1
|
Nuñez LFN, Chacón RD, Charlys da Costa A, Santander-Parra SH, da Costa Pereira Innocentini R, Sánchez-Llatas CJ, Cea-Callejo P, Valdeiglesias Ichillumpa S, Astolfi Ferreira CS, de Sá LRM, Piantino Ferreira AJ. Detection and molecular characterization of chicken parvovirus and chicken megrivirus in layer breeders affected by intestinal dilatation syndrome. Avian Pathol 2024; 53:520-532. [PMID: 38916258 DOI: 10.1080/03079457.2024.2372486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
RESEARCH HIGHLIGHTS IDS presented pathognomonic dilatation of the jejunum up to Meckel's diverticulum.IDS caused weight loss, decreased egg production, and increased culling and mortality.Chicken parvovirus (ChPV) was consistently detected through PCR assays.Chicken megrivirus (ChMV) was consistently detected through viral metagenomics.
Collapse
Affiliation(s)
- Luis Fabian N Nuñez
- Facultad de Ciencias de la Salud, Carrera de Medicina Veterinaria, Universidad de Las Américas (UDLA), Quito, Ecuador
| | - Ruy D Chacón
- Laboratory of Avian Diseases, School of Veterinary Medicine and Animal Science, Department of Pathology, University of São Paulo, São Paulo, Brazil
| | | | - Silvana H Santander-Parra
- Facultad de Ciencias de la Salud, Carrera de Medicina Veterinaria, Universidad de Las Américas (UDLA), Quito, Ecuador
| | | | - Christian J Sánchez-Llatas
- Faculty of Biology, Department of Genetics, Physiology, and Microbiology, Complutense University of Madrid, Madrid, Spain
| | - Pablo Cea-Callejo
- Faculty of Biology, Department of Genetics, Physiology, and Microbiology, Complutense University of Madrid, Madrid, Spain
| | - Stefhany Valdeiglesias Ichillumpa
- Laboratorio de Fisiología Molecular, Instituto de Investigación en Ganadería y Biotecnología, Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Amazonas, Peru
| | - Claudete S Astolfi Ferreira
- Laboratory of Avian Diseases, School of Veterinary Medicine and Animal Science, Department of Pathology, University of São Paulo, São Paulo, Brazil
| | - Lilian Rose Marques de Sá
- Laboratory of Diagnostic and Environmental Pathology, School of Veterinary Medicine and Animal Science, Department of Pathology, University of São Paulo, São Paulo, Brazil
| | - Antonio J Piantino Ferreira
- Laboratory of Avian Diseases, School of Veterinary Medicine and Animal Science, Department of Pathology, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Goraichuk IV, Davis JF, Afonso CL, Suarez DL. Sequencing of historic samples provides complete coding sequences of chicken calicivirus from the United States. Microbiol Resour Announc 2024; 13:e0077724. [PMID: 39264163 PMCID: PMC11465789 DOI: 10.1128/mra.00777-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 09/13/2024] Open
Abstract
Here, we report the coding-complete genomic sequences of two chicken caliciviruses from US poultry flocks in 2003 and 2004. They show the same genomic organization as that of other members of the Bavovirus genus and have the highest nucleotide identity (~88%) with strains from clinically normal chickens from Germany in 2004 and Netherlands in 2019.
Collapse
Affiliation(s)
- Iryna V. Goraichuk
- Exotic and Emerging Avian Viral Disease Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, ARS, USDA, Athens, Georgia, USA
| | - James F. Davis
- Georgia Poultry Laboratory Network, Gainesville, Georgia, USA
| | - Claudio L. Afonso
- Exotic and Emerging Avian Viral Disease Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, ARS, USDA, Athens, Georgia, USA
| | - David L. Suarez
- Exotic and Emerging Avian Viral Disease Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, ARS, USDA, Athens, Georgia, USA
| |
Collapse
|
3
|
Aruwa CE, Sabiu S. Interplay of poultry-microbiome interactions - influencing factors and microbes in poultry infections and metabolic disorders. Br Poult Sci 2024; 65:523-537. [PMID: 38920059 DOI: 10.1080/00071668.2024.2356666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/06/2024] [Indexed: 06/27/2024]
Abstract
1. The poultry microbiome and its stability at every point in time, either free range or reared under different farming systems, is affected by several environmental and innate factors. The interaction of the poultry birds with their microbiome, as well as several inherent and extraneous factors contribute to the microbiome dynamics. A poor understanding of this could worsen poultry heath and result in disease/metabolic disorders.2. Many diseased states associated with poultry have been linked to dysbiosis state, where the microbiome experiences some perturbation. Dysbiosis itself is too often downplayed; however, it is considered a disease which could lead to more serious conditions in poultry. The management of interconnected factors by conventional and emerging technologies (sequencing, nanotechnology, robotics, 3D mini-guts) could prove to be indispensable in ensuring poultry health and welfare.3. Findings showed that high-throughput technological advancements enhanced scientific insights into emerging trends surrounding the poultry gut microbiome and ecosystem, the dysbiotic condition, and the dynamic roles of intrinsic and exogenous factors in determining poultry health. Yet, a combination of conventional, -omics based and other techniques further enhance characterisation of key poultry microbiome actors, their mechanisms of action, and roles in maintaining gut homoeostasis and health, in a bid to avert metabolic disorders and infections.4. In conclusion, there is an important interplay of innate, environmental, abiotic and biotic factors impacting on poultry gut microbiome homoeostasis, dysbiosis, and overall health. Associated infections and metabolic disorders can result from the interconnected nature of these factors. Emerging concepts (interkingdom or network signalling and neurotransmitter), and future technologies (mini-gut models, cobots) need to include these interactions to ensure accurate control and outcomes.
Collapse
Affiliation(s)
- C E Aruwa
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - S Sabiu
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| |
Collapse
|
4
|
Varsani A, Krupovic M. 2024 Smacoviridae family update: 59 new species in seven genera. Arch Virol 2024; 169:184. [PMID: 39167240 DOI: 10.1007/s00705-024-06116-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Family Smacoviridae (order Cremevirales, class Arfiviricetes, phylum Cressdnaviricota) comprises viruses with small circular genomes of ~2300-3000 nt in length that encode at least two proteins, the rolling-circle replication associated protein (Rep) and the capsid protein (CP). Smacovirids have been discovered in fecal samples of various animals and display remarkable sequence diversity. Here, we provide an overview of the genomic properties of classified smacovirids and report on the latest taxonomy update in the family Smacoviridae. The family has been expanded by 59 new species in the genera Porprismacovirus (n = 25), Inpeasmacovirus (n = 1), Felismacovirus (n = 22), Drosmacovirus (n = 4), Dragsmacovirus (n = 2), Bovismacovirus (n = 4), and Bonzesmacovirus (n = 1) and currently includes 12 genera with 143 species officially recognized by the International Committee on Taxonomy of Viruses (ICTV).
Collapse
Affiliation(s)
- Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life sciences, Arizona State University, Tempe, AZ, 85287-5001, USA.
- Structural Biology Research Unit, Department of Integrative, Biomedical Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa.
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, Archaeal Virology Unit, 25 rue du Dr Roux, 75015, Paris, France.
| |
Collapse
|
5
|
Yan T, Wang Z, Li R, Zhang D, Song Y, Cheng Z. Gyrovirus: current status and challenge. Front Microbiol 2024; 15:1449814. [PMID: 39220040 PMCID: PMC11362077 DOI: 10.3389/fmicb.2024.1449814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Gyrovirus (GyV) is small, single-stranded circular DNA viruses that has recently been assigned to the family Anelloviridae. In the last decade, many GyVs that have an apparent pan-tropism at the host level were identified by high-throughput sequencing (HTS) technology. As of now, they have achieved global distribution. Several species of GyVs have been demonstrated to be pathogenic to poultry, particularly chicken anemia virus (CAV), causing significant economic losses to the global poultry industry. Although GyVs are highly prevalent in various birds worldwide, their direct involvement in the etiology of specific diseases and the reasons for their ubiquity and host diversity are not fully understood. This review summarizes current knowledge about GyVs, with a major emphasis on their morphofunctional properties, epidemiological characteristics, genetic evolution, pathogenicity, and immunopathogenesis. Additionally, the association between GyVs and various diseases, as well as its potential impact on the poultry industry, have been discussed. Future prevention and control strategies have also been explored. These insights underscore the importance of conducting research to establish a virus culture system, optimize surveillance, and develop vaccines for GyVs.
Collapse
Affiliation(s)
| | | | | | | | | | - Ziqiang Cheng
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
6
|
Paietta EN, Kraberger S, Lund MC, Vargas KL, Custer JM, Ehmke E, Yoder AD, Varsani A. Diverse Circular DNA Viral Communities in Blood, Oral, and Fecal Samples of Captive Lemurs. Viruses 2024; 16:1099. [PMID: 39066262 PMCID: PMC11281440 DOI: 10.3390/v16071099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Few studies have addressed viral diversity in lemurs despite their unique evolutionary history on the island of Madagascar and high risk of extinction. Further, while a large number of studies on animal viromes focus on fecal samples, understanding viral diversity across multiple sample types and seasons can reveal complex viral community structures within and across species. Groups of captive lemurs at the Duke Lemur Center (Durham, NC, USA), a conservation and research center, provide an opportunity to build foundational knowledge on lemur-associated viromes. We sampled individuals from seven lemur species, i.e., collared lemur (Eulemur collaris), crowned lemur (Eulemur coronatus), blue-eyed black lemur (Eulemur flavifrons), ring-tailed lemur (Lemur catta), Coquerel's sifaka (Propithecus coquereli), black-and-white ruffed lemur (Varecia variegata variegata), and red ruffed lemur (Varecia rubra), across two lemur families (Lemuridae, Indriidae). Fecal, blood, and saliva samples were collected from Coquerel's sifaka and black-and-white ruffed lemur individuals across two sampling seasons to diversify virome biogeography and temporal sampling. Using viral metagenomic workflows, the complete genomes of anelloviruses (n = 4), cressdnaviruses (n = 47), caudoviruses (n = 15), inoviruses (n = 34), and microviruses (n = 537) were determined from lemur blood, feces, and saliva. Many virus genomes, especially bacteriophages, identified in this study were present across multiple lemur species. Overall, the work presented here uses a viral metagenomics approach to investigate viral communities inhabiting the blood, oral cavity, and feces of healthy captive lemurs.
Collapse
Affiliation(s)
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Michael C. Lund
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Karla L. Vargas
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Joy M. Custer
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Erin Ehmke
- Duke Lemur Center, Duke University, Durham, NC 27708, USA
| | - Anne D. Yoder
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
7
|
Qian L, Zhuang Z, Lu J, Wang H, Wang X, Yang S, Ji L, Shen Q, Zhang W, Shan T. Metagenomic survey of viral diversity obtained from feces of piglets with diarrhea. Heliyon 2024; 10:e25616. [PMID: 38375275 PMCID: PMC10875384 DOI: 10.1016/j.heliyon.2024.e25616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 12/02/2023] [Accepted: 01/30/2024] [Indexed: 02/21/2024] Open
Abstract
Pigs are natural host to various zoonotic pathogens including viruses. In this study, we analyzed the viral communities in the feces of 89 piglets with diarrhea under one month old which were collected from six farms in Jiangsu Province of the Eastern China, using the unbiased virus metagenomic method. A total of 89 libraries were constructed, and 46937894 unique sequence reads were generated by Illumina sequencing. Overall, the family Picornaviridae accounted for the majority of the total reads of putative mammalian viruses. Ten novel virus genomes from different family members were discovered, including Parvoviridae (n = 2), Picobirnaviridae (n = 4) and CRESS DNA viruses (n = 4). A large number of phages were identified, which mainly belonged to the order Caudovirales and the family Microviridae. Moreover, some identified viruses were closely related to viruses found in non-porcine hosts, highlighting the potential for cross-species virus dissemination. This study increased our understanding of the fecal virus communities of diarrhea piglets and provided valuable information for virus monitoring and preventing.
