1
|
Melero-Jiménez IJ, Sorokin Y, Merlin A, Li J, Couce A, Friedman J. Mutualism breakdown underpins evolutionary rescue in an obligate cross-feeding bacterial consortium. Nat Commun 2025; 16:3482. [PMID: 40216843 PMCID: PMC11992082 DOI: 10.1038/s41467-025-58742-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
Populations facing lethal environmental change can escape extinction through rapid genetic adaptation, a process known as evolutionary rescue. Despite extensive study, evolutionary rescue is largely unexplored in mutualistic communities, where it is likely constrained by the less adaptable partner. Here, we explored empirically the likelihood, population dynamics, and genetic mechanisms underpinning evolutionary rescue in an obligate mutualism involving cross-feeding of amino acids between auxotrophic Escherichia coli strains. We found that over 80% of populations overcame a severe decline when exposed to two distinct types of abrupt, lethal stress. Of note, in all cases only one of the strains survived by metabolically bypassing the auxotrophy. Crucially, the mutualistic consortium exhibited greater sensitivity to both stressors than a prototrophic control strain, such that reversion to autonomy was sufficient to alleviate stress below lethal levels. This sensitivity was common across other stresses, suggesting it may be a general feature of amino acid-dependent obligate mutualisms. Our results reveal that evolutionary rescue may depend critically on the specific genetic and physiological details of the interacting partners, adding rich layers of complexity to the endeavor of predicting the fate of microbial communities facing intense environmental deterioration.
Collapse
Affiliation(s)
- Ignacio J Melero-Jiménez
- Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel.
- Departamento de Botánica y Fisiología Vegetal, Universidad de Málaga, Campus de Teatinos s/n, 29071, Málaga, Spain.
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM), 28223, Madrid, Spain.
| | - Yael Sorokin
- Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ami Merlin
- Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Jiawei Li
- Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Alejandro Couce
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM), 28223, Madrid, Spain.
| | - Jonathan Friedman
- Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
2
|
Xu CCY, Fugère V, Barbosa da Costa N, Beisner BE, Bell G, Cristescu ME, Fussmann GF, Gonzalez A, Shapiro BJ, Barrett RDH. Pre-exposure to stress reduces loss of community and genetic diversity following severe environmental disturbance. Curr Biol 2025; 35:1061-1073.e4. [PMID: 39933522 DOI: 10.1016/j.cub.2025.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/10/2024] [Accepted: 01/17/2025] [Indexed: 02/13/2025]
Abstract
Environmental stress caused by anthropogenic impacts is increasing worldwide. Understanding the ecological and evolutionary consequences for biodiversity will be crucial for our ability to respond effectively. Historical exposure to environmental stress is expected to select for resistant species, shifting community composition toward more stress-tolerant taxa. Concurrent with this species sorting process, genotypes within resistant taxa that have the highest relative fitness under severe stress are expected to increase in frequency, leading to evolutionary adaptation. However, empirical demonstrations of these dual ecological and evolutionary processes in natural communities are rare. Here, we provide evidence for simultaneous species sorting and evolutionary adaptation across multiple species within a natural freshwater bacterial community. Using a two-phase stressor experimental design (acidification pre-exposure followed by severe acidification) in aquatic mesocosms, we show that pre-exposed communities were more resistant than naive communities to taxonomic loss when faced with severe acid stress. However, after sustained severe acidification, taxonomic richness of both pre-exposed and naive communities eventually converged. All communities experiencing severe acidification became dominated by an acidophilic bacterium, Acidiphilium rubrum, but this species retained greater genetic diversity and followed distinct evolutionary trajectories in pre-exposed relative to naive communities. These patterns were shared across other acidophilic species, providing repeated evidence for the impact of pre-exposure on evolutionary outcomes despite the convergence of community profiles. Our results underscore the need to consider both ecological and evolutionary processes to accurately predict the responses of natural communities to environmental change.
Collapse
Affiliation(s)
- Charles C Y Xu
- Department of Biology, McGill University Montreal, Montreal, QC H3A 1B1, Canada.
| | - Vincent Fugère
- Department of Biology, McGill University Montreal, Montreal, QC H3A 1B1, Canada; Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Montreal, QC H3C 3J7, Canada; Department of Biological Sciences, University of Québec at Montreal, Montreal, QC H2V 0B3, Canada; Département des sciences de l'environnement, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 4M3, Canada
| | - Naíla Barbosa da Costa
- Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Montreal, QC H3C 3J7, Canada; Département des Sciences Biologiques, Université de Montréal, Montreal, QC H2V 0B3, Canada
| | - Beatrix E Beisner
- Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Montreal, QC H3C 3J7, Canada; Department of Biological Sciences, University of Québec at Montreal, Montreal, QC H2V 0B3, Canada
| | - Graham Bell
- Department of Biology, McGill University Montreal, Montreal, QC H3A 1B1, Canada
| | - Melania E Cristescu
- Department of Biology, McGill University Montreal, Montreal, QC H3A 1B1, Canada; Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Montreal, QC H3C 3J7, Canada
| | - Gregor F Fussmann
- Department of Biology, McGill University Montreal, Montreal, QC H3A 1B1, Canada; Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Montreal, QC H3C 3J7, Canada
| | - Andrew Gonzalez
- Department of Biology, McGill University Montreal, Montreal, QC H3A 1B1, Canada
| | - B Jesse Shapiro
- Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Montreal, QC H3C 3J7, Canada; Department of Microbiology and Immunology, McGill University Montreal, Montreal, QC H3A 2B4, Canada; McGill Genome Centre, McGill University Montreal, Montreal, QC H3A 0G1, Canada
| | - Rowan D H Barrett
- Department of Biology, McGill University Montreal, Montreal, QC H3A 1B1, Canada.
| |
Collapse
|
3
|
Park J, Brown C, Hess C, Armstrong M, Galvez F, Whitehead A. Multiple stressors in the Anthropocene: Urban evolutionary history modifies sensitivity to the toxic effects of crude oil exposure in killifish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.25.640141. [PMID: 40060406 PMCID: PMC11888386 DOI: 10.1101/2025.02.25.640141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Persistence of wild species in human-altered environments is difficult, in part because challenges to fitness are complex when multiple environmental changes occur simultaneously, which is common in the Anthropocene. This complexity is difficult to conceptualize because the nature of environmental change is often highly context specific. A mechanism-guided approach may help to shape intuition and predictions about complexity; fitness challenges posed by co-occurring stressors with similar mechanisms of action may be less severe than for those with different mechanisms of action. We approach these considerations within the context of ecotoxicology because this field is built upon a rich mechanistic foundation. We hypothesized that evolved resistance to one class of common toxicants would afford resilience to the fitness impacts of another class of common toxicants that shares mechanisms of toxicity. Fundulus killifish populations in urban estuaries have repeatedly evolved resistance to persistent organic pollutants including PCBs. Since PCBs and some of the toxicants that constitute crude oil (e.g., high molecular weight PAHs) exert toxicity through perturbation of AHR signaling, we predicted that PCB resistant populations would also be resilient to crude oil toxicity. Common garden comparative oil exposure experiments, including killifish populations with different exposure histories, showed that most killifish populations were sensitive to fitness impacts (reproduction and development) caused by oil exposure, but that fish from the PCB-resistant population were insensitive. Population differences in toxic outcomes were not compatible with random-neutral expectations. Transcriptomics revealed that the molecular mechanisms that contributed to population variation in PAH resilience were shared with those that contribute to evolved variation in PCB resilience. We conclude that the fitness challenge posed by environmental pollutants is effectively reduced when those chemicals share mechanisms that affect fitness. Mechanistic considerations may help to scale predictions regarding the fitness challenges posed by stressors that may co-occur in human-altered environments.
Collapse
Affiliation(s)
- Jane Park
- Department of Environmental Toxicology, University of California Davis, Davis, CA 95616, USA
| | - Charles Brown
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Chelsea Hess
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Madison Armstrong
- Department of Evolution and Ecology, University of California Davis, Davis, CA 95616, USA
| | - Fernando Galvez
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Andrew Whitehead
- Department of Environmental Toxicology, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
4
|
Black KL, Bay LK, Matz MV. A Genetic Variant of Delta-9 Desaturase Is Associated With Latitudinal Adaptation in a Coral from the Great Barrier Reef. Mol Ecol 2025; 34:e17634. [PMID: 39717908 DOI: 10.1111/mec.17634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/06/2024] [Accepted: 12/16/2024] [Indexed: 12/25/2024]
Abstract
Coral populations across the Great Barrier Reef (GBR) could rapidly adapt to the warming climate if they have standing genetic variation for thermal tolerance. Here, we describe a locus likely involved in latitudinal adaptation of Acropora millepora. This locus shows a steep latitudinal gradient of derived allele frequency increasing at higher latitudes, and harbours a cluster of eight tandemly repeated Δ9-desaturase genes adjacent to a region in the genome where a hard selective sweep likely occurred. In colonies reciprocally transplanted across 4.5° of latitude, the expression of Δ9-desaturase is upregulated at the high-latitude reef. Furthermore, corals from the low-latitude reef bearing the derived Δ9-desaturase allele express the gene more and grow faster than their peers when transplanted to the high-latitude reef. In other organisms ranging from bacteria to fish, Δ9-desaturase is upregulated under cold conditions to adjust membrane fluidity by introducing double bonds into fatty acid chains of membrane lipids. It is therefore plausible that the signal of latitudinal adaptation at the Δ9-desaturase locus is due to its involvement in adaptation to cooler temperatures at higher latitudes.
Collapse
Affiliation(s)
- Kristina L Black
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Line K Bay
- Reef Recovery, Adaptation, and Restoration, Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Mikhail V Matz
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
5
|
Lu Z, Entwistle E, Kuhl MD, Durrant AR, Barreto Filho MM, Goswami A, Morris JJ. Coevolution of marine phytoplankton and Alteromonas bacteria in response to pCO2 and coculture. THE ISME JOURNAL 2025; 19:wrae259. [PMID: 39716385 PMCID: PMC11748131 DOI: 10.1093/ismejo/wrae259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/19/2024] [Accepted: 12/26/2024] [Indexed: 12/25/2024]
Abstract
As a result of human activity, Earth's atmosphere and climate are changing at an unprecedented pace. Models based on short-term experiments predict major changes will occur in marine phytoplankton communities in the future ocean, but rarely consider how evolution or interactions with other microbes may influence these changes. Here, we experimentally evolved several phytoplankton in coculture with a heterotrophic bacterium, Alteromonas sp. EZ55, under either present-day or predicted future pCO2 conditions. Growth rates of phytoplankton generally increased over time under both conditions, but only Thalassiosira oceanica had evidence of a growth rate tradeoff in the ancestral environment after evolution at elevated pCO2. The growth defects observed in ancestral Prochlorococcus cultures at elevated pCO2 and in axenic culture were diminished after evolution, possibly due to regulatory mutations in antioxidant genes. Except for Prochlorococcus, mutational profiles suggested phytoplankton experienced primarily purifying selection, but most Alteromonas lineages showed evidence of directional selection, where evolution appeared to favor a metabolic switch between growth on small organic acids with cyanobacteria versus catabolism of more complex carbon substrates with eukaryotic phytoplankton. Evolved Alteromonas were also poorer "helpers" for Prochlorococcus, consistent with that interaction being a competitive Black Queen process rather than a true mutualism. This work provides new insights on how phytoplankton will respond to increased pCO2 and on the evolutionary mechanisms governing phytoplankton:bacteria interactions. It also clearly demonstrates that both evolution and interspecies interactions must be considered to predict future marine biogeochemistry.
Collapse
Affiliation(s)
- Zhiying Lu
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Elizabeth Entwistle
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Matthew D Kuhl
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Alexander R Durrant
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | | | - Anuradha Goswami
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - J Jeffrey Morris
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| |
Collapse
|
6
|
Blake C, Barber JN, Connallon T, McDonald MJ. Evolutionary shift of a tipping point can precipitate, or forestall, collapse in a microbial community. Nat Ecol Evol 2024; 8:2325-2335. [PMID: 39294402 DOI: 10.1038/s41559-024-02543-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/21/2024] [Indexed: 09/20/2024]
Abstract
Global ecosystems are rapidly approaching tipping points, where minute shifts can lead to drastic ecological changes. Theory predicts that evolution can shape a system's tipping point behaviour, but direct experimental support is lacking. Here we investigate the power of evolutionary processes to alter these critical thresholds and protect an ecological community from collapse. To do this, we propagate a two-species microbial system composed of Escherichia coli and baker's yeast, Saccharomyces cerevisiae, for over 4,000 generations, and map ecological stability before and after coevolution. Our results reveal that tipping points-and other geometric properties of ecological communities-can evolve to alter the range of conditions under which our microbial community can flourish. We develop a mathematical model to illustrate how evolutionary changes in parameters such as growth rate, carrying capacity and resistance to environmental change affect ecological resilience. Our study shows that adaptation of key species can shift an ecological community's tipping point, potentially promoting ecological stability or accelerating collapse.
