1
|
Longo AV, Solano-Iguaran JJ, Valenzuela-Sánchez A, Alvarado-Rybak M, Azat C, Bacigalupe LD. Blurred Lines Between Determinism and Stochasticity in an Amphibian Phylosymbiosis Under Pathogen Infection. Mol Ecol 2025; 34:e17741. [PMID: 40119548 DOI: 10.1111/mec.17741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 03/09/2025] [Accepted: 03/11/2025] [Indexed: 03/24/2025]
Abstract
Selection, dispersal and drift jointly contribute to generating variation in microbial composition within and between hosts, habitats and ecosystems. However, we have limited examples of how these processes interact as hosts and their microbes turn over across latitudinal gradients of biodiversity and climate. To bridge this gap, we assembled an extensive dataset of 580 skin bacteriomes from 22 amphibian species distributed across a 10° latitudinal range in Chile. Amphibians are susceptible to the fungal pathogen Batrachochytrium dendrobatidis (Bd), which infects their skin, potentially leading to changes in the normal skin microbiome (i.e., dysbiosis). Using comparative methods, accounting for pathogen infection and implementing resampling schemes, we found evidence of phylosymbiosis, characterised by more similar bacterial communities in closely related amphibian species. We also compared how neutral processes affected the assembly of skin bacteria by focusing on two widespread species from our dataset: the Chilean four-eyed frog (Pleurodema thaul) and Darwin's frog (Rhinoderma darwinii). Neutral models revealed that dispersal and chance largely facilitated the occurrence of ~90% of skin bacteria in both species. Deterministic processes (e.g., phylosymbiosis, active recruitment of microbes, microbe-microbe interactions) explained the remaining fraction of the bacteriomes. Amphibian species accounted for 21%-32% of the variance found in non-neutral bacterial taxa, whereas the interaction with Bd carried a weaker but still significant effect. Our findings provide evidence from ectotherms that most of their skin bacteria are subject to dispersal and chance, yet contemporary and historical contingencies leave strong signatures in their microbiomes even at large geographical scales.
Collapse
Affiliation(s)
- Ana V Longo
- Department of Biology, University of Florida, Gainesville, Florida, USA
| | | | | | - Mario Alvarado-Rybak
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Universidad de Las Américas, Santiago, Chile
| | - Claudio Azat
- One Health Institute, Life Sciences Faculty, Universidad Andres Bello, Santiago, Chile
| | - Leonardo D Bacigalupe
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
2
|
Flores C, Millard S, Seekatz AM. Bridging Ecology and Microbiomes: Applying Ecological Theories in Host-associated Microbial Ecosystems. CURRENT CLINICAL MICROBIOLOGY REPORTS 2025; 12:9. [PMID: 40248762 PMCID: PMC12000275 DOI: 10.1007/s40588-025-00246-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2025] [Indexed: 04/19/2025]
Abstract
Purpose of Review This review explores the application of classical ecological theory to host-associated microbiomes during initial colonization, maintenance, and recovery. We discuss unique challenges of applying these theories to host-associated microbiomes and host factors to consider going forward. Recent Findings Recent studies applying community ecology principles to host microbiomes continue to demonstrate a role for both selective and stochastic processes in shaping host-associated microbiomes. However, ecological frameworks developed to describe dynamics during homeostasis do not necessarily apply during diseased or highly perturbed states, where large variations can potentially lead to alternate stable states. Summary Despite providing valuable insights, the application of ecological theories to host-associated microbiomes has some unique challenges. The integration of host-specific factors, such as genotype or immune dynamics in ecological models or frameworks is crucial for understanding host microbiome assembly and stability, which could improve our ability to predict microbiome outcomes and improve host health.
Collapse
Affiliation(s)
- Clara Flores
- Department of Biological Sciences, Clemson University, Life Sciences Building 157 A, 190 Collings St, Clemson, SC 29634 USA
| | - Sophie Millard
- Department of Biological Sciences, Clemson University, Life Sciences Building 157 A, 190 Collings St, Clemson, SC 29634 USA
| | - Anna M. Seekatz
- Department of Biological Sciences, Clemson University, Life Sciences Building 157 A, 190 Collings St, Clemson, SC 29634 USA
| |
Collapse
|
3
|
Mazel F, Prasad A, Engel P. Host specificity of gut microbiota associated with social bees: patterns and processes. Microbiol Mol Biol Rev 2025:e0008023. [PMID: 40111037 DOI: 10.1128/mmbr.00080-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
SUMMARYGut microbes provide benefits to some animals, but their distribution and effects across diverse hosts are still poorly described. There is accumulating evidence for host specificity (i.e., a pattern where different microbes tend to associate with distinct host lineages), but the causes and consequences of this pattern are unclear. Combining experimental tests in the laboratory with broad surveys in the wild is a promising approach to gaining a comprehensive and mechanistic understanding of host specificity prevalence, origin, and importance. Social bees represent an ideal testbed for this endeavor because they are phylogenetically and functionally diverse, with host-specific, stable, and tractable gut microbiota. Furthermore, the western honeybee (Apis mellifera) is an emerging experimental model system for studying microbiota-host interactions. In this review, we summarize data on the prevalence and strength of host specificity of the social bee gut microbiota (bumblebees, stingless bees, and honeybees), as well as the potential and proven ecological and molecular mechanisms that maintain host specificity. Overall, we found that host specificity in bees is relatively strong and likely results from several processes, including host filtering mediated by the immune system and priority effects. However, more research is needed across multiple social bee species to confirm these findings. To help future research, we summarize emerging hypotheses in the field and propose several experimental and comparative tests. Finally, we conclude this review by highlighting the need to understand how host specificity can influence host health.
Collapse
Affiliation(s)
- Florent Mazel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- NCCR Microbiomes, Lausanne, Switzerland
| | - Aiswarya Prasad
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- NCCR Microbiomes, Lausanne, Switzerland
| |
Collapse
|
4
|
Dias BDC, Lamarca AP, Machado DT, Kloh VP, de Carvalho FM, Vasconcelos ATR. Metabolic pathways associated with Firmicutes prevalence in the gut of multiple livestock animals and humans. Anim Microbiome 2025; 7:20. [PMID: 40033444 PMCID: PMC11874851 DOI: 10.1186/s42523-025-00379-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/21/2025] [Indexed: 03/05/2025] Open
Abstract
Dynamic interspecific interactions and environmental factors deeply impact the composition of microbiotic communities in the gut. These factors intertwined with the host's genetic background and social habits cooperate synergistically as a hidden force modulating the host's physiological and health determinants, with certain bacterial species being maintained from generation to generation. Firmicutes, one of the dominant bacterial phyla present across vertebrate classes, exhibits a wide range of functional capabilities and colonization strategies. While ecological scenarios involving microbial specialization and metabolic functions have been hypothesized, the specific mechanisms that sustain the persistence of its microbial taxa in a high diversity of hosts remain elusive. This study fills this gap by investigating the Firmicutes metabolic mechanisms contributing to their prevalence and heritability in the host gut on metagenomes-assembled bacterial genomes collected from 351 vertebrate samples, covering 18 food-producing animals and humans, specific breeds and closely-related species. We observed that taxa belonging to Acetivibrionaceae, Clostridiaceae, Lachnospiraceae, Ruminococcaceae, and the not well understood CAG-74 family were evolutionarily shared across all hosts. These prevalent taxa exhibit metabolic pathways significantly correlated with extra-host survival mechanisms, cell adhesion, colonization and host transmission, highlighted by sporulation, glycan biosynthesis, bile acid metabolism, and short-chain fatty acid encoded genes. Our findings provide a deeper understanding of the ecological foundations governing distinct transmission modes, effective colonization establishment, and maintenance of Firmicutes, offering new perspectives on both well-known and poorly characterized species.
Collapse
Affiliation(s)
- Beatriz do Carmo Dias
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis, Brazil
| | - Alessandra Pavan Lamarca
- Laboratório de Bioinformática e Evolução Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Douglas Terra Machado
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis, Brazil
| | - Vinicius Prata Kloh
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis, Brazil
| | | | | |
Collapse
|
5
|
Zhou J, Liu Z, Wang S, Li J, Zhang L, Liao Z. A novel framework unveiling the importance of heterogeneous selection and drift on the community structure of symbiotic microbial indicator taxa across altitudinal gradients in amphibians. Microbiol Spectr 2025; 13:e0419223. [PMID: 39772705 PMCID: PMC11792505 DOI: 10.1128/spectrum.04192-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 11/08/2024] [Indexed: 01/11/2025] Open
Abstract
Existing analytical frameworks for community assembly have a noticeable knowledge gap, lacking a comprehensive assessment of the relative contributions of individual or grouped microbial distinct sampling units (DSUs) and distinct taxonomic units (DTUs) to each mechanism. Here, we propose a comprehensive framework for identifying DTUs/DSUs that remarkably contribute to the various mechanisms sustaining microbial community structure. Amphibian symbiotic microbes along an altitudinal gradient from Sichuan Province, China, were employed to examine the proposed statistical framework. In different altitude groups, we found that heterogeneous selection governed the community structure of symbiotic microbes across DSUs, while stochastic processes tended to increase with altitude. For DTUs at phylum and family levels, drift emerged as the dominant mechanism driving the community structure in the most symbiotic microbial taxa, while heterogeneous selection governs the most dominant or indicator taxa. Notably, the relative contribution of heterogeneous selection was significantly positively correlated with the relative abundance and niche breadth of taxa, and negatively correlated with drift. We also detected that community assembly processes remarkably regulate the structure of symbiotic microbial communities and their correlation with environmental variables. Altogether, our modeling framework is a robust and valuable tool that further enlarges our insight into microbiota community assembly. IMPORTANCE Distinguishing the drivers regulating microbial community assembly is essential in microbial ecology. We propose a novel modeling framework to partition the relative contributions of each individual or group of microbial DSUs and DTUs into different underpinning mechanisms. An empirical study on amphibian symbiotic microbes notably enlarges insight into community assembly patterns in the herpetological symbiotic ecosystem and demonstrates that the proposed statistical framework is an informative and sturdy tool to quantify microbial assembly processes at both levels of DSUs and DTUs. More importantly, our proposed modeling framework can provide in-depth insights into microbiota community assembly within the intricate tripartite host-environment-microbe relationship.
Collapse
Affiliation(s)
- Jin Zhou
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhidong Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Sishuo Wang
- Department of Microbiology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jing Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Lin Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Ziyan Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
6
|
DuBose JG, Crook TB, Matzkin LM, Haselkorn TS. The relative importance of host phylogeny and dietary convergence in shaping the bacterial communities hosted by several Sonoran Desert Drosophila species. J Evol Biol 2025; 38:180-189. [PMID: 39587684 DOI: 10.1093/jeb/voae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/11/2024] [Accepted: 11/21/2024] [Indexed: 11/27/2024]
Abstract
Complex eukaryotes vary greatly in the mode and extent that their evolutionary histories have been shaped by the microbial communities that they host. A general understanding of the evolutionary consequences of host-microbe symbioses requires that we understand the relative importance of host phylogenetic divergence and other ecological processes in shaping variation in host-associated microbial communities. To contribute to this understanding, we described the bacterial communities hosted by several Drosophila species native to the Sonoran Desert of North America. Our sampling consisted of four species that span multiple dietary shifts to cactophily, as well as the dietary generalist D. melanogaster, allowing us to partition the influences of host phylogeny and extant ecology. We found that bacterial communities were compositionally indistinguishable when considering incidence only but varied when considering the relative abundances of bacterial taxa. Variation in community composition was not explained by host phylogenetic divergence but could be partially explained by dietary variation. In support of the important role of diet as a source of ecological selection, we found that specialist cactophilic Drosophila deviated more from neutral predictions than dietary generalists. Overall, our findings provide insight into the evolutionary and ecological factors that shape host-associated microbial communities in a natural context.
Collapse
Affiliation(s)
- James G DuBose
- Department of Biology, University of Central Arkansas, Conway, AR, United States
- Department of Biology, Emory University, Atlanta, GA, United States
| | - Thomas Blake Crook
- Department of Biology, University of Central Arkansas, Conway, AR, United States
| | - Luciano M Matzkin
- Department of Entomology, University of Arizona, Tucson, AZ, United States
- BIO5 Institute, University of Arizona, Tucson, AZ, United States
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, United States
| | - Tamara S Haselkorn
- Department of Biology, University of Central Arkansas, Conway, AR, United States
| |
Collapse
|
7
|
Camper BT, Kanes AS, Laughlin ZT, Manuel RT, Bewick SA. Transgressive hybrids as hopeful holobionts. MICROBIOME 2025; 13:19. [PMID: 39844274 PMCID: PMC11752726 DOI: 10.1186/s40168-024-01994-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 12/02/2024] [Indexed: 01/24/2025]
Abstract
BACKGROUND Hybridization between evolutionary lineages has profound impacts on the fitness and ecology of hybrid progeny. In extreme cases, the effects of hybridization can transcend ecological timescales by introducing trait novelty upon which evolution can act. Indeed, hybridization can even have macroevolutionary consequences, for example, as a driver of adaptive radiations and evolutionary innovations. Accordingly, hybridization is now recognized as a motor for macrobial evolution. By contrast, there has been substantially less progress made towards understanding the positive eco-evolutionary consequences of hybridization on holobionts. Rather, the emerging paradigm in holobiont literature is that hybridization disrupts symbiosis between a host lineage and its microbiome, leaving hybrids at a fitness deficit. These conclusions, however, have been drawn based on results from predominantly low-fitness hybrid organisms. Studying "dead-end" hybrids all but guarantees finding that hybridization is detrimental. This is the pitfall that Dobzhansky fell into over 80 years ago when he used hybrid sterility and inviability to conclude that hybridization hinders evolution. Goldschmidt, however, argued that rare saltational successes-so-called hopeful monsters-disproportionately drive positive evolutionary outcomes. Goldschmidt's view is now becoming a widely accepted explanation for the prevalence of historical hybridization in extant macrobial lineages. Aligning holobiont research with this broader evolutionary perspective requires recognizing the importance of similar patterns in host-microbiome systems. That is, rare and successful "hopeful holobionts" (i.e., hopeful monsters at the holobiont scale) might be disproportionately responsible for holobiont evolution. If true, then it is these successful systems that we should be studying to assess impacts of hybridization on the macroevolutionary trajectories of host-microbiome symbioses. RESULTS In this paper, we explore the effects of hybridization on the gut (cloacal) and skin microbiota in an ecologically successful hybrid lizard, Aspidoscelis neomexicanus. Specifically, we test the hypothesis that hybrid lizards have host-associated (HA) microbiota traits strongly differentiated from their progenitor species. Across numerous hybrid microbiota phenotypes, we find widespread evidence of transgressive segregation. Further, microbiota restructuring broadly correlates with niche restructuring during hybridization. This suggests a relationship between HA microbiota traits and ecological success. CONCLUSION Transgressive segregation of HA microbiota traits is not only limited to hybrids at a fitness deficit but also occurs in ecologically successful hybrids. This suggests that hybridization may be a mechanism for generating novel and potentially beneficial holobiont phenotypes. Supporting such a conclusion, the correlations that we find between hybrid microbiota and the hybrid niche indicate that hybridization might change host microbiota in ways that promote a shift or an expansion in host niche space. If true, hybrid microbiota restructuring may underly ecological release from progenitors. This, in turn, could drive evolutionary diversification. Using our system as an example, we elaborate on the evolutionary implications of host hybridization within the context of holobiont theory and then outline the next steps for understanding the role of hybridization in holobiont research. Video Abstract.
