of affective disorders such as depression and anxiety.
Collapse
Affiliation(s)
- Sung Ja Rhie
- Department of Beauty and Health, Halla University, Wonju, Korea
| | - Eun-Yee Jung
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Insop Shim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|
40
|
Saadi M, Karkhah A, Pourabdolhossein F, Ataie A, Monif M, Nouri HR. Involvement of NLRC4 inflammasome through caspase-1 and IL-1β augments neuroinflammation and contributes to memory impairment in an experimental model of Alzheimer's like disease. Brain Res Bull 2020; 154:81-90. [DOI: 10.1016/j.brainresbull.2019.10.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/21/2019] [Accepted: 10/26/2019] [Indexed: 12/11/2022]
|
41
|
Exercise and Neuroinflammation in Health and Disease. Int Neurourol J 2019; 23:S82-92. [PMID: 31795607 PMCID: PMC6905205 DOI: 10.5213/inj.1938214.107] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/08/2019] [Indexed: 12/14/2022] Open
Abstract
Neuroinflammation is a central pathological feature of several acute and chronic brain diseases, including Alzheimer disease (AD), Parkinson disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). It induces microglia activation, mitochondrial dysfunction, the production of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), pro-inflammatory cytokines, and reactive oxygen species. Exercise, which plays an important role in maintaining and improving brain health, might be a highly effective intervention for preventing neuroinflammation-related diseases. Thus, since exercise can improve the neuroimmune response, we hypothesized that exercise would attenuate neuroinflammation-related diseases. In this review, we will highlight (1) the biological mechanisms that underlie AD, PD, ALS, and MS, including the neuroinflammation pathways associated with microglia activation, NF-κB, pro-inflammatory cytokines, mitochondrial dysfunction, and reactive oxygen species, and (2) the role of exercise in neuroinflammation-related neurodegenerative diseases.
Collapse
|
42
|
Kempuraj D, Selvakumar GP, Thangavel R, Ahmed ME, Zaheer S, Kumar KK, Yelam A, Kaur H, Dubova I, Raikwar SP, Iyer SS, Zaheer A. Glia Maturation Factor and Mast Cell-Dependent Expression of Inflammatory Mediators and Proteinase Activated Receptor-2 in Neuroinflammation. J Alzheimers Dis 2019; 66:1117-1129. [PMID: 30372685 DOI: 10.3233/jad-180786] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is characterized by the presence of inflammation-mediated dopaminergic neurodegeneration in the substantia nigra. Inflammatory mediators from activated microglia, astrocytes, neurons, T-cells and mast cells mediate neuroinflammation and neurodegeneration. Administration of neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induces PD like motor deficits in rodents. 1-methyl-4-phenylpyridinium (MPP+), a toxic metabolite of MPTP activates glial cells, neurons and mast cells to release neuroinflammatory mediators. Glia maturation factor (GMF), mast cells and proteinase activated receptor-2 (PAR-2) are implicated in neuroinflammation. Alpha-synuclein which induces neurodegeneration increases PAR-2 expression in the brain. However, the exact mechanisms are not yet understood. In this study, we quantified inflammatory mediators in the brains of MPTP-administered wild type (Wt), GMF-knockout (GMF-KO), and mast cell knockout (MC-KO) mice. Additionally, we analyzed the effect of MPP+, GMF, and mast cell proteases on PAR-2 expression in astrocytes and neurons in vitro. Results show that the levels of interleukin-1beta (IL-1β), tumor necrosis factor-alpha (TNF-α), and the chemokine (C-C motif) ligand 2 (CCL2) were lesser in the brains of GMF-KO mice and MC-KO mice when compared to Wt mice brain after MPTP administration. Incubation of astrocytes and neurons with MPP+, GMF, and mouse mast cell protease-6 (MMCP-6) and MMCP-7 increased the expression of PAR-2. Our studies show that the absence of mast cells and GMF reduce the expression of neuroinflammatory mediators in the brain. We conclude that GMF along with mast cell interactions with glial cells and neurons during neuroinflammation can be explored as a new therapeutic target for PD and other neuroinflammatory disorders.