Collapse
Affiliation(s)
- Lingling Qian
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Zi Zhuang
- Center of Clinical Laboratory, Dushu Lake Hospital Affiliated to Soochow University, Soochow University, Suzhou, Jiangsu, 215000, China
| | - Juan Lu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Huiying Wang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 200062, China
| | - Xiaochun Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Shixing Yang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Likai Ji
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Quan Shen
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Wen Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Tongling Shan
- Department of Swine Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| |
Collapse
|
8
|
Williams RAJ, Sánchez-Llatas CJ, Doménech A, Madrid R, Fandiño S, Cea-Callejo P, Gomez-Lucia E, Benítez L. Emerging and Novel Viruses in Passerine Birds. Microorganisms 2023; 11:2355. [PMID: 37764199 PMCID: PMC10536639 DOI: 10.3390/microorganisms11092355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
There is growing interest in emerging viruses that can cause serious or lethal disease in humans and animals. The proliferation of cloacal virome studies, mainly focused on poultry and other domestic birds, reveals a wide variety of viruses, although their pathogenic significance is currently uncertain. Analysis of viruses detected in wild birds is complex and often biased towards waterfowl because of the obvious interest in avian influenza or other zoonotic viruses. Less is known about the viruses present in the order Passeriformes, which comprises approximately 60% of extant bird species. This review aims to compile the most significant contributions on the DNA/RNA viruses affecting passerines, from traditional and metagenomic studies. It highlights that most passerine species have never been sampled. Especially the RNA viruses from Flaviviridae, Orthomyxoviridae and Togaviridae are considered emerging because of increased incidence or avian mortality/morbidity, spread to new geographical areas or hosts and their zoonotic risk. Arguably poxvirus, and perhaps other virus groups, could also be considered "emerging viruses". However, many of these viruses have only recently been described in passerines using metagenomics and their role in the ecosystem is unknown. Finally, it is noteworthy that only one third of the viruses affecting passerines have been officially recognized.
Collapse
Affiliation(s)
- Richard A. J. Williams
- Department of Genetics, Physiology, and Microbiology, School of Biology, Complutense University of Madrid (UCM), C. de José Antonio Nováis, 12, 28040 Madrid, Spain; (C.J.S.-L.); (R.M.); (P.C.-C.); (L.B.)
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
| | - Christian J. Sánchez-Llatas
- Department of Genetics, Physiology, and Microbiology, School of Biology, Complutense University of Madrid (UCM), C. de José Antonio Nováis, 12, 28040 Madrid, Spain; (C.J.S.-L.); (R.M.); (P.C.-C.); (L.B.)
| | - Ana Doménech
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
- Deparment of Animal Health, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro, s/n, 28040 Madrid, Spain
| | - Ricardo Madrid
- Department of Genetics, Physiology, and Microbiology, School of Biology, Complutense University of Madrid (UCM), C. de José Antonio Nováis, 12, 28040 Madrid, Spain; (C.J.S.-L.); (R.M.); (P.C.-C.); (L.B.)
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
| | - Sergio Fandiño
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
- Deparment of Animal Health, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro, s/n, 28040 Madrid, Spain
| | - Pablo Cea-Callejo
- Department of Genetics, Physiology, and Microbiology, School of Biology, Complutense University of Madrid (UCM), C. de José Antonio Nováis, 12, 28040 Madrid, Spain; (C.J.S.-L.); (R.M.); (P.C.-C.); (L.B.)
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
| | - Esperanza Gomez-Lucia
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
- Deparment of Animal Health, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro, s/n, 28040 Madrid, Spain
| | - Laura Benítez
- Department of Genetics, Physiology, and Microbiology, School of Biology, Complutense University of Madrid (UCM), C. de José Antonio Nováis, 12, 28040 Madrid, Spain; (C.J.S.-L.); (R.M.); (P.C.-C.); (L.B.)
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
| |
Collapse
|
9
|
Sánchez C, Doménech A, Gomez-Lucia E, Méndez JL, Ortiz JC, Benítez L. A Novel Dependoparvovirus Identified in Cloacal Swabs of Monk Parakeet (Myiopsitta monachus) from Urban Areas of Spain. Viruses 2023; 15:v15040850. [PMID: 37112831 PMCID: PMC10145644 DOI: 10.3390/v15040850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/19/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
The introduction of invasive birds into new ecosystems frequently has negative consequences for the resident populations. Accordingly, the increasing population of monk parakeets (Myiopsitta monachus) in Europe may pose a threat because we have little knowledge of the viruses they can transmit to native naïve species. In this study, we describe a new dependoparvovirus detected by metagenomic analysis of cloacal samples from 28 apparently healthy individuals captured in urban areas of Madrid, Spain. The genomic characterization revealed that the genome encoded the NS and VP proteins typical of parvoviruses and was flanked by inverted terminal repeats. No recombination signal was detected. The phylogenetic analysis showed that it was closely related to a parvovirus isolated in a wild psittacid in China. Both viruses share 80% Rep protein sequence identity and only 64% with other dependoparvoviruses identified in Passeriformes, Anseriformes, and Piciformes and are included in a highly supported clade, which could be considered a new species. The prevalence was very low, and none of the additional 73 individuals tested positive by PCR. These results highlight the importance of exploring the viral genome in invasive species to prevent the emergence of novel viral pathogenic species.
Collapse
|
10
|
Kwok KTT, de Rooij MMT, Messink AB, Wouters IM, Smit LAM, Cotten M, Heederik DJJ, Koopmans MPG, Phan MVT. Establishing farm dust as a useful viral metagenomic surveillance matrix. Sci Rep 2022; 12:16308. [PMID: 36175536 PMCID: PMC9521564 DOI: 10.1038/s41598-022-20701-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/16/2022] [Indexed: 11/26/2022] Open
Abstract
Farm animals may harbor viral pathogens, some with zoonotic potential which can possibly cause severe clinical outcomes in animals and humans. Documenting the viral content of dust may provide information on the potential sources and movement of viruses. Here, we describe a dust sequencing strategy that provides detailed viral sequence characterization from farm dust samples and use this method to document the virus communities from chicken farm dust samples and paired feces collected from the same broiler farms in the Netherlands. From the sequencing data, Parvoviridae and Picornaviridae were the most frequently found virus families, detected in 85-100% of all fecal and dust samples with a large genomic diversity identified from the Picornaviridae. Sequences from the Caliciviridae and Astroviridae familes were also obtained. This study provides a unique characterization of virus communities in farmed chickens and paired farm dust samples and our sequencing methodology enabled the recovery of viral genome sequences from farm dust, providing important tracking details for virus movement between livestock animals and their farm environment. This study serves as a proof of concept supporting dust sampling to be used in viral metagenomic surveillance.
Collapse
Affiliation(s)
- Kirsty T T Kwok
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands.
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK.
| | - Myrna M T de Rooij
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Aniek B Messink
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Inge M Wouters
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Lidwien A M Smit
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Matthew Cotten
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
- London School of Hygiene and Tropical Medicine, London, UK
| | - Dick J J Heederik
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Marion P G Koopmans
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - My V T Phan
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands.
- London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
11
|
Shan T, Yang S, Wang H, Wang H, Zhang J, Gong G, Xiao Y, Yang J, Wang X, Lu J, Zhao M, Yang Z, Lu X, Dai Z, He Y, Chen X, Zhou R, Yao Y, Kong N, Zeng J, Ullah K, Wang X, Shen Q, Deng X, Zhang J, Delwart E, Tong G, Zhang W. Virome in the cloaca of wild and breeding birds revealed a diversity of significant viruses. MICROBIOME 2022; 10:60. [PMID: 35413940 PMCID: PMC9001828 DOI: 10.1186/s40168-022-01246-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 02/16/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND Wild birds may harbor and transmit viruses that are potentially pathogenic to humans, domestic animals, and other wildlife. RESULTS Using the viral metagenomic approach, we investigated the virome of cloacal swab specimens collected from 3182 birds (the majority of them wild species) consisting of > 87 different species in 10 different orders within the Aves classes. The virus diversity in wild birds was higher than that in breeding birds. We acquired 707 viral genomes from 18 defined families and 4 unclassified virus groups, with 265 virus genomes sharing < 60% protein sequence identities with their best matches in GenBank comprising new virus families, genera, or species. RNA viruses containing the conserved RdRp domain with no phylogenetic affinity to currently defined virus families existed in different bird species. Genomes of the astrovirus, picornavirus, coronavirus, calicivirus, parvovirus, circovirus, retrovirus, and adenovirus families which include known avian pathogens were fully characterized. Putative cross-species transmissions were observed with viruses in wild birds showing > 95% amino acid sequence identity to previously reported viruses in domestic poultry. Genomic recombination was observed for some genomes showing discordant phylogenies based on structural and non-structural regions. Mapping the next-generation sequencing (NGS) data respectively against the 707 genomes revealed that these viruses showed distribution pattern differences among birds with different habitats (breeding or wild), orders, and sampling sites but no significant differences between birds with different behavioral features (migratory and resident). CONCLUSIONS The existence of a highly diverse virome highlights the challenges in elucidating the evolution, etiology, and ecology of viruses in wild birds. Video Abstract.
Collapse
Affiliation(s)
- Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Shixing Yang
- School of Medicine, Jiangsu University, Zhenjiang, 212003, Jiangsu, China
| | - Haoning Wang
- School of Geography and Tourism, Harbin University, Harbin, 150886, Heilongjiang, China
- Key Laboratory of Wildlife diseases and Biosecurity Management of Heilongjiang Province, Harbin, 150886, Heilongjiang, China
| | - Hao Wang
- Department of Clinical Laboratory, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223002, Jiangsu, China
| | - Ju Zhang
- School of Medicine, Jiangsu University, Zhenjiang, 212003, Jiangsu, China
| | - Ga Gong
- Animal Science College, Tibet Agriculture and Animal Husbandry University, Nyingchi, 860000, Tibet, China
| | - Yuqing Xiao
- School of Medicine, Jiangsu University, Zhenjiang, 212003, Jiangsu, China
| | - Jie Yang
- School of Medicine, Jiangsu University, Zhenjiang, 212003, Jiangsu, China
| | - Xiaolong Wang
- Wildlife and Protected Area College/Center of Conservation Medicine and Ecological Safety Northeast Forestry University, Harbin, 150006, Heilongjiang, China
| | - Juan Lu
- School of Medicine, Jiangsu University, Zhenjiang, 212003, Jiangsu, China
| | - Min Zhao
- School of Medicine, Jiangsu University, Zhenjiang, 212003, Jiangsu, China
| | - Zijun Yang
- School of Medicine, Jiangsu University, Zhenjiang, 212003, Jiangsu, China
| | - Xiang Lu
- School of Medicine, Jiangsu University, Zhenjiang, 212003, Jiangsu, China
| | - Ziyuan Dai
- School of Medicine, Jiangsu University, Zhenjiang, 212003, Jiangsu, China
| | - Yumin He
- School of Medicine, Jiangsu University, Zhenjiang, 212003, Jiangsu, China
| | - Xu Chen
- School of Medicine, Jiangsu University, Zhenjiang, 212003, Jiangsu, China
| | - Rui Zhou
- School of Medicine, Jiangsu University, Zhenjiang, 212003, Jiangsu, China
| | - Yuxin Yao
- School of Medicine, Jiangsu University, Zhenjiang, 212003, Jiangsu, China
| | - Ning Kong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Jian Zeng
- School of Medicine, Jiangsu University, Zhenjiang, 212003, Jiangsu, China
| | - Kalim Ullah
- School of Medicine, Jiangsu University, Zhenjiang, 212003, Jiangsu, China
| | - Xiaochun Wang
- School of Medicine, Jiangsu University, Zhenjiang, 212003, Jiangsu, China
| | - Quan Shen
- School of Medicine, Jiangsu University, Zhenjiang, 212003, Jiangsu, China
| | - Xutao Deng
- Vitalant Research Institute, San Francisco, CA, 94118, USA
| | - Jianmin Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Eric Delwart
- Vitalant Research Institute, San Francisco, CA, 94118, USA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, 94118, USA
| | - Guangzhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| | - Wen Zhang
- School of Medicine, Jiangsu University, Zhenjiang, 212003, Jiangsu, China.
