1
|
Park K, Shin M, Natasha A, Kim J, Noh J, Kim SG, Kim B, Park J, Seo YR, Cho HK, Byun KS, Kim JH, Lee YS, Shim JO, Kim WK, Song JW. Novel human coronavirus in an infant patient with pneumonia, Republic of Korea. Emerg Microbes Infect 2025; 14:2466705. [PMID: 39945663 PMCID: PMC11849027 DOI: 10.1080/22221751.2025.2466705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/06/2025] [Accepted: 02/09/2025] [Indexed: 02/22/2025]
Abstract
Coronaviruses (CoVs) pose a significant threat to public health, causing a wide spectrum of clinical manifestations and outcomes. Beyond precipitating global outbreaks, Human CoVs (HCoVs) are frequently found among patients with respiratory infections. To date, limited attention has been directed towards alphacoronaviruses due to their low prevalence and fatality rates. Nasal swab and serum samples were collected from a paediatric patient, and an epidemiological survey was conducted. Retrospective surveillance investigated the molecular prevalence of CoV in 880 rodents collected in the Republic of Korea (ROK) from 2018 to 2022. Next-generation sequencing (NGS) and phylogenetic analyses characterized the novel HCoV and closely related CoVs harboured by Apodemus spp. On 15 December 2022, a 103-day-old infant was admitted with fever, cough, sputum production, and rhinorrhea, diagnosed with human parainfluenza virus 1 (HPIV-1) and rhinovirus co-infection. Elevated AST/ALT levels indicated transient liver dysfunction on the fourth day of hospitalization. Metagenomic NGS (mNGS) identified a novel HCoV in nasal swab and serum samples. Retrospective rodent surveillance and phylogenetic analyses showed the novel HCoV was closely related to alphacoronaviruses carried by Apodemus spp. in the ROK and China. This case highlights the potential of mNGS to identify emerging pathogens and raises awareness of possible extra-respiratory manifestations, such as transient liver dysfunction, associated with novel HCoVs. While the liver injury in this case may be attributable to the novel HCoV, further research is necessary to elucidate its clinical significance, epidemiological prevalence, and zoonotic origins.
Collapse
Affiliation(s)
- Kyungmin Park
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- Institute for Viral Diseases, Korea University College of Medicine, Seoul, Republic of Korea
| | - Minsoo Shin
- Department of Paediatrics, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Augustine Natasha
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jongwoo Kim
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Juyoung Noh
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seong-Gyu Kim
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Bohyeon Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jieun Park
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Ye-rin Seo
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hee-Kyung Cho
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kwan Soo Byun
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Korea University Medical Center, Seoul, Republic of Korea
| | - Ji Hoon Kim
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Korea University Medical Center, Seoul, Republic of Korea
| | - Young-Sun Lee
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Korea University Medical Center, Seoul, Republic of Korea
| | - Jung Ok Shim
- Department of Paediatrics, Korea University College of Medicine, Seoul, Republic of Korea
| | - Won-Keun Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
- Institute of Medical Research, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jin-Won Song
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Grycová A, Vyhlídalová B, Dvořák Z. The role of aryl hydrocarbon receptor in antiviral immunity: a focus on RNA viruses. Crit Rev Microbiol 2025:1-15. [PMID: 40299755 DOI: 10.1080/1040841x.2025.2497789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/02/2025] [Accepted: 04/21/2025] [Indexed: 05/01/2025]
Abstract
Aryl hydrocarbon receptor (AhR) is a ligand-dependent transcriptional factor that is activated by a plethora of exogenous and endogenous compounds, including environmental pollutants, drugs, and microbial metabolites. The AhR plays an important role in modulating immunity. Current findings suggest that AhR activation serves as a mechanism for evasion of host antiviral immune response and promotes viral replication. This review will focus on AhR's role in RNA virus infection because they show high mutation rates compared with DNA viruses, and therefo pose one of the greatest threats to humans in terms of potential pandemic risk. Indeed, they include human immunodeficiency virus (HIV), influenza A virus (IAV), coronaviruses (CoVs), Zika virus, and others. Understanding the mechanisms by which AhR influences the immune response to these viruses is critical for developing effective therapeutic strategies. By focusing on the interplay between AhR signaling and RNA virus infections, this review aims to contribute to the growing body of knowledge regarding host-pathogen interactions and the implications for antiviral immunity.
Collapse
Affiliation(s)
- Aneta Grycová
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Barbora Vyhlídalová
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Olomouc, Czech Republic
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
3
|
Nguyen THV, Ferron F, Murakami K. Neurotoxic Implications of Human Coronaviruses in Neurodegenerative Diseases: A Perspective from Amyloid Aggregation. ACS Chem Biol 2025. [PMID: 40272376 DOI: 10.1021/acschembio.5c00153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Human coronaviruses (HCoVs) include seven species: HCoV-229E, HCoV-NL63, HCoV-OC43, HCoV-HKU1, MERS-CoV, SARS-CoV-1, and SARS-CoV-2. The last three, classified as Betacoronaviruses, are highly transmissible and have caused severe pandemics. HCoV infections primarily affect the respiratory system, leading to symptoms such as dry cough, fever, and breath shortness, which can progress to acute respiratory failure and death. Beyond respiratory effects, increasing evidence links HCoVs to neurological dysfunction. However, distinguishing direct neural complications from preexisting disorders, particularly in the elderly, remains challenging. This study examines the association between HCoVs and neurodegenerative diseases like Alzheimer disease, Parkinson disease, Lewy body dementia, amyotrophic lateral sclerosis, and Creutzfeldt-Jakob disease. It also presents the long-term neurological effects of HCoV infections and their differential impact across age groups and sexes. A key aspect of this study is the investigation of the sequence and structural similarities between amyloidogenic and HCoV spike proteins, which can provide insights into potential neuropathomechanisms.
Collapse
Affiliation(s)
- Thi Hong Van Nguyen
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Francois Ferron
- Aix Marseille Univ, CNRS-Architecture et Fonction des Macromolécules Biologiques (AFMB) UMR7257, Marseille 13288, France
- European Virus Bioinformatics Center, Jena 07743, Germany
| | - Kazuma Murakami
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
4
|
VanAcker MC, Ergunay K, Webala PW, Kamau M, Mutura J, Lebunge R, Ochola GO, Bourke BP, McDermott EG, Achee NL, Jiang L, Grieco JP, Keter E, Musanga A, Murray S, Stabach JA, Craft ME, Fèvre EM, Linton YM, Hassell J. A Novel Nobecovirus in an Epomophorus wahlbergi Bat from Nairobi, Kenya. Viruses 2025; 17:557. [PMID: 40285000 PMCID: PMC12031378 DOI: 10.3390/v17040557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/25/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
Most human emerging infectious diseases are zoonotic, originating in animal hosts prior to spillover to humans. Prioritizing the surveillance of wildlife that overlaps with humans and human activities can increase the likelihood of detecting viruses with a high potential for human infection. Here, we obtained fecal swabs from two fruit bat species-Eidolon helvum (n = 6) and Epomophorus wahlbergi (n = 43) (family Pteropodidae)-in peridomestic habitats in Nairobi, Kenya, and used metagenome sequencing to detect microorganisms. A near-complete genome of a novel virus assigned taxonomically to the Coronaviridae family Betacoronavirus genus and Nobecovirus subclade was characterized from E. wahlbergi. Phylogenetic analysis indicates this unique Nobecovirus clade shares a common ancestor with Eidolon/Rousettus Nobecovirus subclades isolated from Madagascar, Kenya, and Cameroon. Recombination was detected across open reading frames, except the spike protein, in all BOOTSCAN analyses, indicating intra-host coinfection and genetic exchange between genome regions. Although Nobecoviruses are currently bat-specific and are not known to be zoonotic, the propensity of coronaviruses to undergo frequent recombination events and the location of the virus alongside high human and livestock densities in one of East Africa's most rapidly developing cities justifies continued surveillance of animal viruses in high-risk urban landscapes.
Collapse
Affiliation(s)
- Meredith C. VanAcker
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
- Global Health Program, Smithsonian Institution, National Zoo and Conservation Biology Institute, Washington, DC 20008, USA
| | - Koray Ergunay
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution, Museum Support Center, Suitland, MD 20746, USA; (K.E.)
- One Health Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD 20910, USA
- Department of Entomology, Smithsonian Institution, National Museum of Natural History (NMNH), Washington, DC 20560, USA
- Virology Unit, Department of Medical Microbiology, Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| | - Paul W. Webala
- Department of Forestry and Wildlife Management, Maasai Mara University, Narok 20500, Kenya;
| | - Maureen Kamau
- Mpala Research Centre (MRC), Nanyuki 10400, Kenya; (M.K.); (J.M.); (R.L.)
| | - Janerose Mutura
- Mpala Research Centre (MRC), Nanyuki 10400, Kenya; (M.K.); (J.M.); (R.L.)
| | - Rashid Lebunge
- Mpala Research Centre (MRC), Nanyuki 10400, Kenya; (M.K.); (J.M.); (R.L.)
| | | | - Brian P. Bourke
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution, Museum Support Center, Suitland, MD 20746, USA; (K.E.)
- One Health Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD 20910, USA
- Department of Entomology, Smithsonian Institution, National Museum of Natural History (NMNH), Washington, DC 20560, USA
| | - Emily G. McDermott
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Nicole L. Achee
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA; (N.L.A.)
| | - Le Jiang
- Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center (NMRC), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - John P. Grieco
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA; (N.L.A.)
| | - Erick Keter
- Department of Wildlife Management, University of Eldoret, Eldoret 30100, Kenya;
| | - Audrey Musanga
- College of Agriculture and Veterinary Sciences, University of Nairobi, Nairobi 00100, Kenya
| | - Suzan Murray
- Global Health Program, Smithsonian Institution, National Zoo and Conservation Biology Institute, Washington, DC 20008, USA
| | - Jared A. Stabach
- Conservation Ecology Center, Smithsonian National Zoo and Conservation Biology Institute, Front Royal, VA 22630, USA;
| | - Meggan E. Craft
- Department of Ecology, Evolution and Behavior, College of Biological Sciences, University of Minnesota, St. Paul, MN 55108, USA;
| | - Eric M. Fèvre
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3BX, UK;
- International Livestock Research Institute (ILRI), Nairobi 00100, Kenya
| | - Yvonne-Marie Linton
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution, Museum Support Center, Suitland, MD 20746, USA; (K.E.)
- One Health Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD 20910, USA
- Department of Entomology, Smithsonian Institution, National Museum of Natural History (NMNH), Washington, DC 20560, USA
| | - James Hassell
- Global Health Program, Smithsonian Institution, National Zoo and Conservation Biology Institute, Washington, DC 20008, USA
- International Livestock Research Institute (ILRI), Nairobi 00100, Kenya
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06520, USA
| |
Collapse
|
5
|
Shah AU, Peddireddi L, Wood B, Hemida MG. Some novel field isolates belonging to lineage-1 of the genotype GI-avian infectious bronchitis virus (AIBV) show strong evidence of recombination with field/vaccinal strains. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2025; 129:105723. [PMID: 39892727 DOI: 10.1016/j.meegid.2025.105723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/28/2025] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
Avian infectious bronchitis virus (AIBV) infection remains one of the significant challenges for the poultry industry due to the high rates of morbidity, mortality, and poor production performance. The AIBV genome is prone to frequent changes due to the possibility of drift and recombination between various genotypes. Despite the massive administration of several types of vaccines, many outbreaks of AIBV continue to be reported worldwide. One of the major goals of this study was to monitor genetic changes in the viral genomes of some recent field isolates of the AIBV from broiler chickens. To achieve these goals, we tested several pools of tissue specimens (trachea and kidneys) from some suspected AIBV outbreaks in broiler chickens by quantitative real-time PCR (q-RT-PCR). We selected two samples, one from the trachea (IBV-4) and one from the kidney (AIBV-6), for the next-generation sequencing (NGS). The full-length genomes of these two isolates were deposited in the GenBank (Accession Numbers: PQ468962 and PQ468963). The viral genome size of AIBV-4 and AIBV-6 was 27,475 and 27,469 nucleotides in length. AIBV-4 have typical AIBV genome organization (5'UTR, ORF1a, ORF1b, S, 3a, 3b, E, M, 4b, 5a, 5b, N, and 3'UTR), while AIBV-6 lack 5b. These two AIBV isolates belong to sublineage-1 of the genotype GI-1 based on the phylogenetic using the full-length, the S, and the N protein sequences. The S1/S2 cleavage sites show polybasic amino acid sequences (RR-F-RR) as direct evidence of virulence of these isolates. The analysis shows multiple recombination events of these isolates with some natural and vaccine strains. The potential major parent for both AIBV-4 and AIBV-6 was AIBV Beaudette. Active and vigilant monitoring of the AIBV sequences of the currently circulating strains in chickens is highly encouraged to help develop novel vaccines and diagnostic assays that match the field circulating strains.
Collapse
Affiliation(s)
- Abid Ullah Shah
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY 11548NY, USA
| | - Lalitha Peddireddi
- North Carolina Veterinary Diagnostic Laboratory Services, 4400 Reedy Creek Rd, Raleigh, NC 27607, United States of America
| | - Beverly Wood
- North Carolina Veterinary Diagnostic Laboratory Services, 4400 Reedy Creek Rd, Raleigh, NC 27607, United States of America
| | - Maged Gomaa Hemida
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY 11548NY, USA.
| |
Collapse
|
6
|
Jara R, Santos D, Reyes NS, Hermida E, Seoane A, Ypas M, Andres G, Echavarría M. Endemic coronavirus in children and adults with acute respiratory infection before the COVID-19 pandemic. Rev Argent Microbiol 2025; 57:161-170. [PMID: 39848815 DOI: 10.1016/j.ram.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 10/18/2024] [Accepted: 11/13/2024] [Indexed: 01/25/2025] Open
Abstract
Acute respiratory infection (ARI) is one of the principal causes of morbidity worldwide, with respiratory viruses being common etiological agents. Among them, endemic human coronaviruses (hCoVs) including CoV-229E, CoV-OC43, CoV-NL63, and CoV-HKU1 can cause mild ARI but are usually not evaluated in the clinical setting. The aim of this work was to determine the prevalence of all respiratory pathogens, with the focus placed on endemic hCoVs in the pre-pandemic period. Circulating species, clinical associations and coinfections with other respiratory pathogens were evaluated in 510 immunocompetent patients (children and adults) with ARI using the FilmArray® Respiratory Panel (BioFire/bioMérieux). A total of 399 children (252 outpatients and 147 hospitalized) and 111 adult outpatients were enrolled in the pre-pandemic period (2008-2010 and 2016). Endemic hCoVs were the third and fifth more frequently detected viruses among adults and outpatient children, respectively, with an overall frequency close to 10%. The most prevalent species were CoV-OC43 (42.8%) and CoV-HKU1 (40.5%), followed by CoV-NL63 (19.0%) and CoV-229E (4.8%). Tachypnea, wheezing and chest indrawing were more frequent in hospitalized children compared to outpatients. All adult patients presented with symptoms of a common cold. Endemic hCoVs were detected year-round, primarily between June and November. Our results highlight their clinical relevance, and the need to include endemic hCoVs in routine screening. In the post-pandemic period, further long-term surveillance is needed for understanding the epidemiology of endemic hCoVs and their evolution, as a tool to anticipate the possible emergence of new species.