Collapse
Affiliation(s)
| | | | | | - Riley Tate Manuel
- Department of Biological Sciences, Clemson University, Clemson, SC, 29631, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sharon Anne Bewick
- Department of Biological Sciences, Clemson University, Clemson, SC, 29631, USA
| |
Collapse
|
8
|
Neha SA, Hanson JD, Wilkinson JE, Bradley RD, Phillips CD. Impacts of host phylogeny, diet, and geography on the gut microbiome of rodents. PLoS One 2025; 20:e0316101. [PMID: 39820176 PMCID: PMC11737772 DOI: 10.1371/journal.pone.0316101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 12/04/2024] [Indexed: 01/19/2025] Open
Abstract
Mammalian gut microbial communities are thought to play a variety of important roles in health and fitness, including digestion, metabolism, nutrition, immune response, behavior, and pathogen protection. Gut microbiota diversity among hosts is strongly shaped by diet as well as phylogenetic relationships among hosts. Although various host factors may influence microbial community structure, the relative contribution may vary depending on several variables, such as taxonomic scales of the species studied, dietary patterns, geographic location, and gut physiology. The present study focused on 12 species of rodents representing 3 rodent families and 3 dietary guilds (herbivores, granivores, and omnivores) to evaluate the influence of host phylogeny, dietary guild and geography on microbial diversity and community composition. Colon samples were examined from rodents that were collected from 7 different localities in Texas and Oklahoma which were characterized using 16S rRNA gene amplicon sequencing targeting the V1-V3 variable regions. The microbiota of colon samples was largely dominated by the family Porphyromonadaceae (Parabacteriodes, Coprobacter) and herbivorous hosts harbored richer gut microbial communities than granivores and omnivores. Differential abundance analysis showed significant trends in the abundance of several bacterial families when comparing herbivores and granivores to omnivores, however, there were no significant differences observed between herbivores and granivores. The gut microbiotas displayed patterns consistent with phylosymbiosis as host phylogeny explained more variation in gut microbiotas (34%) than host dietary guilds (10%), and geography (3%). Overall, results indicate that among this rodent assemblage, evolutionary relatedness is the major determinant of microbiome compositional variation, but diet and to a lesser extent geographic provenance are also influential.
Collapse
Affiliation(s)
- Sufia Akter Neha
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - John D. Hanson
- Blackhawk Genomics, Lubbock, Texas, United States of America
| | | | - Robert D. Bradley
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
- Natural Science Research Laboratory, Museum of Texas Tech University, Lubbock, Texas, United States of America
| | - Caleb D. Phillips
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
- Natural Science Research Laboratory, Museum of Texas Tech University, Lubbock, Texas, United States of America
| |
Collapse
|
9
|
Araujo G, Montoya JM, Thomas T, Webster NS, Lurgi M. A mechanistic framework for complex microbe-host symbioses. Trends Microbiol 2025; 33:96-111. [PMID: 39242229 DOI: 10.1016/j.tim.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/09/2024]
Abstract
Virtually all multicellular organisms on Earth live in symbiotic associations with complex microbial communities: the microbiome. This ancient relationship is of fundamental importance for both the host and the microbiome. Recently, the analyses of numerous microbiomes have revealed an incredible diversity and complexity of symbionts, with different mechanisms identified as potential drivers of this diversity. However, the interplay of ecological and evolutionary forces generating these complex associations is still poorly understood. Here we explore and summarise the suite of ecological and evolutionary mechanisms identified as relevant to different aspects of microbiome complexity and diversity. We argue that microbiome assembly is a dynamic product of ecology and evolution at various spatio-temporal scales. We propose a theoretical framework to classify mechanisms and build mechanistic host-microbiome models to link them to empirical patterns. We develop a cohesive foundation for the theoretical understanding of the combined effects of ecology and evolution on the assembly of complex symbioses.
Collapse
Affiliation(s)
- Gui Araujo
- Department of Biosciences, Swansea University, Swansea, SA2 8PP, UK
| | - José M Montoya
- Theoretical and Experimental Ecology Station, CNRS, 2 route du CNRS, 09200 Moulis, France
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Nicole S Webster
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, 7001, Australia; Australian Centre for Ecogenomics, University of Queensland, Brisbane, 4072, Australia; Australian Institute of Marine Science, Townsville, 4810, Australia
| | - Miguel Lurgi
- Department of Biosciences, Swansea University, Swansea, SA2 8PP, UK.
| |
Collapse
|
10
|
Leasi F, Eckert EM, Norenburg JL, Thomas WK, Sevigny JL, Hall JA, Wirshing HH, Fontaneto D. Microbiota Associated With Ototyphlonemertes Species (Nemertea, Hoplonemertea, Monostilifera, Ototyphlonemertidae) Reveal Evidence of Phylosymbiosis. Ecol Evol 2024; 14:e70471. [PMID: 39629175 PMCID: PMC11612514 DOI: 10.1002/ece3.70471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 12/07/2024] Open
Abstract
Phylosymbiosis, the association between the phylogenetic relatedness of hosts and the composition of their microbial communities, is a widespread phenomenon in diverse animal taxa. However, the generality of the existence of such a pattern has been questioned in many animals across the tree of life, including small-sized aquatic invertebrates. This study aims to investigate the microbial communities associated with poorly known marine interstitial nemerteans to uncover their microbiota diversity and assess the occurrence of phylosymbiosis. Specimens from various Central American sites were analyzed using morphology-based taxonomy and molecular techniques targeting the host 18S rRNA gene whereas their microbial association was analyzed by targeting the prokaryotic 16S rRNA gene. Phylogenetic and statistical analyses were conducted to examine the potential effects of host nemertean taxa and sampling locations on the host-associated microbial communities. The results provide compelling evidence of phylosymbiosis in meiofaunal nemertean species, highlighting the significant impact of host genetic relatedness on microbiome diversity in small-sized animals. This finding supports previous studies that demonstrate how certain nemertean species harbor distinct microbial communities with functional and ecological implications. Given the remarkable diversity of meiofaunal animals-spanning numerous phyla with varying lifestyles and co-existing in the same habitat-combined with advancements in multi-omics approaches, there is a promising opportunity to deepen our understanding of the evolutionary and ecological interactions between hosts and their microbiota throughout the animal tree of life.
Collapse
Affiliation(s)
- Francesca Leasi
- Department of Biology, Geology, and Environmental ScienceUniversity of Tennessee at ChattanoogaChattanoogaTennesseeUSA
| | - Ester M. Eckert
- National Research Council of Italy (CNR), water Research Institute (IRSA)Molecular Ecology Group (MEG)Verbania PallanzaItaly
| | - Jon L. Norenburg
- National Museum of Natural HistorySmithsonian InstitutionWashington, DCUSA
| | - W. Kelley Thomas
- Hubbard Center for Genome StudiesUniversity of New HampshireDurhamNew HampshireUSA
| | - Joseph L. Sevigny
- Hubbard Center for Genome StudiesUniversity of New HampshireDurhamNew HampshireUSA
| | - Jeffrey A. Hall
- Hubbard Center for Genome StudiesUniversity of New HampshireDurhamNew HampshireUSA
| | - Herman H. Wirshing
- National Museum of Natural HistorySmithsonian InstitutionWashington, DCUSA
| | - Diego Fontaneto
- National Research Council of Italy (CNR), water Research Institute (IRSA)Molecular Ecology Group (MEG)Verbania PallanzaItaly
| |
Collapse
|
11
|
Ferreira SCM, Jarquín-Díaz VH, Planillo A, Ďureje Ľ, Martincová I, Kramer-Schadt S, Forslund-Startceva SK, Heitlinger E. Eco-evolutionary dynamics of host-microbiome interactions in a natural population of closely related mouse subspecies and their hybrids. Proc Biol Sci 2024; 291:20241970. [PMID: 39689880 DOI: 10.1098/rspb.2024.1970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/01/2024] [Accepted: 11/08/2024] [Indexed: 12/19/2024] Open
Abstract
Closely related host species share similar symbionts, but the effects of host genetic admixture and environmental conditions on these communities remain largely unknown. We investigated the influence of host genetic admixture and environmental factors on the intestinal prokaryotic and eukaryotic communities (fungi, parasites) of two house mouse subspecies (Mus musculus domesticus and M. m. musculus) and their hybrids in two settings: (i) wild-caught mice from the European hybrid zone and (ii) wild-derived inbred mice in a controlled laboratory environment before and during a community perturbation (infection). In wild-caught mice, environmental factors strongly predicted the overall microbiome composition. Subspecies' genetic distance significantly influenced the overall microbiome composition, and each component (bacteria, parasites and fungi). While hybridization had a weak effect, it significantly impacted fungal composition. We observed similar patterns in wild-derived mice, where genetic distances and hybridization influenced microbiome composition, with fungi being more stable to infection-induced perturbations than other microbiome components. Subspecies' genetic distance has a stronger and consistent effect across microbiome components than differences in expected heterozygosity among hybrids, suggesting that host divergence and host filtering play a key role in microbiome divergence, influenced by environmental factors. Our findings offer new insights into the eco-evolutionary processes shaping host-microbiome interactions.
Collapse
Affiliation(s)
- Susana C M Ferreira
- Division of Computational Systems Biology, Center for Microbiology and Ecological Systems Science, University of Vienna, Djerassipl. 1, Vienna 1030, Austria
- Department of Molecular Parasitology, Institute for Biology, Humboldt University Berlin (HU). Philippstr. 13 Haus 14, Berlin 10115, Germany
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Savoyenstraße 1, Vienna A-1160, Austria
| | - Víctor Hugo Jarquín-Díaz
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Lindenberger Weg 80, Berlin 13125, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC). Robert-Rössle-Str. 10, Berlin 13125, Germany
- Research Group Ecology and Evolution of Molecular Parasite-Host Interactions, Leibniz Institute for Zoo and Wildlife Research (IZW). Alfred-Kowalke-Straße 17, Berlin 10315, Germany
- Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Aimara Planillo
- Department of Ecological Dynamics, Leibniz Institute for Zoo and Wildlife Research (IZW). Alfred-Kowalke-Straße 17, Berlin 10315, Germany
| | - Ľudovít Ďureje
- Research Facility Studenec, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Iva Martincová
- Research Facility Studenec, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Stephanie Kramer-Schadt
- Department of Ecological Dynamics, Leibniz Institute for Zoo and Wildlife Research (IZW). Alfred-Kowalke-Straße 17, Berlin 10315, Germany
- Institute of Ecology, Chair of Planning-related Animal Ecology, Technische Universität Berlin (TUB), Rothenburgstr. 12, Berlin 12165, Germany
| | - Sofia K Forslund-Startceva
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Lindenberger Weg 80, Berlin 13125, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC). Robert-Rössle-Str. 10, Berlin 13125, Germany
- Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Emanuel Heitlinger
- Department of Molecular Parasitology, Institute for Biology, Humboldt University Berlin (HU). Philippstr. 13 Haus 14, Berlin 10115, Germany
- Research Group Ecology and Evolution of Molecular Parasite-Host Interactions, Leibniz Institute for Zoo and Wildlife Research (IZW). Alfred-Kowalke-Straße 17, Berlin 10315, Germany
| |
Collapse
|
12
|
Han CJ, Huang JP, Chiang MR, Jean OSM, Nand N, Etebari K, Shelomi M. The hindgut microbiota of coconut rhinoceros beetles ( Oryctes rhinoceros) in relation to their geographical populations. Appl Environ Microbiol 2024; 90:e0098724. [PMID: 39311575 PMCID: PMC11497824 DOI: 10.1128/aem.00987-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/22/2024] [Indexed: 10/25/2024] Open
Abstract
The coconut rhinoceros beetle (CRB, Oryctes rhinoceros) is a palm tree pest capable of rapidly expanding its population in new territories. Previous studies identified a digestive symbiosis between CRB and its gut microbes. However, no research compared the genetic variation of CRBs with their hindgut microbiota on a global scale. This study aims to investigate the genetic divergence of CRB and the compositional variation of CRB's microbiota across different geographical locations, and explore the association between them and their predicted functional profiles and environmental data. The research reveals a distinct and consistent microbial community within local populations, but it varies across different geographical populations. The microbial functional profiles linked to the production of digestive enzymes, including cellulases and ligninases, are nonetheless globally conserved. This suggests that CRBs employ specific mechanisms to select and maintain microbes with functional benefits, contributing to host adaptability, stress tolerance, and fitness. The CRB microbial communities did not appear to recapitulate the genetic variation of their hosts. Rather than depend on obligate symbionts, CRBs seem to establish similar digestive associations with whatever environmentally acquired microbes are available wherever they are, aiding them in successfully establishing after invading a new location.IMPORTANCECoconut rhinoceros beetles (CRBs) are notorious pests on Arecaceae plants, posing destructive threats to countries highly reliant on coconut, oil palm, and date palm as economic crops. In the last century, CRBs have rapidly expanded their presence to territories that were once free of these beetles. The United States, for instance, has officially designated CRBs as invasive and alien pests. Given their remarkable ability to swiftly adapt to new environments, their gut microbes may play a crucial role in this process. While the microbiota of CRBs vary depending on geographical location, these beetles consistently exhibit a functionally identical digestive association with locally acquired microbes. This underscores the significance of CRB-microbe association in shaping the adaptive strategies of this agricultural pest.
