1
|
Gabriel B, Fiebig U, Hohn O, Plesker R, Coulibaly C, Cichutek K, Mühlebach MD, Bannert N, Kurth R, Norley S. Suppressing active replication of a live attenuated simian immunodeficiency virus vaccine does not abrogate protection from challenge. Virology 2015; 489:1-11. [PMID: 26685794 DOI: 10.1016/j.virol.2015.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/14/2015] [Accepted: 11/28/2015] [Indexed: 10/22/2022]
Abstract
Although safety concerns preclude the use of live attenuated HIV vaccines in humans, they provide a useful system for identifying the elusive correlates of protective immunity in the SIV/macaque animal model. However, a number of pieces of evidence suggest that protection may result from prior occupancy of susceptible target cells by the vaccine virus rather than the immune response. To address this, we developed a Nef-deletion variant of an RT-SHIV whose active replication could be shut off by treatment with RT-inhibitors. Groups of macaques were inoculated with the ∆Nef-RT-SHIV and immune responses allowed to develop before antiretroviral treatment and subsequent challenge with wild-type SIVmac239. Vaccinated animals either resisted infection fully or significantly controlled the subsequent viremia. However, there was no difference between animals undergoing replication of the vaccine virus and those without. This strongly suggests that competition for available target cells does not play a role in protection.
Collapse
|
2
|
Berry N, Ham C, Alden J, Clarke S, Stebbings R, Stott J, Ferguson D, Almond N. Live attenuated simian immunodeficiency virus vaccination confers superinfection resistance against macrophage-tropic and neurovirulent wild-type SIV challenge. J Gen Virol 2015; 96:1918-29. [PMID: 25834093 PMCID: PMC4635458 DOI: 10.1099/vir.0.000135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Vaccination with live attenuated simian immunodeficiency virus (SIV) in non-human primate species provides a means of characterizing the protective processes of retroviral superinfection and may lead to novel advances of human immunodeficiency virus (HIV)/AIDS vaccine design. The minimally attenuated SIVmacC8 vaccine has been demonstrated to elicit early potent protection against pathogenic rechallenge with genetically diverse viral isolates in cynomolgus macaques (Macaca fascicularis). In this study, we have characterized further the biological breadth of this vaccine protection by assessing the ability of both the nef-disrupted SIVmacC8 and its nef-intact counterpart SIVmacJ5 viruses to prevent superinfection with the macrophage/neurotropic SIVmac239/17E-Fr (SIVmac17E-Fr) isolate. Inoculation with either SIVmacC8 or SIVmacJ5 and subsequent detailed characterization of the viral replication kinetics revealed a wide range of virus–host outcomes. Both nef-disrupted and nef-intact immunizing viruses were able to prevent establishment of SIVmac17E-Fr in peripheral blood and secondary lymphoid tissues. Differences in virus kinetics, indicative of an active process, identified uncontrolled replication in one macaque which although able to prevent SIVmac17E-Fr superinfection led to extensive neuropathological complications. The ability to prevent a biologically heterologous, CD4-independent/CCR5+ viral isolate and the macrophage-tropic SIVmac316 strain from establishing infection supports the hypothesis that direct target cell blocking is unlikely to be a central feature of live lentivirus vaccination. These data provide further evidence to demonstrate that inoculation of a live retroviral vaccine can deliver broad spectrum protection against both macrophage-tropic as well as lymphocytotropic viruses. These data add to our knowledge of live attenuated SIV vaccines but further highlight potential safety concerns of vaccinating with a live retrovirus.
Collapse
Affiliation(s)
- Neil Berry
- 1Division of Virology, NIBSC, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Claire Ham
- 1Division of Virology, NIBSC, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Jack Alden
- 1Division of Virology, NIBSC, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Sean Clarke
- 1Division of Virology, NIBSC, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Richard Stebbings
- 2Divison of Biotherapeutics, NIBSC, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Jim Stott
- 1Division of Virology, NIBSC, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Deborah Ferguson
- 1Division of Virology, NIBSC, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Neil Almond
- 1Division of Virology, NIBSC, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| |
Collapse
|
3
|
Early biodistribution and persistence of a protective live attenuated SIV vaccine elicits localised innate responses in multiple lymphoid tissues. PLoS One 2014; 9:e104390. [PMID: 25162725 PMCID: PMC4146474 DOI: 10.1371/journal.pone.0104390] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 07/08/2014] [Indexed: 12/22/2022] Open
Abstract
Vaccination of Mauritian cynomolgus macaques with the attenuated nef-truncated C8 variant of SIVmac251/32H (SIVmacC8) induces early, potent protection against pathogenic, heterologous challenge before the maturation of cognate immunity. To identify processes that contribute to early protection in this model the pathogenesis, anatomical distribution and viral vaccine kinetics were determined in relation to localised innate responses triggered by vaccination. The early biodistribution of SIVmacC8 was defined by rapid, widespread dissemination amongst multiple lymphoid tissues, detectable after 3 days. Cell-associated viral RNA dynamics identified mesenteric lymph nodes (MLN) and spleen, as well as the gut mucosae, as early major contributors of systemic virus burden. Rapid, localised infection was populated by discrete foci of persisting virus-infected cells. Localised productive infection triggered a broad innate response, with type-1 interferon sensitive IRF-7, STAT-1, TRIM5α and ApoBEC3G genes all upregulated during the acute phase but induction did not prevent viral persistence. Profound changes in vaccine-induced cell-surface markers of immune activation were detected on macrophages, B-cells and dendritic cells (DC-SIGN, S-100, CD40, CD11c, CD123 and CD86). Notably, high DC-SIGN and S100 staining for follicular and interdigitating DCs respectively, in MLN and spleen were detected by 3 days, persisting 20 weeks post-vaccination. Although not formally evaluated, the early biodistribution of SIVmacC8 simultaneously targets multiple lymphoid tissues to induce strong innate immune responses coincident at the same sites critical for early protection from wild-type viruses. HIV vaccines which stimulate appropriate innate, as well as adaptive responses, akin to those generated by live attenuated SIV vaccines, may prove the most efficacious.
Collapse
|
4
|
Mee ET, Stebbings R, Hall J, Giles E, Almond N, Rose NJ. Allogeneic lymphocyte transfer in MHC-identical siblings and MHC-identical unrelated Mauritian cynomolgus macaques. PLoS One 2014; 9:e88670. [PMID: 24523927 PMCID: PMC3921199 DOI: 10.1371/journal.pone.0088670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 01/15/2014] [Indexed: 11/18/2022] Open
Abstract
The detailed study of immune effector mechanisms in primate models of infectious disease has been limited by the inability to adoptively transfer lymphocytes from vaccinated animals into naïve immunocompetent recipients. Recent advances in our understanding of the Major Histocompatibility Complex diversity of Mauritian cynomolgus macaques enabled the establishment of a breeding program to generate Major Histocompatibility Complex (MHC)-identical animals. The current study utilised this resource to achieve an improved model of adoptive transfer of lymphocytes in macaques. The effect of route of transfusion on persistence kinetics of adoptively transferred lymphocytes was evaluated in an autologous transfer system. Results indicated that peripheral persistence kinetics were comparable following infusion by different routes, and that cells were detectable at equivalent levels in lymphoid tissues six weeks post-infusion. In a pilot-scale experiment, the persistence of adoptively transferred lymphocytes was compared in MHC-identical siblings and MHC-identical unrelated recipients. Lymphocytes transferred intra-peritoneally were detectable in the periphery within one hour of transfer and circulated at detectable levels in the periphery and lymph nodes for 10 days. Donor lymphocytes were detectable at higher levels in MHC-identical siblings compared with unrelated animals, however the total time of persistence did not differ. These results demonstrate a further refinement of the lymphocyte adoptive transfer system in Mauritian cynomolgus macaques and provide a foundation for hitherto impractical experiments to investigate mechanisms of cellular immunity in primate models of infectious disease.
Collapse
Affiliation(s)
- Edward T Mee
- Division of Virology, National Institute for Biological Standards and Control, Medicines and Healthcare products Regulatory Agency, South Mimms, Hertfordshire, United Kingdom
| | - Richard Stebbings
- Division of Biotherapeutics, National Institute for Biological Standards and Control, Medicines and Healthcare products Regulatory Agency, South Mimms, Hertfordshire, United Kingdom
| | - Joanna Hall
- Division of Virology, National Institute for Biological Standards and Control, Medicines and Healthcare products Regulatory Agency, South Mimms, Hertfordshire, United Kingdom ; Division of Biological Services, National Institute for Biological Standards and Control, Medicines and Healthcare products Regulatory Agency, South Mimms, Hertfordshire, United Kingdom
| | - Elaine Giles
- Division of Biological Services, National Institute for Biological Standards and Control, Medicines and Healthcare products Regulatory Agency, South Mimms, Hertfordshire, United Kingdom
| | - Neil Almond
- Division of Virology, National Institute for Biological Standards and Control, Medicines and Healthcare products Regulatory Agency, South Mimms, Hertfordshire, United Kingdom
| | - Nicola J Rose
- Division of Virology, National Institute for Biological Standards and Control, Medicines and Healthcare products Regulatory Agency, South Mimms, Hertfordshire, United Kingdom
| |
Collapse
|
5
|
Adoptive transfer of lymphocytes isolated from simian immunodeficiency virus SIVmac239Δnef-vaccinated macaques does not affect acute-phase viral loads but may reduce chronic-phase viral loads in major histocompatibility complex-matched recipients. J Virol 2013; 87:7382-92. [PMID: 23616658 DOI: 10.1128/jvi.00348-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The live attenuated simian immunodeficiency virus (SIV) SIVmac239Δnef is the most effective SIV/human immunodeficiency virus (HIV) vaccine in preclinical testing. An understanding of the mechanisms responsible for protection may provide important insights for the development of HIV vaccines. Leveraging the uniquely restricted genetic diversity of Mauritian cynomolgus macaques, we performed adoptive transfers between major histocompatibility complex (MHC)-matched animals to assess the role of cellular immunity in SIVmac239Δnef protection. We vaccinated and mock vaccinated donor macaques and then harvested between 1.25 × 10(9) and 3.0 × 10(9) mononuclear cells from multiple tissues for transfer into 12 naive recipients, followed by challenge with pathogenic SIVmac239. Fluorescently labeled donor cells were detectable for at least 7 days posttransfer and trafficked to multiple tissues, including lung, lymph nodes, and other mucosal tissues. There was no difference between recipient macaques' peak or postpeak plasma viral loads. A very modest difference in viral loads during the chronic phase between vaccinated animal cell recipients and mock-vaccinated animal cell recipients did not reach significance (P = 0.12). Interestingly, the SIVmac239 challenge virus accumulated escape mutations more rapidly in animals that received cells from vaccinated donors. These results may suggest that adoptive transfers influenced the course of infection despite the lack of significant differences in the viral loads among animals that received cells from vaccinated and mock-vaccinated donor animals.