Collapse
Affiliation(s)
- Raquel Jara
- Virology Unit, Centro de Educación Médica e Investigaciones Clínicas (CEMIC) University Hospital, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Dafne Santos
- Virology Unit, Centro de Educación Médica e Investigaciones Clínicas (CEMIC) University Hospital, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Noelia Soledad Reyes
- Virology Unit, Centro de Educación Médica e Investigaciones Clínicas (CEMIC) University Hospital, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Eliana Hermida
- Virology Unit, Centro de Educación Médica e Investigaciones Clínicas (CEMIC) University Hospital, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | - Martin Ypas
- Emergency Service, CEMIC University Hospital, Argentina
| | - Gisela Andres
- Emergency Service, CEMIC University Hospital, Argentina
| | - Marcela Echavarría
- Virology Unit, Centro de Educación Médica e Investigaciones Clínicas (CEMIC) University Hospital, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Virology Laboratory, CEMIC University Hospital, Argentina.
| |
Collapse
|
7
|
Lean FZ, Gallo G, Newman J, Ackroyd S, Spiro S, Cox R, Nymo IH, Bröjer C, Neimanis A, Suárez-Bonnet A, Priestnall SL, Everest H, Keep S, Bailey D, Delahay RJ, Seekings AH, McElhinney LM, Brookes SM, Núñez A. Distribution of aminopeptidase N coronavirus receptors in the respiratory and digestive tracts of domestic and wild artiodactyls and carnivores. J Gen Virol 2025; 106:002092. [PMID: 40184164 PMCID: PMC11971486 DOI: 10.1099/jgv.0.002092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 03/14/2025] [Indexed: 04/05/2025] Open
Abstract
Aminopeptidase N (APN) is a transmembrane protein that mediates the attachment of the spike protein of several clinically important coronaviruses (CoVs) responsible for respiratory and intestinal diseases in animals and humans. To assess the potential for APN-mediated viral tropism, we characterized APN receptor distribution in the respiratory and intestinal tissues of various artiodactyls (cervids, bovids, camelids and suids) and carnivores (canids, felids, mustelids and phocids) using immunohistochemistry. In the lungs, APN expression was limited to artiodactyls, with strong expression in the bronchiolar epithelium and weaker expression in pneumocytes. Nasal turbinate and tracheal samples, where available, showed stronger APN expression in artiodactyls over carnivores. APN was consistently detected on the microvilli of enterocytes in the small intestine across multiple taxa, while the presence in the colon was more variable. Of the animals examined, pig and alpaca consistently expressed the most abundant APN in the upper and lower respiratory tract. In silico evaluation of APN orthologue sequences from humans, artiodactyls and carnivores identified distinct evolutionary relationships. Further in silico binding predictions for alpaca alphacoronavirus and human coronavirus 229E with cognate and heterologous alpaca and human APN revealed substantial overlapping binding footprints with high conservation of amino acid residues, suggesting an evolutionary divergence and subsequent adaptation of a 229E-like or ancestral virus within a non-human animal host. This combined anatomical and in silico approach enhances understanding of host susceptibility, tissue tropism and viral transmission mechanisms in APN-dependent CoVs and has the potential to inform future strategies for disease modelling, surveillance and control.
Collapse
Affiliation(s)
- Fabian Z.X. Lean
- Pathology and Animal Sciences Department, Animal and Plant Health Agency, Addlestone, UK
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, North Mymms, UK
| | | | | | - Stuart Ackroyd
- Pathology and Animal Sciences Department, Animal and Plant Health Agency, Addlestone, UK
| | | | - Ruth Cox
- National Wildlife Management Centre, Animal and Plant Health Agency, Sand Hutton, York, UK
| | | | - Caroline Bröjer
- Department of Pathology and Wildlife Diseases, Swedish Veterinary Agency, Uppsala, Sweden
| | - Aleksija Neimanis
- Department of Pathology and Wildlife Diseases, Swedish Veterinary Agency, Uppsala, Sweden
| | - Alejandro Suárez-Bonnet
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, North Mymms, UK
| | - Simon L. Priestnall
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, North Mymms, UK
| | | | | | | | - Richard J. Delahay
- National Wildlife Management Centre, Animal and Plant Health Agency, Sand Hutton, York, UK
| | | | | | | | - Alejandro Núñez
- Pathology and Animal Sciences Department, Animal and Plant Health Agency, Addlestone, UK
| |
Collapse
|
8
|
Ferreira PF, Almeida Machado LF, Cardoso JF, Franco Filho LC, Lima ARJ, Dos Santos MAM, Pereira JS, Nunes MRT. Reassessing the dengue virus type 4 in Brazil: Genomic sequencing and dispersion dynamics, 2011-2017. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2025; 129:105731. [PMID: 40020891 DOI: 10.1016/j.meegid.2025.105731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/21/2025] [Accepted: 02/23/2025] [Indexed: 03/03/2025]
Abstract
Orthoflavivirus denguei (Dengue virus) type 4; (DENV-4) has emerged as a significant public health concern in Brazil, particularly following its reintroduction in the early 21st century. This study provides a comprehensive analysis of DENV-4's genetic characterization and its spatiotemporal dynamics reassessment within Brazil, with a focus on the period between 2010 and 2017. We performed direct genomic sequencing on 24 human samples obtained from various Brazilian states using a multiplex sequencing approach on the Ion Torrent platform. Phylogenetic analysis revealed that the new isolates belong exclusively to the genotype 4II, lineage 4II_B.1.1, with no detection of genotype 4I, which was previously identified in Brazil. This absence of genotype 4I in our findings suggests a potential decline, not adaptation to mosquito host, sub endemic circulation or displacement of this genotype in the country. The phylogeographic analysis indicates multiple introduction events of genotype 4II into Brazil, with significant dispersion across different regions, including the North, Northeast, Midwest, and Southeast. The temporal analysis confirmed a robust evolutionary signal, supporting the observed phylogenetic clustering. Eighteen of the 24 genomes in this study had unique nonsynonymous mutations across the entire coding sequences and seven genomes showed mutations that altered the biochemical property of the amino acids at E, NS1, NS2B, NS3,and NS5 genes compared with genotype 4I. Our findings underscore the ongoing spread of DENV-4 within Brazil, and in the Americas driven by complex networks of viral dispersion, and highlight the dynamic nature of DENV-4 genotype distribution. This study emphasizes the importance of advanced direct genomic sequencing tools in understanding the DENV-4 dynamics and spreading, providing critical insights for public health strategies on genomic surveillance to control further dengue outbreaks.
Collapse
Affiliation(s)
- Priscila Fonseca Ferreira
- Programa de Pós Graduação em Biologia de Agentes Infecciosos e Parasitários, Instituto de Ciências Biológicas, Universidade Federal do Pará, CEP 66030-000 Belém, Pará, Brazil
| | - Luiz Fernando Almeida Machado
- Programa de Pós Graduação em Biologia de Agentes Infecciosos e Parasitários, Instituto de Ciências Biológicas, Universidade Federal do Pará, CEP 66030-000 Belém, Pará, Brazil; Laboratório de Virologia, Instituto de Ciências Biológicas, Instituto de Ciências Biológicas, Universidade Federal do Pará, CEP 66030-000, Belém, Pará, Brazil
| | - Jedson F Cardoso
- Instituto Evandro Chagas, Ministério da Saúde, Br 316, Km 07, CEP 67000-000, Ananindeua, Pará, Brazil
| | - Luciano C Franco Filho
- Instituto Evandro Chagas, Ministério da Saúde, Br 316, Km 07, CEP 67000-000, Ananindeua, Pará, Brazil
| | - Alex Ranieri Jerônimo Lima
- Centro para Vigilância Viral e Avaliação Sorológica (CeVIVAS), Instituto Butantan, Av. Vital Brazil, 1500, São Paulo, SP, 05503-900, Brazil; Programa Interunidades de Pós-graduação em Bioinformática, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP, 05508-900, Brazil
| | - Marcelo Adriano Mendes Dos Santos
- Faculdade de Ciências da Saúde, Curso de Medicina, Universidade do Estado de Mato Grosso, CEP 78200-000, Cáceres, Mato Grosso, Brasil
| | - James Siqueira Pereira
- Centro para Vigilância Viral e Avaliação Sorológica (CeVIVAS), Instituto Butantan, Av. Vital Brazil, 1500, São Paulo, SP, 05503-900, Brazil; Programa Interunidades de Pós-graduação em Bioinformática, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP, 05508-900, Brazil
| | - Márcio R T Nunes
- Laboratório de Tecnologia Biomolecular, Centro de Ciências Biológicas, Universidade Federal do Pará, CEP 66075-110, Belém, Pará, Brazil.
| |
Collapse
|
9
|
Shi Y, Shi K, Ma Y, Yin Y, Long F, Feng S, Mo M, He J, Wei Z. Development of a triplex crystal digital PCR for the detection of PRCoV, PRRSV, and SIV. Front Vet Sci 2025; 12:1562444. [PMID: 40230793 PMCID: PMC11995635 DOI: 10.3389/fvets.2025.1562444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/13/2025] [Indexed: 04/16/2025] Open
Abstract
Porcine respiratory coronavirus (PRCoV), porcine reproductive and respiratory syndrome virus (PRRSV), and swine influenza virus (SIV) are important pathogens of significant infectious diseases. They cause similar clinical respiratory symptoms, including fever, cough, runny nose, and respiratory distress, which makes these diseases difficult to distinguish from each other. In this study, three pairs of specific primers and TaqMan probes were designed for the conserved regions of the PRCoV S gene, PRRSV N gene, and SIV M gene, respectively. The annealing temperature, primer and probe concentrations, and reaction cycle were optimized, and a triplex crystal digital PCR (cdPCR) assay was established for the detection of PRCoV, PRRSV, and SIV. According to the test results, the assay was capable of specifically detecting PRCoV, PRRSV, and SIV, and there was no cross-reaction with other control swine viruses. Based on the Poisson distribution analysis, the limits of detection (LODs) for PRCoV, PRRSV, and SIV were 6.00, 5.75 and 6.00 copies/reaction, respectively, and the sensitivity was 26 times higher than those of the corresponding multiplex RT-qPCR. The coefficients of variation (CVs) of the intra-assay and inter-assay ranged from 0.19 to 1.84%. The assay was used to test 1,657 clinical samples, and the positivity rates of PRCoV, PRRSV, and SIV were 1.15, 12.79, and 2.05%, respectively. It showed diagnostic sensitivity and specificity of 100 and 99.82% for PRCoV, 100 and 99.24% for PRRSV, and 100 and 99.69% for SIV, respectively. These results indicated that the triplex cdPCR assay has strong specificity, high sensitivity, and excellent repeatability, which provides a valuable tool for the detection and differentiation of PRCoV, PRRSV, and SIV.
Collapse
Affiliation(s)
- Yuwen Shi
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, China
- Nanning Kedi Biotechnology Co., Ltd., Nanning, China
| | - Kaichuang Shi
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Center for Animal Disease Control and Prevention, Nanning, China
| | - Yan Ma
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yanwen Yin
- Guangxi Center for Animal Disease Control and Prevention, Nanning, China
| | - Feng Long
- Guangxi Center for Animal Disease Control and Prevention, Nanning, China
| | - Shuping Feng
- Guangxi Center for Animal Disease Control and Prevention, Nanning, China
| | - Meilan Mo
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jiakang He
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Zuzhang Wei
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
10
|
Shittu I, Oguzie JU, Hernández-Vidal G, Moreno-Degollado G, Silva DB, Marushchak LV, Trujillo-Vargas CM, Lednicky JA, Gray GC. Novel Rodent Coronavirus-like Virus Detected Among Beef Cattle with Respiratory Disease in Mexico. Viruses 2025; 17:433. [PMID: 40143360 PMCID: PMC11946012 DOI: 10.3390/v17030433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
In February 2024, while conducting surveillance for novel respiratory viruses, we studied four beef cattle farms near Monterrey, Mexico. Nasal swabs were collected from sick and healthy beef cattle along with 3 h aerosol samples. None of the samples had molecular evidence of influenza A viruses. Three (8%) of thirty-six nasal swabs collected from the four farms and four (33.3%) of the twelve bioaerosol specimens had molecular evidence of influenza D virus. Five sick cow nasal swabs and one bioaerosol sample on a single farm had molecular evidence of rodent coronavirus-like (RCoV), an alphacoronavirus. Three (60%) of the five RCoV-positive cattle nasal swabs also had molecular evidence of influenza D. Attempts to isolate the RCoV in Vero-E6, LLC-MK2, MDBK, and L-2 cells were unsuccessful. However, we were able to assemble ~60% of the RCoV genome using next-generation sequencing. The six RCoV-positive samples clustered with RCoV strains identified in China in 2021. During the last 12 months, we have studied an estimated 478 dairy and beef cattle nasal swabs on 11 farms in the US and Mexico, and these RCoV detections are the first we have encountered. While feed contamination cannot be ruled out, given the propensity of CoVs to jump species and that we detected RCoV only in the noses of sick cows on this one farm, we are concerned that these findings could represent an isolated RCoV spillover event. With this report, we are alerting veterinarians and cattle farm owners of our observations that RCoV may be a new cause of bovine respiratory disease.
Collapse
Affiliation(s)
- Ismaila Shittu
- Division of Infectious Diseases, Department of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA; (I.S.); (J.U.O.); (D.B.S.); (L.V.M.); (C.M.T.-V.)
| | - Judith U. Oguzie
- Division of Infectious Diseases, Department of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA; (I.S.); (J.U.O.); (D.B.S.); (L.V.M.); (C.M.T.-V.)
| | - Gustavo Hernández-Vidal
- Faculty of Veterinary Medicine, Universidad Autónoma de Nuevo León, Escobedo 66054, Nuevo León, Mexico; (G.H.-V.); (G.M.-D.)
| | - Gustavo Moreno-Degollado
- Faculty of Veterinary Medicine, Universidad Autónoma de Nuevo León, Escobedo 66054, Nuevo León, Mexico; (G.H.-V.); (G.M.-D.)
| | - Diego B. Silva
- Division of Infectious Diseases, Department of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA; (I.S.); (J.U.O.); (D.B.S.); (L.V.M.); (C.M.T.-V.)
| | - Lyudmyla V. Marushchak
- Division of Infectious Diseases, Department of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA; (I.S.); (J.U.O.); (D.B.S.); (L.V.M.); (C.M.T.-V.)
| | - Claudia M. Trujillo-Vargas
- Division of Infectious Diseases, Department of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA; (I.S.); (J.U.O.); (D.B.S.); (L.V.M.); (C.M.T.-V.)
| | - John A. Lednicky
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32610, USA;
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
| | - Gregory C. Gray
- Division of Infectious Diseases, Department of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA; (I.S.); (J.U.O.); (D.B.S.); (L.V.M.); (C.M.T.-V.)
