1
|
Sáiz-Bonilla M, Li Y, Montes-Serey C, Walley JW, Dinesh-Kumar SP, Pallás V, Navarro JA. The proxiome of a plant viral protein with dual targeting to mitochondria and chloroplasts revealed MAPK cascade and splicing components as proviral factors. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70161. [PMID: 40227839 DOI: 10.1111/tpj.70161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/15/2025]
Abstract
The coat protein (CP) of the melon necrotic spot virus (MNSV) is a multifunctional factor localized in the chloroplast, mitochondria, and cytoplasm, playing a critical role in overcoming plant defenses such as RNA silencing (RNAi) and the necrotic hypersensitive response. However, the molecular mechanisms through which CP interferes with plant defenses remain unclear. Identifying viral-host interactors can reveal how viruses exploit fundamental cellular processes and help elucidate viral survival strategies. Here, we employed a TurboID-based proximity labeling approach to identify interactors of both the wild-type MNSV CP and a cytoplasmic CP mutant lacking the dual transit peptide (ΔNtCP). Of the interactors, eight were selected for silencing. Notably, silencing MAP4K SIK1 and NbMAP3Kε1 kinases, and a splicing factor homolog NbSMU2 significantly reduced MNSV accumulation, suggesting a proviral role for these proteins in plants. Yeast two-hybrid and bimolecular fluorescence complementation assays confirmed the CP and ΔNtCP interaction with NbSMU2 and NbMAP3Kε1 but not with NbSIK1, which interacted with NbMAP3Kε1. These findings open up new possibilities for exploring how MNSV CP might modulate gene expression and MAPK, thereby facilitating MNSV infection.
Collapse
Affiliation(s)
- María Sáiz-Bonilla
- Laboratory of Plant Molecular Virology, Department of Molecular and Evolutionary Plant Virology, Institute for Plant Molecular and Cell Biology, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, Davis, California, 95616, USA
| | - Yuanyuan Li
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, Davis, California, 95616, USA
| | - Christian Montes-Serey
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, 50011, USA
| | - Justin W Walley
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, 50011, USA
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, Davis, California, 95616, USA
- The Genome Center, University of California, Davis, Davis, California, 95616, USA
| | - Vicente Pallás
- Laboratory of Plant Molecular Virology, Department of Molecular and Evolutionary Plant Virology, Institute for Plant Molecular and Cell Biology, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain
| | - Jose A Navarro
- Laboratory of Plant Molecular Virology, Department of Molecular and Evolutionary Plant Virology, Institute for Plant Molecular and Cell Biology, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
2
|
Bajaj Hengge I, Cortleven A, Schmülling T. Plastid- and photoreceptor-dependent signaling is required for the response to photoperiod stress. JOURNAL OF PLANT PHYSIOLOGY 2025; 306:154429. [PMID: 39892167 DOI: 10.1016/j.jplph.2025.154429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 02/03/2025]
Abstract
Prolongation of the light period causes photoperiod stress in plants. The response to photoperiod stress includes the induction of a distinct set of stress marker genes, of reactive oxygen species (ROS), and of stress hormones. In this study, the impact of light intensity and light quality on the photoperiod stress response was investigated. A threshold light intensity of circa 50 μmol m-2 s-1 is necessary for inducing photoperiod stress, indicating the involvement of chloroplasts. Lower photoperiod stress symptoms in retrograde signaling mutants (gun4, gun5) and mutants with constrained plastid function (glk1 glk2) corroborated the role of chloroplasts. Genetic analysis revealed that the photoreceptors phyB and particularly CRY2 are important to perceive photoperiod stress. Overall, these results showed that both plastid-dependent and photoreceptor-dependent signaling pathways are involved in sensing the light conditions causing photoperiod stress and governing the response to it.
Collapse
Affiliation(s)
- Ishita Bajaj Hengge
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195, Berlin, Germany.
| | - Anne Cortleven
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195, Berlin, Germany.
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195, Berlin, Germany.
| |
Collapse
|
3
|
Yan J, Feng Z, Xiao Y, Zhou M, Zhao X, Lin X, Shi W, Busch W, Li B. ANAC044 orchestrates mitochondrial stress signaling to trigger iron-induced stem cell death in root meristems. Proc Natl Acad Sci U S A 2025; 122:e2411579122. [PMID: 39793035 PMCID: PMC11725852 DOI: 10.1073/pnas.2411579122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/22/2024] [Indexed: 01/12/2025] Open
Abstract
While iron (Fe) is essential for life and plays important roles for almost all growth related processes, it can trigger cell death in both animals and plants. However, the underlying mechanisms for Fe-induced cell death in plants remain largely unknown. S-nitrosoglutathione reductase (GSNOR) has previously been reported to regulate nitric oxide homeostasis to prevent Fe-induced cell death within root meristems. Here, we found that in the absence of GSNOR, exposure to high Fe treatment results in DNA damage-dependent cell death specifically in vascular stem cells in root meristems within 48 h. Through a series of time-course transcriptomic analyses, we unveil that in the absence of GSNOR, mitochondrial dysfunction emerges as the most prominent response to high Fe treatment. Consistently, the application of mitochondrial respiratory inhibitors leads to stem cell death in root meristems, and pharmacological blockage of the voltage-dependent anion channel that is responsible for the release of mitochondrial-derived molecules into the cytosol or genetic changes that abolish the ANAC017- and ANAC013-mediated mitochondrial retrograde signaling effectively eliminate Fe-induced stem cell death in gsnor root meristems. We further identify the nuclear transcription factor ANAC044 as a mediator of this mitochondrial retrograde signaling. Disruption of ANAC044 completely abolishes the GSNOR-dependent, Fe-induced stem cell death in root meristems, while ectopic expression of ANAC044 causes severe root stem cell death. Collectively, our findings reveal a mechanism responsible for initiating Fe-induced stem cell death in the root meristem, which is the ANAC044-mediated GSNOR-regulated mitochondrial stress signaling pathway.
Collapse
Affiliation(s)
- Juanmei Yan
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou310058, China
| | - Zhihang Feng
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou310058, China
| | - Yihui Xiao
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou310058, China
| | - Ming Zhou
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou310058, China
| | - Xiaobo Zhao
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Rural Affairs, Key Laboratory of Nuclear Agricultural Sciences of Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Xianyong Lin
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou310058, China
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing210008, China
| | - Wolfgang Busch
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA92037
| | - Baohai Li
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou310058, China
| |
Collapse
|
4
|
Selinski J, Frings S, Schmidt-Schippers R. Perception and processing of stress signals by plant mitochondria. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2337-2355. [PMID: 39527570 DOI: 10.1111/tpj.17133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/23/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
In the course of their life, plants continuously experience a wide range of unfavourable environmental conditions in the form of biotic and abiotic stress factors. The perception of stress via various organelles and rapid, tailored cellular responses are essential for the establishment of plant stress resilience. Mitochondria as the biosynthetic sites of energy equivalents in the form of ATP-provided in order to enable a multitude of biological processes in the cell-are often directly impacted by external stress factors. At the same time, mitochondrial function may fluctuate to a tolerable extent without the need to activate downstream retrograde signalling cascades for stress adaptation. In this Focus Review, we summarise the current state of knowledge on the perception and processing of stress signals by mitochondria and show which layers of retrograde signalling, that is, those involving transcription factors, metabolites, but also enzymes with moonlighting functions, enable communication with the nucleus. Also, light is shed on signal integration between mitochondria and chloroplasts as part of retrograde signalling. With this Focus Review, we aim to show ways in which organelle-specific communication can be further researched and the collected data used in the long-term to strengthen plant resilience in the context of climate change.
Collapse
Affiliation(s)
- Jennifer Selinski
- Plant Cell Biology, Botanical Institute, Christian-Albrechts University, Kiel, D-24118, Germany
| | - Stephanie Frings
- Plant Biotechnology, Faculty of Biology, University of Bielefeld, Bielefeld, D-33615, Germany
- Center for Biotechnology, University of Bielefeld, Bielefeld, D-33615, Germany
| | - Romy Schmidt-Schippers
- Plant Biotechnology, Faculty of Biology, University of Bielefeld, Bielefeld, D-33615, Germany
- Center for Biotechnology, University of Bielefeld, Bielefeld, D-33615, Germany
| |
Collapse
|
5
|
Wang H, Zhang W, Yu Y, Fang X, Zhang T, Xu L, Gong L, Xiao H. Biased Gene Introgression and Adaptation in the Face of Chloroplast Capture in Aquilegia amurensis. Syst Biol 2024; 73:886-900. [PMID: 39001664 DOI: 10.1093/sysbio/syae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 12/14/2024] Open
Abstract
-Chloroplast capture, a phenomenon that can occur through interspecific hybridization and introgression, is frequently invoked to explain cytonuclear discordance in plants. However, relatively few studies have documented the mechanisms of cytonuclear coevolution and its potential for driving species differentiation and possible functional differences in the context of chloroplast capture. To address this crucial question, we chose the Aquilegia genus, which is known for having minimal sterility among species, and inferred that A. amurensis captured the plastome of A. parviflora based on cytonuclear discordance and gene flow between the 2 species. We focused on the introgression region and its differentiation from corresponding regions in closely related species, especially its composition in a chloroplast capture scenario. We found that nuclear genes encoding cytonuclear enzyme complexes (CECs; i.e., organelle-targeted genes) of chloroplast donor species were selectively retained and displaced the original CEC genes in chloroplast-receiving species due to cytonuclear interactions during introgression. Notably, the intrinsic correlation of CEC introgression was a greater degree of evolutionary distance for these CECs between A. amurensis and A. parviflora. Terpene synthase activity genes (GO: 0010333) were overrepresented among the introgressed genes, and more than 30% of these genes were CEC genes. These findings support our observations that floral terpene release pattern is similar between A. amurensis and A. parviflora compared with A. japonica. Our study clarifies the mechanisms of cytonuclear coevolution, species differentiation, and functional differences in the context of chloroplast capture and highlights the potential role of chloroplast capture in adaptation.
Collapse
Affiliation(s)
- Huaying Wang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Wei Zhang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Yanan Yu
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Xiaoxue Fang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Tengjiao Zhang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Luyuan Xu
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Hongxing Xiao
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
6
|
Wang J, Liu X, Zhang M, Liu R. The mitochondrial genome of Lavandula angustifolia Mill. (Lamiaceae) sheds light on its genome structure and gene transfer between organelles. BMC Genomics 2024; 25:929. [PMID: 39367299 PMCID: PMC11451270 DOI: 10.1186/s12864-024-10841-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 09/26/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Lavandula angustifolia holds importance as an aromatic plant with extensive applications spanning the fragrance, perfume, cosmetics, aromatherapy, and spa sectors. Beyond its aesthetic and sensory applications, this plant offers medicinal benefits as a natural herbal remedy and finds use in household cleaning products. While extensive genomic data, inclusive of plastid and nuclear genomes, are available for this species, researchers have yet to characterize its mitochondrial genome. This gap in knowledge hampers deeper understanding of the genome organization and its evolutionary significance. RESULTS Through the course of this study, we successfully assembled and annotated the mitochondrial genome of L. angustifolia, marking a first in this domain. This assembled genome encompasses 61 genes, which comprise 34 protein-coding genes, 24 transfer RNA genes, and three ribosomal RNA genes. We identified a chloroplast sequence insertion into the mitogenome, which spans a length of 10,645 bp, accounting for 2.94% of the mitogenome size. Within these inserted sequences, there are seven intact tRNA genes (trnH-GUG, trnW-CCA, trnD-GUC, trnS-GGA, trnN-GUU, trnT-GGU, trnP-UGG) and four complete protein-coding genes (psbA, rps15, petL, petG) of chloroplast derivation. Additional discoveries include 88 microsatellites, 15 tandem repeats, 74 palindromic repeats, and 87 forward long repeats. An RNA editing analysis highlighted an elevated count of editing sites in the cytochrome c oxidase genes, notably ccmB with 34 editing sites, ccmFN with 32, and ccmC with 29. All protein-coding genes showed evidence of cytidine-to-uracil conversion. A phylogenetic analysis, utilizing common protein-coding genes from 23 Lamiales species, yielded a tree with consistent topology, supported by high confidence values. CONCLUSIONS Analysis of the current mitogenome resource revealed its typical circular genome structure. Notably, sequences originally from the chloroplast genome were found within the mitogenome, pointing to the occurrence of horizontal gene transfer between organelles. This assembled mitogenome stands as a valuable resource for subsequent studies on mitogenome structures, their evolution, and molecular biology.