- International Center for Genomics Research, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
12
|
Witt AA, Alves RS, do Canto Olegário J, de Camargo LJ, Weber MN, da Silva MS, Canova R, Mosena ACS, Cibulski SP, Varela APM, Mayer FQ, Canal CW, da Fontoura Budaszewski R. The virome of the white-winged vampire bat Diaemus youngi is rich in circular DNA viruses. Virus Genes 2022; 58:214-226. [PMID: 35366197 PMCID: PMC8976263 DOI: 10.1007/s11262-022-01897-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 03/17/2022] [Indexed: 11/13/2022]
Abstract
In the Neotropical region, the white-winged vampire bat (Diaemus youngi) is the rarest of the three species of vampire bats. This bat species feeds preferentially on bird blood, and there is limited information on the viruses infecting D. youngi. Hence, this study aimed to expand the knowledge about the viral diversity associated with D. youngi by sampling and pooling the lungs, liver, kidneys, heart, and intestines of all animals using high-throughput sequencing (HTS) on the Illumina MiSeq platform. A total of three complete and 10 nearly complete circular virus genomes were closely related to gemykrogvirus (Genomoviridae family), smacovirus (Smacoviridae family), and torque teno viruses (TTVs) (Anelloviridae family). In addition, three sequences of bat paramyxovirus were detected and found to be closely related to viruses reported in Pomona roundleaf bats and rodents. The present study provides a snapshot of the viral diversity associated with white-winged vampire bats and provides a baseline for comparison to viruses detected in future outbreaks.
Collapse
Affiliation(s)
- André Alberto Witt
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.,Secretaria Estadual de Agricultura, Pecuária e Desenvolvimento Rural (SEAPDR), Porto Alegre, Rio Grande do Sul, Brazil
| | - Raquel Silva Alves
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Juliana do Canto Olegário
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Laura Junqueira de Camargo
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Matheus Nunes Weber
- Laboratório de Microbiologia Molecular, Instituto de Ciências da Saúde, Universidade Feevale, Novo Hamburgo, Rio Grande do Sul, Brazil
| | - Mariana Soares da Silva
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.,Laboratório de Microbiologia Molecular, Instituto de Ciências da Saúde, Universidade Feevale, Novo Hamburgo, Rio Grande do Sul, Brazil
| | - Raíssa Canova
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana Cristina Sbaraini Mosena
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Samuel Paulo Cibulski
- Centro de Biotecnologia (Cbiotec), Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Ana Paula Muterle Varela
- Laboratório de Biologia Molecular, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Secretaria da Agricultura, Pecuária e Desenvolvimento Rural (SEAPDR), Eldorado Do Sul, Rio Grande do Sul, Brazil
| | - Fabiana Quoos Mayer
- Laboratório de Biologia Molecular, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Secretaria da Agricultura, Pecuária e Desenvolvimento Rural (SEAPDR), Eldorado Do Sul, Rio Grande do Sul, Brazil
| | - Cláudio Wageck Canal
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Renata da Fontoura Budaszewski
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
13
|
A novel calicivirus discovered in trumpeter swans (Cygnus buccinator) expands the richness of known avian caliciviruses. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100169. [DOI: 10.1016/j.crmicr.2022.100169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
14
|
Diverse Single-Stranded DNA Viruses Identified in Chicken Buccal Swabs. Microorganisms 2021; 9:microorganisms9122602. [PMID: 34946202 PMCID: PMC8703526 DOI: 10.3390/microorganisms9122602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 11/18/2022] Open
Abstract
High-throughput sequencing approaches offer the possibility to better understand the complex microbial communities associated with animals. Viral metagenomics has facilitated the discovery and identification of many known and unknown viruses that inhabit mucosal surfaces of the body and has extended our knowledge related to virus diversity. We used metagenomics sequencing of chicken buccal swab samples and identified various small DNA viruses with circular genome organization. Out of 134 putative circular viral-like circular genome sequences, 70 are cressdnaviruses and 26 are microviruses, whilst the remaining 38 most probably represent sub-genomic molecules. The cressdnaviruses found in this study belong to the Circoviridae, Genomoviridae and Smacoviridae families as well as previously described CRESS1 and naryavirus groups. Among these, genomoviruses and smacoviruses were the most prevalent across the samples. Interestingly, we also identified 26 bacteriophages that belong to the Microviridae family, whose members are known to infect enterobacteria.
Collapse
|
15
|
Aruwa CE, Pillay C, Nyaga MM, Sabiu S. Poultry gut health - microbiome functions, environmental impacts, microbiome engineering and advancements in characterization technologies. J Anim Sci Biotechnol 2021; 12:119. [PMID: 34857055 PMCID: PMC8638651 DOI: 10.1186/s40104-021-00640-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal tract (GIT) health impacts animal productivity. The poultry microbiome has functions which range from protection against pathogens and nutrients production, to host immune system maturation. Fluctuations in the microbiome have also been linked to prevailing environmental conditions. Healthy poultry birds possess a natural resistance to infection. However, the exploration of environmental impacts and other relevant factors on poultry growth and health have been underplayed. Since good performance and growth rate are central to animal production, the host-microbiome relationship remains integral. Prior to the emergence of metagenomic techniques, conventional methods for poultry microbiome studies were used and were low-throughput and associated with insufficient genomic data and high cost of sequencing. Fortunately, the advent of high-throughput sequencing platforms have circumvented some of these shortfalls and paved the way for increased studies on the poultry gut microbiome diversity and functions. Here, we give an up-to-date review on the impact of varied environments on microbiome profile, as well as microbiome engineering and microbiome technology advancements. It is hoped that this paper will provide invaluable information that could guide and inspire further studies on the lingering pertinent questions about the poultry microbiome.
Collapse
Affiliation(s)
- Christiana Eleojo Aruwa
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Charlene Pillay
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Martin M Nyaga
- Next Generation Sequencing Unit, Division of Virology, Faculty of Heath Sciences, University of the Free State, Bloemfontein, South Africa
| | - Saheed Sabiu
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa.
| |
Collapse
|
16
|
Diverse single-stranded DNA viruses identified in New Zealand (Aotearoa) South Island robin (Petroica australis) fecal samples. Virology 2021; 565:38-51. [PMID: 34715607 DOI: 10.1016/j.virol.2021.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022]
Abstract
The South Island robin (Petroica australis) is a small passerine bird endemic to New Zealand (Aotearoa). Although its population has declined recently and it is considered 'at risk,' little research has been done to identify viruses in this species. This study aimed to survey the diversity of single-stranded DNA viruses associated with South Island robins in a small, isolated population on Nukuwaiata Island. In total, 108 DNA viruses were identified from pooled fecal samples collected from 38 individual robins sampled. These viruses belong to the Circoviridae (n = 10), Genomoviridae (n = 12), and Microviridae (n = 73) families. A number of genomes that belong to the phylum Cressdnaviricota but are otherwise unclassified (n = 13) were also identified. These results greatly expand the known viral diversity associated with South Island robins, and we identify a novel group of viruses most closely related genomoviruses.
Collapse
|
17
|
Van Borm S, Steensels M, Mathijs E, Vandenbussche F, van den Berg T, Lambrecht B. Metagenomic sequencing determines complete infectious bronchitis virus (avian Gammacoronavirus) vaccine strain genomes and associated viromes in chicken clinical samples. Virus Genes 2021; 57:529-540. [PMID: 34626348 PMCID: PMC8501334 DOI: 10.1007/s11262-021-01872-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/24/2021] [Indexed: 12/24/2022]
Abstract
Infectious bronchitis virus (IBV, genus Gammacoronavirus) causes an economically important and highly contagious disease in chicken. Random primed RNA sequencing was applied to two IBV positive clinical samples and one in ovo-passaged virus. The virome of a cloacal swab pool was dominated by IBV (82% of viral reads) allowing de novo assembly of a GI-13 lineage complete genome with 99.95% nucleotide identity to vaccine strain 793B. In addition, substantial read counts (16% of viral reads) allowed the assembly of a near-complete chicken astrovirus genome, while lower read counts identified the presence of chicken calicivirus and avian leucosis virus. Viral reads in a respiratory/intestinal tissue pool were distributed between IBV (22.53%), Sicinivirus (Picornaviridae, 24%), and avian leucosis virus (37.04%). A complete IBV genome with 99.95% nucleotide identity to vaccine strain H120 (lineage GI-1), as well as a near-complete avian leucosis virus genome and a partial Sicinivirus genome were assembled from the tissue sample data. Lower read counts identified chicken calicivirus, Avibirnavirus (infectious bursal disease virus, assembling to 98.85% of segment A and 69.66% of segment B closely related to D3976/1 from Germany, 2017) and avian orthoreovirus, while three avian orthoavulavirus 1 reads confirmed prior real-time RT-PCR result. IBV sequence variation analysis identified both fixed and minor frequency variations in the tissue sample compared to its in ovo-passaged virus. Metagenomic methods allow the determination of complete coronavirus genomes from clinical chicken samples while providing additional insights in RNA virus sequence diversity and coinfecting viruses potentially contributing to pathogenicity.
Collapse
Affiliation(s)
- Steven Van Borm
- Department of Animal Infectious Diseases, Sciensano, Brussels, Belgium.
| | - Mieke Steensels
- Department of Animal Infectious Diseases, Sciensano, Brussels, Belgium
| | - Elisabeth Mathijs
- Department of Animal Infectious Diseases, Sciensano, Brussels, Belgium
| | | | | | | |
Collapse
|
18
|
Islam MR, Martinez-Soto CE, Lin JT, Khursigara CM, Barbut S, Anany H. A systematic review from basics to omics on bacteriophage applications in poultry production and processing. Crit Rev Food Sci Nutr 2021:1-33. [PMID: 34609270 DOI: 10.1080/10408398.2021.1984200] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The growing human population is currently facing an unprecedented challenge on global food production and sustainability. Despite recognizing poultry as one of the most successful and rapidly growing food industries to address this challenge; poultry health and safety remain major issues that entail immediate attention. Bacterial diseases including colibacillosis, salmonellosis, and necrotic enteritis have become increasingly prevalent during poultry production. Likewise, outbreaks caused by consumption of undercooked poultry products contaminated with zoonotic bacterial pathogens such as Salmonella, Campylobacter and Listeria, are a serious public health concern. With antimicrobial resistance problem and restricted use of antibiotics in food producing animals, bacteriophages are increasingly recognized as an attractive natural antibacterial alternative. Bacteriophages have recently shown promising results to treat diseases in poultry, reduce contamination of carcasses, and enhance the safety of poultry products. Omics technologies have been successfully employed to accurately characterize bacteriophages and their genes/proteins important for interaction with bacterial hosts. In this review, the potential of using lytic bacteriophages to mitigate the risk of major poultry-associated bacterial pathogens are explored. This study also explores challenges associated with the adoption of this technology by industries. Furthermore, the impact of omics approaches on studying bacteriophages, their host interaction and applications is discussed.
