1
|
Bai L, Paek J, Shin Y, Kim H, Kim SH, Shin JH, Kook JK, Chang YH. Description of Olsenella kribbiana sp. nov., an anaerobic bacterium isolated from pig faeces. Int J Syst Evol Microbiol 2025; 75. [PMID: 40402165 DOI: 10.1099/ijsem.0.006795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025] Open
Abstract
A short-rod-shaped, obligate anaerobic, Gram-stain-positive bacterium isolated from the faeces of a pig was designated as the strain YH-ols2221T. The analysis of the 16S rRNA gene sequence revealed that the isolate was most closely related to Olsenella phocaeensis DSM 103159T, Olsenella urininfantis KCTC 25755T and Olsenella absiana KCTC 25800T with 96.6-96.7% similarities. The multi-locus sequence tree revealed that the isolate formed a cluster adjacent to O. absiana KCTC 25800T. The average nucleotide identity and the digital DNA-DNA hybridization values for the isolate and the most closely related strains were 71.7-74.1% and 19.9-23.0%, respectively. The main fatty acids identified were C14 : 0, C16 : 0 DMA and C18 : 0 ω9c DMA. The cell wall contained the meso-diaminopimelic acid-based peptidoglycan. The end products of the fermentation were lactic acid and acetic acid. Given the chemotaxonomic, phenotypic and phylogenetic properties, YH-ols2221T (=KCTC 25801T=NBRC 116679T) represents a novel taxon. The name Olsenella kribbiana sp. nov. was proposed.
Collapse
Affiliation(s)
- Lu Bai
- ABS Research Support Center, KRIBB, 125 Gwahak-ro, Daejeon, Yuseong-gu, Republic of Korea
| | - Jayoung Paek
- ABS Research Support Center, KRIBB, 125 Gwahak-ro, Daejeon, Yuseong-gu, Republic of Korea
| | - Yeseul Shin
- ABS Research Support Center, KRIBB, 125 Gwahak-ro, Daejeon, Yuseong-gu, Republic of Korea
| | - Hongik Kim
- Vitabio, Inc, Daejeon, Republic of Korea
| | - Si Hyun Kim
- Department of Biomedical Laboratory Science, Inje University, Gimhae, Republic of Korea
| | - Jeong Hwan Shin
- Department of Laboratory Medicine, Inje University College of Medicine, Busan, Republic of Korea
| | - Joong-Ki Kook
- Korean Collection for Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Republic of Korea
| | - Young-Hyo Chang
- ABS Research Support Center, KRIBB, 125 Gwahak-ro, Daejeon, Yuseong-gu, Republic of Korea
| |
Collapse
|
2
|
Huang J, Li S, Sung JY, Qiao S, Zeng X, Zhou J. Transfer of Antioxidant Capacity Through Placenta and Colostrum: β-Carotene and Superoxide Dismutase Collaboratively Enhance Integrated Breeding of Sows and Piglets. Antioxidants (Basel) 2025; 14:359. [PMID: 40227407 PMCID: PMC11939707 DOI: 10.3390/antiox14030359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 04/15/2025] Open
Abstract
Sows and piglets face heightened oxidative stress during gestation and lactation, yet strategies to simultaneously mitigate these challenges remain underexplored. This study investigated the effects of β-carotene and superoxide dismutase (SOD) supplementation on 140 Landrace × Yorkshire sows (parity 3-5) randomly assigned to (1) a control; (2) long-term low-dose treatment (25 mg/kg β-carotene, 4 mg/kg SOD, or both) throughout gestation-lactation; or (3) short-term high-dose treatment (100 mg/kg β-carotene, 14 mg/kg SOD, or both) administered 7 days pre/post-weaning and farrowing. Our data indicate that the antioxidants enhanced the productive performance of both sows and piglets, with the most pronounced effect observed in the long-term, low-dose combined administration of β-carotene and SOD. The composite antioxidants significantly improved the systemic antioxidant capacity in sows, while concurrently reducing the cortisol and lipopolysaccharide concentrations in the serum. This enhancement contributed to elevations in serum progesterone and prolactin levels at day 40 of gestation and farrowing, respectively, ultimately increasing the number of weaned piglets and decreasing the backfat loss. In addition, the compound antioxidants improved the serum antioxidant indices of piglets, increased the growth hormone concentrations, and improved the litter weight gain. Mechanistically, the placental upregulation of CAT, GPX1, and GLUT3, alongside Claudin1, Occludin, and ZO-1 expression, underpinned improved nutrient transport and barrier function. These findings demonstrate that β-carotene and SOD synergistically transfer antioxidant capacity via placental and colostrum pathways, offering a viable strategy for integrated sow-piglet management.
Collapse
Affiliation(s)
- Jun Huang
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (J.H.); (S.L.)
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.Q.); (X.Z.)
| | - Shengkai Li
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (J.H.); (S.L.)
| | - Jung Yeol Sung
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA;
| | - Shiyan Qiao
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.Q.); (X.Z.)
| | - Xiangfang Zeng
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.Q.); (X.Z.)
| | - Junyan Zhou
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (J.H.); (S.L.)
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.Q.); (X.Z.)
| |
Collapse
|
3
|
Mu C, Kesler M, Chen X, Shearer J, Teskey GC, Rho JM. Exogenous ketones exert antiseizure effects and modulate the gut microbiome and mycobiome in a clinically relevant murine model of epilepsy. Epilepsia 2024; 65:3676-3688. [PMID: 39412260 DOI: 10.1111/epi.18150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 12/17/2024]
Abstract
OBJECTIVE Despite growing interest in the potential use of exogenous ketones for the treatment of epilepsy, their impact on seizures and the gut microbiome and mycobiome remain unclear. METHODS Here, we examined the effects of both oral gavage and subcutaneous (SC) injection of a ketone ester (KE) in spontaneously epileptic Kcna1-null (KO) mice that model seminal aspects of human temporal lobe epilepsy. Electroencephalographic recordings and biochemical analyses were performed in KE-treated KO mice. Fecal microbial and fungal communities were profiled to determine whether the antiseizure activity of KE involves changes in the gut microbiome. RESULTS We found that exogenous KE administration by SC injection was more effective than oral gavage in terms of rendering antiseizure effects while generating similar degrees of ketonemia. However, reductions in mean daily seizure counts were accompanied by overall alterations in the fecal bacterial microbiome. Either oral or SC injection imposed a greater impact on the microbiome in male than female mice. In males, oral KE decreased Bacteroidota phylum and genera of Ligilactobacillus and Muribaculaceae, whereas SC injection decreased Bacteroides, Lactobacillus, and Lachnospiraceae. The fecal mycobiome was affected by KE injection to a greater degree than by oral gavage, and more in females than in males, as reflected by an increase in Ascomycota and Saccharomyces. Correlation analysis between microbiome and seizure counts revealed that in mice receiving KE injection, the seizure count was positively correlated with an amplicon sequencing variant of Lactobacillus (Spearman rho = .64, p = .03) and tended toward a negative correlation with Saccharomyces (Spearman rho = -.57, p = .057). SIGNIFICANCE Our findings demonstrate that exogenous ketone administration alone can induce antiseizure effects equally via different routes of administration, and that they induce differential shifts in both the bacterial microbiome and mycobiome.
Collapse
Affiliation(s)
- Chunlong Mu
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mitchell Kesler
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Xingyu Chen
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jane Shearer
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - G Campbell Teskey
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
| | - Jong M Rho
- Departments of Neurosciences, Pediatrics, and Pharmacology, University of California, San Diego, Rady Children's Hospital, San Diego, California, USA
| |
Collapse
|
4
|
Paek J, Bai L, Shin Y, Kim H, Kim SH, Shin JH, Kook JK, Chang YH. Description of Olsenella absiana sp. nov., an anaerobic bacterium isolated from pig faeces. Int J Syst Evol Microbiol 2024; 74. [PMID: 39531284 DOI: 10.1099/ijsem.0.006579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
A short-rod-shaped, obligate anaerobic, Gram-positive bacterium isolated from the faeces of a pig was designated as the strain YH-ols2223T. Analysis of the 16S rRNA gene sequence revealed that the isolate was most closely related to Olsenella urininfantis KCTC 25755T with 97.7% similarity. The multi-locus sequence tree revealed that the isolate formed a sub-cluster within the genus Olsenella. The average nucleotide identity and the digital DNA-DNA hybridization values for the isolate and the most closely related strains were 74.9-76.6% and 20.8-22.5%, respectively. The end products of the fermentation were lactic acid and acetic acid. The main fatty acids identified were C18 : 0 DMA, C18 : 1 ω9c DMA and C18 : 1 ω9c. The cell wall contained the meso-diaminopimelic acid-based peptidoglycan. Given the chemotaxonomic, phenotypic and phylogenetic properties, YH-ols2223T (= KCTC 25800T = NBRC 116680T) represents a novel taxon. The name Olsenella absiana sp. nov. was proposed.
Collapse
Affiliation(s)
- Jayoung Paek
- ABS Research Support Center, KRIBB, Daejeon, Republic of Korea
| | - Lu Bai
- ABS Research Support Center, KRIBB, Daejeon, Republic of Korea
| | - Yeseul Shin
- ABS Research Support Center, KRIBB, Daejeon, Republic of Korea
| | - Hongik Kim
- Vitabio, Inc., Daejeon, Republic of Korea
| | - Si Hyun Kim
- Department of Biomedical Laboratory Science, Inje University, Gimhae, Republic of Korea
| | - Jeong Hwan Shin
- Department of Laboratory Medicine, Inje University College of Medicine, Busan, Republic of Korea
| | - Joong-Ki Kook
- Korean Collection for Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Republic of Korea
| | - Young-Hyo Chang
- ABS Research Support Center, KRIBB, Daejeon, Republic of Korea
| |
Collapse
|
5
|
Hao Z, Guo Z, Zhang N, Wang J, Xu J, Zhang W, Liu Q, Wang C, Zhang Y, Zhang Y. Effects of 5-Aminolevulinic Acid Supplementation on Gas Production, Fermentation Characteristics, and Bacterial Community Profiles In Vitro. Microorganisms 2024; 12:1867. [PMID: 39338541 PMCID: PMC11433865 DOI: 10.3390/microorganisms12091867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
To investigate the effect of 5-aminolevulinic acid (5-ALA) on in vitro rumen gas production, fermentation characteristics, and bacterial community profiles, five levels of 5-ALA (0, 100, 500, 1000, and 5000 mg/kg DM) were supplemented into a total mixed ration (concentrate/forage = 40:60) as substrate in an in vitro experiment. Results showed that as the supplementation level of 5-ALA increased, asymptotic gas production (b) decreased linearly and quadratically (p < 0.01) while the dry matter degradation rate increased quadratically (p < 0.01). Meanwhile, the propionate concentration of 72 h incubation fluid increased linearly (p = 0.03) and pH value increased linearly and quadratically (p < 0.01), while the concentrations of butyrate, isobutyrate, valerate, isovalerate, and NH3-N and the ratio of acetate/propionate (A/P) decreased linearly and quadratically (p < 0.05). There was no significant difference in any alpha diversity indices of bacterial communities among the various 5-ALA levels (p < 0.05). PCoA and PERMANOVA analysis revealed that the bacterial profiles showed a statistical difference between the treatment 5-ALA at 1000 mg/kg DM and the other levels except for 5000 mg/kg DM (p < 0.05). Taxonomic classification revealed a total of 18 and 173 bacterial taxa at the phylum and genus level with relative abundances higher than 0.01% in at least half of the samples, respectively. LEfse analysis revealed that 19 bacterial taxa were affected by 5-ALA levels. Correlation analysis showed that Actinobacteriota was positively correlated with the gas production parameter b, the ratio of A/P, and the concentration of butyrate, isovalerate, and NH3-N (p < 0.05) and negatively correlated with pH (p < 0.05). WPS-2 exhibited a negative correlation with the gas production parameter b, the ratio of A/P, and the concentration of butyrate, valerate, isobutyrate, isovalerate, and NH3-N (p < 0.05), along with a weaker positive correlation with pH (p = 0.04). The Bacteroidales BS11 gut group was negatively correlated with the concentration of propionate but positively correlated with gas production parameter b and the concentration of butyrate and NH3-N (p < 0.05). The Lachnospiraceae NK3A20 group was found to have a positive correlation with gas production parameter b, the ratio of A/P, and the concentration of butyrate, isobutyrate, isovalerate, valerate, total VFA, and NH3-N (p < 0.05), but a highly negative correlation with pH (p < 0.01). Differential metabolic pathways analysis suggested that metabolic pathways related to crude protein utilization, such as L-glutamate degradation VIII (to propanoate), L-tryptophan degradation IX, and urea cycle, increased with 5-ALA levels. In summary, including 5-ALA in the diet might improve energy and protein utilization by reducing the abundance of Actinobacteriota, the Bacteroidales BS11 gut group, the Lachnospiraceae NK3A20 group, and certain pathogenic bacteria and increasing the abundance of WPS-2.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yawei Zhang
- College of Animal Science, Shanxi Agricultural University, Taiyuan 030031, China
| | - Yuanqing Zhang
- College of Animal Science, Shanxi Agricultural University, Taiyuan 030031, China
| |
Collapse
|
6
|
Perez-Esteban N, Vives-Egea J, Dosta J, Astals S, Peces M. Resilience towards organic load and activated sludge variations in co-fermentation for carboxylic acid production. BIORESOURCE TECHNOLOGY 2024; 406:131034. [PMID: 38925408 DOI: 10.1016/j.biortech.2024.131034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/07/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
Two perturbations were investigated in acidogenic co-fermentation of waste activated sludge (WAS) and food waste in continuous mesophilic fermenters: increasing the organic loading rate (OLR) and changing the WAS. A control reactor maintained an OLR of 11 gVS/(L·d), while a test reactor had a prolonged OLR change to 18 gVS/(L·d). For each OLR, two WAS were studied. The change in OLR led to differentiated fermentation product profile without compromising the fermentation yields (∼300 mgCOD/gVS). At 11 gVS/(L·d), the product profile was dominated by acetic, butyric, and propionic acids while at 18 gVS/(L·d) it shifted to acetic acid, ethanol, and caproic acid. Reverting the OLR also reverted the fermentation profile. The biomass immigration with the WAS changed the fermentation microbial structure and introduced acetic acid-consuming methanogens, which growth was only delayed by the OLR increase. Microbial monitoring and post-fermentation tests can be used for early detection of acetic acid-consuming events.
Collapse
Affiliation(s)
- N Perez-Esteban
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - J Vives-Egea
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - J Dosta
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - S Astals
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.
| | - M Peces
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain; Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
| |
Collapse
|
7
|
Gondo T, Hiraishi N, Takeuchi A, Moyes D, Shimada Y. Comparative analysis of microbiome in coronal and root caries. BMC Oral Health 2024; 24:869. [PMID: 39085908 PMCID: PMC11292881 DOI: 10.1186/s12903-024-04670-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND The global rise in the elderly population has increased the prevalence of root caries. Streptococcus mutans, Lactobacilli and Actinomyces are considered the primary pathogens of dental caries in culture-based studies. This study aimed to investigate bacterial profiles in coronal and root caries lesions and determine the association of specific bacterial genera at each site. METHODS Dentine samples from carious lesions were collected from 22 extracted teeth using an excavator. Microbial DNA was extracted from the samples using a protocol developed for this study. 16S rRNA gene amplicon sequencing was employed for microbial analysis. PCR amplification targeted the V3-V4 region of the bacterial 16S rRNA, and the amplicon sequencing used an Illumina MiSeq system (2 × 300 bp paired-end reads). Statistical analysis was performed by the Phyloseq and DESeq2 packages in R. RESULTS In coronal caries, Olsenella, Lactobacillus and Prevotella were the most prevalent genera, comprising approximately 70% of the microbiome community. In the root caries, however, although Olsenella, Prevotella and Lactobacillus remained the dominant genera, they accounted for only half of the microbiome community. This study identified significant differences in alpha diversity indices between the coronal and root caries. LEfSE analysis revealed several unique genera in each caries lesion. CONCLUSION The microbiome of root caries lesions was richer and more complex than the coronal caries microbiota. The results suggest that lesion-related variations in the oral microflora may be detected in carious dentine.