Collapse
Affiliation(s)
- Duraisamy Kempuraj
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA.,Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Govindhasamy Pushpavathi Selvakumar
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA.,Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Ramasamy Thangavel
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA.,Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Mohammad Ejaz Ahmed
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA.,Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Smita Zaheer
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Keerthana Kuppamma Kumar
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Anudeep Yelam
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Harleen Kaur
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Iuliia Dubova
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Sudhanshu P Raikwar
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA.,Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Shankar S Iyer
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA.,Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Asgar Zaheer
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA.,Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
43
|
Zhang Y, Yuan L, Chen Y, Lin C, Ye G. Oxyntomodulin attenuates TNF‑α induced neuropathic pain by inhibiting the activation of the NF‑κB pathway. Mol Med Rep 2019; 20:5223-5228. [PMID: 31661136 DOI: 10.3892/mmr.2019.10770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/08/2019] [Indexed: 11/06/2022] Open
Abstract
Neuropathic pain is rarely diagnosed. Oxyntomodulin is peripherally and centrally distributed; however, the potential mechanisms underlying the effects of oxyntomodulin in attenuating nociception remain unclear; thus, we aimed to explore them in the present study. A neuropathic pain model in male C57BL/6 mice was induced by intrathecal injection of tumor necrosis factor‑α (TNF‑α), and the duration of nociceptive behavioral responses was measured with a stop‑watch timer within 30 min. Western blotting was used to explore the protein levels of ionized calcium binding adaptor molecule‑1 (IBA1), nuclear factor‑κB (NF‑κB) phosphorylated‑p65, interleukin (IL)‑6 and IL‑1β. We performed reverse transcription‑quantitative polymerase chain reaction and ELISA were performed to determine the mRNA and protein expression levels of IL‑6 and IL‑1β, respectively. An MTT assay was conducted to detect BV2 cell viability. Oxyntomodulin was observed to attenuate TNF‑α‑induced pain hypersensitivity in mice, as well as the expression of IBA1, NF‑κB p‑p65, IL‑6 and IL‑1β in the spinal cord. Oxyntomodulin exhibited no cytotoxicity on BV2 cells, and attenuated TNF‑α‑induced IL‑6 and IL‑1β production and release in BV2 cells and culture medium, respectively. Collectively, we proposed oxyntomodulin to attenuate TNF‑α induced neuropathic pain associated with the release of glial cytokines IL‑6 and IL‑1β via inhibiting the activation of the NF‑κB pathway.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Anesthesiology, Ningbo No. 6 Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Liyong Yuan
- Department of Anesthesiology, Ningbo No. 6 Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Yuebo Chen
- Department of Anesthesiology, Ningbo No. 6 Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Chunyan Lin
- Department of Anesthesiology, Ningbo No. 6 Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Guangyao Ye
- Department of Anesthesiology, Ningbo No. 6 Hospital, Ningbo, Zhejiang 315040, P.R. China
| |
Collapse
|
44
|
Coppola T, Beraud-Dufour S, Lebrun P, Blondeau N. Bridging the Gap Between Diabetes and Stroke in Search of High Clinical Relevance Therapeutic Targets. Neuromolecular Med 2019; 21:432-444. [PMID: 31489567 DOI: 10.1007/s12017-019-08563-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/13/2019] [Indexed: 12/20/2022]
Abstract
Diabetes affects more than 425 million people worldwide, a scale approaching pandemic proportion. Diabetes represents a major risk factor for stroke, and therefore is actively addressed for stroke prevention. However, how diabetes affects stroke severity has not yet been extensively considered, which is surprising given the evident but understudied common mechanistic features of both pathologies. The increase in number of diabetic people, incidence of stroke in the presence of this specific risk factor, and the exacerbation of ischemic brain damage in diabetic conditions (at least in animal models) warrants the need to integrate this comorbidity in preclinical studies of brain ischemia to develop novel therapeutic approaches. Therefore, a better understanding of the commonalties involved in the course of both diseases would offer the promise of discovering novel neuroprotective pathways that would be more appropriated to clinical scenarios. In this article, we will review the relevant mechanisms that have been identified as common traits of both pathologies and that could be, to our knowledge, potential targets in both pathologies.