Collapse
Affiliation(s)
- Christopher Blake
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Jake N Barber
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Tim Connallon
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Michael J McDonald
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
7
|
Gaczorek T, Dudek K, Fritz U, Bahri-Sfar L, Baird SJE, Bonhomme F, Dufresnes C, Gvoždík V, Irwin D, Kotlík P, Marková S, McGinnity P, Migalska M, Moravec J, Natola L, Pabijan M, Phillips KP, Schöneberg Y, Souissi A, Radwan J, Babik W. Widespread Adaptive Introgression of Major Histocompatibility Complex Genes across Vertebrate Hybrid Zones. Mol Biol Evol 2024; 41:msae201. [PMID: 39324637 PMCID: PMC11472244 DOI: 10.1093/molbev/msae201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/23/2024] [Accepted: 09/23/2024] [Indexed: 09/27/2024] Open
Abstract
Interspecific introgression is a potentially important source of novel variation of adaptive significance. Although multiple cases of adaptive introgression are well documented, broader generalizations about its targets and mechanisms are lacking. Multiallelic balancing selection, particularly when acting through rare allele advantage, is an evolutionary mechanism expected to favor adaptive introgression. This is because introgressed alleles are likely to confer an immediate selective advantage, facilitating their establishment in the recipient species even in the face of strong genomic barriers to introgression. Vertebrate major histocompatibility complex genes are well-established targets of long-term multiallelic balancing selection, so widespread adaptive major histocompatibility complex introgression is expected. Here, we evaluate this hypothesis using data from 29 hybrid zones formed by fish, amphibians, squamates, turtles, birds, and mammals at advanced stages of speciation. The key prediction of more extensive major histocompatibility complex introgression compared to genome-wide introgression was tested with three complementary statistical approaches. We found evidence for widespread adaptive introgression of major histocompatibility complex genes, providing a link between the process of adaptive introgression and an underlying mechanism. Our work identifies major histocompatibility complex introgression as a general mechanism by which species can acquire novel, and possibly regain previously lost, variation that may enhance defense against pathogens and increase adaptive potential.
Collapse
Affiliation(s)
- T Gaczorek
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - K Dudek
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - U Fritz
- Museum of Zoology (Museum für Tierkunde), Senckenberg Dresden, Dresden, Germany
| | - L Bahri-Sfar
- Biodiversité, Parasitologie et Ecologie des Ecosystèmes Aquatiques, Faculté des Sciences de Tunis, Univ de Tunis El Manar, Tunis, Tunisia
| | - S J E Baird
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
| | - F Bonhomme
- Institut des Sciences de l'Evolution, Université de Montpellier, Montpellier, France
| | - C Dufresnes
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - V Gvoždík
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
- Department of Zoology, National Museum of the Czech Republic, Prague, Czech Republic
| | - D Irwin
- Biodiversity Research Centre and Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - P Kotlík
- Laboratory of Molecular Ecology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czech Republic
| | - S Marková
- Laboratory of Molecular Ecology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czech Republic
| | - P McGinnity
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
| | - M Migalska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - J Moravec
- Department of Zoology, National Museum of the Czech Republic, Prague, Czech Republic
| | - L Natola
- Biodiversity Research Centre and Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - M Pabijan
- Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - K P Phillips
- Laboratory of Molecular Ecology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czech Republic
- Canadian Rivers Institute, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Y Schöneberg
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt am Main, Germany
- Institute for Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany
| | - A Souissi
- Biodiversité, Parasitologie et Ecologie des Ecosystèmes Aquatiques, Faculté des Sciences de Tunis, Univ de Tunis El Manar, Tunis, Tunisia
- MARBEC, Univ Montpellier, 34000 Montpellier, France
| | - J Radwan
- Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - W Babik
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
8
|
Olazcuaga L, Hufbauer RA. Evolution fails to rescue a population in an increasingly variable environment. Proc Natl Acad Sci U S A 2024; 121:e2414877121. [PMID: 39226367 PMCID: PMC11406268 DOI: 10.1073/pnas.2414877121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024] Open
Affiliation(s)
- Laure Olazcuaga
- Station d’Ecologie Théorique et Expérimentale, Centre National de la Recherche Scientifique, Moulis09200, France
| | - Ruth A. Hufbauer
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO80523
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO80523
| |
Collapse
|
9
|
Oliveira VM, Campos PRA. Resource-based modelling approach to studying evolutionary rescue. Phys Rev E 2024; 110:034406. [PMID: 39425378 DOI: 10.1103/physreve.110.034406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/19/2024] [Indexed: 10/21/2024]
Abstract
In this paper, we present an in-depth investigation into the dynamics of evolutionary rescue using a resource-based modelling approach. Utilizing classical consumer-resource models, we aim to understand how species can adapt to abrupt environmental changes that alter the availability of substitutable resources. Through both analytical solutions and simulation-based techniques, we explore the conditions under which populations can recover from critical sizes and avoid extinction. Our findings highlight the importance of minimum viable population sizes, mutation rates, and the adaptive capacity of metabolic strategies in influencing population resilience. We demonstrate that while increased mutation rates can facilitate faster recovery by enabling populations to evolve new metabolic strategies suited to the altered resource landscape, populations starting with smaller sizes or facing severe reductions in resource availability are more susceptible to extinction. This study offers valuable insights into the interplay between ecological dynamics and evolutionary mechanisms, providing a comprehensive framework for predicting population persistence and informing conservation strategies under changing environmental conditions.
Collapse
|
10
|
Godineau C, Theodorou K, Spigler RB. Effect of the Seed Bank on Evolutionary Rescue in Small Populations: Univariate and Multivariate Demogenetic Dynamics. Am Nat 2024; 204:221-241. [PMID: 39179238 DOI: 10.1086/731402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
AbstractUnder global change, the impact of seed banks on evolutionary rescue is uncertain. They buffer plant populations from demographic and genetic stochasticity but extend generation time and can become a reservoir of maladapted alleles. We built analytical and individual-based models to predict the effect of seed banks on the persistence of small annual plant populations facing an abrupt or sustained directional change in uni- or multivariate trait optima. Demogenetic dynamics predict that under most scenarios seed banks increase the lag yet enhance persistence to 200-250 years by absorbing demographic losses. Simulations indicate that the seed bank has a minimal impact on the genetic skew, although we suggest that this result could depend on the fitness component under selection. Our multivariate model reveals that by enlarging and reshaping the G matrix, seed banks can diminish the impact of mutational correlation and even accelerate adaptation under antagonistic pleiotropy relative to populations without a bank. We illustrate how the magnitude of optimum fluctuations, type and degree of optimum change, selection strength, and vital rates are weights that tip the scales determining persistence. Finally, our work highlights that migration from the past is not maladaptative when optimum fluctuations are large enough to create stepping stones to the new optimum.
Collapse
|
11
|
Clark-Wolf TJ, Boersma PD, Plard F, Rebstock GA, Abrahms B. Increasing environmental variability inhibits evolutionary rescue in a long-lived vertebrate. Proc Natl Acad Sci U S A 2024; 121:e2406314121. [PMID: 39133852 PMCID: PMC11348156 DOI: 10.1073/pnas.2406314121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/06/2024] [Indexed: 08/29/2024] Open
Abstract
Evolutionary rescue, whereby adaptive evolutionary change rescues populations from extinction, is theorized to enable imperiled animal populations to persist under increasing anthropogenic change. Despite a large body of evidence in theoretical and laboratory settings, the potential for evolutionary rescue to be a viable adaptation process for free-ranging animals remains unknown. Here, we leverage a 38-year dataset following the fates of 53,959 Magellanic penguins (Spheniscus magellanicus) to investigate whether a free-ranging vertebrate species can morphologically adapt to long-term environmental change sufficiently to promote population persistence. Despite strong selective pressures, we found that penguins did not adapt morphologically to long-term environmental changes, leading to projected population extirpation. Fluctuating selection benefited larger penguins in some environmental contexts, and smaller penguins in others, ultimately mitigating their ability to adapt under increasing environmental variability. Under future climate projections, we found that the species cannot be rescued by adaptation, suggesting similar constraints for other long-lived species. Such results reveal how fluctuating selection driven by environmental variability can inhibit adaptation under long-term environmental change. Our eco-evolutionary approach helps explain the lack of adaptation and evolutionary rescue in response to environmental change observed in many animal species.
Collapse
Affiliation(s)
- T. J. Clark-Wolf
- Center for Ecosystem Sentinels, Department of Biology, University of Washington, Seattle, WA98195
- Department of Wildland Resources and Ecology Center, Utah State University, Logan, UT84322
| | - P. Dee Boersma
- Center for Ecosystem Sentinels, Department of Biology, University of Washington, Seattle, WA98195
| | - Floriane Plard
- Independent Researcher, Barraque de la Pinatelle, Tremoulet, Molompize15500, France
| | - Ginger A. Rebstock
- Center for Ecosystem Sentinels, Department of Biology, University of Washington, Seattle, WA98195
| | - Briana Abrahms
- Center for Ecosystem Sentinels, Department of Biology, University of Washington, Seattle, WA98195
| |
Collapse
|
12
|
Segoli M, Kishinevsky M, Harvey JA. Climate change, temperature extremes, and impacts on hyperparasitoids. CURRENT OPINION IN INSECT SCIENCE 2024; 64:101229. [PMID: 38944274 DOI: 10.1016/j.cois.2024.101229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/02/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
Anthropogenic climate change, including temperature extremes, is having a major impact on insect physiology, phenology, behavior, populations, and communities. Hyperparasitoids (insects whose offspring develop in, or on, the body of a primary parasitoid host) are expected to be especially impacted by such effects due to their typical life history traits (e.g. low fecundity and slow development), small populations (being high on the food chain), and cascading effects mediated via lower trophic levels. We review evidence for direct and indirect temperature and climate-related effects mediated via plants, herbivores, and the primary parasitoid host species on hyperparasitoid populations, focusing on higher temperatures. We discuss how hyperparasitoid responses may feed back to the community and affect biological control programs. We conclude that despite their great importance, very little is known about the potential effects of climate change on hyperparasitoids and make a plea for additional studies exploring such responses.
Collapse
Affiliation(s)
- Michal Segoli
- The Mitrani Department of Desert Ecology, The Jacob Blaustein Institutes for Desert Research, SIDEER, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000 Israel.
| | - Miriam Kishinevsky
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jeffrey A Harvey
- Netherlands Institute of Ecology, Wageningen, the Netherlands; Department of Ecological Sciences- Animal Ecology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
13
|
Freitas O, Campos PRA. Understanding evolutionary rescue and parallelism in response to environmental stress. Evolution 2024; 78:1453-1463. [PMID: 38738664 DOI: 10.1093/evolut/qpae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 05/04/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Evolutionary rescue, the process by which populations facing environmental stress avoid extinction through genetic adaptation, is a critical area of study in evolutionary biology. The order in which mutations arise and get established will be relevant to the population's rescue. This study investigates the degree of parallel evolution at the genotypic level between independent populations facing environmental stress and subject to different demographic regimes. Under density regulation, 2 regimes exist: In the first, the population can restore positive growth rates by adjusting its population size or through adaptive mutations, whereas in the second regime, the population is doomed to extinction unless a rescue mutation occurs. Analytical approximations for the likelihood of evolutionary rescue are obtained and contrasted with simulation results. We show that the initial level of maladaptation and the demographic regime significantly affect the level of parallelism. There is an evident transition between these 2 regimes. Whereas in the first regime, parallelism decreases with the level of maladaptation, it displays the opposite behavior in the rescue/extinction regime. These findings have important implications for understanding population persistence and the degree of parallelism in evolutionary responses as they integrate demographic effects and evolutionary processes.
Collapse
Affiliation(s)
- Osmar Freitas
- Departamento de Física, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Recife, Brazil
| | - Paulo R A Campos
- Departamento de Física, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
14
|
Freitas O, Campos PRA. The role of epistasis in evolutionary rescue. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2024; 47:49. [PMID: 39066883 DOI: 10.1140/epje/s10189-024-00445-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
The process by which adaptive evolution preserves a population threatened with extinction due to environmental changes is known as evolutionary rescue. Several factors determine the fate of those populations, including demography and genetic factors, such as standing genetic variation, gene flow, availability of de novo mutations, and so on. Despite the extensive debate about evolutionary rescue in the current literature, a study about the role of epistasis and the topography of the fitness landscape on the fate of dwindling populations is missing. In the current work, we aim to fill this gap and study the influence of epistasis on the probability of extinction of populations. We present simulation results, and analytical approximations are derived. Counterintuitively, we show that the likelihood of extinction is smaller when the degree of epistasis is higher. The reason underneath is twofold: first, higher epistasis can promote mutations of more significant phenotypic effects, but also, the incongruence between the maps genotype-phenotype and phenotype-fitness turns the fitness landscape at low epistasis more rugged, thus curbing some of its advantages.