Collapse
Affiliation(s)
- Tadamu Gondo
- Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8549, Japan
| | - Noriko Hiraishi
- Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8549, Japan.
| | - Azusa Takeuchi
- Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8549, Japan
| | - David Moyes
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, SE1 1UL, UK
| | - Yasushi Shimada
- Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8549, Japan
| |
Collapse
|
8
|
Liang X, Zheng S, Zhou Y, Li J, Zhang Z. Luteolin, a natural flavonoid, exhibits a protective effect on intestinal injury induced by soybean meal in early-weaned piglets. J Anim Sci 2024; 102:skae214. [PMID: 39066584 PMCID: PMC11367559 DOI: 10.1093/jas/skae214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/25/2024] [Indexed: 07/28/2024] Open
Abstract
Soybean meal is known to be able to cause intestinal damage and dysfunction in early-weaned piglets. However, research on natural compounds that can alleviate these effects is scarce. In this study, the effect of luteolin, a natural flavonoid, on intestinal health of piglets fed on a soybean meal-based diet was explored. A total of eighteen 21-d-old piglets were selected and randomly divided into 3 groups: a negative control group fed with an animal protein-based diet, a positive control group fed with a soybean meal-based diet, and a luteolin group that was fed with the positive control diet supplemented with luteolin. The results suggested that luteolin supplementation significantly increased the average daily gain and average daily feed intake of early-weaned piglets, while effectively reducing the diarrhea incidence. Additionally, luteolin supplementation lowered the levels of soybean antigen-specific immunoglobulin G and immunoglobulin E anitbodies, increased the superoxide dismutase activity in both sera and small intestine mucosa, and enhanced the total antioxidant capacity in sera. Further research found that luteolin supplementation increased the intestinal villi height and decreased the crypt depth, resulting in an increased ratio of villi to crypts. At the same time, it reduced the concentration of serum diamine oxidase, improving intestinal barrier function. Moreover, luteolin significantly decreased the gene expression of Bax and Caspase-3, reducing cell apoptosis in the intestinal mucosa. Luteolin supplementation also increased the abundance of Actinobacteria at the phylum level, reduced the abundance of Prevotella and increased the abundance of Olsenella at the genus level. In conclusion, the supplementation of luteolin to the soybean meal diet was capable of effectively reducing allergic response, enhancing the antioxidant capacity of early-weaned piglets, protecting their intestinal barrier function, inhibiting intestinal mucosal cell apoptosis, and altering the intestinal microbiota structure, therefore promoting intestinal health and improving production performance in early-weaned piglets.
Collapse
Affiliation(s)
- Xuecong Liang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China
| | - Shugui Zheng
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China
| | - Yang Zhou
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China
| | - Jiguang Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China
| | - Zhuo Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China
| |
Collapse
|
9
|
Botero Rute LM, Caro-Quintero A, Acosta-González A. Enhancing the Conventional Culture: the Evaluation of Several Culture Media and Growth Conditions Improves the Isolation of Ruminal Bacteria. MICROBIAL ECOLOGY 2023; 87:13. [PMID: 38082143 PMCID: PMC10713758 DOI: 10.1007/s00248-023-02319-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023]
Abstract
The rumen microbiota is critical in cattle digestion. Still, its low cultivability makes it difficult to study its ecological function and biotechnological potential. To improve the recovery of ruminal microorganisms, this study combined the evaluation of several cultivation parameters with metabarcoding analysis. The parameters tested comprised eight media cultures, three sample dilutions (10-2, 10-6, 10-12), and two incubation times (3 and 7 days). Bacterial populations were determined through Illumina sequencing of 16S rRNA from three biological replicates. The results indicate that none of the culture media recovered all rumen populations and that there was an altered relative abundance of the dominant phyla. In the rumen, Bacteroidetes and Firmicutes comprised 75% and 15% of the relative abundance, respectively, while in the culture media, these were 15% and 60%, respectively. Principal coordinate analysis (PCoA) of the bacterial community revealed significant shifts in population composition due to dilution, with 10-2 and 10-6 dilutions clustered closely while the 10-12 dilution differed markedly. In contrast, incubation duration did not influence population diversity. According to the results, two media, CAN and KNT, were selected based on their ability to recover more similar populations compared to the rumen sample. The metataxonomic study showed that CAN media had consistent reproducibility over time, while KNT showed enrichment of different taxa due to the use of rumen fluid as a substrate. From these, 64 pure cultures were obtained and 54 were identified through 16S rRNA gene sequencing. Being Streptococcus the most frequently isolated genus, this prevalence contrasts with the liquid media composition, underscoring the importance of refining single colony isolation strategies. Although no culture medium could replicate the native rumen bacterial population perfectly, our findings highlight the potential of CAN and KNT media in recovering populations that are more closely aligned to natural rumen conditions. In conclusion, our study emphasizes the importance of integrating molecular approaches in selecting suitable cultivation media and parameters to depict rumen bacteria accurately.
Collapse
Affiliation(s)
- Lina Marcela Botero Rute
- AGROSAVIA, Km. 14 via Mosquera, Mosquera, Cundinamarca, Colombia
- Maestría en Diseño y Gestión de Procesos, Facultad de Ingeniería, Universidad de la Sabana, Km. 7 Autopista Norte, Chia, 25001, Colombia
| | - Alejandro Caro-Quintero
- Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia.
| | - Alejandro Acosta-González
- Bioprospection Research Group (GIBP), Facultad de Ingeniería, Universidad de La Sabana, Km. 7 Autopista Norte, Chia, 25001, Colombia
| |
Collapse
|
10
|
Beau A, Benoit B, Le Barz M, Meugnier E, Penhoat A, Calzada C, Pinteur C, Loizon E, Chanon S, Vieille-Marchiset A, Sauvinet V, Godet M, Laugerette F, Holowacz S, Jacouton E, Michalski MC, Vidal H. Inhibition of intestinal FXR activity as a possible mechanism for the beneficial effects of a probiotic mix supplementation on lipid metabolism alterations and weight gain in mice fed a high fat diet. Gut Microbes 2023; 15:2281015. [PMID: 37985749 PMCID: PMC10730200 DOI: 10.1080/19490976.2023.2281015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/05/2023] [Indexed: 11/22/2023] Open
Abstract
Supplementation with probiotics has emerged as a promising therapeutic tool to manage metabolic diseases. We investigated the effects of a mix of Bifidobacterium animalis subsp. lactis LA804 and Lactobacillus gasseri LA806 on high-fat (HF) diet -induced metabolic disease in mice. Supplementation with the probiotic mix in HF diet-fed mice (HF-Pr2) reduced weight and fat mass gains, decreased hepatic lipid accumulation, and lowered plasma triglyceride peak during an oral lipid tolerance test. At the molecular level, the probiotic mix protected against HF-induced rise in mRNA levels of genes related to lipid uptake, metabolism, and storage in the liver and white adipose tissues, and strongly decreased mRNA levels of genes related to inflammation in the white adipose tissue and to oxidative stress in the liver. Regarding intestinal homeostasis, the probiotic mix did not prevent HF-induced gut permeability but slightly modified microbiota composition without correcting the dysbiosis induced by the HF diet. Probiotic supplementation also modified the cecal bile acid (BA) profile, leading to an increase in the Farnesoid-X-Receptor (FXR) antagonist/agonist ratio between BA species. In agreement, HF-Pr2 mice exhibited a strong inhibition of FXR signaling pathway in the ileum, which was associated with lipid metabolism protection. This is consistent with recent reports proposing that inhibition of intestinal FXR activity could be a potent mechanism to overcome metabolic disorders. Altogether, our results demonstrate that the probiotic mix evaluated, when administered preventively to HF diet-fed mice could limit obesity and associated lipid metabolism disorders, likely through the inhibition of FXR signaling in the intestinal tract.
Collapse
Affiliation(s)
- Alice Beau
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Bérengère Benoit
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Mélanie Le Barz
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Emmanuelle Meugnier
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Armelle Penhoat
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Catherine Calzada
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Claudie Pinteur
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Emmanuelle Loizon
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Stéphanie Chanon
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Aurélie Vieille-Marchiset
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Valérie Sauvinet
- Centre de Recherche en Nutrition Humaine - Rhône-Alpes, INSERM, INRAe, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Pierre Bénite, France
| | - Murielle Godet
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Fabienne Laugerette
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Sophie Holowacz
- Research & Development Department, PiLeJe Laboratoire, Paris, France
| | - Elsa Jacouton
- Research & Development Department, PiLeJe Laboratoire, Paris, France
| | - Marie-Caroline Michalski
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
- Centre de Recherche en Nutrition Humaine - Rhône-Alpes, INSERM, INRAe, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Pierre Bénite, France
| | - Hubert Vidal
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
- Centre de Recherche en Nutrition Humaine - Rhône-Alpes, INSERM, INRAe, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Pierre Bénite, France
| |
Collapse
|
11
|
Cui ZY, Li WJ, Wang WK, Wu QC, Jiang YW, Aisikaer A, Zhang F, Chen HW, Yang HJ. Wheat silage partially replacing oaten hay exhibited greater feed efficiency and fibre digestion despite low feed intake by feedlot lambs. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:332-340. [PMID: 38053804 PMCID: PMC10694067 DOI: 10.1016/j.aninu.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 12/07/2023]
Abstract
This study aimed to investigate the feeding effect of wheat silage on growth performance, nutrient digestibility, rumen fermentation, and microbiota composition in feedlot lambs. Sixty-four male crossbred Chinese Han lambs (BW = 27.8 ± 0.67 kg, 3 months of age) were randomly assigned to four ration groups with wheat silage replacing 0% (WS0), 36% (WS36), 64% (WS64), and 100% (WS100) of oaten hay on forage dry matter basis. The concentrate-to-forage ratio was 80:20 and the feeding trial lasted 52 d. Increasing wheat silage inclusion linearly decreased dry matter intake by 4% to 27% (P < 0.01). However, increasing the wheat silage replacement of oaten hay by no more than 64% improved the feed efficiency by 14% as noted by the feed-to-gain ratio (P = 0.04). Apparent digestibility of organic matter (P < 0.01), neutral detergent fibre (P = 0.04) and acid detergent fibre (P < 0.01) quadratically increased. Ammonia nitrogen (P = 0.01) decreased while microbial protein production (P < 0.01) increased with the increase of wheat silage inclusion. Total volatile fatty acids concentration increased quadratically with the increase of wheat silage inclusion (P < 0.01), and the highest occurred in WS64. The molar proportion of acetate (P < 0.01) and acetate-to-propionate ratio (P = 0.04) decreased while butyrate (P < 0.01) and isovalerate (P = 0.04) increased. Increasing wheat silage inclusion increased the Firmicutes-to-Bacteroidota ratio by 226% to 357%, resulting in Firmicutes instead of Bacteroidota being the most abundant phylum. The relative abundance of cellulolytic Ruminococcus numerically increased but that of amylolytic Prevotella (P < 0.01) decreased as increasing wheat silage inclusion. Taken together, increasing wheat silage replacement of oaten hay by no more than 64% exhibited greater feed efficiency and fibre digestion despite low feed intake by feedlot lambs due to the change of Firmicutes-to-Bacteroidota ratio in the rumen.
Collapse
Affiliation(s)
- Zhao-Yang Cui
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wen-Juan Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wei-Kang Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Qi-Chao Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yao-Wen Jiang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ailiyasi Aisikaer
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Fan Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - He-Wei Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Hong-Jian Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
12
|
Li N, Wang H, Zhao H, Wang M, Cai J, Hao Y, Yu J, Jiang Y, Lü X, Liu B. Cooperative interactions between Veillonella ratti and Lactobacillus acidophilus ameliorate DSS-induced ulcerative colitis in mice. Food Funct 2023; 14:10475-10492. [PMID: 37934670 DOI: 10.1039/d3fo03898j] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Veillonella and Lactobacillus species are key regulators of a healthy gut environment through metabolic cross-feeding, influencing lactic acid and short-chain fatty acid (SCFA) levels, which are crucial for gut health. This study aims to investigate how Veillonella ratti (V. ratti) and Lactobacillus acidophilus (LA) interact with each other and alleviate dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in a mouse model. We assess their metabolic interactions regarding carbon sources through co-culturing in a modified medium. In the in vitro experiments, V. ratti and LA were inoculated in mono-cultures and co-culture, and viable cell counts, OD600, pH, lactic acid, glucose and SCFAs were measured. For the in vivo experiment, 60 C57BL/6 mice were randomly divided into five groups and administered V. ratti and LA alone or in combination via oral gavage (1 × 109 CFU mL-1 per day per mouse) for 14 days. On the seventh day, 2.5% DSS was added to the drinking water to induce colitis. The effects of these probiotics on UC were evaluated by assessing intestinal barrier integrity and intestinal inflammation in the gut microenvironment. In vitro results demonstrated that co-culturing V. ratti with LA significantly increased viable cell numbers, lactic acid production, and SCFA production, while reducing pH and glucose levels in the medium. In vivo findings revealed that intervention with V. ratti, particularly in combination with LA, alleviated symptoms, including weight loss, colon shortening, and tissue damage. These probiotics mitigated intestinal inflammation by down-regulating pro-inflammatory molecules, such as IL-6, IL-1β, IL-γ, iNOS, and IFN-γ, as well as oxidative stress markers, including MDA and MPO. Concurrently, they upregulated the activity of anti-inflammatory enzymes, namely, SOD and GSH, and promoted the production of SCFAs. The combined intervention of V. ratti and LA significantly increased acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, and total SCFAs in cecal contents. Furthermore, the intervention of V. ratti and LA increased the abundance of beneficial bacteria, such as Akkermansia, while reducing the abundance of harmful bacteria, such as Escherichia-Shigella and Desulfovibrio, thereby mitigating excessive inflammation. These findings highlight the enhanced therapeutic effects resulting from the interactions between V. ratti and LA, demonstrating the potential of this combined probiotic approach.