Collapse
Affiliation(s)
- Chiao-Jung Han
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Jen-Pan Huang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Min-Rou Chiang
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | | | - Nitesh Nand
- Plant Health Laboratory, The Pacific Community, Suva, Fiji
| | - Kayvan Etebari
- Faculty of Science, School of Agriculture and Food Sustainability, The University of Queensland, Gatton, Australia
| | - Matan Shelomi
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
13
|
Chung SSW, Cheung K, Arromrak BS, Li Z, Tse CM, Gaitán-Espitia JD. The interplay between host-specificity and habitat-filtering influences sea cucumber microbiota across an environmental gradient of pollution. ENVIRONMENTAL MICROBIOME 2024; 19:74. [PMID: 39397007 PMCID: PMC11479550 DOI: 10.1186/s40793-024-00620-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024]
Abstract
Environmental gradients can influence morpho-physiological and life-history differences in natural populations. It is unclear, however, to what extent such gradients can also modulate phenotypic differences in other organismal characteristics such as the structure and function of host-associated microbial communities. In this work, we addressed this question by assessing intra-specific variation in the diversity, structure and function of environmental-associated (sediment and water) and animal-associated (skin and gut) microbiota along an environmental gradient of pollution in one of the most urbanized coastal areas in the world. Using the tropical sea cucumber Holothuria leucospilota, we tested the interplay between deterministic (e.g., environmental/host filtering) and stochastic (e.g., random microbial dispersal) processes underpinning host-microbiome interactions and microbial assemblages. Overall, our results indicate that microbial communities are complex and vary in structure and function between the environment and the animal hosts. However, these differences are modulated by the level of pollution across the gradient with marked clines in alpha and beta diversity. Yet, such clines and overall differences showed opposite directions when comparing environmental- and animal-associated microbial communities. In the sea cucumbers, intrinsic characteristics (e.g., body compartments, biochemistry composition, immune systems), may underpin the observed intra-individual differences in the associated microbiomes, and their divergence from the environmental source. Such regulation favours specific microbial functional pathways that may play an important role in the survival and physiology of the animal host, particularly in high polluted areas. These findings suggest that the interplay between both, environmental and host filtering underpins microbial community assembly in H. leucospilota along the pollution gradient in Hong Kong.
Collapse
Affiliation(s)
- Sheena Suet-Wah Chung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Khan Cheung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Bovern Suchart Arromrak
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Zhenzhen Li
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment and Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Cham Man Tse
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Juan Diego Gaitán-Espitia
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China.
- Institute for Climate and Carbon Neutrality, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
14
|
Wang W, Song W, Majzoub ME, Feng X, Xu B, Tao J, Zhu Y, Li Z, Qian PY, Webster NS, Thomas T, Fan L. Decoupling of strain- and intrastrain-level interactions of microbiomes in a sponge holobiont. Nat Commun 2024; 15:8205. [PMID: 39294150 PMCID: PMC11410982 DOI: 10.1038/s41467-024-52464-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 09/07/2024] [Indexed: 09/20/2024] Open
Abstract
Holobionts are highly organized assemblages of eukaryotic hosts, cellular microbial symbionts, and viruses, whose interactions and evolution involve complex biological processes. It is largely unknown which specific determinants drive similarity or individuality in genetic diversity between holobionts. Here, we combine short- and long-read sequencing and DNA-proximity-linkage technologies to investigate intraspecific diversity of the microbiomes, including host-resolved viruses, in individuals of a model marine sponge. We find strong impacts of the sponge host and the cellular hosts of viruses on strain-level organization of the holobiont, whereas substantial overlap in nucleotide diversity between holobionts suggests frequent exchanges of microbial cells and viruses at intrastrain level in the local sponge population. Immune-evasive arms races likely restricted virus-host co-evolution at the intrastrain level, generated holobiont-specific genome variations, and linked virus-host genetics through recombination. Our work shows that a decoupling of strain- and intrastrain-level interactions is a key factor in the genetic diversification of holobionts.
Collapse
Affiliation(s)
- Wenxiu Wang
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Weizhi Song
- Center for Marine Science and Innovation, University of New South Wales, Sydney, New South Wales, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Marwan E Majzoub
- Center for Marine Science and Innovation, University of New South Wales, Sydney, New South Wales, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Xiaoyuan Feng
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Bu Xu
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jianchang Tao
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yuanqing Zhu
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Zhiyong Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Minhang, Shanghai, China
| | - Pei-Yuan Qian
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, China
| | - Nicole S Webster
- The Australian Antarctic Division, Kingston, Tasmania, Australia
- Australian Centre for Ecogenomics, University of Queensland, Brisbane, Queensland, Australia
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Torsten Thomas
- Center for Marine Science and Innovation, University of New South Wales, Sydney, New South Wales, Australia.
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| | - Lu Fan
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
15
|
Cullen NP, Ashman TL. Hyperaccumulation of nickel but not selenium drives floral microbiome differentiation: A study with six species of Brassicaceae. AMERICAN JOURNAL OF BOTANY 2024; 111:e16382. [PMID: 39148360 DOI: 10.1002/ajb2.16382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 08/17/2024]
Abstract
PREMISE Intraspecific variation in flower microbiome composition can mediate pollination and reproduction, and so understanding the community assembly processes driving this variation is critical. Yet the relative importance of trait-based host filtering and dispersal in shaping among-species variation in floral microbiomes remains unknown. METHODS Within two clades of Brassicaceae, we compared diversity and composition of floral microbiomes in natural populations of focal nickel and selenium hyperaccumulator species and two of their non-accumulating relatives. We assessed the relative strengths of floral elemental composition, plant phylogenetic distance (host filtering), and geography (dispersal) in driving floral microbiome composition. RESULTS Species in the nickel hyperaccumulator clade had strongly divergent floral microbiomes, the most of that variation driven by floral elemental composition, followed by geographic distance between plant populations and, lastly, phylogenetic distance. Conversely, within the selenium hyperaccumulator clade, floral microbiome divergence was much lower among the species and elemental composition, geography, and plant phylogeny were far weaker determinants of microbiome variation. CONCLUSIONS Our results show that the strength of elemental hyperaccumulation's effect on floral microbiomes differs substantially among plant clades, possibly due to variation in elements as selective filters or in long-distance dispersal probability in different habitats.
Collapse
Affiliation(s)
- Nevin P Cullen
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, 15260, Pennsylvania, USA
| | - Tia-Lynn Ashman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, 15260, Pennsylvania, USA
| |
Collapse
|
16
|
Lipowska MM, Sadowska ET, Kohl KD, Koteja P. Experimental Evolution of a Mammalian Holobiont? Genetic and Maternal Effects on the Cecal Microbiome in Bank Voles Selectively Bred for Herbivorous Capability. ECOLOGICAL AND EVOLUTIONARY PHYSIOLOGY 2024; 97:274-291. [PMID: 39680902 DOI: 10.1086/732781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
AbstractMammalian herbivory represents a complex adaptation requiring evolutionary changes across all levels of biological organization, from molecules to morphology to behavior. Explaining the evolution of such complex traits represents a major challenge in biology, as it is simultaneously muddled and enlightened by a growing awareness of the crucial role of symbiotic associations in shaping organismal adaptations. The concept of hologenomic evolution includes the partnered unit of the holobiont, the host with its microbiome, as a selection unit that may undergo adaptation. Here, we test some of the assumptions underlying the concept of hologenomic evolution using a unique experimental evolution model: lines of the bank vole (Myodes [=Clethrionomys] glareolus) selected for increased ability to cope with a low-quality herbivorous diet and unselected control lines. Results from a complex nature-nurture design, in which we combined cross-fostering between the selected and control lines with dietary treatment, showed that the herbivorous voles harbored a cecal microbiome with altered membership and structure and changed abundances of several phyla and genera regardless of the origin of their foster mothers. Although the differences were small, they were statistically significant and partially robust to changes in diet and housing conditions. Microbial characteristics also correlated with selection-related traits at the level of individual variation. Thus, the results support the hypothesis that selection on a host performance trait leads to genetic changes in the host that promote the maintenance of a beneficial microbiome. Such a result is consistent with some of the assumptions underlying the concept of hologenomic evolution.
Collapse
|
17
|
Berggren H, Yıldırım Y, Nordahl O, Larsson P, Dopson M, Tibblin P, Lundin D, Pinhassi J, Forsman A. Ecological filtering drives rapid spatiotemporal dynamics in fish skin microbiomes. Mol Ecol 2024; 33:e17496. [PMID: 39161196 DOI: 10.1111/mec.17496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024]
Abstract
Skin microbiomes provide vital functions, yet knowledge about the drivers and processes structuring their species assemblages is limited-especially for non-model organisms. In this study, fish skin microbiome was assessed by high throughput sequencing of amplicon sequence variants from metabarcoding of V3-V4 regions in the 16S rRNA gene on fish hosts subjected to the following experimental manipulations: (i) translocation between fresh and brackish water habitats to investigate the role of environment; (ii) treatment with an antibacterial disinfectant to reboot the microbiome and investigate community assembly and priority effects; and (iii) maintained alone or in pairs to study the role of social environment and inter-host dispersal of microbes. The results revealed that fish skin microbiomes harbour a highly dynamic microbial composition that was distinct from bacterioplankton communities in the ambient water. Microbiome composition first diverged as an effect of translocation to either the brackish or freshwater habitat. When the freshwater individuals were translocated back to brackish water, their microbiome composition converged towards the fish microbiomes in the brackish habitat. In summary, external environmental conditions and individual-specific factors jointly determined the community composition dynamics, whereas inter-host dispersal had negligible effects. The dynamics of the microbiome composition was seemingly non-affected by reboot treatment, pointing towards high resilience to disturbance. The results emphasised the role of inter-individual variability for the unexplained variation found in many host-microbiome systems, although the mechanistic underpinnings remain to be identified.
Collapse
Affiliation(s)
- Hanna Berggren
- Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Yeşerin Yıldırım
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Oscar Nordahl
- Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Per Larsson
- Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Mark Dopson
- Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Petter Tibblin
- Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Daniel Lundin
- Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Jarone Pinhassi
- Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Anders Forsman
- Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
18
|
Finnegan PM, Garber PA, McKenney AC, Bicca-Marques JC, De la Fuente MF, Abreu F, Souto A, Schiel N, Amato KR, Mallott EK. Group membership, not diet, structures the composition and functional potential of the gut microbiome in a wild primate. mSphere 2024; 9:e0023324. [PMID: 38940510 PMCID: PMC11288025 DOI: 10.1128/msphere.00233-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/07/2024] [Indexed: 06/29/2024] Open
Abstract
The gut microbiome has the potential to buffer temporal variations in resource availability and consumption, which may play a key role in the ability of animals to adapt to a broad range of habitats. We investigated the temporal composition and function of the gut microbiomes of wild common marmosets (Callithrix jacchus) exploiting a hot, dry environment-Caatinga-in northeastern Brazil. We collected fecal samples during two time periods (July-August and February-March) for 2 years from marmosets belonging to eight social groups. We used 16S rRNA gene amplicon sequencing, metagenomic sequencing, and butyrate RT-qPCR to assess changes in the composition and potential function of their gut microbiomes. Additionally, we identified the plant, invertebrate, and vertebrate components of the marmosets' diet via DNA metabarcoding. Invertebrate, but not plant or vertebrate, consumption varied across the year. However, gut microbiome composition and potential function did not markedly vary across study periods or as a function of diet composition. Instead, the gut microbiome differed markedly in both composition and potential function across marmosets residing in different social groups. We highlight the likely role of factors, such as behavior, residence, and environmental heterogeneity, in modulating the structure of the gut microbiome. IMPORTANCE In a highly socially cohesive and cooperative primate, group membership more strongly predicts gut microbiome composition and function than diet.
