1
|
Nunez H, Nieto PA, Mars RA, Ghavami M, Sew Hoy C, Sukhum K. Early life gut microbiome and its impact on childhood health and chronic conditions. Gut Microbes 2025; 17:2463567. [PMID: 39916516 PMCID: PMC11810090 DOI: 10.1080/19490976.2025.2463567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/20/2024] [Accepted: 02/02/2025] [Indexed: 02/12/2025] Open
Abstract
The development of the gut microbiome is crucial to human health, particularly during the first three years of life. Given its role in immune development, disturbances in the establishment process of the gut microbiome may have long term consequences. This review summarizes evidence for these claims, highlighting compositional changes of the gut microbiome during this critical period of life as well as factors that affect gut microbiome development. Based on human and animal data, we conclude that the early-life microbiome is a determinant of long-term health, impacting physiological, metabolic, and immune processes. The early-life gut microbiome field faces challenges. Some of these challenges are technical, such as lack of standardized stool collection protocols, inconsistent DNA extraction methods, and outdated sequencing technologies. Other challenges are methodological: small sample sizes, lack of longitudinal studies, and poor control of confounding variables. To address these limitations, we advocate for more robust research methodologies to better understand the microbiome's role in health and disease. Improved methods will lead to more reliable microbiome studies and a deeper understanding of its impact on health outcomes.
Collapse
Affiliation(s)
- Harold Nunez
- Seeding Inc, DBA Tiny Health, Austin, Texas, USA
| | | | - Ruben A. Mars
- Seeding Inc, DBA Tiny Health, Austin, Texas, USA
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | | | | | | |
Collapse
|
2
|
Sall I, Foxall R, Felth L, Maret S, Rosa Z, Gaur A, Calawa J, Pavlik N, Whistler JL, Whistler CA. Gut dysbiosis was inevitable, but tolerance was not: temporal responses of the murine microbiota that maintain its capacity for butyrate production correlate with sustained antinociception to chronic morphine. Gut Microbes 2025; 17:2446423. [PMID: 39800714 PMCID: PMC11730370 DOI: 10.1080/19490976.2024.2446423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 11/24/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
The therapeutic benefits of opioids are compromised by the development of analgesic tolerance, which necessitates higher dosing for pain management thereby increasing the liability for drug dependence and addiction. Rodent models indicate opposing roles of the gut microbiota in tolerance: morphine-induced gut dysbiosis exacerbates tolerance, whereas probiotics ameliorate tolerance. Not all individuals develop tolerance, which could be influenced by differences in microbiota, and yet no study design has capitalized upon this natural variation. We leveraged natural behavioral variation in a murine model of voluntary oral morphine self-administration to elucidate the mechanisms by which microbiota influences tolerance. Although all mice shared similar morphine-driven microbiota changes that largely masked informative associations with variability in tolerance, our high-resolution temporal analyses revealed a divergence in the progression of dysbiosis that best explained sustained antinociception. Mice that did not develop tolerance maintained a higher capacity for production of the short-chain fatty acid (SCFA) butyrate known to bolster intestinal barriers and promote neuronal homeostasis. Both fecal microbial transplantation (FMT) from donor mice that did not develop tolerance and dietary butyrate supplementation significantly reduced the development of tolerance independently of suppression of systemic inflammation. These findings could inform immediate therapies to extend the analgesic efficacy of opioids.
Collapse
Affiliation(s)
- Izabella Sall
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
- Graduate program in Molecular and Evolutionary Systems Biology, University of New Hampshire, Durham, NH, USA
| | - Randi Foxall
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Lindsey Felth
- Center for Neuroscience, University of California–Davis, Davis, CA, USA
| | - Soren Maret
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Zachary Rosa
- Center for Neuroscience, University of California–Davis, Davis, CA, USA
| | - Anirudh Gaur
- Center for Neuroscience, University of California–Davis, Davis, CA, USA
| | - Jennifer Calawa
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
- Microbiology Graduate Program, University of New Hampshire, Durham, NH, USA
| | - Nadia Pavlik
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Jennifer L. Whistler
- Center for Neuroscience, University of California–Davis, Davis, CA, USA
- Department of Physiology and Membrane Biology, UC Davis School of Medicine, Davis, CA, USA
| | - Cheryl A. Whistler
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| |
Collapse
|
3
|
Hwang HG, Park JW, Lee HJ, Ko MY, Ka M, Lee YK, Choi J, In SA, Lee YE, Lee S, Kim MS, Kim JY. Akkermansia muciniphila reverses neuronal atrophy in Negr1 knockout mice with depression-like phenotypes. Gut Microbes 2025; 17:2508424. [PMID: 40388597 PMCID: PMC12091914 DOI: 10.1080/19490976.2025.2508424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/07/2025] [Accepted: 05/14/2025] [Indexed: 05/21/2025] Open
Abstract
Genetic predispositions can shape the gut microbiome, which in turn modulates host gene expression and impacts host physiology. The complex interplay between host genetics and the gut microbiome likely contributes to the development of neuropsychiatric disorders, yet the mechanisms behind these interactions remain largely unexplored. In this study, we investigated the gut microbiota in Negr1 knockout (KO) mice, which exhibit anxiety- and depression-like behaviors, as NEGR1 (neuronal growth regulator 1) is a cell adhesion molecule linked to neuronal development and neuropsychiatric disorders. Our findings show significant early-life alterations in the gut microbiota composition of Negr1 KO mice, most notably a marked reduction in Akkermansia spp. along with reduced dendritic arborization and spine density in the nucleus accumbens (NAc) and the dentate gyrus (DG) of the hippocampus. Remarkably, daily administration of an Akkermansia strain isolated from wild-type mice reversed the neuronal structural abnormalities and ameliorated anxiety- and depression-like behaviors in Negr1 KO mice. Transcriptomic profiling revealed upregulation of mitochondrial genome-encoded genes in the NAc and hippocampus of Negr1 KO mice, along with a predisposition toward a pro-inflammatory state in the colon of Negr1 KO mice. The Akkermansia supplementation downregulated these mitochondrial genes in the NAc and hippocampus and upregulated genes involved in T cell activation and immune homeostasis in the colon. These findings demonstrate a novel gene-microbiome interaction in the pathophysiology of Negr1 KO mice, positioning Akkermansia spp. as a key mediator that improves neuronal atrophy and modulates anxiety- and depression-like behaviors. Our study provides compelling evidence for bidirectional interactions between host genetics and the gut microbiome in modulating neuropsychiatric phenotypes, offering new insights for addressing genetically influenced mental disorders.
Collapse
Affiliation(s)
- Hee-Gon Hwang
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Ji-Woo Park
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Hyo-Jin Lee
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Moon Yi Ko
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Minhan Ka
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Yun Kyung Lee
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan, Republic of Korea
| | - Jaeyoon Choi
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan, Republic of Korea
| | - Su-A In
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Ye-Eun Lee
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Soojin Lee
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Min-Soo Kim
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Jeong-Yoon Kim
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
4
|
Du W, Zou ZP, Ye BC, Zhou Y. Gut microbiota and associated metabolites: key players in high-fat diet-induced chronic diseases. Gut Microbes 2025; 17:2494703. [PMID: 40260760 PMCID: PMC12026090 DOI: 10.1080/19490976.2025.2494703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/26/2025] [Accepted: 04/11/2025] [Indexed: 04/24/2025] Open
Abstract
Excessive intake of dietary fats is strongly associated with an increased risk of various chronic diseases, such as obesity, diabetes, hepatic metabolic disorders, cardiovascular disease, chronic intestinal inflammation, and certain cancers. A significant portion of the adverse effects of high-fat diet on disease risk is mediated through modifications in the gut microbiota. Specifically, high-fat diets are linked to reduced microbial diversity, an overgrowth of gram-negative bacteria, an elevated Firmicutes-to-Bacteroidetes ratio, and alterations at various taxonomic levels. These microbial alterations influence the intestinal metabolism of small molecules, which subsequently increases intestinal permeability, exacerbates inflammatory responses, disrupts metabolic functions, and impairs signal transduction pathways in the host. Consequently, diet-induced changes in the gut microbiota play a crucial role in the initiation and progression of chronic diseases. This review explores the relationship between high-fat diets and gut microbiota, highlighting their roles and underlying mechanisms in the development of chronic metabolic diseases. Additionally, we propose probiotic interventions may serve as a promising adjunctive therapy to counteract the negative effects of high-fat diet-induced alterations in gut microbiota composition.
Collapse
Affiliation(s)
- Wei Du
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhen-Ping Zou
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ying Zhou
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
5
|
Dai ZM, Xu ML, Zhang QQ, Zhu B, Wu JZ, Liu Q, Li Y, Li HB. Alterations of the gut commensal Akkermansia muciniphila in patients with COVID-19. Virulence 2025; 16:2505999. [PMID: 40360188 PMCID: PMC12091934 DOI: 10.1080/21505594.2025.2505999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/12/2024] [Accepted: 04/02/2025] [Indexed: 05/15/2025] Open
Abstract
Dysbiosis of gut microbiota is well established in coronavirus disease 2019 (COVID-19). While studies have attempted to establish a link between the gut commensal Akkermansia muciniphila (A. muciniphila) and COVID-19, the findings have been inconsistent and sometimes controversial. The intestinal microbial abundance information of COVID-19 patients was acquired and analysed from GMrepo database. Subsequently, A. muciniphila's metabolites, target-genes, and metabolite-target relationships was extracted from GutMGene database. Lastly, coronascape module in Metascape database is used for gene annotation and enrichment analysis in various host cells and tissues after SARS-CoV-2 infection. The results indicated that, in comparison to healthy people, A. muciniphila was significantly elevated in COVID-19 patients. This bacterium was found to be associated with heightened expression of IL-10, TLR2, TLR4, CLGN, CLDN4, TJP2, and TJP3, while concurrently experiencing a reduction in the expression of IL-12A and IL-12B in humans. The regulatory genes of A. muciniphila primarily enhance responses to viruses and cytokines, positively regulate cell migration, and control epithelial cell proliferation. Our study revealed a significant increase in the gut commensal A. muciniphila in COVID-19 patients. This bacterium can modulate host immune responses and may also serve as a probiotic with antiviral properties.
Collapse
Affiliation(s)
- Zhi-Ming Dai
- Department of Anesthesiology, The First People’s Hospital of Xianyang, Xianyang, China
| | - Meng-Lu Xu
- Department of Nephrology, The First Affiliated Hospital of Xi’an Medical University, Xi’an, China
| | - Qing-Qing Zhang
- Department of Anesthesiology, Ganzhou Hospital of Guangdong Provincial People’s Hospital, Ganzhou Municipal Hospital, Ganzhou, China
| | - Bo Zhu
- Department of Anesthesiology, The First People’s Hospital of Xianyang, Xianyang, China
| | - Jun-Zhe Wu
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Xi’an, China
| | - Qi Liu
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Xi’an, China
| | - Ying Li
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Xi’an, China
| | - Hong-Bao Li
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Xi’an, China
| |
Collapse
|
6
|
Rodrigues VF, Elias-Oliveira J, Pereira ÍS, Pereira JA, Barbosa SC, Machado MSG, Guimarães JB, Pacheco TCF, Bortolucci J, Zaramela LS, Bonato VLD, Silva JS, Martins FS, Alves-Filho JC, Gardinassi LG, Reginatto V, Carlos D. Akkermansia muciniphila restrains type 1 diabetes onset by eliciting cDC2 and Treg cell differentiation in NOD and STZ-induced experimental models. Life Sci 2025; 372:123624. [PMID: 40204069 DOI: 10.1016/j.lfs.2025.123624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/26/2025] [Accepted: 04/05/2025] [Indexed: 04/11/2025]
Abstract
AIMS Akkermansia muciniphila (A. muciniphila), a Gram-negative anaerobic mucus-layer-degrading bacterium found in the intestinal mucosa, exhibits potential as a probiotic, showing promise in mitigating autoimmune and chronic inflammatory diseases. This study aims to investigate whether A. muciniphila supplementation might confer protection against type 1 diabetes (T1D) and to elucidate the immunological pathways through which it exerts its beneficial effects. MATERIALS AND METHODS Non-obese diabetic (NOD) mice and streptozotocin (STZ)-induced type 1 diabetes (T1D) models were used to evaluate the protective effects of A. muciniphila during T1D course. Body weight, blood glucose levels, and T1D incidence were monitored. Immune responses in the pancreas, pancreatic (PLN) and cecal lymph nodes (CLN) and bone marrow-derived dendritic cells (BMDC) were evaluated by flow cytometry and ELISA. KEY FINDINGS Viable A. muciniphila supplementation conferred protection against T1D onset in STZ-induced T1D and NOD mouse models. T1D modulation by A. muciniphila in the STZ model was independent of the gut microbiota, and it was associated with increased tolerogenic type-2 dendritic cells (SIRP-α+CD11b+CD103+) and regulatory T (Treg) cells in PLN and pancreas. BMDC differentiated in the presence of A. muciniphila exhibited a tolerogenic profile and induced Treg cell generation in vitro. A. muciniphila-induced protection in T1D outcome was abrogated in FOXP3-DTR mice depleted of Treg cells, indicating that its mechanism of action is dependent on the CD4+Foxp3+ Treg cells. SIGNIFICANCE A. muciniphila supplementation attenuates T1D development in mice by modulating the tolerogenic immune response and is a promising new therapeutic tool for this autoimmune disease.