Collapse
Affiliation(s)
- Na Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Hejing Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Huizhu Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Mengyang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Jin Cai
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yi Hao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Jia Yu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yun Jiang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Bianfang Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
13
|
Wu SL, Wei W, Ngo HH, Guo W, Wang C, Wang Y, Ni BJ. In-situ production of lactate driving the biotransformation of waste activated sludge to medium-chain fatty acid. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118524. [PMID: 37423191 DOI: 10.1016/j.jenvman.2023.118524] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/14/2023] [Accepted: 06/25/2023] [Indexed: 07/11/2023]
Abstract
Medium-chain fatty acids (MCFAs) have drawn great attention due to their high energy density and superior hydrophobicity. Waste activated sludge (WAS) has been documented as a renewable feedstock for MCFAs production via anaerobic fermentation. However, MCFAs production from WAS depends on exogenous addition of electron donor (ED, e.g., lactate) for chain elongation (CE) bioprocess, which results in increased economic cost and limited practical application. In this study, a novel biotechnology was proposed to produce MCFAs from WAS with in-situ self-formed lactate by inoculating Yoghurt starter powder containing with Lactobacillales cultures. The batch experimental results revealed that the lactate was in-situ generated from WAS and the maximum production of MCFAs increased from 1.17 to 3.99 g COD/L with the increased addition of Lactobacillales cultures from 6✕107 to 2.3✕108 CFU/mL WAS. In continuous long-term test over 97 days, average MCFA production reached up to 3.94 g COD/L with a caproate yield of 82.74% at sludge retention time (SRT) 12 days, and the average MCFA production increased to 5.87 g COD/L with 69.28% caproate and 25.18% caprylate at SRT 15 days. A comprehensive analysis of the metagenome and metatranscriptome demonstrated that the genus of Lactobacillus and Streptococcus were capable of producing lactate from WAS and upgrading to MCFAs. Moreover, another genus, i.e., Candidatus Promineofilum, was firstly revealed that it might be responsible for lactate and MCFAs production. Further investigation of related microbial pathways and enzyme expression suggested that D-lactate dehydrogenase and pyruvate ferredoxin oxidoreductase contributed to lactate and acetyl-CoA production, which were the crucial steps for MCFAs generation and were most actively expressed. This study provides a conceptual framework of MCFAs from WAS with endogenous ED, potentially enhancing the energy recovery from WAS treatment.
Collapse
Affiliation(s)
- Shu-Lin Wu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, Zhejiang Gongshang University, PR China
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Chen Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Yun Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| |
Collapse
|
14
|
Wang J, Shan S, Li D, Zhang Z, Ma Q. Long-term influence of chloroxylenol on anaerobic microbial community: Performance, microbial interaction, and antibiotic resistance gene behaviors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165330. [PMID: 37419339 DOI: 10.1016/j.scitotenv.2023.165330] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
The use of antibacterial and disinfection products is increasing in recent years. Para-chloro-meta-xylenol (PCMX), a widely used antimicrobial agent, has been detected in various environments. Herein, the impacts of PCMX with long-term exposure on anaerobic sequencing batch reactors were investigated. The high concentration (50 mg/L, GH group) PCMX severely inhibited the nutrient removal process, and the low concentration group (0.5 mg/L, GL group) slightly affected the removal efficiency which was recovered after 120 days of adaptation compared to the control group (0 mg/L, GC group). Cell viability tests indicated that PCMX inactivated the microbes. A significant reduction in bacterial α-diversity was observed in the GH but not the GL group. The microbial communities were shifted upon PCMX exposure, among which Olsenella, Novosphingobium, and Saccharibacteria genera incertae Sedis became the predominant genera in the GH groups. Network analyses showed that PCMX significantly reduced the complexity and interactions of the microbial communities, consistent with the negative impacts on bioreactor performance. Real-time PCR analysis indicated that PCMX affected the behavior of antibiotic resistance genes (ARGs), and the relationship between ARGs and bacterial genera gradually became complicated after long-term exposure. Most detected ARGs decreased on Day 60 but increased on Day 120 especially in the GL group, implying the potential risk of environment-relevant concentration of PCMX in the ecosystems. This study provides new insights into the understanding of the impacts and risks of PCMX on wastewater treatment processes.
Collapse
Affiliation(s)
- Jingwei Wang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Shuang Shan
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Da Li
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Zhaojing Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Qiao Ma
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| |
Collapse
|
15
|
Dahl SA, Seifert J, Camarinha-Silva A, Cheng YC, Hernández-Arriaga A, Hudler M, Windisch W, König A. Microbiota and Nutrient Portraits of European Roe Deer (Capreolus capreolus) Rumen Contents in Characteristic Southern German Habitats. MICROBIAL ECOLOGY 2023; 86:3082-3096. [PMID: 37875737 PMCID: PMC10640537 DOI: 10.1007/s00248-023-02308-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/21/2023] [Indexed: 10/26/2023]
Abstract
Roe deer (Capreolus capreolus) are found in various habitats, from pure forest cultures to agricultural areas and mountains. In adapting to the geographically and seasonally differentiating food supply, they depend, above all, on an adapted microbiome. However, knowledge about the microbiome of wild ruminants still needs to be improved. There are only a few publications for individual species with a low number of samples. This study aims to identify a core microbiota for Bavarian roe deer and present nutrient and microbiota portraits of the individual habitat types. This study investigated the roe deer's rumen (reticulorumen) content from seven different characteristic Bavarian habitat types. The focus was on the composition of nutrients, fermentation products, and the rumen bacterial community. A total of 311 roe deer samples were analysed, with the most even possible distribution per habitat, season, age class, and gender. Significant differences in nutrient concentrations and microbial composition were identified for the factors habitat, season, and age class. The highest crude protein content (plant protein and microbial) in the rumen was determined in the purely agricultural habitat (AG), the highest value of non-fibre carbohydrates in the alpine mountain forest, and the highest fibre content (neutral detergent fibre, NDF) in the pine forest habitat. Maximum values for fibre content go up to 70% NDF. The proportion of metabolites (ammonia, lactate, total volatile fatty acids) was highest in the Agriculture-Beech-Forest habitat (ABF). Correlations can be identified between adaptations in the microbiota and specific nutrient concentrations, as well as in strong fluctuations in ingested forage. In addition, a core bacterial community comprising five genera could be identified across all habitats, up to 44% of total relative abundance. As with all wild ruminants, many microbial genera remain largely unclassified at various taxonomic levels. This study provides a more in-depth insight into the diversity and complexity of the roe deer rumen microbiota. It highlights the key microorganisms responsible for converting naturally available nutrients of different botanical origins.
Collapse
Affiliation(s)
- Sarah-Alica Dahl
- Wildlife Biology and Management Unit, Chair of Animal Nutrition and Metabolism, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany.
| | - Jana Seifert
- HoLMiR - Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Leonore-Blosser-Reisen-Weg 3, 70599, Stuttgart, Germany
- Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 10, 70599, Stuttgart, Germany
| | - Amélia Camarinha-Silva
- HoLMiR - Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Leonore-Blosser-Reisen-Weg 3, 70599, Stuttgart, Germany
- Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 10, 70599, Stuttgart, Germany
| | - Yu-Chieh Cheng
- HoLMiR - Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Leonore-Blosser-Reisen-Weg 3, 70599, Stuttgart, Germany
- Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 10, 70599, Stuttgart, Germany
| | - Angélica Hernández-Arriaga
- HoLMiR - Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Leonore-Blosser-Reisen-Weg 3, 70599, Stuttgart, Germany
- Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 10, 70599, Stuttgart, Germany
| | - Martina Hudler
- Game Management and Wildlife Management, Weihenstephan-Triesdorf University of Applied Sciences, Hans-Carl-von-Carlowitz-Platz 3, 85354, Freising, Germany
| | - Wilhelm Windisch
- TUM School of Life Sciences, Technical University of Munich, Liesel-Beckmann-Straße 2, 85354, Freising, Germany
| | - Andreas König
- Wildlife Biology and Management Unit, Chair of Animal Nutrition and Metabolism, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany
| |
Collapse
|
16
|
Dahl SA, Seifert J, Camarinha-Silva A, Hernández-Arriaga A, Windisch W, König A. "Get the best out of what comes in" - adaptation of the microbiota of chamois ( Rupicapra rupicapra) to seasonal forage availability in the Bavarian Alps. Front Microbiol 2023; 14:1238744. [PMID: 37849922 PMCID: PMC10577445 DOI: 10.3389/fmicb.2023.1238744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/11/2023] [Indexed: 10/19/2023] Open
Abstract
As an inhabitant of the Alps, chamois are exposed to significant climatic changes throughout the year and are also strongly confronted with changing forage availability. Besides horizontal and vertical migratory movements as an adaptation, it undergoes physiological transformations and dynamic changes in the ruminal microbiota. The following study used 48 chamois of different ages and genders to investigate to which extent the ingested food plants, the resulting crude nutrients in the rumen (reticulorumen) contents, and the bacterial microbiota in the rumen and their fermentation products were influenced by the changes over the seasons. Very little is known about the microbiota of wild ruminants, and many bacterial taxa could only be determined to certain taxonomic levels in this study. However, adapted microbiota reflects the significant changes in the ingested forage and the resulting crude nutrients. For some taxa, our results indicated potential functional relationships. In addition, 15 genera were identified, representing almost 90% of the relative abundance, forming the central part of the microbial community throughout the year. The successful and flexible adaptation of chamois is reflected in the chamois rumen's nutrient and microbial profile. This is also the first study that analyzes the microbiota of the chamois using rumen samples and considers the microbiota in a seasonal comparison.
Collapse
Affiliation(s)
- Sarah-Alica Dahl
- Wildlife Biology and Management Unit, Chair of Animal Nutrition and Metabolism, Technical University of Munich, Freising, Germany
| | - Jana Seifert
- HoLMiR – Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Amélia Camarinha-Silva
- HoLMiR – Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Angélica Hernández-Arriaga
- HoLMiR – Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Wilhelm Windisch
- TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Andreas König
- Wildlife Biology and Management Unit, Chair of Animal Nutrition and Metabolism, Technical University of Munich, Freising, Germany
| |
Collapse
|
17
|
Cheng X, Du X, Liang Y, Degen AA, Wu X, Ji K, Gao Q, Xin G, Cong H, Yang G. Effect of grape pomace supplement on growth performance, gastrointestinal microbiota, and methane production in Tan lambs. Front Microbiol 2023; 14:1264840. [PMID: 37840727 PMCID: PMC10569316 DOI: 10.3389/fmicb.2023.1264840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
Grape pomace (GP), a by-product in wine production, is nutritious and can be used as a feed ingredient for ruminants; however, its role in shaping sheep gastrointestinal tract (GIT) microbiota is unclear. We conducted a controlled trial using a randomized block design with 10 Tan lambs fed a control diet (CD) and 10 Tan lambs fed a pelleted diet containing 8% GP (dry matter basis) for 46 days. Rumen, jejunum, cecum, and colon bacterial and archaeal composition were identified by 16S rRNA gene sequencing. Dry matter intake (DMI) was greater (p < 0.05) in the GP than CD group; however, there was no difference in average daily gain (ADG, p < 0.05) and feed conversion ratio (FCR, p < 0.05) between the two groups. The GP group had a greater abundance of Prevotella 1 and Prevotella 7 in the rumen; of Sharpe, Ruminococcaceae 2, and [Ruminococcus] gauvreauii group in the jejunum; of Ruminococcaceae UCG-014 and Romboutsia in the cecum, and Prevotella UCG-001 in the colon; but lesser Rikenellaceae RC9 gut group in the rumen and cecum, and Ruminococcaceae UCG-005 and Ruminococcaceae UCG-010 in the colon than the CD group. The pathways of carbohydrate metabolism, such as L-rhamnose degradation in the rumen, starch and glycogen degradation in the jejunum, galactose degradation in the cecum, and mixed acid fermentation and mannan degradation in the colon were up-graded; whereas, the pathways of tricarboxylic acid (TCA) cycle VIII, and pyruvate fermentation to acetone in the rumen and colon were down-graded with GP. The archaeal incomplete reductive TCA cycle was enriched in the rumen, jejunum, and colon; whereas, the methanogenesis from H2 and CO2, the cofactors of methanogenesis, including coenzyme M, coenzyme B, and factor 420 biosynthesis were decreased in the colon. The study concluded that a diet including GP at 8% DM did not affect ADG or FCR in Tan lambs. However, there were some potential benefits, such as enhancing propionate production by microbiota and pathways in the GIT, promoting B-vitamin production in the rumen, facilitating starch degradation and amino acid biosynthesis in the jejunum, and reducing methanogenesis in the colon.
Collapse
Affiliation(s)
- Xindong Cheng
- Key Laboratory of Stress Physiology and Ecology of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xia Du
- Key Laboratory of Stress Physiology and Ecology of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanping Liang
- Key Laboratory of Stress Physiology and Ecology of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Abraham Allan Degen
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Xiukun Wu
- Key Laboratory of Stress Physiology and Ecology of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, China
| | - Kaixi Ji
- Key Laboratory of Stress Physiology and Ecology of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiaoxian Gao
- Ningxia Feed Engineering Technology Research Center, Ningxia University, Yinchuan, China
| | - Guosheng Xin
- Ningxia Feed Engineering Technology Research Center, Ningxia University, Yinchuan, China
| | - Haitao Cong
- Shandong Huakun Rural Revitalization Institute Co., Ltd., Jinan, China
| | - Guo Yang
- Key Laboratory of Stress Physiology and Ecology of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Yellow River Estuary Tan Sheep Institute of Industrial Technology, Dongying, China
| |
Collapse
|
18
|
Anzà S, Schneider D, Daniel R, Heistermann M, Sangmaneedet S, Ostner J, Schülke O. The long-term gut bacterial signature of a wild primate is associated with a timing effect of pre- and postnatal maternal glucocorticoid levels. MICROBIOME 2023; 11:165. [PMID: 37501202 PMCID: PMC10373267 DOI: 10.1186/s40168-023-01596-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 06/11/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND During development, elevated levels of maternal glucocorticoids (GCs) can have detrimental effects on offspring morphology, cognition, and behavior as well as physiology and metabolism. Depending on the timing of exposure, such effects may vary in strength or even reverse in direction, may alleviate with age, or may concern more stable and long-term programming of phenotypic traits. Maternal effects on gut bacterial diversity, composition, and function, and the persistence of such effects into adulthood of long-lived model species in the natural habitats remain underexplored. RESULTS In a cross-sectional sample of infant, juvenile, and adult Assamese macaques, the timing of exposure to elevated maternal GCs during ontogeny was associated with the gut bacterial community of the offspring. Specifically, naturally varying maternal GC levels during early but not late gestation or lactation were associated with reduced bacterial richness. The overall effect of maternal GCs during early gestation on the gut bacterial composition and function exacerbated with offspring age and was 10 times stronger than the effect associated with exposure during late prenatal or postnatal periods. Instead, variation in maternal GCs during the late prenatal or postnatal period had less pronounced or less stable statistical effects and therefore a weaker effect on the entire bacterial community composition, particularly in adult individuals. Finally, higher early prenatal GCs were associated with an increase in the relative abundance of several potential pro-inflammatory bacteria and a decrease in the abundance of Bifidobacterium and other anti-inflammatory taxa, an effect that exacerbated with age. CONCLUSIONS In primates, the gut microbiota can be shaped by developmental effects with strong timing effects on plasticity and potentially detrimental consequences for adult health. Together with results on other macaque species, this study suggests potential detrimental developmental effects similar to rapid inflammaging, suggesting that prenatal exposure to high maternal GC concentrations is a common cause underlying both phenomena. Our findings await confirmation by metagenomic functional and causal analyses and by longitudinal studies of long-lived, ecologically flexible primates in their natural habitat, including developmental effects that originate before birth. Video Abstract.
Collapse
Affiliation(s)
- Simone Anzà
- Behavioral Ecology Department, University of Goettingen, Goettingen, Germany.
- Primate Social Evolution Group, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany.
- Leibniz ScienceCampus Primate Cognition, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany.