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Global Health, School of Public and Population Health, University of Texas Medical Branch, Galveston, TX 77550, USA
| |
Collapse
|
11
|
Kariithi HM, Volkening JD, Afonso CL, Helmy M, Chaudhari PP, Decanini EL. Coding-complete genome sequence of a GI-13 infectious bronchitis virus from commercial chicken in India. Microbiol Resour Announc 2025; 14:e0114224. [PMID: 39868773 PMCID: PMC11895471 DOI: 10.1128/mra.01142-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/12/2024] [Indexed: 01/28/2025] Open
Abstract
Infectious bronchitis virus (IBV) causes a highly contagious, acute upper respiratory disease in chickens characterized by nasal discharge, coughing, and rales. Here, the complete genome sequence of a recombinant GI-13 IBV strain ck/IN/A2332039-001/24 was sequenced from a choanal sample of a commercial broiler chicken in India using nontargeted next-generation sequencing.
Collapse
Affiliation(s)
- Henry M. Kariithi
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Nairobi, Kenya
| | | | | | - Mohamed Helmy
- Boehringer Ingelheim Animal Health IMETA, Dubai, UAE
| | | | | |
Collapse
|
12
|
Borrego-Ruiz A, Borrego JJ. Involvement of virus infections and antiviral agents in schizophrenia. Psychol Med 2025; 55:e73. [PMID: 40059820 PMCID: PMC12055031 DOI: 10.1017/s0033291725000467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 02/06/2025] [Accepted: 02/12/2025] [Indexed: 05/08/2025]
Abstract
BACKGROUND Schizophrenia is a chronic and complex mental disorder resulting from interactions between cumulative and synergistic genetic and environmental factors. Viral infection during the prenatal stage constitutes one of the most relevant risk factors for the development of schizophrenia later in adulthood. METHODS A narrative review was conducted to explore the link between viral infections and schizophrenia, as well as the neuropsychiatric effects of antiviral drugs, particularly in the context of this specific mental condition. Literature searches were performed using the PubMed, Scopus, and Web of Science databases. RESULTS Several viral infections, such as herpesviruses, influenza virus, Borna disease virus, and coronaviruses, can directly or indirectly disrupt normal fetal brain development by modifying gene expression in the maternal immune system, thereby contributing to the pathophysiological symptoms of schizophrenia. In addition, neuropsychiatric effects caused by antiviral drugs are frequent and represent significant adverse outcomes for viral treatment. CONCLUSIONS Epidemiological evidence suggests a potential relationship between viruses and schizophrenia. Increases in inflammatory cytokine levels and changes in the expression of key genes observed in several viral infections may constitute potential links between these viral infections and schizophrenia. Furthermore, antivirals may affect the central nervous system, although for most drugs, their mechanisms of action are still unclear, and a strong relationship between antivirals and schizophrenia has not yet been established.
Collapse
Affiliation(s)
- Alejandro Borrego-Ruiz
- Departamento de Psicología Social y de las Organizaciones, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Juan J. Borrego
- Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA, Plataforma BIONAND, Málaga, Spain
| |
Collapse
|
13
|
Zhang N, Hu B, Zhang L, Gan M, Ding Q, Pan K, Wei J, Xu W, Chen D, Zheng S, Cai K, Zheng Z. Virome landscape of wild rodents and shrews in Central China. MICROBIOME 2025; 13:63. [PMID: 40033356 PMCID: PMC11874709 DOI: 10.1186/s40168-025-02059-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/07/2025] [Indexed: 03/05/2025]
Abstract
BACKGROUND Wild rodents and shrews serve as vital sentinel species for monitoring zoonotic viruses due to their close interaction with human environments and role as natural reservoirs for diverse viral pathogens. Although several studies have explored viral diversity and assessed pathogenic risks in wild rodents and shrews, the full extent of this diversity remains insufficiently understood. RESULTS We conducted high-throughput sequencing on 1113 small mammals collected from 97 townships across seven cities in Hubei Province during 2021, supplemented by publicly available data from 2014 and 2016-2017. This analysis revealed a diverse array of novel viruses spanning several viral families, including Arenaviridae, Hepeviridae, Chuviridae, Paramyxoviridae, Arteriviridae, Nodaviridae, Rhabdoviridae, Dicistroviridae, Astroviridae, and Picornaviridae. Phylogenetic analysis and genome structure characterization highlighted the discovery of these novel viruses, enhancing our understanding of viral diversity and evolution. Key host species such as Chodsigoa smithii, Anourosorex squamipes, Niviventer niviventer, and Apodemus agrarius were identified as significant contributors to viral circulation, making them crucial targets for future surveillance. Additionally, the central Plain of Hubei Province was recognized as a critical geographic hub for viral transmission, underscoring its importance in monitoring and controlling viral spread. Machine learning models were employed to assess the zoonotic potential of the identified viruses, revealing that families such as Arenaviridae, Coronaviridae, Hantaviridae, Arteriviridae, Astroviridae, Hepeviridae, Lispiviridae, Nairoviridae, Nodaviridae, Paramyxoviridae, Rhabdoviridae, Picornaviridae, and Picobirnaviridae possess a high likelihood of infecting humans. Notably, rodent-derived Rotavirus A, HTNV, and SEOV displayed almost complete amino acid identity with their human-derived counterparts, indicating a significant risk for human outbreaks. CONCLUSION This study provides a comprehensive virome landscape for wild rodents and shrews in Central China, highlighting novel viruses and the critical roles of specific host species and regions in viral transmission. By identifying key species and hotspots for viral spread and assessing the zoonotic potential of the discovered viruses, this research enhances our understanding of virus ecology and the factors driving zoonotic disease emergence. The findings emphasize the need for targeted surveillance and proactive strategies to mitigate the risks of zoonotic spillovers, contributing to global public health preparedness. Video Abstract.
Collapse
Affiliation(s)
- Nailou Zhang
- State Key Laboratory of Virology and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Bing Hu
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei, 430079, China
| | - Li Zhang
- Xianning Municipal Center for Disease Control and Prevention, Xianning, Hubei, 437000, China
| | - Min Gan
- State Key Laboratory of Virology and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Qingwen Ding
- State Key Laboratory of Virology and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Kai Pan
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei, 430079, China
| | - Jinbo Wei
- State Key Laboratory of Virology and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Wen Xu
- State Key Laboratory of Virology and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Dan Chen
- State Key Laboratory of Virology and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Shaolong Zheng
- State Key Laboratory of Virology and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Kun Cai
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei, 430079, China.
| | - Zhenhua Zheng
- State Key Laboratory of Virology and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
14
|
Wong KT, Hooi YT, Tan SH, Ong KC. Emerging and re-emerging viral infections of the central nervous system in Australasia and beyond. Pathology 2025; 57:230-240. [PMID: 39799084 DOI: 10.1016/j.pathol.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 01/15/2025]
Abstract
Viral infections of the central nervous system (CNS) have been emerging and re-emerging worldwide, and the Australasia region has not been spared. Enterovirus A71 and enterovirus D68, both human enteroviruses, are likely to replace the soon-to-be eradicated poliovirus to cause global outbreaks associated with neurological disease. Although prevalent elsewhere, the newly emergent orthoflavivirus, Japanese encephalitis virus (genotype IV), caused human infections in Australia in 2021, and almost certainly will continue to do so because of spillovers from the natural animal host-vector life cycle endemic in the country. Another orthoflavivirus, Murray Valley encephalitis virus, has re-emerged in Australia. The Hendra henipavirus together with Nipah henipavirus are listed as high-risk pathogens by the World Health Organization because both can cause lethal encephalitis. The former remains a health threat in Australasia because bats may still be able to spread the infection to unvaccinated Australian horses and other animals acting as intermediate hosts, and thence to humans. The global COVID-19 pandemic, caused by the emerging severe acute respiratory syndrome coronavirus-2, a virus transmitted from animals to humans that was first described and first arose in China, is associated with acute and long-lasting CNS pathology. Fortunately, the pathology and pathogenesis of these important neurotropic viruses are now better understood, leading to better management protocols and prevention strategies. Pathologists are in a unique position to contribute to the diagnosis and advancement in our knowledge of infectious diseases. This review summarises some of the current knowledge about a few important emerging and re-emerging CNS infections in Australasia and beyond.
Collapse
Affiliation(s)
- Kum Thong Wong
- Department of Pathology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia.
| | - Yuan Teng Hooi
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Soon Hao Tan
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kien Chai Ong
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
15
|
Korzeniowska A, Bryl E. Infectious agents in the pathogenesis of autoimmune rheumatic diseases. Transl Res 2025; 276:39-45. [PMID: 39742962 DOI: 10.1016/j.trsl.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025]
Abstract
Autoimmune rheumatic diseases (AIRDs) are diseases with complex outset and courses, in which both genetic and environmental factors participate. Many environmental factors can be committed to AIRDs outset and development. The most popular of them, with confirmed impact, are smoking, age, gender, and microorganisms. In light of recent research an assumption about the importance of various microorganisms in the pathogenesis of AIRDs is growing in popularity. The human immune system has various protective mechanisms against infectious antigens which in normal cases let organism manage potential infection faster and more effectively. Unfortunately in some situations, specific errors in those mechanisms can cause an autoreactive response despite mitigation of infection. Viruses including EBV, CMV, and even SARS-CoV2 can cause these errors. This in combination with genetic factors can lead to rheumatic disease development. This research aims to provide a brief review of the role of viruses in the outset and development of AIRDs.
Collapse
Affiliation(s)
| | - Ewa Bryl
- Department of Physiopathology, Faculty of Medicine, Medical University of Gdansk, Poland.
| |
Collapse
|
16
|
Hooi YT, Fu TL, Tan SH, Ong KC, Tan CY, Wong KT. Neuroinvasion via Peripheral Nerves in Epidemic Viral Encephalitis Caused by Enterovirus, Orthoflavivirus and SARS-Coronavirus. Neuropathol Appl Neurobiol 2025; 51:e70005. [PMID: 39989030 DOI: 10.1111/nan.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/14/2025] [Accepted: 02/12/2025] [Indexed: 02/25/2025]
Abstract
Pathogens invade the central nervous system (CNS) and cause infections either through the haematogenous route or via peripheral nerves. Neuroinvasion via peripheral nerves, involving spinal or cranial somatic nerves, is well-established for certain viral encephalitides such as rabies, herpes simplex encephalitis, and poliomyelitis. Advances in understanding emerging and re-emerging viruses that cause epidemic CNS infections have highlighted the growing importance of peripheral nerve pathways in viral neuroinvasion. This review focuses on epidemic viral encephalitides caused by three groups of RNA viruses, viz., enteroviruses (enterovirus A71 and enterovirus D68), orthoflaviviruses (West Nile virus and Japanese encephalitis virus), and severe acute respiratory syndrome coronaviruses (mainly severe acute respiratory coronavirus-2). We examine evidence supporting the hypothesis that peripheral nerve viral transmission may play an increasingly significant if not more critical role than the haematogenous route in neuroinvasion.
Collapse
Affiliation(s)
- Yuan Teng Hooi
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Tzeh Long Fu
- Department of Pathology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Soon Hao Tan
- Department of Biomedical Sciences, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kien Chai Ong
- Department of Biomedical Sciences, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chee Yang Tan
- MBBS Class of 2017/2022, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kum Thong Wong
- Department of Pathology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| |
Collapse
|
17
|
Shah AU, Esparza B, Illanes O, Hemida MG. Comparative Genome Sequencing Analysis of Some Novel Feline Infectious Peritonitis Viruses Isolated from Some Feral Cats in Long Island. Viruses 2025; 17:209. [PMID: 40006964 PMCID: PMC11861946 DOI: 10.3390/v17020209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/18/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Feline infectious peritonitis virus (FIPV) remains as one of the leading causes of morbidity and mortality in young cats from shelters and catteries worldwide. Since little is known about the molecular characteristics of currently circulating FIPV strains in Long Island, New York, samples from two shelter cats submitted to the Pathology Diagnostic Services of the Long Island University College of Veterinary Medicine, with gross and microscopic lesions consistent with those of FIP were processed for virus isolation, molecular characterization and full-length genome decoding. The younger shelter cat, a 1-year-old male (A15) was found dead without previous signs of illness. Postmortem examination revealed gross and microscopic lesions characterized by vasculitis, necrosis, hemorrhage, and pyogranulomatous inflammation confined to the colon and associated lymph nodes. The second cat, a 7-year-old spayed female (A37) had an identical clinical history and similar but widespread lesions, including fibrinous peritoneal effusion, cecal, colonic, renal, and hepatic involvement. The gross and microscopic diagnosis of FIP in these cats was confirmed by immunohistochemistry (IHC) demonstration of feline coronavirus antigen using mouse anti-FIPV3-70 monoclonal antibody. Virus isolation from saved frozen kidney and colon tissue was performed through several subsequent blind passages in MDCK and Vero cell lines. Confirmation of the FIPV isolation was done through qRT-PCR, IFA, western blot using N protein antibodies, and NGS of the full-length genome sequencing. The full-length genome sequences of the virus isolate from the two cats were decoded using next-generation sequencing (NGS) and deposited in the GenBank as accession numbers PQ192636 and PQ202302. The genome size of these isolates was (29355 and 29321) nucleotides (nt) in length, respectively. While their genome organization was consistent with other FIPV genomes as follows (5'UTR-ORF1ab-S-3abc-M-E-7b-3'UTR-3'), marked differential mutations were observed in the ORF1a/b, S, 3Abc, and 7b protein genes of the two FIPV isolates. One notable deletion of 34 nucleotides was observed in the 7b genes of one of these isolates but was absent in the other. We confirmed the potential recombination events during the evolution of those two FIPV field isolates with the potential parent virus as FECoV-US isolated in 1970 and the potential minor parent as the Canine coronavirus. Our results provide a comprehensive molecular analysis of two novel FIPV isolates causing fatal disease in shelter cats from Long Island. Diagnostic surveillance with molecular characterization and sequencing analysis of circulating FIPV strains within animal shelters may help early detect unique emerging clinical and pathological manifestations of the disease and develop more targeted prophylactic and therapeutic approaches to control it.
Collapse
Affiliation(s)
| | | | | | - Maged Gomaa Hemida
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY 11548, USA; (A.U.S.); (B.E.); (O.I.)
| |
Collapse
|
18
|
Figueiroa T, Galvão Bueno M, Bento Moura PE, de Oliveira MB, Passos Cordeiro JL, Santos-Cavalcante N, Camacho Antevere Mazzarotto GA, Wallau GL, Corrêa da Silva Junior L, Resende PC, Siqueira MMM, Ogrzewalska M. Alpha and Betacoronavirus Detection in Neotropical Bats from Northeast Brazil Suggests Wide Geographical Distribution and Persistence in Natural Populations. Animals (Basel) 2025; 15:332. [PMID: 39943102 PMCID: PMC11816360 DOI: 10.3390/ani15030332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/19/2024] [Accepted: 07/16/2024] [Indexed: 02/16/2025] Open
Abstract
The emergence of zoonotic viral diseases, notably exemplified by the recent coronavirus disease pandemic in 2019 (COVID-19), underscores the critical need to understand the dynamics of viruses circulating in wildlife populations. This study aimed to investigate the diversity of coronaviruses in bat populations from northeastern Brazil, particularly in the state of Ceará, where little research on bat pathogens has been conducted previously. Bat sampling was performed between March 2021 and March 2022 across three municipalities, resulting in the collection of oral and rectal swabs from 298 captured individuals. Molecular analyses revealed alphacoronaviruses in multiple bat species. Additionally, a novel Betacoronavirus was identified in Artibeus planirostris, which did not fall within an established subgenus. Phylogenetic placement of these new coronavirus sequences suggests that closely related coronavirus lineages can infect a wide range of bat species sampled in distantly related Brazilian states and biomes. No SARS-CoV-2 and influenza A viruses were found in the sampled bats. These findings expand our understanding of coronavirus diversity in Brazilian bats. The detection of coronaviruses in various bat species underscores the importance of bats as reservoirs for these viruses. The absence of SARS-CoV-2 in the sampled bats indicates a lack of spillback events from human or environmental sources. However, the potential for future transmission events underscores the importance of ongoing surveillance and transmission mitigation protocols in wildlife management practices.