Collapse
|
6
|
Mattiuzzo G, Rose NJ, Almond N, Towers GJ, Berry N. Upregulation of TRIM5α gene expression after live-attenuated simian immunodeficiency virus vaccination in Mauritian cynomolgus macaques, but TRIM5α genotype has no impact on virus acquisition or vaccination outcome. J Gen Virol 2013; 94:606-611. [PMID: 23152371 PMCID: PMC3709606 DOI: 10.1099/vir.0.047795-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 11/13/2012] [Indexed: 01/01/2023] Open
Abstract
Polymorphism in the TRIM5α/TRIMcyp gene, which interacts with the lentiviral capsid, has been shown to impact on simian immunodeficiency virus (SIV) replication in certain macaque species. Here, in the context of a live-attenuated SIV vaccine study conducted in Mauritian-origin cynomolgus macaques (MCM), we demonstrate upregulation of TRIM5α expression in multiple lymphoid tissues immediately following vaccination. Despite this, the restricted range of TRIM5α genotypes and lack of TRIMcyp variants had no or only limited impact on the replication kinetics in vivo of either the SIVmac viral vaccine or wild-type SIVsmE660 challenge. Additionally, there appeared to be no impact of TRIM5α genotype on the outcome of homologous or heterologous vaccination/challenge studies. The limited spectrum of TRIM5α polymorphism in MCM appears to minimize host bias to provide consistency of replication for SIVmac/SIVsm viruses in vivo, and therefore on vaccination and pathogenesis studies conducted in this species.
Collapse
Affiliation(s)
- Giada Mattiuzzo
- Divison of Retrovirology, National Institute for Biological Standards and Control–Health Protection Agency, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Nicola J. Rose
- Divison of Retrovirology, National Institute for Biological Standards and Control–Health Protection Agency, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Neil Almond
- Divison of Retrovirology, National Institute for Biological Standards and Control–Health Protection Agency, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Greg J. Towers
- Division of Infection and Immunity, University College London, Gower Street, London WC1E 6BT, UK
| | - Neil Berry
- Divison of Retrovirology, National Institute for Biological Standards and Control–Health Protection Agency, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| |
Collapse
|
7
|
Alpert MD, Harvey JD, Lauer WA, Reeves RK, Piatak M, Carville A, Mansfield KG, Lifson JD, Li W, Desrosiers RC, Johnson RP, Evans DT. ADCC develops over time during persistent infection with live-attenuated SIV and is associated with complete protection against SIV(mac)251 challenge. PLoS Pathog 2012; 8:e1002890. [PMID: 22927823 PMCID: PMC3426556 DOI: 10.1371/journal.ppat.1002890] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 07/17/2012] [Indexed: 11/18/2022] Open
Abstract
Live-attenuated strains of simian immunodeficiency virus (SIV) routinely confer apparent sterilizing immunity against pathogenic SIV challenge in rhesus macaques. Understanding the mechanisms of protection by live-attenuated SIV may provide important insights into the immune responses needed for protection against HIV-1. Here we investigated the development of antibodies that are functional against neutralization-resistant SIV challenge strains, and tested the hypothesis that these antibodies are associated with protection. In the absence of detectable neutralizing antibodies, Env-specific antibody-dependent cell-mediated cytotoxicity (ADCC) emerged by three weeks after inoculation with SIVΔnef, increased progressively over time, and was proportional to SIVΔnef replication. Persistent infection with SIVΔnef elicited significantly higher ADCC titers than immunization with a non-persistent SIV strain that is limited to a single cycle of infection. ADCC titers were higher against viruses matched to the vaccine strain in Env, but were measurable against viruses expressing heterologous Env proteins. In two separate experiments, which took advantage of either the strain-specificity or the time-dependent maturation of immunity to overcome complete protection against SIV(mac)251 challenge, measures of ADCC activity were higher among the SIVΔnef-inoculated macaques that remained uninfected than among those that became infected. These observations show that features of the antibody response elicited by SIVΔnef are consistent with hallmarks of protection by live-attenuated SIV, and reveal an association between Env-specific antibodies that direct ADCC and apparent sterilizing protection by SIVΔnef.
Collapse
Affiliation(s)
- Michael D. Alpert
- Department of Microbiology and Immunobiology, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts, United States of America
| | - Jackson D. Harvey
- Department of Microbiology and Immunobiology, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts, United States of America
| | - W. Anderson Lauer
- Department of Microbiology and Immunobiology, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts, United States of America
| | - R. Keith Reeves
- Immunology Division, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts, United States of America
| | - Michael Piatak
- SAIC Frederick, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Angela Carville
- Department of Pathology, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts, United States of America
| | - Keith G. Mansfield
- Department of Pathology, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts, United States of America
| | - Jeffrey D. Lifson
- SAIC Frederick, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Wenjun Li
- University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Ronald C. Desrosiers
- Department of Microbiology and Immunobiology, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts, United States of America
| | - R. Paul Johnson
- Immunology Division, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts, United States of America
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, and Infectious Disease Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - David T. Evans
- Department of Microbiology and Immunobiology, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts, United States of America
| |
Collapse
|
8
|
Berry N, Ham C, Mee ET, Rose NJ, Mattiuzzo G, Jenkins A, Page M, Elsley W, Robinson M, Smith D, Ferguson D, Towers G, Almond N, Stebbings R. Early potent protection against heterologous SIVsmE660 challenge following live attenuated SIV vaccination in Mauritian cynomolgus macaques. PLoS One 2011; 6:e23092. [PMID: 21853072 PMCID: PMC3154277 DOI: 10.1371/journal.pone.0023092] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 07/05/2011] [Indexed: 02/06/2023] Open
Abstract
Background Live attenuated simian immunodeficiency virus (SIV) vaccines represent the most effective means of vaccinating macaques against pathogenic SIV challenge. However, thus far, protection has been demonstrated to be more effective against homologous than heterologous strains. Immune correlates of vaccine-induced protection have also been difficult to identify, particularly those measurable in the peripheral circulation. Methodology/Principal Findings Here we describe potent protection in 6 out of 8 Mauritian-derived cynomolgus macaques (MCM) against heterologous virus challenge with the pathogenic, uncloned SIVsmE660 viral stock following vaccination with live attenuated SIVmac251/C8. MCM provided a characterised host genetic background with limited Major Histocompatibility Complex (MHC) and TRIM5α allelic diversity. Early protection, observed as soon as 3 weeks post-vaccination, was comparable to that of 20 weeks vaccination. Recrudescence of vaccine virus was most pronounced in breakthrough cases where simultaneous identification of vaccine and challenge viruses by virus-specific PCR was indicative of active co-infection. Persistence of the vaccine virus in a range of lymphoid tissues was typified by a consistent level of SIV RNA positive cells in protected vaccinates. However, no association between MHC class I /II haplotype or TRIM5α polymorphism and study outcome was identified. Conclusion/Significance This SIV vaccine study, conducted in MHC-characterised MCM, demonstrated potent protection against the pathogenic, heterologous SIVsmE660 challenge stock after only 3 weeks vaccination. This level of protection against this viral stock by intravenous challenge has not been hitherto observed. The mechanism(s) of protection by vaccination with live attenuated SIV must account for the heterologous and early protection data described in this study, including those which relate to the innate immune system.
Collapse
Affiliation(s)
- Neil Berry
- Division of Retrovirology, National Institute for Biological Standards and Control, Health Protection Agency, South Mimms, Potters Bar, Hertfordshire, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Li B, Berry N, Ham C, Ferguson D, Smith D, Hall J, Page M, Quartey-Papafio R, Elsley W, Robinson M, Almond N, Stebbings R. Vaccination with live attenuated simian immunodeficiency virus causes dynamic changes in intestinal CD4+CCR5+ T cells. Retrovirology 2011; 8:8. [PMID: 21291552 PMCID: PMC3038908 DOI: 10.1186/1742-4690-8-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 02/03/2011] [Indexed: 01/05/2023] Open
Abstract
Background Vaccination with live attenuated SIV can protect against detectable infection with wild-type virus. We have investigated whether target cell depletion contributes to the protection observed. Following vaccination with live attenuated SIV the frequency of intestinal CD4+CCR5+ T cells, an early target of wild-type SIV infection and destruction, was determined at days 3, 7, 10, 21 and 125 post inoculation. Results In naive controls, modest frequencies of intestinal CD4+CCR5+ T cells were predominantly found within the LPL TTrM-1 and IEL TTrM-2 subsets. At day 3, LPL and IEL CD4+CCR5+ TEM cells were dramatically increased whilst less differentiated subsets were greatly reduced, consistent with activation-induced maturation. CCR5 expression remained high at day 7, although there was a shift in subset balance from CD4+CCR5+ TEM to less differentiated TTrM-2 cells. This increase in intestinal CD4+CCR5+ T cells preceded the peak of SIV RNA plasma loads measured at day 10. Greater than 65.9% depletion of intestinal CD4+CCR5+ T cells followed at day 10, but overall CD4+ T cell homeostasis was maintained by increased CD4+CCR5- T cells. At days 21 and 125, high numbers of intestinal CD4+CCR5- naive TN cells were detected concurrent with greatly increased CD4+CCR5+ LPL TTrM-2 and IEL TEM cells at day 125, yet SIV RNA plasma loads remained low. Conclusions This increase in intestinal CD4+CCR5+ T cells, following vaccination with live attenuated SIV, does not correlate with target cell depletion as a mechanism of protection. Instead, increased intestinal CD4+CCR5+ T cells may correlate with or contribute to the protection conferred by vaccination with live attenuated SIV.
Collapse
Affiliation(s)
- Bo Li
- Biotherapeutics Group, National Institute of Biological Standards and Control/Health Protection Agency, Potters Bar, Hertfordshire, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Macaques vaccinated with simian immunodeficiency virus SIVmac239Delta nef delay acquisition and control replication after repeated low-dose heterologous SIV challenge. J Virol 2010; 84:9190-9. [PMID: 20592091 DOI: 10.1128/jvi.00041-10] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An effective human immunodeficiency virus (HIV) vaccine will likely need to reduce mucosal transmission and, if infection occurs, control virus replication. To determine whether our best simian immunodeficiency virus (SIV) vaccine can achieve these lofty goals, we vaccinated eight Indian rhesus macaques with SIVmac239Delta nef and challenged them intrarectally (i.r.) with repeated low doses of the pathogenic heterologous swarm isolate SIVsmE660. We detected a significant reduction in acquisition of SIVsmE660 in comparison to that for naïve controls (log rank test; P = 0.023). After 10 mucosal challenges, we detected replication of the challenge strain in only five of the eight vaccinated animals. In contrast, seven of the eight control animals became infected with SIVsmE660 after these 10 challenges. Additionally, the SIVsmE660-infected vaccinated animals controlled peak acute virus replication significantly better than did the naïve controls (Mann-Whitney U test; P = 0.038). Four of the five SIVsmE660 vaccinees rapidly brought virus replication under control by week 4 postinfection. Unfortunately, two of these four vaccinated animals lost control of virus replication during the chronic phase of infection. Bulk sequence analysis of the circulating viruses in these animals indicated that recombination had occurred between the vaccine and challenge strains and likely contributed to the increased virus replication in these animals. Overall, our results suggest that a well-designed HIV vaccine might both reduce the rate of acquisition and control viral replication.