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany.
| | - Dominik Schneider
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Michael Heistermann
- Endocrinology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
| | - Somboon Sangmaneedet
- Department of Pathobiology, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Julia Ostner
- Behavioral Ecology Department, University of Goettingen, Goettingen, Germany
- Primate Social Evolution Group, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
- Leibniz ScienceCampus Primate Cognition, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
| | - Oliver Schülke
- Behavioral Ecology Department, University of Goettingen, Goettingen, Germany
- Primate Social Evolution Group, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
- Leibniz ScienceCampus Primate Cognition, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
| |
Collapse
|
19
|
Song Z, Fang S, Guo T, Wen Y, Liu Q, Jin Z. Microbiome and metabolome associated with white spot lesions in patients treated with clear aligners. Front Cell Infect Microbiol 2023; 13:1119616. [PMID: 37082715 PMCID: PMC10111054 DOI: 10.3389/fcimb.2023.1119616] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/17/2023] [Indexed: 04/07/2023] Open
Abstract
White spot lesions (WSLs) have long been a noteworthy complication during orthodontic treatment. Recently, an increasing number of orthodontists have found that adolescents undergoing orthodontic treatment with clear aligners are at a higher risk of developing WSLs. The oral microbiota and metabolites are considered the etiologic and regulatory factors of WSLs, but the specific impact of clear aligners on the oral microbiota and metabolites is unknown. This study investigated the differences in the salivary microbiome and metabolome between adolescents with and without WSLs treated with clear aligners. Fifty-five adolescents (aged 11-18) with Invisalign appliances, 27 with and 28 without WSLs, were included. Saliva samples were analyzed using 16S rRNA gene sequencing and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS); the data were further integrated for Spearman correlation analysis. The relative abundances of 14 taxa, including Actinobacteria, Actinomycetales, Rothia, Micrococcaceae, Subdoligranulum, Capnocytophaga, Azospira, Olsenella, Lachnoanaerobaculum, and Abiotrophia, were significantly higher in the WSL group than in the control group. Metabolomic analysis identified 27 potential biomarkers, and most were amino acids, including proline and glycine. The metabolites were implicated in 6 metabolic pathways, including alanine, aspartate and glutamate metabolism; glycine, serine and threonine metabolism; and aminoacyl-tRNA biosynthesis. There was a correlation between the salivary microbial and metabolomic datasets, reflecting the impact of clear aligners on the metabolic activity of the oral flora. A concordant increase in the levels of Lachnoanaerobaculum, Rothia, Subdoligranulum and some amino acids had predictive value for WSL development. In summary, when adolescents undergo long-term clear aligner therapy with poor oral hygiene habits, clear aligners can disrupt the balance of the oral microecosystem and lead to oral microbiota dysbiosis, thereby increasing the risk of developing WSLs. Our findings might contribute to the understanding of the pathogenesis of WSLs and provide candidate biomarkers for the diagnosis and treatment of WSLs associated with clear aligners.
Collapse
Affiliation(s)
- Zhixin Song
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi’an, China
| | - Shishu Fang
- Department of Stomatology, General Hospital of Southern Theater Command of the Chinese People’s Liberation Army, Guangzhou, China
| | - Tao Guo
- Department of Orthodontics, TaiKang Shanghai Bybo Dental Hospital, Shanghai, China
| | - Yi Wen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi’an, China
| | - Qian Liu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi’an, China
- *Correspondence: Qian Liu, ; Zuolin Jin,
| | - Zuolin Jin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi’an, China
- *Correspondence: Qian Liu, ; Zuolin Jin,
| |
Collapse
|
20
|
Munson E, Lawhon SD, Burbick CR, Zapp A, Villaflor M, Thelen E. An Update on Novel Taxa and Revised Taxonomic Status of Bacteria Isolated from Domestic Animals Described in 2018 to 2021. J Clin Microbiol 2023; 61:e0028122. [PMID: 36533907 PMCID: PMC9945509 DOI: 10.1128/jcm.00281-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Novel bacterial taxonomy and nomenclature revisions can have significant impacts on clinical practice, disease epidemiology, and veterinary microbiology laboratory operations. Expansion of research on the microbiota of humans, animals, and insects has significant potential impacts on the taxonomy of organisms of clinical interest. Implications of taxonomic changes may be especially important when considering zoonotic diseases. Here, we address novel taxonomy and nomenclature revisions of veterinary significance. Noteworthy discussion centers around descriptions of novel mastitis pathogens in Streptococcaceae, Staphylococcaceae, and Actinomycetaceae; bovine reproductive tract pathogens in Corynebacteriaceae; novel members of Mannheimia spp., Leptospira spp., and Mycobacterium spp.; the transfer of Ochrobactrum spp. to Brucella spp.; and revisions to the genus Mycoplasma.
Collapse
Affiliation(s)
- Erik Munson
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Sara D. Lawhon
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA
| | - Claire R. Burbick
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Amanda Zapp
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Maia Villaflor
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Elizabeth Thelen
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| |
Collapse
|
21
|
Wu Z, Guo Y, Zhang J, Deng M, Xian Z, Xiong H, Liu D, Sun B. High-Dose Vitamin E Supplementation Can Alleviate the Negative Effect of Subacute Ruminal Acidosis in Dairy Cows. Animals (Basel) 2023; 13:ani13030486. [PMID: 36766375 PMCID: PMC9913405 DOI: 10.3390/ani13030486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 02/02/2023] Open
Abstract
The aim of this trial was to assess whether the supplementation of vitamin E (VE) in high-concentrate diets could improve the fermentation and blood metabolism in the rumen of dairy cows, thereby modulating the degree of the subacute ruminal acidosis (SARA) response and improving the performance. Seven Holstein cows (four fitted with ruminal cannulas) were fed three diets (total mixed rations) during three successive periods (each lasted for 18 d): (1) the control diet (CON); (2) a high-grain (HG) diet, which was the control diet supplied with a 15% finely ground wheat diet (FGW); and (3) a high-VE diet (HGE), which was the control diet provided with a 15% FGW and 12,000 IU of VE/head per day. The results indicated that VE was able to alleviate the reduction in the dry matter intake (DMI) and milk fat yield in cows caused by HG diets. The supplementation of VE significantly reduced the levels of lipopolysaccharide (LPS), histamine (HIS), and the total volatile fatty acid (TVFA) in the rumen. The supplementation of VE observably increased the antioxidant capacity of the milk and plasma. In addition, VE markedly reduced the plasma levels of endotoxin, HIS, and pro-inflammatory factors. The supplementation of VE significantly enriched the differential metabolites of the purine metabolism, cysteine, methionine metabolism, and ABC transporter synthesis pathway in the serum. The supplementation of VE also significantly increased the relative abundance of Succiniclasticum and decreased the relative abundance of Treponema, thus reducing the production of TVFA in the rumen. In conclusion, considering that the cows in this trial had high ketone levels (BHBA > 2.3 mmol/L), we found that VE could improve the rumen fermentation and blood metabolism by modulating the relative abundance of rumen microorganisms, thereby mitigating a range of adverse effects caused by SARA.
Collapse
|
22
|
Panah FM, Nielsen KD, Simpson GL, Schönherz A, Schramm A, Lauridsen C, Nielsen TS, Højberg O, Fredborg M, Purup S, Canibe N. A westernized diet changed the colonic bacterial composition and metabolite concentration in a dextran sulfate sodium pig model for ulcerative colitis. Front Microbiol 2023; 14:1018242. [PMID: 37138607 PMCID: PMC10150118 DOI: 10.3389/fmicb.2023.1018242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
Introduction Ulcerative colitis (UC) is characterized by chronic inflammation in the colonic epithelium and has a blurred etiology. A western diet and microbial dysbiosis in the colon were reported to play a role in UC development. In this study, we investigated the effect of a westernized diet, i.e., increasing fat and protein content by including ground beef, on the colonic bacterial composition in a dextran sulfate sodium (DexSS) challenged pig study. Methods The experiment was carried out in three complete blocks following a 2×2 factorial design including 24 six-week old pigs, fed either a standard diet (CT) or the standard diet substituted with 15% ground beef to simulate a typical westernized diet (WD). Colitis was induced in half of the pigs on each dietary treatment by oral administration of DexSS (DSS and WD+DSS, respectively). Samples from proximal and distal colon and feces were collected. Results and discussion Bacterial alpha diversity was unaffected by experimental block, and sample type. In proximal colon, WD group had similar alpha diversity to CT group and the WD+DSS group showed the lowest alpha diversity compared to the other treatment groups. There was a significant interaction between western diet and DexSS for beta diversity, based on Bray-Curtis dissimilarly. The westernized diet and DexSS resulted in three and seven differentially abundant phyla, 21 and 65 species, respectively, mainly associated with the Firmicutes and Bacteroidota phyla followed by Spirochaetota, Desulfobacterota, and Proteobacteria. The concentration of short-chain fatty acids (SCFA) was lowest in the distal colon. Treatment had a slight effect on the estimates for microbial metabolites that might have valuable biological relevance for future studies. The concentration of putrescine in the colon and feces and that of total biogenic amines was highest in the WD+DSS group. We conclude that a westernized diet could be a potential risk factor and an exacerbating agent for UC by reducing the abundance of SCFA-producing bacteria, increasing the abundance of pathogens such as Helicobacter trogontum, and by increasing the concentration of microbial proteolytic-derived metabolites in the colon.
Collapse
Affiliation(s)
- Farhad M. Panah
- Department of Veterinary and Animal Sciences, Aarhus University, Tjele, Denmark
- *Correspondence: Farhad M. Panah,
| | - Katrine D. Nielsen
- Department of Veterinary and Animal Sciences, Aarhus University, Tjele, Denmark
| | - Gavin L. Simpson
- Department of Veterinary and Animal Sciences, Aarhus University, Tjele, Denmark
| | - Anna Schönherz
- Department of Veterinary and Animal Sciences, Aarhus University, Tjele, Denmark
| | | | - Charlotte Lauridsen
- Department of Veterinary and Animal Sciences, Aarhus University, Tjele, Denmark
| | - Tina S. Nielsen
- Department of Veterinary and Animal Sciences, Aarhus University, Tjele, Denmark
| | - Ole Højberg
- Department of Veterinary and Animal Sciences, Aarhus University, Tjele, Denmark
| | - Marlene Fredborg
- Department of Veterinary and Animal Sciences, Aarhus University, Tjele, Denmark
| | - Stig Purup
- Department of Veterinary and Animal Sciences, Aarhus University, Tjele, Denmark
| | - Nuria Canibe
- Department of Veterinary and Animal Sciences, Aarhus University, Tjele, Denmark
| |
Collapse
|
23
|
Robles-Rodríguez C, Muley VY, González-Dávalos ML, Shimada A, Varela-Echavarría A, Mora O. Microbial colonization dynamics of the postnatal digestive tract of Bos indicus calves. Anim Sci J 2023; 94:e13872. [PMID: 37666790 DOI: 10.1111/asj.13872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/19/2023] [Accepted: 08/16/2023] [Indexed: 09/06/2023]
Abstract
The rumen and the jejunum of calves have distinct functional roles; the former is in the storage and fermentation of feed, and the latter is in transporting digesta to the ileum. It is unknown how nutrition changes the evolution of the microbiome of these organs after birth. We sequenced and characterized the entire microbiome of the rumen and the jejunum from Bos indicus calves of the Mexican Tropics to study their dynamics at Days 0, 7, 28, and 42 after birth. Operational taxonomic units (OTUs) belonging to 185 and 222 genera from 15 phylum were observed in the organs, respectively. The most abundant OTUs were Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes. We observed that proteobacterial species were outcompeted after the first week of life by Bacteroidetes and Firmicutes in the rumen and the jejunum, respectively. Moreover, Prevotella species were found to predominate in the rumen (36% of total OTUs), while the jejunum microbiome is composed of small proportions of several genera. Presumably, their high relative abundance assists in specialized functions and is more likely in fermentation since they are anaerobes. In summary, the rumen and the jejunum microbiomes were outcompeted by new microbiomes in a dynamic process that begins at birth.
Collapse
Affiliation(s)
- Carolina Robles-Rodríguez
- Posgrado en Ciencias de la Producción y de la Salud Animal, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - María Laura González-Dávalos
- Laboratorio de Rumiología y Metabolismo Nutricional, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| | - Armando Shimada
- Laboratorio de Rumiología y Metabolismo Nutricional, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| | | | - Ofelia Mora
- Laboratorio de Rumiología y Metabolismo Nutricional, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| |
Collapse
|
24
|
Wang YL, Wang WK, Wu QC, Zhang F, Li WJ, Li SL, Wang W, Cao ZJ, Yang HJ. In Situ Rumen Degradation Characteristics and Bacterial Colonization of Corn Silages Differing in Ferulic and p-Coumaric Acid Contents. Microorganisms 2022; 10:2269. [PMID: 36422339 PMCID: PMC9695934 DOI: 10.3390/microorganisms10112269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/05/2022] [Accepted: 11/05/2022] [Indexed: 03/05/2024] Open
Abstract
In plant cell wall, ferulic acid (FA) and p-coumaric acid (pCA) are commonly linked with arabinoxylans and lignin through ester and ether bonds. These linkages were deemed to hinder the access of rumen microbes to cell wall polysaccharides. The attachment of rumen microbes to plant cell wall was believed to have profound effects on the rate and the extent of forage digestion in rumen. The objective of this study was to evaluate the effect of bound phenolic acid content and their composition in corn silages on the nutrient degradability, and the composition of the attached bacteria. Following an in situ rumen degradation method, eight representative corn silages with different FA and pCA contents were placed into nylon bags and incubated in the rumens of three matured lactating Holstein cows for 0, 6, 12, 24, 36, 48, and 72 h, respectively. Corn silage digestibility was assessed by in situ degradation methods. As a result, the effective degradability of dry matter, neutral detergent fibre, and acid detergent fibre were negatively related to the ether-linked FA and pCA, and their ratio in corn silages, suggesting that not only the content and but also the composition of phenolic acids significantly affected the degradation characteristics of corn silages. After 24 h rumen fermentation, Firmicutes, Actinobacteria, and Bacteroidota were observed as the dominant phyla in the bacterial communities attached to the corn silages. After 72 h rumen fermentation, the rumen degradation of ester-linked FA was much greater than that of ester-linked pCA. The correlation analysis noted that Erysipelotrichaceae_UCG-002, Olsenella, Ruminococcus_gauvreauii_group, Acetitomaculum, and Bifidobacterium were negatively related to the initial ether-linked FA content while Prevotella was positively related to the ether-linked FA content and the ratio of pCA to FA. In summary, the present results suggested that the content of ether-linked phenolic acids in plant cell walls exhibited a more profound effect on the pattern of microbial colonization than the fibre content.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hong-Jian Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
25
|
Yi SW, Lee HG, So KM, Kim E, Jung YH, Kim M, Jeong JY, Kim KH, Oem JK, Hur TY, Oh SI. Effect of feeding raw potato starch on the composition dynamics of the piglet intestinal microbiome. Anim Biosci 2022; 35:1698-1710. [PMID: 36108705 PMCID: PMC9659463 DOI: 10.5713/ab.22.0045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 07/04/2022] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE Raw potato starch (RPS) is resistant to digestion, escapes absorption, and is metabolized by intestinal microflora in the large intestine and acts as their energy source. In this study, we compared the effect of different concentrations of RPS on the intestinal bacterial community of weaned piglets. METHODS Male weaned piglets (25-days-old, 7.03±0.49 kg) were either fed a corn/soybean-based control diet (CON, n = 6) or two treatment diets supplemented with 5% RPS (RPS5, n = 4) or 10% RPS (RPS10, n = 4) for 20 days and their fecal samples were collected. The day 0 and 20 samples were analyzed using a 16S rRNA gene sequencing technology, followed by total genomic DNA extraction, library construction, and high-throughput sequencing. After statistical analysis, five phyla and 45 genera accounting for over 0.5% of the reads in any of the three groups were further analyzed. Furthermore, short-chain fatty acids (SCFAs) in the day 20 fecal samples were analyzed using gas chromatography. RESULTS Significant changes were not observed in the bacterial composition at the phylum level even after 20 d post feeding (dpf); however, the abundance of Intestinimonas and Barnesiella decreased in both RPS treatment groups compared to the CON group. Consumption of 5% RPS increased the abundance of Roseburia (p<0.05) and decreased the abundance of Clostridium (p<0.01) and Mediterraneibacter (p< 0.05). In contrast, consumption of 10% RPS increased the abundance of Olsenella (p<0.05) and decreased the abundance of Campylobacter (p<0.05), Kineothrix (p<0.05), Paraprevotella (p<0.05), and Vallitalea (p<0.05). Additionally, acetate (p<0.01), butyrate (p<0.05), valerate (p = 0.01), and total SCFAs (p = 0.01) were upregulated in the RPS5 treatment group. CONCLUSION Feeding 5% RPS altered bacterial community composition and promoted gut health in weaned piglets. Thus, resistant starch as a feed additive may prevent diarrhea in piglets during weaning.