Collapse
Affiliation(s)
- Jun Wang
- Bao'an Central Hospital of Shenzhen, Shenzhen, 518000, China
- Wuhan Benagen Technology Co., Ltd, Wuhan, 430074, China
| | - Xiaoyan Liu
- Hubei University of Chinese Medicine, Wuhan, 430056, China
| | - Mengting Zhang
- Jianmin Pharmaceutical Group Co., Ltd, Wuhan, 430052, China
| | - Renbin Liu
- Bao'an Central Hospital of Shenzhen, Shenzhen, 518000, China.
| |
Collapse
|
7
|
Karpinska B, Foyer CH. Superoxide signalling and antioxidant processing in the plant nucleus. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4599-4610. [PMID: 38460122 PMCID: PMC11317529 DOI: 10.1093/jxb/erae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/08/2024] [Indexed: 03/11/2024]
Abstract
The superoxide anion radical (O2·-) is a one-electron reduction product of molecular oxygen. Compared with other forms of reactive oxygen species (ROS), superoxide has limited reactivity. Nevertheless, superoxide reacts with nitric oxide, ascorbate, and the iron moieties of [Fe-S] cluster-containing proteins. Superoxide has largely been neglected as a signalling molecule in the plant literature in favour of the most stable ROS form, hydrogen peroxide. However, superoxide can accumulate in plant cells, particularly in meristems, where superoxide dismutase activity and ascorbate accumulation are limited (or absent), or when superoxide is generated within the lipid environment of membranes. Moreover, oxidation of the nucleus in response to environmental stresses is a widespread phenomenon. Superoxide is generated in many intracellular compartments including mitochondria, chloroplasts, and on the apoplastic/cell wall face of the plasma membrane. However, nuclear superoxide production and functions remain poorly documented in plants. Accumulating evidence suggests that the nuclear pools of antioxidants such as glutathione are discrete and separate from the cytosolic pools, allowing compartment-specific signalling in the nucleus. We consider the potential mechanisms of superoxide generation and targets in the nucleus, together with the importance of antioxidant processing in regulating superoxide signalling.
Collapse
Affiliation(s)
- Barbara Karpinska
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
8
|
Gorbenko IV, Tarasenko VI, Garnik EY, Yakovleva TV, Katyshev AI, Belkov VI, Orlov YL, Konstantinov YM, Koulintchenko MV. Overexpression of RPOTmp Being Targeted to Either Mitochondria or Chloroplasts in Arabidopsis Leads to Overall Transcriptome Changes and Faster Growth. Int J Mol Sci 2024; 25:8164. [PMID: 39125738 PMCID: PMC11312007 DOI: 10.3390/ijms25158164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
The transcription of Arabidopsis organellar genes is performed by three nuclear-encoded RNA polymerases: RPOTm, RPOTmp, and RPOTp. The RPOTmp protein possesses ambiguous transit peptides, allowing participation in gene expression control in both mitochondria and chloroplasts, although its function in plastids is still under discussion. Here, we show that the overexpression of RPOTmp in Arabidopsis, targeted either to mitochondria or chloroplasts, disturbs the dormant seed state, and it causes the following effects: earlier germination, decreased ABA sensitivity, faster seedling growth, and earlier flowering. The germination of RPOTmp overexpressors is less sensitive to NaCl, while rpotmp knockout is highly vulnerable to salt stress. We found that mitochondrial dysfunction in the rpotmp mutant induces an unknown retrograde response pathway that bypasses AOX and ANAC017. Here, we show that RPOTmp transcribes the accD, clpP, and rpoB genes in plastids and up to 22 genes in mitochondria.
Collapse
Affiliation(s)
- Igor V. Gorbenko
- Siberian Institute of Plant Physiology and Biochemistry of Siberian Branch of Russian Academy of Sciences, Irkutsk 664033, Russia; (V.I.T.); (T.V.Y.); (A.I.K.); (Y.M.K.); (M.V.K.)
| | - Vladislav I. Tarasenko
- Siberian Institute of Plant Physiology and Biochemistry of Siberian Branch of Russian Academy of Sciences, Irkutsk 664033, Russia; (V.I.T.); (T.V.Y.); (A.I.K.); (Y.M.K.); (M.V.K.)
| | - Elena Y. Garnik
- Siberian Institute of Plant Physiology and Biochemistry of Siberian Branch of Russian Academy of Sciences, Irkutsk 664033, Russia; (V.I.T.); (T.V.Y.); (A.I.K.); (Y.M.K.); (M.V.K.)
| | - Tatiana V. Yakovleva
- Siberian Institute of Plant Physiology and Biochemistry of Siberian Branch of Russian Academy of Sciences, Irkutsk 664033, Russia; (V.I.T.); (T.V.Y.); (A.I.K.); (Y.M.K.); (M.V.K.)
| | - Alexander I. Katyshev
- Siberian Institute of Plant Physiology and Biochemistry of Siberian Branch of Russian Academy of Sciences, Irkutsk 664033, Russia; (V.I.T.); (T.V.Y.); (A.I.K.); (Y.M.K.); (M.V.K.)
| | - Vadim I. Belkov
- Siberian Institute of Plant Physiology and Biochemistry of Siberian Branch of Russian Academy of Sciences, Irkutsk 664033, Russia; (V.I.T.); (T.V.Y.); (A.I.K.); (Y.M.K.); (M.V.K.)
| | - Yuriy L. Orlov
- The Digital Health Center, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow 119991, Russia
- Agrarian and Technological Institute, Peoples’ Friendship University of Russia, Moscow 117198, Russia
| | - Yuri M. Konstantinov
- Siberian Institute of Plant Physiology and Biochemistry of Siberian Branch of Russian Academy of Sciences, Irkutsk 664033, Russia; (V.I.T.); (T.V.Y.); (A.I.K.); (Y.M.K.); (M.V.K.)
- Biosoil Department, Irkutsk State University, Irkutsk 664003, Russia
| | - Milana V. Koulintchenko
- Siberian Institute of Plant Physiology and Biochemistry of Siberian Branch of Russian Academy of Sciences, Irkutsk 664033, Russia; (V.I.T.); (T.V.Y.); (A.I.K.); (Y.M.K.); (M.V.K.)
- Kazan Institute of Biochemistry and Biophysics of the Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences” (KIBB FRC KazSC RAS), Kazan 420111, Russia
| |
Collapse
|
9
|
Liu H, Liu Z, Qin A, Zhou Y, Sun S, Liu Y, Hu M, Yang J, Sun X. Mitochondrial ATP Synthase beta-Subunit Affects Plastid Retrograde Signaling in Arabidopsis. Int J Mol Sci 2024; 25:7829. [PMID: 39063070 PMCID: PMC11277312 DOI: 10.3390/ijms25147829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Plastid retrograde signaling plays a key role in coordinating the expression of plastid genes and photosynthesis-associated nuclear genes (PhANGs). Although plastid retrograde signaling can be substantially compromised by mitochondrial dysfunction, it is not yet clear whether specific mitochondrial factors are required to regulate plastid retrograde signaling. Here, we show that mitochondrial ATP synthase beta-subunit mutants with decreased ATP synthase activity are impaired in plastid retrograde signaling in Arabidopsis thaliana. Transcriptome analysis revealed that the expression levels of PhANGs were significantly higher in the mutants affected in the AT5G08670 gene encoding the mitochondrial ATP synthase beta-subunit, compared to wild-type (WT) seedlings when treated with lincomycin (LIN) or norflurazon (NF). Further studies indicated that the expression of nuclear genes involved in chloroplast and mitochondrial retrograde signaling was affected in the AT5G08670 mutant seedlings treated with LIN. These changes might be linked to the modulation of some transcription factors (TFs), such as LHY (Late Elongated Hypocotyl), PIF (Phytochrome-Interacting Factors), MYB, WRKY, and AP2/ERF (Ethylene Responsive Factors). These findings suggest that the activity of mitochondrial ATP synthase significantly influences plastid retrograde signaling.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xuwu Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (H.L.); (Z.L.); (A.Q.); (Y.Z.); (S.S.); (Y.L.); (M.H.); (J.Y.)
| |
Collapse
|
10
|
Mishra S, Ganapathi TR, Pandey GK, Foyer CH, Srivastava AK. Meta-Analysis of Antioxidant Mutants Reveals Common Alarm Signals for Shaping Abiotic Stress-Induced Transcriptome in Plants. Antioxid Redox Signal 2024; 41:42-55. [PMID: 37597205 DOI: 10.1089/ars.2023.0361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/21/2023]
Affiliation(s)
- Shefali Mishra
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | | | - Girdhar Kumar Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, India
| | | | - Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
11
|
Bennett GM, Kwak Y, Maynard R. Endosymbioses Have Shaped the Evolution of Biological Diversity and Complexity Time and Time Again. Genome Biol Evol 2024; 16:evae112. [PMID: 38813885 PMCID: PMC11154151 DOI: 10.1093/gbe/evae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Abstract
Life on Earth comprises prokaryotes and a broad assemblage of endosymbioses. The pages of Molecular Biology and Evolution and Genome Biology and Evolution have provided an essential window into how these endosymbiotic interactions have evolved and shaped biological diversity. Here, we provide a current perspective on this knowledge by drawing on decades of revelatory research published in Molecular Biology and Evolution and Genome Biology and Evolution, and insights from the field at large. The accumulated work illustrates how endosymbioses provide hosts with novel phenotypes that allow them to transition between adaptive landscapes to access environmental resources. Such endosymbiotic relationships have shaped and reshaped life on Earth. The early serial establishment of mitochondria and chloroplasts through endosymbioses permitted massive upscaling of cellular energetics, multicellularity, and terrestrial planetary greening. These endosymbioses are also the foundation upon which all later ones are built, including everything from land-plant endosymbioses with fungi and bacteria to nutritional endosymbioses found in invertebrate animals. Common evolutionary mechanisms have shaped this broad range of interactions. Endosymbionts generally experience adaptive and stochastic genome streamlining, the extent of which depends on several key factors (e.g. mode of transmission). Hosts, in contrast, adapt complex mechanisms of resource exchange, cellular integration and regulation, and genetic support mechanisms to prop up degraded symbionts. However, there are significant differences between endosymbiotic interactions not only in how partners have evolved with each other but also in the scope of their influence on biological diversity. These differences are important considerations for predicting how endosymbioses will persist and adapt to a changing planet.
Collapse
Affiliation(s)
- Gordon M Bennett
- Department of Life and Environmental Sciences, University of California, Merced, CA, USA
- National Science Foundation Biological Integration Institute—INSITE, University of California, Merced, CA, USA
| | - Younghwan Kwak
- Department of Life and Environmental Sciences, University of California, Merced, CA, USA
- National Science Foundation Biological Integration Institute—INSITE, University of California, Merced, CA, USA
| | - Reo Maynard
- Department of Life and Environmental Sciences, University of California, Merced, CA, USA
| |
Collapse
|
12
|
K. Raval P, MacLeod AI, Gould SB. A molecular atlas of plastid and mitochondrial proteins reveals organellar remodeling during plant evolutionary transitions from algae to angiosperms. PLoS Biol 2024; 22:e3002608. [PMID: 38713727 PMCID: PMC11135702 DOI: 10.1371/journal.pbio.3002608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 05/29/2024] [Accepted: 03/28/2024] [Indexed: 05/09/2024] Open
Abstract
Algae and plants carry 2 organelles of endosymbiotic origin that have been co-evolving in their host cells for more than a billion years. The biology of plastids and mitochondria can differ significantly across major lineages and organelle changes likely accompanied the adaptation to new ecological niches such as the terrestrial habitat. Based on organelle proteome data and the genomes of 168 phototrophic (Archaeplastida) versus a broad range of 518 non-phototrophic eukaryotes, we screened for changes in plastid and mitochondrial biology across 1 billion years of evolution. Taking into account 331,571 protein families (or orthogroups), we identify 31,625 protein families that are unique to primary plastid-bearing eukaryotes. The 1,906 and 825 protein families are predicted to operate in plastids and mitochondria, respectively. Tracing the evolutionary history of these protein families through evolutionary time uncovers the significant remodeling the organelles experienced from algae to land plants. The analyses of gained orthogroups identifies molecular changes of organelle biology that connect to the diversification of major lineages and facilitated major transitions from chlorophytes en route to the global greening and origin of angiosperms.
Collapse
Affiliation(s)
- Parth K. Raval
- Institute for Molecular Evolution, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Alexander I. MacLeod
- Institute for Molecular Evolution, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sven B. Gould
- Institute for Molecular Evolution, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
13
|
Chustecki JM, Johnston IG. Collective mitochondrial dynamics resolve conflicting cellular tensions: From plants to general principles. Semin Cell Dev Biol 2024; 156:253-265. [PMID: 38043948 DOI: 10.1016/j.semcdb.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/18/2023] [Accepted: 09/15/2023] [Indexed: 12/05/2023]
Abstract
Mitochondria play diverse and essential roles in eukaryotic cells, and plants are no exception. Plant mitochondria have several differences from their metazoan and fungal cousins: they often exist in a fragmented state, move rapidly on actin rather than microtubules, have many plant-specific metabolic features and roles, and usually contain only a subset of the complete mtDNA genome, which itself undergoes frequent recombination. This arrangement means that exchange and complementation is essential for plant mitochondria, and recent work has begun to reveal how their collective dynamics and resultant "social networks" of encounters support this exchange, connecting plant mitochondria in time rather than in space. This review will argue that this social network perspective can be extended to a "societal network", where mitochondrial dynamics are an essential part of the interacting cellular society of organelles and biomolecules. Evidence is emerging that mitochondrial dynamics allow optimal resolutions to competing cellular priorities; we will survey this evidence and review potential future research directions, highlighting that plant mitochondria can help reveal and test principles that apply across other kingdoms of life. In parallel with this fundamental cell biology, we also highlight the translational "One Health" importance of plant mitochondrial behaviour - which is exploited in the production of a vast amount of crops consumed worldwide - and the potential for multi-objective optimisation to understand and rationally re-engineer the evolved resolutions to these tensions.