Collapse
|
11
|
Greene JM, Lhost JJ, Burwitz BJ, Budde ML, Macnair CE, Weiker MK, Gostick E, Friedrich TC, Broman KW, Price DA, O'Connor SL, O'Connor DH. Extralymphoid CD8+ T cells resident in tissue from simian immunodeficiency virus SIVmac239{Delta}nef-vaccinated macaques suppress SIVmac239 replication ex vivo. J Virol 2010; 84:3362-72. [PMID: 20089651 PMCID: PMC2838091 DOI: 10.1128/jvi.02028-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 01/05/2010] [Indexed: 01/08/2023] Open
Abstract
Live-attenuated vaccination with simian immunodeficiency virus (SIV) SIVmac239Deltanef is the most successful vaccine product tested to date in macaques. However, the mechanisms that explain the efficacy of this vaccine remain largely unknown. We utilized an ex vivo viral suppression assay to assess the quality of the immune response in SIVmac239Deltanef-immunized animals. Using major histocompatibility complex-matched Mauritian cynomolgus macaques, we did not detect SIV-specific functional immune responses in the blood by gamma interferon (IFN-gamma) enzyme-linked immunospot assay at select time points; however, we found that lung CD8(+) T cells, unlike blood CD8(+) T cells, effectively suppress virus replication by up to 80%. These results suggest that SIVmac239Deltanef may be an effective vaccine because it elicits functional immunity at mucosal sites. Moreover, these results underscore the limitations of relying on immunological measurements from peripheral blood lymphocytes in studies of protective immunity to HIV/SIV.
Collapse
Affiliation(s)
- Justin M. Greene
- Department of Pathology and Laboratory Medicine, University of Wisconsin—Madison, Wisconsin 53706, Wisconsin National Primate Research Center, University of Wisconsin—Madison, Wisconsin 53715, Department of Biostatistics and Medical Informatics, University of Wisconsin—Madison, Madison, Wisconsin 53706, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, Wales, United Kingdom
| | - Jennifer J. Lhost
- Department of Pathology and Laboratory Medicine, University of Wisconsin—Madison, Wisconsin 53706, Wisconsin National Primate Research Center, University of Wisconsin—Madison, Wisconsin 53715, Department of Biostatistics and Medical Informatics, University of Wisconsin—Madison, Madison, Wisconsin 53706, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, Wales, United Kingdom
| | - Benjamin J. Burwitz
- Department of Pathology and Laboratory Medicine, University of Wisconsin—Madison, Wisconsin 53706, Wisconsin National Primate Research Center, University of Wisconsin—Madison, Wisconsin 53715, Department of Biostatistics and Medical Informatics, University of Wisconsin—Madison, Madison, Wisconsin 53706, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, Wales, United Kingdom
| | - Melisa L. Budde
- Department of Pathology and Laboratory Medicine, University of Wisconsin—Madison, Wisconsin 53706, Wisconsin National Primate Research Center, University of Wisconsin—Madison, Wisconsin 53715, Department of Biostatistics and Medical Informatics, University of Wisconsin—Madison, Madison, Wisconsin 53706, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, Wales, United Kingdom
| | - Caitlin E. Macnair
- Department of Pathology and Laboratory Medicine, University of Wisconsin—Madison, Wisconsin 53706, Wisconsin National Primate Research Center, University of Wisconsin—Madison, Wisconsin 53715, Department of Biostatistics and Medical Informatics, University of Wisconsin—Madison, Madison, Wisconsin 53706, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, Wales, United Kingdom
| | - Madelyn K. Weiker
- Department of Pathology and Laboratory Medicine, University of Wisconsin—Madison, Wisconsin 53706, Wisconsin National Primate Research Center, University of Wisconsin—Madison, Wisconsin 53715, Department of Biostatistics and Medical Informatics, University of Wisconsin—Madison, Madison, Wisconsin 53706, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, Wales, United Kingdom
| | - Emma Gostick
- Department of Pathology and Laboratory Medicine, University of Wisconsin—Madison, Wisconsin 53706, Wisconsin National Primate Research Center, University of Wisconsin—Madison, Wisconsin 53715, Department of Biostatistics and Medical Informatics, University of Wisconsin—Madison, Madison, Wisconsin 53706, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, Wales, United Kingdom
| | - Thomas C. Friedrich
- Department of Pathology and Laboratory Medicine, University of Wisconsin—Madison, Wisconsin 53706, Wisconsin National Primate Research Center, University of Wisconsin—Madison, Wisconsin 53715, Department of Biostatistics and Medical Informatics, University of Wisconsin—Madison, Madison, Wisconsin 53706, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, Wales, United Kingdom
| | - Karl W. Broman
- Department of Pathology and Laboratory Medicine, University of Wisconsin—Madison, Wisconsin 53706, Wisconsin National Primate Research Center, University of Wisconsin—Madison, Wisconsin 53715, Department of Biostatistics and Medical Informatics, University of Wisconsin—Madison, Madison, Wisconsin 53706, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, Wales, United Kingdom
| | - David A. Price
- Department of Pathology and Laboratory Medicine, University of Wisconsin—Madison, Wisconsin 53706, Wisconsin National Primate Research Center, University of Wisconsin—Madison, Wisconsin 53715, Department of Biostatistics and Medical Informatics, University of Wisconsin—Madison, Madison, Wisconsin 53706, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, Wales, United Kingdom
| | - Shelby L. O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin—Madison, Wisconsin 53706, Wisconsin National Primate Research Center, University of Wisconsin—Madison, Wisconsin 53715, Department of Biostatistics and Medical Informatics, University of Wisconsin—Madison, Madison, Wisconsin 53706, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, Wales, United Kingdom
| | - David H. O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin—Madison, Wisconsin 53706, Wisconsin National Primate Research Center, University of Wisconsin—Madison, Wisconsin 53715, Department of Biostatistics and Medical Informatics, University of Wisconsin—Madison, Madison, Wisconsin 53706, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, Wales, United Kingdom
| |
Collapse
|
12
|
Reeves RK, Gillis J, Wong FE, Johnson RP. Vaccination with SIVmac239Deltanef activates CD4+ T cells in the absence of CD4 T-cell loss. J Med Primatol 2010; 38 Suppl 1:8-16. [PMID: 19863673 DOI: 10.1111/j.1600-0684.2009.00370.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Pathogenic HIV and SIV infections characteristically deplete central memory CD4(+) T cells and induce chronic immune activation, but it is controversial whether this also occurs after vaccination with attenuated SIVs and whether depletion or activation of CD4(+) T-cell play roles in protection against wild-type virus challenge. METHODS Rhesus macaques were vaccinated with SIVmac239Deltanef and quantitative and phenotypic polychromatic flow cytometry analyses were performed on mononuclear cells from blood, lymph nodes and rectal biopsies. RESULTS Animals vaccinated with SIVmac239Deltanef demonstrated no loss of CD4(+) T cells in any tissue, and in fact CCR5(+) and CD28(+)CD95(+) central memory CD4(+) T cells were significantly increased. In contrast, CD4(+) T-cell numbers and CCR5 expression significantly declined in unvaccinated controls challenged with SIVmac239. Also, intracellular Ki67 increased acutely as much as 3-fold over baseline in all tissues after SIVmac239Deltanef vaccination then declined following primary infection. CONCLUSION We demonstrated in this study that SIVmac239Deltanef vaccination did not deplete CD4(+) T cells but transiently activated and expanded the memory cell population. However, increases in numbers and activation of memory CD4(+) T cells did not appear to influence protective immunity.
Collapse
Affiliation(s)
- R K Reeves
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, MA 01772-9102, USA
| | | | | | | |
Collapse
|
13
|
Rollman E, Mason RD, Lin J, Brooks AG, Kent SJ. Protection afforded by live attenuated SIV is associated with rapid killing kinetics of CTLs. J Med Primatol 2009; 37 Suppl 2:24-32. [PMID: 19187428 DOI: 10.1111/j.1600-0684.2008.00326.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Live attenuated SIV vaccines are highly efficacious, but how they mediate protection is poorly understood. A feature of the effectiveness of live attenuated vaccines is their ability to control high dose challenge viruses early, without a large peak of acute viraemia. We hypothesized that long-lived antigen exposure from live attenuated SIV may result in CD8+ cytotoxic T lymphocytes persistently capable of rapidly cytolytic potential. METHODS We employed a kinetic degranulation assay to study multiple tetramer+ SIV-specific CTL specificities before and after the SIV(mac251) challenge of pigtail macaques inoculated with a live attenuated SIV. RESULTS Live attenuated SIV-vaccinated animals rapidly controlled a subsequent challenge, with minimal viraemia after exposure. For over 9 months after the initial vaccination with live attenuated SIV we could detect both Gag- and Tat-specific CTLs that maintained a long-term capacity to rapidly degranulate (CD107a expression) and release granzyme B within 30 minutes of antigen exposure. This rapid cytolytic phenotype was maintained throughout the early period after challenge, despite the absence of a marked enhancement in CTL frequencies. CONCLUSIONS Our results suggest that highly functional CTLs may contribute to the remarkable efficacy of live attenuated SIV vaccines. Studying the killing kinetics of CTLs induced by other, safer, HIV vaccines could facilitate a better understanding of the requirements for an effective HIV vaccine.
Collapse
Affiliation(s)
- Erik Rollman
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Vic., Australia
| | | | | | | | | |
Collapse
|
14
|
Jia B, Ng SK, DeGottardi MQ, Piatak M, Yuste E, Carville A, Mansfield KG, Li W, Richardson BA, Lifson JD, Evans DT. Immunization with single-cycle SIV significantly reduces viral loads after an intravenous challenge with SIV(mac)239. PLoS Pathog 2009; 5:e1000272. [PMID: 19165322 PMCID: PMC2621341 DOI: 10.1371/journal.ppat.1000272] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 12/15/2008] [Indexed: 12/24/2022] Open
Abstract
Strains of simian immunodeficiency virus (SIV) that are limited to a single cycle of infection were evaluated for the ability to elicit protective immunity against wild-type SIVmac239 infection of rhesus macaques by two different vaccine regimens. Six animals were inoculated at 8-week intervals with 6 identical doses consisting of a mixture of three different envelope variants of single-cycle SIV (scSIV). Six additional animals were primed with a mixture of cytoplasmic domain-truncated envelope variants of scSIV and boosted with two doses of vesicular stomatitis virus glycoprotein (VSV G) trans-complemented scSIV. While both regimens elicited detectable virus-specific T cell responses, SIV-specific T cell frequencies were more than 10-fold higher after boosting with VSV G trans-complemented scSIV (VSV G scSIV). Broad T cell recognition of multiple viral antigens and Gag-specific CD4+ T cell responses were also observed after boosting with VSV G scSIV. With the exception of a single animal in the repeated immunization group, all of the animals became infected following an intravenous challenge with SIVmac239. However, significantly lower viral loads and higher memory CD4+ T cell counts were observed in both immunized groups relative to an unvaccinated control group. Indeed, both scSIV immunization regimens resulted in containment of SIVmac239 replication after challenge that was as good as, if not better than, what has been achieved by other non-persisting vaccine vectors that have been evaluated in this challenge model. Nevertheless, the extent of protection afforded by scSIV was not as good as typically conferred by persistent infection with live, attenuated SIV. These observations have potentially important implications to the design of an effective AIDS vaccine, since they suggest that ongoing stimulation of virus-specific immune responses may be essential to achieving the degree of protection afforded by live, attenuated SIV. AIDS vaccine candidates based on recombinant DNA and/or viral vectors stimulate potent cellular immune responses. However, the extent of protection achieved by these vaccines has so far been disappointing. While live, attenuated strains of SIV afford more reliable protection in animal models, there are justifiable safety concerns with the use of live, attenuated HIV-1 in humans. As an experimental vaccine approach designed to uncouple immune activation from ongoing virus replication, we developed a genetic system for producing strains of SIV that are limited to a single cycle of infection. We compared repeated versus prime-boost vaccine regimens with single-cycle SIV for the ability to elicit protective immunity in rhesus macaques against a strain of SIV that is notoriously difficult to control by vaccination. Both vaccine regimens afforded significant containment of virus replication after challenge. Nevertheless, the extent of protection achieved by immunization with single-cycle SIV was not as good as the protection typically provided by persistent infection of animals with live, attenuated SIV. These observations have important implications for the design of an effective AIDS vaccine, since they suggest that ongoing stimulation of virus-specific immune responses may ultimately be necessary for achieving the robust protection afforded by live, attenuated SIV.