Collapse
Affiliation(s)
- Seung-Won Yi
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju 55365,
Korea
| | - Han Gyu Lee
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju 55365,
Korea,Laboratory of Veterinary Infectious Disease, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596,
Korea
| | - Kyoung-Min So
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju 55365,
Korea
| | - Eunju Kim
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju 55365,
Korea
| | - Young-Hun Jung
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju 55365,
Korea
| | - Minji Kim
- Animal Nutrition and Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365,
Korea
| | - Jin Young Jeong
- Animal Nutrition and Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365,
Korea
| | - Ki Hyun Kim
- Animal Welfare Research Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365,
Korea
| | - Jae-Ku Oem
- Laboratory of Veterinary Infectious Disease, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596,
Korea
| | - Tai-Young Hur
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju 55365,
Korea
| | - Sang-Ik Oh
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju 55365,
Korea,Corresponding Author: Sang-Ik Oh, Tel: +82-63-238-7228, Fax: +82-63-238-7235, E-mail:
| |
Collapse
|
26
|
Yue L, Chuan S, Yuanyuan W, Han D, Li K, Jinyuan M, Kaijun W. Effect of pH dynamic control on ethanol-lactic type fermentation (ELTF) performance of glucose. ENVIRONMENTAL TECHNOLOGY 2022; 43:4102-4114. [PMID: 34134601 DOI: 10.1080/09593330.2021.1942560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 06/04/2021] [Indexed: 06/12/2023]
Abstract
This study proposed a new ethanol-lactic type fermentation (ELTF) and explored the optimal control strategy. Using batch experiments, the effects of pH, temperature and organic loading (OL) on ELTF were investigated. The sum of ethanol and lactic acid yield was highest at whole-control pH value of 4.0, 35°C temperature and OL of 33 gCOD/L. To improve ELTF, the dynamic pH control in the long-term CSTR was adjusted at 4.0 (1-28 days), 5.0 (29-44 days) and 4.0 (46-62 days) successively. The high concentration of ethanol and lactic acid was 8190.5 mg/L at 16th day of pH 4.0. At pH of 5.0, the average acidogenesis rate and total concentration of fermentation products increased 111.0% and 128.0%, respectively. Organisms of Lactobacillus and Bifidobacterium were the predominant bacteria in reactor. It can achieve the directional regulation of ELTF and provides parameter support for the application of two-phase anaerobic digestion.
Collapse
Affiliation(s)
- Liu Yue
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, People's Republic of China
| | - Shi Chuan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, People's Republic of China
| | - Wu Yuanyuan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, People's Republic of China
| | - Dan Han
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, People's Republic of China
| | - Kun Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, People's Republic of China
| | - Ma Jinyuan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, People's Republic of China
| | - Wang Kaijun
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, People's Republic of China
| |
Collapse
|
27
|
Morinaga K, Kusada H, Sakamoto S, Murakami T, Toyoda A, Mori H, Meng XY, Takashino M, Murotomi K, Tamaki H. Granulimonas faecalis gen. nov., sp. nov., and Leptogranulimonas caecicola gen. nov., sp. nov., novel lactate-producing Atopobiaceae bacteria isolated from mouse intestines, and an emended description of the family Atopobiaceae. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two strictly anaerobic, Gram-stain-positive, non-motile bacteria (strains OPF53T and TOC12T) were isolated from mouse intestines. Strains OPF53T and TOC12T grew at pH 5.5–9.0 and 5.0–9.0, respectively, and at temperatures of 30–45 °C. The cell morphologies of these strains were short rods and rods, respectively, and the cells possessed intracellular granules. The major cellular fatty acids of OPF53T were C18 : 1
cis 9 and C18 : 1
cis 9 dimethyl acetal, whereas those of TOC12T were C18 : 0 and C18 : 1
cis 9. In OPF53T, the main end-products of modified peptone–yeast extract–glucose (PYG) fermentation were lactate, formate and butyrate, whereas, in addition to these acids, TOC12T also produced hydrogen. The genomes of OPF53T and TOC12T were respectively 2.2 and 2.0 Mbp in size with a DNA G+C contents of 69.1 and 58.7 %. The 16S rRNA gene sequences of OPF53T and TOC12T showed the highest similarity to members of the family
Atopobiaceae
, namely,
Olsenella phocaeensis
Marseille-P2936T (94.3 %) and
Olsenella umbonata
KCTC 15140T (93.2 %), respectively. Phylogenetic analyses revealed that both isolates formed distinct lineages from other genera of the family
Atopobiaceae
. In addition, the two strains were characterized by relatively low 16S rRNA gene sequence similarity (93.4 %) and can be distinguished by their distinctive traits (including cell shape, DNA G+C content, and major fatty acids profiles). On the basis of their polyphasic taxonomic properties, these isolates represent two noel species of two novel genera within the family
Atopobiaceae
, for which the names Granulimonas faecalis gen. nov., sp. nov. (OPF53T=JCM 35015T=KCTC 25474T) and Leptogranulimonas caecicola gen. nov., sp. nov. (TOC12T=JCM 35017T=KCTC 25472T) are proposed.
Collapse
Affiliation(s)
- Kana Morinaga
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1, Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Hiroyuki Kusada
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1, Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Sachiko Sakamoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1, Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Takumi Murakami
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Hiroshi Mori
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Xian-Ying Meng
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1, Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Motoko Takashino
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1, Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Kazutoshi Murotomi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1, Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Hideyuki Tamaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1, Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| |
Collapse
|
28
|
Morinaga K, Kusada H, Tamaki H. Bile Salt Hydrolases with Extended Substrate Specificity Confer a High Level of Resistance to Bile Toxicity on Atopobiaceae Bacteria. Int J Mol Sci 2022; 23:10980. [PMID: 36142891 PMCID: PMC9506489 DOI: 10.3390/ijms231810980] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
The bile resistance of intestinal bacteria is among the key factors responsible for their successful colonization of and survival in the mammalian gastrointestinal tract. In this study, we demonstrated that lactate-producing Atopobiaceae bacteria (Leptogranulimonas caecicola TOC12T and Granulimonas faecalis OPF53T) isolated from mouse intestine showed high resistance to mammalian bile extracts, due to significant bile salt hydrolase (BSH) activity. We further succeeded in isolating BSH proteins (designated LcBSH and GfBSH) from L. caecicola TOC12T and G. faecalis OPF53T, respectively, and characterized their enzymatic features. Interestingly, recombinant LcBSH and GfBSH proteins exhibited BSH activity against 12 conjugated bile salts, indicating that LcBSH and GfBSH have much broader substrate specificity than the previously identified BSHs from lactic acid bacteria, which are generally known to hydrolyze six bile salt isomers. Phylogenetic analysis showed that LcBSH and GfBSH had no affinities with any known BSH subgroup and constituted a new BSH subgroup in the phylogeny. In summary, we discovered functional BSHs with broad substrate specificity from Atopobiaceae bacteria and demonstrated that these BSH enzymes confer bile resistance to L. caecicola TOC12T and G. faecalis OPF53T.
Collapse
Affiliation(s)
- Kana Morinaga
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Ibaraki, Japan
| | - Hiroyuki Kusada
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Ibaraki, Japan
| | - Hideyuki Tamaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Ibaraki, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan
| |
Collapse
|
29
|
Target and Enhance Ethanol and Butyrate Production from Anaerobic Fermentation via the pH and Organic Loading Rate Combined Strategy. Appl Biochem Biotechnol 2022; 194:6367-6385. [PMID: 35921030 DOI: 10.1007/s12010-021-03729-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/21/2021] [Indexed: 11/02/2022]
Abstract
The large capacity production and low utilization rate increase the difficulty of fruit and vegetable wastes (FVW) treatment. Efficient and targeted recovery strategies can solve these problems. This study investigated and proposed combined strategies via pH and organic loading rate (OLR) to target and enhance ethanol- and butyrate-dominant acidogenic production in the FVW mixed culture fermentation. Under pH 4.0, OLR 18 gCOD/(L∙d), and mesophilic (35 °C), ethanol-dominant fermentation was formed. The long-term operation (168 days) showed that the highest ethanol yield was 0.33 g/gCOD which was greater than that in other studies. Also, the hydrolysis rate of ethanol-type fermentation reached 74.5%. Besides, butyrate-type fermentation was stable at yield 0.39 g/gCOD following conditions: pH 6.0, OLR 28 gCOD/(L∙d), and 35 °C, of which hydrolysis and acidogenic rate were 78.0% and 62.0%, respectively. The high relative abundance of Lactobacillus, Olsenella, and Bifidobacterium played positive role in achieving ethanol, butyrate, and lactate production among various metabolic pathways. The results revealed the pH value together with OLR was the valid parameter to affect product formation and composition during FVW fermentation.
Collapse
|
30
|
Gazzola G, Maria Braguglia C, Crognale S, Gallipoli A, Mininni G, Piemonte V, Rossetti S, Tonanzi B, Gianico A. Biorefining food waste through the anaerobic conversion of endogenous lactate into caproate: A fragile balance between microbial substrate utilization and product inhibition. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 150:328-338. [PMID: 35907330 DOI: 10.1016/j.wasman.2022.07.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/27/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
New technologies development and renewable source exploitation are key tools to realize the European Green Deal and to boost the bio-based economy. In this context, fermentation of organic residues as food waste is an efficient method to obtain marketable products such as carboxylic acids widely applied in industrial production. Under favourable thermodynamic conditions, short chain fatty acids deriving from primary fermentation could be biologically converted into medium-chain fatty acids as caproate via chain elongation (CE) process, by using ethanol or lactate as electron donors. This study evaluates the effectivity of producing caproate from Food Waste extract rich in organics with in situ electron donor production. The test carried out at OLR 15 gCOD L-1d-1 showed high Volatile Fatty Acids (from acetic to caproic acid) yields (0.37 g g-1CODfed), with a maximum caproate concentration of 8 g L-1. The associated microbiome was composed by lactate-producing bacteria (Corynebacterium, Lactobacillus, and Olsenella) and by chain elongators (Clostridiaceae and Caproiciproducens). By stressing the system with OLR increase up to 20 gCOD L-1d-1, the CE process was inhibited by the high concentration of caproate (low occurrence of Clostridiaceae and Caproiciproducens). Nevertheless, after few days of stop-feeding regime imposed to the system, the microbiome restored its capability to proceed with lactate-based CE pathways. Different batch tests carried out with the inhibited biomass at increasing initial caproate concentration confirmed its impact on lactate utilization kinetics.
Collapse
Affiliation(s)
- Giulio Gazzola
- Water Research Institute, National Research Council of Italy, CNR-IRSA, Area della Ricerca RM1, Via Salaria km 29.300, 00015 Monterotondo, Roma, Italy
| | - Camilla Maria Braguglia
- Water Research Institute, National Research Council of Italy, CNR-IRSA, Area della Ricerca RM1, Via Salaria km 29.300, 00015 Monterotondo, Roma, Italy
| | - Simona Crognale
- Water Research Institute, National Research Council of Italy, CNR-IRSA, Area della Ricerca RM1, Via Salaria km 29.300, 00015 Monterotondo, Roma, Italy
| | - Agata Gallipoli
- Water Research Institute, National Research Council of Italy, CNR-IRSA, Area della Ricerca RM1, Via Salaria km 29.300, 00015 Monterotondo, Roma, Italy
| | - Giuseppe Mininni
- Water Research Institute, National Research Council of Italy, CNR-IRSA, Area della Ricerca RM1, Via Salaria km 29.300, 00015 Monterotondo, Roma, Italy
| | - Vincenzo Piemonte
- Faculty of Engineering, University Campus Bio-Medico, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Simona Rossetti
- Water Research Institute, National Research Council of Italy, CNR-IRSA, Area della Ricerca RM1, Via Salaria km 29.300, 00015 Monterotondo, Roma, Italy
| | - Barbara Tonanzi
- Water Research Institute, National Research Council of Italy, CNR-IRSA, Area della Ricerca RM1, Via Salaria km 29.300, 00015 Monterotondo, Roma, Italy
| | - Andrea Gianico
- Water Research Institute, National Research Council of Italy, CNR-IRSA, Area della Ricerca RM1, Via Salaria km 29.300, 00015 Monterotondo, Roma, Italy.
| |
Collapse
|
31
|
Trachsel JM, Bearson BL, Kerr BJ, Shippy DC, Byrne KA, Loving CL, Bearson SMD. Short Chain Fatty Acids and Bacterial Taxa Associated with Reduced Salmonella enterica serovar I 4,[5],12:i:- Shedding in Swine Fed a Diet Supplemented with Resistant Potato Starch. Microbiol Spectr 2022; 10:e0220221. [PMID: 35532355 PMCID: PMC9241843 DOI: 10.1128/spectrum.02202-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/17/2022] [Indexed: 12/03/2022] Open
Abstract
Salmonella enterica serovar I 4,[5],12:i:- is a foodborne pathogen of concern because many isolates are multidrug-resistant (resistant to ≥3 antimicrobial classes) and metal tolerant. In this study, three in-feed additives were individually tested for their ability to reduce Salmonella I 4,[5],12:i:- shedding in swine: resistant potato starch (RPS), high amylose corn starch, and a fatty acid blend, compared with a standard control diet over 21 days. Only RPS-fed pigs exhibited a reduction in Salmonella fecal shedding, different bacterial community compositions, and different cecal short chain fatty acid (SCFA) profiles relative to control animals. Within the RPS treatment group, pigs shedding the least Salmonella tended to have greater cecal concentrations of butyrate, valerate, caproate, and succinate. Additionally, among RPS-fed pigs, several bacterial taxa (Prevotella_7, Olsenella, and Bifidobacterium, and others) exhibited negative relationships between their abundances of and the amount of Salmonella in the feces of their hosts. Many of these same taxa also had significant positive associations with cecal concentrations of butyrate, valerate, caproate, even though they are not known to produce these SCFAs. Together, these data suggest the RPS-associated reduction in Salmonella shedding may be dependent on the establishment of bacterial cross feeding interactions that result in the production of certain SCFAs. However, directly feeding a fatty acid mix did not replicate the effect. RPS supplementation could be an effective means to reduce multidrug-resistant (MDR) S. enterica serovar I 4,[5],12:i:- in swine, provided appropriate bacterial communities are present in the gut. IMPORTANCE Prebiotics, such as resistant potato starch (RPS), are types of food that help to support beneficial bacteria and their activities in the intestines. Salmonella enterica serovar I 4,[5],12:i:- is a foodborne pathogen that commonly resides in the intestines of pigs without disease, but can make humans sick if unintentionally consumed. Here we show that in Salmonella inoculated pigs, feeding them a diet containing RPS altered the colonization and activity of certain beneficial bacteria in a way that reduced the amount of Salmonella in their feces. Additionally, within those fed RPS, swine with higher abundance of these types of beneficial bacteria had less Salmonella I 4,[5],12:i:- in their feces. This work illustrates likely synergy between the prebiotic RPS and the presence of certain gut microorganisms to reduce the amount of Salmonella in the feces of pigs and therefore reduce the risk that humans will become ill with MDR Salmonella serovar I 4,[5],12:i:-.