Collapse
Affiliation(s)
- Vanessa Fernandes Rodrigues
- Laboratory of Imunorregulation of Metabolic Diseases, Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.
| | - Jefferson Elias-Oliveira
- Laboratory of Imunorregulation of Metabolic Diseases, Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Ítalo Sousa Pereira
- Laboratory of Imunorregulation of Metabolic Diseases, Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Jéssica Assis Pereira
- Laboratory of Imunorregulation of Metabolic Diseases, Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Sara Cândida Barbosa
- Laboratory of Imunorregulation of Metabolic Diseases, Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Melissa Santana Gonsalez Machado
- Laboratory of Imunorregulation of Metabolic Diseases, Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Jhefferson Barbosa Guimarães
- Laboratory of Imunorregulation of Metabolic Diseases, Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Thaílla Cristina Faria Pacheco
- Laboratory of Imunorregulation of Metabolic Diseases, Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Jonatã Bortolucci
- Department of Chemistry, University of São Paulo, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, Ribeirão Preto, Brazil
| | - Lívia Soares Zaramela
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Vânia Luiza Deperon Bonato
- Laboratory of Immunology and Pulmonary Inflammation, Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - João Santana Silva
- Fiocruz-Bi-Institutional Translational Medicine Plataform, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Flaviano Santos Martins
- Laboratory of Biotherapeutics Agents, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - José Carlos Alves-Filho
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Center for Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Valeria Reginatto
- Department of Chemistry, University of São Paulo, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, Ribeirão Preto, Brazil
| | - Daniela Carlos
- Laboratory of Imunorregulation of Metabolic Diseases, Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
7
|
Barichello T, Kluwe-Schiavon B, Borba LA, Pedro LC, Niero FS, Dos Santos LN, Leonardo LM, Ignácio ZM, Morales R, Ceretta LB, Reus GZ. Alterations in Gut Microbiome Composition and Increased Inflammatory Markers in Post-COVID-19 Individuals. Mol Neurobiol 2025; 62:8038-8047. [PMID: 39966327 PMCID: PMC12078008 DOI: 10.1007/s12035-025-04769-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
Dysfunctions in the immune system and alterations in the microbiome composition following SARS-CoV-2 infection contribute to persistent neurological issues observed in long COVID-19 survivors. We hypothesize that alterations in the gut microbiome composition and peripheral inflammatory profile following COVID-19 may play pivotal roles in behavior changes among individuals experiencing long-term illness. This cross-sectional study included a sample of post-COVID-19 and non-COVID-19 subjects. We assessed the presence of psychiatric conditions utilizing standardized diagnostic criteria, Hamilton Rating Scale for Anxiety (HAM-A), Hamilton Rating Scale for Depression (HAM-D), Biological Rhythms in Neuropsychiatry Assessment Interview (BRIAN), and Functional Assessment Short Test (FAST). Plasma samples were analyzed to examine lipid and inflammatory profiles. Fecal samples were evaluated by 16S rRNA sequencing to identify the gut microbiome composition. Noteworthy findings include a significant increase in the myeloid progenitor inhibitory factor 1 (MPIF-1), interleukin (IL)-17, and triglyceride among post-COVID-19 individuals. While α-diversity in the gut microbiome composition showed no significant differences, β-diversity demonstrated a notable distinction between the healthy control and post-COVID-19 groups. Post-COVID-19 individuals exhibited a decreased abundance of phylum, class, and order of Verrucomicrobia, family, and genus of Akkermansia, a short-chain fatty acid producer and microbial group significantly associated with intestinal barrier homeostasis and the amelioration of metabolic diseases. No difference was found between the behavioral and clinical data. In post-COVID-19 individuals, there were elevated IL-17 and MPIF-1 levels, compared to non-COVID-19 individuals. Additionally, there were notable alterations in gut microbiome composition, as evidenced by changes in β-diversity and a decrease of Verrucomicrobia, family, and Akkermansia genus abundance.
Collapse
Affiliation(s)
- Tatiana Barichello
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, Mcgovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Neuroscience Graduate Program, the University of Texas MD Anderson Cancer Center Uthealth Graduate School of Biomedical Sciences, Houston, Texas, USA
- Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Bruno Kluwe-Schiavon
- Department of Psychiatry and Behavioral Sciences, Mcgovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Laura A Borba
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Lucas C Pedro
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Flávia S Niero
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Laísa N Dos Santos
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Letícia M Leonardo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Zuleide M Ignácio
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of the Southern Frontier, Chapecó, SC, Brazil
| | - Rodrigo Morales
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston (Uthealth), Houston, Texas, USA
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
| | - Luciane B Ceretta
- Graduate Program in Public Health, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Gislaine Z Reus
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
8
|
Gupta MK, Srivastava R. Gut Microbiome Interventions: From Dysbiosis to Next-Generation Probiotics (NGPs) for Disease Management. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10582-7. [PMID: 40434505 DOI: 10.1007/s12602-025-10582-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2025] [Indexed: 05/29/2025]
Abstract
The gut microbiome, sometimes referred to as the "second brain," the "lost organ," the "identification card of the individual," and the "fingerprint of the host," possesses diverse traits and functions that influence health. The impact of gut commensal bacteria on health, as opposed to environmental pathogenic factors, has generated increasing interest in recent years, culminating in a substantial body of study. Research indicates that dysbiosis of the intestinal microbiota is commonly observed in chronic inflammatory diseases, including colitis, obesity/metabolic syndrome, diabetes mellitus, liver infections, allergic conditions, cardiovascular diseases, COVID-19, cancers, and neurodegenerative disorders. The International Scientific Association for Probiotics and Prebiotics has recently refined the theory of complementary and synergistic synbiotics. In recent years, the field of microbiome research has been significantly advanced by technological developments such as massive culturomics, gnotobiotics, metabolomics, parallel DNA sequencing, and RNA sequencing. This review article examined the potential next generation probiotics (NGPs) and explored some of them, Faecalibacterium prausnitzii, Bacteroides thetaiotaomicron, Akkermansia muciniphila, Parabacteroides goldsteinii, Bacteroides fragilis, Eubacterium hallii, Roseburia intestinalis, Christensenella minuta, Prevotella copri, and Oscillospira guilliermondii. In addition to these useful probiotic strains, psychobiotics, members of the families of Lactobacilli, Streptococci, Bifidobacteria, Escherichia, and Enterococci, have extended applicability in the use for neurodevelopmental and neurodegenerative disorders. The article also reviewed current trends and limitations in NGPs to enhance our comprehensive understanding of key concepts associated with the consumption of probiotics and proposed necessary initiatives for researchers to engage in collaborative translational research as future therapeutic solutions.
Collapse
Affiliation(s)
- Mandeep Kumar Gupta
- Moradabad Educational Trust Group of Institutions Faculty of Pharmacy, Moradabad, 244001, Uttar Pradesh, India.
| | - Rajnish Srivastava
- Chitkara University School of Pharmacy, Chitkara University, Baddi, 174103, Himachal Pradesh, India
| |
Collapse
|
9
|
Zhang Z, Kong APS, Wong VWS, Hui HX. Intermittent fasting and metabolic dysfunction-associated steatotic liver disease: the potential role of the gut-liver axis. Cell Biosci 2025; 15:64. [PMID: 40410852 PMCID: PMC12102857 DOI: 10.1186/s13578-025-01406-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Accepted: 05/05/2025] [Indexed: 05/25/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing public health concern linked to the increasing prevalence of metabolic syndrome, including obesity and type 2 diabetes (T2D). MASLD remains a significant clinical challenge due to the absence of effective therapeutic interventions. Intermittent fasting (IF) has emerged as a promising non-pharmacological strategy for managing MASLD. Although the exact mechanisms underpinning the possible beneficial effects of IF on MASLD are not yet fully elucidated, the gut microbiota and its metabolic byproducts are increasingly recognized as potential mediators of these effects. The gut-liver axis may act as an important conduit through which IF exerts its beneficial influence on hepatic function. This review comprehensively examines the impact of various IF protocols on gut microbiota composition, investigating the resultant alterations in microbial diversity and metabolomic profiles, and their potential implications for liver health and the improvement of MASLD.
Collapse
Affiliation(s)
- Zhaoxi Zhang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Alice Pik-Shan Kong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Institute of Diabetes and Obesity, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Vincent Wai-Sun Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hannah Xiaoyan Hui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
10
|
Hu ML, Wang FS, Lian WS, Yang CH, Yang JW, Chen IY, Huang CH, Liou JS, Yang MY. Probiotics may not adhere to gut and provide benefits in inflammatory bowel disease patients based on an AOM/DSS murine model. J Formos Med Assoc 2025:S0929-6646(25)00221-9. [PMID: 40393834 DOI: 10.1016/j.jfma.2025.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 03/11/2025] [Accepted: 05/08/2025] [Indexed: 05/22/2025] Open
Abstract
BACKGROUND Dysbiosis, characterized by imbalanced gut microbiota, is common in patients with inflammatory bowel disease (IBD) and colitis-associated colorectal cancer (CAC). While probiotics theoretically offer promise for IBD treatment, their actual efficacy remains uncertain, leading to non-recommendation in current guidelines. Akkermansia muciniphila (AKK) is a potential next-generation probiotic strain with benefits in obesity, diabetes and gut protection. Recent study showed reduced AKK abundance in IBD patients and mice with colitis and CAC. Hence, we administered AKK treatment to these mice to assess its effects. METHODS Using a mouse model of colitis and CAC induced by azoxymethane/dextran sodium sulfate (AOM/DSS) in BALB/c mice, we administered AKK orally to mice on the AOM/DSS protocol with 5 × 108 CFU of AKK three times a week for a total 27 times. The treatment effect of AKK were evaluated. RESULTS Despite AKK supplementation, mice showed no significant differences in body weight, colon length, histological inflammation, or short chain fatty acid composition compared to those on the AOM/DSS protocol alone. Unexpectedly, AKK-treated mice exhibited decreased AKK abundance in stool samples, suggesting poor adherence and colonization despite supplementation. These results parallel our previous findings with Clotridium butyricum, indicating challenges in probiotic intervention for severe colitis and CAC due to mucosal barrier damage. CONCLUSION Our study highlights the limitations of probiotic therapy in IBD, attributing its failure to inadequate adherence and colonization in damaged mucosal barriers. Further research is warranted to clarify the role of probiotics in IBD management.
Collapse
Affiliation(s)
- Ming-Luen Hu
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Feng-Sheng Wang
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wei-Shiung Lian
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chao-Hui Yang
- School of Medicine, Chang Gung University College of Medicine, Taoyuan, Taiwan; Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Jing-Wen Yang
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - I-Ya Chen
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chien-Hsun Huang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan
| | - Jong-Shian Liou
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan
| | - Ming-Yu Yang
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
11
|
Ma XK, Shao X, Xu T, Yan H, Teng H, Chen ZX, Hu MX. New Horizons of Astaxanthin-loaded Akkermansia muciniphila as an Integrated Dietary Supplement: Physicochemical Structures and Gastrointestinal Fate. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10572-9. [PMID: 40369398 DOI: 10.1007/s12602-025-10572-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2025] [Indexed: 05/16/2025]
Abstract
Astaxanthin (ASX) gains wide interest in food and nutritional sciences due to its great antioxidant and anti-inflammatory properties. However, ASX faces challenges such as poor water solubility, low bioavailability, and sensitivity to environmental factors. In this study, we employ Akkermansia muciniphila (AKK) with mucoadhesive property as a carrier for ASX to enhance ASX stability and bioaccessibility. The complex multilayered cell envelope of AKK cell provided space for ASX loading. Immersion loading yielded the highest ASX encapsulation efficiency (10.80 ± 2.29 μg/mg in ASX@AKK group and 11.47 ± 3.52 μg/mg in ASX@AKK-Heat group), whereas osmoporation loading and vacuum loading yielded ASX encapsulation efficiencies of 4-6 μg/mg. The encapsulated ASX demonstrated improved thermostability, tolerating pasteurization, and was predominantly amorphous in state, interacting with AKK primarily through hydrophobic interactions and partial hydrogen bonding interactions. The ASX@AKK system facilitated precise ASX release in the intestine and markedly enhanced bioaccessibility, increasing approximately 25.7-fold in simulated intestinal fluid and 77.6-fold in simulated colonic fluid. Importantly, ASX encapsulation did not impair AKK's adhesive affinity to mucus. Therefore, the newly developed integrated dietary supplements have both the functional activity of inactivated AKK as a postbiotic and the antioxidant property of the intestine-targeted released ASX, showing dual-functional activities. These findings highlight a paradigm shift in the functional application of probiotics, showcasing their potential as innovative vehicles for targeted nutrient delivery with improved bioaccessibility and synergistic health effects.
Collapse
Affiliation(s)
- Xue-Ke Ma
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Xin Shao
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Tian Xu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Hong Yan
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Hui Teng
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Zhe-Xin Chen
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Meng-Xin Hu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
12
|
Giugliano S, Gatti A, Rusin M, Schorn T, Pimazzoni S, Calanni-Pileri M, Fraccascia V, Carloni S, Rescigno M. Maternal gut microbiota influences immune activation at the maternal-fetal interface affecting pregnancy outcome. Nat Commun 2025; 16:4326. [PMID: 40346042 PMCID: PMC12064790 DOI: 10.1038/s41467-025-58533-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 03/26/2025] [Indexed: 05/11/2025] Open
Abstract
Preeclampsia is a leading cause of morbidity and mortality in pregnant women, affecting 5-8% of gestations worldwide. Its development is influenced by maternal immune abnormalities, metabolic disorders, and gut dysbiosis. In this study, we show that gut dysbiosis in pregnant C57BL/6J dams leads to increased fetal resorption, impaired placental development and altered vascularization. These adverse outcomes are associated with key pathological features of preeclampsia, including hypoxia, endoplasmic reticulum (ER) stress and reduction in uterine natural killer (NK) cell numbers. Furthermore, gut dysbiosis significantly perturbs placental carbohydrate metabolism, which impairs NK cell IFN-γ secretion. Notably, glucose supplementation restores placental NK cell function and reduces fetal resorption, suggesting that the observed impairment is reversible and dependent on a lower glycolytic rate. These findings highlight maternal gut microbiota as a key player in carbohydrate metabolism, with a pivotal role in modulating placental immunity and pregnancy outcome. The results provide valuable insights into potential metabolic biomarkers and suggest that targeting the gut microbiota may offer a strategy for preventing preeclampsia.
Collapse
Affiliation(s)
- Silvia Giugliano
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, 20072, Italy.
- IRCCS Humanitas Research Hospital, Rozzano, Milan, 20089, Italy.
| | - Andrea Gatti
- IRCCS Humanitas Research Hospital, Rozzano, Milan, 20089, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, 20133, Italy
| | - Martina Rusin
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, 20072, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, 20089, Italy
| | - Tilo Schorn
- IRCCS Humanitas Research Hospital, Rozzano, Milan, 20089, Italy
| | | | - Michela Calanni-Pileri
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, 20072, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, 20089, Italy
| | - Valentina Fraccascia
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, 20072, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, 20089, Italy
| | - Sara Carloni
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, 20072, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, 20089, Italy
| | - Maria Rescigno
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, 20072, Italy.
- IRCCS Humanitas Research Hospital, Rozzano, Milan, 20089, Italy.
| |
Collapse
|
13
|
Wang X, Zhang H, Wan Z, Li X, Ibáñez CF, Xie M. A single-cell transcriptomic atlas of all cell types in the brain of 5xFAD Alzheimer mice in response to dietary inulin supplementation. BMC Biol 2025; 23:124. [PMID: 40346662 PMCID: PMC12065180 DOI: 10.1186/s12915-025-02230-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 04/30/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disease that is a major threat to the aging population. Due to lack of effective therapy, preventive treatments are important strategies to limit AD onset and progression, of which dietary regimes have been implicated as a key factor. Diet with high fiber content is known to have beneficial effects on cognitive decline in AD. However, a global survey on microbiome and brain cell dynamics in response to high fiber intake at single-cell resolution in AD mouse models is still missing. RESULTS Here, we show that dietary inulin supplementation synergized with AD progression to specifically increase the abundance of Akkermansia muciniphila in gut microbiome of 5 × Familial AD (FAD) mice. By performing single-nucleus RNA sequencing on different regions of the whole brain with three independent biological replicates, we reveal region-specific changes in the proportion of neuron, astrocyte, and granule cell subpopulations upon inulin supplementation in 5xFAD mice. In addition, we find that astrocytes have more pronounced region-specific diversity than microglia. Intriguingly, such dietary change reduces amyloid-β plaque burden and alleviates microgliosis in the forebrain region, without affecting the spatial learning and memory. CONCLUSIONS These results provide a comprehensive overview on the transcriptomic changes in individual cells of the entire mouse brain in response to high fiber intake and a resourceful foundation for future mechanistic studies on the influence of diet and gut microbiome on the brain during neurodegeneration.