Collapse
Affiliation(s)
- Osmar Freitas
- Departamento de Física, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil
| | - Paulo R A Campos
- Departamento de Física, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil.
| |
Collapse
|
15
|
Fox JA, Hunt DAGA, Hendry AP, Chapman LJ, Barrett RDH. Counter-gradient variation in gene expression between fish populations facilitates colonization of low-dissolved oxygen environments. Mol Ecol 2024; 33:e17419. [PMID: 38808559 DOI: 10.1111/mec.17419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 05/30/2024]
Abstract
The role of phenotypic plasticity during colonization remains unclear due to the shifting importance of plasticity across timescales. In the early stages of colonization, plasticity can facilitate persistence in a novel environment; but over evolutionary time, processes such as genetic assimilation may reduce variation in plastic traits such that species with a longer evolutionary history in an environment can show lower levels of plasticity than recent invaders. Therefore, comparing species in the early stages of colonization to long-established species provides a powerful approach for uncovering the role of phenotypic plasticity during different stages of colonization. We compared gene expression between low-dissolved oxygen (DO) and high-DO populations of two cyprinid fish: Enteromius apleurogramma, a species that has undergone a recent range expansion, and E. neumayeri, a long-established native species in the same region. We sampled tissue either immediately after capture from the field or after a 2-week acclimation under high-DO conditions, allowing us to test for both evolved and plastic differences in low-DO vs high-DO populations of each species. We found that most genes showing candidate-evolved differences in gene expression did not overlap with those showing plastic differences in gene expression. However, in the genes that did overlap, there was counter-gradient variation such that plastic and evolved gene expression responses were in opposite directions in both species. Additionally, E. apleurogramma had higher levels of plasticity and evolved divergence in gene expression between field populations. We suggest that the higher level of plasticity and counter-gradient variation may have allowed rapid genetic adaptation in E. apleurogramma and facilitated colonization. This study shows how counter-gradient variation may impact the colonization of divergent oxygen environments.
Collapse
Affiliation(s)
- Janay A Fox
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - David A G A Hunt
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Andrew P Hendry
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Lauren J Chapman
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
16
|
Madgwick PG, Tunstall T, Kanitz R. Evolutionary rescue in resistance to pesticides. Proc Biol Sci 2024; 291:20240805. [PMID: 38917864 DOI: 10.1098/rspb.2024.0805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 06/03/2024] [Indexed: 06/27/2024] Open
Abstract
Evolutionary rescue occurs when the genetic evolution of adaptation saves a population from decline or extinction after environmental change. The evolution of resistance to pesticides is a special scenario of abrupt environmental change, where rescue occurs under (very) strong selection for one or a few de novo resistance mutations of large effect. Here, a population genetic model of evolutionary rescue with density-dependent population change is developed, with a focus on deriving results that are important to resistance management. Massive stochastic simulations are used to generate observations, which are accurately predicted using analytical approximations. Key results include the probability density function for the time to resistance and the probability of population extinction. The distribution of resistance times shows a lag period, a narrow peak and a long tail. Surprisingly, the mean time to resistance can increase with the strength of selection because, if a mutation does not occur early on, then its emergence is delayed by the pesticide reducing the population size. The probability of population extinction shows a sharp transition, in that when extinction is possible, it is also highly likely. Consequently, population suppression and (local) eradication can be theoretically achievable goals, as novel strategies to delay resistance evolution.
Collapse
Affiliation(s)
- Philip G Madgwick
- Syngenta, Jealott's Hill International Research Centre , Bracknell RG42 6EY, UK
| | - Thomas Tunstall
- Living Systems Institute, University of Exeter , Exeter EX4 4PY, UK
| | - Ricardo Kanitz
- Syngenta Crop Protection, Rosentalstrasse 67 , Basel CH-4058, Switzerland
| |
Collapse
|
17
|
Le Pennec G, Retel C, Kowallik V, Becks L, Feulner PGD. Demographic fluctuations and selection during host-parasite co-evolution interactively increase genetic diversity. Mol Ecol 2024; 33:e16939. [PMID: 36997280 DOI: 10.1111/mec.16939] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 04/01/2023]
Abstract
Host-parasite interactions can cause strong demographic fluctuations accompanied by selective sweeps of resistance/infectivity alleles. Both demographic bottlenecks and frequent sweeps are expected to reduce the amount of segregating genetic variation and therefore might constrain adaptation during co-evolution. Recent studies, however, suggest that the interaction of demographic and selective processes is a key component of co-evolutionary dynamics and may rather positively affect levels of genetic diversity available for adaptation. Here, we provide direct experimental testing of this hypothesis by disentangling the effects of demography, selection and their interaction in an experimental host-parasite system. We grew 12 populations of a unicellular, asexually reproducing algae (Chlorella variabilis) that experienced either growth followed by constant population sizes (three populations), demographic fluctuations (three populations), selection induced by exposure to a virus (three populations), or demographic fluctuations together with virus-induced selection (three populations). After 50 days (~50 generations), we conducted whole-genome sequencing of each algal host population. We observed more genetic diversity in populations that jointly experienced selection and demographic fluctuations than in populations where these processes were experimentally separated. In addition, in those three populations that jointly experienced selection and demographic fluctuations, experimentally measured diversity exceeds expected values of diversity that account for the cultures' population sizes. Our results suggest that eco-evolutionary feedbacks can positively affect genetic diversity and provide the necessary empirical measures to guide further improvements of theoretical models of adaptation during host-parasite co-evolution.
Collapse
Affiliation(s)
- Guénolé Le Pennec
- Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biogeochemistry, EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Cas Retel
- Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biogeochemistry, EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Vienna Kowallik
- Community Dynamics Group, Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Albert-Ludwigs University Freiburg, Faculty of Environment and Natural Resources, Professorship of Forest Entomology and Protection, Stegen-Wittental, Germany
| | - Lutz Becks
- Community Dynamics Group, Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Aquatic Ecology and Evolution, Limnological Institute University of Konstanz, Konstanz, Germany
| | - Philine G D Feulner
- Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biogeochemistry, EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
- Division of Aquatic Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| |
Collapse
|
18
|
Lewis R, Pointer MD, Friend L, Gage MJG, Spurgin LG. Tests of evolutionary and genetic rescue using flour beetles, Tribolium castaneum, experimentally evolved to thermal conditions. Ecol Evol 2024; 14:e11313. [PMID: 38694756 PMCID: PMC11056960 DOI: 10.1002/ece3.11313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 05/04/2024] Open
Abstract
Small, isolated populations are often characterised by low levels of genetic diversity. This can result in inbreeding depression and reduced capacity to adapt to changes in the environment, and therefore higher risk of extinction. However, sometimes these populations can be rescued if allowed to increase in size or if migrants enter, bringing in new allelic variation and thus increasing genetic diversity. This study uses experimental manipulation of population size and migration to quantify their effects on fitness in a challenging environment to better understand genetic rescue. Using small, replicated populations of Tribolium castaneum experimentally evolved to different temperature regimes we tested genetic and demographic rescue, by performing large-scale manipulations of population size and migration and examining fitness consequences over multiple generations. We measured fitness in high temperature (38°C) thermal lines maintained at their usual 'small' population size of N = 100 individuals, and with 'large' scaled up duplicates containing N≈10,000 individuals. We compared these large lines with and without migration (m = 0.1) for 10 generations. Additionally, we assessed the effects of outcrossing at an individual level, by comparing fitness of hybrid (thermal line × stock) offspring with within-line crosses. We found that, at the population level, a rapid increase in the number of individuals in the population resulted in reduced fitness (represented by reproductive output and survival through heatwave conditions), regardless of migration. However, at an individual level, the hybrid offspring of migrants with native individuals generally demonstrated increased longevity in high temperature conditions compared with individuals from thermal selection lines. Overall, these populations showed no evidence that demographic manipulations led to genetic or evolutionary rescue. Following the effects of migration in individuals over several generations may be the next step in unravelling these conflicting results. We discuss these findings in the context of conservation intervention.
Collapse
Affiliation(s)
- Rebecca Lewis
- School of Biological SciencesUniversity of East AngliaNorwichUK
| | | | - Lucy Friend
- School of Biological SciencesUniversity of East AngliaNorwichUK
| | | | | |
Collapse
|
19
|
Zambie AD, Ackerly KL, Negrete B, Esbaugh AJ. Warming-induced "plastic floors" improve hypoxia vulnerability, not aerobic scope, in red drum (Sciaenops ocellatus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171057. [PMID: 38378061 DOI: 10.1016/j.scitotenv.2024.171057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/19/2024] [Accepted: 02/15/2024] [Indexed: 02/22/2024]
Abstract
Ocean warming is a prevailing threat to marine ectotherms. Recently the "plastic floors, concrete ceilings" hypothesis was proposed, which suggests that a warmed fish will acclimate to higher temperatures by reducing standard metabolic rate (SMR) while keeping maximum metabolic rate (MMR) stable, therefore improving aerobic scope (AS). Here we evaluated this hypothesis on red drum (Sciaenops ocellatus) while incorporating measures of hypoxia vulnerability (critical oxygen threshold; Pcrit) and mitochondrial performance. Fish were subjected to a 12-week acclimation to 20 °C or 28 °C. Respirometry was performed every 4 weeks to obtain metabolic rate and Pcrit; mitochondrial respirometry was performed on liver and heart samples at the end of the acclimation. 28 °C fish had a significantly higher SMR, MMR, and Pcrit than 20 °C controls at time 0, but SMR declined by 36.2 % over the 12-week acclimation. No change in SMR was observed in the control treatment. Contrary to expectations, SMR suppression did not improve AS relative to time 0 owing to a progressive decline in MMR over acclimation time. Pcrit decreased by 27.2 % in the warm-acclimated fishes, which resulted in temperature treatments having statistically similar values by 12-weeks. No differences in mitochondrial traits were observed in the heart - despite a Δ8 °C assay temperature - while liver respiratory and coupling control ratios were significantly improved, suggesting that mitochondrial plasticity may contribute to the reduced SMR with warming. Overall, this work suggests that warming induced metabolic suppression offsets the deleterious consequences of high oxygen demand on hypoxia vulnerability, and in so doing greatly expands the theoretical range of metabolically available habitats for red drum.
Collapse
Affiliation(s)
- Adam D Zambie
- Department of Marine Science, University of Texas at Austin, Port Aransas, TX 78373, United States; Department of Biological Sciences, Idaho State University, Pocatello, ID 83209, United States
| | - Kerri Lynn Ackerly
- Department of Marine Science, University of Texas at Austin, Port Aransas, TX 78373, United States
| | - Benjamin Negrete
- Department of Marine Science, University of Texas at Austin, Port Aransas, TX 78373, United States; Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Andrew J Esbaugh
- Department of Marine Science, University of Texas at Austin, Port Aransas, TX 78373, United States.
| |
Collapse
|
20
|
Miller JT, Clark BW, Reid NM, Karchner SI, Roach JL, Hahn ME, Nacci D, Whitehead A. Independently evolved pollution resistance in four killifish populations is largely explained by few variants of large effect. Evol Appl 2024; 17:e13648. [PMID: 38293268 PMCID: PMC10824703 DOI: 10.1111/eva.13648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
The genetic architecture of phenotypic traits can affect the mode and tempo of trait evolution. Human-altered environments can impose strong natural selection, where successful evolutionary adaptation requires swift and large phenotypic shifts. In these scenarios, theory predicts that adaptation is due to a few adaptive variants of large effect, but empirical studies that have revealed the genetic architecture of rapidly evolved phenotypes are rare, especially for populations inhabiting polluted environments. Fundulus killifish have repeatedly evolved adaptive resistance to extreme pollution in urban estuaries. Prior studies, including genome scans for signatures of natural selection, have revealed some of the genes and pathways important for evolved pollution resistance, and provide context for the genotype-phenotype association studies reported here. We created multiple quantitative trait locus (QTL) mapping families using progenitors from four different resistant populations, and using RAD-seq genetically mapped variation in sensitivity (developmental perturbations) following embryonic exposure to a model toxicant PCB-126. We found that one to two large-effect QTL loci accounted for resistance to PCB-mediated developmental toxicity. QTLs harbored candidate genes that govern the regulation of aryl hydrocarbon receptor (AHR) signaling. One QTL locus was shared across all populations and another was shared across three populations. One QTL locus showed strong signatures of recent natural selection in the corresponding wild population but another QTL locus did not. Some candidate genes for PCB resistance inferred from genome scans in wild populations were identified as QTL, but some key candidate genes were not. We conclude that rapidly evolved resistance to the developmental defects normally caused by PCB-126 is governed by few genes of large effect. However, other aspects of resistance beyond developmental phenotypes may be governed by additional loci, such that comprehensive resistance to PCB-126, and to the mixtures of chemicals that distinguish urban estuaries more broadly, may be more genetically complex.