Collapse
Affiliation(s)
- Julian M. Trachsel
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, USDA, ARS, Ames, Iowa, USA
| | - Bradley L. Bearson
- Agroecosystems Management Research Unit, National Laboratory for Agriculture and the Environment, USDA, ARS, Ames, Iowa, USA
| | - Brian J. Kerr
- Agroecosystems Management Research Unit, National Laboratory for Agriculture and the Environment, USDA, ARS, Ames, Iowa, USA
| | - Daniel C. Shippy
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, USDA, ARS, Ames, Iowa, USA
| | - Kristen A. Byrne
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, USDA, ARS, Ames, Iowa, USA
| | - Crystal L. Loving
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, USDA, ARS, Ames, Iowa, USA
| | - Shawn M. D. Bearson
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, USDA, ARS, Ames, Iowa, USA
| |
Collapse
|
32
|
Dietary Melanoidins from Biscuits and Bread Crust Alter the Structure and Short-Chain Fatty Acid Production of Human Gut Microbiota. Microorganisms 2022; 10:microorganisms10071268. [PMID: 35888986 PMCID: PMC9323165 DOI: 10.3390/microorganisms10071268] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 02/01/2023] Open
Abstract
Melanoidins are the products of the Maillard reaction between carbonyl and amino groups of macromolecules and are readily formed in foods, especially during heat treatment. In this study we utilized the three-stage Human Gut Simulator system to assess the effect of providing melanoidins extracted from either biscuits or bread crust to the human gut microbiota. Addition of melanoidins to the growth medium led to statistically significant alterations in the microbial community composition, and it increased short-chain fatty acid and antioxidant production by the microbiota. The magnitude of these changes was much higher for cultures grown with biscuit melanoidins. Several lines of evidence indicate that such differences between these melanoidin sources might be due to the presence of lipid components in biscuit melanoidin structures. Because melanoidins are largely not degraded by human gastrointestinal enzymes, they provide an additional source of microbiota-accessible nutrients to our gut microbes.
Collapse
|
33
|
Guan Y, Li Z, Kim MJ, Lee JY, Choe H, Park SH, Kang SW, Lee J, Lee JH, Kim HB, Lee JH, Kim E, Lee MK. Olsenella intestinalis sp. nov., isolated from cow feces. Arch Microbiol 2022; 204:384. [PMID: 35689096 DOI: 10.1007/s00203-022-03017-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/22/2022] [Indexed: 11/02/2022]
Abstract
A Gram-stain-negative, anaerobic, non-motile, rod-shaped bacterium, designated as BGYT1T, was isolated from the feces of a cow in Andong, Republic of Korea. It was studied using a polyphasic method to determine its taxonomic position. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain BGYT1T formed a lineage within the genus Olsenella and was most closely related to O. umbonate KCTC 15140T (98.2%). The complete genome sequence of strain BGYT1T was 2,476,083 bp long with a G + C content of 66.9 mol% and contained 1835 genes and 8 contigs. The N50 value was 604,117 bp. There were 50 tRNAs, 6 rRNAs (5S, 16S, 23S), 1778 CDSs and 2 BGCs and 1 tmRNA. The values for ANI (76.8%), AAI (67.3%), and dDDH (22.2%) compared to the closest related species were all below the threshold for bacterial species delineation. In addition, genes encoding the cell wall degrading enzymes such as chitinases, β-1,3 glucanases, and proteases were also detected. The strain was able to grow at pH 6.0-8.0 (optimum, pH 7.0), in the presence of 0.5-1.5% NaCl (optimum, 0.5%, w/v) and at the temperature range of 35-40 °C (optimum, 35 °C). The predominant fatty acids were C16:0 DMA (20.2%), C16:0 (20.2%), C18:0 (10.5%) and C18:1 cis 9 (17.0%). The polar lipids consisted of an unidentified phospholipid, four unidentified glycolipids and three unidentified lipids. Based on its phenotypic analyses, phylogenetic and physiological characteristics, strain BGYT1T represented a novel species within the genus Olsenella, for which the name Olsenella intestinalis sp. nov. is proposed. The type strain is BGYT1T (= KCTC 25379T = GDMCC 1.3011T).
Collapse
Affiliation(s)
- Yong Guan
- Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea.,Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Zhun Li
- Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea
| | - Min-Ju Kim
- Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea
| | - Jae-Young Lee
- Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea
| | - Hanna Choe
- Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea
| | - Seung-Hwan Park
- Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea
| | - Se Won Kang
- Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea
| | - Jiyoung Lee
- Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea
| | - Ju Huck Lee
- Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea
| | - Hyeun Bum Kim
- Department of Animal Resources Science, Dankook University, Cheonan, 31116, South Korea
| | - Ju-Hoon Lee
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eunju Kim
- Rural Development Administration, National Institute of Animal Science, Wanju, 55365, Republic of Korea
| | - Mi-Kyung Lee
- Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea.
| |
Collapse
|
34
|
Dietary Cysteamine Supplementation Remarkably Increased Feed Efficiency and Shifted Rumen Fermentation toward Glucogenic Propionate Production via Enrichment of Prevotella in Feedlot Lambs. Microorganisms 2022; 10:microorganisms10061105. [PMID: 35744623 PMCID: PMC9227252 DOI: 10.3390/microorganisms10061105] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 12/23/2022] Open
Abstract
Cysteamine (CS) is an essential nutritional regulator that improves the productive performance of animals by regulating somatotropic hormone secretion. To investigate the fattening potential and effects of CS on rumen microbial fermentation, 48 feedlot lambs were randomly assigned to four groups and fed diets supplemented with different CS concentrations (0, 20, 40, and 60 mg/kg BW). An increase in dietary CS concentrations linearly increased the average daily gain (ADG) and dry matter intake (p < 0.05) but decreased the feed-to-gain ratio (p < 0.01). For the serum hormone, increasing the dietary CS concentration linearly decreased somatostatin and leptin concentration (p < 0.01) but linearly increased the concentration of growth hormone and insulin-like growth factor 1 (p < 0.01). Regarding rumen fermentation, ruminal pH, ammonia-N, and butyrate content did not differ among the four treatments, although dietary CS supplementation linearly increased microbial protein and propionate and decreased the amount of acetate (p < 0.05). Furthermore, an increase in dietary CS concentrations quadratically decreased the estimated methane production and methane production per kg ADG (p < 0.05). High-throughput sequencing revealed that increased dietary CS concentrations quadratically increased Prevotella (p < 0.05), and Prevotella and norank_f__norank_o__Clostridia_UCG-014 were positively correlated with growth performance and rumen fermentation in a Spearman correlation analysis (r > 0.55, p < 0.05). Overall, a CS concentration higher than 20 mg/kg BW produced growth-promoting effects by inhibiting somatostatin concentrations and shifting the rumen toward glucogenic propionate fermentation by enriching Prevotella. In addition, Prevotella and norank_f__norank_o__Clostridia_UCG-014 were positively correlated with growth performance in lambs.
Collapse
|
35
|
Wu QC, Li WJ, Wang WK, Wang YL, Zhang F, Lv LK, Yang HJ. Foxtail millet (Setaria italica L.) silage compared peanut vine hay (Arachis hypogaea L.) exhibits greater feed efficiency via enhancing nutrient digestion and promoting rumen fermentation more efficiently in feedlotting lambs. Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2022.106704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
Yan Y, Li H, Li S, Liu S, Jia N, Liu Y, Liu Q, Li J, Han C. Olsenella uli-induced pneumonia: a case report. Ann Clin Microbiol Antimicrob 2022; 21:9. [PMID: 35232448 PMCID: PMC8889775 DOI: 10.1186/s12941-022-00499-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 02/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Olsenella uli is anaerobic or microaerophilic bacteria, commonly found in oral cavity or gastrointestinal tract, which has not been reported to be associated with lower respiratory tract infection. Herein, we report the first case of Olsenella uli infection in the lung. CASE PRESENTATION A 70-year-old male farmer with no history of other respiratory tract diseases developed a cough with bloody sputum three times a day without obvious causes or other concomitant symptoms. After a period of treatment with empirical antibiotic, his condition did not improve. The computed tomography (CT) and lung biopsy results indicated bilateral pneumonia, and Olsenella uli was identified by micromorphology, sequence analysis and mass spectrometry analysis recovered from sputum. Ceftazidime, a third generation cephalosporin was used for the treatment, and the patient recovered after 10 days. CONCLUSIONS Our report suggests a causative role of gingival bacteria in the pathogenesis of pneumonia, thus early diagnosis and prompt antibiotic therapy may play a role in the treatment of Olsenella uli induced pneumonia.
Collapse
Affiliation(s)
- Yufen Yan
- Department of Outpatient and Emergency, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, 266000, Qingdao, China.,Department of Pharmacology, Qingdao University School of Pharmacy, 26 Ningde Road, 266073, Qingdao, China
| | - Hong Li
- Department of Pathology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, 266000, Qingdao, China
| | - Shuai Li
- Department of Outpatient and Emergency, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, 266000, Qingdao, China
| | - Shuhui Liu
- Department of Clinical Laboratory, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, 266000, Qingdao, China
| | - Nan Jia
- Department of Clinical Laboratory, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, 266000, Qingdao, China
| | - Yanfei Liu
- Department of Clinical Laboratory, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, 266000, Qingdao, China
| | - Qing Liu
- Department of Clinical Laboratory, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, 266000, Qingdao, China
| | - Jing Li
- Department of Clinical Laboratory, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, 266000, Qingdao, China.
| | - Chunhua Han
- Department of Clinical Laboratory, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, 266000, Qingdao, China.
| |
Collapse
|
37
|
Du E, Guo W, Zhao N, Chen F, Fan Q, Zhang W, Huang S, Zhou G, Fu T, Wei J. Effects of diets with various levels of forage rape (Brassica napus) on growth performance, carcass traits, meat quality and rumen microbiota of Hu lambs. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1281-1291. [PMID: 34363700 DOI: 10.1002/jsfa.11466] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 07/15/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Apart from being an oil crop, forage rape (Brassica napus) can be used to feed ruminants. The objective of this study was to investigate the effects of pelleted total mixed ration (TMR) diets with various levels of forage rape on growth performance, carcass traits, meat quality, meat nutritional value and rumen microbiota of Hu lambs, which was important for the efficient utilization of forage rape and alleviating the shortage of high-quality forage in China. RESULTS Lambs fed on diets with 200-400 g kg-1 forage rape had greater average daily gain (ADG) and lower feed conversion ratio (FCR) than those fed on diets with 0-100 g kg-1 of forage rape (P < 0.05). As dietary forage rape levels increased, the content of intramuscular α-linolenic acid and a variety of amino acids in the muscle increased linearly (P < 0.05). No difference was found in carcass traits or meat quality among the dietary treatments (P > 0.05). However, the inclusion of forage rape increased the relative abundance of cellulolytic bacteria and short-chain fatty acid producers, including Succiniclasticum, Fibrobacter and members of the Lachnospiraceae. Besides, Succiniclasticum was found to be positively correlated with the final body weight of lambs. CONCLUSION TMR diets that included 200-400 g kg-1 forage rape could improve the growth performance of lambs, and elevated the content of intramuscular α-linolenic acid and a variety of amino acids in the muscle, accompanied by increased abundance of cellulolytic bacteria in the rumen.
Collapse
Affiliation(s)
- Encun Du
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wanzheng Guo
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Na Zhao
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Fang Chen
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Qiwen Fan
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wei Zhang
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Shaowen Huang
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Guangsheng Zhou
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tingdong Fu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jintao Wei
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
38
|
Lu Q, Niu J, Wu Y, Zhang W. Effects of Saccharomyces cerevisiae var. boulardii on growth, incidence of diarrhea, serum immunoglobulins, and rectal microbiota of suckling dairy calves. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.104875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
39
|
Wu G, Tang X, Fan C, Wang L, Shen W, Ren S, Zhang L, Zhang Y. Gastrointestinal Tract and Dietary Fiber Driven Alterations of Gut Microbiota and Metabolites in Durco × Bamei Crossbred Pigs. Front Nutr 2022; 8:806646. [PMID: 35155525 PMCID: PMC8836464 DOI: 10.3389/fnut.2021.806646] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal tract and dietary fiber (DF) are known to influence gut microbiome composition. However, the combined effect of gut segment and long-term intake of a high fiber diet on pig gut microbiota and metabolite profiles is unclear. Here, we applied 16S rRNA gene sequencing and untargeted metabolomics to investigate the effect of broad bean silage on the composition and metabolites of the cecal and jejunal microbiome in Durco × Bamei crossbred pigs. Twenty-four pigs were allotted to four graded levels of DF chow, and the content of jejunum and cecum were collected. Our results demonstrated that cecum possessed higher α-diversity and abundance of Bacteroidetes, unidentified Ruminococcaceae compared to jejunum, while jejunum possessed higher abundance of Lactobacillus, Streptococcus. DF intake significantly altered diversity of the bacterial community. The abundance of Bacteroidetes and Turicibacter increased with the increase of DF in cecum and jejunum respectively. Higher concentrations of amino acids and conjugated bile acids were detected in the jejunum, whereas free bile acids and fatty acids were enriched in the cecum. The concentrations of fatty acids, carbohydrate metabolites, organic acids, 2-oxoadipic acid, and succinate in cecum were higher in the high DF groups. Overall, the results indicate that the composition of bacteria and the microbiota metabolites were distinct in different gut segments. DF had a significant influence on the bacterial composition and structure in the cecum and jejunum, and that the cecal metabolites may further affect host health, growth, and slaughter performance.