Collapse
Affiliation(s)
- Joanna M Chustecki
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Iain G Johnston
- Department of Mathematics, University of Bergen, Bergen, Norway; Computational Biology Unit, University of Bergen, Bergen, Norway.
| |
Collapse
|
14
|
Sevilla F, Martí MC, De Brasi-Velasco S, Jiménez A. Redox regulation, thioredoxins, and glutaredoxins in retrograde signalling and gene transcription. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5955-5969. [PMID: 37453076 PMCID: PMC10575703 DOI: 10.1093/jxb/erad270] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Integration of reactive oxygen species (ROS)-mediated signal transduction pathways via redox sensors and the thiol-dependent signalling network is of increasing interest in cell biology for their implications in plant growth and productivity. Redox regulation is an important point of control in protein structure, interactions, cellular location, and function, with thioredoxins (TRXs) and glutaredoxins (GRXs) being key players in the maintenance of cellular redox homeostasis. The crosstalk between second messengers, ROS, thiol redox signalling, and redox homeostasis-related genes controls almost every aspect of plant development and stress response. We review the emerging roles of TRXs and GRXs in redox-regulated processes interacting with other cell signalling systems such as organellar retrograde communication and gene expression, especially in plants during their development and under stressful environments. This approach will cast light on the specific role of these proteins as redox signalling components, and their importance in different developmental processes during abiotic stress.
Collapse
Affiliation(s)
- Francisca Sevilla
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Murcia, Spain
| | - Maria Carmen Martí
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Murcia, Spain
| | - Sabrina De Brasi-Velasco
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Murcia, Spain
| | - Ana Jiménez
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Murcia, Spain
| |
Collapse
|
15
|
Rodrigues L, Nogales A, Nunes J, Rodrigues L, Hansen LD, Cardoso H. Germination of Pisum sativum L. Seeds Is Associated with the Alternative Respiratory Pathway. BIOLOGY 2023; 12:1318. [PMID: 37887028 PMCID: PMC10604721 DOI: 10.3390/biology12101318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023]
Abstract
The alternative oxidase (AOX) is a ubiquinol oxidase with a crucial role in the mitochondrial alternative respiratory pathway, which is associated with various processes in plants. In this study, the activity of AOX in pea seed germination was determined in two pea cultivars, 'Maravilha d'América' (MA) and 'Torta de Quebrar' (TQ), during a germination trial using cytochrome oxidase (COX) and AOX inhibitors [rotenone (RT) and salicylic hydroxamic acid (SHAM), respectively]. Calorespirometry was used to assess respiratory changes during germination. In both cultivars, SHAM had a greater inhibitory effect on germination than RT, demonstrating the involvement of AOX in germination. Although calorespirometry did not provide direct information on the involvement of the alternative pathway in seed germination, this methodology was valuable for distinguishing cultivars. To gain deeper insights into the role of AOX in seed germination, the AOX gene family was characterized, and the gene expression pattern was evaluated. Three PsAOX members were identified-PsAOX1, PsAOX2a and PsAOX2b-and their expression revealed a marked genotype effect. This study emphasizes the importance of AOX in seed germination, contributing to the understanding of the role of the alternative respiratory pathway in plants.
Collapse
Affiliation(s)
- Lénia Rodrigues
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, University of Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal;
| | - Amaia Nogales
- IRTA Institute of Agrifood Research and Technology, Sustainable Plant Protection Programme, Centre Cabrils, Ctra. Cabrils Km 2, 08348 Cabrils, Spain;
| | - João Nunes
- School of Sciences and Technology, University of Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (J.N.); (L.R.)
| | - Leonardo Rodrigues
- School of Sciences and Technology, University of Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (J.N.); (L.R.)
| | - Lee D. Hansen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA;
| | - Hélia Cardoso
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, School of Science and Technology, Department of Biology, University of Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| |
Collapse
|
16
|
Bhattacharya O, Ortiz I, Hendricks N, Walling LL. The tomato chloroplast stromal proteome compendium elucidated by leveraging a plastid protein-localization prediction Atlas. FRONTIERS IN PLANT SCIENCE 2023; 14:1020275. [PMID: 37701797 PMCID: PMC10493611 DOI: 10.3389/fpls.2023.1020275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 06/22/2023] [Indexed: 09/14/2023]
Abstract
Tomato (Solanum lycopersicum) is a model species for studying fruit development, wounding, herbivory, and pathogen attack. Despite tomato's world-wide economic importance and the role of chloroplasts as metabolic hubs and integrators of environmental cues, little is known about the stromal proteome of tomato. Using a high-yielding protocol for chloroplast and stromal protein isolation, MudPIT nano-LC-MS/MS analyses, a robust in-house protein database (the Atlas) for predicting the plastid localization of tomato proteins, and rigorous selection criteria for inclusion/exclusion in the stromal proteome, we identified 1,278 proteins of the tomato stromal proteome. We provide one of the most robust stromal proteomes available to date with empirical evidence for 545 and 92 proteins not previously described for tomato plastids and the Arabidopsis stroma, respectively. The relative abundance of tomato stromal proteins was determined using the exponentially modified protein abundance index (emPAI). Comparison of the abundance of tomato and Arabidopsis stromal proteomes provided evidence for the species-specific nature of stromal protein homeostasis. The manual curation of the tomato stromal proteome classified proteins into ten functional categories resulting in an accessible compendium of tomato chloroplast proteins. After curation, only 91 proteins remained as unknown, uncharacterized or as enzymes with unknown functions. The curation of the tomato stromal proteins also indicated that tomato has a number of paralogous proteins, not present in Arabidopsis, which accumulated to different levels in chloroplasts. As some of these proteins function in key metabolic pathways or in perceiving or transmitting signals critical for plant adaptation to biotic and abiotic stress, these data suggest that tomato may modulate the bidirectional communication between chloroplasts and nuclei in a novel manner. The stromal proteome provides a fertile ground for future mechanistic studies in the field of tomato chloroplast-nuclear signaling and are foundational for our goal of elucidating the dynamics of the stromal proteome controlled by the solanaceous-specific, stromal, and wound-inducible leucine aminopeptidase A of tomato.
Collapse
Affiliation(s)
- Oindrila Bhattacharya
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Irma Ortiz
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Nathan Hendricks
- Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| | - Linda L. Walling
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
- Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
17
|
Jeh HE, Sanchez R, Beltrán J, Yang X, Kundariya H, Wamboldt Y, Dopp I, Hafner A, Mackenzie SA. Sensory plastid-associated PsbP DOMAIN-CONTAINING PROTEIN 3 triggers plant growth- and defense-related epigenetic responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:414-433. [PMID: 37036138 PMCID: PMC10525003 DOI: 10.1111/tpj.16233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 05/14/2023]
Abstract
Sensory plastids are important in plant responses to environmental changes. Previous studies show that MutS HOMOLOG 1 (MSH1) perturbation in sensory plastids induces heritable epigenetic phenotype adjustment. Previously, the PsbP homolog DOMAIN-CONTAINING PROTEIN 3 (PPD3), a protein of unknown function, was postulated to be an interactor with MSH1. This study investigates the relationship of PPD3 with MSH1 and with plant environmental sensing. The ppd3 mutant displays a whole-plant phenotype variably altered in growth rate, flowering time, reactive oxygen species (ROS) modulation and response to salt, with effects on meristem growth. Present in both chloroplasts and sensory plastids, PPD3 colocalized with MSH1 in root tips but not in leaf tissues. The suppression or overexpression of PPD3 affected the plant growth rate and stress tolerance, and led to a heritable, heterogenous 'memory' state with both dwarfed and vigorous growth phenotypes. Gene expression and DNA methylome data sets from PPD3-OX and derived memory states showed enrichment in growth versus defense networks and meristem effects. Our results support a model of sensory plastid influence on nuclear epigenetic behavior and ppd3 as a second trigger, functioning within meristem plastids to recalibrate growth plasticity.
Collapse
Affiliation(s)
- Ha Eun Jeh
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, PA 16802
- Departments of Biology and Plant Science, The Pennsylvania State University, University Park, PA 16802
| | - Robersy Sanchez
- Departments of Biology and Plant Science, The Pennsylvania State University, University Park, PA 16802
| | - Jesús Beltrán
- Departments of Biology and Plant Science, The Pennsylvania State University, University Park, PA 16802
- Current Address: Department of Botany and Plant Sciences, University of California, Riverside, Riverside CA 92521
| | - Xiaodong Yang
- Departments of Biology and Plant Science, The Pennsylvania State University, University Park, PA 16802
- Current Address: School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Hardik Kundariya
- Departments of Biology and Plant Science, The Pennsylvania State University, University Park, PA 16802
| | - Yashitola Wamboldt
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588
- Current Address: MatMaCorp, Lincoln, NE
| | - Isaac Dopp
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, PA 16802
- Departments of Biology and Plant Science, The Pennsylvania State University, University Park, PA 16802
| | - Alenka Hafner
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, PA 16802
- Departments of Biology and Plant Science, The Pennsylvania State University, University Park, PA 16802
| | - Sally A. Mackenzie
- Departments of Biology and Plant Science, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
18
|
Sajib SA, Grübler B, Oukacine C, Delannoy E, Courtois F, Mauve C, Lurin C, Gakière B, Pfannschmidt T, Merendino L. Limiting etioplast gene expression induces apical hook twisting during skotomorphogenesis of Arabidopsis seedlings. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:293-309. [PMID: 36748183 DOI: 10.1111/tpj.16134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 05/10/2023]
Abstract
When covered by a layer of soil, seedling development follows a dark-specific program (skotomorphogenesis). In the dark, seedlings consist of small, non-green cotyledons, a long hypocotyl, and an apical hook to protect meristematic cells. We recently highlighted the role played by mitochondria in the high energy-consuming reprogramming of Arabidopsis skotomorphogenesis. Here, the role played by plastids, another energy-supplying organelle, in skotomorphogenesis is investigated. This study was conducted in dark conditions to exclude light signals so as to better focus on those produced by plastids. It was found that limitation of plastid gene expression (PGE) induced an exaggerated apical hook bending. Inhibition of PGE was obtained at the levels of transcription and translation using the antibiotics rifampicin (RIF) and spectinomycin, respectively, as well as plastid RPOTp RNA polymerase mutants. RIF-treated seedlings also showed expression induction of marker nuclear genes for mitochondrial stress, perturbation of mitochondrial metabolism, increased ROS levels, and an augmented capacity of oxygen consumption by mitochondrial alternative oxidases (AOXs). AOXs act to prevent overreduction of the mitochondrial electron transport chain. Previously, we reported that AOX1A, the main AOX isoform, is a key component in the developmental response to mitochondrial respiration deficiency. In this work, we suggest the involvement of AOX1A in the response to PGE dysfunction and propose the importance of signaling between plastids and mitochondria. Finally, it was found that seedling architecture reprogramming in response to RIF was independent of canonical organelle retrograde pathways and the ethylene signaling pathway.
Collapse
Affiliation(s)
- Salek Ahmed Sajib
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, 91190, Gif sur Yvette, France
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Cité, CNRS, INRAE, 91190, Gif sur Yvette, France
| | - Björn Grübler
- University of Grenoble Alpes, CNRS, INRAE, CEA, IRIG-LPCV, 38000, Grenoble, France
| | - Cylia Oukacine
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, 91190, Gif sur Yvette, France
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Cité, CNRS, INRAE, 91190, Gif sur Yvette, France
| | - Etienne Delannoy
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, 91190, Gif sur Yvette, France
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Cité, CNRS, INRAE, 91190, Gif sur Yvette, France
| | - Florence Courtois
- University of Grenoble Alpes, CNRS, INRAE, CEA, IRIG-LPCV, 38000, Grenoble, France
| | - Caroline Mauve
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, 91190, Gif sur Yvette, France
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Cité, CNRS, INRAE, 91190, Gif sur Yvette, France
| | - Claire Lurin
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, 91190, Gif sur Yvette, France
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Cité, CNRS, INRAE, 91190, Gif sur Yvette, France
| | - Bertrand Gakière
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, 91190, Gif sur Yvette, France
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Cité, CNRS, INRAE, 91190, Gif sur Yvette, France
| | - Thomas Pfannschmidt
- Institut for Botany, Plant Physiology, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Livia Merendino
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, 91190, Gif sur Yvette, France
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Cité, CNRS, INRAE, 91190, Gif sur Yvette, France
| |
Collapse
|
19
|
Dimos B, Phelps M. A homology guide for Pacific salmon genus Oncorhynchus resolves patterns of ohnolog retention, resolution and local adaptation following the salmonid-specific whole-genome duplication event. Ecol Evol 2023; 13:e9994. [PMID: 37091557 PMCID: PMC10119027 DOI: 10.1002/ece3.9994] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/25/2023] Open
Abstract
Salmonid fishes have emerged as a tractable model to study whole-genome duplications (WGDs) as this group has undergone four rounds of WGDs. While most of the salmonid genome has returned to a diploid state, a significant proportion of genes are maintained as duplicates and are referred to as ohnologs. The fact that much of the modern salmonid gene repertoire is comprised of ohnologs, while other genes have returned to their singleton state creates complications for genetic studies by obscuring homology relationships. The difficulty this creates is particularly prominent in Pacific salmonids belonging to genus Oncorhynchus who are the focus of intense genetics-based conservation and management efforts owing to the important ecological and cultural roles these fish play. To address this gap, we generated a homology guide for six species of Oncorhynchus with available genomes and used this guide to describe patterns of ohnolog retention and resolution. Overall, we find that ohnologs comprise approximately half of each species modern gene repertoires, which are functionally enriched for genes involved in DNA binding, while the less numerous singleton genes are heavily enriched in dosage-sensitive processes such as mitochondrial metabolism. Additionally, by reanalyzing published expression data from locally adapted strains of O. mykiss, we show that numerous ohnologs exhibit adaptive expression profiles; however, ohnologs are not more likely to display adaptive signatures than either paralogs or singletons. Finally, we demonstrate the utility of our homology guide by investigating the evolutionary relationship among genes highlighted as playing a role in salmonid life-history traits or gene editing targets.