Collapse
Affiliation(s)
- Thays Figueiroa
- Fundação Oswaldo Cruz, IOC, Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Rio de Janeiro 21040-900, RJ, Brazil; (T.F.); (L.C.d.S.J.); (P.C.R.); (M.M.M.S.)
| | - Marina Galvão Bueno
- Fundação Oswaldo Cruz, IOC, Laboratório de Virologia Comparada e Ambiental, Rio de Janeiro 21040-900, RJ, Brazil;
| | - Patricia Emilia Bento Moura
- Fundação Oswaldo Cruz, IOC, Laboratório de Virologia Comparada e Ambiental, Rio de Janeiro 21040-900, RJ, Brazil;
| | - Marcione Brito de Oliveira
- Museu Nacional, Departamento de Vertebrados, Setor de Mastozoologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 20940-040, RJ, Brazil;
| | - José Luís Passos Cordeiro
- Fundação Oswaldo Cruz, Unidade do Ceará, Área de Saúde e Ambiente, Eusébio, Ceará 61773-270, CE, Brazil;
- Plataforma Internacional para Ciência, Tecnologia e Inovação em Saúde (PICTIS), Via do Conhecimento, Edifício Central, 3830-352 Ílhavo, Portugal
| | - Nádia Santos-Cavalcante
- Museu de História Natural do Ceará Prof. Dias da Rocha, Universidade Estadual do Ceará, Pacoti, Ceará 62770-000, CE, Brazil;
- Fundação Oswaldo Cruz, Instituto Lêonidas and Maria Deane (ILDM), Unidade da Amazônia, Manaus 69057-070, AM, Brazil
| | - Giovanny A. Camacho Antevere Mazzarotto
- Fundação Oswaldo Cruz, Unidade do Ceará, Laboratório Analítico de Competências Moleculares e Epidemiológicas, Plataforma de Camelídeos e Produção de Nanocorpos, Eusébio, Ceará 61773-270, CE, Brazil;
| | - Gabriel Luz Wallau
- Fundação Oswaldo Cruz, Departamento de Entomologia e Núcleo de Bioinformática, Instituto Aggeu Magalhães (IAM), Cidade Universitária, Recife 50740-465, PE, Brazil;
- Department of Arbovirology and Entomology, Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Center for Arbovirus and Hemorrhagic Fever Reference and Research, National Reference Center for Tropical Infectious Diseases, 20359 Hamburg, Germany
| | - Leonardo Corrêa da Silva Junior
- Fundação Oswaldo Cruz, IOC, Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Rio de Janeiro 21040-900, RJ, Brazil; (T.F.); (L.C.d.S.J.); (P.C.R.); (M.M.M.S.)
| | - Paola Cristina Resende
- Fundação Oswaldo Cruz, IOC, Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Rio de Janeiro 21040-900, RJ, Brazil; (T.F.); (L.C.d.S.J.); (P.C.R.); (M.M.M.S.)
| | - Marilda M. Mendonça Siqueira
- Fundação Oswaldo Cruz, IOC, Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Rio de Janeiro 21040-900, RJ, Brazil; (T.F.); (L.C.d.S.J.); (P.C.R.); (M.M.M.S.)
| | - Maria Ogrzewalska
- Fundação Oswaldo Cruz, IOC, Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Rio de Janeiro 21040-900, RJ, Brazil; (T.F.); (L.C.d.S.J.); (P.C.R.); (M.M.M.S.)
| |
Collapse
|
19
|
de Souza UJB, Spilki FR, Tanuri A, Roehe PM, Campos FS. Two Years of SARS-CoV-2 Omicron Genomic Evolution in Brazil (2022-2024): Subvariant Tracking and Assessment of Regional Sequencing Efforts. Viruses 2025; 17:64. [PMID: 39861853 PMCID: PMC11768930 DOI: 10.3390/v17010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/31/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
SARS-CoV-2, the virus responsible for COVID-19, has undergone significant genetic evolution since its emergence in 2019. This study examines the genomic diversity of SARS-CoV-2 in Brazil after the worst phase of the pandemic, the wider adoption of routine vaccination, and the abolishment of other non-pharmacological preventive measures from July 2022 to July 2024 using 55,951 sequences retrieved from the GISAID database. The analysis focuses on the correlation between confirmed COVID-19 cases, sequencing efforts across Brazilian states, and the distribution and evolution of viral lineages. Our findings reveal significant regional disparities in genomic surveillance, with São Paulo and Rio de Janeiro recovering the largest number of genomes, while Tocantins and Amazonas showed higher sequencing rates relative to their reported case numbers, indicating proactive surveillance efforts. We identified 626 distinct SARS-CoV-2 lineages circulating in Brazil, with dominant subvariants shifting over time from BA.5 in 2022 to XBB and JN.1 in 2023-2024. The emergence of new subvariants in this new epidemiological scenario underscores the importance of ongoing genomic surveillance to track viral evolution and inform public health strategies, providing valuable information to update vaccines and implement other measures, such as lockdowns, mask usage, social distancing, health education, and self-testing.
Collapse
Affiliation(s)
- Ueric José Borges de Souza
- Bioinformatics and Biotechnology Laboratory, Campus of Gurupi, Federal University of Tocantins, Gurupi 77410-570, Brazil
| | | | - Amilcar Tanuri
- Laboratory of Genetics and Immunology of Viral Infections, Department of Virology, Paulo de Góes Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Paulo Michel Roehe
- Virology Laboratory, Department of Microbiology, Immunology, and Parasitology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90050-170, Brazil;
| | - Fabrício Souza Campos
- Bioinformatics and Biotechnology Laboratory, Campus of Gurupi, Federal University of Tocantins, Gurupi 77410-570, Brazil
- Virology Laboratory, Department of Microbiology, Immunology, and Parasitology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90050-170, Brazil;
| |
Collapse
|
20
|
Sterling CE, Wilson NR, Harris DY, Smith EC. A yeast-assembled, plasmid-launched reverse genetics system for the murine coronavirus MHV-A59. J Gen Virol 2025; 106. [PMID: 39785688 DOI: 10.1099/jgv.0.002065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
The Betacoronavirus murine hepatitis virus (MHV) is an important model system for studying coronavirus (CoV) molecular and cell biology. Despite this, few reagents for MHV are available through repositories such as ATCC or Addgene, potentially limiting the widespread adoption of MHV as a tractable model system. To overcome some challenges inherent in the existing MHV reverse genetics systems, we developed a plasmid-launched transformation-associated recombination (TAR) cloning-based system to assemble the MHV (strain A59; MHV-A59) genome. Following assembly in yeast, virus replication was launched by transfecting the fully assembled genome into HEK-293T cells. MHV-A59 recovered using this TAR cloning-based approach (WTTAR MHV-A59) replicated with kinetics identical to the virus recovered using a ligation- and T7-based approach (WTLIG MHV-A59). Additionally, WTTAR MHV-A59 can be detected at least 10 h post-transfection without requiring additional nucleocapsid (N) provided in trans. Lastly, we demonstrated the tractability of this TAR cloning-based system by recovering MHV-A59 expressing an 11 amino acid-containing HiBiT tag fused to the C-terminus of spike (S). While this virus, SC MHV-A59, replicated with reduced kinetics compared to WTTAR MHV-A59, the kinetics of virion production could be measured over time directly from the supernatant. This report represents the first plasmid-launched, TAR cloning-based system for MHV-A59. Furthermore, it describes a new reporter virus that could be used to study early steps during MHV-A59 entry and be used in the screening of antiviral compounds. To support future research with MHV-A59, we have made the necessary plasmids for this system available through ATCC.
Collapse
Affiliation(s)
- Cade E Sterling
- Biochemistry Program, The University of the South, Sewanee, TN, USA
- Present address: Center for Vaccine Research, Program in Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Natalie R Wilson
- Department of Biology, The University of the South, Sewanee, TN, USA
| | | | - Everett Clinton Smith
- Biochemistry Program, The University of the South, Sewanee, TN, USA
- Department of Biology, The University of the South, Sewanee, TN, USA
| |
Collapse
|
21
|
Kostanić V, Kunić V, Prišlin Šimac M, Lolić M, Sukalić T, Brnić D. Comparative Insights into Acute Gastroenteritis in Cattle Caused by Bovine Rotavirus A and Bovine Coronavirus. Vet Sci 2024; 11:671. [PMID: 39729011 DOI: 10.3390/vetsci11120671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/07/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
Acute gastroenteritis (AGE) in cattle significantly impacts the economy due to relatively high morbidity and mortality and decreased production. Its multifactorial nature drives its global persistence, involving enteric viruses, bacteria, protozoa, and environmental factors. Bovine Rotavirus A (BoRVA) and bovine coronavirus (BCoV) are among the most important enteric RNA viruses causing AGE in cattle. These viruses infect intestinal enterocytes, leading to cell damage and consequently to malabsorption and diarrhea. BoRVA primarily affects calves under 14 days old with gastrointestinal clinical signs, while BCoV affects all ages, causing gastrointestinal and respiratory distress. The economic impact of BoRVA and BCoV, along with their interspecies transmission potential, warrants attention. This concise review discusses the molecular structure, epidemiology, pathogenesis, clinical signs, diagnosis, treatment, and preventive measures of BoRVA and BCoV while providing a comparative analysis. By offering practical guidance on managing such viral infections in cattle, these comparative insights may prove valuable for veterinarians in clinical practice.
Collapse
Affiliation(s)
- Vjekoslava Kostanić
- Department of Virology, Croatian Veterinary Institute, 10000 Zagreb, Croatia
| | - Valentina Kunić
- Department of Virology, Croatian Veterinary Institute, 10000 Zagreb, Croatia
| | | | - Marica Lolić
- Laboratory for Diagnostics, Croatian Veterinary Institute, 32100 Vinkovci, Croatia
| | - Tomislav Sukalić
- Laboratory for Diagnostics, Croatian Veterinary Institute, 48260 Križevci, Croatia
| | - Dragan Brnić
- Department of Virology, Croatian Veterinary Institute, 10000 Zagreb, Croatia
| |
Collapse
|
22
|
Patiño-Galindo J, García-Sastre A, Kuhn JH, Rabadan R, Palacios G. Recombination across distant coronavirid species and genera is a rare event with distinct genomic features. J Virol 2024; 98:e0110024. [PMID: 39560427 DOI: 10.1128/jvi.01100-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/13/2024] [Indexed: 11/20/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; family Coronaviridae, genus Betacoronavirus, subgenus Sarbecovirus) has caused millions of deaths, prompting a need for better understanding of coronavirid emergence and spillover to humans. As an evaluation of how some features of SARS-CoV-2, unique among sarbecoviruses, may have been acquired from related viruses, we conducted phylogenetic and recombination analyses to compare the frequency of recombination among coronavirids across vs within genera, subgenera, and species. Among known betacoronaviruses, we identified 199 (183 intraspecies, 16 interspecies, but no intersubgenera) recombination events. Phylogenetic analyses revealed that the ancestry of interspecies events was limited and less prone to affect 5' regions of coronavirid genome open reading frame 1 (ORF1) than intraspecies events. On the contrary, interspecies events were significantly more prone to impact the 3' end (ORF6-ORF8 and the nucleocapsid protein [N] ORF), suggesting the existence of region-specific constraints on recombination. This work substantiated that recombination among betacoronaviruses is limited by the genome similarity between their parental viruses. We conclude that SARS-CoV-2 likely acquired unique features through recombination with closely related circulating sarbecoviruses (most likely from the same species) that co-existed geographically. IMPORTANCE Understanding the evolutionary events that led to SARS-CoV-2 emergence, spillover, and spread is crucial to prevent, or at least be prepared for, the same type of occurrence in the future. Given that SARS-CoV-2 has some characteristics not found in other closely related viruses, we aimed to systematically assess how likely these unique features may have been acquired through recombination. We found that, although recombination is a frequent phenomenon among betacoronaviruses, it is mostly limited to closely related members of the same species. Therefore, we conclude that the most likely scenario involved feature acquisition from recombination with a closely related virus that was circulating in a geographically overlapping area or through a different biological process, but not recombination from a virus of a different species, genus, or subgenus.
Collapse
Affiliation(s)
- Juan Patiño-Galindo
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Raul Rabadan
- Department of Systems Biology, Program for Mathematical Genomics, Columbia University, New York, New York, USA
| | - Gustavo Palacios
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
23
|
Simmonds P. C→U transition biases in SARS-CoV-2: still rampant 4 years from the start of the COVID-19 pandemic. mBio 2024; 15:e0249324. [PMID: 39475243 PMCID: PMC11633203 DOI: 10.1128/mbio.02493-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/24/2024] [Indexed: 12/12/2024] Open
Abstract
The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the pandemic and post-pandemic periods has been characterized by rapid adaptive changes that confer immune escape and enhanced human-to-human transmissibility. Sequence change is additionally marked by an excess number of C→U transitions suggested as being due to host-mediated genome editing. To investigate how these influence the evolutionary trajectory of SARS-CoV-2, 2,000 high-quality, coding complete genome sequences of SARS-CoV-2 variants collected pre-September 2020 and from each subsequently appearing alpha, delta, BA.1, BA.2, BA.5, XBB, EG, HK, and JN.1 lineages were downloaded from NCBI Virus in April 2024. C→U transitions were the most common substitution during the diversification of SARS-CoV-2 lineages over the 4-year observation period. A net loss of C bases and accumulation of U's occurred at a constant rate of approximately 0.2%-0.25%/decade. C→U transitions occurred in over a quarter of all sites with a C (26.5%; range 20.0%-37.2%) around five times more than observed for the other transitions (5.3%-6.8%). In contrast to an approximately random distribution of other transitions across the genome, most C→U substitutions occurred at statistically preferred sites in each lineage. However, only the most C→U polymorphic sites showed evidence for a preferred 5'U context previously associated with APOBEC 3A editing. There was a similarly weak preference for unpaired bases suggesting much less stringent targeting of RNA than mediated by A3 deaminases in DNA editing. Future functional studies are required to determine editing preferences, impacts on replication fitness in vivo of SARS-CoV-2 and other RNA viruses, and impact on host tropism. IMPORTANCE Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the pandemic and post-pandemic periods has shown a remarkable capacity to adapt and evade human immune responses and increase its human-to-human transmissibility. The genome of SARS-CoV-2 is also increasingly scarred by the effects of multiple C→U mutations from host genome editing as a cellular defense mechanism akin to restriction factors for retroviruses. Through the analysis of large data sets of SARS-CoV-2 isolate sequences collected throughout the pandemic period and beyond, we show that C→U transitions have driven a base compositional change over time amounting to a net loss of C bases and accumulation of U's at a rate of approximately 0.2%-0.25%/decade. Most C→U substitutions occurred in the absence of the preferred upstream-base context or targeting of unpaired RNA bases previously associated with the host RNA editing protein, APOBEC 3A. The analyses provide a series of testable hypotheses that can be experimentally investigated in the future.