Collapse
Affiliation(s)
- Guofang Wu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining, China
| | - Xianjiang Tang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Xining, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chao Fan
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Xining, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lei Wang
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining, China
| | - Wenjuan Shen
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining, China
| | - Shi'en Ren
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Xining, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Liangzhi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Xining, China
- *Correspondence: Liangzhi Zhang
| | - Yanming Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Xining, China
- Yanming Zhang
| |
Collapse
|
40
|
Li C, Wang G, Zhang Q, Huang Y, Li F, Wang W. Developmental changes of nutrient digestion in young lambs are influenced by weaning and associated with intestinal microbiota. Anim Biotechnol 2022:1-15. [PMID: 35085474 DOI: 10.1080/10495398.2022.2025817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Understanding the effects of weaning on the changes of digestive function could help to design efficient intervention strategies for promoting the development of the lamb during the early stages of life. In this study, 24 lambs were divided into two groups (control group, lambs were not weaned; and weaning group, lambs were weaned at 21 days of age). The growth, nutrient digestion, gastrointestinal enzyme activity, plasma biochemical indicators, and intestinal microbiota at 7-49 days were determined, as well as the impact of early weaning. The nutrient digestion changed rapidly with age, especially at 14-28 days (p < 0.05). Weaning reduced the dry matter (DM), crude protein (CP), and ether extract (EE) intake and digestion, but increased the starch, neutral detergent fiber (NDF), and acid detergent fiber (ADF) intake and digestion (p < 0.05). Weaning did not affect the overall jejunal microbiota (p > 0.05), but affected the relative abundance of certain bacteria taxa (p < 0.05). Lactic acid-producing bacteria, such as Olsenella, Bacillus, Sharpea, and Bifidobacterium are closely related to CP or EE digestion and growth performance (p < 0.05). In summary, we delineated the pattern of nutrient digestion and intestinal microbiota development in young lambs, and the impact of early weaning.
Collapse
Affiliation(s)
- Chong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China.,State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Guoxiu Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Qian Zhang
- Institute of Grassland Research of CAAS, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Yongliang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Fadi Li
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Weimin Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
41
|
Kong F, Liu Y, Wang S, Zhang Y, Wang W, Yang H, Lu N, Li S. Nutrient Digestibility, Microbial Fermentation, and Response in Bacterial Composition to Methionine Dipeptide: An In Vitro Study. BIOLOGY 2022; 11:biology11010093. [PMID: 35053091 PMCID: PMC8772947 DOI: 10.3390/biology11010093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 11/20/2022]
Abstract
Simple Summary The rumen microbiota plays an important role in maintaining microbiota homeostasis and promoting milk production synthesis through utilizing amino acids and non-protein nitrogen. Furthermore, various nitrogen sources have shown distinct effects on microbial growth rates. The methionine dipeptide (MD) is a bioactive peptide consisting of two methionine (Met) residues linked by a peptide bond. Although the role of MD in milk protein synthesis is established, little is known about its role in bacterial fermentation. The present study demonstrates that the various nitrogen sources could reshape microbiota differently, and MD could be more efficient than free Met in the rumen to support acetate producer growth. Our study provides some new insights into the relationship between ruminal microbiota of dairy cows and small peptides and points to potential strategies to effectively enhance the health condition and digestion ability of dairy cows. Abstract It is well known that the methionine dipeptide (MD) could enhance the dairy cows milking performance. However, there is still a knowledge gap of the effects of MD on the rumen fermentation characteristics, microbiota composition, and digestibility. This experiment was conducted to determine the effect of different nitrogen sources with a total mixed ration on in vitro nutrient digestibility, fermentation characteristics, and bacterial composition. The treatments included 5 mg urea (UR), 25.08 mg methionine (Met), 23.57 mg MD, and no additive (CON) in fermentation culture medium composed of buffer solution, filtrated Holstein dairy cow rumen fluid, and substrate (1 g total mixed ration). Nutrient digestibility was measured after 24 h and 48 h fermentation, and fermentation parameters and microbial composition were measured after 48 h fermentation. Digestibility of dry matter, crude protein, neutral detergent fiber (NDF), and acid detergent fiber (ADF) in the MD group at 48 h were significantly higher than in the CON and UR groups. The total volatile fatty acid concentration was higher in the MD group than in the other groups. In addition, 16S rRNA microbial sequencing results showed MD significantly improved the relative abundances of Succinivibrio, Anaerotruncus, and Treponema_2, whereas there was no significant difference between Met and UR groups. Spearman’s correlation analysis showed the relative abundance of Succinivibrio and Anaerotruncus were positively correlated with gas production, NDF digestibility, ADF digestibility, and acetate, propionate, butyrate, and total volatile fatty acid concentrations. Overall, our results suggested that the microbiota in the fermentation system could be affected by additional nitrogen supplementation and MD could effectively enhance the nutrient utilization in dairy cows.
Collapse
Affiliation(s)
- Fanlin Kong
- The State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (F.K.); (S.W.); (W.W.); (H.Y.)
| | - Yanfang Liu
- Beijing Jingwa Agricultural Science & Technology Innovation Center, Beijing 100193, China;
| | - Shuo Wang
- The State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (F.K.); (S.W.); (W.W.); (H.Y.)
| | - Yijia Zhang
- Laboratory of Anatomy of Domestic Animals, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
| | - Wei Wang
- The State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (F.K.); (S.W.); (W.W.); (H.Y.)
| | - Hongjian Yang
- The State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (F.K.); (S.W.); (W.W.); (H.Y.)
| | - Na Lu
- Beijing Jingwa Agricultural Science & Technology Innovation Center, Beijing 100193, China;
- Correspondence: (N.L.); (S.L.); Tel.: +86-10-62731254 (S.L.)
| | - Shengli Li
- The State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (F.K.); (S.W.); (W.W.); (H.Y.)
- Correspondence: (N.L.); (S.L.); Tel.: +86-10-62731254 (S.L.)
| |
Collapse
|
42
|
Lu LF, Yang Y, Zheng L, Zhang R, Liu GQ, Tu TY, Xu T, Luo X, Ran MF, Zhang LQ, Wang ST, Shen CH, Zhang YG. Reclassification of Olsenella gallinarum as Thermophilibacter gallinarum comb. nov. and description of Thermophilibacter immobilis sp. nov., isolated from the mud in a fermentation cellar used for the production of Chinese Luzhou-flavour Baijiu. Int J Syst Evol Microbiol 2021; 71. [PMID: 34914571 DOI: 10.1099/ijsem.0.005192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel Gram-stain-positive, strictly anaerobic, elliptical, non-motile and non-flagellated bacterium, designed LZLJ-2T, was isolated from the mud in a fermentation cellar used for the production of Chinese Luzhou-flavour Baijiu. Growth occurred at 28-45 °C (optimum, 37 °C), at pH 6.0-7.0 (optimum, pH 6.0) and with concentrations of NaCl up to 2 % (w/v; optimum, 0 %). On the basis of 16S rRNA gene sequence similarity, strain LZLJ-2T belonged to the genus Thermophilibacter and was most closely related to Thermophilibacter mediterraneus Marseille-P3256T (similarity 96.9 %), Olsenella gallinarum ClaCZ62T (similarity 96.6 %) and Thermophilibacter provencensis Marseille-P2912T (similarity 96.4 %). In addition, strain LZLJ-2T had high similarity to the genus Olsenella, including Olsenella profusa DSM 13989T (similarity 94.9 %), Olsenella umbonata DSM 22620T (similarity 94.9 %), Olsenella uli ATCC 49627T (similarity 94.22 %), Tractidigestivibacter scatoligenes DSM 28304T (similarity 93.9 %) and Paratractidigestivibacter faecalis KCTC 15699T (similarity 93.25 %). Comparative genome analysis showed that orthoANI values between strain LZLJ-2T and Thermophilibacter mediterraneus Marseille-P3256T, Olsenella gallinarum ClaCZ62T, Thermophilibacter provencensis Marseille-P2912T, Olsenella profusa DSM 13989T, Olsenella umbonata DSM 22620T, Olsenella uli ATCC 49627T, Tractidigestivibacter scatoligenes DSM 28304T and Paratractidigestivibacter faecalis KCTC 15699T were 78.68, 78.99, 78.29, 73.40, 74.00, 74.30, 75.08 and 77.23 %, and the genome-to-genome distance values were respectively 22.3, 22.5, 22.4, 19.6, 20.5, 19.7, 20.5 and 21.5 %. The genomic DNA G+C content of strain LZLJ-2T was 65.21 mol%. The predominant cellular fatty acids (>10 %) of strain LZLJ-2T were C18 : 1 cis 9 (33.7 %), C14 : 0 (22.0 %) and C18 : 1 cis 9 DMA (13.5 %). d-Glucose, sucrose, mannose, maltose, lactose (weak), salicin, glycerol (weak), cellobiose and trehalose (weak) could be used by strain LZLJ-2T as sole carbon sources. Enzyme activity results showed positive reactions with valine arylamidase, leucine arylamidase, crystine arylamidase, acid phosphatase, alkaline phosphatase, esterase (C4) (weakly positive), naphthol-AS-BI-phosphohydrolase, α-glucosidase and β-glucosidase. The major end products of glucose fermentation were lactic acid and acetic acid. It produced skatole from indole acetic acid, and produced p-cresol from modified peptone-yeast extract medium with glucose. Based on the 16S rRNA gene trees as well as the genome core gene tree, it is suggested that Olsenella gallinarum are transferred to genus Thermophilibacter as Thermophilibacter gallinarum comb. nov. Based on phenotypic, genotypic and phylogenetic data, strain LZLJ-2T is considered to represent a novel species of the genus Thermophilibacter, for which the name Thermophilibacter immobilis sp. nov. is proposed. The type strain is LZLJ-2T (=KCTC 25162T=JCM 34224T).
Collapse
Affiliation(s)
- Ling-Fei Lu
- Luzhou Laojiao Brewing Co., Ltd., Luzhou 646000, PR China.,Luzhou Laojiao Co., Ltd., Luzhou 646000, PR China.,Luzhou Pinchuang Technology Co., Ltd., Luzhou 646000, PR China.,National Engineering Research Center of Solid-State Brewing, Luzhou 646000, PR China
| | - Yang Yang
- Luzhou Laojiao Co., Ltd., Luzhou 646000, PR China.,Luzhou Pinchuang Technology Co., Ltd., Luzhou 646000, PR China.,National Engineering Research Center of Solid-State Brewing, Luzhou 646000, PR China
| | - Lei Zheng
- Luzhou Laojiao Co., Ltd., Luzhou 646000, PR China.,Luzhou Pinchuang Technology Co., Ltd., Luzhou 646000, PR China.,National Engineering Research Center of Solid-State Brewing, Luzhou 646000, PR China
| | - Rui Zhang
- Luzhou Laojiao Co., Ltd., Luzhou 646000, PR China.,Luzhou Pinchuang Technology Co., Ltd., Luzhou 646000, PR China.,National Engineering Research Center of Solid-State Brewing, Luzhou 646000, PR China
| | - Guang-Qian Liu
- Luzhou Laojiao Co., Ltd., Luzhou 646000, PR China.,Luzhou Pinchuang Technology Co., Ltd., Luzhou 646000, PR China.,National Engineering Research Center of Solid-State Brewing, Luzhou 646000, PR China
| | - Ting-Yao Tu
- Luzhou Laojiao Co., Ltd., Luzhou 646000, PR China.,Luzhou Pinchuang Technology Co., Ltd., Luzhou 646000, PR China.,National Engineering Research Center of Solid-State Brewing, Luzhou 646000, PR China
| | - Tao Xu
- Luzhou Laojiao Co., Ltd., Luzhou 646000, PR China.,Luzhou Pinchuang Technology Co., Ltd., Luzhou 646000, PR China.,National Engineering Research Center of Solid-State Brewing, Luzhou 646000, PR China
| | - Xue Luo
- Luzhou Laojiao Co., Ltd., Luzhou 646000, PR China.,Luzhou Pinchuang Technology Co., Ltd., Luzhou 646000, PR China.,National Engineering Research Center of Solid-State Brewing, Luzhou 646000, PR China
| | - Mao-Fang Ran
- Luzhou Laojiao Co., Ltd., Luzhou 646000, PR China.,Luzhou Pinchuang Technology Co., Ltd., Luzhou 646000, PR China.,National Engineering Research Center of Solid-State Brewing, Luzhou 646000, PR China
| | - Li-Qiang Zhang
- Luzhou Laojiao Co., Ltd., Luzhou 646000, PR China.,Luzhou Pinchuang Technology Co., Ltd., Luzhou 646000, PR China.,National Engineering Research Center of Solid-State Brewing, Luzhou 646000, PR China
| | - Song-Tao Wang
- Luzhou Laojiao Co., Ltd., Luzhou 646000, PR China.,Luzhou Pinchuang Technology Co., Ltd., Luzhou 646000, PR China.,National Engineering Research Center of Solid-State Brewing, Luzhou 646000, PR China
| | - Cai-Hong Shen
- Luzhou Laojiao Brewing Co., Ltd., Luzhou 646000, PR China.,Luzhou Laojiao Co., Ltd., Luzhou 646000, PR China.,Luzhou Pinchuang Technology Co., Ltd., Luzhou 646000, PR China.,National Engineering Research Center of Solid-State Brewing, Luzhou 646000, PR China
| | - Ying-Gang Zhang
- Luzhou Laojiao Co., Ltd., Luzhou 646000, PR China.,Luzhou Pinchuang Technology Co., Ltd., Luzhou 646000, PR China.,National Engineering Research Center of Solid-State Brewing, Luzhou 646000, PR China
| |
Collapse
|
43
|
Oh JK, Vasquez R, Kim SH, Hwang IC, Song JH, Park JH, Kim IH, Kang DK. Multispecies probiotics alter fecal short-chain fatty acids and lactate levels in weaned pigs by modulating gut microbiota. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 63:1142-1158. [PMID: 34796353 PMCID: PMC8564300 DOI: 10.5187/jast.2021.e94] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/20/2021] [Accepted: 07/27/2021] [Indexed: 12/18/2022]
Abstract
Short-chain fatty acids (SCFAs) are metabolic products produced during the
microbial fermentation of non-digestible fibers and play an important role in
metabolic homeostasis and overall gut health. In this study, we investigated the
effects of supplementation with multispecies probiotics (MSPs) containing
Bacillus amyloliquefaciens, Limosilactobacillus
reuteri, and Levilactobacillus brevis on the gut
microbiota, and fecal SCFAs and lactate levels of weaned pigs. A total of 38
pigs weaned at 4 weeks of age were fed either a basal diet or a diet
supplemented with MSPs for 6 weeks. MSP administration significantly increased
the fecal concentrations of lactate (2.3-fold; p <
0.01), acetate (1.8-fold; p < 0.05), and formate
(1.4-fold; p < 0.05). Moreover, MSP supplementation
altered the gut microbiota of the pigs by significantly increasing the
population of potentially beneficial bacteria such as
Olsenella, Catonella,
Catenibacterium, Acidaminococcus, and
Ruminococcaceae. MSP supplementation also decreased the
abundance of pathogenic bacteria such as Escherichia and
Chlamydia. The modulation of the gut microbiota was
observed to be strongly correlated with the changes in fecal SCFAs and lactate
levels. Furthermore, we found changes in the functional pathways present within
the gut, which supports our findings that MSP modulates the gut microbiota and
SCFAs levels in pigs. The results support the potential use of MSPs to improve
the gut health of animals by modulating SCFAs production.