Collapse
Affiliation(s)
- Xiaoyan Wang
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Chinese Institute for Brain Research, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Houyu Zhang
- Chinese Institute for Brain Research, Zhongguancun Life Science Park, Beijing, 102206, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Zhou Wan
- School of Life Sciences, Peking University, Beijing, 100871, China
| | - Xuetong Li
- School of Life Sciences, Peking University, Beijing, 100871, China
| | - Carlos F Ibáñez
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
- Chinese Institute for Brain Research, Zhongguancun Life Science Park, Beijing, 102206, China.
- School of Life Sciences, Peking University, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Beijing, 100871, China.
- PKU-IDG/McGovern Institute for Brain Research, Beijing, 100871, China.
- Department of Neuroscience, Karolinska Institute, 17165, Stockholm, Sweden.
| | - Meng Xie
- Peking-Tsinghua Center for Life Sciences, Beijing, 100871, China.
- PKU-IDG/McGovern Institute for Brain Research, Beijing, 100871, China.
- Beijing Key Laboratory of Behavior and Mental Health, School of Psychological and Cognitive Sciences, Peking University, Beijing, 100871, China.
- Department of Medicine Huddinge, Karolinska Institute, 14183, Stockholm, Sweden.
| |
Collapse
|
14
|
Ma X, Liu Q, Yang G. The multifaceted roles of Akkermansia muciniphila in neurological disorders. Trends Neurosci 2025:S0166-2236(25)00079-7. [PMID: 40335410 DOI: 10.1016/j.tins.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/11/2025] [Accepted: 04/09/2025] [Indexed: 05/09/2025]
Abstract
Gut commensals regulate neurological disorders through dynamic bidirectional communication along the gut-brain axis. Recent evidence has highlighted the well-documented beneficial role of the commensal gut bacterium Akkermansia muciniphila and its components in promoting host health. However, numerous clinical studies have demonstrated a paradoxical role of A. muciniphila in individuals with various neurological conditions. In this opinion article, we review the correlation between the prevalence of this gut commensal and the development of several disorders, including stroke, multiple sclerosis (MS), Parkinson's disease (PD), and Alzheimer's disease (AD). We focus on the potential mechanisms by which A. muciniphila may contribute to these diseases. An in-depth understanding of these correlations and the underlying pathogenic mechanisms could shed new light on the mechanisms of disease pathogenesis and provide a logical rationale for developing new therapies for these neurological conditions.
Collapse
Affiliation(s)
- Xin Ma
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Kowloon, 999077, Hong Kong SAR, China
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Guan Yang
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Kowloon, 999077, Hong Kong SAR, China; Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, Hong Kong SAR, China.
| |
Collapse
|
15
|
Hitch TCA, Masson JM, Pauvert C, Bosch J, Nüchtern S, Treichel NS, Baloh M, Razavi S, Afrizal A, Kousetzi N, Aguirre AM, Wylensek D, Coates AC, Jennings SAV, Panyot A, Viehof A, Schmitz MA, Stuhrmann M, Deis EC, Bisdorf K, Chiotelli MD, Lissin A, Schober I, Witte J, Cramer T, Riedel T, Wende M, Winter KA, Amend L, Riva A, Trinh S, Mitchell L, Hartman J, Berry D, Seitz J, Bossert LC, Grognot M, Allers T, Strowig T, Pester M, Abt B, Reimer LC, Overmann J, Clavel T. HiBC: a publicly available collection of bacterial strains isolated from the human gut. Nat Commun 2025; 16:4203. [PMID: 40328737 PMCID: PMC12056005 DOI: 10.1038/s41467-025-59229-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 04/14/2025] [Indexed: 05/08/2025] Open
Abstract
Numerous bacteria in the human gut microbiome remain unknown and/or have yet to be cultured. While collections of human gut bacteria have been published, few strains are accessible to the scientific community. We have therefore created a publicly available collection of bacterial strains isolated from the human gut. The Human intestinal Bacteria Collection (HiBC) ( https://www.hibc.rwth-aachen.de ) contains 340 strains representing 198 species within 29 families and 7 phyla, of which 29 previously unknown species are taxonomically described and named. These included two butyrate-producing species of Faecalibacterium and new dominant species associated with health and inflammatory bowel disease, Ruminococcoides intestinale and Blautia intestinihominis, respectively. Plasmids were prolific within the HiBC isolates, with almost half (46%) of strains containing plasmids, with a maximum of six within a strain. This included a broadly occurring plasmid (pBAC) that exists in three diverse forms across Bacteroidales species. Megaplasmids were identified within two strains, the pMMCAT megaplasmid is globally present within multiple Bacteroidales species. This collection of easily searchable and publicly available gut bacterial isolates will facilitate functional studies of the gut microbiome.
Collapse
Affiliation(s)
- Thomas C A Hitch
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Johannes M Masson
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Charlie Pauvert
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Johanna Bosch
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Selina Nüchtern
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Nicole S Treichel
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Marko Baloh
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Soheila Razavi
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Afrizal Afrizal
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Ntana Kousetzi
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Andrea M Aguirre
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH Aachen, Aachen, Germany
| | - David Wylensek
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Amy C Coates
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Susan A V Jennings
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Atscharah Panyot
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Alina Viehof
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Matthias A Schmitz
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Maximilian Stuhrmann
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Evelyn C Deis
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Kevin Bisdorf
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Maria D Chiotelli
- Biophysics of Host-Microbe Interactions Research Group, Institute of Medical Microbiology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Artur Lissin
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Isabel Schober
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Julius Witte
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Thorsten Cramer
- Molecular Tumor Biology Research Group, Department of General, Visceral, Children and Transplantation Surgery, University Hospital of RWTH Aachen, Aachen, Germany
| | - Thomas Riedel
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Marie Wende
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Katrin A Winter
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lena Amend
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Alessandra Riva
- Center for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
- Chair of Nutrition and Immunology, School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Stefanie Trinh
- Institute of Neuroanatomy, University Hospital of RWTH Aachen, Aachen, Germany
| | - Laura Mitchell
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | | | - David Berry
- Center for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Jochen Seitz
- Clinic for Child and Adolescent Psychiatry, Psychosomatic Medicine and Psychotherapy, LVR-University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | - Marianne Grognot
- Biophysics of Host-Microbe Interactions Research Group, Institute of Medical Microbiology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Thorsten Allers
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Till Strowig
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Michael Pester
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- Technical University Braunschweig, Braunschweig, Germany
| | - Birte Abt
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Lorenz C Reimer
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
- Technical University Braunschweig, Braunschweig, Germany
| | - Thomas Clavel
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH Aachen, Aachen, Germany.
| |
Collapse
|
16
|
Tarushi, Gupta GD, Kumar M, Bihani SC. Structure-function studies on drug-reactivating β-glucuronidase from mucin-degrading gut symbiont Akkermansia muciniphila. J Biomol Struct Dyn 2025:1-15. [PMID: 40319497 DOI: 10.1080/07391102.2025.2496291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 04/16/2025] [Indexed: 05/07/2025]
Abstract
Gut microbial β-glucuronidases (mGUS) not only regulate several hormones and neurotransmitters, they also impact the efficacy and toxicity of xenobiotics. On certain anticancer drugs, e.g. irinotecan (SN-38), mGUS activity leads to enterohepatic recirculation resulting into severe diarrhea. Here, we report the expression, purification and characterization of AmGUS, a novel β-glucuronidase from Akkermansia muciniphila. A. muciniphila is a prominent gut symbiont with beneficial effects on metabolic health and gut homeostasis. AmGUS demonstrates specificity towards glucuronide substrates with no glucosidase or galactosidase activity. Interestingly, it also shows efficient cleavage of the glucuronidated form of the anti-cancer drug, SN38, potentially leading to its enterohepatic recirculation. Furthermore, we find that AmGUS functions as a monomer, contrary to other GUS enzymes that exist as oligomers. mGUS are classified into distinct loop-types based on different active site loops around a conserved core providing substrate specificity. Computational modeling of AmGUS structure reveals that it belongs to the mL2 loop-type GUS enzymes, despite sharing significant sequence/structural similarity with the mL1 loop-type and NL-type GUSs. Interestingly, AmGUS also has a unique N-terminal loop previously not observed in any other GUS enzyme possibly aiding in the processing of drug-glucuronides. Together, these findings suggest that GUS from A. muciniphila belongs to a new class of GUS enzymes with unique active site loop structures. The presence of this unique GUS enzyme may help A. muciniphila in colonizing the human gut. Overall, this study broadens our knowledge of the structural and functional understanding of GUSome in the human gut microbiome.
Collapse
Affiliation(s)
- Tarushi
- Protein Crystallography Section, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Gagan Deep Gupta
- Protein Crystallography Section, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Mukesh Kumar
- Protein Crystallography Section, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Subhash C Bihani
- Protein Crystallography Section, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
17
|
Hjørne AP, Mortensen MS, Licht TR, Laursen MF. Loperamide increases mouse gut transit time in a dose-dependent manner with treatment duration-dependent effects on distinct gut microbial taxa. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2025; 6:e7. [PMID: 40336798 PMCID: PMC12056420 DOI: 10.1017/gmb.2025.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 05/09/2025]
Abstract
Intestinal transit time has been recognized as an important factor in shaping the gut microbiota, although causality remains to be firmly demonstrated. The aim of this study was to evaluate the effect of different loperamide doses on the mouse intestinal transit time and to investigate the effects of increasing transit time on the gut microbial community. Loperamide significantly increased the transit time in a dose-dependent manner. Additionally, we observed a significant difference between the control group and the loperamide-treated groups in the abundance of the bacterial families Bacteroidaceae, Erysipelotrichaceae, Porphyromonadaceae, and Akkermansiaceae after 7 days of loperamide treatment, with the bacterial families responding to the increased transit time at different rates. Fermentation of faeces obtained from the same mice, with or without loperamide, demonstrated that the observed effects on gut microbiota in vivo were not a result of direct interactions between loperamide and the gut microbiota but rather a consequence of loperamide-induced increased intestinal transit time. In the cecum of the mice, we found higher levels of propionate in the high-dose group compared to the control and low-dose groups. Collectively, our findings establish that an altered transit time is causal to changes in the composition and activity of the microbiome.
Collapse
Affiliation(s)
- Anna Pii Hjørne
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Tine Rask Licht
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | | |
Collapse
|
18
|
Wu X, Yu D, Ma Y, Fang X, Sun P. Function and therapeutic potential of Amuc_1100, an outer membrane protein of Akkermansia muciniphila: A review. Int J Biol Macromol 2025; 308:142442. [PMID: 40157674 DOI: 10.1016/j.ijbiomac.2025.142442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/16/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
The gut microbiota-derived protein Amuc_1100, a key outer membrane component of Akkermansia muciniphila, has emerged as a groundbreaking therapeutic agent with unique structural and functional properties. Amuc_1100 exerts multifaceted immune-metabolic effects through novel mechanisms, including modulation of TLR2/4 and JAK/STAT pathways. This review highlights its unique multi-component structure that enables synergistic biological activity, and its pharmacological properties, which underlies its ability to enhance intestinal barrier integrity, restore microbiota balance, and suppress systemic inflammation. Crucially, Amuc_1100 demonstrates unprecedented therapeutic versatility across both intestinal disorders (e.g., inflammatory bowel disease, antibiotic-associated diarrhea) and extraintestinal conditions-notably improving neuropsychiatric symptoms via gut-serotonin axis regulation, combating cancer through CD8+ T cell activation, and mitigating cardiotoxicity via gut-heart immune crosstalk. Emerging innovations in targeted delivery systems, including gut-retentive nano-formulations and engineered probiotic vectors, further amplify its clinical potential. We critically evaluate recent advances distinguishing Amuc_1100's mechanisms from live bacterial interventions. By synthesizing evidence from preclinical models, this work positions Amuc_1100 as a prototype for next-generation microbiome-derived therapeutics, bridging microbial ecology with precision medicine.
Collapse
Affiliation(s)
- Xuhui Wu
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Dahai Yu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Yunkun Ma
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Xuexun Fang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China.
| | - Pengda Sun
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun 130041, PR China.
| |
Collapse
|
19
|
Nie YM, Zhou WQ, Niu T, Mao MF, Zhan YX, Li Y, Wang KP, Li MX, Ding K. Peptidoglycan isolated from the fruit of Lycium barbarum alleviates liver fibrosis in mice by regulating the TGF-β/Smad7 signaling and gut microbiota. Acta Pharmacol Sin 2025; 46:1329-1344. [PMID: 39833303 PMCID: PMC12032012 DOI: 10.1038/s41401-024-01454-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025]
Abstract
The hepatoprotective effect of the fruit of Lycium barbarum has been documented in China over millennia. Lycium barbarum polysaccharides (LBPs) were the first macromolecules reported to mitigate liver fibrosis in carbon tetrachloride (CCl4)-treated mice. Herein, a neutral peptidoglycan, named as LBPW, was extracted from the fruit of Lycium barbarum. In this study, we investigated the hepatoprotective mechanisms of LBPW. CCl4-induced liver fibrosis mice were administered LBPW (50, 100, 200 mg ·kg-1 ·d-1, i.p.) or (100, 200, 300 mg· kg-1 ·d-1, i.g.) for 6 weeks. We showed that either i.p. or i.g. administration of LBPW dose-dependently attenuated liver damage and fibrosis in CCl4-treated mice. Pharmacokinetic analysis showed that cyanine 5.5 amine (Cy5.5)-labeled LBPW (Cy5.5-LBPW) could be detected in the liver through i.p. and i.g. administration with i.g.-administered Cy5.5-LBPW mainly accumulating in the intestine. In TGF-β1-stimulated LX-2 cells as well as in the liver of CCl4-treated mice, we demonstrated that LBPW significantly upregulated Smad7, a negative regulator of TGF-β/Smad signaling, to retard the activation of hepatic stellate cells (HSCs) and prevent liver fibrosis. On the other hand, LBPW significantly boosted the abundance of Akkermansia muciniphila (A. muciniphila) and fortified gut barrier function. We demonstrated that A. muciniphila might be responsible for the efficacy of LBPW since decreasing the abundance of this bacterium by antibiotics (Abs) blocked the effectiveness of LBPW. Overall, our results show that LBPW may exert the hepatoprotective effect via rebalancing TGF-β/Smad7 signaling and propagating gut commensal A. muciniphila, suggesting that LBPW could be leading components to be developed as new drug candidates or nutraceuticals against liver fibrosis.