Collapse
Affiliation(s)
- Jeffrey T. Miller
- Department of Environmental Toxicology, Center for Population Biology, Coastal and Marine Sciences InstituteUniversity of California, DavisDavisCaliforniaUSA
- Present address:
Molecular, Cellular, and Biomedical SciencesUniversity of New HampshireDurhamNew HampshireUSA
| | - Bryan W. Clark
- Office of Research and Development, Center for Environmental Measurement and Modeling, Atlantic Coastal Environmental Sciences DivisionUS Environmental Protection AgencyNarragansettRhode IslandUSA
| | - Noah M. Reid
- Department of Molecular & Cell BiologyUniversity of ConnecticutStorrsConnecticutUSA
| | - Sibel I. Karchner
- Biology DepartmentWoods Hole Oceanographic InstitutionWoods HoleMassachusettsUSA
| | - Jennifer L. Roach
- Department of Environmental Toxicology, Center for Population Biology, Coastal and Marine Sciences InstituteUniversity of California, DavisDavisCaliforniaUSA
| | - Mark E. Hahn
- Biology DepartmentWoods Hole Oceanographic InstitutionWoods HoleMassachusettsUSA
| | - Diane Nacci
- Office of Research and Development, Center for Environmental Measurement and Modeling, Atlantic Coastal Environmental Sciences DivisionUS Environmental Protection AgencyNarragansettRhode IslandUSA
| | - Andrew Whitehead
- Department of Environmental Toxicology, Center for Population Biology, Coastal and Marine Sciences InstituteUniversity of California, DavisDavisCaliforniaUSA
| |
Collapse
|
21
|
Hoste A, Capblancq T, Broquet T, Denoyelle L, Perrier C, Buzan E, Šprem N, Corlatti L, Crestanello B, Hauffe HC, Pellissier L, Yannic G. Projection of current and future distribution of adaptive genetic units in an alpine ungulate. Heredity (Edinb) 2024; 132:54-66. [PMID: 38082151 PMCID: PMC10798982 DOI: 10.1038/s41437-023-00661-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 01/21/2024] Open
Abstract
Climate projections predict major changes in alpine environments by the end of the 21st century. To avoid climate-induced maladaptation and extinction, many animal populations will either need to move to more suitable habitats or adapt in situ to novel conditions. Since populations of a species exhibit genetic variation related to local adaptation, it is important to incorporate this variation into predictive models to help assess the ability of the species to survive climate change. Here, we evaluate how the adaptive genetic variation of a mountain ungulate-the Northern chamois (Rupicapra rupicapra)-could be impacted by future global warming. Based on genotype-environment association analyses of 429 chamois using a ddRAD sequencing approach, we identified genetic variation associated with climatic gradients across the European Alps. We then delineated adaptive genetic units and projected the optimal distribution of these adaptive groups in the future. Our results suggest the presence of local adaptation to climate in Northern chamois with similar genetic adaptive responses in geographically distant but climatically similar populations. Furthermore, our results predict that future climatic changes will modify the Northern chamois adaptive landscape considerably, with various degrees of maladaptation risk.
Collapse
Affiliation(s)
- Amélie Hoste
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France
| | - Thibaut Capblancq
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France
- Department of Plant Biology, University of Vermont, Burlington, VT, 05405, USA
| | - Thomas Broquet
- CNRS, Sorbonne Université, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France
| | - Laure Denoyelle
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France
| | - Charles Perrier
- UMR CBGP, INRAE, CIRAD, IRD, Institut Agro, Université Montpellier, Montpellier, France
| | - Elena Buzan
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, 6000, Koper, Slovenia
- Faculty of Environmental Protection, Trg mladosti 7, 3320, Velenje, Slovenia
| | - Nikica Šprem
- Department of Fisheries, Apiculture, Wildlife Management and Special Zoology, Faculty of Agriculture, University of Zagreb, Svetošimunska 25, 10000, Zagreb, Croatia
| | - Luca Corlatti
- Stelvio National Park - ERSAF Lombardia, Via De Simoni 42, 23032, Bormio, Italy
- Chair of Wildlife Ecology and Management, University of Freiburg, Tennenbacher Straße 4, 79106, Freiburg, Germany
| | - Barbara Crestanello
- Conservation Genomics Unit, Research and Innovation Centre, Fondazione E. Mach, Via E. Mach 1, 38098 S, Michele all'Adige, TN, Italy
| | - Heidi Christine Hauffe
- Conservation Genomics Unit, Research and Innovation Centre, Fondazione E. Mach, Via E. Mach 1, 38098 S, Michele all'Adige, TN, Italy
| | - Loïc Pellissier
- Landscape Ecology, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zrich, Zurich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
| | - Glenn Yannic
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France.
| |
Collapse
|
22
|
Pinsky ML, Clark RD, Bos JT. Coral Reef Population Genomics in an Age of Global Change. Annu Rev Genet 2023; 57:87-115. [PMID: 37384733 DOI: 10.1146/annurev-genet-022123-102748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Coral reefs are both exceptionally biodiverse and threatened by climate change and other human activities. Here, we review population genomic processes in coral reef taxa and their importance for understanding responses to global change. Many taxa on coral reefs are characterized by weak genetic drift, extensive gene flow, and strong selection from complex biotic and abiotic environments, which together present a fascinating test of microevolutionary theory. Selection, gene flow, and hybridization have played and will continue to play an important role in the adaptation or extinction of coral reef taxa in the face of rapid environmental change, but research remains exceptionally limited compared to the urgent needs. Critical areas for future investigation include understanding evolutionary potential and the mechanisms of local adaptation, developing historical baselines, and building greater research capacity in the countries where most reef diversity is concentrated.
Collapse
Affiliation(s)
- Malin L Pinsky
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, New Jersey, USA
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California, USA;
| | - René D Clark
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, New Jersey, USA
| | - Jaelyn T Bos
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
23
|
Wahl LM, Campos PRA. Evolutionary rescue on genotypic fitness landscapes. J R Soc Interface 2023; 20:20230424. [PMID: 37963553 PMCID: PMC10645506 DOI: 10.1098/rsif.2023.0424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/20/2023] [Indexed: 11/16/2023] Open
Abstract
Populations facing adverse environments, novel pathogens or invasive competitors may be destined to extinction if they are unable to adapt rapidly. Quantitative predictions of the probability of survival through adaptation, evolutionary rescue, have been previously developed for one of the most natural and well-studied mappings from an organism's traits to its fitness, Fisher's geometric model (FGM). While FGM assumes that all possible trait values are accessible via mutation, in many applications only a finite set of rescue mutations will be available, such as mutations conferring resistance to a parasite, predator or toxin. We predict the probability of evolutionary rescue, via de novo mutation, when this underlying genetic structure is included. We find that rescue probability is always reduced when its genetic basis is taken into account. Unlike other known features of the genotypic FGM, however, the probability of rescue increases monotonically with the number of available mutations and approaches the behaviour of the classical FGM as the number of available mutations approaches infinity.
Collapse
Affiliation(s)
- L. M. Wahl
- Department of Mathematics, Western University, London, Ontario, Canada N6A 5B7
- Departamento de Física, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Recife-PE 50670-901, Brazil
| | - Paulo R. A. Campos
- Departamento de Física, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Recife-PE 50670-901, Brazil
| |
Collapse
|
24
|
Zhou Y, Tao J, Yang J, Zong S, Ge X. Niche shifts and range expansions after invasions of two major pests: the Asian longhorned beetle and the citrus longhorned beetle. PEST MANAGEMENT SCIENCE 2023; 79:3149-3158. [PMID: 37013934 DOI: 10.1002/ps.7490] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/27/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND In recent years, the quarantine forestry pests the Asian longhorned beetle (ALB) Anoplophora glabripennis and the citrus longhorned beetle (CLB) Anoplophora chinensis have spread across the Northern Hemisphere, triggering concern about their potential distribution. However, little is known about the niche shifts of the pests during the invasion, making it difficult to assess their potential ranges. We thus employed two distinct approaches (i.e., ordination-based and reciprocal model-based) to compare the native and invaded niches of ALB and CLB after their spread to new continents based on global occurrence records. We further constructed models with pooled occurrences from both the native and invaded ranges to analyze the effects of occurrence partitioning on predicted ranges. RESULTS We detected expansions in the invaded niches of both pests, indicating that the niches shifted to varying extents after the invasion. Large shares of the native niches of ALB and CLB remained unfilled, revealing the potential for further invasion in new regions. The models calibrated with pooled occurrences clearly underestimated the potential ranges in invaded regions compared with the projections based on partitioned models considering native and invaded areas separately. CONCLUSIONS These results emphasize the importance of elucidating the niche dynamics of invasive species for obtaining accurately predicted ranges, which may help identify risk areas masked by the assumption of niche conservatism. Furthermore, prevention and quarantine measures for ALB and CLB are clearly needed to avoid future serious damage to forest ecosystems. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuting Zhou
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, China
| | - Jing Tao
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, China
| | | | - Shixiang Zong
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, China
| | - Xuezhen Ge
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
25
|
Thorogood R, Mustonen V, Aleixo A, Aphalo PJ, Asiegbu FO, Cabeza M, Cairns J, Candolin U, Cardoso P, Eronen JT, Hällfors M, Hovatta I, Juslén A, Kovalchuk A, Kulmuni J, Kuula L, Mäkipää R, Ovaskainen O, Pesonen AK, Primmer CR, Saastamoinen M, Schulman AH, Schulman L, Strona G, Vanhatalo J. Understanding and applying biological resilience, from genes to ecosystems. NPJ BIODIVERSITY 2023; 2:16. [PMID: 39242840 PMCID: PMC11332022 DOI: 10.1038/s44185-023-00022-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/07/2023] [Indexed: 09/09/2024]
Abstract
The natural world is under unprecedented and accelerating pressure. Much work on understanding resilience to local and global environmental change has, so far, focussed on ecosystems. However, understanding a system's behaviour requires knowledge of its component parts and their interactions. Here we call for increased efforts to understand 'biological resilience', or the processes that enable components across biological levels, from genes to communities, to resist or recover from perturbations. Although ecologists and evolutionary biologists have the tool-boxes to examine form and function, efforts to integrate this knowledge across biological levels and take advantage of big data (e.g. ecological and genomic) are only just beginning. We argue that combining eco-evolutionary knowledge with ecosystem-level concepts of resilience will provide the mechanistic basis necessary to improve management of human, natural and agricultural ecosystems, and outline some of the challenges in achieving an understanding of biological resilience.
Collapse
Affiliation(s)
- Rose Thorogood
- HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| | - Ville Mustonen
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Department of Computer Science, Faculty of Science, University of Helsinki, Helsinki, Finland
- Helsinki Institute for Information Technology, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE Helsinki Institute for Life Science, University of Helsinki, Helsinki, Finland
| | - Alexandre Aleixo
- LUOMUS Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Pedro J Aphalo
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Fred O Asiegbu
- Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Mar Cabeza
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- HELSUS Helsinki Institute of Sustainability Science, University of Helsinki, Helsinki, Finland
| | - Johannes Cairns
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Helsinki Institute for Information Technology, University of Helsinki, Helsinki, Finland
| | - Ulrika Candolin
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Pedro Cardoso
- LUOMUS Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
- CE3C - Centre for Ecology, Evolution and Environmental Changes, CHANGE-Global Change and Sustainability Institute, Faculty of Sciences, University of Lisbon, 1749-016, Lisbon, Portugal
| | - Jussi T Eronen
- HELSUS Helsinki Institute of Sustainability Science, University of Helsinki, Helsinki, Finland
- Research Programme in Ecosystems and Environment, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- BIOS Research Unit, Helsinki, Finland
| | - Maria Hällfors
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Research Centre for Ecological Change, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Syke Finnish Environment Institute, Helsinki, Finland
| | - Iiris Hovatta
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Neuroscience Center, HiLIFE Helsinki Institute for Life Science, University of Helsinki, Helsinki, Finland
| | - Aino Juslén
- LUOMUS Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
- Syke Finnish Environment Institute, Helsinki, Finland
| | - Andriy Kovalchuk
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- VTT Technical Research Centre of Finland Ltd, Espoo, Finland
- Onego Bio Ltd, Helsinki, Finland
| | - Jonna Kulmuni
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Liisa Kuula
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Raisa Mäkipää
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Otso Ovaskainen
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Anu-Katriina Pesonen
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Craig R Primmer
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE Helsinki Institute for Life Science, University of Helsinki, Helsinki, Finland
| | - Marjo Saastamoinen
- HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Research Centre for Ecological Change, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Alan H Schulman
- Institute of Biotechnology, HiLIFE Helsinki Institute for Life Science, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Leif Schulman
- LUOMUS Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
- Syke Finnish Environment Institute, Helsinki, Finland
| | - Giovanni Strona
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Research Centre for Ecological Change, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- European Commission, Joint Research Centre, Directorate D - Sustainable Resources, Ispra, Italy
| | - Jarno Vanhatalo
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Research Centre for Ecological Change, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Department of Mathematics and Statistics, Faculty of Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
26
|
Fiesinger A, Held C, Melzner F, Putchim L, Reusch TBH, Schmidt AL, Wall M. Population genetic differentiation of the ubiquitous brooding coral Pocillopora acuta along Phuket Island reefs in the Andaman Sea, Thailand. BMC Ecol Evol 2023; 23:42. [PMID: 37626296 PMCID: PMC10464487 DOI: 10.1186/s12862-023-02153-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND The widespread Indo-Pacific coral species Pocillopora acuta Lamarck, 1816 displays varying levels of asexual versus sexual reproduction, with strong repercussions on genetic diversity, connectivity and genetic structuring within and among populations. For many geographic regions, baseline information on genetic diversity is still lacking, particularly in the Andaman Sea. The region suffered a massive heat-induced bleaching event in 2010 with high coral cover loss of branching coral species such as P. acuta. A subsequent bleaching in 2016, however, revealed a mild bleaching response in pocilloporids compared to other coral taxa in the region, suggesting that rare, heat tolerant genotypes had been selected by the 2010 bleaching event. In order to test whether this potential 'evolutionary rescue' event has led to a low genetic diversity, we conducted a population genetic survey covering a total of nine different P. acuta populations (336 individuals) along a 50 km coastal stretch around Phuket Island, Thailand. We used six microsatellite markers to assess genotypic diversity and to determine the prevalent mode of reproduction (i.e. sexual or asexual recruitment). RESULTS In contrast to other Indian Ocean P. acuta populations, the majority of corals in this study adopted a sexual reproduction mode (75% across all populations). At the same time, substantial regional gene flow was observed around Phuket Island with strong genetic differentiation as indicated by three genetic clusters that were separated by only a few kilometers. Patterns of isolation by distance over 0.7 - 40 km suggest small-scale genetic barriers, such as changing currents throughout each monsoonal season, potentially contributing to locally restricted dispersal of P. acuta larvae. CONCLUSIONS The occurrence of distinct genetic clusters within short coastal stretches suggests that the 2010 bleaching event has not led to extreme genetic impoverishment. While more in-depth genomic analyses are necessary to investigate changes in genetic diversity following extreme bleaching events, our results will help guide conservation efforts to maintain genetic diversity of a coral species that likely will be dominant in future, warmer Andaman Sea reefs.