Collapse
Affiliation(s)
- Md Rashedul Islam
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Carlos E Martinez-Soto
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada.,Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Janet T Lin
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Cezar M Khursigara
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Shai Barbut
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Hany Anany
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada.,Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.,Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
19
|
Abstract
The family Smacoviridae (order Cremevirales, class Arfiviricetes, phylum Cressdnaviricota) is comprised of viruses with small circular single-stranded DNA genomes of ~2.3-3 kb in length that have primarily been identified in fecal sample of various animals. Smacovirus genomes carry two genes in ambisense orientation encoding a capsid protein and a rolling-circle replication initiation protein, respectively. We have revised the taxonomy of the family by assigning 138 new genomic sequences deposited in GenBank to already established taxa as well as 41 new species and six new genera. Furthermore, we have adopted binomial species nomenclature, conforming to the "Genus + freeform epithet" format for all 84 species from 12 genera. The updated Smacoviridae taxonomy presented in this article has been ratified by the International Committee on Taxonomy of Viruses (ICTV).
Collapse
Affiliation(s)
- Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, Paris, France.
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA. .,Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
20
|
Duarte Júnior JWB, Chagas EHN, Serra ACS, Souto LCDS, da Penha Júnior ET, Bandeira RDS, e Guimarães RJDPS, Oliveira HGDS, Sousa TKS, Lopes CTDA, Domingues SFS, Pinheiro HHC, Malik YS, Salvarani FM, Mascarenhas JDP. Ocurrence of rotavirus and picobirnavirus in wild and exotic avian from amazon forest. PLoS Negl Trop Dis 2021; 15:e0008792. [PMID: 34506499 PMCID: PMC8432778 DOI: 10.1371/journal.pntd.0008792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 08/11/2021] [Indexed: 12/25/2022] Open
Abstract
The present study reports the occurrence of rotavirus A (RVA), rotavirus D (RVD), rotavirus F (RVF), rotavirus G (RVG), and picobirnavirus (PBV) in fecal specimens of wild (n = 22), and exotic birds (n = 1) from different cities of Pará state. These animals were hospitalized at Veterinary Hospital of the Federal University of Pará, Brazil, in a period from January 2018 to June 2019. The animals exhibited different clinical signs, such as diarrhea, malnutrition, dehydration, and fractures. The results showed 39.1% (9/23) of positivity for RVA by RT-qPCR. Among these, one sample (1/9) for the NSP3 gene of T2 genotype was characterized. About 88.9% (8/9) for the VP7 gene belonging to G1, G3 equine like and G6 genotypes, and 55.5% (5/9) for the VP4 gene of P[2] genotype were obtained. In the current study, approximately 4.5% of the samples (1/23) revealed coinfection for the RVA, RVD and RVF groups. Furthermore, picobirnavirus (PBV) was detected in one of the 23 samples tested, and was classified in the Genogroup I. The findings represent the first report of RVA, RVD, RVF, RVG, and PBV genotypes in wild birds in Brazil, and due to wide distribution it can implies potential impacts of RVs, and PBVs on avian health, and other animals contributing to construction of new knowledge, and care perspectives.
Collapse
|
21
|
Taxonomic updates for the genus Gyrovirus (family Anelloviridae): recognition of several new members and establishment of species demarcation criteria. Arch Virol 2021; 166:2937-2942. [PMID: 34347169 DOI: 10.1007/s00705-021-05194-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The genus Gyrovirus was assigned to the family Anelloviridae in 2017 with only one recognized species, Chicken anemia virus. Over the last decade, many diverse viruses related to chicken anemia virus have been identified but not classified. Here, we provide a framework for the classification of new species in the genus Gyrovirus and communicate the establishment of nine new species. We adopted the 'Genus + freeform epithet' binomial system for the naming of these species.
Collapse
|
22
|
Abstract
The family Genomoviridae (phylum Cressdnaviricota, class Repensiviricetes, order Geplafuvirales) includes viruses with circular single-stranded DNA genomes encoding two proteins, the capsid protein and the rolling-circle replication initiation protein. The genomes of the vast majority of members in this family have been sequenced directly from diverse environmental or animal- and plant-associated samples, but two genomoviruses have been identified infecting fungi. Since the last taxonomic update of the Genomoviridae, a number of new members of this family have been sequenced. Here, we report on the most recent taxonomic update, including the creation of one new genus, Gemytripvirus, and classification of ~420 new genomoviruses into 164 new species. We also announce the adoption of the "Genus + freeform epithet" binomial system for the naming of all 236 officially recognized species in the family Genomoviridae. The updated taxonomy presented in this article has been accepted by the International Committee on Taxonomy of Viruses (ICTV).
Collapse
Affiliation(s)
- Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona, USA.
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa.
| | - Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, Paris, France.
| |
Collapse
|
23
|
Shi Y, Tao J, Li B, Shen X, Cheng J, Liu H. The Gut Viral Metagenome Analysis of Domestic Dogs Captures Snapshot of Viral Diversity and Potential Risk of Coronavirus. Front Vet Sci 2021; 8:695088. [PMID: 34307533 PMCID: PMC8292670 DOI: 10.3389/fvets.2021.695088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/10/2021] [Indexed: 11/13/2022] Open
Abstract
The close relations between dogs (Canis lupus familiaris) and humans lay a foundation for cross species transmissions of viruses. The co-existence of multiplex viruses in the host accelerate viral variations. For effective prediction and prevention of potential epidemic or even pandemic, the metagenomics method was used to investigate the gut virome status of 45 domestic healthy dogs which have extensive contact with human beings. A total of 248.6 GB data (505, 203, 006 valid reads, 150 bp in length) were generated and 325, 339 contigs, which were best matched with viral genes, were assembled from 46, 832, 838 reads. In the aggregate, 9,834 contigs (3.02%) were confirmed for viruses. The top 30 contigs with the most reads abundance were mapped to DNA virus families Circoviridae, Parvoviridae and Herpesviridae; and RNA virus families Astroviridae, Coronaviridae and Picornaviridae, respectively. Numerous sequences were assigned to animal virus families of Astroviridae, Coronaviridae, Circoviridae, etc.; and phage families of Microviridae, Siphoviridae, Ackermannviridae, Podoviridae, Myoviridae and the unclassified phages. Further, several sequences were homologous with the insect and plant viruses, which reflects the diet and habitation of dogs. Significantly, canine coronavirus was uniquely identified in all the samples with high abundance, and the phylogenetic analysis therefore showed close relationship with the human coronavirus strain 229E and NL63, indicating the potential risk of canine coronavirus to infect humans by obtaining the ability of cross-species transmission. This study emphasizes the high detection frequency of virus harbored in the enteric tract of healthy contacted animal, and expands the knowledge of the viral diversity and the spectrum for further disease-association studies, which is meaningful for elucidating the epidemiological and biological role of companion animals in public health.
Collapse
Affiliation(s)
- Ying Shi
- Department of Animal Infectious Diseases, Institute of Animal Husbandry and Veterinary Sciences, Shanghai Academy of Agricultural Sciences, Shanghai, China.,Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, China.,Shanghai Engineering Research Center of Pig Breeding, Shanghai, China
| | - Jie Tao
- Department of Animal Infectious Diseases, Institute of Animal Husbandry and Veterinary Sciences, Shanghai Academy of Agricultural Sciences, Shanghai, China.,Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, China.,Shanghai Engineering Research Center of Pig Breeding, Shanghai, China
| | - Benqiang Li
- Department of Animal Infectious Diseases, Institute of Animal Husbandry and Veterinary Sciences, Shanghai Academy of Agricultural Sciences, Shanghai, China.,Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, China.,Shanghai Engineering Research Center of Pig Breeding, Shanghai, China
| | - Xiaohui Shen
- Department of Animal Infectious Diseases, Institute of Animal Husbandry and Veterinary Sciences, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jinghua Cheng
- Department of Animal Infectious Diseases, Institute of Animal Husbandry and Veterinary Sciences, Shanghai Academy of Agricultural Sciences, Shanghai, China.,Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, China.,Shanghai Engineering Research Center of Pig Breeding, Shanghai, China
| | - Huili Liu
- Department of Animal Infectious Diseases, Institute of Animal Husbandry and Veterinary Sciences, Shanghai Academy of Agricultural Sciences, Shanghai, China.,Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, China.,Shanghai Engineering Research Center of Pig Breeding, Shanghai, China
| |
Collapse
|
24
|
Hao X, Li Y, Hu X, Fu X, Dong J, Zhang H, Zhou P, Li S. Feline Stool-Associated Circular DNA Virus (FeSCV) in Diarrheic Cats in China. Front Vet Sci 2021; 8:694089. [PMID: 34222407 PMCID: PMC8242157 DOI: 10.3389/fvets.2021.694089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
Feline stool-associated circular DNA virus (FeSCV) is an unclassified circular replication-associated protein-encoding single-stranded (CRESS) DNA virus that was discovered in cats in Japan in 2018. Few studies on the genomic characteristics and prevalence of FeSCV have been conducted. To investigate whether FeSCV has been circulating in domestic cats in Guangdong, China, fecal samples were collected from cats with diarrhea in an animal hospital in 2018 to promote research on FeSCV. The FeSCV genome was obtained by PCR amplification and sequencing, and the detected virus was named PY4 (GenBank No. MT732515). The genome of PY4 was 2,034 nt in size, which was 12 nt smaller than the reported genome of Japanese FeSCV strains (KU7, KU8, KU9, KU14) (2,046 nt). The PY4 strain shared 95.1 ~ 95.5% homology with Japanese FeSCV strains. Notably, the Cap protein of PY4 was mutated at 15 amino acid sites, and the PY4 genome contained a unique open reading frame 3. In addition, there were two additional base insertions in the stem-loop structure of PY4, and the nucleotide homology of the spacer region was not high. A phylogenetic tree based on Rep proteins showed that PY4, Japanese FeSCVs and rodent stool-associated circular viruses (RodSCVs) clustered together, suggesting that they might share a similar origin in their phylogenetic evolution. In this study, samples collected in Guangzhou, China, in 2018 were subjected to an etiological investigation, and 20% (2/10) of the samples were positive for FeSCV. The ORFs, stem-loop structures, Cap proteins and intergenic region sequences of PY4 were significantly different from those reported in Japan. This is the first report of FeSCV in domestic cats with diarrhea in China, and further epidemiological studies are urgently needed to assess the impact of the virus on cats.
Collapse
Affiliation(s)
- Xiangqi Hao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, China.,Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, China
| | - Yanchao Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, China.,Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, China
| | - Xinkai Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, China.,Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, China
| | - Xueying Fu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, China.,Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, China
| | - Jie Dong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, China.,Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, China
| | - Haoyang Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, China.,Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, China
| | - Pei Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, China.,Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, China
| | - Shoujun Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, China.,Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, China
| |
Collapse
|
25
|
Tong P, Ren M, Xu X, Song X, Zhang L, Kuang L, Xie J. Identification and genomic characterization of emerging CRESS DNA viruses in thoroughbred horses in China. Virus Genes 2021; 57:390-394. [PMID: 34021872 DOI: 10.1007/s11262-021-01845-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/10/2021] [Indexed: 11/28/2022]
Abstract
Multiple novel circular replication-associated protein (Rep)-encoding single stranded (CRESS) DNA viruses have been extensively identified in the feces of humans and animals. Here, we first detected CRESS DNA virus (named Horse-CRESS DNA-like virus, HCLV) in two fecal samples from 10 imported thoroughbred (TB) horses in the customs quarantine station in North Xinjiang province, China. Additionally, we found that this virus was not detected in local breeds (LBs) (0/41) and was found only in imported TB horses (2/73). We obtained the whole-genome sequences of four viruses (HCLV ALSK-3-4, ALSK-13-10, CJ-1-2, and CJ-13-1). Unlike Circovirus and Cyclovirus, whose genome sequences have 1700 to 2100 nucleotides (nt), these HCLVs have circular genome with 3503, 3504, 3485, 3491 nt, respectively and five major ORFs. The ORF1 gene encodes the Rep protein in HCLVs. Furthermore, the Rep protein of the four HCLVs share 23.3-84.8%, 21.6-27.4%, 23.7-27.2% amino acid identity with the corresponding reference viruses of Kirkoviruses, genus Circovirus, and genus Cyclovirus, respectively. Moreover, RCR domain, P-loop NTPase domains, and nonanucleotide motif (TAGTATTAC) of the HCLVs are similar to Circovirus and Cyclovirus. Phylogenetic analysis showed that the virus was grouped together with members in Kirkoviruses. These results suggest the HCLV probably entered Xinjiang province via the international trade of horses.