Collapse
Affiliation(s)
- Ying-Min Nie
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wan-Qi Zhou
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Lingang Laboratory, Shanghai, 201203, China
| | - Ting Niu
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Department of Pancreatic-biliary Surgery, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Meng-Fei Mao
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu-Xue Zhan
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yun Li
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai-Ping Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Mei-Xia Li
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Kan Ding
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Lingang Laboratory, Shanghai, 201203, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan, 528400, China.
| |
Collapse
|
20
|
Chen Z, Xiao C, Zhang J, Jian S, Li P, Lin J, He C, Chen Z, Qi Y, Shi J, Chen Q, Chen J, Bo H. The Impact of Diet on the Colonization of Beneficial Microbes from an Ecological Perspective. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:10069-10092. [PMID: 40234746 DOI: 10.1021/acs.jafc.5c02086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
With growing recognition of the pivotal role of gut microbiota in human health, probiotics have gained widespread attention for their potential to restore microbial homeostasis. However, a critical challenge persists: limited colonization efficiency among most probiotic strains compromises their therapeutic efficacy. This overview synthesizes ecological principles with cutting-edge microbiome research to elucidate the dynamic interplay between dietary components and probiotic colonization within the intestinal niche. This overview systematically analyzes: (1) stage-specific colonization mechanisms spanning microbial introduction, establishment, and proliferation; (2) nutrient-driven modulation of gut microbiota composition and function; and (3) the dual role of common dietary patterns as both facilitators and disruptors of probiotic persistence. Notably, this overview identifies key dietary strategies, including precision delivery of prebiotic fibers and polyphenol-microbiota crosstalk, that enhance niche adaptation through pH optimization, adhesion potentiation, and competitive exclusion of pathogens. Furthermore, this overview critically evaluates current limitations in probiotic research, particularly strain-specific variability and methodological constraints in simulating host-microbe-diet tripartite interactions. To bridge these gaps, this overview proposes an interdisciplinary framework integrating omics-driven strain selection, engineered delivery systems, and personalized nutrition models. Collectively, this work advances a mechanistic understanding of diet-microbiota interactions while providing actionable insights for developing targeted probiotic therapies and evidence-based dietary interventions to optimize gut ecosystem resilience.
Collapse
Affiliation(s)
- Zelin Chen
- School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, 510006 Guangzhou, Guangdong China
| | - Chuntao Xiao
- School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, 510006 Guangzhou, Guangdong China
| | - Jiantang Zhang
- School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, 510006 Guangzhou, Guangdong China
| | - Shiqi Jian
- School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, 510006 Guangzhou, Guangdong China
| | - Pinyue Li
- School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, 510006 Guangzhou, Guangdong China
| | - Jiayi Lin
- School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, 510006 Guangzhou, Guangdong China
| | - Cai He
- School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, 510006 Guangzhou, Guangdong China
| | - Zixia Chen
- School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, 510006 Guangzhou, Guangdong China
| | - Yutong Qi
- School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, 510006 Guangzhou, Guangdong China
| | - Jingwen Shi
- School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, 510006 Guangzhou, Guangdong China
| | - Qizhu Chen
- School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, 510006 Guangzhou, Guangdong China
| | - Jun Chen
- College of Pharmacy, Guangdong Pharmaceutical University, 510006 Guangzhou, Guangdong China
| | - Huaben Bo
- School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, 510006 Guangzhou, Guangdong China
| |
Collapse
|
21
|
Rampelotto PH, Taufer CR, da Silva J. The Role of Beneficial Microbiota in COVID-19: Insights from Key Bacterial Genera. Microorganisms 2025; 13:1029. [PMID: 40431202 PMCID: PMC12113938 DOI: 10.3390/microorganisms13051029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 04/17/2025] [Accepted: 04/28/2025] [Indexed: 05/29/2025] Open
Abstract
The COVID-19 pandemic has highlighted the need for a comprehensive understanding of the factors influencing disease severity and progression. Emerging research indicates that the human microbiota, particularly beneficial bacteria, significantly impacts immune responses and health outcomes in COVID-19 patients. While existing studies provide general insights into the relationship between the microbiota and probiotics with COVID-19, they often lack a detailed exploration of how specific bacterial taxa might be used as adjunctive treatments. This review aims to address this gap by focusing on ten key genera of beneficial bacteria, discussing their roles in COVID-19 and evaluating their potential as probiotics for prevention and treatment. The review covers the impact of these microbes on human health, their population alterations in COVID-19 patients, and their interactions with other viral infections. Among these microbes, several exhibit distinct patterns of abundance in COVID-19 patients, influencing disease outcomes and highlighting their potential roles in infection dynamics. In COVID-19 patients, populations of Akkermansia, Ruminococcus, and Roseburia are consistently reduced, while those of Faecalibacterium show a significant decline in more severe cases. Bacteroides presents varying effects depending on the species involved. Alterations in the abundance of Blautia and Lachnospiraceae are associated with increased inflammation and disease severity. Likewise, the depletion of Lachnospira and Coprococcus populations, both linked to anti-inflammatory effects, may exacerbate symptom severity. Oscillospira, though less studied, is connected to overall health and could have implications for viral infections. This review synthesizes the current understanding of these beneficial microbes to highlight the importance of maintaining a healthy microbiota to alleviate the impact of COVID-19 and contribute to the development of novel therapeutic strategies involving microbiota modulation.
Collapse
Affiliation(s)
- Pabulo Henrique Rampelotto
- Bioinformatics and Biostatistics Core Facility, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Clarissa Reginato Taufer
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Juliana da Silva
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
- Graduate Program in Health and Human Development, Universidade La Salle, Canoas 92010-000, Brazil
| |
Collapse
|
22
|
Ding YY, Tang XY, Tian Y, Zhang FL, Ding X, Qi MC, Dong W, Liu CG. Enteromorpha prolifera soluble dietary fiber alleviates ulcerative colitis through restoration of mucosal barrier and gut microbiota homeostasis. Front Nutr 2025; 12:1579889. [PMID: 40342374 PMCID: PMC12058658 DOI: 10.3389/fnut.2025.1579889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 04/07/2025] [Indexed: 05/11/2025] Open
Abstract
Background Ulcerative colitis (UC), a recurrent chronic colon inflammation, presents substantial therapeutic challenges due to the frequent adverse effects associated with conventional pharmacological treatments. These limitations underscore the critical need for developing alternative dietary interventions with improved safety profiles. The present study investigated the therapeutic potential of Enteromorpha prolifera soluble dietary fiber microparticles (EDFM) in UC management, focusing on restoring mucosal barrier integrity and modulating gut microbiota homeostasis. Methods EDFM was fabricated through aqueous extraction of E. prolifera soluble dietary fiber via boiling followed by spray-drying. A mouse UC model was induced by dextran sulfate sodium (DSS). The severity of UC was evaluated through daily disease activity index (DAI) scoring; quantification of pro-inflammatory cytokines (TNF-α, IL-1β) via ELISA; histopathological analysis of colon sections with H&E staining; immunofluorescence detection of tight junction proteins (ZO-1, occludin); and 16S rRNA sequencing for gut microbiota. Results EDFM treatment significantly reduced the expression of pro-inflammatory cytokines (TNF-α and IL-1β), enhanced the expression of tight junction proteins (ZO-1 and occludin), and stimulated mucin (MUC2) production. Additionally, EDFM promoted the proliferation of beneficial probiotics (Alloprevotella, Lachnospiraceae_NK4A136_group, and Ruminococcaceae_UCG-014), while inhibiting pathogenic bacteria (Escherichia-Shigella, Parabacteroides, Rikenellaceae_RC9_gut_group, Odoribacter, and [Ruminococcus]_torques_group). Conclusion EDFM supplementation significantly ameliorates UC through dual modulation of gut microbiota and intestinal barrier integrity, indicating its potential as a functional food ingredient for UC prevention and treatment.
Collapse
Affiliation(s)
- Yuan-Yuan Ding
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- College of Stomatology, North China University of Science and Technology, Tangshan, China
| | - Xin-Yi Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yu Tian
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Feng-Long Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiang Ding
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Meng-Chun Qi
- College of Stomatology, North China University of Science and Technology, Tangshan, China
| | - Wei Dong
- College of Stomatology, North China University of Science and Technology, Tangshan, China
| | - Chen-Guang Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| |
Collapse
|
23
|
Wang Y, He J, Chen S, Lv X, Chen J, Ru K, Liang X, Mao M, Song Y. Bibliometric analysis of research trends and prospective directions of Akkermansia muciniphila from 2010 to 2024. Front Microbiol 2025; 16:1569241. [PMID: 40309112 PMCID: PMC12040816 DOI: 10.3389/fmicb.2025.1569241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
Background Akkermansia muciniphila (A. muciniphila) is an emerging probiotic with potential impact on human health, and there is a growing interest in this area, but an overall analysis of research trends is lacking. This study conducted a detailed bibliometric analysis and visualization of A. muciniphila research to examine the current research status, hotspots, and trends, aiming to inform future research directions. Methods This study utilized the Web of Science database to search research on A. muciniphila from 2010 to 2024. Bibliometric analysis was conducted using CiteSpace and VOSviewer software to generate yearly publication trends, contributions by countries, institutions, and distinguished researchers, as well as key themes and influential researches. This analysis aimed to visualize and explore the literature over the past 15 years, guiding future researches and identifying gaps in the field of intestinal flora in A. muciniphila. Results We searched a total of 4,423 related publications. Wei Chen, Willem de Vos and Patrice D. Cani are the primary contributors to A. muciniphila 's research. The top contributing countries and institutions are China, the United States, South Korea, Spain, and Italy, with research centers such as the Chinese Academy of Sciences, Zhejiang University, the University of Copenhagen, and the University of Helsinki being the main contributors. Current research hotspots focus on the molecular biology of A. muciniphila, such as its role in intestinal barrier maintenance, immune response, and its potential for regulating and treating digestive and metabolic diseases, such as cancer, fatty liver disease, inflammatory bowel disease, etc., through bile acid metabolism, extracellular vesicles, and insulin resistance. Conclusion Our study synthesizes current research on A. muciniphila in various disease areas and suggests enhancing collaboration among countries, institutions, and authors to advance A. muciniphila-related clinical and basic research, explore its efficacy in a variety of diseases and the effects of commonly used clinical medications on A. muciniphila, to fill the research gaps in the current field, and to provide valid evidence for the development of A. muciniphila as a novel probiotic supplement.
Collapse
Affiliation(s)
- Yanan Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Jiahui He
- Beijing University of Chinese Medicine, Beijing, China
| | - Simin Chen
- Beijing University of Chinese Medicine, Beijing, China
| | - Xinyi Lv
- Beijing University of Chinese Medicine, Beijing, China
| | - Jiayi Chen
- Beijing University of Chinese Medicine, Beijing, China
| | - Kaiyue Ru
- Beijing University of Chinese Medicine, Beijing, China
| | - Xiao Liang
- Qianfoshan Hospital in Shandong Province, Jinan, China
| | - Meng Mao
- Beijing University of Chinese Medicine, Beijing, China
| | - Yuehan Song
- Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
24
|
Xu K, Wang G, Gong J, Yang X, Cheng Y, Li D, Sheng S, Zhang F. Akkermansia muciniphila protects against dopamine neurotoxicity by modulating butyrate to inhibit microglia-mediated neuroinflammation. Int Immunopharmacol 2025; 152:114374. [PMID: 40056512 DOI: 10.1016/j.intimp.2025.114374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 03/10/2025]
Abstract
Parkinson's disease (PD) is an age-related and second most common neurodegenerative disease. To date, safe and efficient therapeutic drugs are deficient. In recent years, the relationship between gut microbiota and CNS have received more attention. Homeostatic imbalance of gut microbiota was revealed to participate in the progression of PD. This study detected that Akkermansia muciniphila (A. muciniphila) was apparently decreased in the feces of PD rats via 16S rRNA amplicon sequencing. Furtherly, we found that exogenous supplementation of A. muciniphila could improve 6-OHDA-induced motor dysfunction and dopamine (DA) neuronal damage and neuroinflammatory factors release in PD rats. Moreover, the short-chain fatty acids (SCFAs) sequencing demonstrated that A. muciniphila addition increased butyrate content both in gut and brain. The subsequent functional experiments confirmed that the exogenous supplementation of butyrate conferred neuroprotection against DA neurotoxicity. Mechanically, butyrate targeted microglia to attenuate DA neuronal injury via inhibiting microglia activation and neuroinflammatory factors production. In conclusion, A. muciniphila protected DA neuronal damage by modulating butyrate to inhibit microglia-elicited neuroinflammation. These findings provided a potential application of A. muciniphila on PD treatment.
Collapse
Affiliation(s)
- Kaifei Xu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China
| | - Guoqing Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jiantao Gong
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xinxing Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yufeng Cheng
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China
| | - Daidi Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China
| | - Shuo Sheng
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China
| | - Feng Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
25
|
Basgaran A, Lymberopoulos E, Burchill E, Reis-Dehabadi M, Sharma N. Machine learning determines the incidence of Alzheimer's disease based on population gut microbiome profile. Brain Commun 2025; 7:fcaf059. [PMID: 40235960 PMCID: PMC11999016 DOI: 10.1093/braincomms/fcaf059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 10/14/2024] [Accepted: 03/20/2025] [Indexed: 04/17/2025] Open
Abstract
The human microbiome is a complex and dynamic community of microbes, thought to have symbiotic benefit to its host. Influences of the gut microbiome on brain microglia have been identified as a potential mechanism contributing to neurodegenerative diseases, such as Alzheimer's disease, motor neurone disease and Parkinson's disease (Boddy SL, Giovannelli I, Sassani M, et al. The gut microbiome: A key player in the complexity of amyotrophic lateral sclerosis (ALS). BMC Med. 2021;19(1):13). We hypothesize that population level differences in the gut microbiome will predict the incidence of Alzheimer's disease using machine learning methods. Cross-sectional analyses were performed in R, using two large, open-access microbiome datasets (n = 959 and n = 2012). Countries in these datasets were grouped based on Alzheimer's disease incidence and the gut microbiome profiles compared. In countries with a high incidence of Alzheimer's disease, there is a significantly lower diversity of the gut microbiome (P < 0.05). A permutational analysis of variance test (P < 0.05) revealed significant differences in the microbiome profile between countries with high versus low incidence of Alzheimer's disease with several contributing taxa identified: at a species level Escherichia coli, and at a genus level Haemophilus and Akkermansia were found to be reproducibly protective in both datasets. Additionally, using machine learning, we were able to predict the incidence of Alzheimer's disease within a country based on the microbiome profile (mean area under the curve 0.889 and 0.927). We conclude that differences in the microbiome can predict the varying incidence of Alzheimer's disease between countries. Our results support a key role of the gut microbiome in neurodegeneration at a population level.