Collapse
Affiliation(s)
- Peter M. Finnegan
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| | - Paul A. Garber
- Department of Anthropology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- International Centre of Biodiversity and Primate Conservation, Dali University, Dali, Yunnan, China
| | - Anna C. McKenney
- Department of Natural Sciences, Parkland College, Champaign, Illinois, USA
| | - Júlio César Bicca-Marques
- Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católicado Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Filipa Abreu
- Comparative BioCognition, Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany
| | - Antonio Souto
- Department of Zoology, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Nicola Schiel
- Laboratório de Etologia Teórica e Aplicada, Department of Biology, Federal Rural University of Pernambuco, Recife, Brazil
| | - Katherine R. Amato
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| | - Elizabeth K. Mallott
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
19
|
Shi Z, Yao F, Chen Q, Chen Y, Zhang J, Guo J, Zhang S, Zhang C. More deterministic assembly constrains the diversity of gut microbiota in freshwater snails. Front Microbiol 2024; 15:1394463. [PMID: 39040899 PMCID: PMC11260827 DOI: 10.3389/fmicb.2024.1394463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/10/2024] [Indexed: 07/24/2024] Open
Abstract
Growing evidence has suggested a strong link between gut microbiota and host fitness, yet our understanding of the assembly mechanisms governing gut microbiota remains limited. Here, we collected invasive and native freshwater snails coexisting at four independent sites in Guangdong, China. We used high-throughput sequencing to study the assembly processes of their gut microbiota. Our results revealed significant differences in the diversity and composition of gut microbiota between invasive and native snails. Specifically, the gut microbiota of invasive snails exhibited lower alpha diversity and fewer enriched bacteria, with a significant phylogenetic signal identified in the microbes that were enriched or depleted. Both the phylogenetic normalized stochasticity ratio (pNST) and the phylogenetic-bin-based null model analysis (iCAMP) showed that the assembly process of gut microbiota in invasive snails was more deterministic compared with that in native snails, primarily driven by homogeneous selection. The linear mixed-effects model revealed a significant negative correlation between deterministic processes (homogeneous selection) and alpha diversity of snail gut microbiota, especially where phylogenetic diversity explained the most variance. This indicates that homogeneous selection acts as a filter by the host for specific microbial lineages, constraining the diversity of gut microbiota in invasive freshwater snails. Overall, our study suggests that deterministic assembly-mediated lineage filtering is a potential mechanism for maintaining the diversity of gut microbiota in freshwater snails.
Collapse
Affiliation(s)
- Zhaoji Shi
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Technology Research Centre of Modern Eco-Agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Fucheng Yao
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Technology Research Centre of Modern Eco-Agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Qi Chen
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Technology Research Centre of Modern Eco-Agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Yingtong Chen
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Technology Research Centre of Modern Eco-Agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Jiaen Zhang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Technology Research Centre of Modern Eco-Agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Jing Guo
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Shaobin Zhang
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Chunxia Zhang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Technology Research Centre of Modern Eco-Agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| |
Collapse
|
20
|
Tan Y, An K, Su J. Review: Mechanism of herbivores synergistically metabolizing toxic plants through liver and intestinal microbiota. Comp Biochem Physiol C Toxicol Pharmacol 2024; 281:109925. [PMID: 38643812 DOI: 10.1016/j.cbpc.2024.109925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/31/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Interspecific interactions are central to ecological research. Plants produce toxic plant secondary metabolites (PSMs) as a defense mechanism against herbivore overgrazing, prompting their gradual adaptation to toxic substances for tolerance or detoxification. P450 enzymes in herbivore livers bind to PSMs, whereas UDP-glucuronosyltransferase and glutathione S-transferase increase the hydrophobicity of the bound PSMs for detoxification. Intestinal microorganisms such as Bacteroidetes metabolize cellulase and other macromolecules to break down toxic components. However, detoxification is an overall response of the animal body, necessitating coordination among various organs to detoxify ingested PSMs. PSMs undergo detoxification metabolism through the liver and gut microbiota, evidenced by increased signaling processes of bile acids, inflammatory signaling molecules, and aromatic hydrocarbon receptors. In this context, we offer a succinct overview of how metabolites from the liver and gut microbiota of herbivores contribute to enhancing metabolic PSMs. We focused mainly on elucidating the molecular communication between the liver and gut microbiota involving endocrine, immune, and metabolic processes in detoxification. We have also discussed the potential for future alterations in the gut of herbivores to enhance the metabolic effects of the liver and boost the detoxification and metabolic abilities of PSMs.
Collapse
Affiliation(s)
- Yuchen Tan
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Kang An
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Junhu Su
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
21
|
Lilli G, Sirot C, Campbell H, Hermand F, Brophy D, Flot JF, Graham CT, George IF. Do fish gut microbiotas vary across spatial scales? A case study of Diplodus vulgaris in the Mediterranean Sea. Anim Microbiome 2024; 6:32. [PMID: 38872229 PMCID: PMC11177387 DOI: 10.1186/s42523-024-00319-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Biogeography has been linked to differences in gut microbiota in several animals. However, the existence of such a relationship in fish is not clear yet. So far, it seems to depend on the fish species studied. However, most studies of fish gut microbiotas are based on single populations. In this study, we investigated the gut microbiota of fish from three wild populations of the two-banded sea bream Diplodus vulgaris (Geoffroy Saint-Hilaire, 1817) to determine whether its diversity, structure and potential functionality reflect the geographic origin of the fish, at large and small geographical scale. Additionally, we explored the host- and environmental-related factors explaining this relationship. RESULTS We showed that the taxonomy and potential functionality of the mucosa-associated gut microbiota of Diplodus vulgaris differ to varying degrees depending on the spatial scale considered. At large scale, we observed that both the taxonomical structure and the potential functionality of the fish microbiota differed significantly between populations. In contrast, the taxonomical diversity of the microbial community displayed a significant relationship with factors other than the geographic origin of the fish (i.e. sampling date). On the other hand, at small scale, the different composition and diversity of the microbiota differ according to the characteristics of the habitat occupied by the fish. Specifically, we identified the presence of Posidonia oceanica in the benthic habitat as predictor of both the microbiota composition and diversity. Lastly, we reported the enrichment of functions related to the metabolism of xenobiotics (i.e. drugs and 4-aminobenzoate) in a population and we indicated it as a potential target of future monitoring. CONCLUSIONS With this study, we confirmed the importance of investigating the gut microbiota of wild fish species using multiple populations, taking into account the different habitats occupied by the individuals. Furthermore, we underscored the use of the biodegradation potential of the gut microbiota as an alternative means of monitoring emerging contaminants in Mediterranean fish.
Collapse
Affiliation(s)
- Ginevra Lilli
- Laboratoire d'Ecologie des Systèmes Aquatiques (ESA), Université Libre de Bruxelles (ULB), 1050, Brussels, Belgium.
| | - Charlotte Sirot
- Centre de Recherches Insulaires et Observatoire de l'Environnement (CRIOBE), University of Perpignan, Perpignan, France
| | - Hayley Campbell
- Marine and Freshwater Research Centre, Atlantic Technological University, Dublin Road, Galway, Ireland
| | - Fanny Hermand
- Laboratoire d'Ecologie des Systèmes Aquatiques (ESA), Université Libre de Bruxelles (ULB), 1050, Brussels, Belgium
| | - Deirdre Brophy
- Marine and Freshwater Research Centre, Atlantic Technological University, Dublin Road, Galway, Ireland
| | - Jean-François Flot
- Evolutionary Biology and Ecology, Université libre de Bruxelles (ULB), 1050, Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels - (IB)², 1050, Brussels, Belgium
| | - Conor T Graham
- Marine and Freshwater Research Centre, Atlantic Technological University, Dublin Road, Galway, Ireland
| | - Isabelle F George
- Laboratoire d'Ecologie des Systèmes Aquatiques (ESA), Université Libre de Bruxelles (ULB), 1050, Brussels, Belgium
| |
Collapse
|
22
|
Timanikova N, Fletcher K, Han JW, van West P, Woodward S, Kim GH, Küpper FC, Wenzel M. Macroalgal eukaryotic microbiome composition indicates novel phylogenetic diversity and broad host spectrum of oomycete pathogens. Environ Microbiol 2024; 26:e16656. [PMID: 38818657 DOI: 10.1111/1462-2920.16656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/07/2024] [Indexed: 06/01/2024]
Abstract
Seaweeds are important components of marine ecosystems with emerging potential in aquaculture and as sources of biofuel, food products and pharmacological compounds. However, an increasingly recognised threat to natural and industrial seaweed populations is infection with parasitic single-celled eukaryotes from the relatively understudied oomycete lineage. Here we examine the eukaryomes of diverse brown, red and green marine macroalgae collected from polar (Baffin Island), cold-temperate (Falkland Islands) and tropical (Ascension Island) locations, with a focus on oomycete and closely related diatom taxa. Using 18S rRNA gene amplicon sequencing, we show unexpected genetic and taxonomic diversity of the eukaryomes, a strong broad-brush association between eukaryome composition and geographic location, and some evidence of association between eukaryome structure and macroalgal phylogenetic relationships (phylosymbiosis). However, the oomycete fraction of the eukaryome showed disparate patterns of diversity and structure, highlighting much weaker association with geography and no evidence of phylosymbiosis. We present several novel haplotypes of the most common oomycete Eurychasma dicksonii and report for the first time a cosmopolitan distribution and absence of host specificity of this important pathogen. This indicates rich diversity in macroalgal oomycete pathogens and highlights that these pathogens may be generalist and highly adaptable to diverse environmental conditions.
Collapse
Affiliation(s)
| | - Kyle Fletcher
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
- Oceanlab, University of Aberdeen, Newburgh, UK
- Aberdeen Oomycete Laboratory, International Centre for Aquaculture Research and Development, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Jon-Wong Han
- Kongju National University, Gongju, South Chungcheong Province, South Korea
| | - Pieter van West
- Aberdeen Oomycete Laboratory, International Centre for Aquaculture Research and Development, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Steve Woodward
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Gwang-Hoon Kim
- Kongju National University, Gongju, South Chungcheong Province, South Korea
| | - Frithjof C Küpper
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
- Kongju National University, Gongju, South Chungcheong Province, South Korea
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen, UK
- Department of Chemistry and Biochemistry, San Diego State University, California, San Diego, California, USA
| | - Marius Wenzel
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
23
|
Fromm E, Zinger L, Pellerin F, Di Gesu L, Jacob S, Winandy L, Aguilée R, Parthuisot N, Iribar A, White J, Bestion E, Cote J. Warming effects on lizard gut microbiome depend on habitat connectivity. Proc Biol Sci 2024; 291:20240220. [PMID: 38654642 PMCID: PMC11040258 DOI: 10.1098/rspb.2024.0220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024] Open
Abstract
Climate warming and landscape fragmentation are both factors well known to threaten biodiversity and to generate species responses and adaptation. However, the impact of warming and fragmentation interplay on organismal responses remains largely under-explored, especially when it comes to gut symbionts, which may play a key role in essential host functions and traits by extending its functional and genetic repertoire. Here, we experimentally examined the combined effects of climate warming and habitat connectivity on the gut bacterial communities of the common lizard (Zootoca vivipara) over three years. While the strength of effects varied over the years, we found that a 2°C warmer climate decreases lizard gut microbiome diversity in isolated habitats. However, enabling connectivity among habitats with warmer and cooler climates offset or even reversed warming effects. The warming effects and the association between host dispersal behaviour and microbiome diversity appear to be a potential driver of this interplay. This study suggests that preserving habitat connectivity will play a key role in mitigating climate change impacts, including the diversity of the gut microbiome, and calls for more studies combining multiple anthropogenic stressors when predicting the persistence of species and communities through global changes.
Collapse
Affiliation(s)
- Emma Fromm
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 – Paul Sabatier (UT3), Toulouse, France
| | - Lucie Zinger
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
- Instituto Tecnológico Vale, Rua Boaventura da Silva 955, 66055-090, Belém, Pará, Brazil
| | - Félix Pellerin
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 – Paul Sabatier (UT3), Toulouse, France
| | - Lucie Di Gesu
- Station d'Écologie Théorique et Expérimentale (SETE), UAR2029, CNRS, Moulis, France
| | - Staffan Jacob
- Station d'Écologie Théorique et Expérimentale (SETE), UAR2029, CNRS, Moulis, France
| | - Laurane Winandy
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 – Paul Sabatier (UT3), Toulouse, France
- High Fens Scientific Station, Freshwater and Oceanic Science Unit of Research (FOCUS), University of Liege, Liege, Belgium
| | - Robin Aguilée
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 – Paul Sabatier (UT3), Toulouse, France
| | - Nathalie Parthuisot
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 – Paul Sabatier (UT3), Toulouse, France
| | - Amaia Iribar
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 – Paul Sabatier (UT3), Toulouse, France
| | - Joël White
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 – Paul Sabatier (UT3), Toulouse, France
- École Nationale Supérieure de Formation de l'Enseignement Agricole, 2 Route de Narbonne, 31320 Castanet-Tolosan, France
| | - Elvire Bestion
- Station d'Écologie Théorique et Expérimentale (SETE), UAR2029, CNRS, Moulis, France
| | - Julien Cote
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 – Paul Sabatier (UT3), Toulouse, France
| |
Collapse
|
24
|
Pankey MS, Gochfeld DJ, Gastaldi M, Macartney KJ, Clayshulte Abraham A, Slattery M, Lesser MP. Phylosymbiosis and metabolomics resolve phenotypically plastic and cryptic sponge species in the genus Agelas across the Caribbean basin. Mol Ecol 2024; 33:e17321. [PMID: 38529721 DOI: 10.1111/mec.17321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 03/07/2024] [Indexed: 03/27/2024]
Abstract
Fundamental to holobiont biology is recognising how variation in microbial composition and function relates to host phenotypic variation. Sponges often exhibit considerable phenotypic plasticity and also harbour dense microbial communities that function to protect and nourish hosts. One of the most prominent sponge genera on Caribbean coral reefs is Agelas. Using a comprehensive set of morphological (growth form, spicule), chemical and molecular data on 13 recognised species of Agelas in the Caribbean basin, we were able to define only five species (=clades) and found that many morphospecies designations were incongruent with phylogenomic and population genetic analyses. Microbial communities were also strongly differentiated between phylogenetic species, showing little evidence of cryptic divergence and relatively low correlation with morphospecies assignment. Metagenomic analyses also showed strong correspondence to phylogenetic species, and to a lesser extent, geographical and morphological characters. Surprisingly, the variation in secondary metabolites produced by sponge holobionts was explained by geography and morphospecies assignment, in addition to phylogenetic species, and covaried significantly with a subset of microbial symbionts. Spicule characteristics were highly plastic, under greater impact from geographical location than phylogeny. Our results suggest that while phenotypic plasticity is rampant in Agelas, morphological differences within phylogenetic species affect functionally important ecological traits, including the composition of the symbiotic microbial communities and metabolomic profiles.