Collapse
Affiliation(s)
- Panpan Tong
- Laboratory of Animal Etiology and Epidemiology, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Meiling Ren
- Laboratory of Animal Etiology and Epidemiology, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Xinlong Xu
- Alashan Customs Technical Center, Alashan, Xinjiang, China
| | - Xiaozhen Song
- Laboratory of Animal Etiology and Epidemiology, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Lei Zhang
- Laboratory of Animal Etiology and Epidemiology, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Ling Kuang
- Laboratory of Animal Etiology and Epidemiology, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Jinxin Xie
- Laboratory of Animal Etiology and Epidemiology, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang, China.
| |
Collapse
|
26
|
Near-Complete Genome Sequences of Five Siciniviruses from North America. Microbiol Resour Announc 2021; 10:10/19/e00364-21. [PMID: 33986098 PMCID: PMC8142584 DOI: 10.1128/mra.00364-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Here, we report near-complete genome sequences of Sicinivirus from U.S. poultry flocks in 2003 to 2005 and Mexico in 2019. They show highest nucleotide identity (84.5 to 85.5%) with other members of the Sicinivirus genus. These sequences update knowledge on diversity and contribute to a better understanding of the molecular epidemiology of Sicinivirus. Here, we report near-complete genome sequences of sicinivirus from U.S. poultry flocks in 2003 to 2005 and Mexico in 2019. They show highest nucleotide identity (84.5 to 85.5%) with other members of the Sicinivirus genus. These sequences update knowledge on diversity and contribute to a better understanding of the molecular epidemiology of sicinivirus.
Collapse
|
27
|
Talavera-González JM, Talavera-Rojas M, Soriano-Vargas E, Vázquez-Navarrete J, Salgado-Miranda C. In vitro transduction of antimicrobial resistance genes into Escherichia coli isolates from backyard poultry in Mexico. Can J Microbiol 2021; 67:415-425. [PMID: 33395360 DOI: 10.1139/cjm-2020-0280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The transmission of multidrug-resistant pathogens and antimicrobial resistance genes is an emerging problem involving multiple factors (humans, domestic animals, wildlife). The aim of this study was to investigate the presence of Escherichia coli isolates with different antimicrobial resistance genes from backyard poultry and to demonstrate the in vitro transduction phenomenon of these genes between phages from migratory wild birds and poultry E. coli isolates. We collected 197 E. coli isolates from chickens, turkeys, and ducks in backyard production units (northern region of the State of Mexico). Isolates were resistant to ampicillin (80.7%), tetracycline (64.4%), carbenicillin (56.3%), and nalidixic acid and trimethoprim-sulfamethoxazole (both, 26.9%). Moreover, the genes blaTEM (56.3%), tetB (20.8%), tetA (19.2%), sulI (7.6%), sulII (10.1%), qnrA (9.6%), and qnrB (5.5%) were found. In vitro transduction using phages from migratory wild birds sampled in the wetland Chimaliapan (State of Mexico) was successfully achieved. It was possible to transduce qnrA, tetB, blaTEM, and sulII genes to E. coli isolates from poultry. This is the first report that describes the transduction of antimicrobial resistance genes from phages of migratory wild birds to poultry and suggests the possible transmission in backyard production units.
Collapse
Affiliation(s)
- Juan Martín Talavera-González
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Carretera Toluca-Atlacomulco, Km 15.5, Toluca, Estado de México 50200, México
| | - Martín Talavera-Rojas
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Carretera Toluca-Atlacomulco, Km 15.5, Toluca, Estado de México 50200, México
| | - Edgardo Soriano-Vargas
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Carretera Toluca-Atlacomulco, Km 15.5, Toluca, Estado de México 50200, México
| | - Jesús Vázquez-Navarrete
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Carretera México-Toluca Km. 15.5, Ciudad de México, México
| | - Celene Salgado-Miranda
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Carretera Toluca-Atlacomulco, Km 15.5, Toluca, Estado de México 50200, México
| |
Collapse
|
28
|
Cibulski S, Alves de Lima D, Fernandes Dos Santos H, Teixeira TF, Tochetto C, Mayer FQ, Roehe PM. A plate of viruses: Viral metagenomics of supermarket chicken, pork and beef from Brazil. Virology 2021; 552:1-9. [PMID: 33032031 PMCID: PMC7521440 DOI: 10.1016/j.virol.2020.09.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/12/2020] [Accepted: 09/13/2020] [Indexed: 02/08/2023]
Abstract
A viral metagenomics study was conducted in beef, pork, and chicken sold in supermarkets from Southern Brazil. From chicken, six distinct gyroviruses (GyV) were detected, including GyV3 and GyV6, which for the first time were detected in samples from avian species, plus a novel smacovirus species and two highly divergent circular Rep-encoding ssDNA (CRESS-DNA) viruses. From pork, genomes of numerous anelloviruses, porcine parvovirus 5 (PPV5) and 6 (PPV6), two new genomoviruses and two new CRESS-DNA viruses were found. Finally, two new CRESS-DNA genomes were recovered from beef. Although none of these viruses have history of transmission to humans, the findings reported here reveal that such agents are inevitably consumed in diets that include these types of meat.
Collapse
Affiliation(s)
- Samuel Cibulski
- Centro de Biotecnologia - CBiotec, Laboratório de Biotecnologia Celular e Molecular, Universidade Federal da Paraíba - UFPB, João Pessoa, Paraíba, Brazil.
| | - Diane Alves de Lima
- Departamento de Microbiologia Imunologia e Parasitologia, Laboratório de Virologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Centro Universitário da Serra Gaúcha - FSG, Caxias do Sul, Grande do Sul, Brazil
| | - Helton Fernandes Dos Santos
- Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria - UFSM, Santa Maria, Rio Grande do Sul, Brazil
| | - Thais Fumaco Teixeira
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria de Agricultura, Pecuária e Desenvolvimento Rural, Eldorado do Sul, RS, Brazil
| | - Caroline Tochetto
- Departamento de Microbiologia Imunologia e Parasitologia, Laboratório de Virologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fabiana Quoos Mayer
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria de Agricultura, Pecuária e Desenvolvimento Rural, Eldorado do Sul, RS, Brazil
| | - Paulo Michel Roehe
- Departamento de Microbiologia Imunologia e Parasitologia, Laboratório de Virologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
29
|
Occurrence and Role of Selected RNA-Viruses as Potential Causative Agents of Watery Droppings in Pigeons. Pathogens 2020; 9:pathogens9121025. [PMID: 33291258 PMCID: PMC7762127 DOI: 10.3390/pathogens9121025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 11/16/2022] Open
Abstract
The diseases with watery droppings (diarrhea and/or polyuria) can be considered some of the most severe health problems in domestic pigeons of various ages. Although they do not always lead to bird death, they can contribute to poor weight gains and hindered development of young pigeons and, potentially, to poor racing results in sports birds. The gastrointestinal tract disorders of pigeons may be of various etiology, but some of the causative agents are viral infections. This review article provides information collected from scientific reports on RNA-viruses belonging to the Astroviridae, Picornaviridae, and Coronaviridae families; the Avulavirinae subfamily; and the Rotavirus genus that might be implicated in such health problems. It presents a brief characterization, and possible interspecies transmission of these viruses. We believe that this review article will help clinical signs of infection, isolation methods, occurrence in pigeons and poultry, systemize and summarize knowledge on pigeon enteropathogenic viruses and raise awareness of the importance of disease control in pigeons.
Collapse
|
30
|
Comparative Metagenomics of Palearctic and Neotropical Avian Cloacal Viromes Reveal Geographic Bias in Virus Discovery. Microorganisms 2020; 8:microorganisms8121869. [PMID: 33256173 PMCID: PMC7761369 DOI: 10.3390/microorganisms8121869] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 01/11/2023] Open
Abstract
Our understanding about viruses carried by wild animals is still scarce. The viral diversity of wildlife may be best described with discovery-driven approaches to the study of viral diversity that broaden research efforts towards non-canonical hosts and remote geographic regions. Birds have been key organisms in the transmission of viruses causing important diseases, and wild birds are threatened by viral spillovers associated with human activities. However, our knowledge of the avian virome may be biased towards poultry and highly pathogenic diseases. We describe and compare the fecal virome of two passerine-dominated bird assemblages sampled in a remote Neotropical rainforest in French Guiana (Nouragues Natural Reserve) and a Mediterranean forest in central Spain (La Herrería). We used metagenomic data to quantify the degree of functional and genetic novelty of viruses recovered by examining if the similarity of the contigs we obtained to reference sequences differed between both locations. In general, contigs from Nouragues were significantly less similar to viruses in databases than contigs from La Herrería using Blastn but not for Blastx, suggesting that pristine regions harbor a yet unknown viral diversity with genetically more singular viruses than more studied areas. Additionally, we describe putative novel viruses of the families Picornaviridae, Reoviridae and Hepeviridae. These results highlight the importance of wild animals and remote regions as sources of novel viruses that substantially broaden the current knowledge of the global diversity of viruses.
Collapse
|
31
|
Loiko MR, Varela APM, Tochetto C, Lopes BC, Scheffer CM, Morel AP, Vidaletti MR, Lima DA, Cerva C, Mayer FQ, Roehe PM. Novel Gyrovirus genomes recovered from free-living pigeons in Southern Brazil. Virology 2020; 548:132-135. [PMID: 32838934 DOI: 10.1016/j.virol.2020.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/17/2020] [Accepted: 07/02/2020] [Indexed: 01/15/2023]
Abstract
Wild birds carry a number of infectious agents, some of which may have pathogenic potential for the host and others species, including humans. Domestic pigeons (Columba livia) are important targets of study since these increasingly cohabit urban spaces, being possible spillover sources of pathogens to humans. In the present study, two genomes (PiGyV_Tq/RS/Br and PiGyV_RG/RS/Br), representative of Gyrovirus genus, family Anelloviridae, were detected in sera of free-living pigeons collected in Southern Brazil. The genomes exhibit less than 50% identity to previously described members of Gyrovirus genus, suggesting that they constitute a new viral species circulating in pigeons, to which the name "pigeon gyrovirus (PiGyV)" is proposed. The current study characterizes these two PiGyV genomes which, to date, are the first gyrovirus species identified in domestic pigeons.