Collapse
Affiliation(s)
- Bin Jia
- Department of Microbiology and Molecular Genetics, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts, United States of America
| | - Sharon K. Ng
- Department of Microbiology and Molecular Genetics, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts, United States of America
| | - M. Quinn DeGottardi
- Department of Microbiology and Molecular Genetics, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts, United States of America
| | - Michael Piatak
- AIDS and Cancer Virus Program, SAIC Frederick, Inc., National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Eloísa Yuste
- Department of Microbiology and Molecular Genetics, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts, United States of America
| | - Angela Carville
- Department of Pathology, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts, United States of America
| | - Keith G. Mansfield
- Department of Pathology, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts, United States of America
| | - Wenjun Li
- Biostatistics Research Group, Division of Preventive and Behavioral Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Barbra A. Richardson
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, SAIC Frederick, Inc., National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - David T. Evans
- Department of Microbiology and Molecular Genetics, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
15
|
Huthoff H, Towers GJ. Restriction of retroviral replication by APOBEC3G/F and TRIM5alpha. Trends Microbiol 2008; 16:612-9. [PMID: 18976920 PMCID: PMC3556578 DOI: 10.1016/j.tim.2008.08.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 08/21/2008] [Accepted: 08/26/2008] [Indexed: 12/24/2022]
Abstract
Pathogenic viral infections have exerted selection pressure on their hosts to evolve cellular antiviral inhibitors referred to as restriction factors. Examples of such molecules are APOBEC3G, APOBEC3F and TRIM5alpha. APOBEC3G and APOBEC3F are cytidine deaminases that are able to strongly inhibit retroviral replication by at least two mechanisms. They are counteracted by the lentiviral Vif protein. TRIM5alpha binds to sensitive, incoming retroviruses via its C-terminal PRY/SPRY domain and rapidly recruits them to the proteasome before significant viral DNA synthesis can occur. Both of these proteins robustly block retroviral replication in a species-specific way. It remains an open but important question as to whether innate restriction factors such as these can be harnessed to inhibit HIV-1 replication in humans.
Collapse
Affiliation(s)
- Hendrik Huthoff
- Department of Infectious Diseases, Guy's, King's and St Thomas' School of Medicine, London SE1 9RT, UK
| | | |
Collapse
|
16
|
Envelope determinants of equine infectious anemia virus vaccine protection and the effects of sequence variation on immune recognition. J Virol 2008; 82:4052-63. [PMID: 18234792 DOI: 10.1128/jvi.02028-07] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A highly effective attenuated equine infectious anemia virus (EIAV) vaccine (EIAV(D9)) capable of protecting 100% of horses from disease induced by a homologous Env challenge strain (EIAV(PV)) was recently tested in ponies to determine the level of protection against divergent Env challenge strains (J. K. Craigo, B. S. Zhang, S. Barnes, T. L. Tagmyer, S. J. Cook, C. J. Issel, and R. C. Montelaro, Proc. Natl. Acad. Sci. USA 104:15105-15110, 2007). An inverse correlation between challenge strain Env variation and vaccine protection from disease was observed. Given the striking differences in protective immunity, we hypothesized that analysis of the humoral and cellular immune responses to the Env protein could reveal potential determinants of vaccine protection. Neutralization activity against the homologous Env or challenge strain-specific Env in immune sera from the vaccinated ponies did not correlate with protection from disease. Cellular analysis with Env peptide pools did not reveal an association with vaccine protection from disease. However, when individual vaccine-specific Env peptides were utilized, eight cytotoxic-T-lymphocyte (CTL) peptides were found to associate closely with vaccine protection. One of these peptides also yielded the only lymphoproliferative response associated with protective immunity. The identified peptides spanned both variable and conserved regions of gp90. Amino acid divergence within the principal neutralization domain and the identified peptides profoundly affected immune recognition, as illustrated by the inability to detect cross-reactive neutralizing antibodies and the observation that certain peptide-specific CTL responses were altered. In addition to identifying potential Env determinants of EIAV vaccine efficacy and demonstrating the profound effects of defined Env variation on immune recognition, these data also illustrate the sensitivity offered by individual peptides compared to peptide pools in measuring cellular immune responses in lentiviral vaccine trials.
Collapse
|
17
|
Rollman E, Smith MZ, Brooks AG, Purcell DFJ, Zuber B, Ramshaw IA, Kent SJ. Killing kinetics of simian immunodeficiency virus-specific CD8+ T cells: implications for HIV vaccine strategies. THE JOURNAL OF IMMUNOLOGY 2007; 179:4571-9. [PMID: 17878354 DOI: 10.4049/jimmunol.179.7.4571] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Both the magnitude and function of vaccine-induced HIV-specific CD8+ CTLs are likely to be important in the outcome of infection. We hypothesized that rapid cytolysis by CTLs may facilitate control of viral challenge. Release kinetics of the cytolytic effector molecules granzyme B and perforin, as well as the expression of the degranulation marker CD107a and IFN-gamma were simultaneously studied in SIV Gag(164-172) KP9-specific CD8+ T cells from Mane-A*10+ pigtail macaques. Macaques were vaccinated with either prime-boost poxvirus vector vaccines or live-attenuated SIV vaccines. Prime-boost vaccination induced Gag-specific CTLs capable of only slow (after 3 h) production of IFN-gamma and with limited (<5%) degranulation and granzyme B release. Vaccination with live-attenuated SIV resulted in a rapid cytolytic profile of SIV-specific CTLs with rapid (<0.5 h) and robust (>50% of tetramer-positive CD8+ T cells) degranulation and granzyme B release. The cytolytic phenotype following live-attenuated SIV vaccinations were similar to that associated with the partial resolution of viremia following SIV(mac251) challenge of prime-boost-vaccinated macaques, albeit with less IFN-gamma expression. High proportions of KP9-specific T cells expressed the costimulatory molecule CD28 when they exhibited a rapid cytolytic phenotype. The delayed cytolytic phenotype exhibited by standard vector-based vaccine-induced CTLs may limit the ability of T cell-based HIV vaccines to rapidly control acute infection following a pathogenic lentiviral exposure.
Collapse
Affiliation(s)
- Erik Rollman
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
A prophylactic vaccine for HIV-1 is badly needed. Despite 20 years of effort, it is still a long way off. However, considerable progress has been made in understanding the problem. The virus envelope has evolved to evade neutralizing antibodies in an extraordinary way, yet a vaccine that can stimulate such antibodies remains the best hope. Anti-HIV-1 T cell responses are evaded by continuous mutation of the virus. Vaccine strategies that concentrate on stimulating T cell immunity will at best generate broadly reactive and persisting T cell responses that can suppress virus without preventing infection, limiting or preventing the damage the virus causes. The SIV macaque models give encouragement that this is possible, but they need further understanding. Therapeutic vaccination should also be considered.
Collapse
Affiliation(s)
- Andrew J McMichael
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS UK.
| |
Collapse
|
19
|
Koff WC, Johnson PR, Watkins DI, Burton DR, Lifson JD, Hasenkrug KJ, McDermott AB, Schultz A, Zamb TJ, Boyle R, Desrosiers RC. HIV vaccine design: insights from live attenuated SIV vaccines. Nat Immunol 2006; 7:19-23. [PMID: 16357854 DOI: 10.1038/ni1296] [Citation(s) in RCA: 220] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The International AIDS Vaccine Initiative has established a consortium to elucidate mechanisms of protection conferred by live attenuated simian immunodeficiency virus vaccines in monkeys. Here, the strategies defining key components of the protective immune response elicited by these vaccines are discussed.
Collapse
Affiliation(s)
- Wayne C Koff
- International AIDS Vaccine Initiative, New York, New York 10038, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Metzner KJ, Moretto WJ, Donahoe SM, Jin X, Gettie A, Montefiori DC, Marx PA, Binley JM, Nixon DF, Connor RI. Evaluation of CD8+ T-cell and antibody responses following transient increased viraemia in rhesus macaques infected with live, attenuated simian immunodeficiency virus. J Gen Virol 2005; 86:3375-3384. [PMID: 16298985 DOI: 10.1099/vir.0.81206-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In vivo depletion of CD8+ T cells results in an increase in viral load in macaques chronically infected with simian immunodeficiency virus (SIVmac239deltanef). Here, the cellular and humoral immune responses associated with this transient period of enhanced viraemia in macaques infected with SIVmac239deltanef were characterized. Fourteen days after in vivo CD8+ T-cell depletion, two of six macaques experienced a 1-2 log10 increase in anti-gp130 and p27 antibody titres and a three- to fivefold increase in gamma interferon-ecreting SIV-specific CD8+ T cells. Three other macaques had modest or no increase in anti-gp130 antibodies and significantly lower titres of anti-p27 antibodies, with minimal induction of functional CD8+ T cells. Four of the five CD8-depleted macaques experienced an increase in neutralizing antibody titres to SIVmac239. Induction of SIV-specific immune responses was associated with increases in CD8+ T-cell proliferation and fluctuations in the levels of signal-joint T-cell receptor excision circles in peripheral blood cells. Five months after CD8+ T-cell depletion, only the two high-responding macaques were protected from intravenous challenge with pathogenic SIV, whilst the remaining animals were unable to control replication of the challenge virus. Together, these findings suggest that a transient period of enhanced antigenaemia during chronic SIV infection may serve to augment virus-specific immunity in some, but not all, macaques. These findings have relevance for induction of human immunodeficiency virus (HIV)-specific immune responses during prophylactic and therapeutic vaccination and for immunological evaluation of structured treatment interruptions in patients chronically infected with HIV-1.