Collapse
Affiliation(s)
- Amedra Basgaran
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Eva Lymberopoulos
- Centre for Doctoral Training in AI-enabled Healthcare Systems, Institute of Health Informatics, University College London, London NW1 2DA, UK
| | - Ella Burchill
- King's College London, School of Medical Education, London WC2R 2LS, UK
| | - Maryam Reis-Dehabadi
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Nikhil Sharma
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|
26
|
Achasova KM, Snytnikova OA, Chanushkina KE, Morozova MV, Tsentalovich YP, Kozhevnikova EN. Baseline abundance of Akkermansia muciniphila and Bacteroides acidifaciens in a healthy state predicts inflammation associated tumorigenesis in the AOM/DSS mouse model. Sci Rep 2025; 15:12241. [PMID: 40210644 PMCID: PMC11985942 DOI: 10.1038/s41598-025-96514-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/28/2025] [Indexed: 04/12/2025] Open
Abstract
Numerous studies demonstrate that intestinal microbiota contribute to colorectal cancer (CRC), which is often associated with dysbiosis. Most of the data were obtained from studies on CRC patients, making it challenging to determine whether alterations in microbiota are a consequence of the pathology or whether they actively drive its progression. Several studies using laboratory animals suggest that gut microbiota may be involved in both the onset and progression of CRC. In the present study we utilized the azoxymethane-dextran sulfate sodium (AOM/DSS) mouse model of CRC to investigate the contribution of healthy-state microbiota to inflammation-associated tumorigenesis. Two cohorts of C57BL/6 mice harboring different intestinal microbiota demonstrated different susceptibility to AOM/DSS treatment. Sequencing of 16S rRNA bacterial DNA from fecal samples revealed Akkermansia muciniphila and Bacteroides acidifaciens as marker features in the healthy-state microbiota (before AOM/DSS administration), which showed a strong positive correlation with tumor incidence. Moreover, the healthy-state abundance of these markers, considered beneficial bacteria, was strongly positively correlated with the sulfate-reducing bacteria Desulfovibrio fairfieldensis identified as a marker of chronic colitis-associated microbiota. Furthermore, the abundances of these marker features, associated with CRC outcome, correlated with the expression of interferon gamma and nitric oxide synthase 2 genes in colon tissue during the early stage of DSS-induced intestinal inflammation. In contrast to multiple studies demonstrating the anti-inflammatory properties of A. muciniphila and B. acidifaciens, our results point out their potential adverse effect under specific conditions of genotoxicity and inflammation in the intestine. Taken together, our findings suggest a complex, context-dependent role of commensal microbiota in inflammation-associated dysbiosis and CRC.
Collapse
Affiliation(s)
- Kseniya M Achasova
- Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, Russia, 630117
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia, 630090
| | | | | | - Maryana V Morozova
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia, 630090
| | | | - Elena N Kozhevnikova
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia, 630090.
- Laboratory of Bioengineering, Novosibirsk State Agrarian University, Novosibirsk, Russia, 630039.
| |
Collapse
|
27
|
Gourdine JPF, Pacentine IV, Barstad A, Dahl EM, Gregory WT, Wolfe AJ, Sysoeva TA, Karstens L. Complex carbohydrates catabolism capacity of bladder microbiota inhabiting healthy and overactive female bladders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.02.646827. [PMID: 40236069 PMCID: PMC11996462 DOI: 10.1101/2025.04.02.646827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Overactive bladder syndrome (OAB) is a poorly understood symptom complex that affects 40% of females over the age of 40, with clinical features including urinary urgency and incontinence. In addition to inflammation, oxidative stress, nerve damage and reduced blood flow, alterations in the urinary microbiome (urobiome), specifically in bladder bacterial diversity, have been reported to be associated with OAB. Bladder bacteria are members of the urobiome along with viruses, archaea, fungi, and protozoans. The urobiome metabolism, particularly in relationship to host complex sugars (glycans), has been investigated recently in terms of glycosaminoglycan (GAG) utilization. Nevertheless, other urinary free oligosaccharides (FOS) have not yet been explored in both OAB and urobiome contexts. Similarly, a comprehensive search of microbial genes involved in host glycan metabolism in the bladder of adult females with or without OAB has not yet been reported. In this study, we investigated urinary FOS by mass spectrometry in women without OAB (asymptomatic controls), with OAB without incontinence (dry OAB), or with OAB with incontinence (wet OAB or urgency urinary incontinence, UUI). We also questioned the ability of commensal bladder bacteria to digest these FOS and other glycans, using bioinformatic tools to query publicly available bladder genomes isolated from affected and unaffected adult females to identify genes that encode polysaccharide lyases (PL) and glycoside hydrolases (GH). Our results show that FOS are present in a similar level in affected and unaffected controls with a few exceptions: ten FOS were found to differ between the OAB dry groups and either the control (four) or UUI (six) groups. Our results indicate that bladder microbiota from adult females both with and without OAB have the genetic capacity to digest host glycans and dietary sugars with subtle differences. Bladder bacteria isolated from females with OAB possess more GH/PL genes for host mucins, whereas bladder bacteria from controls possess more GH/PL genes for GAG digestion. In the control group, specifically, the genus Streptococcus possessed genes for the PL8 and GH88 enzymes, known to be involved in host GAG digestion. These novel bioinformatic data can enable future biochemical exploration of the urobiome's metabolism toward specific host glycans, such as GAGs, mucins O-glycans and N-glycans.
Collapse
|
28
|
Miyamoto J, Ando Y, Yamano M, Nishida A, Murakami K, Kimura I. Acidipropionibacterium acidipropionici, a propionate-producing bacterium, contributes to GPR41 signaling and metabolic regulation in high-fat diet-induced obesity in mice. Front Nutr 2025; 12:1542196. [PMID: 40248033 PMCID: PMC12003125 DOI: 10.3389/fnut.2025.1542196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/19/2025] [Indexed: 04/19/2025] Open
Abstract
Obesity is a major healthcare problem worldwide and is induced by excess energy intake, resulting in gut microbial composition and microbial diversity changes. Through fermentation of dietary fibers, short-chain fatty acids (SCFAs) act as host energy sources and signaling molecules via G protein-coupled receptors such as GPR41. Acidipropionibacterium acidipropionici is widely used in many applications; however, in vivo studies on the beneficial effect of A. acidipropionici via propionate production and host energy homeostasis are unclear. Therefore, this study aimed to investigate the beneficial metabolic effects of A. acidipropionici by focusing on GPR41 signaling in a high-fat diet (HFD)-induced obesity mouse model. Here, we demonstrated that A. acidipropionici OB7439 improved host metabolism in HFD-induced obesity in mice. The intake of A. acidipropionici OB7439 improved metabolism in HFD-induced obese mice by increasing propionate production, regulating glucose tolerance, and inhibiting hepatic inflammation via GPR41 signaling. Our findings shed light on the potential of using A. acidipropionici OB7439 as an SCFA producer for the prevention and treatment of metabolic disorders. Based on these results, we suggest that A. acidipropionici may be a potential therapeutic bacterium that inhibits obesity and modulates the gut microbial community.
Collapse
Affiliation(s)
- Junki Miyamoto
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | - Yuna Ando
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Mayu Yamano
- Department of Molecular Endocrinology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Akari Nishida
- Department of Molecular Endocrinology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Kota Murakami
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | - Ikuo Kimura
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Department of Molecular Endocrinology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
29
|
Khavani M, Mehranfar A, Mofrad MRK. Unravelling the Glycan Code: Molecular Dynamics and Quantum Chemistry Reveal How O-Glycan Functional Groups Govern OgpA Selectivity in Mucin Degradation by Akkermansia muciniphila. Microb Biotechnol 2025; 18:e70091. [PMID: 40181232 PMCID: PMC11968330 DOI: 10.1111/1751-7915.70091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/31/2024] [Accepted: 01/06/2025] [Indexed: 04/05/2025] Open
Abstract
Mucins, heavily O-glycosylated glycoproteins, are a key component of mucus, and certain gut microbiota, including Akkermansia muciniphila, can utilise mucin glycans as a carbon source. Akkermansia muciniphila produces the O-glycopeptidase enzyme OgpA, which cleaves peptide bonds at the N-terminus of serine (Ser) or threonine (Thr) residues carrying O-glycan substitutions, with selectivity influenced by the O-glycan functional groups. Using molecular dynamics (MD) simulations and quantum chemistry calculations, we explored how different O-glycan groups affect OgpA's selectivity. Our results show that peptides bind to the enzyme via hydrogen bonds, π-π interactions, van der Waals forces and electrostatic interactions, with key residues, including Tyr90, Val138, Gly176, Tyr210 and Glu91, playing important roles. The primary determinant of selectivity is the interaction between the peptide's functional group and the enzyme's binding cavity, while peptide-enzyme interface interactions are secondary. Quantum chemistry calculations reveal that OgpA prefers peptides with a lower electrophilic character. This study provides new insights into mucin degradation by gut microbiota enzymes, advancing our understanding of this critical biological process.
Collapse
Affiliation(s)
- Mohammad Khavani
- Molecular Cell Biomechanics Laboratory, Department of Bioengineering and Mechanical EngineeringUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - Aliyeh Mehranfar
- Molecular Cell Biomechanics Laboratory, Department of Bioengineering and Mechanical EngineeringUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - Mohammad R. K. Mofrad
- Molecular Cell Biomechanics Laboratory, Department of Bioengineering and Mechanical EngineeringUniversity of California BerkeleyBerkeleyCaliforniaUSA
- Molecular Biophysics and Integrative Bioimaging DivisionLawrence Berkeley National LabBerkeley, CAUSA
| |
Collapse
|
30
|
Ma Q, Zhou X, Su W, Wang Q, Yu G, Tao W, Dong Z, Wang C, Wong CM, Liu T, Jia S. Akkermansia muciniphila inhibits jejunal lipid absorption and regulates jejunal core bacteria. Microbiol Res 2025; 293:128053. [PMID: 39798297 DOI: 10.1016/j.micres.2025.128053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/29/2024] [Accepted: 01/04/2025] [Indexed: 01/15/2025]
Abstract
Insufficiency of Akkermansia muciniphila (Akk) has been implicated in the pathogenesis of metabolic diseases, and administration or restoration of Akk has ameliorated these disorders. Recently, Pasteurized Akk (PA-Akk) has been approved as a functional food. However, the impact of Akk on lipid absorption in the proximal intestine, which is directly exposed to orally administered Akk, remains largely unexplored. In this study, we orally administered Akk and PA-Akk to mice and investigated the subsequent lipid absorption. Long-term administration of Akk resulted in reduced lipid deposits in the liver and adipocytes, along with improved glucose metabolism. This was primarily attributed to a reduction in lipid absorption by epithelial cells in the proximal jejunum. Mechanistically, Akk activated AMP-activated protein kinase (AMPK) and directly inhibit lipids absorption in both mouse and human jejunal epithelial cells. Furthermore, we demonstrated that Akk treatment, but not PA-Akk treatment, promotes the abundance of genera that are highly abundant in the normal jejunum and belong to the phylum Firmicutes. Thus, our study concludes that oral administration of Akk provides beneficial effects on metabolism, partially through inhibiting jejunal lipid absorption and promoting the abundance of core jejunal microbes.
Collapse
Affiliation(s)
- Qiming Ma
- The First Affiliated Hospital of Jinan University, Guangzhou, China; The Guangdong-Hong Kong-Macao Joint University Laboratory of Metabolic and Molecular Medicine, Jinan University, Guangzhou, China
| | - Xincheng Zhou
- The First Affiliated Hospital of Jinan University, Guangzhou, China; The Guangdong-Hong Kong-Macao Joint University Laboratory of Metabolic and Molecular Medicine, Jinan University, Guangzhou, China
| | - Weikang Su
- The First Affiliated Hospital of Jinan University, Guangzhou, China; The Guangdong-Hong Kong-Macao Joint University Laboratory of Metabolic and Molecular Medicine, Jinan University, Guangzhou, China
| | - Qingyu Wang
- The First Affiliated Hospital of Jinan University, Guangzhou, China; The Guangdong-Hong Kong-Macao Joint University Laboratory of Metabolic and Molecular Medicine, Jinan University, Guangzhou, China
| | - Guoxing Yu
- The First Affiliated Hospital of Jinan University, Guangzhou, China; The Guangdong-Hong Kong-Macao Joint University Laboratory of Metabolic and Molecular Medicine, Jinan University, Guangzhou, China
| | - Weihua Tao
- The First Affiliated Hospital of Jinan University, Guangzhou, China; Biobank of the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhiyong Dong
- The First Affiliated Hospital of Jinan University, Guangzhou, China; The Guangdong-Hong Kong-Macao Joint University Laboratory of Metabolic and Molecular Medicine, Jinan University, Guangzhou, China
| | - Cunchuan Wang
- The First Affiliated Hospital of Jinan University, Guangzhou, China; The Guangdong-Hong Kong-Macao Joint University Laboratory of Metabolic and Molecular Medicine, Jinan University, Guangzhou, China
| | - Chi-Ming Wong
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong
| | - Tiemin Liu
- Institutes of Biomedical Sciences, College of Life Sciences, Inner Mongolia University, Hohhot, China; School of Life Sciences, Fudan University, Shanghai, China.
| | - Shiqi Jia
- Institutes of Biomedical Sciences, College of Life Sciences, Inner Mongolia University, Hohhot, China; The First Affiliated Hospital of Jinan University, Guangzhou, China; The Guangdong-Hong Kong-Macao Joint University Laboratory of Metabolic and Molecular Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
31
|
Yoo E, Jo Y, Park J, Hong SW. Immune tolerance to foreign antigens in the intestine: mechanisms mediated by CD4+ T cells. BMB Rep 2025; 58:158-168. [PMID: 40176601 PMCID: PMC12041928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/24/2025] [Accepted: 03/17/2025] [Indexed: 04/04/2025] Open
Abstract
The immune system encounters a diverse array of antigens, both self and foreign, necessitating mechanisms to maintain tolerance and prevent harmful inflammatory responses. CD4+ T cells, crucial in orchestrating immune responses, play a critical role in mediating tolerance to both self and foreign antigens. While the mechanisms of CD4+ T cell-mediated tolerance to self-antigens are well-documented, the understanding of tolerance to foreign antigens, including those from commensal microbes and food, remains incomplete. This review discusses recent progress in the mechanisms underlying immune tolerance to foreign antigens, with a focus on the role of CD4+ T cells. We explore how inflammatory and tolerogenic CD4+ T cell subsets are developed and maintained. Moreover, we delve into the complexities of immune responses to commensal microbes and food antigens by reviewing recent findings, highlighting the immunological contexts that shape immune tolerance. Understanding these mechanisms enhances our comprehension of how immune tolerance is established and sustained, providing insights into potential therapeutic approaches for managing chronic inflammatory diseases resulting from a loss of immune tolerance to foreign antigens. [BMB Reports 2025; 58(4): 158-168].