Collapse
Affiliation(s)
- Bradford Dimos
- Department of Animal SciencesWashington State UniversityPullmanWashingtonUSA
| | - Michael Phelps
- Department of Animal SciencesWashington State UniversityPullmanWashingtonUSA
| |
Collapse
|
20
|
Photosynthetic acclimation to changing environments. Biochem Soc Trans 2023; 51:473-486. [PMID: 36892145 DOI: 10.1042/bst20211245] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/03/2023] [Accepted: 02/21/2023] [Indexed: 03/10/2023]
Abstract
Plants are exposed to environments that fluctuate of timescales varying from seconds to months. Leaves that develop in one set of conditions optimise their metabolism to the conditions experienced, in a process called developmental acclimation. However, when plants experience a sustained change in conditions, existing leaves will also acclimate dynamically to the new conditions. Typically this process takes several days. In this review, we discuss this dynamic acclimation process, focussing on the responses of the photosynthetic apparatus to light and temperature. We briefly discuss the principal changes occurring in the chloroplast, before examining what is known, and not known, about the sensing and signalling processes that underlie acclimation, identifying likely regulators of acclimation.
Collapse
|
21
|
Sandalio LM, Collado-Arenal AM, Romero-Puertas MC. Deciphering peroxisomal reactive species interactome and redox signalling networks. Free Radic Biol Med 2023; 197:58-70. [PMID: 36642282 DOI: 10.1016/j.freeradbiomed.2023.01.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/19/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Plant peroxisomes are highly dynamic organelles with regard to metabolic pathways, number and morphology and participate in different metabolic processes and cell responses to their environment. Peroxisomes from animal and plant cells house a complex system of reactive oxygen species (ROS) production associated to different metabolic pathways which are under control of an important set of enzymatic and non enzymatic antioxidative defenses. Nitric oxide (NO) and its derivate reactive nitrogen species (RNS) are also produced in these organelles. Peroxisomes can regulate ROS and NO/RNS levels to allow their role as signalling molecules. The metabolism of other reactive species such as carbonyl reactive species (CRS) and sulfur reactive species (SRS) in peroxisomes and their relationship with ROS and NO have not been explored in depth. In this review, we define a peroxisomal reactive species interactome (PRSI), including all reactive species ROS, RNS, CRS and SRS, their interaction and effect on target molecules contributing to the dynamic redox/ROS homeostasis and plasticity of peroxisomes, enabling fine-tuned regulation of signalling networks associated with peroxisome-dependent H2O2. Particular attention will be paid to update the information available on H2O2-dependent peroxisomal retrograde signalling and to discuss a specific peroxisomal footprint.
Collapse
Affiliation(s)
- Luisa M Sandalio
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín (EEZ), Consejo Superior de Investigaciones Científicas (CSIC), C/ Profesor Albareda 1, 18008, Granada, Spain.
| | - Aurelio M Collado-Arenal
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín (EEZ), Consejo Superior de Investigaciones Científicas (CSIC), C/ Profesor Albareda 1, 18008, Granada, Spain
| | - María C Romero-Puertas
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín (EEZ), Consejo Superior de Investigaciones Científicas (CSIC), C/ Profesor Albareda 1, 18008, Granada, Spain
| |
Collapse
|
22
|
Fine Tuning of ROS, Redox and Energy Regulatory Systems Associated with the Functions of Chloroplasts and Mitochondria in Plants under Heat Stress. Int J Mol Sci 2023; 24:ijms24021356. [PMID: 36674866 PMCID: PMC9865929 DOI: 10.3390/ijms24021356] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023] Open
Abstract
Heat stress severely affects plant growth and crop production. It is therefore urgent to uncover the mechanisms underlying heat stress responses of plants and establish the strategies to enhance heat tolerance of crops. The chloroplasts and mitochondria are known to be highly sensitive to heat stress. Heat stress negatively impacts on the electron transport chains, leading to increased production of reactive oxygen species (ROS) that can cause damages on the chloroplasts and mitochondria. Disruptions of photosynthetic and respiratory metabolisms under heat stress also trigger increase in ROS and alterations in redox status in the chloroplasts and mitochondria. However, ROS and altered redox status in these organelles also activate important mechanisms that maintain functions of these organelles under heat stress, which include HSP-dependent pathways, ROS scavenging systems and retrograde signaling. To discuss heat responses associated with energy regulating organelles, we should not neglect the energy regulatory hub involving TARGET OF RAPAMYCIN (TOR) and SNF-RELATED PROTEIN KINASE 1 (SnRK1). Although roles of TOR and SnRK1 in the regulation of heat responses are still unknown, contributions of these proteins to the regulation of the functions of energy producing organelles implicate the possible involvement of this energy regulatory hub in heat acclimation of plants.
Collapse
|
23
|
Zhu Y, Narsai R, He C, Wang Y, Berkowitz O, Whelan J, Liew LC. Coordinated regulation of the mitochondrial retrograde response by circadian clock regulators and ANAC017. PLANT COMMUNICATIONS 2023; 4:100501. [PMID: 36463409 PMCID: PMC9860193 DOI: 10.1016/j.xplc.2022.100501] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 11/10/2022] [Accepted: 11/30/2022] [Indexed: 06/16/2023]
Abstract
Mitochondrial retrograde signaling (MRS) supports photosynthetic function under a variety of conditions. Induction of mitochondrial dysfunction with myxothiazol (a specific inhibitor of the mitochondrial bc1 complex) or antimycin A (an inhibitor of the mitochondrial bc1 complex and cyclic electron transport in the chloroplast under light conditions) in the light and dark revealed diurnal control of MRS. This was evidenced by (1) significantly enhanced binding of ANAC017 to promoters in the light compared with the dark in Arabidopsis plants treated with myxothiazol (but not antimycin A), (2) overlap in the experimentally determined binding sites for ANAC017 and circadian clock regulators in the promoters of ANAC013 and AOX1a, (3) a diurnal expression pattern for ANAC017 and transcription factors it regulates, (4) altered expression of ANAC017-regulated genes in circadian clock mutants with and without myxothiazol treatment, and (5) a decrease in the magnitude of LHY and CCA1 expression in an ANAC017-overexpressing line and protein-protein interaction between ANAC017 and PIF4. This study also shows a large difference in transcriptome responses to antimycin A and myxothiazol in the dark: these responses are ANAC017 independent, observed in shoots and roots, similar to biotic challenge and salicylic acid responses, and involve ERF and ZAT transcription factors. This suggests that antimycin A treatment stimulates a second MRS pathway that is mediated or converges with salicylic acid signaling and provides a merging point with chloroplast retrograde signaling.
Collapse
Affiliation(s)
- Yanqiao Zhu
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Reena Narsai
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Cunman He
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Yan Wang
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, VIC 3086, Australia
| | - James Whelan
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Lim Chee Liew
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, VIC 3086, Australia.
| |
Collapse
|
24
|
Ardelean IV, Bălăcescu L, Sicora O, Bălăcescu O, Mladin L, Haș V, Miclăuș M. Maize cytolines as models to study the impact of different cytoplasms on gene expression under heat stress conditions. BMC PLANT BIOLOGY 2023; 23:4. [PMID: 36588161 PMCID: PMC9806912 DOI: 10.1186/s12870-022-04023-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Crops are under constant pressure due to global warming, which unfolds at a much faster pace than their ability to adapt through evolution. Agronomic traits are linked to cytoplasmic-nuclear genome interactions. It thus becomes important to understand the influence exerted by the organelles on gene expression under heat stress conditions and profit from the available genetic diversity. Maize (Zea mays) cytolines allow us to investigate how the gene expression changes under heat stress conditions in three different cytoplasmic environments, but each having the same nucleus. Analyzing retrograde signaling in such an experimental set-up has never been done before. Here, we quantified the response of three cytolines to heat stress as differentially expressed genes (DEGs), and studied gene expression patterns in the context of existing polymorphism in their organellar genomes. RESULTS Our study unveils a plethora of new genes and GO terms that are differentially expressed or enriched, respectively, in response to heat stress. We report 19,600 DEGs as responding to heat stress (out of 30,331 analyzed), which significantly enrich 164 GO biological processes, 30 GO molecular functions, and 83 GO cell components. Our approach allowed for the discovery of a significant number of DEGs and GO terms that are not common in the three cytolines and could therefore be linked to retrograde signaling. Filtering for DEGs with a fold regulation > 2 (absolute values) that are exclusive to just one of the cytolines, we find a total of 391 up- and down-DEGs. Similarly, there are 19 GO terms with a fold enrichment > 2 that are cytoline-specific. Using GBS data we report contrasting differences in the number of DEGs and GO terms in each cytoline, which correlate with the genetic distances between the mitochondrial genomes (but not chloroplast) and the original nuclei of the cytolines, respectively. CONCLUSIONS The experimental design used here adds a new facet to the paradigm used to explain how gene expression changes in response to heat stress, capturing the influence exerted by different organelles upon one nucleus rather than investigating the response of several nuclei in their innate cytoplasmic environments.
Collapse
Affiliation(s)
- Ioana V Ardelean
- Biological Research Center, "Babeș-Bolyai" University, Jibou, Romania
- NIRDBS, Institute of Biological Research, Cluj-Napoca, Romania
| | | | - Oana Sicora
- Biological Research Center, "Babeș-Bolyai" University, Jibou, Romania
| | - Ovidiu Bălăcescu
- The Oncology Institute "Prof Dr Ion Chiricuta", Cluj-Napoca, Romania
| | - Lia Mladin
- Biological Research Center, "Babeș-Bolyai" University, Jibou, Romania
| | - Voichița Haș
- Agricultural Research and Development Station, Turda, Romania
| | - Mihai Miclăuș
- NIRDBS, Institute of Biological Research, Cluj-Napoca, Romania.
- STAR-UBB, "Babeș-Bolyai" University, Cluj-Napoca, Romania.
| |
Collapse
|
25
|
Sweetman C, Waterman CD, Wong DC, Day DA, Jenkins CL, Soole KL. Altering the balance between AOX1A and NDB2 expression affects a common set of transcripts in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:876843. [PMID: 36466234 PMCID: PMC9716356 DOI: 10.3389/fpls.2022.876843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 10/24/2022] [Indexed: 06/17/2023]
Abstract
Stress-responsive components of the mitochondrial alternative electron transport pathway have the capacity to improve tolerance of plants to abiotic stress, particularly the alternative oxidase AOX1A but also external NAD(P)H dehydrogenases such as NDB2, in Arabidopsis. NDB2 and AOX1A can cooperate to entirely circumvent the classical electron transport chain in Arabidopsis mitochondria. Overexpression of AOX1A or NDB2 alone can have slightly negative impacts on plant growth under optimal conditions, while simultaneous overexpression of NDB2 and AOX1A can reverse these phenotypic effects. We have taken a global transcriptomic approach to better understand the molecular shifts that occur due to overexpression of AOX1A alone and with concomitant overexpression of NDB2. Of the transcripts that were significantly up- or down- regulated in the AOX1A overexpression line compared to wild type (410 and 408, respectively), the majority (372 and 337, respectively) reverted to wild type levels in the dual overexpression line. Several mechanisms for the AOX1A overexpression phenotype are proposed based on the functional classification of these 709 genes, which can be used to guide future experiments. Only 28 genes were uniquely up- or down-regulated when NDB2 was overexpressed in the AOX1A overexpression line. On the other hand, many unique genes were deregulated in the NDB2 knockout line. Furthermore, several changes in transcript abundance seen in the NDB2 knockout line were consistent with changes in the AOX1A overexpression line. The results suggest that an imbalance in AOX1A:NDB2 protein levels caused by under- or over-expression of either component, triggers a common set of transcriptional responses that may be important in mitochondrial redox regulation. The most significant changes were transcripts associated with photosynthesis, secondary metabolism and oxidative stress responses.
Collapse
Affiliation(s)
- Crystal Sweetman
- College of Science & Engineering, Flinders University, Bedford Park, SA, Australia
| | | | - Darren C.J. Wong
- College of Science, Australian National University, Canberra, ACT, Australia
| | - David A. Day
- College of Science & Engineering, Flinders University, Bedford Park, SA, Australia
| | - Colin L.D. Jenkins
- College of Science & Engineering, Flinders University, Bedford Park, SA, Australia
| | - Kathleen L. Soole
- College of Science & Engineering, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
26
|
Aux/IAA11 Is Required for UV-AB Tolerance and Auxin Sensing in Arabidopsis thaliana. Int J Mol Sci 2022; 23:ijms232113386. [PMID: 36362171 PMCID: PMC9655273 DOI: 10.3390/ijms232113386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
In order to survive, plants have, over the course of their evolution, developed sophisticated acclimation and defense strategies governed by complex molecular and physiological, and cellular and extracellular, signaling pathways. They are also able to respond to various stimuli in the form of tropisms; for example, phototropism or gravitropism. All of these retrograde and anterograde signaling pathways are controlled and regulated by waves of reactive oxygen species (ROS), electrical signals, calcium, and hormones, e.g., auxins. Auxins are key phytohormones involved in the regulation of plant growth and development. Acclimation responses, which include programmed cell death induction, require precise auxin perception. However, our knowledge of these pathways is limited. The Aux/IAA family of transcriptional corepressors inhibits the growth of the plant under stress conditions, in order to maintain the balance between development and acclimation responses. In this work, we demonstrate the Aux/IAA11 involvement in auxin sensing, survival, and acclimation to UV-AB, and in carrying out photosynthesis under inhibitory conditions. The tested iaa11 mutants were more susceptible to UV-AB, photosynthetic electron transport (PET) inhibitor, and synthetic endogenous auxin. Among the tested conditions, Aux/IAA11 was not repressed by excess light stress, exclusively among its phylogenetic clade. Repression of transcription by Aux/IAA11 could be important for the inhibition of ROS formation or efficiency of ROS scavenging. We also hypothesize that the demonstrated differences in the subcellular localization of the two Aux/IAA11 protein variants might indicate their regulation by alternative splicing. Our results suggest that Aux/IAA11 plays a specific role in chloroplast retrograde signaling, since it is not repressed by high (excess) light stress, exclusively among its phylogenetic clade.