Collapse
Affiliation(s)
- Karin J Metzner
- Aaron Diamond AIDS Research Center and The Rockefeller University, New York, NY 10016, USA
| | - Walter J Moretto
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, CA 94103, USA
| | - Sean M Donahoe
- Aaron Diamond AIDS Research Center and The Rockefeller University, New York, NY 10016, USA
| | - Xia Jin
- University of Rochester Medicine Center, 601 Elmwood Avenue, Box 689, Rochester, NY 14642, USA
| | - Agegnehu Gettie
- Aaron Diamond AIDS Research Center and The Rockefeller University, New York, NY 10016, USA
| | - David C Montefiori
- Center for AIDS Research, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Preston A Marx
- Tulane Regional Primate Research Center and Department of Tropical Medicine, Tulane University Health Sciences Center, Covington, LA 70433, USA
| | - James M Binley
- Torrey Pines Institute for Molecular Studies, 3550 General Atomics Court, San Diego, CA 92121, USA
| | - Douglas F Nixon
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, CA 94103, USA
| | - Ruth I Connor
- Aaron Diamond AIDS Research Center and The Rockefeller University, New York, NY 10016, USA
| |
Collapse
|
21
|
Amara RR, Patel K, Niedziela G, Nigam P, Sharma S, Staprans SI, Montefiori DC, Chenareddi L, Herndon JG, Robinson HL, McClure HM, Novembre FJ. A combination DNA and attenuated simian immunodeficiency virus vaccine strategy provides enhanced protection from simian/human immunodeficiency virus-induced disease. J Virol 2005; 79:15356-67. [PMID: 16306607 PMCID: PMC1315994 DOI: 10.1128/jvi.79.24.15356-15367.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Accepted: 09/15/2005] [Indexed: 11/20/2022] Open
Abstract
Among the most effective vaccine candidates tested in the simian immunodeficiency virus (SIV)/macaque system, live attenuated viruses have been shown to provide the best protection from challenge. To investigate if preimmunization would increase the level of protection afforded by live attenuated SIVmac239Deltanef (Deltanef), macaques were given two priming immunizations of DNA encoding SIV Gag and Pol proteins, with control macaques receiving vector DNA immunizations. In macaques receiving the SIV DNA inoculation, SIV-specific cellular but not humoral responses were readily detectable 2 weeks after the second DNA inoculation. Following boosting with live attenuated virus, control of Deltanef replication was superior in SIV-DNA-primed macaques versus vector-DNA-primed macaques and was correlated with higher levels of CD8+/gamma-interferon-positive and/or interleukin-2-positive cells. Challenge with an intravenous inoculation of simian/human immunodeficiency virus (SHIV) strain SHIV89.6p resulted in infection of all animals. However, macaques receiving SIV DNA as the priming immunizations had statistically lower viral loads than control animals and did not develop signs of disease, whereas three of seven macaques receiving vector DNA showed severe CD4+ T-cell decline, with development of AIDS in one of these animals. No correlation of immune responses to protection from disease could be derived from our analyses. These results demonstrate that addition of a DNA prime to a live attenuated virus provided better protection from disease following challenge than live attenuated virus alone.
Collapse
Affiliation(s)
- Rama Rao Amara
- Divisions of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, 954 N. Gatewood Rd., Atlanta, GA 30329, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Stebbings R, Berry N, Waldmann H, Bird P, Hale G, Stott J, North D, Hull R, Hall J, Lines J, Brown S, D'Arcy N, Davis L, Elsley W, Edwards C, Ferguson D, Allen J, Almond N. CD8+ lymphocytes do not mediate protection against acute superinfection 20 days after vaccination with a live attenuated simian immunodeficiency virus. J Virol 2005; 79:12264-72. [PMID: 16160152 PMCID: PMC1211523 DOI: 10.1128/jvi.79.19.12264-12272.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Accepted: 07/03/2005] [Indexed: 11/20/2022] Open
Abstract
In order to test the hypothesis that CD8+ cytotoxic T lymphocytes mediate protection against acute superinfection, we depleted >99% of CD8+ lymphocytes in live attenuated simian immunodeficiency virus macC8 (SIVmacC8) vaccinees from the onset of vaccination, maintained that depletion for 20 days, and then challenged with pathogenic, wild-type SIVmacJ5. Vaccinees received 5 mg per kg of humanized anti-CD8 monoclonal antibody (MAb) 1 h before inoculation, followed by the same dose again on days 3, 7, 10, 13, and 17. On day 13, peripheral CD8+ T lymphocytes were >99% depleted in three out of four anti-CD8 MAb-treated vaccinees. At this time attenuated SIVmacC8 viral RNA loads in anti-CD8 MAb-treated vaccinees were significantly higher than control vaccinees treated contemporaneously with nonspecific human immunoglobulin. Lymphoid tissue CD8+ T lymphocyte depletion was >99% in three out of four anti-CD8 MAb-treated vaccinees on the day of wild-type SIVmacJ5 challenge. All four control vaccinees and three out of four anti-CD8 MAb-treated vaccinees were protected against detectable superinfection with wild-type SIVmacJ5. Although superinfection with wild-type SIVmacJ5 was detected at postmortem in a single anti-CD8 MAb-treated vaccinee, this did not correlate with the degree of preceding CD8+ T lymphocyte depletion. Clearance of attenuated SIVmacC8 viremia coincided with recovery of normal CD8+ T lymphocyte counts between days 48 and 76. These results support the view that cytotoxic T lymphocytes are important for host-mediated control of SIV primary viremia but do not indicate a central role in protection against acute superinfection conferred by inoculation with live attenuated SIV.
Collapse
Affiliation(s)
- Richard Stebbings
- Division of Immunology, NIBSC, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Schmitz JE, Johnson RP, McClure HM, Manson KH, Wyand MS, Kuroda MJ, Lifton MA, Khunkhun RS, McEvers KJ, Gillis J, Piatak M, Lifson JD, Grosschupff G, Racz P, Tenner-Racz K, Rieber EP, Kuus-Reichel K, Gelman RS, Letvin NL, Montefiori DC, Ruprecht RM, Desrosiers RC, Reimann KA. Effect of CD8+ lymphocyte depletion on virus containment after simian immunodeficiency virus SIVmac251 challenge of live attenuated SIVmac239delta3-vaccinated rhesus macaques. J Virol 2005; 79:8131-41. [PMID: 15956558 PMCID: PMC1143721 DOI: 10.1128/jvi.79.13.8131-8141.2005] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Although live attenuated vaccines can provide potent protection against simian immunodeficiency virus (SIV) and simian-human immunodeficiency virus challenges, the specific immune responses that confer this protection have not been determined. To test whether cellular immune responses mediated by CD8+ lymphocytes contribute to this vaccine-induced protection, we depleted rhesus macaques vaccinated with the live attenuated virus SIVmac239Delta3 of CD8+ lymphocytes and then challenged them with SIVmac251 by the intravenous route. While vaccination did not prevent infection with the pathogenic challenge virus, the postchallenge levels of virus in the plasmas of vaccinated control animals were significantly lower than those for unvaccinated animals. The depletion of CD8+ lymphocytes at the time of challenge resulted in virus levels in the plasma that were intermediate between those of the vaccinated and unvaccinated controls, suggesting that CD8+ cell-mediated immune responses contributed to protection. Interestingly, at the time of challenge, animals expressing the Mamu-A*01 major histocompatibility complex class I allele showed significantly higher frequencies of SIV-specific CD8+ T-cell responses and lower neutralizing antibody titers than those in Mamu-A*01- animals. Consistent with these findings, the depletion of CD8+ lymphocytes abrogated vaccine-induced protection, as judged by the peak postchallenge viremia, to a greater extent in Mamu-A*01+ than in Mamu-A*01- animals. The partial control of postchallenge viremia after CD8+ lymphocyte depletion suggests that both humoral and cellular immune responses induced by live attenuated SIV vaccines can contribute to protection against a pathogenic challenge and that the relative contribution of each of these responses to protection may be genetically determined.
Collapse
Affiliation(s)
- Jörn E Schmitz
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Harvard Medical School, RE-113, 330 Brookline Ave., Boston, Massacusetts 02215, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Mucosal Immunity and Vaccines Against Simian Immunodeficiency Virus and Human Immunodeficiency Virus. Mucosal Immunol 2005. [DOI: 10.1016/b978-012491543-5/50056-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Stebbings R, Berry N, Stott J, Hull R, Walker B, Lines J, Elsley W, Brown S, Wade-Evans A, Davis G, Cowie J, Sethi M, Almond N. Vaccination with live attenuated simian immunodeficiency virus for 21 days protects against superinfection. Virology 2004; 330:249-60. [PMID: 15527850 DOI: 10.1016/j.virol.2004.09.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2004] [Revised: 07/12/2004] [Accepted: 09/15/2004] [Indexed: 11/23/2022]
Abstract
The identification of mechanisms that prevent infection with human immunodeficiency virus (HIV) or simian immunodeficiency virus (SIV) would facilitate the development of an effective AIDS vaccine. In time-course experiments, protection against detectable superinfection with homologous wild-type SIV was achieved within 21 days of inoculation with live attenuated SIV, prior to the development of detectable anti-SIV humoral immunity. Partial protection against superinfection was achieved within 10 days of inoculation with live attenuated SIV, prior to the development of detectable anti-SIV humoral and cellular immunity. Furthermore, co-inoculation of live attenuated SIV with wild-type SIV resulted in a significant reduction in peak virus loads compared to controls that received wild-type SIV alone. These findings imply that innate immunity or non-immune mechanisms are a significant component of early protection against superinfection conferred by inoculation with live attenuated SIV.
Collapse
Affiliation(s)
- Richard Stebbings
- Division of Immunology, NIBSC, Hertfordshire EN6 3QG, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abel K, Rourke T, Lu D, Bost K, McChesney MB, Miller CJ. Abrogation of attenuated lentivirus-induced protection in rhesus macaques by administration of depo-provera before intravaginal challenge with simian immunodeficiency virus mac239. J Infect Dis 2004; 190:1697-705. [PMID: 15478078 PMCID: PMC3401018 DOI: 10.1086/424600] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2004] [Accepted: 05/11/2004] [Indexed: 11/03/2022] Open
Abstract
In nonhuman primate models of acquired immunodeficiency syndrome, live attenuated lentiviruses provide the most reliable protection from systemic and mucosal challenge with pathogenic simian immunodeficiency virus (SIV). Although live attenuated lentiviruses may never be used in humans because of safety concerns, understanding the nature of the protective immune mechanisms induced by live attenuated vaccines in primate models will be useful for developing other vaccine approaches. Approximately 60% of rhesus macaques immunized with nonpathogenic simian-human immunodeficiency virus (SHIV) strain 89.6 are protected from infection or clinical disease after intravaginal (IVAG) challenge with pathogenic SIVmac239. The goal of the present study was to determine whether administration of Depo-Provera before IVAG challenge with SIV decreases the protective efficacy of infection with SHIV89.6. The rate of protection after IVAG challenge with SIVmac239 was significantly lower (P<.05), and the acute postchallenge plasma viral RNA levels were significantly higher (P<.006), in Depo-Provera-treated, SHIV89.6-immunized macaques than in Depo-Provera-naive, SHIV89.6-immunized macaques. In the primate model of sexual transmission of human immunodeficiency virus, treatment with progesterone before IVAG challenge with a pathogenic virus can decrease the efficacy of a model "vaccine."