Collapse
Affiliation(s)
- M R Loiko
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, UFRGS, Av. Sarmento Leite 500, Sala 208, CEP 90050-170, Porto Alegre, RS, Brazil; Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria Estadual de Agricultura, Pecuária e Desenvolvimento Rural, CEP 92990-000, Eldorado do Sul, RS, Brazil; Feevale - Universidade Feevale, RS-239, 2755, CEP 93525-075, Novo Hamburgo, RS, Brazil
| | - A P M Varela
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, UFRGS, Av. Sarmento Leite 500, Sala 208, CEP 90050-170, Porto Alegre, RS, Brazil; Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria Estadual de Agricultura, Pecuária e Desenvolvimento Rural, CEP 92990-000, Eldorado do Sul, RS, Brazil
| | - C Tochetto
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, UFRGS, Av. Sarmento Leite 500, Sala 208, CEP 90050-170, Porto Alegre, RS, Brazil; Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria Estadual de Agricultura, Pecuária e Desenvolvimento Rural, CEP 92990-000, Eldorado do Sul, RS, Brazil
| | - B C Lopes
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria Estadual de Agricultura, Pecuária e Desenvolvimento Rural, CEP 92990-000, Eldorado do Sul, RS, Brazil
| | - C M Scheffer
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, UFRGS, Av. Sarmento Leite 500, Sala 208, CEP 90050-170, Porto Alegre, RS, Brazil; Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria Estadual de Agricultura, Pecuária e Desenvolvimento Rural, CEP 92990-000, Eldorado do Sul, RS, Brazil
| | - A P Morel
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria Estadual de Agricultura, Pecuária e Desenvolvimento Rural, CEP 92990-000, Eldorado do Sul, RS, Brazil; Falcoaria e Consultoria Ambiental - HAYABUSA, São Francisco de Paula, RS, Brazil
| | - M R Vidaletti
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria Estadual de Agricultura, Pecuária e Desenvolvimento Rural, CEP 92990-000, Eldorado do Sul, RS, Brazil
| | - D A Lima
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, UFRGS, Av. Sarmento Leite 500, Sala 208, CEP 90050-170, Porto Alegre, RS, Brazil; Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria Estadual de Agricultura, Pecuária e Desenvolvimento Rural, CEP 92990-000, Eldorado do Sul, RS, Brazil
| | - C Cerva
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria Estadual de Agricultura, Pecuária e Desenvolvimento Rural, CEP 92990-000, Eldorado do Sul, RS, Brazil
| | - F Q Mayer
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria Estadual de Agricultura, Pecuária e Desenvolvimento Rural, CEP 92990-000, Eldorado do Sul, RS, Brazil.
| | - P M Roehe
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, UFRGS, Av. Sarmento Leite 500, Sala 208, CEP 90050-170, Porto Alegre, RS, Brazil
| |
Collapse
|
32
|
Cibulski S, Weber MN, de Sales Lima FE, Lima DAD, Fernandes Dos Santos H, Teixeira TF, Varela APM, Tochetto C, Mayer FQ, Roehe PM. Viral metagenomics in Brazilian Pekin ducks identifies two gyrovirus, including a new species, and the potentially pathogenic duck circovirus. Virology 2020; 548:101-108. [PMID: 32838930 DOI: 10.1016/j.virol.2020.05.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/24/2020] [Accepted: 05/24/2020] [Indexed: 01/01/2023]
Abstract
Viral metagenomics coupled to high-throughput sequencing has provided a powerful tool for large-scale detection of known and unknown viruses associated to distinct hosts and environments. Using this approach, known and novel viruses have been characterized from sylvatic and commercial avian hosts, increasing our understanding of the viral diversity in these species. In the present work we applied an exploratory viral metagenomics on organs (spleen, liver and bursa of Fabricious) of Pekin ducks from Southern Brazil. The virome contained sequences related to a known duck pathogen (duck circovirus) and a number of other circular ssDNA viruses. Additionally, we detected avian gyrovirus 9 (to date detected only in human feces) and one new avian gyrovirus species, to which is proposed the name avian gyrovirus 13 (GyV13). This study is expected to contribute to the knowledge of the viral diversity in Pekin ducks.
Collapse
Affiliation(s)
- Samuel Cibulski
- Centro de Biotecnologia - CBiotec, Laboratório de Biotecnologia Celular e Molecular, Universidade Federal da Paraíba - UFPB, João Pessoa, Paraíba, Brazil.
| | - Matheus Nunes Weber
- Laboratório de Microbiologia Molecular, Instituto de Ciências da Saúde, Universidade Feevale, Novo Hamburgo, Rio Grande do Sul, Brazil
| | - Francisco Esmaile de Sales Lima
- Departamento de Microbiologia Imunologia e Parasitologia, Laboratório de Virologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Diane Alves de Lima
- Departamento de Microbiologia Imunologia e Parasitologia, Laboratório de Virologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Helton Fernandes Dos Santos
- Departamento de Microbiologia Imunologia e Parasitologia, Laboratório de Virologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria - UFSM, Santa Maria, Rio Grande do Sul, Brazil
| | - Thais Fumaco Teixeira
- Departamento de Microbiologia Imunologia e Parasitologia, Laboratório de Virologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana Paula Muterle Varela
- Departamento de Microbiologia Imunologia e Parasitologia, Laboratório de Virologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Caroline Tochetto
- Departamento de Microbiologia Imunologia e Parasitologia, Laboratório de Virologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fabiana Quoos Mayer
- Laboratório de Biologia Molecular, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Eldorado do Sul, RS, Brazil
| | - Paulo Michel Roehe
- Departamento de Microbiologia Imunologia e Parasitologia, Laboratório de Virologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
33
|
Fur Seal Feces-Associated Circular DNA Virus Identified in Pigs in Anhui, China. Virol Sin 2020; 36:25-32. [PMID: 32488409 PMCID: PMC7973343 DOI: 10.1007/s12250-020-00232-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/07/2020] [Indexed: 11/08/2022] Open
Abstract
Fur seal feces-associated circular DNA virus (FSfaCV) is an unclassified circular replication-associated protein (Rep)-encoding single-stranded (CRESS) DNA virus that has been detected in mammals (fur seals and pigs). The biology and epidemiology of the virus remain largely unknown. To investigate the virus diversity among pigs in Anhui Province, China, we pooled 600 nasal samples in 2017 and detected viruses using viral metagenomic methods. From the assembled contigs, 12 showed notably high nucleotide acid sequence similarities to the genome sequences of FSfaCVs. Based on these sequences, a full-length genome sequence of the virus was then obtained using overlapping PCR and sequencing, and the virus was designated as FSfaCV-CHN (GenBank No. MK462122). This virus shared 91.3% and 90.9% genome-wide nucleotide sequence similarities with the New Zealand fur seal strain FSfaCV-as50 and the Japanese pig strain FSfaCV-JPN1, respectively. It also clustered with the two previously identified FSfaCVs in a unique branch in the phylogenetic tree based on the open reading frame 2 (ORF2), Rep-coding gene, and the genome of the reference CRESS DNA viruses. Further epidemiological investigation using samples collected in 2018 showed that the overall positive rate for the virus was 56.4% (111/197) in Anhui Province. This is the first report of FSfaCVs identified in pigs in China, and further epidemiological studies are warranted to evaluate the influence of the virus on pigs.
Collapse
|
34
|
Kim HR, Kwon YK, Jang I, Bae YC. Viral metagenomic analysis of chickens with runting-stunting syndrome in the Republic of Korea. Virol J 2020; 17:53. [PMID: 32293477 PMCID: PMC7157833 DOI: 10.1186/s12985-020-01307-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/27/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND AIMS Runting-stunting syndrome (RSS) in chickens, also known as malabsorption syndrome, which is characterized by mild to severe enteritis and diagnosed through typical histopathologic examination as well as clinical signs, results in considerable economic losses. Despite the many studies carried out over decades to determine the etiologic agents of RSS involved in the disease, several outbreaks remained without the elucidation of, potentially multiple, etiologies involved. METHODS We performed comparative analysis of viral metagenomes from four chicken flocks affected with RSS using next-generation sequencing. Primers for the detection of chicken enteric viruses were designed from the sequencing data obtained with metagenomics. Multiplex reverse transcription-polymerase chain reaction (PCR) and PCR were performed to detect a variety of etiological agents previously described in natural cases of RSS. RESULTS The most abundant viral families identified in this study were Astroviridae, Picornaviridae, Parvoviridae, Caliciviridae, Reoviridae and Picobirnaviridae. Chicken astrovirus sequences were present in all four samples, suggesting an association between chicken astrovirus and RSS and chicken astrovirus as a candidate pathogen responsible for RSS. Picobirnavirus and the newly identified chapparvovirus were found in chickens in the Republic of Korea for the first time, and the genetic diversity of enteric viruses and viral communities was showed. CONCLUSIONS Chicken astrovirus was consistently detected in broilers affected with RSS and the result of this study may contribute to knowledge of enteric diseases and viruses in chickens.
Collapse
Affiliation(s)
- Hye-Ryoung Kim
- Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do 39660 Republic of Korea
| | - Yong-Kuk Kwon
- Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do 39660 Republic of Korea
| | - Il Jang
- Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do 39660 Republic of Korea
| | - You-Chan Bae
- Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do 39660 Republic of Korea
| |
Collapse
|
35
|
Viral DNA genomes in sera of farrowing sows with or without stillbirths. PLoS One 2020; 15:e0230714. [PMID: 32214388 PMCID: PMC7098587 DOI: 10.1371/journal.pone.0230714] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 03/06/2020] [Indexed: 11/19/2022] Open
Abstract
A study was conducted to investigate the serum virome of sows with and without stillbirths after farrowing. Sera from sows with at least one stillbirth or with normal litters were collected immediately after farrowing. Viral DNA was extracted from serum pools and submitted to high throughput sequencing. No differences in the proportion of virus-related reads were found in both groups (p > 0.05). A variety of viral DNA genomes were identified, mostly representative of three viral families: Anelloviridae, Circoviridae and Smacoviridae. Besides, a number of novel unclassified circular Rep-encoding single stranded DNA (CRESS DNA) viruses were also identified. These findings suggest that the presence of such viral genomes in sows’ sera bears no correlation with stillbirths’ occurrence; it seems likely that these constitute part of the normal serum microbiome of sows at farrowing.
Collapse
|
36
|
Virus Metagenomics in Farm Animals: A Systematic Review. Viruses 2020; 12:v12010107. [PMID: 31963174 PMCID: PMC7019290 DOI: 10.3390/v12010107] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 02/07/2023] Open
Abstract
A majority of emerging infectious diseases are of zoonotic origin. Metagenomic Next-Generation Sequencing (mNGS) has been employed to identify uncommon and novel infectious etiologies and characterize virus diversity in human, animal, and environmental samples. Here, we systematically reviewed studies that performed viral mNGS in common livestock (cattle, small ruminants, poultry, and pigs). We identified 2481 records and 120 records were ultimately included after a first and second screening. Pigs were the most frequently studied livestock and the virus diversity found in samples from poultry was the highest. Known animal viruses, zoonotic viruses, and novel viruses were reported in available literature, demonstrating the capacity of mNGS to identify both known and novel viruses. However, the coverage of metagenomic studies was patchy, with few data on the virome of small ruminants and respiratory virome of studied livestock. Essential metadata such as age of livestock and farm types were rarely mentioned in available literature, and only 10.8% of the datasets were publicly available. Developing a deeper understanding of livestock virome is crucial for detection of potential zoonotic and animal pathogens and One Health preparedness. Metagenomic studies can provide this background but only when combined with essential metadata and following the “FAIR” (Findable, Accessible, Interoperable, and Reusable) data principles.
Collapse
|
37
|
Yuan L, Hensley C, Mahsoub HM, Ramesh AK, Zhou P. Microbiota in viral infection and disease in humans and farm animals. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 171:15-60. [PMID: 32475521 PMCID: PMC7181997 DOI: 10.1016/bs.pmbts.2020.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The influence of the microbiota on viral infection susceptibility and disease outcome is undisputable although varies among viruses. The purpose of understanding the interactions between microbiota, virus, and host is to identify practical, effective, and safe approaches that target microbiota for the prevention and treatment of viral diseases in humans and animals, as currently there are few effective and reliable antiviral therapies available. The initial step for achieving this goal is to gather clinical evidences, focusing on the viral pathogens-from human and animal studies-that have already been shown to interact with microbiota. The subsequent step is to identify mechanisms, through experimental evidences, to support the development of translational applications that target microbiota. In this chapter, we review evidences of virus infections altering microbiota and of microbiota enhancing or suppressing infectivity, altering host susceptibility to certain viral diseases, and influencing vaccine immunogenicity in humans and farm animals.