Collapse
Affiliation(s)
- Peter Simmonds
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
24
|
Xu L, Song M, Tian X, Sun J, Wang Y, Bie M, Bi Y, Holmes EC, Guan Y, Chen J, Li J, Shi W. Five-year longitudinal surveillance reveals the continual circulation of both alpha- and beta-coronaviruses in Plateau and Gansu pikas ( Ochotona spp.) at Qinghai Lake, China 1. Emerg Microbes Infect 2024; 13:2392693. [PMID: 39137298 PMCID: PMC11346322 DOI: 10.1080/22221751.2024.2392693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/03/2024] [Accepted: 08/11/2024] [Indexed: 08/15/2024]
Abstract
The discovery of alphacoronaviruses and betacoronaviruses in plateau pikas (Ochotona curzoniae) expanded the host range of mammalian coronavirus (CoV) to a new order - Lagomorpha. However, the diversity and evolutionary relationships of CoVs in these plateau-region-specific animal population remains uncertain. We conducted a five-year longitudinal surveillance of CoVs harboured by pikas around Qinghai Lake, China. CoVs were identified in 33 of 236 plateau pikas and 2 of 6 Gansu pikas (Ochotona cansus), with a total positivity rate of 14.5%, and exhibiting a wide spatiotemporal distribution across seven sampling sites and six time points. Through meta-transcriptomic sequencing and RT-PCR, we recovered 16 near-complete viral genome sequences. Phylogenetic analyses classified the viruses as variants of either pika alphacoronaviruses or betacoronaviruses endemic to plateau pikas from the Qinghai-Tibet Plateau region. Of particular note, the pika-associated betacoronaviruses may represent a novel subgenus within the genus Betacoronavirus. Tissue tropism, evaluated using quantitative real-time PCR, revealed the presence of CoV in the rectal and/or lung tissues, with the highest viral loads at 103.55 or 102.80 RNA copies/μL. Surface plasmon resonance (SPR) assays indicated that the newly identified betacoronavirus did not bind to human or pika Angiotensin-converting enzyme 2 (ACE2) or Dipeptidyl peptidase 4 (DPP4). The findings highlight the ongoing circulation and broadening host spectrum of CoVs among pikas, emphasizing the necessity for further investigation to evaluate their potential public health risks.
Collapse
Affiliation(s)
- Lin Xu
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, People’s Republic of China
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, People’s Republic of China
| | - Meiqing Song
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, People’s Republic of China
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, People’s Republic of China
| | - Xianzhi Tian
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, People’s Republic of China
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, People’s Republic of China
| | - Ju Sun
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences (CAS), Beijing, People’s Republic of China
| | - Yanjun Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences (CAS), Beijing, People’s Republic of China
| | - Mengyu Bie
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, People’s Republic of China
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, People’s Republic of China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences (CAS), Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Edward C. Holmes
- School of Medical Sciences, The University of Sydney, Sydney, Australia
| | - Yi Guan
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Shanghai Institute of Virology, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Jianjun Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Juan Li
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, People’s Republic of China
| | - Weifeng Shi
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Shanghai Institute of Virology, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
25
|
Shi K, Shi Y, Shi Y, Long F, Yin Y, Pan Y, Li Z, Feng S. Establishment of a Quadruplex RT-qPCR for the Detection of Canine Coronavirus, Canine Respiratory Coronavirus, Canine Adenovirus Type 2, and Canine Norovirus. Pathogens 2024; 13:1054. [PMID: 39770314 PMCID: PMC11728440 DOI: 10.3390/pathogens13121054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 01/16/2025] Open
Abstract
Canine coronavirus (CCoV), canine respiratory coronavirus (CRCoV), canine adenovirus type 2 (CAV-2), and canine norovirus (CNV) are important pathogens for canine viral gastrointestinal and respiratory diseases. Especially, co-infections with these viruses exacerbate the damages of diseases. In this study, four pairs of primers and probes were designed to specifically amplify the conserved regions of the CCoV M gene, CRCoV N gene, CAV-2 hexon gene, and CNV RdRp gene. After optimizing different reaction conditions, a quadruplex RT-qPCR was established for the detection of CCoV, CRCoV, CAV-2, and CNV. The specificity, sensitivity, and repeatability of the established assay were evaluated. Then, the assay was used to test 1688 clinical samples from pet hospitals in Guangxi province of China during 2022-2024 to validate its clinical applicability. In addition, these samples were also assessed using the reported reference RT-qPCR assays, and the agreements between the developed and reference assays were determined. The results indicated that the quadruplex RT-qPCR could specifically test only CCoV, CRCoV, CAV-2, and CNV, without cross-reaction with other canine viruses. The assay had high sensitivity with limits of detection (LODs) of 1.0 × 102 copies/reaction for CCoV, CRCoV, CAV-2, and CNV. The repeatability was excellent, with intra-assay variability of 0.19-1.31% and inter-assay variability of 0.10-0.88%. The positivity rates of CCoV, CRCoV, CAV-2, and CNV using the developed assay were 8.59% (145/1688), 8.65% (146/1688), 2.84% (48/1688), and 1.30% (22/1688), respectively, while the positivity rates using the reference assays were 8.47% (143/1688), 8.53% (144/1688), 2.78% (47/1688), and 1.24% (21/1688), respectively, with agreements of more than 99.53% between two methods. In conclusion, a quadruplex RT-qPCR with high sensitivity, specificity, and repeatability was developed for rapid, and accurate detection of CCoV, CRCoV, CAV-2, and CNV.
Collapse
Affiliation(s)
- Kaichuang Shi
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise 533000, China;
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (Y.S.); (Y.S.); (Z.L.)
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (F.L.); (Y.Y.)
| | - Yandi Shi
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (Y.S.); (Y.S.); (Z.L.)
| | - Yuwen Shi
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (Y.S.); (Y.S.); (Z.L.)
| | - Feng Long
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (F.L.); (Y.Y.)
| | - Yanwen Yin
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (F.L.); (Y.Y.)
| | - Yi Pan
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise 533000, China;
| | - Zongqiang Li
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (Y.S.); (Y.S.); (Z.L.)
| | - Shuping Feng
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (F.L.); (Y.Y.)
| |
Collapse
|
26
|
Peng Q, Fu P, Zhou Y, Lang Y, Zhao S, Wen Y, Wang Y, Wu R, Zhao Q, Du S, Cao S, Huang X, Yan Q. Phylogenetic Analysis of Porcine Epidemic Diarrhea Virus (PEDV) during 2020-2022 and Isolation of a Variant Recombinant PEDV Strain. Int J Mol Sci 2024; 25:10878. [PMID: 39456662 PMCID: PMC11507624 DOI: 10.3390/ijms252010878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Porcine epidemic diarrhea (PED) is an acute, highly contagious, and infectious disease caused by porcine epidemic diarrhea virus (PEDV). PEDV can affect pigs of all ages, with 50~100% mortality in neonatal piglets and substantial economic losses in the swine industry. In the present study, 347 fecal and intestinal samples were collected from seven regions in China during 2020-2022. A comprehensive molecular investigation of the spike (S) gene of PEDV strains was carried out, which included phylogenetic analysis of the obtained PEDV sequences. Epidemiological surveillance data indicate that the GIIc subgroup strains are widely distributed among pigs. A PEDV strain was successfully isolated from positive small intestine samples and identified through RT-PCR detection using specific N gene primers of PEDV, indirect immunofluorescence assay (IFA), TEM analysis, genome sequencing, and full-length S gene analysis, named PEDV/SC/2022. RDP and SimPlot analysis showed that the isolate originated from the recombination of PEDV/AH2012 and PEDV/AJ1102. In conclusion, our findings contribute to the current understanding of PEDV epidemiology and provide valuable information for the control of PED outbreaks in China.
Collapse
Affiliation(s)
- Qianling Peng
- Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Ping Fu
- Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yutong Zhou
- Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yifei Lang
- Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shan Zhao
- Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yiping Wen
- Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yiping Wang
- Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Rui Wu
- Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Qin Zhao
- Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Senyan Du
- Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Sanjie Cao
- Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaobo Huang
- Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Qigui Yan
- Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
27
|
Gu G, Fung TS, Hung WT, Osterrieder N, Go YY. Development and characterization of reverse genetics systems of feline infectious peritonitis virus for antiviral research. Vet Res 2024; 55:124. [PMID: 39334482 PMCID: PMC11438400 DOI: 10.1186/s13567-024-01373-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/18/2024] [Indexed: 09/30/2024] Open
Abstract
Feline infectious peritonitis (FIP) is a lethal, immune-mediated disease in cats caused by feline infectious peritonitis virus (FIPV), a biotype of feline coronavirus (FCoV). In contrast to feline enteric coronavirus (FECV), which exclusively infects enterocytes and causes diarrhea, FIPV specifically targets macrophages, resulting in the development of FIP. The transmission and infection mechanisms of this complex, invariably fatal disease remain unclear, with no effective vaccines or approved drugs for its prevention or control. In this study, a full-length infectious cDNA clone of the wild-type FIPV WSU79-1149 strain was constructed to generate recombinant FIPV (rFIPV-WT), which exhibited similar growth kinetics and produced infectious virus titres comparable to those of the parental wild-type virus. In addition, the superfold green fluorescent protein (msfGFP) and Renilla luciferase (Rluc) reporter genes were incorporated into the rFIPV-WT cDNA construct to generate reporter rFIPV-msfGFP and rFIPV-Rluc viruses. While the growth characteristics of the rFIPV-msfGFP virus were similar to those of its parental rFIPV-WT, the rFIPV-Rluc virus replicated more slowly, resulting in the formation of smaller plaques than did the rFIPV-WT and rFIPV-msfGFP viruses. In addition, by replacing the S, E, M, and ORF3abc genes with msfGFP and Rluc genes, the replicon systems repFIPV-msfGFP and repFIPV-Rluc were generated on the basis of the cDNA construct of rFIPV-WT. Last, the use of reporter recombinant viruses and replicons in antiviral screening assays demonstrated their high sensitivity for quantifying the antiviral effectiveness of the tested compounds. This integrated system promises to significantly streamline the investigation of virus replication within host cells, enabling efficient screening for anti-FIPV compounds and evaluating emerging drug-resistant mutations within the FIPV genome.
Collapse
Affiliation(s)
- Guoqian Gu
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, SAR, China
| | - To Sing Fung
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, SAR, China
| | - Wong Tsz Hung
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, SAR, China
| | | | - Yun Young Go
- College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
28
|
Shi K, Shi Y, Shi Y, Pan Y, Feng S, Feng Z, Yin Y, Tang Y, Li Z, Long F. Genetic and Evolutionary Analysis of Canine Coronavirus in Guangxi Province, China, for 2021-2024. Vet Sci 2024; 11:456. [PMID: 39453048 PMCID: PMC11512276 DOI: 10.3390/vetsci11100456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Canine coronavirus (CCoV) is an important gastrointestinal pathogen that causes serious harm to pet dogs worldwide. Here, 1791 clinical samples were collected from pet dogs in different pet hospitals in Guangxi Province, southern China, for the 2021-2024 period and detected for CCoV by a multiplex RT-qPCR. The results showed that 8.43% (151/1791) of samples were positive for CCoV. Sixty-five positive samples were selected to amplify, sequence, and analyze S, M, and N genes. A sequence comparison revealed that the nucleotide and amino acid similarities of the S, M, and N genes were 94.86% and 94.62%, 96.85% and 97.80%, and 96.85% and 97.80%, respectively. Phylogenetic analysis indicated that 65 CCoV strains obtained in this study belonged to the CCoV-II genotype, of which 56 CCoV strains belonged to the CCoV-IIa subtype and 9 CCoV strains belonged to the CCoV-IIb subtype. A potential recombination event analysis of S gene sequences indicated that two CCoV strains, i.e., GXBSHM0328-34 and GXYLAC0318-35, have recombination signals. A Bayesian analysis indicated that the evolutionary rates of the S, M, and N genes were 1.791 × 10-3, 6.529 × 10-4, and 4.775 × 10-4 substitutions/site/year, respectively. The population size grew slowly before 1980 and then began to shrink slowly; it then shrank rapidly in 2005 and expanded sharply in 2020, leveling off thereafter. These results indicated the CCoV strains prevalent in Guangxi Province, southern China, showed a high level of genetic diversity and maintained continuous variation among clinical epidemic strains.
Collapse
Affiliation(s)
- Kaichuang Shi
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise 533000, China;
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (Y.S.); (Y.S.); (Z.F.); (Y.T.); (Z.L.)
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (S.F.); (Y.Y.)
| | - Yandi Shi
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (Y.S.); (Y.S.); (Z.F.); (Y.T.); (Z.L.)
| | - Yuwen Shi
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (Y.S.); (Y.S.); (Z.F.); (Y.T.); (Z.L.)
| | - Yi Pan
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise 533000, China;
| | - Shuping Feng
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (S.F.); (Y.Y.)
| | - Zhuo Feng
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (Y.S.); (Y.S.); (Z.F.); (Y.T.); (Z.L.)
| | - Yanwen Yin
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (S.F.); (Y.Y.)
| | - Yang Tang
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (Y.S.); (Y.S.); (Z.F.); (Y.T.); (Z.L.)
| | - Zongqiang Li
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (Y.S.); (Y.S.); (Z.F.); (Y.T.); (Z.L.)
| | - Feng Long
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (S.F.); (Y.Y.)
| |
Collapse
|
29
|
Shi K, He M, Shi Y, Long F, Shi Y, Yin Y, Pan Y, Li Z, Feng S. Genetic and Phylogenetic Analysis of Feline Coronavirus in Guangxi Province of China from 2021 to 2024. Vet Sci 2024; 11:455. [PMID: 39453047 PMCID: PMC11512343 DOI: 10.3390/vetsci11100455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024] Open
Abstract
Feline coronavirus (FCoV), as one of the important pathogens of feline viral gastroenteritis, has been attracting great attention. A total of 1869 rectal and nasal swabs, feces, and ascites samples were collected from eight regions in Guangxi province during 2021-2024. The multiplex RT-qPCR established in our laboratory was used to test these samples for FCoV, and 17.66% (330/1869) of the samples were positive for FCoV. The S, M, and N genes of 63 FCoV-positive samples were amplified and sequenced, and the genetic and evolutionary characteristics were analyzed. Similarity analysis showed that the nucleotide and amino acid homologies of S, M, and N genes were 81.2-99.6% and 70.2-99.5%, 89.9-100% and 91.6-100%, and 90.1-100% and 91.5-100%, respectively. Phylogenetic analysis revealed that all 63 FCoV strains, based on S gene sequences, belonged to type I FCoV (FCoV-I), and were clustered with Chinese strains and the Netherlands UU strains. Recombinant signals were detected in the S gene of strains GXLZ03-2022, GXLZ08-2022, and CCoV GD/2020/X9. The results suggest that FCoV is still prevalent in the Guangxi province of southern China, and the prevalent FCoV strains show high genetic diversity and novel epidemic characteristics.