Collapse
Affiliation(s)
- Anna Fiesinger
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Research Unit Experimental Ecology - Benthic Ecology, Wischhofstraße 1-3, 24148, Kiel, Germany.
- Department of Biology, University of Konstanz, Universitätsstraße 10, Konstanz, 78464, Germany.
| | - Christoph Held
- Alfred-Wegener-Institut, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, Bremerhaven, 27570, Germany
| | - Frank Melzner
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Research Unit Experimental Ecology - Benthic Ecology, Wischhofstraße 1-3, 24148, Kiel, Germany
| | - Lalita Putchim
- Phuket Marine Biological Centre, Wichit, Phuket, Mueang Phukt District, 83000, Thailand
| | - Thorsten B H Reusch
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Research Unit Marine Evolutionary Ecoloy, Wischhofstraße 1-3, Kiel, 24148, Germany
| | - Andrea L Schmidt
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Research Unit Experimental Ecology - Benthic Ecology, Wischhofstraße 1-3, 24148, Kiel, Germany
- Cooperative Institute for Marine and Atmospheric Research, University of Hawai'i, Honolulu, HI, 96822, USA
| | - Marlene Wall
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Research Unit Experimental Ecology - Benthic Ecology, Wischhofstraße 1-3, 24148, Kiel, Germany.
- Alfred-Wegener-Institut, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, Bremerhaven, 27570, Germany.
| |
Collapse
|
27
|
McDonald LM, Scharnagl A, Turcu AK, Patterson CM, Kooyers NJ. Demographic consequences of an extreme heat wave are mitigated by spatial heterogeneity in an annual monkeyflower. Ecol Evol 2023; 13:e10397. [PMID: 37575594 PMCID: PMC10412438 DOI: 10.1002/ece3.10397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 08/15/2023] Open
Abstract
Heat waves are becoming more frequent and intense with climate change, but the demographic and evolutionary consequences of heat waves are rarely investigated in herbaceous plant species. We examine the consequences of a short but extreme heat wave in Oregon populations of the common yellow monkeyflower (Mimulus guttatus) by leveraging a common garden experiment planted with range-wide populations and observational studies of 11 local populations. In the common garden, 89% of seedlings died during the heat wave including >96% of seedlings from geographically local populations. Some populations from hotter and drier environments had higher fitness, however, others from comparable environments performed poorly. Observational studies of local natural populations drastically differed in the consequences of the heat wave-one population was completely extirpated and nearly half had a >50% decrease in fitness. However, a few populations had greater fitness during the heat wave year. Differences in mortality corresponded to the impact of the heat wave on soil moisture-retention of soil moisture throughout the heat wave led to greater survivorship. Our results suggest that not all populations experience the same intensity or degree of mortality during extreme events and such heterogeneity could be important for genetic rescue or to facilitate the distribution of adaptive variants throughout the region.
Collapse
Affiliation(s)
| | - Anna Scharnagl
- Department of BiologyUniversity of LouisianaLafayetteLouisianaUSA
- Department of Integrative BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Andrea K. Turcu
- Department of BiologyUniversity of LouisianaLafayetteLouisianaUSA
| | | | | |
Collapse
|
28
|
Cant J, Capdevila P, Beger M, Salguero-Gómez R. Recent exposure to environmental stochasticity does not determine the demographic resilience of natural populations. Ecol Lett 2023. [PMID: 37158011 DOI: 10.1111/ele.14234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/06/2023] [Accepted: 04/11/2023] [Indexed: 05/10/2023]
Abstract
Escalating climatic and anthropogenic pressures expose ecosystems worldwide to increasingly stochastic environments. Yet, our ability to forecast the responses of natural populations to this increased environmental stochasticity is impeded by a limited understanding of how exposure to stochastic environments shapes demographic resilience. Here, we test the association between local environmental stochasticity and the resilience attributes (e.g. resistance, recovery) of 2242 natural populations across 369 animal and plant species. Contrary to the assumption that past exposure to frequent environmental shifts confers a greater ability to cope with current and future global change, we illustrate how recent environmental stochasticity regimes from the past 50 years do not predict the inherent resistance or recovery potential of natural populations. Instead, demographic resilience is strongly predicted by the phylogenetic relatedness among species, with survival and developmental investments shaping their responses to environmental stochasticity. Accordingly, our findings suggest that demographic resilience is a consequence of evolutionary processes and/or deep-time environmental regimes, rather than recent-past experiences.
Collapse
Affiliation(s)
- James Cant
- Centre for Biological Diversity, University of St Andrews, St Andrews, UK
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Pol Capdevila
- School of Biological Sciences, University of Bristol, Bristol, UK
- Department of Zoology, University of Oxford, Oxford, UK
| | - Maria Beger
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Centre for Biodiversity and Conservation Science, School of Biological Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Roberto Salguero-Gómez
- Department of Zoology, University of Oxford, Oxford, UK
- Centre for Biodiversity and Conservation Science, School of Biological Sciences, University of Queensland, Brisbane, Queensland, Australia
- Max Planck Institute for Demographic Research, Rostock, Germany
| |
Collapse
|
29
|
Miller JT, Clark BW, Reid NM, Karchner SI, Roach JL, Hahn ME, Nacci D, Whitehead A. Independently evolved pollution resistance in four killifish populations is largely explained by few variants of large effect. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.07.536079. [PMID: 37066319 PMCID: PMC10104127 DOI: 10.1101/2023.04.07.536079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
The genetic architecture of phenotypic traits can affect the mode and tempo of trait evolution. Human-altered environments can impose strong natural selection, where successful evolutionary adaptation requires swift and large phenotypic shifts. In these scenarios, theory predicts the influence of few adaptive variants of large effect, but empirical studies that have revealed the genetic architecture of rapidly evolved phenotypes are rare, especially for populations inhabiting polluted environments. Fundulus killifish have repeatedly evolved adaptive resistance to extreme pollution in urban estuaries. Prior studies, including genome scans for signatures of natural selection, have revealed some of the genes and pathways important for evolved pollution resistance, and provide context for the genotype-phenotype association studies reported here. We created multiple quantitative trait locus (QTL) mapping families using progenitors from four different resistant populations, and genetically mapped variation in sensitivity (developmental perturbations) following embryonic exposure to a model toxicant PCB-126. We found that a few large-effect QTL loci accounted for resistance to PCB-mediated developmental toxicity. QTLs harbored candidate genes that govern the regulation of aryl hydrocarbon receptor (AHR) signaling, where some (but not all) of these QTL loci were shared across all populations, and some (but not all) of these loci showed signatures of recent natural selection in the corresponding wild population. Some strong candidate genes for PCB resistance inferred from genome scans in wild populations were identified as QTL, but some key candidate genes were not. We conclude that rapidly evolved resistance to the developmental defects normally caused by PCB-126 is governed by few genes of large effect. However, other aspects of resistance beyond developmental phenotypes may be governed by additional loci, such that comprehensive resistance to PCB-126, and to the mixtures of chemicals that distinguish urban estuaries more broadly, may be more genetically complex.
Collapse
Affiliation(s)
- Jeffrey T Miller
- Department of Environmental Toxicology, Center for Population Biology, Coastal and Marine Sciences Institute, University of California, Davis, CA
| | - Bryan W Clark
- US Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Atlantic Coastal Environmental Sciences Division, Narragansett, RI
| | - Noah M Reid
- Department of Molecular & Cell Biology, University of Connecticut, Storrs, CT
| | - Sibel I Karchner
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA
| | - Jennifer L Roach
- Department of Environmental Toxicology, Center for Population Biology, Coastal and Marine Sciences Institute, University of California, Davis, CA
| | - Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA
| | - Diane Nacci
- US Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Atlantic Coastal Environmental Sciences Division, Narragansett, RI
| | - Andrew Whitehead
- Department of Environmental Toxicology, Center for Population Biology, Coastal and Marine Sciences Institute, University of California, Davis, CA
| |
Collapse
|
30
|
Ware-Gilmore F, Novelo M, Sgrò CM, Hall MD, McGraw EA. Assessing the role of family level variation and heat shock gene expression in the thermal stress response of the mosquito Aedes aegypti. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220011. [PMID: 36744557 PMCID: PMC9900713 DOI: 10.1098/rstb.2022.0011] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 11/25/2022] [Indexed: 02/07/2023] Open
Abstract
The geographical range of the mosquito vector for many human disease-causing viruses, Aedes aegypti, is expanding, in part owing to changing climate. The capacity of this species to adapt to thermal stress will affect its future distributions. It is unclear how much heritable genetic variation may affect the upper thermal limits of mosquito populations over the long term. Nor are the genetic pathways that confer thermal tolerance fully understood. In the short term, cells induce a plastic, protective response known as 'heat shock'. Using a physiological 'knockdown' assay, we investigated mosquito thermal tolerance to characterize the genetic architecture of the trait. While families representing the extreme ends of the distribution for knockdown time differed from one another, the trait exhibited low but non-zero broad-sense heritability. We then explored whether families representing thermal performance extremes differed in their heat shock response by measuring gene expression of heat shock protein-encoding genes Hsp26, Hsp83 and Hsp70. Contrary to prediction, the families with higher thermal tolerance demonstrated less Hsp expression. This pattern may indicate that other mechanisms of heat tolerance, rather than heat shock, may underpin the stress response, and the costly production of HSPs may instead signal poor adaptation. This article is part of the theme issue 'Infectious disease ecology and evolution in a changing world'.
Collapse
Affiliation(s)
- Fhallon Ware-Gilmore
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
- The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Mario Novelo
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
- The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Carla M. Sgrò
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Matthew D. Hall
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Elizabeth A. McGraw
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
- The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
31
|
Torres E, García-Fernández A, Iñigo D, Lara-Romero C, Morente-López J, Prieto-Benítez S, Rubio Teso ML, Iriondo JM. Facilitated Adaptation as A Conservation Tool in the Present Climate Change Context: A Methodological Guide. PLANTS (BASEL, SWITZERLAND) 2023; 12:1258. [PMID: 36986946 PMCID: PMC10053585 DOI: 10.3390/plants12061258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Climate change poses a novel threat to biodiversity that urgently requires the development of adequate conservation strategies. Living organisms respond to environmental change by migrating to locations where their ecological niche is preserved or by adapting to the new environment. While the first response has been used to develop, discuss and implement the strategy of assisted migration, facilitated adaptation is only beginning to be considered as a potential approach. Here, we present a review of the conceptual framework for facilitated adaptation, integrating advances and methodologies from different disciplines. Briefly, facilitated adaptation involves a population reinforcement that introduces beneficial alleles to enable the evolutionary adaptation of a focal population to pressing environmental conditions. To this purpose, we propose two methodological approaches. The first one (called pre-existing adaptation approach) is based on using pre-adapted genotypes existing in the focal population, in other populations, or even in closely related species. The second approach (called de novo adaptation approach) aims to generate new pre-adapted genotypes from the diversity present in the species through artificial selection. For each approach, we present a stage-by-stage procedure, with some techniques that can be used for its implementation. The associated risks and difficulties of each approach are also discussed.