Collapse
|
27
|
Sáiz-Bonilla M, Martín Merchán A, Pallás V, Navarro JA. Molecular characterization, targeting and expression analysis of chloroplast and mitochondrion protein import components in Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2022; 13:1040688. [PMID: 36388587 PMCID: PMC9643744 DOI: 10.3389/fpls.2022.1040688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Improved bioinformatics tools for annotating gene function are becoming increasingly available, but such information must be considered theoretical until further experimental evidence proves it. In the work reported here, the genes for the main components of the translocons of the outer membrane of chloroplasts (Toc) and mitochondria (Tom), including preprotein receptors and protein-conducting channels of N. benthamiana, were identified. Sequence identity searches and phylogenetic relationships with functionally annotated sequences such as those of A. thaliana revealed that N. benthamiana orthologs mainly exist as recently duplicated loci. Only a Toc34 ortholog was found (NbToc34), while Toc159 receptor family was composed of four orthologs but somewhat different from those of A. thaliana. Except for NbToc90, the rest (NbToc120, NbToc159A and NbToc159B) had a molecular weight of about 150 kDa and an acidic domain similar in length. Only two orthologs of the Tom20 receptors, NbTom20-1 and NbTom20-2, were found. The number of the Toc and Tom receptor isoforms in N. benthamiana was comparable to that previously reported in tomato and what we found in BLAST searches in other species in the genera Nicotiana and Solanum. After cloning, the subcellular localization of N. benthamiana orthologs was studied, resulting to be identical to that of A. thaliana receptors. Phenotype analysis after silencing together with relative expression analysis in roots, stems and leaves revealed that, except for the Toc and Tom channel-forming components (NbToc75 and NbTom40) and NbToc34, functional redundancy could be observed either among Toc159 or mitochondrial receptors. Finally, heterodimer formation between NbToc34 and the NbToc159 family receptors was confirmed by two alternative techniques indicating that different Toc complexes could be assembled. Additional work needs to be addressed to know if this results in a functional specialization of each Toc complex.
Collapse
Affiliation(s)
| | | | - Vicente Pallás
- *Correspondence: Vicente Pallas, ; Jose Antonio Navarro,
| | | |
Collapse
|
28
|
Bhatti GK, Gupta A, Pahwa P, Khullar N, Singh S, Navik U, Kumar S, Mastana SS, Reddy AP, Reddy PH, Bhatti JS. Targeting mitochondrial bioenergetics as a promising therapeutic strategy in metabolic and neurodegenerative diseases. Biomed J 2022; 45:733-748. [PMID: 35568318 PMCID: PMC9661512 DOI: 10.1016/j.bj.2022.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/21/2022] [Accepted: 05/03/2022] [Indexed: 02/08/2023] Open
Abstract
Mitochondria are the organelles that generate energy for the cells and act as biosynthetic and bioenergetic factories, vital for normal cell functioning and human health. Mitochondrial bioenergetics is considered an important measure to assess the pathogenesis of various diseases. Dysfunctional mitochondria affect or cause several conditions involving the most energy-intensive organs, including the brain, muscles, heart, and liver. This dysfunction may be attributed to an alteration in mitochondrial enzymes, increased oxidative stress, impairment of electron transport chain and oxidative phosphorylation, or mutations in mitochondrial DNA that leads to the pathophysiology of various pathological conditions, including neurological and metabolic disorders. The drugs or compounds targeting mitochondria are considered more effective and safer for treating these diseases. In this review, we make an effort to concise the available literature on mitochondrial bioenergetics in various conditions and the therapeutic potential of various drugs/compounds targeting mitochondrial bioenergetics in metabolic and neurodegenerative diseases.
Collapse
Affiliation(s)
- Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali Punjab, India
| | - Anshika Gupta
- Department of Biotechnology, Sri Guru Gobind Singh College, Chandigarh, India
| | - Paras Pahwa
- Department of Biotechnology, Sri Guru Gobind Singh College, Chandigarh, India
| | - Naina Khullar
- Department of Zoology, Mata Gujri College, Fatehgarh Sahib, Punjab, India
| | - Satwinder Singh
- Department of Computer Science and Technology, Central University of Punjab, Bathinda, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Shashank Kumar
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, India
| | - Sarabjit Singh Mastana
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Arubala P Reddy
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Jasvinder Singh Bhatti
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| |
Collapse
|
29
|
Wang J, Xu G, Ning Y, Wang X, Wang GL. Mitochondrial functions in plant immunity. TRENDS IN PLANT SCIENCE 2022; 27:1063-1076. [PMID: 35659746 DOI: 10.1016/j.tplants.2022.04.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/21/2022] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
Mitochondria are energy factories of cells and are important for intracellular interactions with other organelles. Emerging evidence indicates that mitochondria play essential roles in the response to pathogen infection. During infection, pathogens deliver numerous enzymes and effectors into host cells, and some of these effectors target mitochondria, altering mitochondrial morphology, metabolism, and functions. To defend against pathogen attack, mitochondria are actively involved in changing intracellular metabolism, hormone-mediated signaling, and signal transduction, producing reactive oxygen species and reactive nitrogen species and triggering programmed cell death. Additionally, mitochondria coordinate with other organelles to integrate and amplify diverse immune signals. In this review, we summarize recent advances in understanding how mitochondria function in plant immunity and how pathogens target mitochondria for host defense suppression.
Collapse
Affiliation(s)
- Jiyang Wang
- Department of Plant Pathology, Ohio State University, Columbus, OH 43210, USA; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guojuan Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xuli Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Guo-Liang Wang
- Department of Plant Pathology, Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
30
|
Barreto P, Koltun A, Nonato J, Yassitepe J, Maia IDG, Arruda P. Metabolism and Signaling of Plant Mitochondria in Adaptation to Environmental Stresses. Int J Mol Sci 2022; 23:ijms231911176. [PMID: 36232478 PMCID: PMC9570015 DOI: 10.3390/ijms231911176] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
The interaction of mitochondria with cellular components evolved differently in plants and mammals; in plants, the organelle contains proteins such as ALTERNATIVE OXIDASES (AOXs), which, in conjunction with internal and external ALTERNATIVE NAD(P)H DEHYDROGENASES, allow canonical oxidative phosphorylation (OXPHOS) to be bypassed. Plant mitochondria also contain UNCOUPLING PROTEINS (UCPs) that bypass OXPHOS. Recent work revealed that OXPHOS bypass performed by AOXs and UCPs is linked with new mechanisms of mitochondrial retrograde signaling. AOX is functionally associated with the NO APICAL MERISTEM transcription factors, which mediate mitochondrial retrograde signaling, while UCP1 can regulate the plant oxygen-sensing mechanism via the PRT6 N-Degron. Here, we discuss the crosstalk or the independent action of AOXs and UCPs on mitochondrial retrograde signaling associated with abiotic stress responses. We also discuss how mitochondrial function and retrograde signaling mechanisms affect chloroplast function. Additionally, we discuss how mitochondrial inner membrane transporters can mediate mitochondrial communication with other organelles. Lastly, we review how mitochondrial metabolism can be used to improve crop resilience to environmental stresses. In this respect, we particularly focus on the contribution of Brazilian research groups to advances in the topic of mitochondrial metabolism and signaling.
Collapse
Affiliation(s)
- Pedro Barreto
- Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista, Botucatu 18618-970, Brazil
| | - Alessandra Koltun
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, Brazil
| | - Juliana Nonato
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, Brazil
| | - Juliana Yassitepe
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, Brazil
- Embrapa Agricultura Digital, Campinas 13083-886, Brazil
| | - Ivan de Godoy Maia
- Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista, Botucatu 18618-970, Brazil
| | - Paulo Arruda
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Correspondence:
| |
Collapse
|
31
|
He C, Liew LC, Yin L, Lewsey MG, Whelan J, Berkowitz O. The retrograde signaling regulator ANAC017 recruits the MKK9-MPK3/6, ethylene, and auxin signaling pathways to balance mitochondrial dysfunction with growth. THE PLANT CELL 2022; 34:3460-3481. [PMID: 35708648 PMCID: PMC9421482 DOI: 10.1093/plcell/koac177] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 05/29/2022] [Indexed: 05/12/2023]
Abstract
In plant cells, mitochondria are ideally positioned to sense and balance changes in energy metabolism in response to changing environmental conditions. Retrograde signaling from mitochondria to the nucleus is crucial for adjusting the required transcriptional responses. We show that ANAC017, the master regulator of mitochondrial stress, directly recruits a signaling cascade involving the plant hormones ethylene and auxin as well as the MAP KINASE KINASE (MKK) 9-MAP KINASE (MPK) 3/6 pathway in Arabidopsis thaliana. Chromatin immunoprecipitation followed by sequencing and overexpression demonstrated that ANAC017 directly regulates several genes of the ethylene and auxin pathways, including MKK9, 1-AMINO-CYCLOPROPANE-1-CARBOXYLATE SYNTHASE 2, and YUCCA 5, in addition to genes encoding transcription factors regulating plant growth and stress responses such as BASIC REGION/LEUCINE ZIPPER MOTIF (bZIP) 60, bZIP53, ANAC081/ATAF2, and RADICAL-INDUCED CELL DEATH1. A time-resolved RNA-seq experiment established that ethylene signaling precedes the stimulation of auxin signaling in the mitochondrial stress response, with a large part of the transcriptional regulation dependent on ETHYLENE-INSENSITIVE 3. These results were confirmed by mutant analyses. Our findings identify the molecular components controlled by ANAC017, which integrates the primary stress responses to mitochondrial dysfunction with whole plant growth via the activation of regulatory and partly antagonistic feedback loops.
Collapse
Affiliation(s)
- Cunman He
- Department of Animal, Plant and Soil Science, La Trobe University, Bundoora, Victoria 3086, Australia
- ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Lim Chee Liew
- Department of Animal, Plant and Soil Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Lingling Yin
- Department of Animal, Plant and Soil Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Mathew G Lewsey
- Department of Animal, Plant and Soil Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | - James Whelan
- Department of Animal, Plant and Soil Science, La Trobe University, Bundoora, Victoria 3086, Australia
- ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia
| | | |
Collapse
|
32
|
Luo Z, Xiong J, Xia H, Wang L, Hou G, Li Z, Li J, Zhou H, Li T, Luo L. Pentatricopeptide Repeat Gene-Mediated Mitochondrial RNA Editing Impacts on Rice Drought Tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:926285. [PMID: 35928709 PMCID: PMC9343880 DOI: 10.3389/fpls.2022.926285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/21/2022] [Indexed: 05/27/2023]
Abstract
Mitochondrial RNA editing plays crucial roles in the plant development and environmental adaptation. Pentatricopeptide repeat (PPR) genes, which are involved in the regulating mitochondrial RNA editing, are potential gene resources in the improvement of rice drought tolerance. In this study, we investigated genome-wide mitochondrial RNA editing in response to drought between upland and lowland rice. Responses of mitochondrial RNA editing to drought exhibit site-specific and genotype-specific patterns. We detected 22 and 57 ecotype-differentiated editing sites under well-watered and drought-treated conditions, respectively. Interestingly, the RNA editing efficiency was positively correlated with many agronomic traits, while it was negatively correlated with drought tolerance. We further selected two mitochondrial-localized PPR proteins, PPR035 and PPR406, to validate their functions in drought tolerance. PPR035 regulated RNA editing at rps4-926 and orfX-406, while PPR406 regulated RNA editing at orfX-355. The defectiveness in RNA editing at these sites had no apparent penalties in rice respiration and vegetative growth. Meanwhile, the knockout mutants of ppr035 and ppr406 show enhanced drought- and salt tolerance. PPR035 and PPR406 were under the balancing selection in upland rice and highly differentiated between upland and lowland rice ecotypes. The upland-dominant haplotypes of PPR035 and PPR406 shall contribute to the better drought tolerance in upland rice. They have great prospective in the improvement of rice drought tolerance.