Collapse
Affiliation(s)
- Eunbi Yoo
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Yeleen Jo
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Jooyoun Park
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Sung-Wook Hong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
32
|
González-Correa C, Moleón J, Miñano S, Robles-Vera I, de la Visitación N, Guerra-Hernández E, Toral M, Jiménez R, Duarte J, Romero M. Protective Effect of Dietary Fiber on Blood Pressure and Vascular Dysfunction Through Regulation of Sympathetic Tone and Immune Response in Genetic Hypertension. Phytother Res 2025; 39:1858-1875. [PMID: 40122676 DOI: 10.1002/ptr.8484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/17/2025] [Accepted: 02/22/2025] [Indexed: 03/25/2025]
Abstract
The mechanisms underlying the antihypertensive effect of dietary fibers remain poorly understood. This study investigates whether dietary fiber supplementation can prevent cardiovascular damage and high blood pressure in a genetic model of neurogenic hypertension. Six-week-old male spontaneously hypertensive rats (SHR) and their respective normotensive control, Wistar Kyoto rats (WKY), were divided into four groups: Untreated WKY, untreated SHR, SHR treated with resistant starch (SHR + RS), and SHR treated with inulin-type fructans (SHR + ITF) for 12 weeks. Additionally, a faecal microbiota transplantation (FMT) experiment was conducted, transferring faecal content from treated SHR donors to recipient SHRs. A diet rich in RS fiber reduced vascular oxidative stress, inflammation, and high blood pressure. These protective effects were associated with a reshaped gut microbiota, leading to increased short-chain fatty acid production, reduced endotoxemia, decreased sympathetic activity, and a restored balance between Th17 and Treg lymphocytes in mesenteric lymph nodes and aorta. Elevated plasma levels of acetate and butyrate in the SHR + RS group correlated with increased expression of aortic GPR41, GRP43 and PPARδ. Conversely, ITF treatment failed to prevent hypertension or endothelial dysfunction in SHR. FMT from the SHR + RS group to recipient SHR partially replicated these beneficial effects. This study highlights the antihypertensive benefits of dietary insoluble RS fiber, which are attributed to enhanced short-chain fatty acids production in the gut. This leads to improved gut permeability, reduced sympathetic tone, and diminished vascular T-cell accumulation. Therefore, dietary interventions with RS fiber may offer promising therapeutic strategies for preventing hypertension.
Collapse
Affiliation(s)
- Cristina González-Correa
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, Ibs.GRANADA, Granada, Spain
| | - Javier Moleón
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, Ibs.GRANADA, Granada, Spain
| | - Sofía Miñano
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Iñaki Robles-Vera
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Néstor de la Visitación
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | | | - Marta Toral
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, Ibs.GRANADA, Granada, Spain
| | - Rosario Jiménez
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, Ibs.GRANADA, Granada, Spain
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Juan Duarte
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, Ibs.GRANADA, Granada, Spain
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Miguel Romero
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, Ibs.GRANADA, Granada, Spain
| |
Collapse
|
33
|
Ni M, Fan Y, Liu Y, Li Y, Qiao W, Davey LE, Zhang XS, Ksiezarek M, Mead EA, Tourancheau A, Jiang W, Blaser MJ, Valdivia RH, Fang G. Epigenetic phase variation in the gut microbiome enhances bacterial adaptation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.11.632565. [PMID: 39829898 PMCID: PMC11741434 DOI: 10.1101/2025.01.11.632565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The human gut microbiome within the gastrointestinal tract continuously adapts to variations in diet, medications, and host physiology. A strategy for bacterial genetic adaptation is epigenetic phase variation (ePV) mediated by bacterial DNA methylation, which can regulate gene expression, enhance clonal heterogeneity, and enable a single bacterial strain to exhibit variable phenotypic states. Genome-wide and site-specific ePVs have been characterized in human pathogens' antigenic variation and virulence factor production. However, the role of ePV in facilitating adaptation within the human microbiome remains poorly understood. Here, we comprehensively cataloged genome-wide and site-specific ePV in human infant and adult gut microbiomes. First, using long-read metagenomic sequencing, we detected genome-wide ePV mediated by complex structural variations of DNA methyltransferases, highlighting those associated with antibiotics or fecal microbiota transplantation. Second, we analyzed a collection of public short-read metagenomic sequencing datasets, uncovering a great prevalence of genome-wide ePV in the human gut microbiome. Third, we quantitatively detected site-specific ePVs using single-molecule methylation analysis to identify dynamic variation associated with antibiotic treatment or probiotic engraftment. Finally, we performed an in-depth assessment of an Akkermansia muciniphila isolate from an infant, highlighting that ePVs can regulate gene expression and enhance the bacterial adaptive capacity by employing a bet-hedging strategy to increase tolerance to differing antibiotics. Our findings indicate that epigenetic modifications are a common strategy used by gut bacteria to adapt to the fluctuating environment.
Collapse
Affiliation(s)
- Mi Ni
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yu Fan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yujie Liu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yangmei Li
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wanjin Qiao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lauren E. Davey
- Department of Integrative Immunobiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, USA
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Xue-Song Zhang
- Center for Advanced Biotechnology and Medicine, Rutgers University, New Brunswick, NJ, USA
| | - Magdalena Ksiezarek
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Edward A. Mead
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alan Tourancheau
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wenyan Jiang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Martin J. Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University, New Brunswick, NJ, USA
| | - Raphael H. Valdivia
- Department of Integrative Immunobiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, USA
| | - Gang Fang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
34
|
Westmark CJ. Soy-based purified ingredient diet affects mouse gut permeability and the microbiome in fragile X mice. Front Mol Neurosci 2025; 18:1520211. [PMID: 40190341 PMCID: PMC11968763 DOI: 10.3389/fnmol.2025.1520211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/28/2025] [Indexed: 04/09/2025] Open
Abstract
Introduction Gastrointestinal problems including vomiting, reflux, flatulence, diarrhea, constipation and colic are common comorbidities in fragile X syndrome. There is accumulating evidence suggesting that leaky gut syndrome causes neurological phenotypes. Although fragile X messenger ribonucleoprotein is ubiquitously expressed, there is a dearth of knowledge regarding its role outside of the brain including effects on gut dysfunction in fragile X. The aim of this study was to generate novel data on gastrointestinal barrier function and the gut microbiome in response to Fmr1 genotype, sex and diet in mice. Methods Fmr1KO male mice and littermate controls in an FVB background were maintained on two purified ingredient diets (AIN-93G with casein protein versus soy protein isolate) versus two standard chows (Teklad 2019 with wheat, corn and yeast protein versus Purina 5015 with wheat, soy, corn, yeast and whey protein sources). Gut permeability was quantified by FITC-dextran levels in blood plasma. The cecal microbiome was identified by 16S rRNA sequencing. In addition, gut permeability was tested in Fmr1KO mice in the C57BL/6 J background maintained on casein- and soy protein isolate-based AIN-93G versus Teklad 2019. Results Knockout of the Fmr1 gene in FVB mice did not affect gut permeability. Soy protein isolate-based AIN-93G increased gut permeability. Beta-diversity of the cecal microbiome was significantly altered as a function of the four test diets. Akkermansia_muciniphila was increased in Fmr1KO mice fed AIN-93G while unnamed species within the genus Anaerovorax and family Ruminococcaceae were increased and the order Clostridales decreased in Fmr1KO mice fed AIN-93G/soy. Fmr1KO mice in the C57BL/6 J background exhibited increased gut permeability in response to soy protein. Discussion These findings regarding the effects of diet on gut permeability and the microbiome have important implications for experimental design. Single-source diets are ubiquitously used to maintain laboratory animals for medical research and feed details are frequently not reported in publications. Diet/phenotype interactions could have a large impact on inter-laboratory replicability in premedical research. For infants with fragile X, early-life diet could impact the severity of disease outcomes.
Collapse
Affiliation(s)
- Cara J. Westmark
- Department of Neurology, University of Wisconsin, Madison, WI, United States
- Molecular Environmental Toxicology Center, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
35
|
Mamun MAA, Rakib A, Mandal M, Singh UP. Impact of a High-Fat Diet on the Gut Microbiome: A Comprehensive Study of Microbial and Metabolite Shifts During Obesity. Cells 2025; 14:463. [PMID: 40136712 PMCID: PMC11940932 DOI: 10.3390/cells14060463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025] Open
Abstract
Over the last few decades, the prevalence of metabolic diseases such as obesity, diabetes, non-alcoholic fatty liver disease, hypertension, and hyperuricemia has surged, primarily due to high-fat diet (HFD). The pathologies of these metabolic diseases show disease-specific alterations in the composition and function of their gut microbiome. How HFD alters the microbiome and its metabolite to mediate adipose tissue (AT) inflammation and obesity is not well known. Thus, this study aimed to identify the changes in the gut microbiome and metabolomic signatures induced by an HFD to alter obesity. To explore the changes in the gut microbiota and metabolites, 16S rRNA gene amplicon sequencing and metabolomic analyses were performed after HFD and normal diet (ND) feeding. We noticed that, at taxonomic levels, the number of operational taxonomic units (OTUs), along with the Chao and Shannon indexes, significantly shifted in HFD-fed mice compared to those fed a ND. Similarly, at the phylum level, an increase in Firmicutes and a decrease in Bacteroidetes were noticed in HFD-fed mice. At the genus level, an increase in Lactobacillus and Ruminococcus was observed, while Allobaculum, Clostridium, and Akkermansia were markedly reduced in the HFD group. Many bacteria from the Ruminococcus genus impair bile acid metabolism and restrict weight loss. Firmicutes are efficient in breaking down complex carbohydrates into short-chain fatty acids (SCFAs) and other metabolites, whereas Bacteroidetes are involved in a more balanced or efficient energy extraction. Thus, an increase in Firmicutes over Bacteroidetes enhances the absorption of more calories from food, which may contribute to obesity. Taken together, the altered gut microbiota and metabolites trigger AT inflammation, which contributes to metabolic dysregulation and disease progression. Thus, this study highlights the potential of the gut microbiome in the development of therapeutic strategies for obesity and related metabolic disorders.
Collapse
Affiliation(s)
| | | | | | - Udai P. Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, USA; (M.A.A.M.); (A.R.); (M.M.)
| |
Collapse
|
36
|
Wang Y, Xie Z, Du L, Wang Q, Zhang L, Wu Y, Han J. Heat-killed Lacticaseibacillus paracasei 6235 is more effective than live on DSS-induced colitis via modulation of intestinal microbiota and MAPK/NF-κB signaling pathways. Food Funct 2025; 16:2247-2261. [PMID: 39569739 DOI: 10.1039/d4fo04873c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
This study compared the protective effects of both live Lacticaseibacillus paracasei 6235 (LLP 6235) and heat-killed Lacticaseibacillus paracasei 6235 (HK-LP 6235) on ulcerative colitis. Using a dextran sulfate sodium (DSS)-induced colitis mouse model, we evaluated physiological state, colon tissue integrity, inflammatory factors, tight junction (TJ) proteins, and intestinal microbiota variations. The findings demonstrated that both LLP 6235 and HK-LP 6235 have the capacity to mitigate colitis damage, enhance TJ protein levels, and restore colon morphology. In addition, these interventions modulated the intestinal inflammatory response by inhibiting pro-inflammatory factors and upregulating anti-inflammatory factors through the mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) signaling pathways. Moreover, treatment with LLP 6235 and HK-LP 6235 significantly altered intestinal microbiota diversity, increased the relative abundance of beneficial bacteria, and regulated the short-chain fatty acid (SCFA) levels. Spearman correlation analysis revealed a strong association between TJ proteins, SCFAs, intestinal microbiota, and inflammatory response, suggesting that LLP 6235 and HK-LP 6235 may provide an effective approach to colitis prevention. In conclusion, LLP 6235 and HK-LP 6235 have similar abilities; furthermore, HK-LP 6235 modulated the intestinal microbiota through lipid metabolic pathways, resulting in a greater improvement. Moreover, considering the high stability and safety of prebiotics and their wide applicability, HK-LP 6235 is recommended for use as a modulator of intestinal inflammatory diseases.
Collapse
Affiliation(s)
- Yucong Wang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Zhixin Xie
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Lei Du
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Qi Wang
- LS CORPORATION CO., LTD, Tokyo, 0611374, Japan
| | - Lili Zhang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yunzhou Wu
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Jianchun Han
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
37
|
Hu Y, Zhou J, Lin X. Akkermansia muciniphila helps in the recovery of lipopolysaccharide-fed mice with mild intestinal dysfunction. Front Microbiol 2025; 16:1523742. [PMID: 40143870 PMCID: PMC11938125 DOI: 10.3389/fmicb.2025.1523742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/03/2025] [Indexed: 03/28/2025] Open
Abstract
Background Mild intestinal dysfunction, linked to subtle yet significant health issues, can be induced by lipopolysaccharide (LPS), a Gram-negative bacterial component that disrupts gut function and triggers inflammation. Akkermansia muciniphila has shown promise as a probiotic for gut health due to its roles in mucin degradation and short-chain fatty acid production. This study explores the therapeutic effects of Akkermansia muciniphila on LPS-induced mild intestinal dysfunction in mice. Methods Thirty-eight 6-week-old C57BL/6 mice were split into control (n = 19) and LPS-treated (n = 19) groups. LPS-treated mice received 300 μg/kg/day of LPS for 4 weeks, followed by Akkermansia muciniphila supplementation at 41 mg/kg/day (Akk1) or 82 mg/kg/day (Akk2) for another 4 weeks. Gut microbiota was analyzed via metagenomic sequencing, and gene expression was evaluated through transcriptomics. Results LPS significantly altered gut microbiota, reducing diversity and increasing pathogenic genera like Lachnoclostridium. Akkermansia muciniphila supplementation, particularly at higher doses, partially restored gut microbiota by increasing beneficial genera such as Muribaculum. Transcriptomics showed that LPS induced immune and inflammatory responses, while Akkermansia muciniphila reduced these effects by modulating pathways like TNF and NF-kappa B signaling. Conclusion Akkermansia muciniphila mitigates LPS-induced gut dysfunction by restoring microbiota balance and modulating immune responses, highlighting its potential as a therapeutic agent for gut health.