Collapse
Affiliation(s)
- Elena Torres
- Departamento de Biotecnología-Biología Vegetal, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Alfredo García-Fernández
- Grupo de Ecología Evolutiva (ECOEVO), Área de Biodiversidad y Conservación, Departamento de Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, 28933 Móstoles, Spain
| | - Diana Iñigo
- Grupo de Ecología Evolutiva (ECOEVO), Área de Biodiversidad y Conservación, Departamento de Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, 28933 Móstoles, Spain
| | - Carlos Lara-Romero
- Grupo de Ecología Evolutiva (ECOEVO), Área de Biodiversidad y Conservación, Departamento de Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, 28933 Móstoles, Spain
| | - Javier Morente-López
- Grupo de Ecología Evolutiva (ECOEVO), Área de Biodiversidad y Conservación, Departamento de Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, 28933 Móstoles, Spain
- Grupo de Investigación de Ecología y Evolución en Islas, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206 Tenerife, Spain
| | - Samuel Prieto-Benítez
- Grupo de Ecología Evolutiva (ECOEVO), Área de Biodiversidad y Conservación, Departamento de Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, 28933 Móstoles, Spain
- Ecotoxicology of Air Pollution, Environmental Department, CIEMAT, 28040 Madrid, Spain
| | - María Luisa Rubio Teso
- Grupo de Ecología Evolutiva (ECOEVO), Área de Biodiversidad y Conservación, Departamento de Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, 28933 Móstoles, Spain
| | - José M. Iriondo
- Grupo de Ecología Evolutiva (ECOEVO), Área de Biodiversidad y Conservación, Departamento de Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, 28933 Móstoles, Spain
| |
Collapse
|
32
|
Souza KS, Fortunato DS, Jardim L, Terribile LC, Lima-Ribeiro MS, Mariano CÁ, Pinto-Ledezma JN, Loyola R, Dobrovolski R, Rangel TF, Machado IF, Rocha T, Batista MG, Lorini ML, Vale MM, Navas CA, Maciel NM, Villalobos F, Olalla-Tarraga MÂ, Rodrigues JFM, Gouveia SF, Diniz-Filho JAF. Evolutionary rescue and geographic range shifts under climate change for global amphibians. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1038018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
By the end of this century, human-induced climate change and habitat loss may drastically reduce biodiversity, with expected effects on many amphibian lineages. One of these effects is the shift in the geographic distributions of species when tracking suitable climates. Here, we employ a macroecological approach to dynamically model geographic range shifts by coupling ecological niche models and eco-evolutionary mechanisms, aiming to assess the probability of evolutionary rescue (i.e., rapid adaptation) and dispersal under climate change. Evolutionary models estimated the probability of population persistence by adapting to changes in the temperature influenced by precipitation in the following decades, while compensating the fitness reduction and maintaining viable populations in the new climates. In addition, we evaluated emerging patterns of species richness and turnover at the assemblage level. Our approach was able to identify which amphibian populations among 7,193 species at the global scale could adapt to temperature changes or disperse into suitable regions in the future. Without evolutionary adaptation and dispersal, 47.7% of the species could go extinct until the year 2,100, whereas adding both processes will slightly decrease this extinction rate to 36.5%. Although adaptation to climate is possible for populations in about 25.7% of species, evolutionary rescue is the only possibility to avoid extinction in 4.2% of them. Dispersal will allow geographic range shifts for 49.7% of species, but only 6.5% may avoid extinction by reaching climatically suitable environments. This reconfiguration of species distributions and their persistence creates new assemblage-level patterns at the local scale. Temporal beta-diversity across the globe showed relatively low levels of species turnover, mainly due to the loss of species. Despite limitations with obtaining data, our approach provides more realistic assessments of species responses to ongoing climate changes. It shows that, although dispersal and evolutionary rescue may attenuate species losses, they are not enough to avoid a significant reduction of species’ geographic ranges in the future. Actions that guarantee a higher potential of adaptation (e.g., genetic diversity through larger population sizes) and increased connectivity for species dispersion to track suitable climates become essential, increasing the resilience of biodiversity to climate change.
Collapse
|
33
|
Prada F, Franzellitti S, Caroselli E, Cohen I, Marini M, Campanelli A, Sana L, Mancuso A, Marchini C, Puglisi A, Candela M, Mass T, Tassi F, LaJeunesse TC, Dubinsky Z, Falini G, Goffredo S. Acclimatization of a coral-dinoflagellate mutualism at a CO 2 vent. Commun Biol 2023; 6:66. [PMID: 36653505 PMCID: PMC9849335 DOI: 10.1038/s42003-022-04327-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 12/01/2022] [Indexed: 01/19/2023] Open
Abstract
Ocean acidification caused by shifts in ocean carbonate chemistry resulting from increased atmospheric CO2 concentrations is threatening many calcifying organisms, including corals. Here we assessed autotrophy vs heterotrophy shifts in the Mediterranean zooxanthellate scleractinian coral Balanophyllia europaea acclimatized to low pH/high pCO2 conditions at a CO2 vent off Panarea Island (Italy). Dinoflagellate endosymbiont densities were higher at lowest pH Sites where changes in the distribution of distinct haplotypes of a host-specific symbiont species, Philozoon balanophyllum, were observed. An increase in symbiont C/N ratios was observed at low pH, likely as a result of increased C fixation by higher symbiont cell densities. δ13C values of the symbionts and host tissue reached similar values at the lowest pH Site, suggesting an increased influence of autotrophy with increasing acidification. Host tissue δ15N values of 0‰ strongly suggest that diazotroph N2 fixation is occurring within the coral tissue/mucus at the low pH Sites, likely explaining the decrease in host tissue C/N ratios with acidification. Overall, our findings show an acclimatization of this coral-dinoflagellate mutualism through trophic adjustment and symbiont haplotype differences with increasing acidification, highlighting that some corals are capable of acclimatizing to ocean acidification predicted under end-of-century scenarios.
Collapse
Affiliation(s)
- Fiorella Prada
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, Via F. Selmi 3, 40126, Bologna, Italy
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032, Fano, Italy
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Silvia Franzellitti
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032, Fano, Italy
- Animal and Environmental Physiology Laboratory, Department of Biological, Geological and Environmental Sciences, University of Bologna, via S. Alberto 163, 48123, Ravenna, Italy
| | - Erik Caroselli
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, Via F. Selmi 3, 40126, Bologna, Italy.
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032, Fano, Italy.
| | - Itay Cohen
- The Interuniversity Institute for Marine Sciences in Eilat, PO Box 469, Eilat, 88103, Israel
| | - Mauro Marini
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032, Fano, Italy
- Institute of Biological Resources and Marine Biotechnology, National Research Council (CNR), Largo Fiera della Pesca 2, 60125, Ancona, Italy
| | - Alessandra Campanelli
- Institute of Biological Resources and Marine Biotechnology, National Research Council (CNR), Largo Fiera della Pesca 2, 60125, Ancona, Italy
| | - Lorenzo Sana
- Animal and Environmental Physiology Laboratory, Department of Biological, Geological and Environmental Sciences, University of Bologna, via S. Alberto 163, 48123, Ravenna, Italy
| | - Arianna Mancuso
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, Via F. Selmi 3, 40126, Bologna, Italy
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032, Fano, Italy
| | - Chiara Marchini
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, Via F. Selmi 3, 40126, Bologna, Italy
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032, Fano, Italy
| | - Alessia Puglisi
- Animal and Environmental Physiology Laboratory, Department of Biological, Geological and Environmental Sciences, University of Bologna, via S. Alberto 163, 48123, Ravenna, Italy
| | - Marco Candela
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032, Fano, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Tali Mass
- Department of Marine Biology, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Franco Tassi
- Department of Earth Sciences, University of Florence, via la Pira 4, Firenze, Italy
- Institute of Geosciences and Earth Resources (IGG), National Research Council of Italy (CNR), via la Pira 4, Firenze, Italy
| | - Todd C LaJeunesse
- Department of Biology, The Pennsylvania State University, 208 Mueller Laboratory, University Park, PA, 16802, USA.
| | - Zvy Dubinsky
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Giuseppe Falini
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032, Fano, Italy
- Department of Chemistry "Giacomo Ciamician", University of Bologna, 40126, Bologna, Italy
| | - Stefano Goffredo
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, Via F. Selmi 3, 40126, Bologna, Italy.
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032, Fano, Italy.
| |
Collapse
|
34
|
Holveck M, Muller D, Visser B, Timmermans A, Colonval L, Jan F, Crucifix M, Nieberding CM. Warmer temperatures result in maladaptive learning of sexual preferences. Funct Ecol 2023. [DOI: 10.1111/1365-2435.14242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Marie‐Jeanne Holveck
- Evolutionary Ecology and Genetics Group Earth and Life Institute, UCLouvain Louvain‐la‐Neuve Belgium
| | - Doriane Muller
- Evolutionary Ecology and Genetics Group Earth and Life Institute, UCLouvain Louvain‐la‐Neuve Belgium
| | - Bertanne Visser
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology University of Liège ‐ Gembloux Agro‐Bio Tech Gembloux Belgium
| | - Arthur Timmermans
- Evolutionary Ecology and Genetics Group Earth and Life Institute, UCLouvain Louvain‐la‐Neuve Belgium
| | - Lidwine Colonval
- Evolutionary Ecology and Genetics Group Earth and Life Institute, UCLouvain Louvain‐la‐Neuve Belgium
| | - Fabrice Jan
- Evolutionary Ecology and Genetics Group Earth and Life Institute, UCLouvain Louvain‐la‐Neuve Belgium
| | - Michel Crucifix
- Earth and Climate, Earth and Life Institute, UCLouvain Louvain‐la‐Neuve Belgium
| | - Caroline M. Nieberding
- Evolutionary Ecology and Genetics Group Earth and Life Institute, UCLouvain Louvain‐la‐Neuve Belgium
| |
Collapse
|
35
|
Blasco FR, Taylor EW, Leite CAC, Monteiro DA, Rantin FT, McKenzie DJ. Tolerance of an acute warming challenge declines with body mass in Nile tilapia: evidence of a link to capacity for oxygen uptake. J Exp Biol 2022; 225:276171. [PMID: 35909333 DOI: 10.1242/jeb.244287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/25/2022] [Indexed: 11/20/2022]
Abstract
It has been proposed that larger individuals within fish species may be more sensitive to global warming, due to limitations in their capacity to provide oxygen for aerobic metabolic activities. This could affect size distributions of populations in a warmer world but evidence is lacking. In Nile tilapia Oreochromis niloticus (n=18, mass range 21 - 313g), capacity to provide oxygen for aerobic activities (aerobic scope) was independent of mass at an acclimation temperature of 26 °C. Tolerance of acute warming, however, declined significantly with mass when evaluated as the critical temperature for fatigue from aerobic swimming (CTSmax). The CTSmax protocol challenges a fish to meet the oxygen demands of constant aerobic exercise while their demands for basal metabolism are accelerated by incremental warming, culminating in fatigue. CTSmax elicited pronounced increases in oxygen uptake in the tilapia but the maximum rates achieved prior to fatigue declined very significantly with mass. Mass-related variation in CTSmax and maximum oxygen uptake rates were positively correlated, which may indicate a causal relationship. When fish populations are faced with acute thermal stress, larger individuals may become constrained in their ability to perform aerobic activities at lower temperatures than smaller conspecifics. This could affect survival and fitness of larger fish in a future world with more frequent and extreme heatwaves, with consequences for population productivity.
Collapse
Affiliation(s)
- F R Blasco
- Department of Physiological Sciences, Federal University of São Carlos, 13565-905, São Carlos (SP), Brazil.,Joint Graduate Program in Physiological Sciences, Federal University of São Carlos - UFSCar/São Paulo State University, UNESP Campus Araraquara, 14801-903, Araraquara SP, Brazil
| | - E W Taylor
- Department of Physiological Sciences, Federal University of São Carlos, 13565-905, São Carlos (SP), Brazil.,School of Biosciences, University of Birmingham, B15 2TT, UK
| | - C A C Leite
- Department of Physiological Sciences, Federal University of São Carlos, 13565-905, São Carlos (SP), Brazil
| | - D A Monteiro
- Department of Physiological Sciences, Federal University of São Carlos, 13565-905, São Carlos (SP), Brazil
| | - F T Rantin
- Department of Physiological Sciences, Federal University of São Carlos, 13565-905, São Carlos (SP), Brazil
| | - D J McKenzie
- Department of Physiological Sciences, Federal University of São Carlos, 13565-905, São Carlos (SP), Brazil.,MARBEC, Université Montpellier, CNRS, Ifremer, IRD, 34095 Montpellier, France
| |
Collapse
|
36
|
Toll-Riera M, Olombrada M, Castro-Giner F, Wagner A. A limit on the evolutionary rescue of an Antarctic bacterium from rising temperatures. SCIENCE ADVANCES 2022; 8:eabk3511. [PMID: 35857489 PMCID: PMC9286510 DOI: 10.1126/sciadv.abk3511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Climate change is gradual, but it can also cause brief extreme heat waves that can exceed the upper thermal limit of any one organism. To study the evolutionary potential of upper thermal tolerance, we evolved the cold-adapted Antarctic bacterium Pseudoalteromonas haloplanktis to survive at 30°C, beyond its ancestral thermal limit. This high-temperature adaptation occurred rapidly and in multiple populations. It involved genomic changes that occurred in a highly parallel fashion and mitigated the effects of protein misfolding. However, it also confronted a physiological limit, because populations failed to grow beyond 30°C. Our experiments aimed to facilitate evolutionary rescue by using a small organism with large populations living at temperatures several degrees below their upper thermal limit. Larger organisms with smaller populations and living at temperatures closer to their upper thermal tolerances are even more likely to go extinct during extreme heat waves.