Collapse
Affiliation(s)
- Kaichuang Shi
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise 533000, China;
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (M.H.); (Y.S.); (Y.S.); (Z.L.)
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (F.L.); (Y.Y.)
| | - Mengyi He
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (M.H.); (Y.S.); (Y.S.); (Z.L.)
| | - Yuwen Shi
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (M.H.); (Y.S.); (Y.S.); (Z.L.)
| | - Feng Long
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (F.L.); (Y.Y.)
| | - Yandi Shi
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (M.H.); (Y.S.); (Y.S.); (Z.L.)
| | - Yanwen Yin
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (F.L.); (Y.Y.)
| | - Yi Pan
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise 533000, China;
| | - Zongqiang Li
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (M.H.); (Y.S.); (Y.S.); (Z.L.)
| | - Shuping Feng
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (F.L.); (Y.Y.)
| |
Collapse
|
30
|
Terasaki K, Makino S. Requirement of the N-terminal region of nonstructural protein 1 in cis for SARS-CoV-2 defective RNA replication. J Virol 2024; 98:e0090024. [PMID: 39194239 PMCID: PMC11406973 DOI: 10.1128/jvi.00900-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/16/2024] [Indexed: 08/29/2024] Open
Abstract
SARS-CoV-2 belongs to the family Coronaviridae and carries a single-stranded positive-sense RNA genome. During coronavirus (CoV) replication, defective or defective interfering RNAs that lack a large portion of the genome often emerge. These defective RNAs typically carry the necessary RNA elements that are required for replication and packaging. We identified the minimum requirement of the 5' proximal region necessary for viral RNA replication by using artificially generated SARS-CoV-2 minigenomes. The minigenomes consist of the 5'-proximal region, an open reading frame (ORF) that encodes a fusion protein consisting of the N-terminal of viral NSP1 and a reporter gene, and the 3' untranslated region of the SARS-CoV-2 genome. We used a modified SARS-CoV-2 variant to support replication of the minigenomes. A minigenome carrying the 5' proximal 634 nucleotides replicated, whereas those carrying shorter than 634 nucleotides did not, demonstrating that the entire 265 nt-long 5' untranslated region and N-terminal portion of the NSP1 coding region are required for the minigenome replication. Minigenome RNAs carrying a specific amino acid substitution or frame shift insertions in the partial NSP1 coding sequence abrogated minigenome replication. Introduction of synonymous mutations in the minigenome RNAs also affected the replication efficiency of the minigenomes. These data suggest that the expression of the N-terminal portion of NSP1 and the primary sequence of the 5' proximal 634 nucleotides are important for minigenome replication.IMPORTANCESARS-CoV-2, the causative agent of COVID-19, is highly transmissible and continues to have a significant impact on public health and the global economy. While several vaccines mitigate the severe consequences of SARS-CoV-2 infection, mutant viruses with reduced reactivity to current vaccines continue to emerge and circulate. This study aimed to identify the minimal 5' proximal region of SARS-CoV-2 genomic RNA required for SARS-CoV-2 defective RNA replication and investigate the importance of an ORF encoded in these defective RNAs. Identifying cis-acting replication signals of SARS-CoV-2 genomic RNA is critical for the development of antivirals that target these signals. Additionally, replication-competent defective RNAs can serve as therapeutic reagents to interfere with SARS-CoV-2 replication. Our findings provide valuable insights into the mechanisms of SARS-CoV-2 RNA replication and the development of reagents that suppress SARS-CoV-2 replication.
Collapse
Affiliation(s)
- Kaori Terasaki
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infection and Immunity, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Shinji Makino
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infection and Immunity, The University of Texas Medical Branch, Galveston, Texas, USA
- Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, Texas, USA
- UTMB Center for Tropical Diseases, The University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Center for Vaccine Development, The University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
31
|
Gong HY, Chen RX, Tan SM, Wang X, Chen JM, Zhang YL, Liao M. Viruses Identified in Shrews ( Soricidae) and Their Biomedical Significance. Viruses 2024; 16:1441. [PMID: 39339918 PMCID: PMC11437491 DOI: 10.3390/v16091441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Shrews (Soricidae) are common small wild mammals. Some species of shrews, such as Asian house shrews (Suncus murinus), have a significant overlap in their habitats with humans and domestic animals. Currently, over 190 species of viruses in 32 families, including Adenoviridae, Arenaviridae, Arteriviridae, Astroviridae, Anelloviridae, Bornaviridae, Caliciviridae, Chuviridae, Coronaviridae, Filoviridae, Flaviviridae, Hantaviridae, Hepadnaviridae, Hepeviridae, Nairoviridae, Nodaviridae, Orthoherpesviridae, Orthomyxoviridae, Paramyxoviridae, Parvoviridae, Phenuiviridae, Picobirnaviridae, Picornaviridae, Polyomaviridae, Poxviridae, Rhabdoviridae, Sedoreoviridae, Spinareoviridae, and three unclassified families, have been identified in shrews. Diverse shrew viruses, such as Borna disease virus 1, Langya virus, and severe fever with thrombocytopenia syndrome virus, cause diseases in humans and/or domestic animals, posing significant threats to public health and animal health. This review compiled fundamental information about shrews and provided a comprehensive summary of the viruses that have been detected in shrews, with the aim of facilitating a deep understanding of shrews and the diversity, epidemiology, and risks of their viruses.
Collapse
Affiliation(s)
- Huan-Yu Gong
- School of Animal Science and Technology, Foshan University, Foshan 528225, China
| | - Rui-Xu Chen
- School of Animal Science and Technology, Foshan University, Foshan 528225, China
| | - Su-Mei Tan
- School of Animal Science and Technology, Foshan University, Foshan 528225, China
| | - Xiu Wang
- School of Animal Science and Technology, Foshan University, Foshan 528225, China
| | - Ji-Ming Chen
- School of Animal Science and Technology, Foshan University, Foshan 528225, China
| | - Yuan-Long Zhang
- Guangdong Center for Animal Disease Prevention and Control, Guangzhou 510230, China
| | - Ming Liao
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510230, China
| |
Collapse
|
32
|
Koolaparambil Mukesh R, Yinda CK, Munster VJ, van Doremalen N. Beyond COVID-19: the promise of next-generation coronavirus vaccines. NPJ VIRUSES 2024; 2:39. [PMID: 40295763 PMCID: PMC11721646 DOI: 10.1038/s44298-024-00043-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/26/2024] [Indexed: 04/30/2025]
Abstract
Coronaviruses (CoVs) have caused three global outbreaks: severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) in 2003, Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012, and SARS-CoV-2 in 2019, with significant mortality and morbidity. The impact of coronavirus disease 2019 (COVID-19) raised serious concerns about the global preparedness for a pandemic. Furthermore, the changing antigenic landscape of SARS-CoV-2 led to new variants with increased transmissibility and immune evasion. Thus, the development of broad-spectrum vaccines against current and future emerging variants of CoVs will be an essential tool in pandemic preparedness. Distinct phylogenetic features within CoVs complicate and limit the process of generating a pan-CoV vaccine capable of targeting the entire Coronaviridae family. In this review, we aim to provide a detailed overview of the features of CoVs, their phylogeny, current vaccines against various CoVs, the efforts in developing broad-spectrum coronavirus vaccines, and the future.
Collapse
Affiliation(s)
| | - Claude K Yinda
- Laboratory of Virology, Division of Intramural Research, National Institutes of Health, Hamilton, MT, USA
| | - Vincent J Munster
- Laboratory of Virology, Division of Intramural Research, National Institutes of Health, Hamilton, MT, USA
| | - Neeltje van Doremalen
- Laboratory of Virology, Division of Intramural Research, National Institutes of Health, Hamilton, MT, USA.
| |
Collapse
|
33
|
Fiers J, Cay AB, Maes D, Tignon M. A Comprehensive Review on Porcine Reproductive and Respiratory Syndrome Virus with Emphasis on Immunity. Vaccines (Basel) 2024; 12:942. [PMID: 39204065 PMCID: PMC11359659 DOI: 10.3390/vaccines12080942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important pathogens in pig production worldwide and responsible for enormous production and economic losses. PRRSV infection in gestating gilts and sows induces important reproductive failure. Additionally, respiratory distress is observed in infected piglets and fattening pigs, resulting in growth retardation and increased mortality. Importantly, PRRSV infection interferes with immunity in the respiratory tract, making PRRSV-infected pigs more susceptible to opportunistic secondary pathogens. Despite the availability of commercial PRRSV vaccines for more than three decades, control of the disease remains a frustrating and challenging task. This paper provides a comprehensive overview of PRRSV, covering its history, economic and scientific importance, and description of the viral structure and genetic diversity. It explores the virus's pathogenesis, including cell tropism, viral entry, replication, stages of infection and epidemiology. It reviews the porcine innate and adaptative immune responses to comprehend the modulation mechanisms employed by PRRS for immune evasion.
Collapse
Affiliation(s)
- Jorian Fiers
- Unit Viral Re-Emerging, Enzootic and Bee Diseases, Department Infectious Diseases in Animals, Sciensano, Groeselenbergstraat 99, 1180 Ukkel, Belgium
- Unit of Porcine Health Management, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium;
| | - Ann Brigitte Cay
- Unit Viral Re-Emerging, Enzootic and Bee Diseases, Department Infectious Diseases in Animals, Sciensano, Groeselenbergstraat 99, 1180 Ukkel, Belgium
| | - Dominiek Maes
- Unit of Porcine Health Management, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium;
| | - Marylène Tignon
- Unit Viral Re-Emerging, Enzootic and Bee Diseases, Department Infectious Diseases in Animals, Sciensano, Groeselenbergstraat 99, 1180 Ukkel, Belgium
| |
Collapse
|
34
|
Shi K, Li B, Shi Y, Feng S, Yin Y, Long F, Pan Y, Wei Y. Phylogenetic and Evolutionary Analysis of Porcine Epidemic Diarrhea Virus in Guangxi Province, China, during 2020 and 2024. Viruses 2024; 16:1126. [PMID: 39066288 PMCID: PMC11281377 DOI: 10.3390/v16071126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/28/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
The variant porcine epidemic diarrhea virus (PEDV) has caused considerable economic losses to the global pig industry since 2010. In this study, a total of 5859 diarrhea samples were collected from different pig farms in China's Guangxi province during January 2020 and March 2024 and tested for PEDV using RT-qPCR. The positivity rate of PEDV was 11.90% (697/5859). Ninety-two PEDV-positive samples were selected based on sampling time, and the sampling region for amplification, sequencing, and analysis of the S1, M, and N genes. Phylogenetic analysis of the S1 gene revealed that all strains from Guangxi province were distributed in three subgroups, i.e., 81.5% (75/92) in the G2a subgroup, 4.3% (4/92) in the G2b subgroup, and 14.1% (13/92) in the G2c subgroup. The sequence analysis revealed that the S1 gene sequences from Guangxi province had higher homology with the variant strains than with the classical strains, showing as high as 99.2% with the variant strain AJ1102 and only 94.3% with the classical strain CV777. Recombination analysis revealed that the GX-BS08-2023 strain (G2c) from Guangxi province originated from inter-lineage recombination between the GX-BS09-2023 (G2a) and CH-JN547228-2011 (G1a) strains. In addition, the S1 gene of the G2a and G2b subgroup strains shared many mutations and insertions. There were common mutations of N143D and P235L in the G2a subgroup. Evolutionary analysis revealed that all Guangxi strains belonged to the G2 genotype. These strains have spread rapidly since the PEDV variant strains that emerged in 2010, weakened until 2021, and then remained stable. In conclusion, the results revealed the latest genetic evolution of circulating PEDV strains in Guangxi province in recent years, providing important information for preventing and controlling PEDV infection. Currently, the G2a subgroup strains are the predominant strains circulating in pig herds in Guangxi province, southern China.
Collapse
Affiliation(s)
- Kaichuang Shi
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise 533000, China
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China
| | - Biao Li
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Yuwen Shi
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Shuping Feng
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China
| | - Yanwen Yin
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China
| | - Feng Long
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China
| | - Yi Pan
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Yingyi Wei
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| |
Collapse
|
35
|
Yilmaz SG, Aydin O, Tali HE, Karadag G, Sonmez K, Bayraktar E, Yilmaz A, Turan N, Mutlu Z, Iqbal M, Richt JA, Yilmaz H. Brain invasion of bovine coronavirus: molecular analysis of bovine coronavirus infection in calves with severe pneumonia and neurological signs. J Vet Sci 2024; 25:e45. [PMID: 38910307 PMCID: PMC11291437 DOI: 10.4142/jvs.23261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 06/25/2024] Open
Abstract
IMPORTANCE Although the role of bovine coronavirus (BCoV) in calf diarrhea and respiratory disorders is well documented, its contribution to neurological diseases is unclear. OBJECTIVE This study conducted virological investigations of calves showing diarrhea and respiratory and neurological signs. METHODS An outbreak of diarrhea, respiratory, and neurological disorders occurred among the 12 calves in July 2022 in Istanbul, Türkiye. Two of these calves exhibited neurological signs and died a few days after the appearance of symptoms. One of these calves was necropsied and analyzed using molecular and histopathological tests. RESULTS BCoV RNA was detected in the brain, lung, spleen, liver, and intestine of the calf that had neurological signs by real-time reverse transcription polymerase chain reaction. Immunostaining was also observed in the intestine and brain. A 622 bp S1 gene product was noted on gel electrophoresis only in the brain. Phylogenetic analysis indicated that the BCoV detected in this study had a high proximity to the BCoV strain GIb with 99.19% nucleotide sequence homology to the strains detected in Poland, Israel, Türkiye, and France. No distinct genetic lineages were observed when the brain isolate was compared with the respiratory and enteric strains reported to GenBank. In addition, the highest identity (98,72%) was obtained with the HECV 4408 and L07748 strains of human coronaviruses. CONCLUSIONS AND RELEVANCE The strain detected in a calf brain belongs to the GIb-European lineage and shares high sequence homology with BCoV strains detected in Europe and Israel. In addition, the similarity between the human coronaviruses (4408 and L07748) raises questions about the zoonotic potential of the strains detected in this study.