Collapse
Affiliation(s)
- Ju Kyoung Oh
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research (CTMR), Karolinska Institutet, Stockholm 17177, Sweden
| | - Robie Vasquez
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Korea
| | - Sang Hoon Kim
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Korea
| | - In-Chan Hwang
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Korea
| | - Ji Hoon Song
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Korea
| | - Jae Hong Park
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Korea
| | - In Ho Kim
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Korea
| | - Dae-Kyung Kang
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Korea
| |
Collapse
|
44
|
Castro DJ, Cerón-Cucchi ME, Ortiz-Chura A, Depetris GJ, Irazoqui JM, Amadio AF, Cravero S, Cantón GJ. Ruminal effects of excessive dietary sulphur in feedlot cattle. J Anim Physiol Anim Nutr (Berl) 2021; 106:978-987. [PMID: 34708462 DOI: 10.1111/jpn.13652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 11/28/2022]
Abstract
Sulphur (S) dietary excess can limit productive performance and increase polioencephalomalacia (PEM) incidence in feedlot cattle (FC). Sulphur excess ingested is transformed to hydrogen sulphide (H2 S) by sulfo-reducing ruminal bacteria (SRB), being high ruminal H2 S concentration responsible for aforementioned damages. As the ruminal mechanisms involved in H2 S concentrations increase have not been elucidated, this study aimed to evaluate the ruminal environment, and the association between ruminal H2 S and dissimilatory SRB (DSRB) concentration in FC experimentally subjected to S dietary excess. Twelve crossbred steers were randomly assigned to one of two dietary S levels (6 animals per treatment): low (LS, 0.19% S) and high (HS, 0.39% S obtained by sodium sulfate inclusion at 0.86%). The study lasted 38 days, and on days 0, 22 and 38, ruminal gas samples were taken to quantify H2 S concentration, and ruminal fluid to determine total bacteria, DSRB, protozoa, volatile fatty acid and ammonia nitrogen concentration. For ruminal H2 S concentration, S dietary × sampling day interaction was significant (p < 0.001), so that the greater concentration was observed on days 22 and 38 with the HS diet. The remaining ruminal parameters were not affected by dietary S level, and no significant correlation between H2 S and DSRB concentrations was observed. The ruminal adaptation that maximizes H2 S production in FC consuming S excess does not seem to be associated with biological or biochemical alterations, nor DSRB concentration changes. The microbial diversity and ruminal environment were resilient to the S excess evaluated, suggesting that 0.39% of dietary S achieved by 0.86% sodium sulfate addition, could be used without disturbances on digestion nor health of FC.
Collapse
Affiliation(s)
- Damián Jesús Castro
- National Institute of Agricultural Technology (INTA), EEA Marcos Juárez, Córdoba, Argentina
| | | | | | | | | | | | - Silvio Cravero
- Institute of Agrobiotechnology and Molecular Biology (IABIMO), UEDD INTA-CONICET, Hurlingham, Argentina
| | | |
Collapse
|
45
|
Zhao Q, Arhin SG, Yang Z, Liu H, Li Z, Anwar N, Papadakis VG, Liu G, Wang W. pH regulation of the first phase could enhance the energy recovery from two-phase anaerobic digestion of food waste. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:1370-1380. [PMID: 33528855 DOI: 10.1002/wer.1527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
The effect of pH regulation in phase I on hydrolysis and acidogenesis rate, metabolites production, microbial community, and the overall energy recovery efficiency during two-phase anaerobic digestion (AD) of food waste (FW) was investigated. pH strongly affected the acidogenesis rate and the yield of the fermentation products. The highest acidogenesis efficiency (60.4%) and total volatile fatty acids (VFA)/ethanol concentration (12.4 g/L) were obtained at pH 8 during phase I. Microbial community analysis revealed that Clostridium IV was enriched at pH 8, relating to the accumulation of butyrate. Also, Clostridium sensu stricto played a crucial role in hydrogen production and was abundant at pH 6, resulting in the highest hydrogen yield (212.2 ml/g VS). In phase II, the highest cumulative methane yield (412.6 ml/g VS) was obtained at pH 8. By considering the hydrogen and methane production stages, the highest energy yield (22.8 kJ/g VS, corresponding to a 76.4% recovery efficiency) was generated at pH 8, which indicates that pH 8 was optimal for energy recovery during two-phase AD of FW. Overall, the results demonstrated the possibility of increasing the energy recovery from FW by regulating the pH in the hydrolysis/acidogenesis phase based on the two-phase AD system. PRACTITIONER POINTS: pH 8 was suitable for hydrolysis, acidogenesis, and methanogenesis. High hydrogen yields were obtained at pH 5-8 (about 200 ml/d). Clostridium sensu stricto might have played a crucial role in hydrogen production. High methane production (about 400 ml/g VS) was obtained at pH 7-9. pH 8 was optimal for energy recovery from FW with an efficiency of 76.4% (22.8 kJ/g VS).
Collapse
Affiliation(s)
- Qing Zhao
- Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, Beijing, China
| | - Samuel Gyebi Arhin
- Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, Beijing, China
| | - Ziyi Yang
- Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, Beijing, China
| | - Haopeng Liu
- Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, Beijing, China
| | - Zongye Li
- Beijing No. 80 High School, Beijing, China
| | - Naveed Anwar
- Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, Beijing, China
| | - Vagelis G Papadakis
- Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Guangqing Liu
- Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, Beijing, China
| | - Wen Wang
- Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
46
|
Complete Genome Sequence of Atopobiaceae Bacterium Strain P1, Isolated from Mouse Feces. Microbiol Resour Announc 2021; 10:e0062721. [PMID: 34264119 PMCID: PMC8280852 DOI: 10.1128/mra.00627-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Atopobiaceae bacterium strain P1 (Actinobacteria, Coriobacteriales) was isolated from mouse feces. Here, we report the complete genome sequence of this strain, which has a total size of 2,028,478 bp and a G+C content of 58.6%.
Collapse
|
47
|
Gaowa N, Li W, Gelsinger S, Murphy B, Li S. Analysis of Host Jejunum Transcriptome and Associated Microbial Community Structure Variation in Young Calves with Feed-Induced Acidosis. Metabolites 2021; 11:414. [PMID: 34201826 PMCID: PMC8303401 DOI: 10.3390/metabo11070414] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 12/05/2022] Open
Abstract
Diet-induced acidosis imposes a health risk to young calves. In this study, we aimed to investigate the host jejunum transcriptome changes, along with its microbial community variations, using our established model of feed-induced ruminal acidosis in young calves. Eight bull calves were randomly assigned to two diet treatments beginning at birth (a starch-rich diet, Aci; a control diet, Con). Whole-transcriptome RNA sequencing was performed on the jejunum tissues collected at 17 weeks of age. Ribosomal RNA reads were used for studying microbial community structure variations in the jejunum. A total of 853 differentially expressed genes were identified (402 upregulated and 451 downregulated) between the two groups. The cell cycle and the digestion and absorption of protein in jejunal tissue were affected by acidosis. Compared to the control, genera of Campylobacter, Burkholderia, Acidaminococcus, Corynebacterium, and Olsenella significantly increased in abundance in the Aci group, while Lachnoclostridium and Ruminococcus were significantly lower in the Aci group. Expression changes in the AXL gene were associated with the abundance variations of a high number of genera in jejunum. Our study provided a snapshot of the transcriptome changes in the jejunum and its associated meta-transcriptome changes in microbial communities in young calves with feed-induced acidosis.
Collapse
Affiliation(s)
- Naren Gaowa
- College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing 100193, China;
| | - Wenli Li
- Cell Wall Biology and Utilization Research Unit, US Dairy Forage Research Center, Agricultural Research Service, US Department of Agriculture, 1925 Linden Drive, Madison, WI 53706, USA;
| | - Sonia Gelsinger
- Department of Dairy Science, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Brianna Murphy
- Cell Wall Biology and Utilization Research Unit, US Dairy Forage Research Center, Agricultural Research Service, US Department of Agriculture, 1925 Linden Drive, Madison, WI 53706, USA;
| | - Shengli Li
- College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing 100193, China;
| |
Collapse
|
48
|
Feng K, Wang Q, Li H, Du X, Zhang Y. Microbial mechanism of enhancing methane production from anaerobic digestion of food waste via phase separation and pH control. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 288:112460. [PMID: 33780819 DOI: 10.1016/j.jenvman.2021.112460] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/10/2021] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
Phase separation and pH control are commonly used to improve methane production during anaerobic digestion (AD) of food waste, but their influencing mechanisms have not been fully discovered through microbial analysis. In this study, single-phase AD (SPAD), two-phase AD without pH control (TPAD-pHUC), and TPAD with fermentation pH controlled at 6.0 and 4.5 were conducted. The results showed that phase separation decreased the ratio of total bacteria to total archaea in the methanogenic phase. At the organic loading rate (OLR) of 1.9 g/(L·d), methanogenesis was dominated by acetoclastic Methanosaeta in both SPAD and TPAD-pHUC, while elevated Methanoculleus and active hydrogen production initiated a shift from the acetoclastic to hydrogenotrophic pathway in SPAD as OLR increased, eventually resulting in excessive acidification at OLR 3.2 g/(L·d). TPAD-pHUC was dominated by Methanosaeta with scarce hydrogen production genes, and thus maintained a delicate balance between fewer acidogens and methanogens at OLR 3.2-3.7 g/(L·d). TPAD with pH control exhibited higher methane yield (460-482 ml/g) at OLR 1.9 g/(L·d) due to the enhancement of protein degradation and the conversion from methylated compounds to methane by Methanosarcina. High Na+ concentration facilitated the proliferation of hydrogen production bacteria, but inhibited acetoclastic methanogenesis at OLR 2.4 g/(L·d). In comparison with SPAD and pH control, TPAD without pH control, integrating 4 d acidogenesis and 22 d methanogenesis, exhibited the best and steady performance at OLR 3.7 g/(L·d) with methane production exceeding 370 ml/g.
Collapse
Affiliation(s)
- Kai Feng
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Qiao Wang
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Huan Li
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China; Guangdong Engineering Research Center of Urban Water Cycle and Environment Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China.
| | - Xinrui Du
- Shenzhen Zhonghuanbohong Environmental Technology Co, Ltd, Shenzhen, 518055, China
| | - Yangyang Zhang
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
49
|
Investigation of Immunomodulatory and Gut Microbiota-Altering Properties of Multicomponent Nutraceutical Prepared from Lactic Acid Bacteria, Bovine Colostrum, Apple Production By-Products and Essential Oils. Foods 2021; 10:foods10061313. [PMID: 34200426 PMCID: PMC8229151 DOI: 10.3390/foods10061313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 01/10/2023] Open
Abstract
Dietary components, such as lactic acid bacteria (LAB), bovine colostrum, apple production by-products, and essential oils, can favorably alter the host immune system and gut microbiota, however, their cumulative effect as multicomponent nutraceutical supplement has not been investigated. Therefore, the present study is the first one to evaluate a combination of LAB, bovine colostrum, dehydrated apple pomace, and essential oils for their immunomodulatory and prebiotic properties in the swine model. This study shows that supplementary feeding of pigs using multicomponent nutraceutical resulted in a statistically significant decrease in proportions of T cytotoxic and double-positive (CD4+CD8+low) cells within the CD3+ cell population at 28 DPI, compared to the beginning of the experiment (0DPI). Conversely, a statistically significant increase in proportions of B cells (accompanied by an increase in IgG concentration) and macrophage/monocyte cells within viable cell population at 28 DPI, compared to the beginning of the experiments, was observed. Furthermore, changes in the bacterial composition of gut microbiota in pigs fed with multicomponent nutraceutical changed significantly, with a 1.78 times higher number of probiotic strains (Bifidobacterium, Streptococcus, Faecilbacterium) at the end of the experiment, compared to control group animals. This study shows a positive effect of the nutraceutical formula used on the changes of gut microbiota by facilitating an increase in probiotic bacteria strains and possible anti-inflammatory properties.
Collapse
|
50
|
Zgheib R, Anani H, Meng MM, Mailhe M, Ricaboni D, Morand A, Caputo A, Traore SI, Fontanini A, Armstrong N, Raoult D, Fournier PE. New human-associated species of the family Atopobiaceae and proposal to reclassify members of the genus Olsenella. Int J Syst Evol Microbiol 2021; 71. [PMID: 34047688 DOI: 10.1099/ijsem.0.004819] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Five novel bacterial strains, Marseille-P1476T (=CSURP1476T=DSM 100642T), Marseille-P3256T (=CSURP3256T=CECT 9977T), Marseille-P2936T (=CSURP2936T=DSM 103159T), Marseille-P2912T (=CSURP2912T=DSM 103345T) and Marseille-P3197T (=CSURP3197T=CCUG 71847T), were isolated from various human specimens. These five strains were not identified at the species level by matrix-assisted laser desorption/ionization time of flight mass spectrometry. Following 16S rRNA gene sequence comparisons with the GenBank database, the highest nucleotide sequence similarities of all studied strains were obtained to members of the paraphyletic genus Olsenella. A polyphasic taxono-genomic strategy (16S rRNA gene-based and core genome-based phylogeny, genomic comparison, phenotypic and biochemical characteristics) enabled us to better classify these strains and reclassify Olsenella species. Among the studied strains, Marseille-P1476T, Marseille-P2936T and Marseille-P3197T belonged to new species of the genus Olsenella for which we propose the names Olsenella massiliensis sp. nov., Olsenella phocaeensis sp. nov. and Olsenella urininfantis sp. nov., respectively. Strains Marseille-P2912T and Marseille-P3256T belonged to a new genus for which the names Thermophilibacter provencensis gen. nov., sp. nov. and Thermophilibacter mediterraneus gen. nov., sp. nov. are proposed, respectively. We also propose the creation of the genera Parafannyhessea gen. nov., Tractidigestivibacter gen. nov. and Paratractidigestivibacter gen. nov. and the reclassification of Olsenella umbonata as Parafannyhessea umbonata comb. nov., Olsenella scatoligenes as Tractidigestivibacter scatoligenes comb. nov., and Olsenella faecalis as Paratractidigestivibacter faecalis comb. nov.
Collapse
Affiliation(s)
- Rita Zgheib
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France.,Aix Marseille Université, Institut de Recherche pour le Développement (IRD), Service de Santé des Armées, AP-HM, UMR Vecteurs Infections Tropicales et Méditerranéennes (VITROME), Marseille, France
| | - Hussein Anani
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France.,Aix Marseille Université, Institut de Recherche pour le Développement (IRD), Service de Santé des Armées, AP-HM, UMR Vecteurs Infections Tropicales et Méditerranéennes (VITROME), Marseille, France
| | - Marine Makoa Meng
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France.,Aix Marseille Université, Institut de Recherche pour le Développement (IRD), Service de Santé des Armées, AP-HM, UMR Vecteurs Infections Tropicales et Méditerranéennes (VITROME), Marseille, France
| | - Morgane Mailhe
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Davide Ricaboni
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), UMR Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France.,Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Aurélie Morand
- Pédiatrie spécialisée et médecine infantile, Hôpital de la Timone, AP-HM, Marseille, France.,Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), UMR Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France
| | - Aurelia Caputo
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), UMR Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France.,Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Sory Ibrahima Traore
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), UMR Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France.,Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Anthony Fontanini
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Nicholas Armstrong
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), UMR Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France.,Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Didier Raoult
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), UMR Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France.,Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Pierre Edouard Fournier
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France.,Aix Marseille Université, Institut de Recherche pour le Développement (IRD), Service de Santé des Armées, AP-HM, UMR Vecteurs Infections Tropicales et Méditerranéennes (VITROME), Marseille, France
| |
Collapse
|