Collapse
Affiliation(s)
- Kristina Abel
- Center for Comparative Medicine, University of California at Davis
- California National Primate Research Center, University of California at Davis
| | - Tracy Rourke
- Center for Comparative Medicine, University of California at Davis
- California National Primate Research Center, University of California at Davis
| | - Ding Lu
- Center for Comparative Medicine, University of California at Davis
- California National Primate Research Center, University of California at Davis
| | - Kristen Bost
- Center for Comparative Medicine, University of California at Davis
- California National Primate Research Center, University of California at Davis
| | - Michael B. McChesney
- Center for Comparative Medicine, University of California at Davis
- Department of Pathology, School of Medicine, University of California at Davis
| | - Christopher J. Miller
- Center for Comparative Medicine, University of California at Davis
- California National Primate Research Center, University of California at Davis
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California at Davis
- Division of Infectious Diseases, University of California at Davis
| |
Collapse
|
27
|
Sharpe SA, Cope A, Dowall S, Berry N, Ham C, Heeney JL, Hopkins D, Easterbrook L, Dennis M, Almond N, Cranage M. Macaques infected long-term with attenuated simian immunodeficiency virus (SIVmac) remain resistant to wild-type challenge, despite declining cytotoxic T lymphocyte responses to an immunodominant epitope. J Gen Virol 2004; 85:2591-2602. [PMID: 15302953 DOI: 10.1099/vir.0.80050-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To further investigate mechanisms of protective immunity that are induced by live, attenuated simian immunodeficiency virus (SIV), three macaques were infected with SIVmacGX2, a nef-disrupted molecular clone. In two of these animals, which expressed the MamuA*01 major histocompatibility complex class I allele, loss of functional activity against an SIV-Gag-encoded immunodominant cytotoxic T lymphocyte (CTL) epitope was observed following prolonged infection. Nonetheless, all three animals were resistant to challenge with an uncloned pool of wild-type SIVmac, whereas four naïve controls became infected. Tetramer staining revealed the rapid generation of CD8+ T-cell responses against gag- and tat-encoded immunodominant epitopes in MamuA*01+ challenge controls. The dynamics of these T-cell responses to the wild-type virus were similar to those observed following primary infection of the vaccine group with attenuated virus. In contrast, neither tetramer staining nor gamma interferon ELISpot assay revealed an immediate, systemic, anamnestic response in the wild-type-challenged, attenuated SIV-infected animals. Functional CTL capacity had not been lost in this group, as lytic activity was still evident 17 weeks after challenge. Both attenuated and wild-type viruses induced a disseminated CD8+ T-cell response, which was of a higher magnitude in lymphoid tissues than in the periphery. These results suggest that, at least as measured in the periphery, protection against wild-type infection that is induced by live, attenuated SIV is not dependent on a rechallenge-driven expansion of immunodominant epitope-specific CD8+ T cells and, therefore, pre-existing activity may be sufficient to prevent superinfection.
Collapse
Affiliation(s)
- Sally A Sharpe
- Health Protection Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Alethea Cope
- Health Protection Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Stuart Dowall
- Health Protection Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Neil Berry
- Division of Retrovirology, National Institute for Biological Standards and Control, South Mimms, Herts EN6 3QG, UK
| | - Claire Ham
- Division of Retrovirology, National Institute for Biological Standards and Control, South Mimms, Herts EN6 3QG, UK
| | - Jonathan L Heeney
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, the Netherlands
| | - Donna Hopkins
- Health Protection Agency, Porton Down, Salisbury SP4 0JG, UK
| | | | - Mike Dennis
- Health Protection Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Neil Almond
- Division of Retrovirology, National Institute for Biological Standards and Control, South Mimms, Herts EN6 3QG, UK
| | - Martin Cranage
- Department of Cellular and Molecular Medicine, St George's Hospital Medical School, London SW17 0RE, UK
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW When simian immunodeficiency virus (SIV) deleted in the nef gene caused no disease in macaques and provided protection against wild-type SIV challenge, hopes were high that the removal of nef would convert a pathogenic immunodeficiency virus into a live attenuated vaccine. We seek to highlight recent studies focused on several major issues regarding live attenuated AIDS viruses as vaccine candidates: (1). safety, (2). efficacy, (3). the correlates of immune protection, and (4) the molecular determinants for lentiviral virulence or attenuation. RECENT FINDINGS Nef-deletion mutants have retained virulence; compared with wild-type SIV, disease progression was slowed but not abrogated. After long-term observation, all adult macaques given SIVmac239delta3 exhibited immune dysfunction; over 50% had T-cell depletion, and 18% developed AIDS. Vaccine efficacy has been disappointing, with limited or no cross-protection and no protection against homologous virus challenge years after initial vaccination. To date, the correlates of protective immunity have defied precise definition; no dominant mechanism has yet emerged. Data from passive serum transfer and CD8+ T-cell depletion studies have raised the possibility that alternate mechanism of protection may be operative. Due to relentless viral replication and continuous selective pressure, initially benign viruses can generate virulent progeny with unpredictable genotypes. SUMMARY Neither safety nor efficacy of the current live attenuated primate immunodeficiency virus vaccines has withstood the test of time. However, such viruses are invaluable tools to address two key questions: (1). what are the correlates of protection, and (2). what are the molecular determinants of viral immunopathogenesis?
Collapse
Affiliation(s)
- James B Whitney
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
29
|
Abstract
The AIDS epidemic continues to advance, and the development of a preventive HIV vaccine has become a major objective for scientific research. An effective vaccine against this virus is not available and complete protection still has not been achieved in animal models. In this review the major challenges related to the development of a vaccine against HIV are analyzed, particularly the mechanisms involved in viral escape from the immune response, and the results obtained with the various therapeutic and preventive vaccine prototypes are summarized. Finally, the social, economic and health aspects related to research on HIV vaccines and the current controversy around the performance of clinical trials with these agents is discussed.
Collapse
Affiliation(s)
- José Alcami
- Unidad de Inmunopatología del SIDA. Centro Nacional de Microbiología. Instituto de Salud Carlos III. Madrid. España.
| |
Collapse
|
30
|
Horton H, Vogel TU, Carter DK, Vielhuber K, Fuller DH, Shipley T, Fuller JT, Kunstman KJ, Sutter G, Montefiori DC, Erfle V, Desrosiers RC, Wilson N, Picker LJ, Wolinsky SM, Wang C, Allison DB, Watkins DI. Immunization of rhesus macaques with a DNA prime/modified vaccinia virus Ankara boost regimen induces broad simian immunodeficiency virus (SIV)-specific T-cell responses and reduces initial viral replication but does not prevent disease progression following challenge with pathogenic SIVmac239. J Virol 2002; 76:7187-202. [PMID: 12072518 PMCID: PMC136301 DOI: 10.1128/jvi.76.14.7187-7202.2002] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Producing a prophylactic vaccine for human immunodeficiency virus (HIV) has proven to be a challenge. Most biological isolates of HIV are difficult to neutralize, so that conventional subunit-based antibody-inducing vaccines are unlikely to be very effective. In the rhesus macaque model, some protection was afforded by DNA/recombinant viral vector vaccines. However, these studies used as the challenge virus SHIV-89.6P, which is neutralizable, making it difficult to determine whether the observed protection was due to cellular immunity, humoral immunity, or a combination of both. In this study, we used a DNA prime/modified vaccinia virus Ankara boost regimen to immunize rhesus macaques against nearly all simian immunodeficiency virus (SIV) proteins. These animals were challenged intrarectally with pathogenic molecularly cloned SIVmac239, which is resistant to neutralization. The immunization regimen resulted in the induction of virus-specific CD8(+) and CD4(+) responses in all vaccinees. Although anamnestic neutralizing antibody responses against laboratory-adapted SIVmac251 developed after the challenge, no neutralizing antibodies against SIVmac239 were detectable. Vaccinated animals had significantly reduced peak viremia compared with controls (P < 0.01). However, despite the induction of virus-specific cellular immune responses and reduced peak viral loads, most animals still suffered from gradual CD4 depletion and progressed to disease.
Collapse
Affiliation(s)
- Helen Horton
- Wisconsin Regional Primate Research Center, University of Wisconsin, Madison, Wisconsin 53715, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Stebbings RJ, Almond NM, Stott EJ, Berry N, Wade-Evans AM, Hull R, Lines J, Silvera P, Sangster R, Corcoran T, Rose J, Walker KB. Mechanisms of protection induced by attenuated simian immunodeficiency virus. Virology 2002; 296:338-53. [PMID: 12069532 DOI: 10.1006/viro.2002.1379] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To determine whether attenuated simian immunodeficiency virus (SIV) vaccines confer protection against superinfection via secondary cellular immune responses, we searched for markers of immune activation following rechallenge. Productive infection with either attenuated SIVmacC8 or wild-type SIVmacJ5 resulted in a transient increase in T-lymphocyte CD25 and Mafa-DR expression. A pronounced increase in the frequency of FAS+ CD8+ lymphocytes was observed following SIVmacJ5 infection only. A transient increase in lymphocytes positive for intracellular IFN-gamma and IL-4 was observed following primary infection with either virus. In contrast, lymphocytes positive for intracellular IL-2 were reduced. Following SIVmacJ5 challenge of SIVmacC8-infected vaccinees, no evidence of detectable superinfection was obtained. Rechallenge of vaccinees did not alter the frequency of activated peripheral T-lymphocytes, perturb cytokine profiles, or generate an anamnestic antibody response. These data do not support the hypothesis that protection conferred by live attenuated SIV is mediated by the induction of vigorous T-cell responses upon rechallenge.
Collapse
Affiliation(s)
- Richard J Stebbings
- Division of Immunobiology, Division of Retrovirology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
One of the obstacles to the development of an effective AIDS vaccine has been the limited information on the mechanisms of protective immunity to HIV. In macaques, immunization with attenuated simian immunodeficiency viruses (SIV) has proved to be one of the most effective strategies to induce protection against infection or disease with pathogenic lentiviruses. Infection with attenuated SIV strains induces a broad range of SIV-specific immune responses, including relatively potent cytotoxic T lymphocyte (CTL) and antibody responses. Several studies of macaques vaccinated with attenuated SIV have demonstrated correlations between CTL responses or antibody responses and protection but more detailed studies are needed to document the relative importance of these responses in protective immunity.
Collapse
Affiliation(s)
- R Paul Johnson
- Division of Immunology, New England Regional Primate Research Center, Harvard Medical School, One Pine Hill Drive, P.O. Box 9102, Southborough, MA 01772, USA.
| |
Collapse
|
33
|
Ensoli B, Cafaro A. NOVEL STRATEGIES TOWARD THE DEVELOPMENT OF AN EFFECTIVE VACCINE TO PREVENT HUMAN IMMUNODEFICIENCY VIRUS INFECTION OR ACQUIRED IMMUNODEFICIENCY VIRUS*. ACTA ACUST UNITED AC 2001. [DOI: 10.1081/crp-100108179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
34
|
Flynn JN, Hanlon L, Jarrett O. Feline leukaemia virus: protective immunity is mediated by virus-specific cytotoxic T lymphocytes. Immunology 2000; 101:120-5. [PMID: 11012762 PMCID: PMC2327065 DOI: 10.1046/j.1365-2567.2000.00089.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Feline leukaemia virus (FeLV) nucleic acid vaccination of domestic cats affords protection against viraemia and the development of latency without inducing antiviral antibodies.1 To determine the contribution of cell-mediated immunity to the control of virus replication and clearance from the host, FeLV-specific cytotoxic T lymphocyte (CTL) responses were compared in vaccine-protected, transiently viraemic, and persistently viraemic cats. Vaccinal immunity was associated with the detection of higher levels of virus-specific effector CTL in the peripheral blood and lymphoid organs to FeLV Gag/Pro and Env antigens than those observed in unvaccinated control, persistently viraemic cats (P<0.001). Likewise, higher levels of virus-specific CTLs were also observed in transiently viraemic cats which recovered following exposure to FeLV. In cats that controlled their infection, recognition of Gag/Pro antigens was significantly higher than the recognition of Env antigens. This is the first report highlighting the very significant role that virus-specific CTL have in determining the outcome of FeLV infection in either vaccinated cats or cats recovering naturally from FeLV exposure.