Collapse
Affiliation(s)
- Macarena Toll-Riera
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Miriam Olombrada
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | | | - Andreas Wagner
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- The Santa Fe Institute, Santa Fe, NM, USA
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
37
|
Tomasini M, Peischl S. The role of spatial structure in multi-deme models of evolutionary rescue. J Evol Biol 2022; 35:986-1001. [PMID: 35704340 DOI: 10.1111/jeb.14018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 11/30/2022]
Abstract
Genetic variation and population sizes are critical factors for successful adaptation to novel environmental conditions. Gene flow between sub-populations is a potent mechanism to provide such variation and can hence facilitate adaptation, for instance by increasing genetic variation or via the introduction of beneficial variants. On the other hand, if gene flow between different habitats is too strong, locally beneficial alleles may not be able to establish permanently. In the context of evolutionary rescue, intermediate levels of gene flow are therefore often optimal for maximizing a species chance for survival in metapopulations without spatial structure. To which extent and under which conditions gene flow facilitates or hinders evolutionary rescue in spatially structured populations remains unresolved. We address this question by studying the differences between evolutionary rescue in the island model and in the stepping stone model in a gradually deteriorating habitat. We show that evolutionary rescue is modulated by the rate of gene flow between different habitats, which in turn depends strongly on the spatial structure and the pattern of environmental deterioration. We use these insights to show that in many cases spatially structured models can be translated into a simpler island model using an appropriately scaled effective migration rate.
Collapse
Affiliation(s)
- Matteo Tomasini
- Interfaculty Bioinformatics Unit, University of Bern, Bern, Switzerland.,Computational and Molecular Population Genetics Laboratory, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.,Swiss Institute for Bioinformatics, Lausanne, Switzerland
| | - Stephan Peischl
- Interfaculty Bioinformatics Unit, University of Bern, Bern, Switzerland.,Swiss Institute for Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
38
|
Villada-Bedoya S, Córdoba-Aguilar A, Escobar F, González-Tokman D. Contamination effects on sexual selection in wild dung beetles. J Evol Biol 2022; 35:905-918. [PMID: 35647730 DOI: 10.1111/jeb.14024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 04/19/2022] [Accepted: 05/02/2022] [Indexed: 11/26/2022]
Abstract
Sexual selection influences the expression of secondary sexual traits, which are costly to produce and maintain and are thus considered honest indicators of individual condition. Therefore, sexual selection could select for high-quality individuals able to respond to stressful conditions, with impacts on population-level fitness. We sampled dung beetles from 19 pastures and investigated if contamination by herbicides and veterinary drugs modifies male investment in sexually selected traits and has associated population-level effects. We measured horn size, condition dependence (i.e. size-corrected body mass) and allometry, besides abundance and sexual size dimorphism in three species: Copris incertus, Euoniticellus intermedius and Digitonthophagus gazella. In contrary to our expectations, horn size was independent of contamination and individual condition. However, strong positive allometric relationships were reduced by herbicide contamination for C. incertus and D. gazella and were increased by ivermectin for C. incertus, revealing differential investment in horn production according to body size in contaminated habitats. At the population level, large-horned C. incertus males were more abundant in contaminated pastures, potentially revealing a case of evolutionary rescue by sexual selection or a plastic response to higher population densities. Finally, chemical compounds affected the sexual size dimorphism of all three species, with potential effects on female fecundity or intrasexual selection. Together, our findings indicate that contamination interferes with sexual selection processes in the wild, opening new questions regarding the role of sexual selection in favouring species persistence in contaminated environments.
Collapse
Affiliation(s)
| | - Alex Córdoba-Aguilar
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Daniel González-Tokman
- Red de Ecoetología, Instituto de Ecología A.C, Xalapa, Mexico.,CONACYT, Mexico City, Mexico
| |
Collapse
|
39
|
Aurelle D, Thomas S, Albert C, Bally M, Bondeau A, Boudouresque C, Cahill AE, Carlotti F, Chenuil A, Cramer W, Davi H, De Jode A, Ereskovsky A, Farnet A, Fernandez C, Gauquelin T, Mirleau P, Monnet A, Prévosto B, Rossi V, Sartoretto S, Van Wambeke F, Fady B. Biodiversity, climate change, and adaptation in the Mediterranean. Ecosphere 2022. [DOI: 10.1002/ecs2.3915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Didier Aurelle
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO Marseille France
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE Marseille France
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS Sorbonne Université, EPHE Paris France
| | - Séverine Thomas
- Aix Marseille Université, Labex‐OT‐Med Aix‐en‐Provence France
| | - Cécile Albert
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE Marseille France
| | - Marc Bally
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO Marseille France
| | - Alberte Bondeau
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE Marseille France
| | | | | | - François Carlotti
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO Marseille France
| | - Anne Chenuil
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE Marseille France
| | - Wolfgang Cramer
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE Marseille France
| | - Hendrik Davi
- INRAE, Ecologie des Forêts Méditerranéennes (URFM) Avignon France
| | - Aurélien De Jode
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE Marseille France
- Department of Marine Sciences‐Tjärnö University of Gothenburg, Tjärnö Marine Laboratory Gothenburg Sweden
| | - Alexander Ereskovsky
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE Marseille France
- Saint‐Petersburg State University St. Petersburg Russia
| | - Anne‐Marie Farnet
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE Marseille France
| | | | - Thierry Gauquelin
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE Marseille France
| | - Pascal Mirleau
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE Marseille France
| | | | | | - Vincent Rossi
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO Marseille France
| | | | - France Van Wambeke
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO Marseille France
| | - Bruno Fady
- INRAE, Ecologie des Forêts Méditerranéennes (URFM) Avignon France
| |
Collapse
|
40
|
On the genetic architecture of rapidly adapting and convergent life history traits in guppies. Heredity (Edinb) 2022; 128:250-260. [PMID: 35256765 PMCID: PMC8986872 DOI: 10.1038/s41437-022-00512-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 12/29/2022] Open
Abstract
The genetic basis of traits shapes and constrains how adaptation proceeds in nature; rapid adaptation can proceed using stores of polygenic standing genetic variation or hard selective sweeps, and increasing polygenicity fuels genetic redundancy, reducing gene re-use (genetic convergence). Guppy life history traits evolve rapidly and convergently among natural high- and low-predation environments in northern Trinidad. This system has been studied extensively at the phenotypic level, but little is known about the underlying genetic architecture. Here, we use four independent F2 QTL crosses to examine the genetic basis of seven (five female, two male) guppy life history phenotypes and discuss how these genetic architectures may facilitate or constrain rapid adaptation and convergence. We use RAD-sequencing data (16,539 SNPs) from 370 male and 267 female F2 individuals. We perform linkage mapping, estimates of genome-wide and per-chromosome heritability (multi-locus associations), and QTL mapping (single-locus associations). Our results are consistent with architectures of many loci of small-effect for male age and size at maturity and female interbrood period. Male trait associations are clustered on specific chromosomes, but female interbrood period exhibits a weak genome-wide signal suggesting a potentially highly polygenic component. Offspring weight and female size at maturity are also associated with a single significant QTL each. These results suggest rapid, repeatable phenotypic evolution of guppies may be facilitated by polygenic trait architectures, but subsequent genetic redundancy may limit gene re-use across populations, in agreement with an absence of strong signatures of genetic convergence from recent analyses of wild guppies.
Collapse
|
41
|
Grimaudo AT, Hoyt JR, Yamada SA, Herzog CJ, Bennett AB, Langwig KE. Host traits and environment interact to determine persistence of bat populations impacted by white-nose syndrome. Ecol Lett 2022; 25:483-497. [PMID: 34935272 PMCID: PMC9299823 DOI: 10.1111/ele.13942] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/26/2021] [Accepted: 11/17/2021] [Indexed: 11/27/2022]
Abstract
Emerging infectious diseases have resulted in severe population declines across diverse taxa. In some instances, despite attributes associated with high extinction risk, disease emergence and host declines are followed by host stabilisation for unknown reasons. While host, pathogen, and the environment are recognised as important factors that interact to determine host-pathogen coexistence, they are often considered independently. Here, we use a translocation experiment to disentangle the role of host traits and environmental conditions in driving the persistence of remnant bat populations a decade after they declined 70-99% due to white-nose syndrome and subsequently stabilised. While survival was significantly higher than during the initial epidemic within all sites, protection from severe disease only existed within a narrow environmental space, suggesting host traits conducive to surviving disease are highly environmentally dependent. Ultimately, population persistence following pathogen invasion is the product of host-pathogen interactions that vary across a patchwork of environments.
Collapse
Affiliation(s)
| | - Joseph R. Hoyt
- Department of Biological SciencesVirginia TechBlacksburgVirginiaUSA
| | | | - Carl J. Herzog
- New York State Department of Environmental ConservationAlbanyNew YorkUSA
| | | | - Kate E. Langwig
- Department of Biological SciencesVirginia TechBlacksburgVirginiaUSA
| |
Collapse
|
42
|
Kreiner JM, Sandler G, Stern AJ, Tranel PJ, Weigel D, Stinchcombe J, Wright SI. Repeated origins, widespread gene flow, and allelic interactions of target-site herbicide resistance mutations. eLife 2022; 11:70242. [PMID: 35037853 PMCID: PMC8798060 DOI: 10.7554/elife.70242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 01/16/2022] [Indexed: 11/13/2022] Open
Abstract
Causal mutations and their frequency in agricultural fields are well-characterized for herbicide resistance. However, we still lack understanding of their evolutionary history: the extent of parallelism in the origins of target-site resistance (TSR), how long these mutations persist, how quickly they spread, and allelic interactions that mediate their selective advantage. We addressed these questions with genomic data from 19 agricultural populations of common waterhemp (Amaranthus tuberculatus), which we show to have undergone a massive expansion over the past century, with a contemporary effective population size estimate of 8 x 107. We found variation at seven characterized TSR loci, two of which had multiple amino acid substitutions, and three of which were common. These three common resistance variants show extreme parallelism in their mutational origins, with gene flow having shaped their distribution across the landscape. Allele age estimates supported a strong role of adaptation from de novo mutations, with a median age of 30 suggesting that most resistance alleles arose soon after the onset of herbicide use. However, resistant lineages varied in both their age and evidence for selection over two different timescales, implying considerable heterogeneity in the forces that govern their persistence. Two such forces are intra- and inter-locus allelic interactions; we report a signal of extended haplotype competition between two common TSR alleles, and extreme linkage with genome-wide alleles with known functions in resistance adaptation. Together, this work reveals a remarkable example of spatial parallel evolution in a metapopulation, with important implications for the management of herbicide resistance.
Collapse
Affiliation(s)
- Julia M Kreiner
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - George Sandler
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - Aaron J Stern
- Graduate Group in Computational Biology, University of California, Berkeley, Berkeley, United States
| | - Patrick J Tranel
- Department of Crop Sciences, University of Illinois Urbana-Champaign, Urbana, United States
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - John Stinchcombe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - Stephen Isaac Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
43
|
Loria A, Cristescu ME, Gonzalez A. Genotype diversity promotes the persistence of Daphnia populations exposed to severe copper stress. J Evol Biol 2022; 35:265-277. [PMID: 35000231 DOI: 10.1111/jeb.13979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 11/29/2022]
Abstract
When environmental stressors of high intensity are sustained for long periods of time, populations face high probabilities of being extirpated. However, depending on the intensity of the stressor, large populations with sufficient genetic diversity may persist. We report the results of an experiment that tracked the persistence of Daphnia populations exposed to copper contamination. We assessed whether genotypic diversity reduced the risk of extinction. We created monoclonal and multiclonal populations and monitored their population sizes during a 32-week experiment. Cu was applied at a sub-lethal concentration and then increased every week until the population sizes dropped to about 10% of the carrying capacity (Cu at 180 μg/L). The concentration was then increased up to 186 μg/L and held stable until the end of the experiment. A survival analysis showed that clonal diversity extended the persistence of Daphnia populations, but copper contamination caused a substantial genetic erosion followed by population extirpation. However, some Cu-treated populations, mostly multiclonal, showed U-shaped patterns of growth consistent with evolutionary rescue but these did not lead to lasting population recovery. These results highlight the importance of genetic variation for population persistence, but they also show how quickly it can be lost in contaminated environments.
Collapse
Affiliation(s)
| | | | - Andrew Gonzalez
- Department of Biology, McGill University, Montreal, QC, Canada
| |
Collapse
|
44
|
Abstract
AbstractThe transformation of ecosystems proceeds at unprecedented rates. Recent studies suggest that high rates of environmental change can cause rate-induced tipping. In ecological models, the associated rate-induced critical transition manifests during transient dynamics in which populations drop to dangerously low densities. In this work, we study how indirect evolutionary rescue—due to the rapid evolution of a predator’s trait—can save a prey population from the rate-induced collapse. Therefore, we explicitly include the time-dependent dynamics of environmental change and evolutionary adaptation in an eco-evolutionary system. We then examine how fast the evolutionary adaptation needs to be to counteract the response to environmental degradation and express this relationship by means of a critical rate. Based on this critical rate, we conclude that indirect evolutionary rescue is more probable if the predator population possesses a high genetic variation and, simultaneously, the environmental change is slow. Hence, our results strongly emphasize that the maintenance of biodiversity requires a deceleration of the anthropogenic degradation of natural habitats.