Collapse
Affiliation(s)
- Yue Hu
- Department of Physiology, Basic Medical College, Shenzhen University, Shenzhen, China
- Shenzhen InnoStar Institute of Biomedical Safety Evaluation and Research Co., Ltd., Shenzhen, China
| | - Jun Zhou
- Shenzhen InnoStar Institute of Biomedical Safety Evaluation and Research Co., Ltd., Shenzhen, China
| | - Xiaoqi Lin
- Shenzhen InnoStar Institute of Biomedical Safety Evaluation and Research Co., Ltd., Shenzhen, China
| |
Collapse
|
38
|
Ghimire S, Lehman PC, Aguilar Meza LS, Shahi SK, Hoang J, Olalde H, Paullus M, Cherwin C, Wang K, Gill C, Cho T, Mangalam AK. Specific microbial ratio in the gut microbiome is associated with multiple sclerosis. Proc Natl Acad Sci U S A 2025; 122:e2413953122. [PMID: 40030030 PMCID: PMC11912405 DOI: 10.1073/pnas.2413953122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 01/02/2025] [Indexed: 03/19/2025] Open
Abstract
Gut microbiota dysbiosis is associated with multiple sclerosis (MS), but the causal relationship between specific gut bacteria and MS pathogenesis remains poorly understood. Therefore, we profiled the stool microbiome of people with MS (PwMS) and healthy controls (HC) using shotgun metagenomic sequencing. PwMS showed a distinct microbiome compared to HC, with Prevotella copri (PC) and Blautia species as drivers of microbial communities in HC and PwMS, respectively. Administration of MS-driving Blautia species (Blautia wexlerae; BW) to mice resulted in increased levels of gut inflammatory markers and altered microbiota with increased capacity to induce proinflammatory cytokines. Utilizing experimental autoimmune encephalomyelitis (EAE), an animal model of MS, we identified a lower gut Bifidobacterium to Akkermansia ratio as a hallmark of the disease. BW-administered mice also showed a lower Bifidobacterium to Akkermansia ratio pre-EAE induction which correlated with increased disease severity post-EAE induction. The importance of the Bifidobacterium to Akkermansia ratio at the species level, lower Bifidobacterium adolescentis to Akkermansia muciniphila (BA:AM), was validated in our MS cohort and a large International Multiple Sclerosis Microbiome Study. Thus, our findings highlight the BA:AM ratio as a potential gut microbial marker in PwMS, opening avenues for microbiome-based diagnosis, prognosis, and therapy in MS.
Collapse
Affiliation(s)
- Sudeep Ghimire
- Department of Pathology, University of Iowa, Iowa City, IA52242
- Clinician Scientist, Iowa City Veterans Affairs Health Care System, Iowa City, IA52242
| | - Peter C. Lehman
- Department of Pathology, University of Iowa, Iowa City, IA52242
- Graduate Program in Experimental Pathology, University of Iowa, Iowa City, IA52242
| | | | - Shailesh K. Shahi
- Department of Pathology, University of Iowa, Iowa City, IA52242
- Clinician Scientist, Iowa City Veterans Affairs Health Care System, Iowa City, IA52242
| | - Jemmie Hoang
- College of Nursing, University of Iowa, Iowa City, IA52242
| | - Heena Olalde
- Department of Neurology, University of Iowa Hospital and Clinics, Iowa City, IA52242
| | - Mishelle Paullus
- Department of Neurology, University of Iowa Hospital and Clinics, Iowa City, IA52242
| | | | - Kai Wang
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA52242
| | - Christine Gill
- Department of Neurology, University of Iowa Hospital and Clinics, Iowa City, IA52242
| | - Tracey Cho
- Department of Neurology, University of Iowa Hospital and Clinics, Iowa City, IA52242
| | - Ashutosh K. Mangalam
- Department of Pathology, University of Iowa, Iowa City, IA52242
- Clinician Scientist, Iowa City Veterans Affairs Health Care System, Iowa City, IA52242
- Graduate Program in Experimental Pathology, University of Iowa, Iowa City, IA52242
- Microbiome Core, University of Iowa, Iowa City, IA52242
| |
Collapse
|
39
|
Zhang Z, Wang J, Dang S, Liu X, Zhang Y, Zhang H. The worldview of Akkermansia muciniphila, a bibliometric analysis. Front Microbiol 2025; 16:1500893. [PMID: 40104597 PMCID: PMC11913835 DOI: 10.3389/fmicb.2025.1500893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 02/13/2025] [Indexed: 03/20/2025] Open
Abstract
Akkermansia muciniphila (A. muciniphila), a critical bacterium within the gut microbiota, plays a key role in human health and immunomodulation. Since its identification in 2004, A. muciniphila has emerged as a significant agent in treating metabolic diseases, gastroenterological diseases, and tumor immunotherapy. Its rapid ascent in scientific translation underscores its importance in gut microbiome research. However, there has been a lack of visualization and analysis of the rapidly occurring commercialization in this field, which has critically hindered insights into the current knowledge structure and understanding of the cutting-edge of the discipline. This study employs the Web of Science Core Collection (WOSCC) and Innography platforms to provide the first comprehensive analysis of A. muciniphila's academic progresses and commercialization over the past two decades, highlighting its growing prominence in global health research. Our analysis delineates that, following the academic trajectory, the evolution of A. muciniphila patents from foundational research through to application development and maturity, with particular emphasis on its expansive potential in emerging fields, including gastroenterological disorders, non-alcoholic fatty liver disease, cancer immunotherapy, stress management, and neurodegenerative disease treatment. Concluding, A. muciniphila presents as a next-generation probiotic with vast implications for human health. Our findings provide essential insights for future research and product development, contributing to the advancement of this burgeoning field.
Collapse
Affiliation(s)
- Zhao Zhang
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Jingyu Wang
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Shaoqing Dang
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Xingzi Liu
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuemiao Zhang
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Hong Zhang
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
40
|
Liu Y, Li Z, Lee SC, Chen S, Li F. Akkermansia muciniphila: promises and pitfallsfor next-generation beneficial microorganisms. Arch Microbiol 2025; 207:76. [PMID: 40032707 DOI: 10.1007/s00203-025-04263-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/29/2025] [Accepted: 01/31/2025] [Indexed: 03/05/2025]
Abstract
Akkermansia muciniphila, a microorganism ubiquitously colonizing the mucosal layer of the human gut, has garnered significant scientific interest as a promising candidate for probiotic therapeutics. Its persistent identification in both laboratory and living organism studies underscores its potential physiological benefits, positioning it as a bacterium of paramount importance in promoting host health. This review examines the diversity and abundance of gut microbiota members, emphasizing the identification of microbial species engaged in cross-feeding networks with A. muciniphila. Insightful exploration into the mechanisms of cross-feeding, including mucin-derived nutrient exchange and metabolite production, unveils the intricate dynamics shaping microbial community stability. Such interactions contribute not only to the availability of essential nutrients within the gut environment but also to the production of metabolites influencing microbial community dynamics and host health. In conclusion, the cumulative evidence from in vitro and in vivo perspectives substantiates the notion that A. muciniphila holds tremendous promise as a next-generation probiotic. By leveraging its unique physiological benefits, particularly in mucosal health and metabolic regulation, A. muciniphila stands poised to revolutionize the landscape of probiotic interventions for enhanced host well-being.
Collapse
Affiliation(s)
- Yantong Liu
- Department of Computer and Information Engineering, Kunsan National University, Gunsan, 54150, Republic of Korea
| | - Zonglun Li
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Sze Ching Lee
- Department of Neurology & Neurosurgery, Mayo clinic, Rochester, MN, 55902, USA
| | - Shurui Chen
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Feifei Li
- Department of Biochemistry and molecular biology, Mayo clinic, 200 First St. SW, Rochester, MN, 55902, USA.
| |
Collapse
|
41
|
Yang S, Liu H, Liu Y. Advances in intestinal epithelium and gut microbiota interaction. Front Microbiol 2025; 16:1499202. [PMID: 40104591 PMCID: PMC11914147 DOI: 10.3389/fmicb.2025.1499202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/17/2025] [Indexed: 03/20/2025] Open
Abstract
The intestinal epithelium represents a critical interface between the host and external environment, serving as the second largest surface area in the human body after the lungs. This dynamic barrier is sustained by specialized epithelial cell types and their complex interactions with the gut microbiota. This review comprehensively examines the recent advances in understanding the bidirectional communication between intestinal epithelial cells and the microbiome. We briefly highlight the role of various intestinal epithelial cell types, such as Paneth cells, goblet cells, and enteroendocrine cells, in maintaining intestinal homeostasis and barrier function. Gut microbiota-derived metabolites, particularly short-chain fatty acids and bile acids, influence epithelial cell function and intestinal barrier integrity. Additionally, we highlight emerging evidence of the sophisticated cooperation between different epithelial cell types, with special emphasis on the interaction between tuft cells and Paneth cells in maintaining microbial balance. Understanding these complex interactions has important implications for developing targeted therapeutic strategies for various gastrointestinal disorders, including inflammatory bowel disease, metabolic disorders, and colorectal cancer.
Collapse
Affiliation(s)
- Sen Yang
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Pediatrics, The Fifth Peoples Hospital of Chengdu, Chengdu, China
| | - Hanmin Liu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yang Liu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
42
|
Wang W, Li N, Xu H, Wei S, Li Y, Ou J, Hao J, Zhang J, Dong L, Qiu Y, Hu X, Fu YX, Guo X. ILC3s regulate the gut microbiota via host intestinal galactosylation to limit pathogen infection in mice. Nat Microbiol 2025; 10:654-666. [PMID: 39962279 DOI: 10.1038/s41564-025-01933-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 01/13/2025] [Indexed: 02/27/2025]
Abstract
Host immunity and commensal bacteria synergistically maintain intestinal homeostasis and mediate colonization resistance against pathogens. However, the molecular and cellular mechanisms remain unclear. Here, with a mouse infection model of Citrobacter rodentium, a natural mouse intestinal pathogen that mimics human enteropathogenic Escherichia coli and enterohaemorrhagic Escherichia coli, we find that group 3 innate lymphoid cells (ILC3s) can protect the host from infection by regulating gut microbiota. Mechanistically, ILC3s can control gut dysbiosis through IL-22-dependent regulation of intestinal galactosylation in mice. ILC3 deficiency led to an increase in intestinal galactosylation and the expansion of commensal Akkermansia muciniphila in colonic mucus. The increased A. muciniphila and A. muciniphila-derived metabolic product succinate further promoted the expression of pathogen virulence factors tir and ler, resulting in increased susceptibility to C. rodentium infection. Together, our data reveal a mechanism for ILC3s in protecting against pathogen infection through the regulation of intestinal glycosylation and gut microbiota metabolism.
Collapse
Affiliation(s)
- Wenyan Wang
- Institute for Immunology, Tsinghua University, Beijing, China.
- School of Basic Medical Sciences, Tsinghua University, Beijing, China.
- State Key Laboratory of Molecular Oncology, School of Basic Medical Sciences, Tsinghua University, Beijing, China.
| | - Na Li
- Institute for Immunology, Tsinghua University, Beijing, China
- School of Basic Medical Sciences, Tsinghua University, Beijing, China
- State Key Laboratory of Molecular Oncology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Hongkai Xu
- Institute for Immunology, Tsinghua University, Beijing, China
- School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Siting Wei
- Institute for Immunology, Tsinghua University, Beijing, China
- School of Basic Medical Sciences, Tsinghua University, Beijing, China
- State Key Laboratory of Molecular Oncology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Yiping Li
- Institute for Immunology, Tsinghua University, Beijing, China
- School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Jiayao Ou
- Institute for Immunology, Tsinghua University, Beijing, China
- School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Jiacheng Hao
- Institute for Immunology, Tsinghua University, Beijing, China
- School of Basic Medical Sciences, Tsinghua University, Beijing, China
- State Key Laboratory of Molecular Oncology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Jing Zhang
- Institute for Immunology, Tsinghua University, Beijing, China
- School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | | | - Ying Qiu
- School of Basic Medical Sciences, Tsinghua University, Beijing, China
- State Key Laboratory of Molecular Oncology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Xiaoyu Hu
- Institute for Immunology, Tsinghua University, Beijing, China
- School of Basic Medical Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Yang-Xin Fu
- School of Basic Medical Sciences, Tsinghua University, Beijing, China
- State Key Laboratory of Molecular Oncology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Xiaohuan Guo
- Institute for Immunology, Tsinghua University, Beijing, China.
- School of Basic Medical Sciences, Tsinghua University, Beijing, China.
- State Key Laboratory of Molecular Oncology, School of Basic Medical Sciences, Tsinghua University, Beijing, China.
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
43
|
Bernink JH. The sweet side of IL-22. Nat Microbiol 2025; 10:610-612. [PMID: 40038465 DOI: 10.1038/s41564-025-01945-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Affiliation(s)
- Jochem H Bernink
- Department of Experimental Immunology, Amsterdam University Medical Center, Amsterdam, The Netherlands.
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands.
- Cancer Center Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
44
|
Liu J, Liu Y, Huang C, He C, Yang T, Ren R, Xin Z, Wang X. Quercetin-Driven Akkermansia Muciniphila Alleviates Obesity by Modulating Bile Acid Metabolism via an ILA/m 6A/CYP8B1 Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412865. [PMID: 39888270 PMCID: PMC11948036 DOI: 10.1002/advs.202412865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/19/2024] [Indexed: 02/01/2025]
Abstract
Global health is increasingly challenged by the growing prevalence of obesity and its associated complications. Quercetin, one of the most important dietary flavonoids, is being explored as an effective therapy for obesity with its mechanism remains understudied. Here in this study, it is demonstrated that quercetin intervention significantly reverses obesity-related phenotypes through reshaping the overall structure of microbiota, especially boosting colonization of the beneficial gut commensal Akkermansia muciniphila (A. muciniphila). Enrichment of A. muciniphila leads to generate more indole-3-lactic acid (ILA) to upregulate the expression of 12α-hydroxylase (CYP8B1) via fat mass and obesity-associated protein (FTO)/ N6-methyladenosine (m6A)/YTHDF2 manner, thereby facilitating cholesterol converts to cholic acid (CA). CA in turn drastically suppresses lipid accumulation via activating the farnesoid X receptor (FXR) in adipose tissue. This work introduces a novel therapeutic target for addressing obesity and expands upon the current limited understanding of the mediator function of m6A modifications in microorganism-influenced bile acid (BA) metabolism.