Collapse
Affiliation(s)
- Zhi Luo
- College of Plant Sciences & Technology, Huazhong Agricultural University, Wuhan, China
- Shanghai Collaborative Innovation Center of Agri-Seeds (SCCAS), Shanghai Agrobiological Gene Center, Shanghai, China
| | - Jie Xiong
- College of Plant Sciences & Technology, Huazhong Agricultural University, Wuhan, China
- Shanghai Collaborative Innovation Center of Agri-Seeds (SCCAS), Shanghai Agrobiological Gene Center, Shanghai, China
| | - Hui Xia
- College of Plant Sciences & Technology, Huazhong Agricultural University, Wuhan, China
- Shanghai Collaborative Innovation Center of Agri-Seeds (SCCAS), Shanghai Agrobiological Gene Center, Shanghai, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Lei Wang
- College of Plant Sciences & Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Guihua Hou
- College of Plant Sciences & Technology, Huazhong Agricultural University, Wuhan, China
- Shanghai Collaborative Innovation Center of Agri-Seeds (SCCAS), Shanghai Agrobiological Gene Center, Shanghai, China
| | - Zhaoyang Li
- College of Plant Sciences & Technology, Huazhong Agricultural University, Wuhan, China
- Shanghai Collaborative Innovation Center of Agri-Seeds (SCCAS), Shanghai Agrobiological Gene Center, Shanghai, China
| | - Jing Li
- College of Plant Sciences & Technology, Huazhong Agricultural University, Wuhan, China
- Shanghai Collaborative Innovation Center of Agri-Seeds (SCCAS), Shanghai Agrobiological Gene Center, Shanghai, China
| | - Hengling Zhou
- College of Plant Sciences & Technology, Huazhong Agricultural University, Wuhan, China
- Shanghai Collaborative Innovation Center of Agri-Seeds (SCCAS), Shanghai Agrobiological Gene Center, Shanghai, China
| | - Tianfei Li
- College of Plant Sciences & Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Lijun Luo
- College of Plant Sciences & Technology, Huazhong Agricultural University, Wuhan, China
- Shanghai Collaborative Innovation Center of Agri-Seeds (SCCAS), Shanghai Agrobiological Gene Center, Shanghai, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China
| |
Collapse
|
33
|
Schwenkert S, Fernie AR, Geigenberger P, Leister D, Möhlmann T, Naranjo B, Neuhaus HE. Chloroplasts are key players to cope with light and temperature stress. TRENDS IN PLANT SCIENCE 2022; 27:577-587. [PMID: 35012879 DOI: 10.1016/j.tplants.2021.12.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/16/2021] [Accepted: 12/09/2021] [Indexed: 05/04/2023]
Abstract
Under natural environmental conditions, changes in light intensity and temperature are closely interwoven, and of all organelles, only chloroplasts react strongly upon alterations of these two parameters. We review increasing evidence indicating that changes in chloroplast metabolism are critical for the comprehensive cellular answer in a challenging environment. This cellular answer starts with rapid modifications of thylakoid-located processes, followed by modifications in the stroma and transport activities across the chloroplast envelope. We propose that the 'modulators' involved contribute to plant stress tolerance and that deciphering of their characteristics is essential to understand 'acclimation'. Especially in times of climatic changes, we must gain knowledge on physiological reactions that might become instrumental for directed breeding strategies aiming to develop stress-tolerant crop plants.
Collapse
|
34
|
Li X, Lyu W, Cai Q, Sha T, Cai L, Lyu X, Li Z, Hu Z, Zhang M, Yang J. General regulatory factor 3 regulates the expression of alternative oxidase 1a and the biosynthesis of glucosinolates in cytoplasmic male sterile Brassica juncea. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 319:111244. [PMID: 35487653 DOI: 10.1016/j.plantsci.2022.111244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/22/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Mitochondrial retrograde signaling (MRS) plays an essential role in sensing and responding to internal and external stimuli to optimize growth to adapt to the prevailing environmental conditions. Previously studies showed alterations on MRS in cytoplasmic male sterile (CMS) plant. However, the regulators involved in MRS in CMS plants remain largely unknown. In this study, we used alternative oxidase 1a (AOX1a) as an indicator of MRS and found that the expression of AOX1a was significantly downregulated in a CMS line comparing to its revertant line, thus indicating an alteration in MRS in the CMS line. By performing a BLAST search of known regulatory components involved in MRS in yeast, we identified general regulatory factor 3 (GRF3), an orthologue of Bmh1/2 in yeast, and demonstrated an association between this gene and MRS in plants, as evidenced by change in AOX1a expression. GRF3 protein was found to be located in the nucleus and the plasma membrane. Further studies showed that GRF3 interacted with MYB29, and regulated the biosynthesis of glucosinolates in Brassica juncea. These findings revealed that GRF3, a negative regulator of AOX1a, is involved in MRS, and also plays a vital role in the accumulation of glucosinolates in CMS crops.
Collapse
Affiliation(s)
- Xiang Li
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Wenhui Lyu
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Qingze Cai
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Tongyun Sha
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Lingmin Cai
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaolong Lyu
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Zhangping Li
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Zhongyuan Hu
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China
| | - Mingfang Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China
| | - Jinghua Yang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China.
| |
Collapse
|
35
|
Popa DG, Lupu C, Constantinescu-Aruxandei D, Oancea F. Humic Substances as Microalgal Biostimulants—Implications for Microalgal Biotechnology. Mar Drugs 2022; 20:md20050327. [PMID: 35621978 PMCID: PMC9143693 DOI: 10.3390/md20050327] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 02/01/2023] Open
Abstract
Humic substances (HS) act as biostimulants for terrestrial photosynthetic organisms. Their effects on plants are related to specific HS features: pH and redox buffering activities, (pseudo)emulsifying and surfactant characteristics, capacity to bind metallic ions and to encapsulate labile hydrophobic molecules, ability to adsorb to the wall structures of cells. The specific properties of HS result from the complexity of their supramolecular structure. This structure is more dynamic in aqueous solutions/suspensions than in soil, which enhances the specific characteristics of HS. Therefore, HS effects on microalgae are more pronounced than on terrestrial plants. The reported HS effects on microalgae include increased ionic nutrient availability, improved protection against abiotic stress, including against various chemical pollutants and ionic species of potentially toxic elements, higher accumulation of value-added ingredients, and enhanced bio-flocculation. These HS effects are similar to those on terrestrial plants and could be considered microalgal biostimulant effects. Such biostimulant effects are underutilized in current microalgal biotechnology. This review presents knowledge related to interactions between microalgae and humic substances and analyzes the potential of HS to enhance the productivity and profitability of microalgal biotechnology.
Collapse
Affiliation(s)
- Daria Gabriela Popa
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Mărăști Blv, No. 59, Sector 1, 011464 Bucharest, Romania;
- Bioproducts Team, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței No. 202, Sector 6, 060021 Bucharest, Romania;
| | - Carmen Lupu
- Bioproducts Team, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței No. 202, Sector 6, 060021 Bucharest, Romania;
| | - Diana Constantinescu-Aruxandei
- Bioproducts Team, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței No. 202, Sector 6, 060021 Bucharest, Romania;
- Correspondence: (D.C.-A.); (F.O.)
| | - Florin Oancea
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Mărăști Blv, No. 59, Sector 1, 011464 Bucharest, Romania;
- Bioproducts Team, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței No. 202, Sector 6, 060021 Bucharest, Romania;
- Correspondence: (D.C.-A.); (F.O.)
| |
Collapse
|
36
|
Szajko K, Sołtys-Kalina D, Heidorn-Czarna M, Smyda-Dajmund P, Wasilewicz-Flis I, Jańska H, Marczewski W. Transcriptomic and proteomic data provide new insights into cold-treated potato tubers with T- and D-type cytoplasm. PLANTA 2022; 255:97. [PMID: 35380306 PMCID: PMC8983635 DOI: 10.1007/s00425-022-03879-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Tuber-omics in potato with the T- and D-types of cytoplasm showed different sets of differentially expressed genes and proteins in response to cold storage. For the first time, we report differences in gene and protein expression in potato (Solanum tuberosum L.) tubers possessing the T- or D-type cytoplasm. Two F1 diploid reciprocal populations, referred to as T and D, were used. The pooling strategy was applied for detection of differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) in tubers consisting of extreme chip colour after cold storage. RNA and protein bulks were constructed from contrasting phenotypes. We recognized 48 and 15 DEGs for the T and D progenies, respectively. DEPs were identified in the amyloplast and mitochondrial fractions. In the T-type cytoplasm, only 2 amyloplast-associated and 5 mitochondria-associated DEPs were detected. Of 37 mitochondria-associated DEPs in the D-type cytoplasm, there were 36 downregulated DEPs in the dark chip colour bulks. These findings suggest that T- and D-type of cytoplasm might influence sugar accumulation in cold-stored potato tubers in different ways. We showed that the mt/nucDNA ratio was higher in D-possessing tubers after cold storage than in T progeny. For the D-type cytoplasm, the pt/nucDNA ratio was higher for tubers characterized by dark chip colour than for those with light chip colour. Our findings suggest that T- and D-type cytoplasm might influence sugar accumulation in cold-stored potato tubers in different ways.
Collapse
Affiliation(s)
- Katarzyna Szajko
- Plant Breeding and Acclimatization Institute-National Research Institute, Platanowa 19, 05-831, Młochów, Poland.
| | - Dorota Sołtys-Kalina
- Plant Breeding and Acclimatization Institute-National Research Institute, Platanowa 19, 05-831, Młochów, Poland
| | | | - Paulina Smyda-Dajmund
- Plant Breeding and Acclimatization Institute-National Research Institute, Platanowa 19, 05-831, Młochów, Poland
| | - Iwona Wasilewicz-Flis
- Plant Breeding and Acclimatization Institute-National Research Institute, Platanowa 19, 05-831, Młochów, Poland
| | - Hanna Jańska
- Faculty of Biotechnology, University of Wroclaw, 50-383, Wrocław, Poland
| | - Waldemar Marczewski
- Plant Breeding and Acclimatization Institute-National Research Institute, Platanowa 19, 05-831, Młochów, Poland.
| |
Collapse
|
37
|
Fuchs P, Bohle F, Lichtenauer S, Ugalde JM, Feitosa Araujo E, Mansuroglu B, Ruberti C, Wagner S, Müller-Schüssele SJ, Meyer AJ, Schwarzländer M. Reductive stress triggers ANAC017-mediated retrograde signaling to safeguard the endoplasmic reticulum by boosting mitochondrial respiratory capacity. THE PLANT CELL 2022; 34:1375-1395. [PMID: 35078237 PMCID: PMC9125394 DOI: 10.1093/plcell/koac017] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 12/18/2021] [Indexed: 05/16/2023]
Abstract
Redox processes are at the heart of universal life processes, such as metabolism, signaling, or folding of secreted proteins. Redox landscapes differ between cell compartments and are strictly controlled to tolerate changing conditions and to avoid cell dysfunction. While a sophisticated antioxidant network counteracts oxidative stress, our understanding of reductive stress responses remains fragmentary. Here, we observed root growth impairment in Arabidopsis thaliana mutants of mitochondrial alternative oxidase 1a (aox1a) in response to the model thiol reductant dithiothreitol (DTT). Mutants of mitochondrial uncoupling protein 1 (ucp1) displayed a similar phenotype indicating that impaired respiratory flexibility led to hypersensitivity. Endoplasmic reticulum (ER) stress was enhanced in the mitochondrial mutants and limiting ER oxidoreductin capacity in the aox1a background led to synergistic root growth impairment by DTT, indicating that mitochondrial respiration alleviates reductive ER stress. The observations that DTT triggered nicotinamide adenine dinucleotide (NAD) reduction in vivo and that the presence of thiols led to electron transport chain activity in isolated mitochondria offer a biochemical framework of mitochondrion-mediated alleviation of thiol-mediated reductive stress. Ablation of transcription factor Arabidopsis NAC domain-containing protein17 (ANAC017) impaired the induction of AOX1a expression by DTT and led to DTT hypersensitivity, revealing that reductive stress tolerance is achieved by adjusting mitochondrial respiratory capacity via retrograde signaling. Our data reveal an unexpected role for mitochondrial respiratory flexibility and retrograde signaling in reductive stress tolerance involving inter-organelle redox crosstalk.
Collapse
Affiliation(s)
- Philippe Fuchs
- Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, D-48143 Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| | - Finja Bohle
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| | - Sophie Lichtenauer
- Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, D-48143 Münster, Germany
| | - José Manuel Ugalde
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| | - Elias Feitosa Araujo
- Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, D-48143 Münster, Germany
| | - Berivan Mansuroglu
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| | - Cristina Ruberti
- Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, D-48143 Münster, Germany
| | - Stephan Wagner
- Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, D-48143 Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| | - Stefanie J Müller-Schüssele
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| | - Andreas J Meyer
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, D-48143 Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| |
Collapse
|
38
|
Meng X, Li L, Pascual J, Rahikainen M, Yi C, Jost R, He C, Fournier-Level A, Borevitz J, Kangasjärvi S, Whelan J, Berkowitz O. GWAS on multiple traits identifies mitochondrial ACONITASE3 as important for acclimation to submergence stress. PLANT PHYSIOLOGY 2022; 188:2039-2058. [PMID: 35043967 PMCID: PMC8968326 DOI: 10.1093/plphys/kiac011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 12/03/2021] [Indexed: 05/26/2023]
Abstract
Flooding causes severe crop losses in many parts of the world. Genetic variation in flooding tolerance exists in many species; however, there are few examples for the identification of tolerance genes and their underlying function. We conducted a genome-wide association study (GWAS) in 387 Arabidopsis (Arabidopsis thaliana) accessions. Plants were subjected to prolonged submergence followed by desubmergence, and seven traits (score, water content, Fv/Fm, and concentrations of nitrate, chlorophyll, protein, and starch) were quantified to characterize their acclimation responses. These traits showed substantial variation across the range of accessions. A total of 35 highly significant single-nucleotide polymorphisms (SNPs) were identified across the 20 GWA datasets, pointing to 22 candidate genes, with functions in TCA cycle, DNA modification, and cell division. Detailed functional characterization of one candidate gene, ACONITASE3 (ACO3), was performed. Chromatin immunoprecipitation followed by sequencing showed that a single nucleotide polymorphism in the ACO3 promoter co-located with the binding site of the master regulator of retrograde signaling ANAC017, while subcellular localization of an ACO3-YFP fusion protein confirmed a mitochondrial localization during submergence. Analysis of mutant and overexpression lines determined changes in trait parameters that correlated with altered submergence tolerance and were consistent with the GWAS results. Subsequent RNA-seq experiments suggested that impairing ACO3 function increases the sensitivity to submergence by altering ethylene signaling, whereas ACO3 overexpression leads to tolerance by metabolic priming. These results indicate that ACO3 impacts submergence tolerance through integration of carbon and nitrogen metabolism via the mitochondrial TCA cycle and impacts stress signaling during acclimation to stress.