Collapse
Affiliation(s)
- Thierry Coppola
- Université Côte d'Azur, CNRS, IPMC, 660 route des Lucioles, 06560, Valbonne, France.
| | - Sophie Beraud-Dufour
- Université Côte d'Azur, CNRS, IPMC, 660 route des Lucioles, 06560, Valbonne, France
| | - Patricia Lebrun
- Université Côte d'Azur, CNRS, IPMC, 660 route des Lucioles, 06560, Valbonne, France
| | - Nicolas Blondeau
- Université Côte d'Azur, CNRS, IPMC, 660 route des Lucioles, 06560, Valbonne, France.
| |
Collapse
|
45
|
Jin X, Wang T, Liao Y, Guo J, Wang G, Zhao F, Jin Y. Neuroinflammatory Reactions in the Brain of 1,2-DCE-Intoxicated Mice during Brain Edema. Cells 2019; 8:cells8090987. [PMID: 31461951 PMCID: PMC6770564 DOI: 10.3390/cells8090987] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 08/24/2019] [Accepted: 08/26/2019] [Indexed: 12/19/2022] Open
Abstract
We previously reported that expression of matrix metalloproteinase-9 (MMP-9) mRNA and protein was upregulated during 1,2-dichloroethane (1,2-DCE) induced brain edema in mice. We also found that the p38 mitogen-activated protein kinase (p38 MAPK) signaling pathway resulted in MMP-9 overexpression and nuclear factor-κB (NF-κB) activation in mice treated with 1,2-DCE. In this study, we further hypothesized that inflammatory reactions mediated by the p38 MAPK/ NF-κB signaling pathway might be involved in MMP-9 overexpression, blood–brain barrier (BBB) disruption and edema formation in the brain of 1,2-DCE-intoxicated mice. Our results revealed that subacute poisoning by 1,2-DCE upregulates protein levels of glial fibrillary acidic protein (GFAP), ionized calcium-binding adapter molecule 1 (Iba-1), interleukin-1β (IL-1β), vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), inducible nitric oxide synthase (iNOS) and p-p65 in mouse brains. Pretreatment with an inhibitor against p38 MAPK attenuates these changes. Moreover, pretreatment with an inhibitor against NF-κB attenuates alterations in brain water content, pathological indications notable in brain edema, as well as mRNA and protein expression on levels of MMP-9, VCAM-1, ICAM-1, iNOS, and IL-1β, tight junction proteins (TJs), GFAP and Iba-1 in the brain of 1,2-DCE-intoxicated mice. Furthermore, pretreatment with an inhibitor against MMP-9 obstructs the decrease of TJs in the brain of 1,2-DCE-intoxicated mice. Lastly, pretreatment with an antagonist against the IL-1β receptor also attenuates changes in protein levels of p-p38 MAPK, p-p65, p-IκB, VCAM -1, ICAM-1, IL-1β, and Iba-1 in the brain of 1,2-DCE-intoxicated-mice. Taken together, findings from the current study indicate that the p38 MAPK/ NF-κB signaling pathway might be involved in the activation of glial cells, and the overproduction of proinflammatory factors, which might induce inflammatory reactions in the brain of 1,2-DCE-intoxicated mice that leads to brain edema.
Collapse
Affiliation(s)
- Xiaoxia Jin
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China
- Department of Occupational and Environmental Health, School of Public Health, Shenyang Medical College, Shenyang 110034, Liaoning Province, China
| | - Tong Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China
| | - Yingjun Liao
- Department of Physiology, China Medical University, Shenyang 110122, Liaoning, China
| | - Jingjing Guo
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China
| | - Gaoyang Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China
| | - Fenghong Zhao
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China
| | - Yaping Jin
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China.