Collapse
Affiliation(s)
- Jiaqi Liu
- College of Animal SciencesZhejiang UniversityHangzhou310058China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University)Ministry of EducationHangzhou3100058China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China)Ministry of Agriculture and Rural AffairsHangzhou310058China
- Zhejiang Key Laboratory of Nutrition and Breeding for High‐quality Animal ProductsHangzhou310058China
| | - Youhua Liu
- College of Animal SciencesZhejiang UniversityHangzhou310058China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University)Ministry of EducationHangzhou3100058China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China)Ministry of Agriculture and Rural AffairsHangzhou310058China
- Zhejiang Key Laboratory of Nutrition and Breeding for High‐quality Animal ProductsHangzhou310058China
| | - Chaoqun Huang
- College of Animal SciencesZhejiang UniversityHangzhou310058China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University)Ministry of EducationHangzhou3100058China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China)Ministry of Agriculture and Rural AffairsHangzhou310058China
- Zhejiang Key Laboratory of Nutrition and Breeding for High‐quality Animal ProductsHangzhou310058China
| | - Chuan He
- Department of ChemistryDepartment of Biochemistry and Molecular BiologyInstitute for Biophysical DynamicsHoward Hughes Medical InstituteThe University of Chicago929 East 57th StreetChicagoIL60637USA
| | - Tongyudan Yang
- College of Animal SciencesZhejiang UniversityHangzhou310058China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University)Ministry of EducationHangzhou3100058China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China)Ministry of Agriculture and Rural AffairsHangzhou310058China
- Zhejiang Key Laboratory of Nutrition and Breeding for High‐quality Animal ProductsHangzhou310058China
| | - Ruiti Ren
- College of Animal SciencesZhejiang UniversityHangzhou310058China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University)Ministry of EducationHangzhou3100058China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China)Ministry of Agriculture and Rural AffairsHangzhou310058China
- Zhejiang Key Laboratory of Nutrition and Breeding for High‐quality Animal ProductsHangzhou310058China
| | - Zimeng Xin
- College of Animal SciencesZhejiang UniversityHangzhou310058China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University)Ministry of EducationHangzhou3100058China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China)Ministry of Agriculture and Rural AffairsHangzhou310058China
- Zhejiang Key Laboratory of Nutrition and Breeding for High‐quality Animal ProductsHangzhou310058China
| | - Xinxia Wang
- College of Animal SciencesZhejiang UniversityHangzhou310058China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University)Ministry of EducationHangzhou3100058China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China)Ministry of Agriculture and Rural AffairsHangzhou310058China
- Zhejiang Key Laboratory of Nutrition and Breeding for High‐quality Animal ProductsHangzhou310058China
| |
Collapse
|
45
|
Tirelli E, Pucci M, Squillario M, Bignotti G, Messali S, Zini S, Bugatti M, Cadei M, Memo M, Caruso A, Fiorentini S, Villanacci V, Uberti D, Abate G. Effects of methylglyoxal on intestine and microbiome composition in aged mice. Food Chem Toxicol 2025; 197:115276. [PMID: 39863075 DOI: 10.1016/j.fct.2025.115276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND Methylglyoxal (MGO), a highly reactive precursor of advanced glycation end products (AGEs), is endogenously produced and prevalent in various ultra-processed foods. MGO has emerged as a significant precursor implicated in the pathogenesis of type 2 diabetes and neurodegenerative diseases. To date, the effects of dietary MGO on the intestine have been limited explored. Thus, this study investigates the impact of prolonged oral administration of MGOs on gut health in aged mice. METHODS Aged mice received MGO chronically (100 mg/kg/day) for 4 weeks Intestinal samples were analyzed using RT-PCR and immunohistochemistry for proinflammatory cytokines, permeability markers, and tight junction proteins. 16S rRNA gene-based microbiome analysis was also performed to characterize microbiome composition and its metabolic potential. RESULTS MGO treatment induced notable alterations at the intestinal level, characterized by an increased formation of MGO-glycated proteins with a concurrent induction of a pro-inflammatory status and reduced expression and delocalization of zonulin-1 and occludin, tight junction proteins. Changes in intestinal morphology were also observed, including hyperproliferation of Paneth cells and an augmented thickness of the intestinal mucus layer, as indicated by immunohistochemical data from MGO-treated mice. Investigation into the microbiota composition revealed that MGO is effective in selectively modifying its composition and metabolic pathways. A decreased abundance of bacterial genera associated with the production of acetic and butyric acids (i.e. Harryflintia, Intestinimonas and Ruminococcaceae genera) and a substantial increase in Lachnospiraceae and Akkermansia genera were found in MGO-treated mice. CONCLUSION These findings highlight how dietary MGO can affect intestinal balance, providing valuable insights into the potential links between glycotoxins, gut microbiota, and overall gut functionality.
Collapse
Affiliation(s)
- Emanuela Tirelli
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Mariachiara Pucci
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | | | - Gloria Bignotti
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Serena Messali
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Stefania Zini
- Institute of Pathology, Spedali Civili di Brescia, Italy
| | - Mattia Bugatti
- Institute of Pathology, Spedali Civili di Brescia, Italy
| | - Moris Cadei
- Institute of Pathology, Spedali Civili di Brescia, Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Arnaldo Caruso
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Simona Fiorentini
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, Italy
| | | | - Daniela Uberti
- Department of Molecular and Translational Medicine, University of Brescia, Italy.
| | - Giulia Abate
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| |
Collapse
|
46
|
Ioannou A, Berkhout MD, Geerlings SY, Belzer C. Akkermansia muciniphila: biology, microbial ecology, host interactions and therapeutic potential. Nat Rev Microbiol 2025; 23:162-177. [PMID: 39406893 DOI: 10.1038/s41579-024-01106-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2024] [Indexed: 01/03/2025]
Abstract
Akkermansia muciniphila is a gut bacterium that colonizes the gut mucosa, has a role in maintaining gut health and shows promise for potential therapeutic applications. The discovery of A. muciniphila as an important member of our gut microbiome, occupying an extraordinary niche in the human gut, has led to new hypotheses on gut health, beneficial microorganisms and host-microbiota interactions. This microorganism has established a unique position in human microbiome research, similar to its role in the gut ecosystem. Its unique traits in using mucin sugars and mechanisms of action that can modify host health have made A. muciniphila a subject of enormous attention from multiple research fields. A. muciniphila is becoming a model organism studied for its ability to modulate human health and gut microbiome structure, leading to commercial products, a genetic model and possible probiotic formulations. This Review provides an overview of A. muciniphila and Akkermansia genus phylogeny, ecophysiology and diversity. Furthermore, the Review discusses perspectives on ecology, strategies for harnessing beneficial effects of A. muciniphila for human mucosal metabolic and gut health, and its potential as a biomarker for diagnostics and prognostics.
Collapse
Affiliation(s)
- Athanasia Ioannou
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Maryse D Berkhout
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Sharon Y Geerlings
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
47
|
Li X, Rui W, Shu P, Sun Y, Yang J. Efficacy Evaluation of Selenium-enriched Akkermansia muciniphila in the Treatment of Colon Tumor Mice. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10500-x. [PMID: 40011384 DOI: 10.1007/s12602-025-10500-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2025] [Indexed: 02/28/2025]
Abstract
Selenium (Se)-enriched probiotics possess a variety of beneficial properties and are widely used in specialty foods and biomedical applications. Akkermansia muciniphila (AM) is being considered a promising candidate for the "next generation probiotics (NGPs)," which play an essential role in the field of tumor therapy. However, there are no studies on the efficacy of Se-enriched A. muciniphila (Se-AM) in the field of tumor therapy. The present study utilized inorganic Se bio-enrichment for the preparation of Se-AM. To evaluate the killing effect of Se-AM on CT26 cells, the actual efficacy and safety of Se-AM were investigated in a mouse model of colon cancer. The results showed that the Se-AM-cell lysate was able to significantly kill CT26 cells, but this killing effect was progressively weakened with decreasing concentrations of Se-AM-cell lysate. The results of animal experiments showed that Se-AM was able to safely and effectively curb the disease course of mice with colon tumors, reduce the tumor volume, lower the levels of IL-1β and IL-6, and increase the levels of TNF-α in the colon of mice. Furthermore, treatment with Se-AM in mice led to a restoration of gut microbiota diversity, reaching levels similar to those observed in healthy controls. This restoration was accompanied by a significant enrichment of beneficial genera, such as Turicibacter, Butyricimonas, Prevotella, and Akkermansia. In summary, Se-AM prepared in this study was able to produce effective killing of CT26 cells directly and played a substantial therapeutic role in a mouse model of colon tumors constructed from CT26 cells. Se-AM had no adverse effect on the heart, liver, spleen, lungs, and kidney of mice and demonstrated a high level of safety. Meanwhile, Se-AM significantly raised the level of the Shannon index and the ratio of Firmicutes to Bacteroidetes of the gut microbiota in mice, indicating its ability to regulate the homeostasis of the microbiota. These results imply that Se-AM has great application value in the field of colon cancer treatment.
Collapse
Affiliation(s)
- Xiaoqian Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Qixia District, 2 Xuelin Road, Nanjing, Jiangsu, China
| | - Wen Rui
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Qixia District, 2 Xuelin Road, Nanjing, Jiangsu, China
| | - Pingting Shu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Qixia District, 2 Xuelin Road, Nanjing, Jiangsu, China
| | - Yuhang Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Qixia District, 2 Xuelin Road, Nanjing, Jiangsu, China
| | - Jingpeng Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Qixia District, 2 Xuelin Road, Nanjing, Jiangsu, China.
| |
Collapse
|
48
|
Yang Y, Shi X. Big lessons from the little Akkermansia muciniphila in hepatocellular carcinoma. Front Immunol 2025; 16:1524563. [PMID: 40028328 PMCID: PMC11868108 DOI: 10.3389/fimmu.2025.1524563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/30/2025] [Indexed: 03/05/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequently occurring type of liver tumor and is considered one of the most common primary malignant neoplasms. The prognosis for HCC is dismal because of its complicated etiology and high level of medication resistance. Immunotherapy is presently regarded as one of the most effective therapeutic options for HCC; nevertheless, because of the disturbance of intestinal flora, immunotherapy shows low antitumor efficacy. An increasing body of research indicates that intestinal flora, particularly Akkermansia muciniphila (A. muciniphila), is vital for the treatment of tumors. Studies have demonstrated that the diminished effectiveness of immunotherapy in cancer patients is associated with a reduction in A. muciniphila levels, suggesting that increasing A. muciniphila levels significantly enhance the efficacy of immunotherapy. A. muciniphila functions as a gut probiotic and can treat and prevent a wide range of illnesses, including cancer. Consequently, preserving A. muciniphila abundance is enough to prevent and lower the danger of developing cancer disorders. In this review, we critically evaluate the current body of research on A. muciniphila, with a primary focus on its biological properties and functions. The different illnesses that A. muciniphila treats were then discussed, particularly the way it works with liver cancer. This review aims to give a novel treatment plan for patients with HCC as well as a theoretical foundation for improving HCC immunotherapy.
Collapse
Affiliation(s)
- Yanguang Yang
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, China
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xinli Shi
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, China
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
49
|
He R, Qi P, Shu L, Ding Y, Zeng P, Wen G, Xiong Y, Deng H. Dysbiosis and extraintestinal cancers. J Exp Clin Cancer Res 2025; 44:44. [PMID: 39915884 PMCID: PMC11804008 DOI: 10.1186/s13046-025-03313-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/31/2025] [Indexed: 02/09/2025] Open
Abstract
The gut microbiota plays a crucial role in safeguarding host health and driving the progression of intestinal diseases. Despite recent advances in the remarkable correlation between dysbiosis and extraintestinal cancers, the underlying mechanisms are yet to be fully elucidated. Pathogenic microbiota, along with their metabolites, can undermine the integrity of the gut barrier through inflammatory or metabolic pathways, leading to increased permeability and the translocation of pathogens. The dissemination of pathogens through the circulation may contribute to the establishment of an immune-suppressive environment that promotes carcinogenesis in extraintestinal organs either directly or indirectly. The oncogenic cascade always engages in the disruption of hormonal regulation and inflammatory responses, the induction of genomic instability and mutations, and the dysregulation of adult stem cell proliferation. This review aims to comprehensively summarize the existing evidence that points to the potential role of dysbiosis in the malignant transformation of extraintestinal organs such as the liver, breast, lung, and pancreas. Additionally, we delve into the limitations inherent in current methodologies, particularly the challenges associated with differentiating low loads gut-derived microbiome within tumors from potential sample contamination or symbiotic microorganisms. Although still controversial, an understanding of the contribution of translocated intestinal microbiota and their metabolites to the pathological continuum from chronic inflammation to tumors could offer a novel foundation for the development of targeted therapeutics.
Collapse
Affiliation(s)
- Ruishan He
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, No. 133 South Guangchang Road, Nanchang, Jiangxi Province, 330003, China
| | - Pingqian Qi
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, No. 133 South Guangchang Road, Nanchang, Jiangxi Province, 330003, China
| | - Linzhen Shu
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, No. 133 South Guangchang Road, Nanchang, Jiangxi Province, 330003, China
| | - Yidan Ding
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, No. 133 South Guangchang Road, Nanchang, Jiangxi Province, 330003, China
| | - Peng Zeng
- Department of Breast Surgery, Jiangxi Armed Police Corps Hospital, Nanchang, China
| | - Guosheng Wen
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, No. 133 South Guangchang Road, Nanchang, Jiangxi Province, 330003, China
| | - Ying Xiong
- Department of General Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Huan Deng
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, No. 133 South Guangchang Road, Nanchang, Jiangxi Province, 330003, China.
- Tumor Immunology Institute, Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
50
|
Han Y, Teng TM, Han J, Kim HS. Antibiotic-associated changes in Akkermansia muciniphila alter its effects on host metabolic health. MICROBIOME 2025; 13:48. [PMID: 39920776 PMCID: PMC11804010 DOI: 10.1186/s40168-024-02023-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 12/19/2024] [Indexed: 02/09/2025]
Abstract
BACKGROUND Altered gut microbiota has emerged as a major contributing factor to the etiology of chronic conditions in humans. Antibiotic exposure, historically dating back to the mass production of penicillin in the early 1940s, has been proposed as a primary contributor to the cumulative alteration of microbiota over generations. However, the mechanistic link between the antibiotics-altered microbiota and chronic conditions remains unclear. RESULTS In this study, we discovered that variants of the key beneficial gut microbe, Akkermansia muciniphila, were selected upon exposure to penicillin. These variants had mutations in the promoter of a TEM-type β-lactamase gene or pur genes encoding the de novo purine biosynthesis pathway, and they exhibited compromised abilities to mitigate host obesity in a murine model. Notably, variants of A. muciniphila are prevalent in the human microbiome worldwide. CONCLUSIONS These findings highlight a previously unknown mechanism through which antibiotics influence host health by affecting the beneficial capacities of the key gut microbes. Furthermore, the global prevalence of A. muciniphila variants raises the possibility that these variants contribute to global epidemics of chronic conditions, warranting further investigations in human populations. Video Abstract.
Collapse
Affiliation(s)
- Yumin Han
- Division of Biosystems & Biomedical Sciences, College of Health Sciences, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Korea
| | - Teh Min Teng
- Division of Biosystems & Biomedical Sciences, College of Health Sciences, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Korea
| | - Juwon Han
- Division of Biosystems & Biomedical Sciences, College of Health Sciences, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Korea
| | - Heenam Stanley Kim
- Division of Biosystems & Biomedical Sciences, College of Health Sciences, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Korea.
| |
Collapse
|