Collapse
Affiliation(s)
- M S Pankey
- Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
| | - D J Gochfeld
- National Center for Natural Products Research and Environmental Toxicology, University of Mississippi, University, Mississippi, USA
| | - M Gastaldi
- Escuela Superior de Ciencias Marinas-Universidad Nacional del Comahue, San Antonio Oeste, Río Negro, Argentina
| | - K J Macartney
- Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
| | - A Clayshulte Abraham
- Division of Environmental Toxicology, Department of BioMolecular Sciences, University of Mississippi, University, Mississippi, USA
- Division of Pharmacognosy, Department of BioMolecular Sciences, University of Mississippi, University, Mississippi, USA
| | - M Slattery
- Division of Environmental Toxicology, Department of BioMolecular Sciences, University of Mississippi, University, Mississippi, USA
- Division of Pharmacognosy, Department of BioMolecular Sciences, University of Mississippi, University, Mississippi, USA
| | - M P Lesser
- Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
| |
Collapse
|
25
|
Bouilloud M, Galan M, Pradel J, Loiseau A, Ferrero J, Gallet R, Roche B, Charbonnel N. Exploring the potential effects of forest urbanization on the interplay between small mammal communities and their gut microbiota. Anim Microbiome 2024; 6:16. [PMID: 38528597 DOI: 10.1186/s42523-024-00301-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/06/2024] [Indexed: 03/27/2024] Open
Abstract
Urbanization significantly impacts wild populations, favoring urban dweller species over those that are unable to adapt to rapid changes. These differential adaptative abilities could be mediated by the microbiome, which may modulate the host phenotype rapidly through a high degree of flexibility. Conversely, under anthropic perturbations, the microbiota of some species could be disrupted, resulting in dysbiosis and negative impacts on host fitness. The links between the impact of urbanization on host communities and their gut microbiota (GM) have only been scarcely explored. In this study, we tested the hypothesis that the bacterial composition of the GM could play a role in host adaptation to urban environments. We described the GM of several species of small terrestrial mammals sampled in forested areas along a gradient of urbanization, using a 16S metabarcoding approach. We tested whether urbanization led to changes in small mammal communities and in their GM, considering the presence and abundance of bacterial taxa and their putative functions. This enabled to decipher the processes underlying these changes. We found potential impacts of urbanization on small mammal communities and their GM. The urban dweller species had a lower bacterial taxonomic diversity but a higher functional diversity and a different composition compared to urban adapter species. Their GM assembly was mostly governed by stochastic effects, potentially indicating dysbiosis. Selection processes and an overabundance of functions were detected that could be associated with adaptation to urban environments despite dysbiosis. In urban adapter species, the GM functional diversity and composition remained relatively stable along the urbanization gradient. This observation can be explained by functional redundancy, where certain taxa express the same function. This could favor the adaptation of urban adapter species in various environments, including urban settings. We can therefore assume that there are feedbacks between the gut microbiota and host species within communities, enabling rapid adaptation.
Collapse
Affiliation(s)
- Marie Bouilloud
- CBGP, IRD, CIRAD, INRAE, Institut Agro, Univ Montpellier, Montpellier, France.
- Centre de Biologie pour la Gestion des Populations, 750 Avenue Agropolis, 34988, Montferrier sur Lez, France.
| | - Maxime Galan
- CBGP, IRD, CIRAD, INRAE, Institut Agro, Univ Montpellier, Montpellier, France
| | - Julien Pradel
- CBGP, IRD, CIRAD, INRAE, Institut Agro, Univ Montpellier, Montpellier, France
| | - Anne Loiseau
- CBGP, IRD, CIRAD, INRAE, Institut Agro, Univ Montpellier, Montpellier, France
| | - Julien Ferrero
- CBGP, IRD, CIRAD, INRAE, Institut Agro, Univ Montpellier, Montpellier, France
| | - Romain Gallet
- CBGP, IRD, CIRAD, INRAE, Institut Agro, Univ Montpellier, Montpellier, France
| | - Benjamin Roche
- MIVEGEC, IRD, CNRS, Univ Montpellier, Montpellier, France
| | - Nathalie Charbonnel
- CBGP, IRD, CIRAD, INRAE, Institut Agro, Univ Montpellier, Montpellier, France
| |
Collapse
|
26
|
Blázquez M, Ortiz-Álvarez R, Gasulla F, Pérez-Vargas I, Pérez-Ortega S. Bacterial communities associated with an island radiation of lichen-forming fungi. PLoS One 2024; 19:e0298599. [PMID: 38498492 PMCID: PMC10947700 DOI: 10.1371/journal.pone.0298599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/28/2024] [Indexed: 03/20/2024] Open
Abstract
Evolutionary radiations are one of the most striking processes biologists have studied in islands. A radiation is often sparked by the appearance of ecological opportunity, which can originate in processes like trophic niche segregation or the evolution of key innovations. Another recently proposed mechanism is facilitation mediated by the bacterial communities associated with the radiating species. Here we explore the role of the bacterial communities in a radiation of lichen-forming fungi endemic to Macaronesia. Bacterial diversity was quantified by high throughput sequencing of the V1-V2 hyper-variable region of 172 specimens. We characterized the taxonomic and phylogenetic diversity of the bacterial communities associated with the different species, tested for compositional differences between these communities, carried out a functional prediction, explored the relative importance of different factors in bacterial community structure, searched for phylosymbiosis and tried to identify the origin of this pattern. The species of the radiation differed in the composition of their bacterial communities, which were mostly comprised of Alphaproteobacteria and Acidobacteriia, but not in the functionality of those communities. A phylosimbiotic pattern was detected, but it was probably caused by environmental filtering. These findings are congruent with the combined effect of secondary chemistry and mycobiont identity being the main driver of bacterial community structure. Altogether, our results suggest that the associated bacterial communities are not the radiation's main driver. There is one possible exception, however, a species that has an abnormally diverse core microbiome and whose bacterial communities could be subject to a specific environmental filter at the functional level.
Collapse
Affiliation(s)
| | | | - Francisco Gasulla
- Department of Life Sciences, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Israel Pérez-Vargas
- Department of Botany, Ecology and Plant Physiology, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | | |
Collapse
|
27
|
Osborne OG, Jiménez RR, Byrne AQ, Gratwicke B, Ellison A, Muletz-Wolz CR. Phylosymbiosis shapes skin bacterial communities and pathogen-protective function in Appalachian salamanders. THE ISME JOURNAL 2024; 18:wrae104. [PMID: 38861457 PMCID: PMC11195472 DOI: 10.1093/ismejo/wrae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/09/2024] [Accepted: 06/10/2024] [Indexed: 06/13/2024]
Abstract
Phylosymbiosis is an association between host-associated microbiome composition and host phylogeny. This pattern can arise via the evolution of host traits, habitat preferences, diets, and the co-diversification of hosts and microbes. Understanding the drivers of phylosymbiosis is vital for modelling disease-microbiome interactions and manipulating microbiomes in multi-host systems. This study quantifies phylosymbiosis in Appalachian salamander skin in the context of infection by the fungal pathogen Batrachochytrium dendrobatidis (Bd), while accounting for environmental microbiome exposure. We sampled ten salamander species representing >150M years of divergence, assessed their Bd infection status, and analysed their skin and environmental microbiomes. Our results reveal a significant signal of phylosymbiosis, whereas the local environmental pool of microbes, climate, geography, and Bd infection load had a smaller impact. Host-microbe co-speciation was not evident, indicating that the effect stems from the evolution of host traits influencing microbiome assembly. Bd infection is correlated with host phylogeny and the abundance of Bd-inhibitory bacterial strains, suggesting that the long-term evolutionary dynamics between salamander hosts and their skin microbiomes affect the present-day distribution of the pathogen, along with habitat-linked exposure risk. Five Bd-inhibitory bacterial strains showed unusual generalism: occurring in most host species and habitats. These generalist strains may enhance the likelihood of probiotic manipulations colonising and persisting on hosts. Our results underscore the substantial influence of host-microbiome eco-evolutionary dynamics on environmental health and disease outcomes.
Collapse
Affiliation(s)
- Owen G Osborne
- School of Environmental and Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd LL57 2DG, United Kingdom
| | - Randall R Jiménez
- Center for Conservation Genomics, Smithsonian’s National Zoological Park and Conservation Biology Institute, Washington, DC 20008, United States
- International Union for Conservation of Nature, C. 39, Los Yoses, San Jose, 146-2150, Costa Rica
| | - Allison Q Byrne
- Center for Conservation Genomics, Smithsonian’s National Zoological Park and Conservation Biology Institute, Washington, DC 20008, United States
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720-3114, United States
| | - Brian Gratwicke
- Center for Species Survival, Smithsonian’s National Zoological Park and Conservation Biology Institute, Front Royal, VA 22630, United States
| | - Amy Ellison
- School of Environmental and Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd LL57 2DG, United Kingdom
| | - Carly R Muletz-Wolz
- Center for Conservation Genomics, Smithsonian’s National Zoological Park and Conservation Biology Institute, Washington, DC 20008, United States
| |
Collapse
|
28
|
Mallott EK. Disentangling the mechanisms underlying phylosymbiosis in mammals. Mol Ecol 2024; 33:e17193. [PMID: 37921987 DOI: 10.1111/mec.17193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 11/05/2023]
Abstract
Mammalian gut microbial communities are frequently found to be host-specific-microbial community compositions are more similar within than between host species-and some individual microbial taxa consistently associate with a single or small set of host species. The ecoevolutionary dynamics that result in this pattern of phylosymbiosis or host specificity have been proposed, but robust tests of the mechanisms driving these relationships are lacking. In this issue of Molecular Ecology, Mazel et al. (2023) combine large amplicon sequencing data sets with bacterial phenotypic traits to test whether microbial dispersal patterns contribute to the host specificity of the gut microbiome. They find that both transmission mode and oxygen tolerance are predictive of how specialized a microbe is. Horizontally transmitted, oxygen-tolerant microbes are more likely to be generalists, and vertically transmitted anaerobes are more likely to be limited to a few host species. This creative use of publicly available data provides a roadmap for testing hypotheses about the mechanisms underlying phylosymbiosis.
Collapse
Affiliation(s)
- Elizabeth K Mallott
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
29
|
Mazel F, Guisan A, Parfrey LW. Transmission mode and dispersal traits correlate with host specificity in mammalian gut microbes. Mol Ecol 2024; 33:e16862. [PMID: 36786039 DOI: 10.1111/mec.16862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/24/2022] [Accepted: 01/09/2023] [Indexed: 02/15/2023]
Abstract
Different host species associate with distinct gut microbes in mammals, a pattern sometimes referred to as phylosymbiosis. However, the processes shaping this host specificity are not well understood. One model proposes that barriers to microbial transmission promote specificity by limiting microbial dispersal between hosts. This model predicts that specificity levels measured across microbes is correlated to transmission mode (vertical vs. horizontal) and individual dispersal traits. Here, we leverage two large publicly available gut microbiota data sets (1490 samples from 195 host species) to test this prediction. We found that host specificity varies widely across bacteria (i.e., there are generalist and specialist bacteria) and depends on transmission mode and dispersal ability. Horizontally-like transmitted bacteria equipped with traits that facilitate switches between host (e.g., tolerance to oxygen) were found to be less specific (more generalist) than microbes without those traits, for example, vertically-like inherited bacteria that are intolerant to oxygen. Altogether, our findings are compatible with a model in which limited microbial dispersal abilities foster host specificity.
Collapse
Affiliation(s)
- Florent Mazel
- Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Antoine Guisan
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland
| | - Laura Wegener Parfrey
- Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
30
|
Mazel F, Pitteloud C, Guisan A, Pellissier L. Contrasted host specificity of gut and endosymbiont bacterial communities in alpine grasshoppers and crickets. ISME COMMUNICATIONS 2024; 4:ycad013. [PMID: 38374896 PMCID: PMC10875604 DOI: 10.1093/ismeco/ycad013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 02/21/2024]
Abstract
Bacteria colonize the body of macroorganisms to form associations ranging from parasitic to mutualistic. Endosymbiont and gut symbiont communities are distinct microbiomes whose compositions are influenced by host ecology and evolution. Although the composition of horizontally acquired symbiont communities can correlate to host species identity (i.e. harbor host specificity) and host phylogeny (i.e. harbor phylosymbiosis), we hypothesize that the microbiota structure of vertically inherited symbionts (e.g. endosymbionts like Wolbachia) is more strongly associated with the host species identity and phylogeny than horizontally acquired symbionts (e.g. most gut symbionts). Here, using 16S metabarcoding on 336 guts from 24 orthopteran species (grasshoppers and crickets) in the Alps, we observed that microbiota correlated to host species identity, i.e. hosts from the same species had more similar microbiota than hosts from different species. This effect was ~5 times stronger for endosymbionts than for putative gut symbionts. Although elevation correlated with microbiome composition, we did not detect phylosymbiosis for endosymbionts and putative gut symbionts: closely related host species did not harbor more similar microbiota than distantly related species. Our findings indicate that gut microbiota of studied orthopteran species is more correlated to host identity and habitat than to the host phylogeny. The higher host specificity in endosymbionts corroborates the idea that-everything else being equal-vertically transmitted microbes harbor stronger host specificity signal, but the absence of phylosymbiosis suggests that host specificity changes quickly on evolutionary time scales.