Collapse
Affiliation(s)
- Xiangxiang Meng
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia
| | | | | | - Moona Rahikainen
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, FI-20014, Finland
| | - Changyu Yi
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Ricarda Jost
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Cunman He
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia
| | | | - Justin Borevitz
- Research School of Biology and Centre for Biodiversity Analysis, ARC Centre of Excellence in Plant Energy Biology, Australian National University, Canberra, ACT 0200, Australia
| | - Saijaliisa Kangasjärvi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Helsinki University, FI-00014, Finland
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, FI-00014, Finland
- Viikki Plant Science Center, University of Helsinki, Helsinki, FI-00014, Finland
| | - James Whelan
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia
| | | |
Collapse
|
39
|
Kim HJ, Kato N, Ndathe R, Thyssen GN, Jones DC, Ratnayaka HH. Evidence for thermosensitivity of the cotton (Gossypium hirsutum L.) immature fiber (im) mutant via hypersensitive stomatal activity. PLoS One 2021; 16:e0259562. [PMID: 34898615 PMCID: PMC8668099 DOI: 10.1371/journal.pone.0259562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 10/22/2021] [Indexed: 11/18/2022] Open
Abstract
Thickness of cotton fiber, referred to as fiber maturity, is a key determinant of fiber quality, lint yield, and textile performance. The cotton immature fiber (im) mutant has been used to study fiber maturity since its fiber is thinner than the wild type near isogeneic line (NIL), Texas Marker-1 (TM-1). The im phenotype is caused by a single recessive mutation of a pentatricopeptide repeat (PPR) gene that reduces the activity of mitochondrial complex I and up-regulates stress responsive genes. However, the mechanisms altering the stress responses in im mutant are not well understood. Thus, we characterized growth and gas exchange in im and TM-1 under no stress and also investigated their stress responses by comparing gas exchange and transcriptomic profiles under high temperature. Phenotypic differences were detected between the NILs in non-fiber tissues although less pronounced than the variation in fibers. At near optimum temperature (28±3°C), im maintained the same photosynthetic performance as TM-1 by means of greater stomatal conductance. In contrast, under high temperature stress (>34°C), im leaves reduced photosynthesis by decreasing the stomatal conductance disproportionately more than TM-1. Transcriptomic analyses showed that the genes involved in heat stress responses were differentially expressed between the NIL leaves. These results indicate that the im mutant previously reported to have low activity of mitochondrial complex I displays increased thermosensitivity by impacting stomatal conductance. They also support a notion that mitochondrial complex I activity is required for maintenance of optimal photosynthetic performance and acclimation of plants to high temperature stress. These findings may be useful in the future efforts to understand how physiological mechanisms play a role in determining cotton fiber maturity and may influence stress responses in other crops.
Collapse
Affiliation(s)
- Hee Jin Kim
- USDA-ARS, Southern Regional Research Center, Cotton Fiber Bioscience Research Unit, New Orleans, LA, United States of America
- * E-mail: (HJK); (HHR)
| | - Naohiro Kato
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States of America
| | - Ruth Ndathe
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States of America
| | - Gregory N. Thyssen
- USDA-ARS, Southern Regional Research Center, Cotton Fiber Bioscience Research Unit, New Orleans, LA, United States of America
| | - Don C. Jones
- Cotton Incorporated, Cary, NC, United States of America
| | - Harish H. Ratnayaka
- Department of Biology, Xavier University of Louisiana, New Orleans, LA, United States of America
- * E-mail: (HJK); (HHR)
| |
Collapse
|
40
|
Mazur R, Maszkowska J, Anielska-Mazur A, Garstka M, Polkowska-Kowalczyk L, Czajkowska A, Zmienko A, Dobrowolska G, Kulik A. The SnRK2.10 kinase mitigates the adverse effects of salinity by protecting photosynthetic machinery. PLANT PHYSIOLOGY 2021; 187:2785-2802. [PMID: 34632500 PMCID: PMC8644180 DOI: 10.1093/plphys/kiab438] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/13/2021] [Indexed: 05/25/2023]
Abstract
SNF1-Related protein kinases Type 2 (SnRK2) are plant-specific enzymes widely distributed across the plant kingdom. They are key players controlling abscisic acid (ABA)-dependent and ABA-independent signaling pathways in the plant response to osmotic stress. Here we established that SnRK2.4 and SnRK2.10, ABA-nonactivated kinases, are activated in Arabidopsis thaliana rosettes during the early response to salt stress and contribute to leaf growth retardation under prolonged salinity but act by maintaining different salt-triggered mechanisms. Under salinity, snrk2.10 insertion mutants were impaired in the reconstruction and rearrangement of damaged core and antenna protein complexes in photosystem II (PSII), which led to stronger non-photochemical quenching, lower maximal quantum yield of PSII, and lower adaptation of the photosynthetic apparatus to high light intensity. The observed effects were likely caused by disturbed accumulation and phosphorylation status of the main PSII core and antenna proteins. Finally, we found a higher accumulation of reactive oxygen species (ROS) in the snrk2.10 mutant leaves under a few-day-long exposure to salinity which also could contribute to the stronger damage of the photosynthetic apparatus and cause other deleterious effects affecting plant growth. We found that the snrk2.4 mutant plants did not display substantial changes in photosynthesis. Overall, our results indicate that SnRK2.10 is activated in leaves shortly after plant exposure to salinity and contributes to salt stress tolerance by maintaining efficient photosynthesis and preventing oxidative damage.
Collapse
Affiliation(s)
- Radosław Mazur
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Justyna Maszkowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Anna Anielska-Mazur
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Maciej Garstka
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Lidia Polkowska-Kowalczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Anna Czajkowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
- Warsaw University of Life Sciences – SGGW, Nowoursynowska 166, 02-787 Warsaw, Poland
| | - Agnieszka Zmienko
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Grazyna Dobrowolska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Anna Kulik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
41
|
Molecular Analysis Uncovers the Mechanism of Fertility Restoration in Temperature-Sensitive Polima Cytoplasmic Male-Sterile Brassica napus. Int J Mol Sci 2021; 22:ijms222212450. [PMID: 34830333 PMCID: PMC8617660 DOI: 10.3390/ijms222212450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022] Open
Abstract
Temperature-sensitive male sterility is a heritable agronomic trait affected by genotype-environment interactions. In rapeseed (Brassica napus), Polima (pol) temperature-sensitive cytoplasmic male sterility (TCMS) is commonly used for two-line breeding, as the fertility of pol TCMS lines can be partially restored at certain temperatures. However, little is known about the underlying molecular mechanism that controls fertility restoration. Therefore, we aimed to investigate the fertility conversion mechanism of the pol TCMS line at two different ambient temperatures (16 °C and 25 °C). Our results showed that the anthers developed and produced vigorous pollen at 16 °C but not at 25 °C. In addition, we identified a novel co-transcript of orf224-atp6 in the mitochondria that might lead to fertility conversion of the pol TCMS line. RNA-seq analysis showed that 1637 genes were significantly differentially expressed in the fertile flowers of 596-L when compared to the sterile flower of 1318 and 596-H. Detailed analysis revealed that differentially expressed genes were involved in temperature response, ROS accumulation, anther development, and mitochondrial function. Single-molecule long-read isoform sequencing combined with RNA sequencing revealed numerous genes produce alternative splicing transcripts at high temperatures. Here, we also found that alternative oxidase, type II NAD(P)H dehydrogenases, and transcription factor Hsfs might play a crucial role in male fertility under the low-temperature condition. RNA sequencing and bulked segregant analysis coupled with whole-genome sequencing identified the candidate genes involved in the post-transcriptional modification of orf224. Overall, our study described a putative mechanism of fertility restoration in a pol TCMS line controlled by ambient temperature that might help utilise TCMS in the two-line breeding of Brassica crops.
Collapse
|
42
|
Navarro JA, Saiz-Bonilla M, Sanchez-Navarro JA, Pallas V. The mitochondrial and chloroplast dual targeting of a multifunctional plant viral protein modulates chloroplast-to-nucleus communication, RNA silencing suppressor activity, encapsidation, pathogenesis and tissue tropism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:197-218. [PMID: 34309112 DOI: 10.1111/tpj.15435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/19/2021] [Indexed: 05/22/2023]
Abstract
Plant defense against melon necrotic spot virus (MNSV) is triggered by the viral auxiliary replicase p29 that is targeted to mitochondrial membranes causing morphological alterations, oxidative burst and necrosis. Here we show that MNSV coat protein (CP) was also targeted to mitochondria and mitochondrial-derived replication complexes [viral replication factories or complex (VRC)], in close association with p29, in addition to chloroplasts. CP import resulted in the cleavage of the R/arm domain previously implicated in genome binding during encapsidation and RNA silencing suppression (RSS). We also show that CP organelle import inhibition enhanced RSS activity, CP accumulation and VRC biogenesis but resulted in inhibition of systemic spreading, indicating that MNSV whole-plant infection requires CP organelle import. We hypothesize that to alleviate the p29 impact on host physiology, MNSV could moderate its replication and p29 accumulation by regulating CP RSS activity through organelle targeting and, consequently, eluding early-triggered antiviral response. Cellular and molecular events also suggested that S/P domains, which correspond to processed CP in chloroplast stroma or mitochondrion matrix, could mitigate host response inhibiting p29-induced necrosis. S/P deletion mainly resulted in a precarious balance between defense and counter-defense responses, generating either cytopathic alterations and MNSV cell-to-cell movement restriction or some degree of local movement. In addition, local necrosis and defense responses were dampened when RSS activity but not S/P organelle targeting was affected. Based on a robust biochemical and cellular analysis, we established that the mitochondrial and chloroplast dual targeting of MNSV CP profoundly impacts the viral infection cycle.
Collapse
Affiliation(s)
- Jose A Navarro
- Department of Molecular and Evolutionary Plant Virology, Institute for Plant Molecular and Cell Biology, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Av. Ingeniero Fausto Elio, Valencia, 46022, Spain
| | - Maria Saiz-Bonilla
- Department of Molecular and Evolutionary Plant Virology, Institute for Plant Molecular and Cell Biology, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Av. Ingeniero Fausto Elio, Valencia, 46022, Spain
| | - Jesus A Sanchez-Navarro
- Department of Molecular and Evolutionary Plant Virology, Institute for Plant Molecular and Cell Biology, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Av. Ingeniero Fausto Elio, Valencia, 46022, Spain
| | - Vicente Pallas
- Department of Molecular and Evolutionary Plant Virology, Institute for Plant Molecular and Cell Biology, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Av. Ingeniero Fausto Elio, Valencia, 46022, Spain
| |
Collapse
|
43
|
Fernandes Gyorfy M, Miller ER, Conover JL, Grover CE, Wendel JF, Sloan DB, Sharbrough J. Nuclear-cytoplasmic balance: whole genome duplications induce elevated organellar genome copy number. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:219-230. [PMID: 34309123 DOI: 10.1111/tpj.15436] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
The plant genome is partitioned across three distinct subcellular compartments: the nucleus, mitochondria, and plastids. Successful coordination of gene expression among these organellar genomes and the nuclear genome is critical for plant function and fitness. Whole genome duplication (WGD) events in the nucleus have played a major role in the diversification of land plants and are expected to perturb the relative copy number (stoichiometry) of nuclear, mitochondrial, and plastid genomes. Thus, elucidating the mechanisms whereby plant cells respond to the cytonuclear stoichiometric imbalance that follows WGDs represents an important yet underexplored question in understanding the evolutionary consequences of genome doubling. We used droplet digital PCR to investigate the relationship between nuclear and organellar genome copy numbers in allopolyploids and their diploid progenitors in both wheat and Arabidopsis. Polyploids exhibit elevated organellar genome copy numbers per cell, largely preserving the cytonuclear stoichiometry observed in diploids despite the change in nuclear genome copy number. To investigate the timescale over which cytonuclear stoichiometry may respond to WGD, we also estimated the organellar genome copy number in Arabidopsis synthetic autopolyploids and in a haploid-induced diploid line. We observed corresponding changes in organellar genome copy number in these laboratory-generated lines, indicating that at least some of the cellular response to cytonuclear stoichiometric imbalance is immediate following WGD. We conclude that increases in organellar genome copy numbers represent a common response to polyploidization, suggesting that maintenance of cytonuclear stoichiometry is an important component in establishing polyploid lineages.