Collapse
Affiliation(s)
- Lijuan Yuan
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States; Integrated Life Science Building, Blacksburg, VA, United States.
| | - Casey Hensley
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States; Integrated Life Science Building, Blacksburg, VA, United States
| | - Hassan M Mahsoub
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States; Integrated Life Science Building, Blacksburg, VA, United States
| | - Ashwin K Ramesh
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States; Integrated Life Science Building, Blacksburg, VA, United States
| | - Peng Zhou
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States; Integrated Life Science Building, Blacksburg, VA, United States
| |
Collapse
|
38
|
Viral Metagenomics Revealed Sendai Virus and Coronavirus Infection of Malayan Pangolins ( Manis javanica). Viruses 2019; 11:v11110979. [PMID: 31652964 PMCID: PMC6893680 DOI: 10.3390/v11110979] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 12/14/2022] Open
Abstract
Pangolins are endangered animals in urgent need of protection. Identifying and cataloguing the viruses carried by pangolins is a logical approach to evaluate the range of potential pathogens and help with conservation. This study provides insight into viral communities of Malayan Pangolins (Manis javanica) as well as the molecular epidemiology of dominant pathogenic viruses between Malayan Pangolin and other hosts. A total of 62,508 de novo assembled contigs were constructed, and a BLAST search revealed 3600 ones (≥300 nt) were related to viral sequences, of which 68 contigs had a high level of sequence similarity to known viruses, while dominant viruses were the Sendai virus and Coronavirus. This is the first report on the viral diversity of pangolins, expanding our understanding of the virome in endangered species, and providing insight into the overall diversity of viruses that may be capable of directly or indirectly crossing over into other mammals.
Collapse
|
39
|
Discovery and genetic characterization of diverse smacoviruses in Zambian non-human primates. Sci Rep 2019; 9:5045. [PMID: 30962460 PMCID: PMC6453971 DOI: 10.1038/s41598-019-41358-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/07/2019] [Indexed: 11/12/2022] Open
Abstract
The Smacoviridae has recently been classified as a family of small circular single-stranded DNA viruses. An increasing number of smacovirus genomes have been identified exclusively in faecal matter of various vertebrate species and from insect body parts. However, the genetic diversity and host range of smacoviruses remains to be fully elucidated. Herein, we report the genetic characterization of eleven circular replication-associated protein (Rep) encoding single-stranded (CRESS) DNA viruses detected in the faeces of Zambian non-human primates. Based on pairwise genome-wide and amino acid identities with reference smacovirus species, ten of the identified CRESS DNA viruses are assigned to the genera Porprismacovirus and Huchismacovirus of the family Smacoviridae, which bidirectionally encode two major open reading frames (ORFs): Rep and capsid protein (CP) characteristic of a type IV genome organization. The remaining unclassified CRESS DNA virus was related to smacoviruses but possessed a genome harbouring a unidirectionally oriented CP and Rep, assigned as a type V genome organization. Moreover, phylogenetic and recombination analyses provided evidence for recombination events encompassing the 3′-end of the Rep ORF in the unclassified CRESS DNA virus. Our findings increase the knowledge of the known genetic diversity of smacoviruses and highlight African non-human primates as carrier animals.
Collapse
|
40
|
de Souza WM, Fumagalli MJ, de Araujo J, Ometto T, Modha S, Thomazelli LM, Durigon EL, Murcia PR, Figueiredo LTM. Discovery of novel astrovirus and calicivirus identified in ruddy turnstones in Brazil. Sci Rep 2019; 9:5556. [PMID: 30944402 PMCID: PMC6447618 DOI: 10.1038/s41598-019-42110-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/25/2019] [Indexed: 01/06/2023] Open
Abstract
Birds are the natural reservoir of viruses with zoonotic potential, as well as contributing to the evolution, emergence, and dissemination of novel viruses. In this study, we applied a high-throughput screening approach to identify the diversity of viruses in 118 samples of birds captured between October 2006 to October 2010 in the North and Northeast regions of Brazil. We found nearly complete genomes of novel species of astrovirus and calicivirus in cloacal swabs of ruddy turnstones (Arenaria interpres) collected in Coroa do Avião islet, Pernambuco State. These viruses are positive-sense single-stranded RNA with a genome of ~7 to 8 kb, and were designated as Ruddy turnstone astrovirus (RtAstV) and Ruddy turnstone calicivirus (RTCV), respectively. Phylogenetic analysis showed that RtAstV and RTCV grouped in a monophyletic clade with viruses identified from poultry samples (i.e., chicken, goose, and turkey), including viruses associated with acute nephritis in chickens. Attempts of viral propagation in monkey and chicken cell lines for both viruses were unsuccessful. Also, we found genomes related with viral families that infect invertebrates and plants, suggesting that they might be ingested in the birds' diet. In sum, these findings shed new light on the diversity of viruses in migratory birds with the notable characterization of a novel astrovirus and calicivirus.
Collapse
Affiliation(s)
- William Marciel de Souza
- Virology Research Center, School of Medicine of Ribeirão Preto of University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil.
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, Scotland, United Kingdom.
- Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, 13083-862, Campinas, São Paulo, Brazil.
| | - Marcílio Jorge Fumagalli
- Virology Research Center, School of Medicine of Ribeirão Preto of University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil
| | - Jansen de Araujo
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-900, SP, Brazil
| | - Tatiana Ometto
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-900, SP, Brazil
| | - Sejal Modha
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, Scotland, United Kingdom
| | | | - Edison Luís Durigon
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-900, SP, Brazil
| | - Pablo Ramiro Murcia
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, Scotland, United Kingdom
| | - Luiz Tadeu Moraes Figueiredo
- Virology Research Center, School of Medicine of Ribeirão Preto of University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil
| |
Collapse
|
41
|
Kraberger S, Cook CN, Schmidlin K, Fontenele RS, Bautista J, Smith B, Varsani A. Diverse single-stranded DNA viruses associated with honey bees (Apis mellifera). INFECTION GENETICS AND EVOLUTION 2019; 71:179-188. [PMID: 30928605 DOI: 10.1016/j.meegid.2019.03.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/28/2019] [Accepted: 03/25/2019] [Indexed: 11/26/2022]
Abstract
Honey bees (Apis mellifera) research has increased in light of their progressive global decline over the last decade and the important role they play in pollination. One expanding area of honey bee research is analysis of their microbial community including viruses. Several RNA viruses have been characterized but little is known about DNA viruses associated with bees. Here, using a metagenomics based approach, we reveal the presence of a broad range of novel single-stranded DNA viruses from the hemolymph and brain of nurse and forager (worker divisions of labour) bees belonging to two honey bees subspecies, Italian (Apis mellifera linguistica) and New World Carniolan (Apis mellifera carnica). Genomes of 100 diverse viruses were identified, designated into three groupings; genomoviruses (family Genomoviridae) (n = 4), unclassified replication associated protein encoding single-stranded DNA viruses (n = 28), and microviruses (family Microviridae; subfamily Gokushovirinae) (n = 70). Amongst the viruses identified, it appears that nurses harbour a higher diversity of these viruses comparative to the foragers. Between subspecies, the most striking outcome was the extremely high number of diverse microviruses identified in the Italian bees comparative to the New World Carniolan, likely indicating an association to the diversity of the bacterial community associated with these subspecies.
Collapse
Affiliation(s)
- Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA.
| | - Chelsea N Cook
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Kara Schmidlin
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA; School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Rafaela S Fontenele
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA; School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Joshua Bautista
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA
| | - Brian Smith
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85287, USA
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA; School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85287, USA; Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, 7925 Cape Town, South Africa.
| |
Collapse
|
42
|
Genomic Sequence of a Megrivirus Strain Identified in Laying Hens in Brazil. Microbiol Resour Announc 2019; 8:MRA01438-18. [PMID: 30701237 PMCID: PMC6346186 DOI: 10.1128/mra.01438-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/18/2018] [Indexed: 12/05/2022] Open
Abstract
A new strain of chicken megrivirus was identified in fecal samples of layer chickens in a commercial flock in Minas Gerais, Brazil. It is most closely related to the family Picornaviridae, genus Megrivirus, species Melegrivirus A, and has an overall nucleotide identity of up to 85.1% with other megrivirus strains. A new strain of chicken megrivirus was identified in fecal samples of layer chickens in a commercial flock in Minas Gerais, Brazil. It is most closely related to the family Picornaviridae, genus Megrivirus, species Melegrivirus A, and has an overall nucleotide identity of up to 85.1% with other megrivirus strains.
Collapse
|
43
|
Díez-Villaseñor C, Rodriguez-Valera F. CRISPR analysis suggests that small circular single-stranded DNA smacoviruses infect Archaea instead of humans. Nat Commun 2019; 10:294. [PMID: 30655519 PMCID: PMC6336856 DOI: 10.1038/s41467-018-08167-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 12/19/2018] [Indexed: 01/01/2023] Open
Abstract
Smacoviridae is a family of small (~2.5 Kb) CRESS-DNA (Circular Rep Encoding Single-Stranded (ss) DNA) viruses. These viruses have been found in faeces, were thought to infect eukaryotes and are suspected to cause gastrointestinal disease in humans. CRISPR-Cas systems are adaptive immune systems in prokaryotes, wherein snippets of genomes from invaders are stored as spacers that are interspersed between a repeated CRISPR sequence. Here we report several spacer sequences in the faecal archaeon Candidatus Methanomassiliicoccus intestinalis matching smacoviruses, implicating the archaeon as a firm candidate for a host. This finding may be relevant to understanding the potential origin of smacovirus-associated human diseases. Our results support that CRESS-DNA viruses can infect non-eukaryotes, which would mean that smacoviruses are the viruses with the smallest genomes to infect prokaryotes known to date. A probable target strand bias suggests that, in addition to double-stranded DNA, the CRISPR-Cas system can target ssDNA.
Collapse
Affiliation(s)
- César Díez-Villaseñor
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, 03550, Spain.
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, 03550, Spain
| |
Collapse
|
44
|
Lima DA, Cibulski SP, Tochetto C, Varela APM, Finkler F, Teixeira TF, Loiko MR, Cerva C, Junqueira DM, Mayer FQ, Roehe PM. The intestinal virome of malabsorption syndrome-affected and unaffected broilers through shotgun metagenomics. Virus Res 2018; 261:9-20. [PMID: 30543873 DOI: 10.1016/j.virusres.2018.12.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/06/2018] [Accepted: 12/08/2018] [Indexed: 01/19/2023]
Abstract
Malabsorption syndrome (MAS) is an economically important disease of young, commercially reared broilers, characterized by growth retardation, defective feather development and diarrheic faeces. Several viruses have been tentatively associated to such syndrome. Here, in order to examine potential associations between enteric viruses and MAS, the faecal viromes of 70 stool samples collected from diseased (n = 35) and healthy (n = 35) chickens from seven flocks were characterized and compared. Following high-throughput sequencing, a total of 8,347,319 paired end reads, with an average of 231 nt, were generated. Through analysis of de novo assembled contigs, 144 contigs > 1000 nt were identified with hits to eukaryotic viral sequences, as determined by GenBank database. A number of known and unknown representatives of Adenoviridae, Anelloviridae, Astroviridae, Caliciviridae, Circoviridae, Parvoviridae, Picobirnaviridae, Picornaviridae and Reoviridae, as well as novel uncharacterized CRESS-DNA viruses, were identified. However, the distribution of sequence reads of viral genomes identified in diseased or healthy birds revealed no statistically significant differences. These findings indicate no association between the occurrence of MAS and enteric viruses. The viral genomes reported in the present study, including a variety of novel viruses, seem part of the normal intestinal microbiota of chickens.