Collapse
Affiliation(s)
- Florent Mazel
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
| | - Camille Pitteloud
- Département de la mobilité, du territoire et de l'environnement, Service des forêts, de la nature et du paysage, Sion 1950, Switzerland
- Ecosystems and Landscape Evolution, Department of Environmental Systems Science, ETH Zürich, Zürich 8092, Switzerland
- Swiss Federal Research Institute WSL, Birmensdorf 8903, Switzerland
| | - Antoine Guisan
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
- Institute of Earth Surface Dynamics, University of Lausanne, Lausanne 1015, Switzerland
| | - Loïc Pellissier
- Ecosystems and Landscape Evolution, Department of Environmental Systems Science, ETH Zürich, Zürich 8092, Switzerland
- Swiss Federal Research Institute WSL, Birmensdorf 8903, Switzerland
| |
Collapse
|
31
|
Tan Y, Yao B, Kang Y, Shi S, Shi Z, Su J. Emerging role of the crosstalk between gut microbiota and liver metabolome of subterranean herbivores in response to toxic plants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115902. [PMID: 38171231 DOI: 10.1016/j.ecoenv.2023.115902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024]
Abstract
Plant secondary metabolites (PSMs) are a defense mechanism against herbivores, which in turn use detoxification metabolism to process ingested and absorbed PSMs. The feeding environment can cause changes in liver metabolism patterns and the gut microbiota. Here, we compared gut microbiota and liver metabolome to investigate the response mechanism of plateau zokors (Eospalax baileyi) to toxic plant Stellera chamaejasme (SC) in non-SC and SC grassland (-SCG and +SCG). Our results indicated that exposure to SC in the -SCG population increased liver inflammatory markers including prostaglandin (PG) in the Arachidonic acid pathway, while exposure to SC in the +SCG population exhibited a significant downregulation of PGs. Secondary bile acids were significantly downregulated in +SCG plateau zokors after SC treatment. Of note, the microbial taxa Veillonella in the -SCG group was significantly correlated with liver inflammation markers, while Clostridium innocum in the +SCG group had a significant positive correlation with secondary bile acids. The increase in bile acids and PGs can lead to liver inflammatory reactions, suggesting that +SCG plateau zokors may mitigate the toxicity of SC plants by reducing liver inflammatory markers including PGs and secondary bile acids, thereby avoiding liver damage. This provides new insight into mechanisms of toxicity by PSMs and counter-mechanisms for toxin tolerance by herbivores.
Collapse
Affiliation(s)
- Yuchen Tan
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Baohui Yao
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Yukun Kang
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Shangli Shi
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Zunji Shi
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Junhu Su
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
32
|
Rose C, Lund MB, Schramm A, Bilde T, Bechsgaard J. Does ecological drift explain variation in microbiome composition among groups in a social host species? J Evol Biol 2023; 36:1684-1694. [PMID: 37776090 DOI: 10.1111/jeb.14228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/18/2023] [Accepted: 06/26/2023] [Indexed: 10/01/2023]
Abstract
Within a given species, considerable inter-individual, spatial, and temporal variation in the composition of the host microbiome exists. In group-living animals, social interactions homogenize microbiome composition among group members, nevertheless divergence in microbiome composition among related groups arise. Such variation can result from deterministic and stochastic processes. Stochastic changes, or ecological drift, can occur among symbionts with potential for colonizing a host and within individual hosts, and drive divergence in microbiome composition among hosts or host groups. We tested whether ecological drift associated with dispersal and foundation of new groups cause divergence in microbiome composition between natal and newly formed groups in the social spider Stegodyphus dumicola. We simulated the initiation of new groups by splitting field-collected nests into groups of 1, 3, and 10 individuals respectively, and compared variation in microbiome composition among and within groups after 6 weeks using 16S rRNA gene sequencing. Theory predicts that ecological drift increases with decreasing group size. We found that microbiome composition among single founders was more dissimilar than among individuals kept in groups, supporting this prediction. Divergence in microbiome composition from the natal nest was mainly driven by a higher number of non-core symbionts. This suggests that stochastic divergence in host microbiomes can arise during the process of group formation by individual founders, which could explain the existence of among-group variation in microbiome composition in the wild. Individual founders appear to harbour higher relative abundances of non-core symbionts compared with founders in small groups, some of which are possible pathogens. These symbionts vary in occurrence with group size, indicating that group dynamics influence various core and non-core symbionts differently.
Collapse
Affiliation(s)
- Clémence Rose
- Section for Genetic Ecology and Evolution, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Marie Braad Lund
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Andreas Schramm
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Trine Bilde
- Section for Genetic Ecology and Evolution, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Jesper Bechsgaard
- Section for Genetic Ecology and Evolution, Department of Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
33
|
Bensch HM, Lundin D, Tolf C, Waldenström J, Zöttl M. Environmental effects rather than relatedness determine gut microbiome similarity in a social mammal. J Evol Biol 2023; 36:1753-1760. [PMID: 37584218 DOI: 10.1111/jeb.14208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/27/2023] [Accepted: 07/10/2023] [Indexed: 08/17/2023]
Abstract
In social species, group members commonly show substantial similarity in gut microbiome composition. Such similarities have been hypothesized to arise either by shared environmental effects or by host relatedness. However, disentangling these factors is difficult, because group members are often related, and social groups typically share similar environmental conditions. In this study, we conducted a cross-foster experiment under controlled laboratory conditions in group-living Damaraland mole-rats (Fukomys damarensis) and used 16S amplicon sequencing to disentangle the effects of the environment and relatedness on gut microbiome similarity and diversity. Our results show that a shared environment is the main factor explaining gut microbiome similarity, overshadowing any effect of host relatedness. Together with studies in wild animal populations, our results suggest that among conspecifics environmental factors are more powerful drivers of gut microbiome composition similarity than host genetics.
Collapse
Affiliation(s)
- Hanna M Bensch
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMIS), Linnaeus University, Kalmar, Sweden
- Kalahari Research Centre, Kuruman River Reserve, Van Zylsrus, South Africa
| | - Daniel Lundin
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMIS), Linnaeus University, Kalmar, Sweden
| | - Conny Tolf
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMIS), Linnaeus University, Kalmar, Sweden
| | - Jonas Waldenström
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMIS), Linnaeus University, Kalmar, Sweden
| | - Markus Zöttl
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMIS), Linnaeus University, Kalmar, Sweden
- Kalahari Research Centre, Kuruman River Reserve, Van Zylsrus, South Africa
| |
Collapse
|
34
|
Moeller AH, Sanders JG, Sprockett DD, Landers A. Assessing co-diversification in host-associated microbiomes. J Evol Biol 2023; 36:1659-1668. [PMID: 37750599 PMCID: PMC10843161 DOI: 10.1111/jeb.14221] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/08/2023] [Accepted: 08/29/2023] [Indexed: 09/27/2023]
Abstract
When lineages of hosts and microbial symbionts engage in intimate interactions over evolutionary timescales, they can diversify in parallel (i.e., co-diversify), producing associations between the lineages' phylogenetic histories. Tests for co-diversification of individual microbial lineages and their hosts have been developed previously, and these have been applied to discover ancient symbioses in diverse branches of the tree of life. However, most host-microbe relationships are not binary but multipartite, in that a single host-associated microbiota can contain many microbial lineages, generating challenges for assessing co-diversification. Here, we review recent evidence for co-diversification in complex microbiota, highlight the limitations of prior studies, and outline a hypothesis testing approach designed to overcome some of these limitations. We advocate for the use of microbiota-wide scans for co-diversifying symbiont lineages and discuss tools developed for this purpose. Tests for co-diversification for simple host symbiont systems can be extended to entire phylogenies of microbial lineages (e.g., metagenome-assembled or isolate genomes, amplicon sequence variants) sampled from host clades, thereby providing a means for identifying co-diversifying symbionts present within complex microbiota. The relative ages of symbiont clades can corroborate co-diversification, and multi-level permutation tests can account for multiple comparisons and phylogenetic non-independence introduced by repeated sampling of host species. Discovering co-diversifying lineages will generate powerful opportunities for interrogating the molecular evolution and lineage turnover of ancestral, host-species specific symbionts within host-associated microbiota.
Collapse
Affiliation(s)
- Andrew H. Moeller
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14850, USA
| | - Jon G. Sanders
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14850, USA
| | - Daniel D. Sprockett
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14850, USA
| | - Abigail Landers
- Department of Microbiology, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
35
|
Qin M, Jiang L, Qiao G, Chen J. Phylosymbiosis: The Eco-Evolutionary Pattern of Insect-Symbiont Interactions. Int J Mol Sci 2023; 24:15836. [PMID: 37958817 PMCID: PMC10650905 DOI: 10.3390/ijms242115836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Insects harbor diverse assemblages of bacterial and fungal symbionts, which play crucial roles in host life history. Insects and their various symbionts represent a good model for studying host-microbe interactions. Phylosymbiosis is used to describe an eco-evolutionary pattern, providing a new cross-system trend in the research of host-associated microbiota. The phylosymbiosis pattern is characterized by a significant positive correlation between the host phylogeny and microbial community dissimilarities. Although host-symbiont interactions have been demonstrated in many insect groups, our knowledge of the prevalence and mechanisms of phylosymbiosis in insects is still limited. Here, we provide an order-by-order summary of the phylosymbiosis patterns in insects, including Blattodea, Coleoptera, Diptera, Hemiptera, Hymenoptera, and Lepidoptera. Then, we highlight the potential contributions of stochastic effects, evolutionary processes, and ecological filtering in shaping phylosymbiotic microbiota. Phylosymbiosis in insects can arise from a combination of stochastic and deterministic mechanisms, such as the dispersal limitations of microbes, codiversification between symbionts and hosts, and the filtering of phylogenetically conserved host traits (incl., host immune system, diet, and physiological characteristics).
Collapse
Affiliation(s)
- Man Qin
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.Q.); (L.J.)
| | - Liyun Jiang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.Q.); (L.J.)
| | - Gexia Qiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.Q.); (L.J.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.Q.); (L.J.)
| |
Collapse
|
36
|
Zhao W, Chen X, Liu R, Tian P, Niu W, Zhang XH, Liu J, Wang X. Distinct coral environments shape the dynamic of planktonic Vibrio spp. ENVIRONMENTAL MICROBIOME 2023; 18:77. [PMID: 37872593 PMCID: PMC10594878 DOI: 10.1186/s40793-023-00532-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/04/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND Coral reefs are one of the most biodiverse and productive ecosystems, providing habitat for a vast of species. Reef-building scleractinian corals with a symbiotic microbiome, including bacteria, archaea, viruses and eukaryotic microbes, are referred to coral holobionts. Among them, coral diseases, mainly caused by Vibrio spp., have significantly contributed to the loss of coral cover and diversity. Habitat filtering across the globe has led to a variety structure of marine bacterial communities. Coral species, quantity and characteristics are significant differences between the Xisha Islands and Daya Bay (Guangdong Province). Thus, the Vibrio communities may be distinct between coral rich and poor areas. RESULTS Through comparison of Vibrio dynamics between coral-rich (Xisha Islands) and coral-poor (Daya Bay) locations, we uncovered differences in Vibrio abundance, diversity, community composition and assembly mechanisms associated with corals. The higher abundance of Vibrio in coral rich areas may indicate a strong interaction between vibrios and corals. V. campbellii, Paraphotobacterium marinum and V. caribbeanicus were widely distributed in both coral rich and poor areas, likely indicating weak species specificity in the coral-stimulated growth of Vibrio. Random-forest prediction revealed Vibrio species and Photobacterium species as potential microbial indicators in the coral rich and coral poor areas, respectively. Ecological drift rather than selection governed the Vibrio community assembly in the Xisha Islands. Comparatively, homogenizing selection was more important for the Daya Bay community, which may reflect a role of habitat filtration. CONCLUSION This study revealed the different distribution pattern and assembly mechanism of Vibrio spp. between coral rich and poor areas, providing the background data for the research of Vibrio community in coral reef areas and may help the protection of coral reef at the biological level. The main reasons for the difference were different number and species of corals, environmental (e.g., temperature) and spatial factors. It reflected the strong interaction between Vibrio and corals, and provided a new perspective for the investigation of Vibrio in coral reef ecosystem.
Collapse
Affiliation(s)
- Wenbin Zhao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266100, China
| | - Xing Chen
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266100, China
| | - Ronghua Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266100, China
| | - Peng Tian
- Laboratory of Marine Biodiversity Research, Third Institute of Oceanography, Ministry of Natural Resources, 178 Daxue Road, Xiamen, 361005, China
- Nansha Islands Coral Reef Ecosystem National Observation and Research Station, Guangzhou, 510000, China
| | - Wentao Niu
- Laboratory of Marine Biodiversity Research, Third Institute of Oceanography, Ministry of Natural Resources, 178 Daxue Road, Xiamen, 361005, China
- Nansha Islands Coral Reef Ecosystem National Observation and Research Station, Guangzhou, 510000, China
| | - Xiao-Hua Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266100, China
| | - Jiwen Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266100, China.
| | - Xiaolei Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
37
|
Shankregowda AM, Siriyappagouder P, Kuizenga M, Bal TMP, Abdelhafiz Y, Eizaguirre C, Fernandes JMO, Kiron V, Raeymaekers JAM. Host habitat rather than evolutionary history explains gut microbiome diversity in sympatric stickleback species. Front Microbiol 2023; 14:1232358. [PMID: 37901806 PMCID: PMC10601471 DOI: 10.3389/fmicb.2023.1232358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/18/2023] [Indexed: 10/31/2023] Open
Abstract
Host-associated microbiota can influence host phenotypic variation, fitness and potential to adapt to local environmental conditions. In turn, both host evolutionary history and the abiotic and biotic environment can influence the diversity and composition of microbiota. Yet, to what extent environmental and host-specific factors drive microbial diversity remains largely unknown, limiting our understanding of host-microbiome interactions in natural populations. Here, we compared the intestinal microbiota between two phylogenetically related fishes, the three-spined stickleback (Gasterosteus aculeatus) and the nine-spined stickleback (Pungitius pungitius) in a common landscape. Using amplicon sequencing of the V3-V4 region of the bacterial 16S rRNA gene, we characterised the α and β diversity of the microbial communities in these two fish species from both brackish water and freshwater habitats. Across eight locations, α diversity was higher in the nine-spined stickleback, suggesting a broader niche use in this host species. Habitat was a strong determinant of β diversity in both host species, while host species only explained a small fraction of the variation in gut microbial composition. Strong habitat-specific effects overruled effects of geographic distance and historical freshwater colonisation, suggesting that the gut microbiome correlates primarily with local environmental conditions. Interestingly, the effect of habitat divergence on gut microbial communities was stronger in three-spined stickleback than in nine-spined stickleback, possibly mirroring the stronger level of adaptive divergence in this host species. Overall, our results show that microbial communities reflect habitat divergence rather than colonisation history or dispersal limitation of host species.