Collapse
Affiliation(s)
- Semaha Gul Yilmaz
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Istanbul 34500, Türkiye
| | - Ozge Aydin
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Istanbul 34500, Türkiye
| | - Hasan Emre Tali
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Istanbul 34500, Türkiye
| | - Gizem Karadag
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Istanbul 34500, Türkiye
| | - Kivilcim Sonmez
- Department of Pathology, Veterinary Faculty, Istanbul University-Cerrahpasa, Istanbul 34500, Türkiye
| | | | - Aysun Yilmaz
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Istanbul 34500, Türkiye
| | - Nuri Turan
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Istanbul 34500, Türkiye
| | - Zihni Mutlu
- Department of Surgery, Veterinary Faculty, Istanbul University-Cerrahpasa, Istanbul 34320, Türkiye
| | - Munir Iqbal
- The Pirbright Institute, Surrey GU24 0NF, UK
| | - Jurgen A Richt
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66502, USA
| | - Huseyin Yilmaz
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Istanbul 34500, Türkiye.
| |
Collapse
|
36
|
van den Hurk S, Regmi G, Naikare HK, Velayudhan BT. Advances in Laboratory Diagnosis of Coronavirus Infections in Cattle. Pathogens 2024; 13:524. [PMID: 39057751 PMCID: PMC11279749 DOI: 10.3390/pathogens13070524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Coronaviruses cause infections in humans and diverse species of animals and birds with a global distribution. Bovine coronavirus (BCoV) produces predominantly two forms of disease in cattle: a respiratory form and a gastrointestinal form. All age groups of cattle are affected by the respiratory form of coronavirus, whereas the gastroenteric form causes neonatal diarrhea or calf scours in young cattle and winter dysentery in adult cattle. The tremendous impacts of bovine respiratory disease and the associated losses are well-documented and underscore the importance of this pathogen. Beyond this, studies have demonstrated significant impacts on milk production associated with outbreaks of winter dysentery, with up to a 30% decrease in milk yield. In North America, BCoV was identified for the first time in 1972, and it continues to be a significant economic concern for the cattle industry. A number of conventional and molecular diagnostic assays are available for the detection of BCoV from clinical samples. Conventional assays for BCoV detection include virus isolation, which is challenging from clinical samples, electron microscopy, fluorescent antibody assays, and various immunoassays. Molecular tests are mainly based on nucleic acid detection and predominantly include conventional and real-time polymerase chain reaction (PCR) assays. Isothermal amplification assays and genome sequencing have gained increased interest in recent years for the detection, characterization, and identification of BCoV. It is believed that isothermal amplification assays, such as loop-mediated isothermal amplification and recombinase polymerase amplification, among others, could aid the development of barn-side point-of-care tests for BCoV. The present study reviewed the literature on coronavirus infections in cattle from the last three and a half decades and presents information mainly on the current and advancing diagnostics in addition to epidemiology, clinical presentations, and the impact of the disease on the cattle industry.
Collapse
Affiliation(s)
- Shaun van den Hurk
- Athens Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| | - Girija Regmi
- Tifton Veterinary Diagnostic and Investigational Laboratory, College of Veterinary Medicine, University of Georgia, Tifton, GA 30602, USA;
| | - Hemant K. Naikare
- University of Minnesota Veterinary Diagnostic Laboratory, Saint Paul, MN 55108, USA;
| | - Binu T. Velayudhan
- Athens Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
37
|
Rurek M. Mitochondria in COVID-19: from cellular and molecular perspective. Front Physiol 2024; 15:1406635. [PMID: 38974521 PMCID: PMC11224649 DOI: 10.3389/fphys.2024.1406635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/27/2024] [Indexed: 07/09/2024] Open
Abstract
The rapid development of the COVID-19 pandemic resulted in a closer analysis of cell functioning during β-coronavirus infection. This review will describe evidence for COVID-19 as a syndrome with a strong, albeit still underestimated, mitochondrial component. Due to the sensitivity of host mitochondria to coronavirus infection, SARS-CoV-2 affects mitochondrial signaling, modulates the immune response, modifies cellular energy metabolism, induces apoptosis and ageing, worsening COVID-19 symptoms which can sometimes be fatal. Various aberrations across human systems and tissues and their relationships with mitochondria were reported. In this review, particular attention is given to characterization of multiple alterations in gene expression pattern and mitochondrial metabolism in COVID-19; the complexity of interactions between SARS-CoV-2 and mitochondrial proteins is presented. The participation of mitogenome fragments in cell signaling and the occurrence of SARS-CoV-2 subgenomic RNA within membranous compartments, including mitochondria is widely discussed. As SARS-CoV-2 severely affects the quality system of mitochondria, the cellular background for aberrations in mitochondrial dynamics in COVID-19 is additionally characterized. Finally, perspectives on the mitigation of COVID-19 symptoms by affecting mitochondrial biogenesis by numerous compounds and therapeutic treatments are briefly outlined.
Collapse
Affiliation(s)
- Michał Rurek
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
38
|
Kim JH, Park J, Lee DK, Kim WI, Lyoo YS, Park CK, Kim HR. Prevalence and Genetic Characterization of Porcine Respiratory Coronavirus in Korean Pig Farms. Animals (Basel) 2024; 14:1698. [PMID: 38891745 PMCID: PMC11171391 DOI: 10.3390/ani14111698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Porcine respiratory coronavirus (PRCV) is a member of the species Alphacoronavirus 1 within the genus Alphacoronavirus of the family Coronaviridae. A few studies have been conducted on the prevalence of PRCV since its first identification in 1997, but there have been no recent studies on the prevalence and genetic characterization of the virus in Korea. In this study, the seroprevalence of PRCV was determined in Korean pig farms using a commercially available TGEV/PRCV differential enzyme-linked immunosorbent assay kit. The farm-level seroprevalence of PRCV was determined to be 68.6% (48/70), similar to previous reports in Korea, suggesting that PRCV is still circulating in Korean pig herds nationwide. Among the 20 PRCV-seropositive farms tested in this study, PRCV RNAs were detected in 17 oral fluid samples (28.3%) from nine farms (45.0%), while TGEV RNAs were not detected in any sample. To investigate the genetic characteristics of Korean PRCV strains, genetic and phylogenetic analyses were conducted on PRCV spike gene sequences obtained in this study. The three Korean PRCV strains (KPRCV2401, KPRCV2402, and KPRCV2403) shared 98.5-100% homology with each other and 96.2-96.6% and 91.6-94.5% homology with European and American strains, respectively. A 224-amino acid deletion was found in the S gene of both Korean and European PRCVs but not in that of American PRCVs, suggesting a European origin for Korean PRCVs. Phylogenetic analysis showed that Korean PRCVs are more closely related to European PRCVs than American PRCVs but clustered apart from both, suggesting that Korean PRCV has evolved independently since its emergence in Korean PRCVs. The results of this study will help expand knowledge on the epidemiology and molecular biology of PRCV currently circulating in Korea.
Collapse
Affiliation(s)
- Ju-Han Kim
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (J.-H.K.); (Y.S.L.)
- Swine Medical Corporation, Sunjin Bridge Lab, Icheon 17332, Republic of Korea
| | - Jonghyun Park
- Institute for Veterinary Biomedical Science, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea; (J.P.); (D.-K.L.); (C.-K.P.)
- DIVA Bio Incorporation, Daegu 41519, Republic of Korea
| | - Dong-Kyu Lee
- Institute for Veterinary Biomedical Science, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea; (J.P.); (D.-K.L.); (C.-K.P.)
| | - Won-Il Kim
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea;
| | - Young S. Lyoo
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (J.-H.K.); (Y.S.L.)
| | - Choi-Kyu Park
- Institute for Veterinary Biomedical Science, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea; (J.P.); (D.-K.L.); (C.-K.P.)
| | - Hye-Ryung Kim
- Institute for Veterinary Biomedical Science, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea; (J.P.); (D.-K.L.); (C.-K.P.)
- DIVA Bio Incorporation, Daegu 41519, Republic of Korea
| |
Collapse
|
39
|
Phiri K, Grill L. Development of a Candidate TMV Epitope Display Vaccine against SARS-CoV-2. Vaccines (Basel) 2024; 12:448. [PMID: 38793699 PMCID: PMC11125883 DOI: 10.3390/vaccines12050448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
Essential in halting the COVID-19 pandemic caused by SARS-CoV-2, it is crucial to have stable, effective, and easy-to-manufacture vaccines. We developed a potential vaccine using a tobacco mosaic virus (TMV) epitope display model presenting peptides derived from the SARS-CoV-2 spike protein. The TMV-epitope fusions in laboratory tests demonstrated binding to the SARS-CoV-2 polyclonal antibodies. The fusion constructs maintained critical epitopes of the SARS-CoV-2 spike protein, and two in particular spanned regions of the receptor-binding domain that have mutated in the more recent SARS-CoV-2 variants. This would allow for the rapid modification of vaccines in response to changes in circulating variants. The TMV-peptide fusion constructs also remained stable for over 28 days when stored at temperatures between -20 and 37 °C, an ideal property when targeting developing countries. Immunogenicity studies conducted on BALB/c mice elicited robust antibody responses against SARS-CoV-2. A strong IFNγ response was also observed in immunized mice. Three of the six TMV-peptide fusion constructs produced virus-neutralizing titers, as measured with a pseudovirus neutralization assay. These TMV-peptide fusion constructs can be combined to make a multivalent vaccine that could be adapted to meet changing virus variants. These findings demonstrate the development of a stable COVID-19 vaccine candidate by combining SARS-CoV-2 spike protein-derived peptides presented on the surface of a TMV nanoparticle.
Collapse
Affiliation(s)
- Kelvin Phiri
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA 91711, USA;
| | | |
Collapse
|
40
|
Fedurek P, Asiimwe C, Rice GK, Akankwasa WJ, Reynolds V, Hobaiter C, Kityo R, Muhanguzi G, Zuberbühler K, Crockford C, Cer RZ, Bennett AJ, Rothman JM, Bishop-Lilly KA, Goldberg TL. Selective deforestation and exposure of African wildlife to bat-borne viruses. Commun Biol 2024; 7:470. [PMID: 38649441 PMCID: PMC11035629 DOI: 10.1038/s42003-024-06139-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Abstract
Proposed mechanisms of zoonotic virus spillover often posit that wildlife transmission and amplification precede human outbreaks. Between 2006 and 2012, the palm Raphia farinifera, a rich source of dietary minerals for wildlife, was nearly extirpated from Budongo Forest, Uganda. Since then, chimpanzees, black-and-white colobus, and red duiker were observed feeding on bat guano, a behavior not previously observed. Here we show that guano consumption may be a response to dietary mineral scarcity and may expose wildlife to bat-borne viruses. Videos from 2017-2019 recorded 839 instances of guano consumption by the aforementioned species. Nutritional analysis of the guano revealed high concentrations of sodium, potassium, magnesium and phosphorus. Metagenomic analyses of the guano identified 27 eukaryotic viruses, including a novel betacoronavirus. Our findings illustrate how "upstream" drivers such as socioeconomics and resource extraction can initiate elaborate chains of causation, ultimately increasing virus spillover risk.
Collapse
Affiliation(s)
- Pawel Fedurek
- Division of Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
- Budongo Conservation Field Station, PO Box 362, Masindi, Uganda
| | | | - Gregory K Rice
- Biological Defense Research Directorate, Naval Medical Research Command, Fort Detrick, MD, 21702, USA
- Leidos, 1750 Presidents St, Reston, VA, 20190, USA
| | | | - Vernon Reynolds
- Budongo Conservation Field Station, PO Box 362, Masindi, Uganda
- School of Anthropology, University of Oxford, 51/53 Banbury Road, Oxford, OX2 6PE, UK
| | - Catherine Hobaiter
- Budongo Conservation Field Station, PO Box 362, Masindi, Uganda
- School of Psychology and Neuroscience, University of St Andrews; St Mary's Quad, South Street, St Andrews, KY16 9JP, UK
| | - Robert Kityo
- Department of Zoology, Entomology & Fisheries Sciences, Makerere University, PO Box 7062, Kampala, Uganda
| | | | - Klaus Zuberbühler
- Budongo Conservation Field Station, PO Box 362, Masindi, Uganda
- School of Psychology and Neuroscience, University of St Andrews; St Mary's Quad, South Street, St Andrews, KY16 9JP, UK
- Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, CH-2000, Neuchâtel, Switzerland
| | - Catherine Crockford
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
- Institut des Sciences Cognitives, 67 Bd Pinel, 69500, Bron, France
| | - Regina Z Cer
- Biological Defense Research Directorate, Naval Medical Research Command, Fort Detrick, MD, 21702, USA
| | - Andrew J Bennett
- Biological Defense Research Directorate, Naval Medical Research Command, Fort Detrick, MD, 21702, USA
- Leidos, 1750 Presidents St, Reston, VA, 20190, USA
| | - Jessica M Rothman
- Department of Anthropology, Hunter College of the City University of New York, 695 Park Avenue, New York, NY, 10065, USA
| | - Kimberly A Bishop-Lilly
- Biological Defense Research Directorate, Naval Medical Research Command, Fort Detrick, MD, 21702, USA
| | - Tony L Goldberg
- School of Veterinary Medicine, Department of Pathobiological Sciences, University of Wisconsin-Madison, 1656 Linden Drive, Madison, WI, USA.
| |
Collapse
|
41
|
Ma Y, Shi K, Chen Z, Shi Y, Zhou Q, Mo S, Wei H, Hu L, Mo M. Simultaneous Detection of Porcine Respiratory Coronavirus, Porcine Reproductive and Respiratory Syndrome Virus, Swine Influenza Virus, and Pseudorabies Virus via Quadruplex One-Step RT-qPCR. Pathogens 2024; 13:341. [PMID: 38668296 PMCID: PMC11054806 DOI: 10.3390/pathogens13040341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/07/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024] Open
Abstract
Porcine respiratory coronavirus (PRCoV), porcine reproductive and respiratory syndrome virus (PRRSV), swine influenza virus (SIV), and pseudorabies virus (PRV) are significant viruses causing respiratory diseases in pigs. Sick pigs exhibit similar clinical symptoms such as fever, cough, runny nose, and dyspnea, making it very difficult to accurately differentially diagnose these diseases on site. In this study, a quadruplex one-step reverse-transcription real-time quantitative PCR (RT-qPCR) for the detection of PRCoV, PRRSV, SIV, and PRV was established. The assay showed strong specificity, high sensitivity, and good repeatability. It could detect only PRCoV, PRRSV, SIV, and PRV, without cross-reactions with TGEV, PEDV, PRoV, ASFV, FMDV, PCV2, PDCoV, and CSFV. The limits of detection (LODs) for PRCoV, PRRSV, SIV, and PRV were 129.594, 133.205, 139.791, and 136.600 copies/reaction, respectively. The intra-assay and inter-assay coefficients of variation (CVs) ranged from 0.29% to 1.89%. The established quadruplex RT-qPCR was used to test 4909 clinical specimens, which were collected in Guangxi Province, China, from July 2022 to September 2023. PRCoV, PRRSV, SIV, and PRV showed positivity rates of 1.36%, 10.17%, 4.87%, and 0.84%, respectively. In addition, the previously reported RT-qPCR was also used to test these specimens, and the agreement between these methods was higher than 99.43%. The established quadruplex RT-qPCR can accurately detect these four porcine respiratory viruses simultaneously, providing an accurate and reliable detection technique for clinical diagnosis.
Collapse
Affiliation(s)
- Yan Ma
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.M.); (Y.S.)
| | - Kaichuang Shi
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.M.); (Y.S.)