Collapse
Affiliation(s)
| | - Emma R Miller
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Justin L Conover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Corrinne E Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Daniel B Sloan
- Biology Department, Colorado State University, Fort Collins, CO, USA
| | - Joel Sharbrough
- Biology Department, Colorado State University, Fort Collins, CO, USA
- Biology Department, New Mexico Institute of Mining and Technology, Socorro, NM, USA
| |
Collapse
|
44
|
Calderon RH, Strand Å. How retrograde signaling is intertwined with the evolution of photosynthetic eukaryotes. CURRENT OPINION IN PLANT BIOLOGY 2021; 63:102093. [PMID: 34390927 DOI: 10.1016/j.pbi.2021.102093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 05/20/2023]
Abstract
Chloroplasts and mitochondria evolved from free-living prokaryotic organisms that entered the eukaryotic cell through endosymbiosis. The gradual conversion from endosymbiont to organelle during the course of evolution was accompanied by the development of a communication system between the host and the endosymbiont, referred to as retrograde signaling or organelle-to-nucleus signaling. In higher plants, plastid-to-nucleus signaling involves multiple signaling pathways necessary to coordinate plastid function and cellular responses to developmental and environmental stimuli. Phylogenetic reconstructions using sequence information from evolutionarily diverse photosynthetic eukaryotes have begun to provide information about how retrograde signaling pathways were adopted and modified in different lineages over time. A tight communication system was likely a major facilitator of plants conquest of the land because it would have enabled the algal ancestors of land plants to better allocate their cellular resources in response to high light and desiccation, the major stressor for streptophyte algae in a terrestrial habitat. In this review, we aim to give an evolutionary perspective on plastid-to-nucleus signaling.
Collapse
Affiliation(s)
- Robert H Calderon
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE 901 87 Umeå, Sweden
| | - Åsa Strand
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE 901 87 Umeå, Sweden.
| |
Collapse
|
45
|
Lodeyro AF, Krapp AR, Carrillo N. Photosynthesis and chloroplast redox signaling in the age of global warming: stress tolerance, acclimation, and developmental plasticity. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5919-5937. [PMID: 34111246 DOI: 10.1093/jxb/erab270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
Contemporary climate change is characterized by the increased intensity and frequency of environmental stress events such as floods, droughts, and heatwaves, which have a debilitating impact on photosynthesis and growth, compromising the production of food, feed, and biofuels for an expanding population. The need to increase crop productivity in the context of global warming has fueled attempts to improve several key plant features such as photosynthetic performance, assimilate partitioning, and tolerance to environmental stresses. Chloroplast redox metabolism, including photosynthetic electron transport and CO2 reductive assimilation, are primary targets of most stress conditions, leading to excessive excitation pressure, photodamage, and propagation of reactive oxygen species. Alterations in chloroplast redox poise, in turn, provide signals that exit the plastid and modulate plant responses to the environmental conditions. Understanding the molecular mechanisms involved in these processes could provide novel tools to increase crop yield in suboptimal environments. We describe herein various interventions into chloroplast redox networks that resulted in increased tolerance to multiple sources of environmental stress. They included manipulation of endogenous components and introduction of electron carriers from other organisms, which affected not only stress endurance but also leaf size and longevity. The resulting scenario indicates that chloroplast redox pathways have an important impact on plant growth, development, and defense that goes beyond their roles in primary metabolism. Manipulation of these processes provides additional strategies for the design of crops with improved performance under destabilized climate conditions as foreseen for the future.
Collapse
Affiliation(s)
- Anabella F Lodeyro
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Adriana R Krapp
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Néstor Carrillo
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| |
Collapse
|
46
|
Phua SY, De Smet B, Remacle C, Chan KX, Van Breusegem F. Reactive oxygen species and organellar signaling. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5807-5824. [PMID: 34009340 DOI: 10.1093/jxb/erab218] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/14/2021] [Indexed: 05/07/2023]
Abstract
The evolution of photosynthesis and its associated metabolic pathways has been crucial to the successful establishment of plants, but has also challenged plant cells in the form of production of reactive oxygen species (ROS). Intriguingly, multiple forms of ROS are generated in virtually every plant cell compartment through diverse pathways. As a result, a sophisticated network of ROS detoxification and signaling that is simultaneously tailored to individual organelles and safeguards the entire cell is necessary. Here we take an organelle-centric view on the principal sources and sinks of ROS across the plant cell and provide insights into the ROS-induced organelle to nucleus retrograde signaling pathways needed for operational readjustments during environmental stresses.
Collapse
Affiliation(s)
- Su Yin Phua
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent,Belgium
- Center for Plant Systems Biology, VIB, Ghent,Belgium
| | - Barbara De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent,Belgium
- Center for Plant Systems Biology, VIB, Ghent,Belgium
| | - Claire Remacle
- Genetics and Physiology of Microalgae, InBios/Phytosystems, Université de Liège, Liège,Belgium
| | - Kai Xun Chan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent,Belgium
- Center for Plant Systems Biology, VIB, Ghent,Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent,Belgium
- Center for Plant Systems Biology, VIB, Ghent,Belgium
| |
Collapse
|
47
|
Berkowitz O, Xu Y, Liew LC, Wang Y, Zhu Y, Hurgobin B, Lewsey MG, Whelan J. RNA-seq analysis of laser microdissected Arabidopsis thaliana leaf epidermis, mesophyll and vasculature defines tissue-specific transcriptional responses to multiple stress treatments. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:938-955. [PMID: 33974297 DOI: 10.1111/tpj.15314] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/28/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Acclimation of plants to adverse conditions requires the coordination of gene expression and signalling pathways between tissues and cell types. As the energy and carbon capturing organs, leaves are significantly affected by abiotic and biotic stresses. However, tissue- or cell type-specific analyses of stress responses have focussed on the Arabidopsis root. Here, we comparatively explore the transcriptomes of three leaf tissues (epidermis, mesophyll, vasculature) after induction of diverse stress pathways by chemical stimuli (antimycin A, 3-amino-1,2,4-triazole, methyl viologen, salicylic acid) and ultraviolet light in Arabidopsis using laser capture microdissection followed by RNA sequencing. Stimulation of stress pathways caused an overall reduction in the number of genes expressed in a tissue-specific manner, though a small subset gained or changed their tissue specificity. We find no evidence of a common stress response, with only a few genes consistently responsive to two or more treatments in the analysed tissues. However, differentially expressed genes overlap between tissues for individual treatments. A focussed analysis provided evidence for an interaction of auxin and ethylene that mediates retrograde signalling during mitochondrial dysfunction specifically in the epidermis, and a gene regulatory network defined the hierarchy of interactions. Taken together, we have generated an extensive reference dataset that will be valuable for future experiments analysing transcriptional responses on a tissue or single-cell level. Our results will enable the tailoring of the tissue-specific engineering of stress-tolerant plants.
Collapse
Affiliation(s)
- Oliver Berkowitz
- Australian Research Council Centre of Excellence in Plant Energy Biology, AgriBio Building La Trobe University, Bundoora, Victoria, 3086, Australia
- Australian Research Council Research Hub for Medicinal Agriculture, La Trobe University, AgriBio Building, Bundoora, Victoria, 3086, Australia
- Department of Animal, Plant and Soil Science, La Trobe University, AgriBio Building, Bundoora, Victoria, 3086, Australia
| | - Yue Xu
- Australian Research Council Centre of Excellence in Plant Energy Biology, AgriBio Building La Trobe University, Bundoora, Victoria, 3086, Australia
- Department of Animal, Plant and Soil Science, La Trobe University, AgriBio Building, Bundoora, Victoria, 3086, Australia
| | - Lim Chee Liew
- Australian Research Council Centre of Excellence in Plant Energy Biology, AgriBio Building La Trobe University, Bundoora, Victoria, 3086, Australia
- Department of Animal, Plant and Soil Science, La Trobe University, AgriBio Building, Bundoora, Victoria, 3086, Australia
| | - Yan Wang
- Australian Research Council Centre of Excellence in Plant Energy Biology, AgriBio Building La Trobe University, Bundoora, Victoria, 3086, Australia
- Department of Animal, Plant and Soil Science, La Trobe University, AgriBio Building, Bundoora, Victoria, 3086, Australia
| | - Yanqiao Zhu
- Australian Research Council Centre of Excellence in Plant Energy Biology, AgriBio Building La Trobe University, Bundoora, Victoria, 3086, Australia
- Department of Animal, Plant and Soil Science, La Trobe University, AgriBio Building, Bundoora, Victoria, 3086, Australia
| | - Bhavna Hurgobin
- Australian Research Council Research Hub for Medicinal Agriculture, La Trobe University, AgriBio Building, Bundoora, Victoria, 3086, Australia
- Department of Animal, Plant and Soil Science, La Trobe University, AgriBio Building, Bundoora, Victoria, 3086, Australia
| | - Mathew G Lewsey
- Australian Research Council Research Hub for Medicinal Agriculture, La Trobe University, AgriBio Building, Bundoora, Victoria, 3086, Australia
- Department of Animal, Plant and Soil Science, La Trobe University, AgriBio Building, Bundoora, Victoria, 3086, Australia
| | - James Whelan
- Australian Research Council Centre of Excellence in Plant Energy Biology, AgriBio Building La Trobe University, Bundoora, Victoria, 3086, Australia
- Australian Research Council Research Hub for Medicinal Agriculture, La Trobe University, AgriBio Building, Bundoora, Victoria, 3086, Australia
- Department of Animal, Plant and Soil Science, La Trobe University, AgriBio Building, Bundoora, Victoria, 3086, Australia
| |
Collapse
|
48
|
Dopp IJ, Yang X, Mackenzie SA. A new take on organelle-mediated stress sensing in plants. THE NEW PHYTOLOGIST 2021; 230:2148-2153. [PMID: 33704791 PMCID: PMC8214450 DOI: 10.1111/nph.17333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/10/2021] [Indexed: 05/25/2023]
Abstract
Plants are able to adjust phenotype in response to changes in the environment. This system depends on an internal capacity to sense environmental conditions and to process this information to plant response. Recent studies have pointed to mitochondria and plastids as important environmental sensors, capable of perceiving stressful conditions and triggering gene expression, epigenomic, metabolic and phytohormone changes in the plant. These processes involve integrated gene networks that ultimately modulate the energy balance between growth and plant defense. This review attempts to link several unusual recent findings into a comprehensive hypothesis for the regulation of plant phenotypic plasticity.
Collapse
Affiliation(s)
- Isaac J. Dopp
- Departments of Biology and Plant Science, University Park, PA 16802, USA
- Plant Biology Graduate Program, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xiaodong Yang
- Departments of Biology and Plant Science, University Park, PA 16802, USA
| | - Sally A. Mackenzie
- Departments of Biology and Plant Science, University Park, PA 16802, USA
| |
Collapse
|
49
|
Van Aken O. Mitochondrial redox systems as central hubs in plant metabolism and signaling. PLANT PHYSIOLOGY 2021; 186:36-52. [PMID: 33624829 PMCID: PMC8154082 DOI: 10.1093/plphys/kiab101] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/11/2021] [Indexed: 05/06/2023]
Abstract
Plant mitochondria are indispensable for plant metabolism and are tightly integrated into cellular homeostasis. This review provides an update on the latest research concerning the organization and operation of plant mitochondrial redox systems, and how they affect cellular metabolism and signaling, plant development, and stress responses. New insights into the organization and operation of mitochondrial energy systems such as the tricarboxylic acid cycle and mitochondrial electron transport chain (mtETC) are discussed. The mtETC produces reactive oxygen and nitrogen species, which can act as signals or lead to cellular damage, and are thus efficiently removed by mitochondrial antioxidant systems, including Mn-superoxide dismutase, ascorbate-glutathione cycle, and thioredoxin-dependent peroxidases. Plant mitochondria are tightly connected with photosynthesis, photorespiration, and cytosolic metabolism, thereby providing redox-balancing. Mitochondrial proteins are targets of extensive post-translational modifications, but their functional significance and how they are added or removed remains unclear. To operate in sync with the whole cell, mitochondria can communicate their functional status via mitochondrial retrograde signaling to change nuclear gene expression, and several recent breakthroughs here are discussed. At a whole organism level, plant mitochondria thus play crucial roles from the first minutes after seed imbibition, supporting meristem activity, growth, and fertility, until senescence of darkened and aged tissue. Finally, plant mitochondria are tightly integrated with cellular and organismal responses to environmental challenges such as drought, salinity, heat, and submergence, but also threats posed by pathogens. Both the major recent advances and outstanding questions are reviewed, which may help future research efforts on plant mitochondria.
Collapse
Affiliation(s)
- Olivier Van Aken
- Department of Biology, Lund University, Lund, Sweden
- Author for communication:
| |
Collapse
|
50
|
Welchen E, Canal MV, Gras DE, Gonzalez DH. Cross-talk between mitochondrial function, growth, and stress signalling pathways in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4102-4118. [PMID: 33369668 DOI: 10.1093/jxb/eraa608] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/22/2020] [Indexed: 05/16/2023]
Abstract
Plant mitochondria harbour complex metabolic routes that are interconnected with those of other cell compartments, and changes in mitochondrial function remotely influence processes in different parts of the cell. This implies the existence of signals that convey information about mitochondrial function to the rest of the cell. Increasing evidence indicates that metabolic and redox signals are important for this process, but changes in ion fluxes, protein relocalization, and physical contacts with other organelles are probably also involved. Besides possible direct effects of these signalling molecules on cellular functions, changes in mitochondrial physiology also affect the activity of different signalling pathways that modulate plant growth and stress responses. As a consequence, mitochondria influence the responses to internal and external factors that modify the activity of these pathways and associated biological processes. Acting through the activity of hormonal signalling pathways, mitochondria may also exert remote control over distant organs or plant tissues. In addition, an intimate cross-talk of mitochondria with energy signalling pathways, such as those represented by TARGET OF RAPAMYCIN and SUCROSE NON-FERMENTING1-RELATED PROTEIN KINASE 1, can be envisaged. This review discusses available evidence on the role of mitochondria in shaping plant growth and stress responses through various signalling pathways.
Collapse
Affiliation(s)
- Elina Welchen
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - María Victoria Canal
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Diana E Gras
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Daniel H Gonzalez
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| |
Collapse
|