Collapse
Affiliation(s)
| | | | - Marijn Kuizenga
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Thijs M. P. Bal
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Yousri Abdelhafiz
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Christophe Eizaguirre
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | | | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | |
Collapse
|
38
|
Malukiewicz J, D'arc M, Dias CA, Cartwright RA, Grativol AD, Moreira SB, Souza AR, Tavares MCH, Pissinatti A, Ruiz-Miranda CR, Santos AFA. Bifidobacteria define gut microbiome profiles of golden lion tamarin (Leontopithecus rosalia) and marmoset (Callithrix sp.) metagenomic shotgun pools. Sci Rep 2023; 13:15679. [PMID: 37735195 PMCID: PMC10514281 DOI: 10.1038/s41598-023-42059-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/05/2023] [Indexed: 09/23/2023] Open
Abstract
Gut microbiome disruptions may lead to adverse effects on wildlife fitness and viability, thus maintaining host microbiota biodiversity needs to become an integral part of wildlife conservation. The highly-endangered callitrichid golden lion tamarin (GLT-Leontopithecus rosalia) is a rare conservation success, but allochthonous callitrichid marmosets (Callithrix) serve as principle ecological GLT threats. However, incorporation of microbiome approaches to GLT conservation is impeded by limited gut microbiome studies of Brazilian primates. Here, we carried out analysis of gut metagenomic pools from 114 individuals of wild and captive GLTs and marmosets. More specifically, we analyzed the bacterial component of ultra filtered samples originally collected as part of a virome profiling study. The major findings of this study are consistent with previous studies in showing that Bifidobacterium, a bacterial species important for the metabolism of tree gums consumed by callitrichids, is an important component of the callitrichid gut microbiome - although GTLs and marmosets were enriched for different species of Bifidobacterium. Additionally, the composition of GLT and marmoset gut microbiota is sensitive to host environmental factors. Overall, our data expand baseline gut microbiome data for callitrichids to allow for the development of new tools to improve their management and conservation.
Collapse
Affiliation(s)
- Joanna Malukiewicz
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, 37077, Germany.
- Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo, SP, 05403-000, Brazil.
| | - Mirela D'arc
- Laboratório de Diversidade e Doenças Virais, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Cecilia A Dias
- Centro de Primatologia, Universidade de Brasília, Brasília, Brazil
| | - Reed A Cartwright
- School of Life Sciences and the Biodesign Institute, Arizona State University, Tempe, AZ, 85281, USA
| | | | - Silvia Bahadian Moreira
- Centro de Primatologia do Rio de Janeiro, Instituto Estadual do Ambiente, Rio de Janeiro, Brazil
| | | | | | - Alcides Pissinatti
- Centro de Primatologia do Rio de Janeiro, Instituto Estadual do Ambiente, Rio de Janeiro, Brazil
| | - Carlos R Ruiz-Miranda
- Laboratorio das Ciencias Ambientais, Centro de Biociencias e Biotecnologia, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - André F A Santos
- Laboratório de Diversidade e Doenças Virais, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
39
|
Muyyarikkandy MS, Parzygnat J, Thakur S. Uncovering changes in microbiome profiles across commercial and backyard poultry farming systems. Microbiol Spectr 2023; 11:e0168223. [PMID: 37607066 PMCID: PMC10580917 DOI: 10.1128/spectrum.01682-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/07/2023] [Indexed: 08/24/2023] Open
Abstract
The microbiome profiles of poultry production systems significantly impact bird health, welfare, and the environment. This study investigated the influence of broiler-rearing systems on the microbiome composition of commercial and backyard chicken farms and their environment over time. Understanding these effects is vital for optimizing animal growth, enhancing welfare, and addressing human and environmental health implications. We collected and analyzed various samples from commercial and backyard farms, revealing significant differences in microbial diversity measurements between the two systems. Backyard farms exhibited higher alpha diversity measurements in soil and water samples, while commercial farms showed higher values for litter and feeder samples. The differences in microbial diversity were also reflected in the relative abundance of various microbial taxa. In backyard farms, Proteobacteria levels increased over time, while Firmicutes levels decreased. Campilobacterota, including the major poultry foodborne pathogen Campylobacter, increased over time in commercial farm environments. Furthermore, Bacteroides, associated with improved growth performance in chickens, were more abundant in backyard farms. Conversely, pathogenic Acinetobacter was significantly higher in backyard chicken fecal and feeder swab samples. The presence of Brevibacterium and Brachybacterium, associated with low-performing broiler flocks, was significantly higher in commercial farm samples. The observed differences in microbial composition and diversity suggest that farm management practices and environmental conditions significantly affect poultry health and welfare and have potential implications for human and environmental health. Understanding these relationships can inform targeted interventions to optimize poultry production, improve animal welfare, and mitigate foodborne pathogens and antimicrobial resistance risks. IMPORTANCE The microbiome of poultry production systems has garnered significant attention due to its implications on bird health, welfare, and overall performance. The present study investigates the impact of different broiler-rearing systems, namely, commercial (conventional) and backyard (non-conventional), on the microbiome profiles of chickens and their environment over time. Understanding the influence of these systems on microbiome composition is a critical aspect of the One-Health concept, which emphasizes the interconnectedness of animal, human, and environmental health. Our findings demonstrate that the type of broiler production system significantly affects both the birds and their environment, with distinct microbial communities associated with each system. This study reveals the presence of specific microbial taxa that differ in abundance between commercial and backyard poultry farms, providing valuable insights into the management practices that may alter the microbiome in these settings. Furthermore, the dynamic changes in microbial composition over time observed in our study highlight the complex interplay between the poultry gut microbiome, environmental factors, and production systems. By identifying the key microbial players and their fluctuations in commercial and backyard broiler production systems, this research offers a foundation for developing targeted strategies to optimize bird health and welfare while minimizing the potential risks to human and environmental health. The results contribute to a growing body of knowledge in the field of poultry microbiome research and have the potential to guide future improvements in poultry production practices that promote a sustainable and healthy balance between the birds, their environment, and the microbial communities they host.
Collapse
Affiliation(s)
| | - Jessica Parzygnat
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, North Carolina, USA
| | - Siddhartha Thakur
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
40
|
Li A, Li Z, Leng H, Jin L, Xiao Y, Sun K, Feng J. Seasonal assembly of skin microbiota driven by neutral and selective processes in the greater horseshoe bat. Mol Ecol 2023; 32:4695-4707. [PMID: 37322601 DOI: 10.1111/mec.17051] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
Skin microbiota play an important role in protecting bat hosts from the fungal pathogen Pseudogymnoascus destructans, which has caused dramatic bat population declines and extinctions. Recent studies have provided insights into the bacterial communities of bat skin, but variation in skin bacterial community structure in the context of the seasonal dynamics of fungal invasion, as well as the processes that drive such variation, remain largely unexplored. In this study, we characterized bat skin microbiota over the course of the bat hibernation and active season stages and used a neutral model of community ecology to determine the relative roles of neutral and selective processes in driving microbial community variation. Our results showed significant seasonal shifts in skin community structure, as well as less diverse microbiota in hibernation than in the active season. Skin microbiota were influenced by the environmental bacterial reservoir. During both the hibernation and active season stages, more than 78% of ASVs in bat skin microbiota were consistent with neutral distribution, implying that neutral processes, that is, dispersal or ecological drift contributing the most to shifts in skin microbiota. In addition, the neutral model showed that some ASVs were actively selected by the bats from the environmental bacterial reservoir, accounting for approximately 20% and 31% of the total community during hibernation and active season stages, respectively. Overall, this research provides insights into the assemblage of bat-associated bacterial communities and will aid in the development of conservation strategies against fungal disease.
Collapse
Affiliation(s)
- Aoqiang Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- School of Life Sciences, Central China Normal University, Wuhan, China
| | - Zhongle Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Haixia Leng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Longru Jin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Yanhong Xiao
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- College of Life Science, Jilin Agricultural University, Changchun, China
| |
Collapse
|
41
|
Villa SM, Chen JZ, Kwong Z, Acosta A, Vega NM, Gerardo NM. Specialized acquisition behaviors maintain reliable environmental transmission in an insect-microbial mutualism. Curr Biol 2023:S0960-9822(23)00724-8. [PMID: 37385254 DOI: 10.1016/j.cub.2023.05.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/07/2023] [Accepted: 05/25/2023] [Indexed: 07/01/2023]
Abstract
Understanding how horizontally transmitted mutualisms are maintained is a major focus of symbiosis research.1,2,3,4 Unlike vertical transmission, hosts that rely on horizontal transmission produce symbiont-free offspring that must find and acquire their beneficial microbes from the environment. This transmission strategy is inherently risky since hosts may not obtain the right symbiont every generation. Despite these potential costs, horizontal transmission underlies stable mutualisms involving a large diversity of both plants and animals.5,6,7,8,9 One largely unexplored way horizontal transmission is maintained is for hosts to evolve sophisticated mechanisms to consistently find and acquire specific symbionts from the environment. Here, we examine this possibility in the squash bug Anasa tristis, an insect pest that requires bacterial symbionts in the genus Caballeronia10 for survival and development.11 We conduct a series of behavioral and transmission experiments that track strain-level transmission in vivo among individuals in real-time. We demonstrate that nymphs can accurately find feces from adult bugs in both the presence and absence of those adults. Once nymphs locate the feces, they deploy feeding behavior that results in nearly perfect symbiont acquisition success. We further demonstrate that nymphs can locate and feed on isolated, cultured symbionts in the absence of feces. Finally, we show this acquisition behavior is highly host specific. Taken together, our data describe not only the evolution of a reliable horizontal transmission strategy, but also a potential mechanism that drives patterns of species-specific microbial communities among closely related, sympatric host species.
Collapse
Affiliation(s)
- Scott M Villa
- Department of Biology, Emory University, 1510 Clifton Rd., Atlanta, GA 30322, USA; Department of Biology, Davidson College, 209 Ridge Rd., Davidson, NC 28035, USA.
| | - Jason Z Chen
- Department of Biology, Emory University, 1510 Clifton Rd., Atlanta, GA 30322, USA
| | - Zeeyong Kwong
- Department of Biology, Emory University, 1510 Clifton Rd., Atlanta, GA 30322, USA
| | - Alice Acosta
- Department of Biology, Emory University, 1510 Clifton Rd., Atlanta, GA 30322, USA
| | - Nicole M Vega
- Department of Biology, Emory University, 1510 Clifton Rd., Atlanta, GA 30322, USA
| | - Nicole M Gerardo
- Department of Biology, Emory University, 1510 Clifton Rd., Atlanta, GA 30322, USA
| |
Collapse
|
42
|
Sprockett DD, Price JD, Juritsch AF, Schmaltz RJ, Real MV, Goldman SL, Sheehan M, Ramer-Tait AE, Moeller AH. Home-site advantage for host species-specific gut microbiota. SCIENCE ADVANCES 2023; 9:eadf5499. [PMID: 37184968 PMCID: PMC10184861 DOI: 10.1126/sciadv.adf5499] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 04/06/2023] [Indexed: 05/17/2023]
Abstract
Mammalian species harbor compositionally distinct gut microbial communities, but the mechanisms that maintain specificity of symbionts to host species remain unclear. Here, we show that natural selection within house mice (Mus musculus domesticus) drives deterministic assembly of the house-mouse gut microbiota from mixtures of native and non-native microbiotas. Competing microbiotas from wild-derived lines of house mice and other mouse species (Mus and Peromyscus spp.) within germ-free wild-type (WT) and Rag1-knockout (Rag1-/-) house mice revealed widespread fitness advantages for native gut bacteria. Native bacterial lineages significantly outcompeted non-native lineages in both WT and Rag1-/- mice, indicating home-site advantage for native microbiota independent of host adaptive immunity. However, a minority of native Bacteriodetes and Firmicutes favored by selection in WT hosts were not favored or disfavored in Rag1-/- hosts, indicating that Rag1 mediates fitness advantages of these strains. This study demonstrates home-site advantage for native gut bacteria, consistent with local adaptation of gut microbiota to their mammalian species.