| |
Collapse
|
46
|
Klotho Ameliorates Cellular Inflammation via Suppression of Cytokine Release and Upregulation of miR-29a in the PBMCs of Diagnosed Alzheimer's Disease Patients. J Mol Neurosci 2019; 69:157-165. [PMID: 31197641 DOI: 10.1007/s12031-019-01345-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/22/2019] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder characterized by neural inflammation and oxidative stress. In the current study, the protective effects of klotho and linagliptin treatment on human peripheral blood mononuclear cells (PBMCs) of AD patients and healthy controls (HCs) are assessed through measurement of inflammatory cytokines, signaling proteins, and miRNA expression. Sixteen diagnosed AD patients and sixteen HCs were enrolled in the study. Blood samples were obtained and PBMCs were isolated. PBMCs were treated with klotho at different concentrations (0.5, 1, and 2 nM) and linagliptin (50 μM). The concentration of interleukin-1β (IL-1β), interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-α), epsilon isoform of protein kinase C (PKCε), phosphorylated cyclic AMP response element binding (pCREB), and Wnt1 were measured by ELISA. The expression of miR-29a and miR-195 was detected by real-time PCR. The results showed that klotho significantly reduced IL-1β, IL-6, and TNF-α levels in both groups of the experiment. Linagliptin also remarkably reduced TNF-α levels in the AD group. Moreover, klotho caused the downregulation of Wnt1 in the PBMCs of both groups and the upregulation of the pCREB in HCs. Meanwhile, klotho induced miR-29a expression in the PBMCs of HCs, while miR-29a expression was induced in the AD group by klotho and linagliptin. The current findings revealed that klotho alleviates inflammation in human PBMCs, probably through the suppression of inflammatory cytokines and the upregulation of miR-29a, and part of its beneficial effect is mediated through appropriate modulation of the Wnt1/pCREB signaling cascade. In addition, linagliptin exerts protective effects by reducing TNF-α and inducing miR-29a expression in PBMCs.
Collapse
|
47
|
Zhou J, Noori H, Burkovskiy I, Lafreniere JD, Kelly MEM, Lehmann C. Modulation of the Endocannabinoid System Following Central Nervous System Injury. Int J Mol Sci 2019; 20:E388. [PMID: 30658442 PMCID: PMC6359397 DOI: 10.3390/ijms20020388] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/08/2019] [Indexed: 12/12/2022] Open
Abstract
Central nervous system (CNS) injury, such as stroke or trauma, is known to increase susceptibility to various infections that adversely affect patient outcomes (CNS injury-induced immunodepression-CIDS). The endocannabinoid system (ECS) has been shown to have immunoregulatory properties. Therefore, the ECS might represent a druggable target to overcome CIDS. Evidence suggests that cannabinoid type 2 receptor (CB₂R) activation can be protective during the early pro-inflammatory phase after CNS injury, as it limits neuro-inflammation and, therefore, attenuates CIDS severity. In the later phase post CNS injury, CB₂R inhibition is suggested as a promising pharmacologic strategy to restore immune function in order to prevent infection.
Collapse
Affiliation(s)
- Juan Zhou
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| | - Haneen Noori
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| | - Ian Burkovskiy
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| | - J Daniel Lafreniere
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| | - Melanie E M Kelly
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada.
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| | - Christian Lehmann
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada.
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
48
|
Cheng L, Chen Z, Wang L, Lan Y, Zheng L, Wu F. Propofol partially attenuates complete freund's adjuvant‐induced neuroinflammation through inhibition of the ERK1/2/NF‐κB pathway. J Cell Biochem 2018; 120:9400-9408. [PMID: 30536812 DOI: 10.1002/jcb.28215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/15/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Lijian Cheng
- Department of Anesthesiology Quzhou Hospital of Zhejiang University School of Medicine Quzhou China
| | - Zhenhong Chen
- Department of Oncology Quzhou Hospital of Zhejiang University School of Medicine Quzhou China
| | - Lihua Wang
- Department of Vascular Surgery Quzhou Hospital of Zhejiang University School of Medicine Quzhou China
| | - Yunping Lan
- Department of Anesthesiology Quzhou Hospital of Zhejiang University School of Medicine Quzhou China
| | - Lihua Zheng
- Department of Anesthesiology Quzhou Hospital of Zhejiang University School of Medicine Quzhou China
| | - Fangpu Wu
- Department of Anesthesiology Quzhou Hospital of Zhejiang University School of Medicine Quzhou China