Collapse
|
45
|
Linck EB, Freeman BG, Cadena CD, Ghalambor CK. Evolutionary conservatism will limit responses to climate change in the tropics. Biol Lett 2021; 17:20210363. [PMID: 34610253 DOI: 10.1098/rsbl.2021.0363] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Rapid species turnover in tropical mountains has fascinated biologists for centuries. A popular explanation for this heightened beta diversity is that climatic stability at low latitudes promotes the evolution of narrow thermal tolerance ranges, leading to local adaptation, evolutionary divergence and parapatric speciation along elevational gradients. However, an emerging consensus from research spanning phylogenetics, biogeography and behavioural ecology is that this process rarely, if ever, occurs. Instead, closely related species typically occupy a similar elevational niche, while species with divergent elevational niches tend to be more distantly related. These results suggest populations have responded to past environmental change not by adapting and diverging in place, but instead by shifting their distributions to tightly track climate over time. We argue that tropical species are likely to respond similarly to ongoing and future climate warming, an inference supported by evidence from recent range shifts. In the absence of widespread in situ adaptation to new climate regimes by tropical taxa, conservation planning should prioritize protecting large swaths of habitat to facilitate movement.
Collapse
Affiliation(s)
- Ethan B Linck
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, USA
| | - Benjamin G Freeman
- Beatty Biodiversity Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - C Daniel Cadena
- Departamento de Ciencias Biológicas, Universidad de los Andes, Bogota, Colombia
| | - Cameron K Ghalambor
- Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
46
|
Delaune KD, Nesich D, Goos JM, Relyea RA. Impacts of salinization on aquatic communities: Abrupt vs. gradual exposures. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117636. [PMID: 34380226 DOI: 10.1016/j.envpol.2021.117636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/15/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
Increasing chloride concentrations from road salt applications are an emerging threat to freshwater diversity in cold weather regions. Few studies have focused on how road salt affects freshwater biota and even fewer have focused on how the rate of exposure alters organism responses. We hypothesized that road salt concentrations delivered gradually would result in slower population declines and more rapid rebounds due to evolved tolerance. To test this hypothesis, we examined the responses of freshwater lake organisms to four environmentally relevant salt concentrations (100, 230, 860, and 1600 mg Cl-/L) that differed in application rate (abrupt vs. gradual). We used outdoor aquatic mesocosms containing zooplankton, filamentous algae, phytoplankton, periphyton, and macroinvertebrates. We found negative effects of road salt on zooplankton and macroinvertebrate abundance, but positive effects on phytoplankton and periphyton, likely resulting from reduced grazing. Only rarely did we detect a difference between abrupt vs gradual salt applications and the directions of those differences were not consistent. This affirms the need for additional research on how road salt pollution entering ecosystems at different frequencies and magnitudes will alter freshwater communities.
Collapse
Affiliation(s)
- Kelbi D Delaune
- Department of Biological Sciences, Darrin Fresh Water Institute, Rensselaer Polytechnic Institute, Troy, NY, 12980, USA
| | - David Nesich
- Department of Biological Sciences, Darrin Fresh Water Institute, Rensselaer Polytechnic Institute, Troy, NY, 12980, USA
| | - Jared M Goos
- Department of Biological Sciences, Darrin Fresh Water Institute, Rensselaer Polytechnic Institute, Troy, NY, 12980, USA
| | - Rick A Relyea
- Department of Biological Sciences, Darrin Fresh Water Institute, Rensselaer Polytechnic Institute, Troy, NY, 12980, USA.
| |
Collapse
|
47
|
Couper LI, Farner JE, Caldwell JM, Childs ML, Harris MJ, Kirk DG, Nova N, Shocket M, Skinner EB, Uricchio LH, Exposito-Alonso M, Mordecai EA. How will mosquitoes adapt to climate warming? eLife 2021; 10:69630. [PMID: 34402424 PMCID: PMC8370766 DOI: 10.7554/elife.69630] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/13/2021] [Indexed: 12/14/2022] Open
Abstract
The potential for adaptive evolution to enable species persistence under a changing climate is one of the most important questions for understanding impacts of future climate change. Climate adaptation may be particularly likely for short-lived ectotherms, including many pest, pathogen, and vector species. For these taxa, estimating climate adaptive potential is critical for accurate predictive modeling and public health preparedness. Here, we demonstrate how a simple theoretical framework used in conservation biology-evolutionary rescue models-can be used to investigate the potential for climate adaptation in these taxa, using mosquito thermal adaptation as a focal case. Synthesizing current evidence, we find that short mosquito generation times, high population growth rates, and strong temperature-imposed selection favor thermal adaptation. However, knowledge gaps about the extent of phenotypic and genotypic variation in thermal tolerance within mosquito populations, the environmental sensitivity of selection, and the role of phenotypic plasticity constrain our ability to make more precise estimates. We describe how common garden and selection experiments can be used to fill these data gaps. Lastly, we investigate the consequences of mosquito climate adaptation on disease transmission using Aedes aegypti-transmitted dengue virus in Northern Brazil as a case study. The approach outlined here can be applied to any disease vector or pest species and type of environmental change.
Collapse
Affiliation(s)
- Lisa I Couper
- Department of Biology, Stanford University, Stanford, United States
| | | | - Jamie M Caldwell
- Department of Biology, Stanford University, Stanford, United States.,Department of Biology, University of Hawaii at Manoa, Honolulu, United States
| | - Marissa L Childs
- Emmett Interdisciplinary Program in Environment and Resources, Stanford University, Stanford, United States
| | - Mallory J Harris
- Department of Biology, Stanford University, Stanford, United States
| | - Devin G Kirk
- Department of Biology, Stanford University, Stanford, United States.,Department of Zoology, University of Toronto, Toronto, Canada
| | - Nicole Nova
- Department of Biology, Stanford University, Stanford, United States
| | - Marta Shocket
- Department of Biology, Stanford University, Stanford, United States.,Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, United States
| | - Eloise B Skinner
- Department of Biology, Stanford University, Stanford, United States.,Environmental Futures Research Institute, Griffith University, Brisbane, Australia
| | - Lawrence H Uricchio
- Department of Integrative Biology, University of California, Berkeley, Berkeley, United States
| | - Moises Exposito-Alonso
- Department of Biology, Stanford University, Stanford, United States.,Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
| | - Erin A Mordecai
- Department of Biology, Stanford University, Stanford, United States
| |
Collapse
|
48
|
Firth BL, Drake DAR, Power M. Seasonal and environmental effects on upper thermal limits of eastern sand darter ( Ammocrypta pellucida). CONSERVATION PHYSIOLOGY 2021; 9:coab057. [PMID: 35928053 PMCID: PMC8336138 DOI: 10.1093/conphys/coab057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 06/15/2023]
Abstract
Anthropogenic stressors are predicted to increase water temperature, which can influence physiological, individual, and population processes in fishes. We assessed the critical thermal maximum (CTmax) of eastern sand darter (Ammocrypta pellucida), a small benthic fish listed as threatened under the Species at Risk Act in Canada. Field trials were conducted stream side June-November 2019 in the Grand River, Ontario, to encompass a range of ambient water temperatures (7-25°C) for which agitation temperature (Tag) and CTmax were determined. Additional measures were taken in the comparatively more turbid Thames River to test the effect of turbidity on both measures. In the Grand, Tag and CTmax ranged from 23°C to 33°C and 27°C to 37°C, respectively, and both significantly increased with ambient water temperature, with a high acclimation response ratio (0.49). The thermal safety margin (difference between ambient temperatures and CTmax) was smallest in July and August (~11°C) indicating that eastern sand darter lives closer to its physiological limit in summer. The between-river comparison indicated that turbidity had no significant influence on Tag and CTmax. Comparison of CTmax with in-river temperatures suggested that mean stream temperature 24 hours before the trial was most important for determining CTmax. Fish mass, temperature variance and maximum temperature in the 24-hour period prior to the CTmax trial were also shown to have some effect on determining CTmax. Overall, study results better define the sensitivity of eastern sand darter to temperature changes across the growing season and provide information to assess the availability of suitable thermal habitat for conservation purposes.
Collapse
Affiliation(s)
- Britney L Firth
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - D Andrew R Drake
- Great Lakes Laboratory for Fisheries and Aquatic Sciences, Fisheries and Oceans Canada, Burlington, Ontario L7S 1A1, Canada
| | - Michael Power
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
49
|
Golas BD, Goodell B, Webb CT. Host adaptation to novel pathogen introduction: Predicting conditions that promote evolutionary rescue. Ecol Lett 2021; 24:2238-2255. [PMID: 34310798 DOI: 10.1111/ele.13845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/04/2021] [Accepted: 06/09/2021] [Indexed: 02/02/2023]
Abstract
Novel pathogen introduction can have drastic consequences for naive host populations, and outcomes can be difficult to predict. Evolutionary rescue (ER) provides a foundation for understanding whether hosts are driven to extinction or survive via adaptation. Currently, patterns of host population dynamics alongside evidence of adaptation are used to infer ER. However, the gap between established ER theory and complexity inherent in natural systems makes interpreting empirical patterns difficult because they can be confounded with ecological drivers of survival under current theory. To bridge this gap, we expand ER theory to include biological selective agents, such as pathogens. We find birth processes to be more important than previously theorised in determining ER potential. We employ a novel framework evaluating ER potential within natural systems and gain ability to identify system characteristics that make ER possible. Identifying these characteristics allows a shift from retrospective observation to a predictive mindset, and our findings suggest that ER occurrence may be more limited than previously thought. We use the plague system of Yersinia pestis infecting Cynomys ludovicianus (black-tailed prairie dogs) and Spermophilus beecheyi (California ground squirrels) as a case study.
Collapse
|
50
|
Romero‐Mujalli D, Rochow M, Kahl S, Paraskevopoulou S, Folkertsma R, Jeltsch F, Tiedemann R. Adaptive and nonadaptive plasticity in changing environments: Implications for sexual species with different life history strategies. Ecol Evol 2021; 11:6341-6357. [PMID: 34141222 PMCID: PMC8207414 DOI: 10.1002/ece3.7485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 11/07/2022] Open
Abstract
Populations adapt to novel environmental conditions by genetic changes or phenotypic plasticity. Plastic responses are generally faster and can buffer fitness losses under variable conditions. Plasticity is typically modeled as random noise and linear reaction norms that assume simple one-to-one genotype-phenotype maps and no limits to the phenotypic response. Most studies on plasticity have focused on its effect on population viability. However, it is not clear, whether the advantage of plasticity depends solely on environmental fluctuations or also on the genetic and demographic properties (life histories) of populations. Here we present an individual-based model and study the relative importance of adaptive and nonadaptive plasticity for populations of sexual species with different life histories experiencing directional stochastic climate change. Environmental fluctuations were simulated using differentially autocorrelated climatic stochasticity or noise color, and scenarios of directional climate change. Nonadaptive plasticity was simulated as a random environmental effect on trait development, while adaptive plasticity as a linear, saturating, or sinusoidal reaction norm. The last two imposed limits to the plastic response and emphasized flexible interactions of the genotype with the environment. Interestingly, this assumption led to (a) smaller phenotypic than genotypic variance in the population (many-to-one genotype-phenotype map) and the coexistence of polymorphisms, and (b) the maintenance of higher genetic variation-compared to linear reaction norms and genetic determinism-even when the population was exposed to a constant environment for several generations. Limits to plasticity led to genetic accommodation, when costs were negligible, and to the appearance of cryptic variation when limits were exceeded. We found that adaptive plasticity promoted population persistence under red environmental noise and was particularly important for life histories with low fecundity. Populations producing more offspring could cope with environmental fluctuations solely by genetic changes or random plasticity, unless environmental change was too fast.
Collapse
Affiliation(s)
- Daniel Romero‐Mujalli
- Evolutionary Biology/Systematic ZoologyUniversity of PotsdamPotsdamGermany
- Plant Ecology and Nature ConservationUniversity of PotsdamPotsdamGermany
- Foundation, Zoology InstituteUniversity of Veterinary Medicine HannoverHannoverGermany
| | - Markus Rochow
- Evolutionary Biology/Systematic ZoologyUniversity of PotsdamPotsdamGermany
| | - Sandra Kahl
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
- Biodiversity Research/Systematic BotanyInstitute of Biochemistry und BiologyUniversity of PotsdamPotsdamGermany
| | - Sofia Paraskevopoulou
- Evolutionary Biology/Systematic ZoologyUniversity of PotsdamPotsdamGermany
- Faculty of Life SciencesSchool of ZoologyTel Aviv UniversityTel AvivIsrael
| | - Remco Folkertsma
- Evolutionary Adaptive GenomicsUniversity of PotsdamPotsdamGermany
| | - Florian Jeltsch
- Plant Ecology and Nature ConservationUniversity of PotsdamPotsdamGermany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
| | - Ralph Tiedemann
- Evolutionary Biology/Systematic ZoologyUniversity of PotsdamPotsdamGermany
| |
Collapse
|