Collapse
Affiliation(s)
- J N Flynn
- Retrovirus Research Laboratory, Department of Veterinary Pathology, University of Glasgow, Glasgow, UK
| | | | | |
Collapse
|
35
|
Metzner KJ, Jin X, Lee FV, Gettie A, Bauer DE, Di Mascio M, Perelson AS, Marx PA, Ho DD, Kostrikis LG, Connor RI. Effects of in vivo CD8(+) T cell depletion on virus replication in rhesus macaques immunized with a live, attenuated simian immunodeficiency virus vaccine. J Exp Med 2000; 191:1921-31. [PMID: 10839807 PMCID: PMC2213531 DOI: 10.1084/jem.191.11.1921] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2000] [Accepted: 03/31/2000] [Indexed: 12/02/2022] Open
Abstract
The role of CD8(+) T lymphocytes in controlling replication of live, attenuated simian immunodeficiency virus (SIV) was investigated as part of a vaccine study to examine the correlates of protection in the SIV/rhesus macaque model. Rhesus macaques immunized for >2 yr with nef-deleted SIV (SIVmac239Deltanef) and protected from challenge with pathogenic SIVmac251 were treated with anti-CD8 antibody (OKT8F) to deplete CD8(+) T cells in vivo. The effects of CD8 depletion on viral load were measured using a novel quantitative assay based on real-time polymerase chain reaction using molecular beacons. This assay allows simultaneous detection of both the vaccine strain and the challenge virus in the same sample, enabling direct quantification of changes in each viral population. Our results show that CD8(+) T cells were depleted within 1 h after administration of OKT8F, and were reduced by as much as 99% in the peripheral blood. CD8(+) T cell depletion was associated with a 1-2 log increase in SIVmac239Deltanef plasma viremia. Control of SIVmac239Deltanef replication was temporally associated with the recovery of CD8(+) T cells between days 8 and 10. The challenge virus, SIVmac251, was not detectable in either the plasma or lymph nodes after depletion of CD8(+) T cells. Overall, our results indicate that CD8(+) T cells play an important role in controlling replication of live, attenuated SIV in vivo.
Collapse
Affiliation(s)
- Karin J. Metzner
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NewYork 10016
| | - Xia Jin
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NewYork 10016
| | - Fred V. Lee
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NewYork 10016
| | - Agegnehu Gettie
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NewYork 10016
| | - Daniel E. Bauer
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NewYork 10016
| | - Michele Di Mascio
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
| | - Alan S. Perelson
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
| | - Preston A. Marx
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NewYork 10016
- Tulane Regional Primate Research Center, Covington, Louisiana 70433
| | - David D. Ho
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NewYork 10016
| | - Leondios G. Kostrikis
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NewYork 10016
| | - Ruth I. Connor
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NewYork 10016
| |
Collapse
|
36
|
Sawai ET, Hamza MS, Ye M, Shaw KE, Luciw PA. Pathogenic conversion of live attenuated simian immunodeficiency virus vaccines is associated with expression of truncated Nef. J Virol 2000; 74:2038-45. [PMID: 10644378 PMCID: PMC111683 DOI: 10.1128/jvi.74.4.2038-2045.2000] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhesus macaques infected with simian immunodeficiency virus (SIV) containing either a large nef deletion (SIVmac239Delta(152)nef) or interleukin-2 in place of nef developed high virus loads and progressed to simian AIDS. Viruses recovered from both juvenile and neonatal macaques with disease produced a novel truncated Nef protein, tNef. Viruses recovered from juvenile macaques infected with serially passaged virus expressing tNef exhibited a pathogenic phenotype. These findings demonstrated strong selective pressure to restore expression of a truncated Nef protein, and this reversion was linked to increased pathogenic potential in live attenuated SIV vaccines.
Collapse
Affiliation(s)
- E T Sawai
- Department of Medical Pathology, University of California, Davis, California 95616, USA
| | | | | | | | | |
Collapse
|
37
|
Nixon DF, Donahoe SM, Kakimoto WM, Samuel RV, Metzner KJ, Gettie A, Hanke T, Marx PA, Connor RI. Simian immunodeficiency virus-specific cytotoxic T lymphocytes and protection against challenge in rhesus macaques immunized with a live attenuated simian immunodeficiency virus vaccine. Virology 2000; 266:203-10. [PMID: 10612675 DOI: 10.1006/viro.1999.0078] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In this study, we examined the role of simian immunodeficiency virus (SIV)-specific cytotoxic T lymphocytes (CTLs) in macaques immunized with an attenuated strain of simian immunodeficiency virus (SIVmac239Deltanef) in protection against pathogenic challenge with SIVmac251. Our results indicate that attenuated SIVmac239Deltanef can elicit specific CTL precursor cells (CTLp), but no correlation was observed between breadth or strength of CTLp response to structural proteins SIV-Env, -Gamg or -Pol (as measured by limiting dilution assay) and protection against infection. In one animal, we longitudinally followed the SIV-Gag-specific response to an MHC class I Mamu-A*01-restricted epitope p11C, C-M using a tetrameric MHC/peptide complex reagent. A low frequency of SIV p11C, C-M peptide-specific tetramer-reactive cells was present at the time of challenge but could be expanded in vitro. Surprisingly, the low level of Mamu-A*01/p11C, C-M-specific CTLs induced through attenuated SIVmac239Deltanef vaccination increased in the absence of detectable SIVmac251 or SIVmac239Deltanef proviral DNA. Overall, our results suggest that protection against infection in this model can be achieved through more than one mechanism, with SIV-specific CTLs being important in controlling SIVmac239Deltanef viral replication postchallenge.
Collapse
Affiliation(s)
- D F Nixon
- Aaron Diamond AIDS Research Center, The Rockefeller University, 455 First Avenue, New York, New York, 10016, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Almond N, Jenkins A, Jones S, Arnold C, Silvera P, Kent K, Mills KHG, Stott EJ. The appearance of escape variants in vivo does not account for the failure of recombinant envelope vaccines to protect against simian immunodeficiency virus. J Gen Virol 1999; 80 ( Pt 9):2375-2382. [PMID: 10501490 DOI: 10.1099/0022-1317-80-9-2375] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The presence or evolution of immune escape variants has been proposed to account for the failure of recombinant envelope vaccines to protect macaques against challenge with simian immunodeficiency virus (SIVmac). To address this issue, two groups of three cynomolgus macaques were immunized with recombinant SIV Env vaccines using two different vaccine schedules. One group of macaques received four injections of recombinant SIV gp120 in SAF-1 containing threonyl muramyl dipeptide as adjuvant. A second group were primed twice with recombinant vaccinia virus expressing SIV gp160 and then boosted twice with recombinant SIV gp120. Both vaccine schedules elicited neutralizing antibodies to Env. However, on the day of challenge, titres of anti-Env antibodies measured by ELISA were higher in macaques primed with recombinant vaccinia virus. Following intravenous challenge with 10 monkey infectious doses of the SIVmac J5M challenge stock, five of the six immunized macaques and all four naive controls became infected. The virus burdens in PBMC of macaques that were primed with recombinant vaccinia virus were lower than those of naive controls, as determined by virus titration and quantitative DNA PCR. Sequence analysis was performed on SIV env amplified from the blood of immunized and naive infected macaques. No variation of SIV env sequence was observed, even in macaques with a reduced virus load, suggesting that the appearance of immune escape variants does not account for the incomplete protection observed. In addition, this study indicates that the measurement of serum neutralizing antibodies may not provide a useful correlate for protection elicited by recombinant envelope vaccines.
Collapse
Affiliation(s)
- N Almond
- Division of Retrovirology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Herts EN6 3QG, UK1
| | - A Jenkins
- Division of Retrovirology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Herts EN6 3QG, UK1
| | - S Jones
- Division of Retrovirology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Herts EN6 3QG, UK1
| | - C Arnold
- Division of Retrovirology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Herts EN6 3QG, UK1
| | - P Silvera
- Division of Retrovirology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Herts EN6 3QG, UK1
| | - K Kent
- Division of Retrovirology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Herts EN6 3QG, UK1
| | - K H G Mills
- Division of Retrovirology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Herts EN6 3QG, UK1
| | - E J Stott
- Division of Retrovirology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Herts EN6 3QG, UK1
| |
Collapse
|
39
|
Abstract
Live attenuated viruses can provide vaccine protection against various viral illnesses. A number of live attenuated strains of the simian immunodeficiency virus (SIV) or related lentiviruses have been evaluated in primate models as vaccine candidates against AIDS. Impressive efficacy was observed for some viruses, most notably SIV strains with deletions in the nef-gene. Sterilizing immunity was seen against homologous and heterologous virus challenge, against cell-free and cell-associated challenge, against intravenous and mucosal challenge, and against challenge as early as 3 weeks and as late as 2.25 years after just one immunization. However, these promising efficacy results are overshadowed by safety problems, such as reversion of the vaccine strain to a pathogenic virus encoding full-length nef or residual virulence of multiply deleted vaccine strains. Strategies aimed at decreasing the replicative capacity of nef-deleted vaccine strains to increase the safety profile have significantly curtailed vaccine efficacy. Nevertheless, studies of live attenuated vaccine strains should proceed and should focus on determining the correlates of vaccine protection and the molecular determinants for virulence and attenuation.
Collapse
Affiliation(s)
- R M Ruprecht
- Dana-Farber Cancer Institute, Boston MA 02115-6084, USA.
| |
Collapse
|
40
|
|
41
|
Carl S, Iafrate AJ, Skowronski J, Stahl-Hennig C, Kirchhoff F. Effect of the attenuating deletion and of sequence alterations evolving in vivo on simian immunodeficiency virus C8-Nef function. J Virol 1999; 73:2790-7. [PMID: 10074126 PMCID: PMC104036 DOI: 10.1128/jvi.73.4.2790-2797.1999] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The simian immunodeficiency virus macC8 (SIVmacC8) variant has been used in a European Community Concerted Action project to study the efficacy and safety of live attenuated SIV vaccines in a large number of macaques. The attenuating deletion in the SIVmacC8 nef-long terminal repeat region encompasses only 12 bp and is "repaired" in a subset of infected animals. It is unknown whether C8-Nef retains some activity. Since it seems important to use only well-characterized deletion mutants in live attenuated vaccine studies, we analyzed the relevance of the deletion, and the duplications and point mutations selected in infected macaques for Nef function in vitro. The deletion, affecting amino acids 143 to 146 (DMYL), resulted in a dramatic decrease in Nef stability and function. The initial 12-bp duplication resulted in efficient Nef expression and an intermediate phenotype in infectivity assays, but it did not significantly restore the ability of Nef to stimulate viral replication and to downmodulate CD4 and class I major histocompatibility complex cell surface expression. The additional substitutions however, which subsequently evolved in vivo, gradually restored these Nef functions. It was noteworthy that coinfection experiments in the T-lymphoid 221 cell line revealed that even SIVmac nef variants carrying the original 12-bp deletion readily outgrew an otherwise isogenic virus containing a 182-bp deletion in the nef gene. Thus, although C8-Nef is unstable and severely impaired in in vitro assays, it maintains some residual activity to stimulate viral replication.