Collapse
Affiliation(s)
- Diane A Lima
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Samuel P Cibulski
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Caroline Tochetto
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Ana Paula M Varela
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Fabrine Finkler
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Thais F Teixeira
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Márcia R Loiko
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Cristine Cerva
- Laboratório de Biologia Molecular, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Eldorado do Sul, RS, Brazil
| | - Dennis M Junqueira
- Centro Universitário Ritter dos Reis - UniRitter, Health Science Department, Porto Alegre, RS, Brazil
| | - Fabiana Q Mayer
- Laboratório de Biologia Molecular, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Eldorado do Sul, RS, Brazil
| | - Paulo M Roehe
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
45
|
Zhao L, Rosario K, Breitbart M, Duffy S. Eukaryotic Circular Rep-Encoding Single-Stranded DNA (CRESS DNA) Viruses: Ubiquitous Viruses With Small Genomes and a Diverse Host Range. Adv Virus Res 2018; 103:71-133. [PMID: 30635078 DOI: 10.1016/bs.aivir.2018.10.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
While single-stranded DNA (ssDNA) was once thought to be a relatively rare genomic architecture for viruses, modern metagenomics sequencing has revealed circular ssDNA viruses in most environments and in association with diverse hosts. In particular, circular ssDNA viruses encoding a homologous replication-associated protein (Rep) have been identified in the majority of eukaryotic supergroups, generating interest in the ecological effects and evolutionary history of circular Rep-encoding ssDNA viruses (CRESS DNA) viruses. This review surveys the explosion of sequence diversity and expansion of eukaryotic CRESS DNA taxonomic groups over the last decade, highlights similarities between the well-studied geminiviruses and circoviruses with newly identified groups known only through their genome sequences, discusses the ecology and evolution of eukaryotic CRESS DNA viruses, and speculates on future research horizons.
Collapse
Affiliation(s)
- Lele Zhao
- Department of Ecology, Evolution and Natural Resources, Rutgers, the State University of New Jersey, New Brunswick, NJ, United States
| | - Karyna Rosario
- College of Marine Science, University of South Florida, Saint Petersburg, FL, United States
| | - Mya Breitbart
- College of Marine Science, University of South Florida, Saint Petersburg, FL, United States
| | - Siobain Duffy
- Department of Ecology, Evolution and Natural Resources, Rutgers, the State University of New Jersey, New Brunswick, NJ, United States.
| |
Collapse
|
46
|
Wille M, Eden JS, Shi M, Klaassen M, Hurt AC, Holmes EC. Virus-virus interactions and host ecology are associated with RNA virome structure in wild birds. Mol Ecol 2018; 27:5263-5278. [PMID: 30375075 PMCID: PMC6312746 DOI: 10.1111/mec.14918] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/11/2018] [Accepted: 10/18/2018] [Indexed: 12/13/2022]
Abstract
Little is known about the factors that shape the ecology of RNA viruses in nature. Wild birds are an important case in point, as other than influenza A virus, avian samples are rarely tested for viruses, especially in the absence of overt disease. Using bulk RNA-sequencing ("meta-transcriptomics"), we revealed the viral diversity present in Australian wild birds through the lens of the ecological factors that may determine virome structure and abundance. A meta-transcriptomic analysis of four Anseriformes (waterfowl) and Charadriiformes (shorebird) species sampled in temperate and arid Australia revealed the presence of 27 RNA virus genomes, 18 of which represent newly described species. The viruses identified included a previously described gammacoronavirus and influenza A viruses. Additionally, we identified novel virus species from the families Astroviridae, Caliciviridae, Reoviridae, Rhabdoviridae, Picobirnaviridae and Picornaviridae. We noted differences in virome structure that reflected underlying differences in location and influenza A infection status. Red-necked Avocets (Recurvirostra novaehollandiae) from Australia's arid interior possessed the greatest viral diversity and abundance, markedly higher than individuals sampled in temperate Australia. In Ruddy Turnstones (Arenaria interpres) and dabbling ducks (Anas spp.), viral abundance and diversity were higher and more similar in hosts that were positive for influenza A infection compared to those that were negative for this virus, despite samples being collected on the same day and from the same location. This study highlights the extent and diversity of RNA viruses in wild birds and lays the foundation for understanding the factors that determine virome structure in wild populations.
Collapse
Affiliation(s)
- Michelle Wille
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - John-Sebastian Eden
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia.,The Westmead Institute for Medical Research, Centre for Virus Research, Sydney, New South Wales, Australia
| | - Mang Shi
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Marcel Klaassen
- Centre for Integrative Ecology, Deakin University, Geelong, Victoria, Australia
| | - Aeron C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
47
|
Ramírez-Martínez LA, Loza-Rubio E, Mosqueda J, González-Garay ML, García-Espinosa G. Fecal virome composition of migratory wild duck species. PLoS One 2018; 13:e0206970. [PMID: 30462678 PMCID: PMC6248937 DOI: 10.1371/journal.pone.0206970] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/23/2018] [Indexed: 12/17/2022] Open
Abstract
The fecal virome comprises a complex diversity of eukaryotic viruses, phages and viruses that infect the host. However, little is known about the intestinal community of viruses that is present in wild waterfowl, and the structure of this community in wild ducks has not yet been studied. The fecal virome compositions of six species of wild dabbling ducks and one species of wild diving duck were thus analyzed. Fecal samples were collected directly from the rectums of 60 ducks donated by hunters. DNA and RNA virus particles were purified and sequenced using the MiSeq Illumina platform. The reads obtained from the sequencing were analyzed and compared with sequences in the GenBank database. Viral-related sequences from the Herpesviridae, Alloherpesviridae, Adenoviridae, Retroviridae and Myoviridae viral families showed the highest overall abundances in the samples. The virome analysis identified viruses that had not been found in wild duck feces and revealed distinct virome profiles between different species and between samples of the same species. This study increases our understanding of viruses in wild ducks as possible viral reservoirs and provides a basis for further studying and monitoring the transmission of viruses from wild animals to humans and disease outbreaks in domestic animals.
Collapse
Affiliation(s)
- Luis Alfonso Ramírez-Martínez
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Elizabeth Loza-Rubio
- Departamento de Biotecnología en Salud Animal, Centro Nacional de Investigación Disciplinaria en Microbiología Animal, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, (CENID-Microbiología-INIFAP), Ciudad de México, México
| | - Juan Mosqueda
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, Querétaro, México
| | - Manuel Leonardo González-Garay
- Department of Medicine, Center for Biomedical Informatics & Biostatistics, The University of Arizona, Tucson, Arizona, United States of America
| | - Gary García-Espinosa
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
- * E-mail:
| |
Collapse
|
48
|
Kapgate SS, Kumanan K, Vijayarani K, Barbuddhe SB. Avian parvovirus: classification, phylogeny, pathogenesis and diagnosis. Avian Pathol 2018; 47:536-545. [PMID: 30246559 DOI: 10.1080/03079457.2018.1517938] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Poultry parvoviruses identified during the early 1980s are found worldwide in intestines from young birds with enteric disease syndromes as well as healthy birds. The chicken parvovirus (ChPV) and turkey parvovirus (TuPV) belong to the Aveparvovirus genus within the subfamily Parvovirinae. Poultry parvoviruses are small, non-enveloped, single-stranded DNA viruses consisting of three open reading frames, the first two encoding the non-structural protein (NS) and nuclear phosphoprotein (NP) and the third encoding the viral capsid proteins 1 (VP1 and VP2). In contrast to other parvoviruses, the VP1-unique region does not contain the phospholipase A2 sequence motif. Recent experimental studies suggested the parvoviruses to be the candidate pathogens in cases of enteric disease syndrome. Current diagnostic methods for poultry parvovirus detection include PCR, real-time PCR, enzyme linked immunosorbent assay using recombinant VP2 or VP1 capsid proteins. Moreover, sequence-independent amplification techniques combined with next-generation sequencing platforms have allowed rapid and simultaneous detection of the parvovirus from affected and healthy birds. There is no commercial vaccine; hence, the development of an effective vaccine to control the spread of infection should be of primary importance. This review presents the current knowledge on poultry parvoviruses with emphasis on taxonomy, phylogenetic relationship, genomic analysis, epidemiology, pathogenesis and diagnostic methods.
Collapse
Affiliation(s)
- Sunil S Kapgate
- a Department of Animal Biotechnology , Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University , Chennai , India
| | - K Kumanan
- a Department of Animal Biotechnology , Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University , Chennai , India
| | - K Vijayarani
- a Department of Animal Biotechnology , Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University , Chennai , India
| | - Sukhadeo B Barbuddhe
- b Meat Safety Laboratory , ICAR-National Research Centre on Meat , Chengicherla, Hyderabad , India
| |
Collapse
|
49
|
New polyomavirus species identified in nutria, Myocastor coypus polyomavirus 1. Arch Virol 2018; 163:3203-3206. [PMID: 30097743 DOI: 10.1007/s00705-018-3985-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/28/2018] [Indexed: 01/10/2023]
Abstract
A novel polyomavirus (PyVs) comprising 5,422 bp was identified by high-throughput sequencing (HTS) in pooled organs of nutria (Myocastor coypus). The new genome displays the archetypal organization of PyVs, which includes open reading frames for the regulatory proteins small T antigen (sTAg) and large T antigen (LTAg), as well as for the capsid proteins VP1, VP2 and VP3. Based on the International Committee on Taxonomy of Viruses (ICTV) Polyomaviridae Study Group criteria, this genome comprises a new PyVs species for the Alphapolyomavirus genus and is putatively named "Myocastor coypus Polyomavirus 1" . The complete genome sequence of this Myocastor coypus Polyomavirus 1 (McPyV1) isolate is publically available under the GenBank accession no. MH182627.
Collapse
|
50
|
Guo Z, He Q, Tang C, Zhang B, Yue H. Identification and genomic characterization of a novel CRESS DNA virus from a calf with severe hemorrhagic enteritis in China. Virus Res 2018; 255:141-146. [PMID: 30040978 PMCID: PMC7114660 DOI: 10.1016/j.virusres.2018.07.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/20/2018] [Accepted: 07/20/2018] [Indexed: 01/16/2023]
Abstract
In this study, a novel circular replication-associated protein (Rep)-encoding single stranded (CRESS) DNA virus was discovered in diarrheic sample of a calf with severe hemorrhagic enteritis. The virus, named Bo-Circo-like virus CH, has a circular genome with 3909 nucleotides (nt). Six putative open reading frames (ORFs) were identified, including Rep, capsid (Cap) and four proteins of unknown function. Both the genome size and the number as well as the organization of encoded ORFs, Bo-Circo-like virus CH is most closely related to Po-Circo-like virus 21 detected in pig faeces. A preliminary survey using specific primers for the Rep region showed that 5.3% (4/75) of diarrheic samples were positive for Bo-Circo-like virus, and all 42 healthy samples were negative. In conclusion, our results indicate that Bo-Circo-like virus CH may represent a new virus in bovine. Further investigation is needed to determine the relationship between the virus infection and diarrhea.
Collapse
Affiliation(s)
- Zijing Guo
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China
| | - Qifu He
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China
| | - Cheng Tang
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China
| | - Bin Zhang
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China
| | - Hua Yue
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China.
| |
Collapse
|