| |
Collapse
|
49
|
Maternal Cognitive Impairment Associated with Gestational Diabetes Mellitus-A Review of Potential Contributing Mechanisms. Int J Mol Sci 2018; 19:ijms19123894. [PMID: 30563117 PMCID: PMC6321050 DOI: 10.3390/ijms19123894] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/14/2018] [Accepted: 11/29/2018] [Indexed: 12/16/2022] Open
Abstract
Gestational diabetes mellitus (GDM) carries many risks, where high blood pressure, preeclampsia and future type II diabetes are widely acknowledged, but less focus has been placed on its effect on cognitive function. Although the multifactorial pathogenesis of maternal cognitive impairment is not completely understood, it shares several features with type 2 diabetes mellitus (T2DM). In this review, we discuss some key pathophysiologies of GDM that may lead to cognitive impairment, specifically hyperglycemia, insulin resistance, oxidative stress, and neuroinflammation. We explain how these incidents: (i) impair the insulin-signaling pathway and/or (ii) lead to cognitive impairment through hyperphosphorylation of τ protein, overexpression of amyloid-β and/or activation of microglia. The aforementioned pathologies impair the insulin-signaling pathway primarily through serine phosphorylation of insulin receptor substances (IRS). This then leads to the inactivation of the phosphatidylinositol 3-kinase/Protein kinase B (PI3K/AKT) signaling cascade, which is responsible for maintaining brain homeostasis and normal cognitive functioning. PI3K/AKT is crucial in maintaining normal cognitive function through the inactivation of glycogen synthase kinase 3β (GSκ3β), which hyperphosphorylates τ protein and releases pro-inflammatory cytokines that are neurotoxic. Several biomarkers were also highlighted as potential biomarkers of GDM-related cognitive impairment such as AGEs, serine-phosphorylated IRS-1 and inflammatory markers such as tumor necrosis factor α (TNF-α), high-sensitivity C-reactive protein (hs-CRP), leptin, interleukin 1β (IL-1β), and IL-6. Although GDM is a transient disease, its complications may be long-term, and hence increased mechanistic knowledge of the molecular changes contributing to cognitive impairment may provide important clues for interventional strategies.
Collapse
|
50
|
Wang J, Jin Y, Li J. Protective role of fentanyl in lipopolysaccharide-induced neuroinflammation in BV-2 cells. Exp Ther Med 2018; 16:3740-3744. [PMID: 30233733 DOI: 10.3892/etm.2018.6590] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 07/30/2018] [Indexed: 12/31/2022] Open
Abstract
Neurosurgery always results in neuroinflammation, which may activate microglial cells. Previous studies have demonstrated that fentanyl could be used for the induction or maintenance of anesthesia prior to surgery. However, it is unknown if fentanyl attenuates neuroinflammation prophylactically. Cell viability in groups that were treated with different concentrations of fentanyl (0.01, 0.1, 1 or 5 µmol/l) was analyzed by an MTT assay. BV-2 microglial cells were treated with lipopolysaccharide (LPS) at a concentration of 1 µg/ml to mimic neuroinflammation in vitro. BV-2 cells were pretreated with 5 µmol/l fentanyl prior to stimulation by LPS. The protein levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-10 in the culture medium were assessed by ELISA. The mRNA level of toll-like receptor (TLR)4 was evaluated by reverse transcription-quantitative polymerase chain reaction analysis. The protein levels of TLR4, glycogen synthase kinase (GSK)-3β and phosphorylated (p)-GSK-3β in BV-2 cells were assessed by western blot analysis. The MTT assay demonstrated that low concentrations of fentanyl (0.01, 0.1 or 1 µmol/l) did not affect the cell viability of BV-2 cells, while 5 µmol/l fentanyl significantly reduced BV-2 cell viability. The results of ELISA revealed that LPS significantly upregulated the release of TNF-α, IL-1β and IL-10, which were repressed by fentanyl pretreatment. Fentanyl pretreatment significantly reduced the LPS-induced elevation of TLR4 at mRNA and protein levels as well as p-GSK-3β protein levels in BV-2 cells. In conclusion, fentanyl pretreatment protects BV-2 cells from LPS-induced neuroinflammation by inhibiting TLR4 expression and GSK-3β activation. Neuroinflammation induced by surgery serves an important role in the development of postoperative cognitive dysfunction (POCD) and targeting the TLR4 and GSK-3β signaling pathway may provide a novel therapeutic approach for the treatment of POCD.
Collapse
Affiliation(s)
- Jian Wang
- Department of Anesthesiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Yingjie Jin
- Department of Anesthesiology, Shengze Hospital of Jiangsu, Suzhou, Jiangsu 215228, P.R. China
| | - Jianchun Li
- Department of Anesthesiology, Shengze Hospital of Jiangsu, Suzhou, Jiangsu 215228, P.R. China
| |
Collapse
|