Collapse
Affiliation(s)
- S Carl
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuernberg, 91054 Erlangen, Germany
| | | | | | | | | |
Collapse
|
42
|
Jin X, Bauer DE, Tuttleton SE, Lewin S, Gettie A, Blanchard J, Irwin CE, Safrit JT, Mittler J, Weinberger L, Kostrikis LG, Zhang L, Perelson AS, Ho DD. Dramatic rise in plasma viremia after CD8(+) T cell depletion in simian immunodeficiency virus-infected macaques. J Exp Med 1999; 189:991-8. [PMID: 10075982 PMCID: PMC2193038 DOI: 10.1084/jem.189.6.991] [Citation(s) in RCA: 1093] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
To determine the role of CD8(+) T cells in controlling simian immunodeficiency virus (SIV) replication in vivo, we examined the effect of depleting this cell population using an anti-CD8 monoclonal antibody, OKT8F. There was on average a 99.9% reduction of CD8 cells in peripheral blood in six infected Macaca mulatta treated with OKT8F. The apparent CD8 depletion started 1 h after antibody administration, and low CD8 levels were maintained until day 8. An increase in plasma viremia of one to three orders of magnitude was observed in five of the six macaques. The injection of a control antibody to an infected macaque did not induce a sustained viral load increase, nor did it significantly reduce the number of CD8(+) T cells. These results demonstrate that CD8 cells play a crucial role in suppressing SIV replication in vivo.
Collapse
Affiliation(s)
- X Jin
- The Aaron Diamond AIDS Research Center, The Rockefeller University, New York 10016, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lewis MG, Yalley-Ogunro J, Greenhouse JJ, Brennan TP, Jiang JB, VanCott TC, Lu Y, Eddy GA, Birx DL. Limited protection from a pathogenic chimeric simian-human immunodeficiency virus challenge following immunization with attenuated simian immunodeficiency virus. J Virol 1999; 73:1262-70. [PMID: 9882330 PMCID: PMC103949 DOI: 10.1128/jvi.73.2.1262-1270.1999] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two live attenuated single-deletion mutant simian immunodeficiency virus (SIV) constructs, SIV239Deltanef and SIVPBj6.6Deltanef, were tested for their abilities to stimulate protective immunity in macaques. During the immunization period the animals were examined for specific immune responses and virus growth. Each construct generated high levels of specific immunity in all of the immunized animals. The SIV239Deltanef construct was found to grow to high levels in all immunized animals, with some animals remaining positive for virus isolation and plasma RNA throughout the immunization period. The SIVPBj6.6Deltanef was effectively controlled by all of the immunized animals, with virus mostly isolated only during the first few months following immunization and plasma RNA never detected. Following an extended period of immunization of over 80 weeks, the animals were challenged with a pathogenic simian-human immunodeficiency virus (SHIV) isolate, SIV89. 6PD, by intravenous injection. All of the SIV239Deltanef-immunized animals became infected with the SHIV isolate; two of five animals eventually controlled the challenge and three of five animals, which failed to check the immunizing virus, progressed to disease state before the unvaccinated controls. One of five animals immunized with SIVPBj6.6Deltanef totally resisted infection by the challenge virus, while three others limited its growth and the remaining animal became persistently infected and eventually died of a pulmonary thrombus. These data indicate that vaccination with attenuated SIV can protect macaques from disease and in some cases from infection by a divergent SHIV. However, if animals are unable to control the immunizing virus, potential damage that can accelerate the disease course of a pathogenic challenge virus may occur.
Collapse
Affiliation(s)
- M G Lewis
- Henry M. Jackson Foundation, Walter Reed Army Institute of Research, Rockville, Maryland 20850, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Mazzetti P, Giannecchini S, Del Mauro D, Matteucci D, Portincasa P, Merico A, Chezzi C, Bendinelli M. AIDS vaccination studies using an ex vivo feline immunodeficiency virus model: detailed analysis of the humoral immune response to a protective vaccine. J Virol 1999; 73:1-10. [PMID: 9847300 PMCID: PMC103801 DOI: 10.1128/jvi.73.1.1-10.1999] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The feline immunodeficiency virus (FIV) cat model is extensively used to investigate possible vaccination approaches against AIDS in humans. Although consistent levels of protection have been achieved with FIV, as with other model systems, by immunizing with whole inactivated virus or fixed infected cells, the mechanisms responsible for protection are elusive. In previous studies we showed that cats immunized with a vaccine consisting of fixed infected cells were protected or unprotected against cell-free or cell-associated FIV challenge depending on the time interval between completion of vaccination and challenge. In an attempt to define possible humoral immune correlates of protection, selected sera harvested at the times of challenge from such cats were examined for anti-FIV-antibody titers and properties by using binding and functional immunological assays. Binding assays included quantitative Western blotting, enzyme-linked tests for antibodies to FIV glycoproteins and immunodominant linear epitopes, and tests for measuring conformation dependence and avidity of anti-viral-envelope antibodies. Functional assays included virus neutralization performed with two different cell substrates, complement- and antibody-dependent virolysis, blocking of reverse transcriptase, and an assay that measured the ability of sera to prevent FIV growth in cocultures of infected and uninfected cells. Despite the wide spectrum of parameters investigated, no correlation between vaccine-induced protection and the humoral parameters measured was noted.
Collapse
Affiliation(s)
- P Mazzetti
- Department of Biomedicine and Retrovirus Center, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Because of strong clinical, pathological, virological and immunological analogies with HIV infection of humans, infection of macaques with SIV provides a valuable model for exploring crucial issues related to both the pathogenesis and prevention of HIV infection. The model has offered a unique setting for the preclinical evaluation of drugs, vaccines and gene-therapies against HIV, and has helped to identify many virus and host determinants of lentiviral disease. For instance, the importance of an intact nef gene for efficient lentivirus replication and disease induction, and the protective ability of live attenuated, nef-deleted viruses have been first demonstrated in macaques using molecular clones of SIV. More recently, the development of chimeric HIV-SIV vectors able to establish infection and induce disease in macaques has provided new opportunities for the evaluation of vaccination strategies based upon HIV antigens. The aim of this review is to describe the natural course of SIV infection in macaques and to outline how this model has contributed to our understanding of the complex interaction between lentiviruses and host immune system.
Collapse
Affiliation(s)
- A M Geretti
- Department of Virology, Royal Free and University College Medical School of UCL London (Royal Free Campus), UK
| |
Collapse
|
46
|
Stebbings R, Stott J, Almond N, Hull R, Lines J, Silvera P, Sangster R, Corcoran T, Rose J, Cobbold S, Gotch F, McMichael A, Walker B. Mechanisms of protection induced by attenuated simian immunodeficiency virus. II. Lymphocyte depletion does not abrogate protection. AIDS Res Hum Retroviruses 1998; 14:1187-98. [PMID: 9737590 DOI: 10.1089/aid.1998.14.1187] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To determine the role that cellular immune responses play in the protection conferred by vaccination with attenuated SIVmac32H (pC8), we have attempted to deplete macaques of their CD8+ cells prior to challenge with wild-type SIVmac32H (pJ5). In two of four pC8-infected macaques, N109 and N112, a transient partial depletion of CD8+ cells by antibody treatment was achieved. On the day of challenge peripheral CD2+CD4-CD8+ cell counts were reduced by 92 and 95%, respectively, in animals N109 and N112 and their lymph nodes revealed a 46 and 58% reduction, respectively, in CD2+CD4-CD8+ cells. Two other pC8-immunized macaques, N110 and N111, treated in the same way, did not show significant depletion of CD8+ cells. None of these four pC8-immunized animals became infected when challenged with 50 MID50 of pJ5. Treatment of a further four pC8-infected and protected macaques and two naive control animals with Campath-1H antibody successfully depleted peripheral CD3+ cell counts by >99% in all treated animals. Campath-1H depletion resulted in enhanced, longer lasting lymphoid depletion. Yet subsequent challenge with 20 MID50 of pJ5 still failed to infect the pC8-immunized animals. All eight of the naive controls, including two Campath-1H-treated animals, became infected following challenge. In summary, partial depletion of circulating CD8+ cells or total lymphocytes prior to challenge failed to abrogate the protection conferred by vaccination with pC8.
Collapse
Affiliation(s)
- R Stebbings
- Division of Immunobiology, National Institute for Biological Standards and Control, South Mimms, Potters Bar, Herts, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Connor RI, Montefiori DC, Binley JM, Moore JP, Bonhoeffer S, Gettie A, Fenamore EA, Sheridan KE, Ho DD, Dailey PJ, Marx PA. Temporal analyses of virus replication, immune responses, and efficacy in rhesus macaques immunized with a live, attenuated simian immunodeficiency virus vaccine. J Virol 1998; 72:7501-9. [PMID: 9696847 PMCID: PMC109989 DOI: 10.1128/jvi.72.9.7501-7509.1998] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite evidence that live, attenuated simian immunodeficiency virus (SIV) vaccines can elicit potent protection against pathogenic SIV infection, detailed information on the replication kinetics of attenuated SIV in vivo is lacking. In this study, we measured SIV RNA in the plasma of 16 adult rhesus macaques immunized with a live, attenuated strain of SIV (SIVmac239Deltanef). To evaluate the relationship between replication of the vaccine virus and the onset of protection, four animals per group were challenged with pathogenic SIVmac251 at either 5, 10, 15, or 25 weeks after immunization. SIVmac239Deltanef replicated efficiently in the immunized macaques in the first few weeks after inoculation. SIV RNA was detected in the plasma of all animals by day 7 after inoculation, and peak levels of viremia (10(5) to 10(7) RNA copies/ml) occurred by 7 to 12 days. Following challenge, SIVmac251 was detected in all of the four animals challenged at 5 weeks, in two of four challenged at 10 weeks, in none of four challenged at 15 weeks, and one of four challenged at 25 weeks. One animal immunized with SIVmac239Deltanef and challenged at 10 weeks had evidence of disease progression in the absence of detectable SIVmac251. Although complete protection was not achieved at 5 weeks, a transient reduction in viremia (approximately 100-fold) occurred in the immunized macaques early after challenge compared to the nonimmunized controls. Two weeks after challenge, SIV RNA was also reduced in the lymph nodes of all immunized macaques compared with control animals. Taken together, these results indicate that host responses capable of reducing the viral load in plasma and lymph nodes were induced as early as 5 weeks after immunization with SIVmac239Deltanef, while more potent protection developed between 10 and 15 weeks. In further experiments, we found that resistance to SIVmac251 infection did not correlate with the presence of antibodies to SIV gp130 and p27 antigens and was achieved in the absence of significant neutralizing activity against the primary SIVmac251 challenge stock.
Collapse
Affiliation(s)
- R I Connor
- The Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York 10016, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Johnson RP, Desrosiers RC. Protective immunity induced by live attenuated simian immunodeficiency virus. Curr Opin Immunol 1998; 10:436-43. [PMID: 9722920 DOI: 10.1016/s0952-7915(98)80118-0] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Lack of information on the mechanisms of protective immunity to AIDS virus infection represents a major obstacle to the development of a rational strategy for an effective HIV vaccine. In macaques, immunization with live attenuated simian immunodeficiency viruses has induced the most potent protective immunity and continued study promises a better understanding of the nature of protective immune responses. Recent evidence supports involvement of both cytotoxic T lymphocytes and neutralizing antibodies in protective immunity against infection by simian immunodeficiency virus, but more detailed studies are needed to document their relative importance.
Collapse
Affiliation(s)
- R P Johnson
- Division of Immunology, New England Regional Primate Research Center, Harvard Medical School, Southborough, MA 01772, USA.
| | | |
Collapse
|