Collapse
Affiliation(s)
- Daniel D. Sprockett
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Jeffrey D. Price
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Anthony F. Juritsch
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Robert J. Schmaltz
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Madalena V. F. Real
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Samantha L. Goldman
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Michael Sheehan
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Amanda E. Ramer-Tait
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Andrew H. Moeller
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
43
|
Brown JJ, Jandová A, Jeffs CT, Higgie M, Nováková E, Lewis OT, Hrček J. Microbiome Structure of a Wild Drosophila Community along Tropical Elevational Gradients and Comparison to Laboratory Lines. Appl Environ Microbiol 2023; 89:e0009923. [PMID: 37154737 DOI: 10.1128/aem.00099-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Variation along environmental gradients in host-associated microbial communities is not well understood compared to free-living microbial communities. Because elevational gradients may serve as natural proxies for climate change, understanding patterns along these gradients can inform our understanding of the threats hosts and their symbiotic microbes face in a warming world. In this study, we analyzed bacterial microbiomes from pupae and adults of four Drosophila species native to Australian tropical rainforests. We sampled wild individuals at high and low elevations along two mountain gradients to determine natural diversity patterns. Further, we sampled laboratory-reared individuals from isofemale lines established from the same localities to see if any natural patterns are retained in the lab. In both environments, we controlled for diet to help elucidate other deterministic patterns of microbiome composition. We found small but significant differences in Drosophila bacterial community composition across elevation, with some notable taxonomic differences between different Drosophila species and sites. Further, we found that field-collected fly pupae had significantly richer microbiomes than laboratory-reared pupae. We also found similar microbiome composition in both types of provided diet, suggesting that the significant differences found among Drosophila microbiomes are the products of surrounding environments with different bacterial species pools, possibly bound to elevational differences in temperature. Our results suggest that comparative studies between lab and field specimens help reveal the true variability in microbiome communities that can exist within a single species. IMPORTANCE Bacteria form microbial communities inside most higher-level organisms, but we know little about how the microbiome varies along environmental gradients and between natural host populations and laboratory colonies. To explore such effects on insect-associated microbiomes, we studied the gut microbiome in four Drosophila species over two mountain gradients in tropical Australia. We also compared these data to individuals kept in the laboratory to understand how different settings changed microbiome communities. We found that field-sampled individuals had significantly higher microbiome diversity than those from the lab. In wild Drosophila populations, elevation explains a small but significant amount of the variation in their microbial communities. Our study highlights the importance of environmental bacterial sources for Drosophila microbiome composition across elevational gradients and shows how comparative studies help reveal the true flexibility in microbiome communities that can exist within a species.
Collapse
Affiliation(s)
- Joel J Brown
- University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Anna Jandová
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | | | - Megan Higgie
- College of Science & Engineering, James Cook University, Townsville, Queensland, Australia
| | - Eva Nováková
- University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Owen T Lewis
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Jan Hrček
- University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| |
Collapse
|
44
|
Weitzman CL, Kaestli M, Rose A, Hudson CM, Gibb K, Brown GP, Shine R, Christian K. Geographic variation in bacterial assemblages on cane toad skin is influenced more by local environments than by evolved changes in host traits. Biol Open 2023; 12:286922. [PMID: 36745034 PMCID: PMC9932784 DOI: 10.1242/bio.059641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/16/2023] [Indexed: 02/07/2023] Open
Abstract
Bacterial assemblages on amphibian skin may play an important role in protecting hosts against infection. In hosts that occur over a range of environments, geographic variation in composition of bacterial assemblages might be due to direct effects of local factors and/or to evolved characteristics of the host. Invasive cane toads (Rhinella marina) are an ideal candidate to evaluate environmental and genetic mechanisms, because toads have evolved major shifts in physiology, morphology, and behavior during their brief history in Australia. We used samples from free-ranging toads to quantify site-level differences in bacterial assemblages and a common-garden experiment to see if those differences disappeared when toads were raised under standardised conditions at one site. The large differences in bacterial communities on toads from different regions were not seen in offspring raised in a common environment. Relaxing bacterial clustering to operational taxonomic units in place of amplicon sequence variants likewise revealed high similarity among bacterial assemblages on toads in the common-garden study, and with free-ranging toads captured nearby. Thus, the marked geographic divergence in bacterial assemblages on wild-caught cane toads across their Australian invasion appears to result primarily from local environmental effects rather than evolved shifts in the host.
Collapse
Affiliation(s)
- Chava L. Weitzman
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT 0909, Australia,Author for correspondence ()
| | - Mirjam Kaestli
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT 0909, Australia
| | - Alea Rose
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT 0909, Australia
| | - Cameron M. Hudson
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Karen Gibb
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT 0909, Australia
| | - Gregory P. Brown
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Richard Shine
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Keith Christian
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT 0909, Australia
| |
Collapse
|
45
|
A microbial tale of farming, invasion and conservation: on the gut bacteria of European and American mink in Western Europe. Biol Invasions 2023. [DOI: 10.1007/s10530-023-03007-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
46
|
Grieneisen L, Blekhman R, Archie E. How longitudinal data can contribute to our understanding of host genetic effects on the gut microbiome. Gut Microbes 2023; 15:2178797. [PMID: 36794811 PMCID: PMC9980606 DOI: 10.1080/19490976.2023.2178797] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
A key component of microbiome research is understanding the role of host genetic influence on gut microbial composition. However, it can be difficult to link host genetics with gut microbial composition because host genetic similarity and environmental similarity are often correlated. Longitudinal microbiome data can supplement our understanding of the relative role of genetic processes in the microbiome. These data can reveal environmentally contingent host genetic effects, both in terms of controlling for environmental differences and in comparing how genetic effects differ by environment. Here, we explore four research areas where longitudinal data could lend new insights into host genetic effects on the microbiome: microbial heritability, microbial plasticity, microbial stability, and host and microbiome population genetics. We conclude with a discussion of methodological considerations for future studies.
Collapse
Affiliation(s)
- Laura Grieneisen
- Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC, Canada
| | - Ran Blekhman
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Elizabeth Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
47
|
Juottonen H, Moghadam NN, Murphy L, Mappes J, Galarza JA. Host's genetic background determines the outcome of reciprocal faecal transplantation on life-history traits and microbiome composition. Anim Microbiome 2022; 4:67. [PMID: 36564793 PMCID: PMC9789590 DOI: 10.1186/s42523-022-00210-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/09/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Microbes play a role in their host's fundamental ecological, chemical, and physiological processes. Host life-history traits from defence to growth are therefore determined not only by the abiotic environment and genotype but also by microbiota composition. However, the relative importance and interactive effects of these factors may vary between organisms. Such connections remain particularly elusive in Lepidoptera, which have been argued to lack a permanent microbiome and have microbiota primarily determined by their diet and environment. We tested the microbiome specificity and its influence on life-history traits of two colour genotypes of the wood tiger moth (Arctia plantaginis) that differ in several traits, including growth. All individuals were grown in the laboratory for several generations with standardized conditions. We analyzed the bacterial community of the genotypes before and after a reciprocal frass (i.e., larval faeces) transplantation and followed growth rate, pupal mass, and the production of defensive secretion. RESULTS After transplantation, the fast-growing genotype grew significantly slower compared to the controls, but the slow-growing genotype did not change its growth rate. The frass transplant also increased the volume of defensive secretions in the fast-growing genotype but did not affect pupal mass. Overall, the fast-growing genotype appeared more susceptible to the transplantation than the slow-growing genotype. Microbiome differences between the genotypes strongly suggest genotype-based selective filtering of bacteria from the diet and environment. A novel cluster of insect-associated Erysipelotrichaceae was exclusive to the fast-growing genotype, and specific Enterococcaceae were characteristic to the slow-growing genotype. These Enterococcaceae became more prevalent in the fast-growing genotype after the transplant, which suggests that a slower growth rate is potentially related to their presence. CONCLUSIONS We show that reciprocal frass transplantation can reverse some genotype-specific life-history traits in a lepidopteran host. The results indicate that genotype-specific selective filtering can fine-tune the bacterial community at specific life stages and tissues like the larval frass, even against a background of a highly variable community with stochastic assembly. Altogether, our findings suggest that the host's genotype can influence its susceptibility to being colonized by microbiota, impacting key life-history traits.
Collapse
Affiliation(s)
- Heli Juottonen
- grid.9681.60000 0001 1013 7965Department of Biological and Environmental Sciences, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland
| | - Neda N. Moghadam
- grid.9681.60000 0001 1013 7965Department of Biological and Environmental Sciences, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland
| | - Liam Murphy
- grid.9681.60000 0001 1013 7965Department of Biological and Environmental Sciences, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland
| | - Johanna Mappes
- grid.9681.60000 0001 1013 7965Department of Biological and Environmental Sciences, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland ,grid.7737.40000 0004 0410 2071Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikki Biocenter 3, 00014 Helsinki, Finland
| | - Juan A. Galarza
- grid.9681.60000 0001 1013 7965Department of Biological and Environmental Sciences, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland ,grid.7737.40000 0004 0410 2071Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikki Biocenter 3, 00014 Helsinki, Finland
| |
Collapse
|
48
|
Zhu Y, Yang R, Wang X, Wen T, Gong M, Shen Y, Xu J, Zhao D, Du Y. Gut microbiota composition in the sympatric and diet-sharing Drosophila simulans and Dicranocephalus wallichii bowringi shaped largely by community assembly processes rather than regional species pool. IMETA 2022; 1:e57. [PMID: 38867909 PMCID: PMC10989964 DOI: 10.1002/imt2.57] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/01/2022] [Accepted: 09/14/2022] [Indexed: 06/14/2024]
Abstract
Clarifying the mechanisms underlying microbial community assembly from regional microbial pools is a central issue of microbial ecology, but remains largely unexplored. Here, we investigated the gut bacterial and fungal microbiome assembly processes and potential sources in Drosophila simulans and Dicranocephalus wallichii bowringi, two wild, sympatric insect species that share a common diet of waxberry. While some convergence was observed, the diversity, composition, and network structure of the gut microbiota significantly differed between these two host species. Null model analyses revealed that stochastic processes (e.g., drift, dispersal limitation) play a principal role in determining gut microbiota from both hosts. However, the strength of each ecological process varied with the host species. Furthermore, the source-tracking analysis showed that only a minority of gut microbiota within D. simulans and D. wallichii bowringi are drawn from a regional microbial pool from waxberries, leaves, or soil. Results from function prediction implied that host species-specific gut microbiota might arise partly through host functional requirement and specific selection across host-microbiota coevolution. In conclusion, our findings uncover the importance of community assembly processes over regional microbial pools in shaping sympatric insect gut microbiome structure and function.
Collapse
Affiliation(s)
- Yu‐Xi Zhu
- Department of Entomology, College of Plant ProtectionYangzhou UniversityYangzhouChina
| | - Run Yang
- Department of Entomology, College of Plant ProtectionYangzhou UniversityYangzhouChina
| | - Xin‐Yu Wang
- Department of Entomology, College of Plant ProtectionYangzhou UniversityYangzhouChina
| | - Tao Wen
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource‐saving fertilizersNanjing Agricultural UniversityNanjingChina
| | - Ming‐Hui Gong
- Bureau of Agriculture and Rural Affairs of Binhu District of WuxiWuxiChina
| | - Yuan Shen
- Bureau of Agriculture and Rural Affairs of Binhu District of WuxiWuxiChina
| | - Jue‐Ye Xu
- Bureau of Agriculture and Rural Affairs of Binhu District of WuxiWuxiChina
| | - Dian‐Shu Zhao
- Entomology and Nematology DepartmentUniversity of FloridaGainesvilleFloridaUSA
| | - Yu‐Zhou Du
- Department of Entomology, College of Plant ProtectionYangzhou UniversityYangzhouChina
| |
Collapse
|
49
|
Mallott EK. Individualized composition or community dynamics? A new statistical approach to assess the individuality of host-associated microbiomes. Proc Biol Sci 2022; 289:20221794. [PMID: 36350214 PMCID: PMC9653253 DOI: 10.1098/rspb.2022.1794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Elizabeth K. Mallott
- Department of Biology, Washington University in St Louis, St Louis, MO 63130, USA
| |
Collapse
|
50
|
Wang B, Zhong H, Liu Y, Ruan L, Kong Z, Mou X, Wu L. Diet drives the gut microbiome composition and assembly processes in winter migratory birds in the Poyang Lake wetland, China. Front Microbiol 2022; 13:973469. [PMID: 36212828 PMCID: PMC9537367 DOI: 10.3389/fmicb.2022.973469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
The complex gut bacterial communities may facilitate the function, distribution, and diversity of birds. For migratory birds, long-distance traveling poses selection pressures on their gut microbiota, ultimately affecting the birds’ health, fitness, ecology, and evolution. However, our understanding of mechanisms that underlie the assembly of the gut microbiome of migratory birds is limited. In this study, the gut microbiota of winter migratory birds in the Poyang Lake wetland was characterized using MiSeq sequencing of 16S rRNA genes. The sampled bird included herbivorous, carnivorous, and omnivorous birds from a total of 17 species of 8 families. Our results showed that the gut microbiota of migratory birds was dominated by four major bacterial phyla: Firmicutes (47.8%), Proteobacteria (18.2%), Fusobacteria (12.6%), and Bacteroidetes (9.1%). Dietary specialization outweighed the phylogeny of birds as an important factor governing the gut microbiome, mainly through regulating the deterministic processes of homogeneous selection and stochastic processes of homogeneous dispersal balance. Moreover, the omnivorous had more bacterial diversity than the herbivorous and carnivorous. Microbial networks for the gut microbiome of the herbivorous and carnivorous were less integrated, i.e., had lower average node degree and greater decreased network stability upon node attack removal than those of the omnivorous birds. Our findings advance the understanding of host-microbiota interactions and the evolution of migratory bird dietary flexibility and diversification.
Collapse
Affiliation(s)
- Binhua Wang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, School of Life Science, Ministry of Education, Nanchang University, Nanchang, China
| | - Hui Zhong
- Key Laboratory of Poyang Lake Environment and Resource Utilization, School of Life Science, Ministry of Education, Nanchang University, Nanchang, China
| | - Yajun Liu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, School of Life Science, Ministry of Education, Nanchang University, Nanchang, China
| | - Luzhang Ruan
- Key Laboratory of Poyang Lake Environment and Resource Utilization, School of Life Science, Ministry of Education, Nanchang University, Nanchang, China
| | - Zhaoyu Kong
- Key Laboratory of Poyang Lake Environment and Resource Utilization, School of Life Science, Ministry of Education, Nanchang University, Nanchang, China
| | - Xiaozhen Mou
- Department of Biological Sciences, Kent State University, OH, United States
- *Correspondence: Xiaozhen Mou,
| | - Lan Wu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, School of Life Science, Ministry of Education, Nanchang University, Nanchang, China
- Lan Wu,
| |
Collapse
|