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (Q.Z.); (S.M.); (H.W.); (L.H.)
| | - Zhenhai Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China;
| | - Yuwen Shi
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.M.); (Y.S.)
| | - Qingan Zhou
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (Q.Z.); (S.M.); (H.W.); (L.H.)
| | - Shenglan Mo
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (Q.Z.); (S.M.); (H.W.); (L.H.)
| | - Haina Wei
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (Q.Z.); (S.M.); (H.W.); (L.H.)
| | - Liping Hu
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (Q.Z.); (S.M.); (H.W.); (L.H.)
| | - Meilan Mo
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.M.); (Y.S.)
| |
Collapse
|
42
|
Hemnani M, da Silva PG, Thompson G, Poeta P, Rebelo H, Mesquita JR. Presence of Alphacoronavirus in Tree- and Crevice-Dwelling Bats from Portugal. Viruses 2024; 16:434. [PMID: 38543799 PMCID: PMC10976264 DOI: 10.3390/v16030434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 05/23/2024] Open
Abstract
Coronaviruses (CoVs) are RNA viruses capable of infecting a wide range of hosts, including mammals and birds, and have caused significant epidemics such as the ongoing COVID-19 pandemic. Bats, the second most diverse mammalian order, are hosts for various CoVs due to their unique immune responses and ecological traits. This study investigates CoV prevalence in crevice- and tree-dwelling bats in Portugal, a country with limited prior research on bat CoVs. Using nested RT-PCR and sequencing, we screened 87 stool samples from bats, identifying one sample (1.15%) that was positive for Alphacoronavirus, belonging to Pipistrellus pipistrellus. Phylogenetic analysis revealed close genetic relationships with Alphacoronavirus strains from the same bat species in Europe. The low prevalence suggests habitat-specific differences in viral transmission, with cave-dwelling bats exhibiting higher CoV prevalence due to population density and behaviour. These findings underscore the necessity for sustained surveillance efforts aimed at comprehending CoV dynamics within bat populations, especially concerning the risk of spillover events and viral evolution. Vital to this understanding is the monitoring of bat migration patterns, which serves as a crucial tool for elucidating CoV ecology and epidemiology. Such efforts are essential for ongoing research endeavours aimed at mitigating the potential for future zoonotic disease outbreaks.
Collapse
Affiliation(s)
- Mahima Hemnani
- School of Medicine and Biomedical Sciences, Porto University, 4050-313 Porto, Portugal; (M.H.); (P.G.d.S.); (G.T.)
| | - Priscilla Gomes da Silva
- School of Medicine and Biomedical Sciences, Porto University, 4050-313 Porto, Portugal; (M.H.); (P.G.d.S.); (G.T.)
- Epidemiology Research Unit (EPIunit), Institute of Public Health, University of Porto, 4099-002 Porto, Portugal
- Laboratório Para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), 4050-313 Porto, Portugal
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4099-002 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4099-002 Porto, Portugal
| | - Gertrude Thompson
- School of Medicine and Biomedical Sciences, Porto University, 4050-313 Porto, Portugal; (M.H.); (P.G.d.S.); (G.T.)
- Biopolis-CIBIO/InBIO Laboratório Associado, Campus de Vairão, 4485-661 Vairão, Portugal;
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os Montes e Alto Douro, 5000-801 Vila Real, Portugal;
- Associated Laboratory for Green Chemistry (LAQV), Chemistry Department, Faculty of Science and Technology, University NOVA of Lisbon, 2829-516 Caparica, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Hugo Rebelo
- Biopolis-CIBIO/InBIO Laboratório Associado, Campus de Vairão, 4485-661 Vairão, Portugal;
- cE3c—Centre for Ecology, Evolution and Environmental Changes & CHANGE—Global Change and Sustainability Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - João R. Mesquita
- School of Medicine and Biomedical Sciences, Porto University, 4050-313 Porto, Portugal; (M.H.); (P.G.d.S.); (G.T.)
- Epidemiology Research Unit (EPIunit), Institute of Public Health, University of Porto, 4099-002 Porto, Portugal
- Laboratório Para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), 4050-313 Porto, Portugal
| |
Collapse
|
43
|
Li B, Gao Y, Ma Y, Shi K, Shi Y, Feng S, Yin Y, Long F, Sun W. Genetic and Evolutionary Analysis of Porcine Deltacoronavirus in Guangxi Province, Southern China, from 2020 to 2023. Microorganisms 2024; 12:416. [PMID: 38399820 PMCID: PMC10893222 DOI: 10.3390/microorganisms12020416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/11/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Porcine deltacoronavirus (PDCoV) has shown large-scale global spread since its discovery in Hong Kong in 2012. In this study, a total of 4897 diarrheal fecal samples were collected from the Guangxi province of China from 2020 to 2023 and tested using RT-qPCR. In total, 362 (362/4897, 7.39%) of samples were positive for PDCoV. The S, M, and N gene sequences were obtained from 34 positive samples after amplification and sequencing. These PDCoV gene sequences, together with other PDCoV S gene reference sequences from China and other countries, were analyzed. Phylogenetic analysis revealed that the Chinese PDCoV strains have diverged in recent years. Bayesian analysis revealed that the new China 1.3 lineage began to diverge in 2012. Comparing the amino acids of the China 1.3 lineage with those of other lineages, the China 1.3 lineage showed variations of mutations, deletions, and insertions, and some variations demonstrated the same as or similar to those of the China 1.2 lineage. In addition, recombination analysis revealed interlineage recombination in CHGX-MT505459-2019 and CHGX-MT505449-2017 strains from Guangxi province. In summary, the results provide new information on the prevalence and evolution of PDCoV in Guangxi province in southern China, which will facilitate better comprehension and prevention of PDCoV.
Collapse
Affiliation(s)
- Biao Li
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (B.L.); (Y.M.); (Y.S.)
| | - Yeheng Gao
- Institute of Agricultural and Animal Husbandry Industry Development, Guangxi University, Nanning 530005, China;
| | - Yan Ma
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (B.L.); (Y.M.); (Y.S.)
| | - Kaichuang Shi
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (B.L.); (Y.M.); (Y.S.)
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (S.F.); (Y.Y.); (F.L.)
| | - Yuwen Shi
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (B.L.); (Y.M.); (Y.S.)
| | - Shuping Feng
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (S.F.); (Y.Y.); (F.L.)
| | - Yanwen Yin
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (S.F.); (Y.Y.); (F.L.)
| | - Feng Long
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (S.F.); (Y.Y.); (F.L.)
| | - Wenchao Sun
- Institute of Virology, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
44
|
Ford CE, Dunn CD, Leis EM, Thiel WA, Goldberg TL. Five Species of Wild Freshwater Sport Fish in Wisconsin, USA, Reveal Highly Diverse Viromes. Pathogens 2024; 13:150. [PMID: 38392888 PMCID: PMC10891596 DOI: 10.3390/pathogens13020150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Studies of marine fish have revealed distant relatives of viruses important to global fish and animal health, but few such studies exist for freshwater fish. To investigate whether freshwater fish also host such viruses, we characterized the viromes of five wild species of freshwater fish in Wisconsin, USA: bluegill (Lepomis macrochirus), brown trout (Salmo trutta), lake sturgeon (Acipenser fulvescens), northern pike (Esox lucius), and walleye (Sander vitreus). We analyzed 103 blood serum samples collected during a state-wide survey from 2016 to 2020 and used a metagenomic approach for virus detection to identify known and previously uncharacterized virus sequences. We then characterized viruses phylogenetically and quantified prevalence, richness, and relative abundance for each virus. Within these viromes, we identified 19 viruses from 11 viral families: Amnoonviridae, Circoviridae, Coronaviridae, Hepadnaviridae, Peribunyaviridae, Picobirnaviridae, Picornaviridae, Matonaviridae, Narnaviridae, Nudnaviridae, and Spinareoviridae, 17 of which were previously undescribed. Among these viruses was the first fish-associated coronavirus from the Gammacoronavirus genus, which was present in 11/15 (73%) of S. vitreus. These results demonstrate that, similar to marine fish, freshwater fish also harbor diverse relatives of viruses important to the health of fish and other animals, although it currently remains unknown what effect, if any, the viruses we identified may have on fish health.
Collapse
Affiliation(s)
- Charlotte E. Ford
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (C.E.F.); (C.D.D.)
| | - Christopher D. Dunn
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (C.E.F.); (C.D.D.)
| | - Eric M. Leis
- U.S. Fish and Wildlife Service, La Crosse Fish Health Center—Midwest Fisheries Center, Onalaska, WI 54650, USA;
| | - Whitney A. Thiel
- Robert P. Hanson Laboratories, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Tony L. Goldberg
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (C.E.F.); (C.D.D.)
| |
Collapse
|
45
|
Aizawa Y, Ikuse T, Izumita R, Habuka R, Yamanaka T, Saitoh A. Human Rhinovirus as a Cause of Fever in Neonates and Young Infants During the COVID-19 Pandemic, 2020-2022. Pediatr Infect Dis J 2024; 43:130-135. [PMID: 37851974 DOI: 10.1097/inf.0000000000004139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
BACKGROUND Human rhinovirus (HRV) was predominant and persistent during the coronavirus disease 2019 (COVID-19) pandemic despite nonpharmaceutical interventions. The data whether HRV persistence also occurred in neonates and young infants were very limited. METHODS This prospective observational study was conducted in Niigata, Japan, between January 2020 and September 2022. The participants were hospitalized neonates and infants less than 4 months of age with fever. We excluded patients with evidence of bacterial infection or obvious sick contact with influenza or respiratory syncytial virus infection, as confirmed by rapid antigen detection tests. COVID-19 diagnosed by polymerase chain reaction (PCR) or rapid antigen detection tests were also excluded. Parechovirus and enterovirus were examined by PCR using serum and/or cerebrospinal fluid. FilmArray Respiratory Panel v1.7 was conducted on nasopharyngeal swabs. If HRV was positive, the genotype was identified. RESULTS We included 72 patients (median age, 54 days; interquartile range, 28.5-79 days), and sepsis was diagnosed in 31 (43.1%) patients. In total, 27 (37.5%) patients had had positive multiplex PCR tests. These patients were more likely to have rhinorrhea ( P = 0.004), cough ( P = 0.01), and sick contact ( P < 0.001) than those who with negative multiplex PCR. HRV was the most frequently detected virus (n = 23, 85.2%), and species A (n = 15, 71.4%) and C (n = 6, 28.6%) were genotyped. No seasonality or monthly predominance of the specific HRV types was observed. CONCLUSIONS HRV was an important cause of fever in neonates and young infants during the COVID-19 pandemic, 2020 to 2022.
Collapse
Affiliation(s)
- Yuta Aizawa
- From the Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tatsuki Ikuse
- From the Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ryohei Izumita
- From the Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Department of Pediatrics, Niigata City General Hospital, Niigata, Japan
| | - Rie Habuka
- From the Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Department of Pediatrics, Niigata City General Hospital, Niigata, Japan
| | - Takayuki Yamanaka
- Department of Pediatrics, Niigata City General Hospital, Niigata, Japan
| | - Akihiko Saitoh
- From the Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
46
|
Viral agents (2nd section). Transfusion 2024; 64 Suppl 1:S19-S207. [PMID: 38394038 DOI: 10.1111/trf.17630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 12/02/2023] [Indexed: 02/25/2024]
|
47
|
Podzolkov V, Bragina A, Tarzimanova A, Vasilyeva L, Shvedov I, Druzhinina N, Rodionova Y, Ishina T, Akyol I, Maximova V, Cherepanov A. Association of COVID-19 and Arterial Stiffness Assessed using Cardiovascular Index (CAVI). Curr Hypertens Rev 2024; 20:44-51. [PMID: 38258773 PMCID: PMC11092554 DOI: 10.2174/0115734021279173240110095037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/23/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024]
Abstract
BACKGROUND COVID-19 is characterized by an acute inflammatory response with the formation of endothelial dysfunction and may affect arterial stiffness. Studies of cardio-ankle vascular index in COVID-19 patients with considered cardiovascular risk factors have not been conducted. OBJECTIVE The purpose of our study was to assess the association between cardio-ankle vascular index and COVID-19 in hospitalized patients adjusted for known cardiovascular risk factors. METHODS A cross-sectional study included 174 people hospitalized with a diagnosis of moderate COVID-19 and 94 people without COVID-19. Significant differences in the cardio-ankle vascular index values measured by VaSera VS - 1500N between the two groups were analyzed using parametric (Student's t-criterion) and nonparametric (Mann-Whitney) criteria. Independent association between COVID-19 and an increased cardio-ankle vascular index ≥ 9.0 adjusted for known cardiovascular risk factors was assessed by multivariate logistic regression. RESULTS There were significantly higher values of the right cardio-ankle vascular index 8.10 [7.00;9.40] and the left cardio-ankle vascular index 8.10 [6.95;9.65] in patients undergoing inpatient treatment for COVID-19 than in the control group - 7.55 [6.60;8.60] and 7.60 [6.60;8.70], respectively. A multivariate logistic regression model adjusted for age, hypertension, plasma glucose level, glomerular filtration rate and diabetes mellitus showed a significant association between increased cardio-ankle vascular index and COVID-19 (OR 2.41 [CI 1.09;5.30]). CONCLUSION Hospitalized patients with COVID-19 had significantly higher cardio-ankle vascular index values compared to the control group. An association between an increased cardio-ankle vascular index and COVID-19 was revealed, independent of age, hypertension, plasma glucose level, glomerular filtration rate and diabetes mellitus.
Collapse
Affiliation(s)
- Valery Podzolkov
- Department of Faculty Therapy No. 2, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Anna Bragina
- Department of Faculty Therapy No. 2, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Aida Tarzimanova
- Department of Faculty Therapy No. 2, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Lyubov Vasilyeva
- Department of Faculty Therapy No. 2, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Ilya Shvedov
- Department of Faculty Therapy No. 2, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Natalya Druzhinina
- Department of Faculty Therapy No. 2, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Yulia Rodionova
- Department of Faculty Therapy No. 2, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Tatiana Ishina
- Department of Faculty Therapy No. 2, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Iuliia Akyol
- Department of Faculty Therapy No. 2, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Valentina Maximova
- Department of Faculty Therapy No. 2, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Alexandr Cherepanov
- Department of Faculty Therapy No. 2, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
48
|
Vieira DFB, Bandeira DM, da Silva MAN, de Almeida ALT, Araújo M, Machado AB, Tort LFL, Nacife VP, Siqueira MM, Motta FC, Pauvolid-Corrêa A, Barth OM. Comparative analysis of SARS-CoV-2 variants Alpha (B.1.1.7), Gamma (P.1), Zeta (P.2) and Delta (B.1.617.2) in Vero-E6 cells: ultrastructural characterization of cytopathology and replication kinetics. Braz J Infect Dis 2024; 28:103706. [PMID: 38081327 PMCID: PMC10776915 DOI: 10.1016/j.bjid.2023.103706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
This study compares the effects of virus-cell interactions among SARS-CoV-2 variants of concern (VOCs) isolated in Brazil in 2021, hypothesizing a correlation between cellular alterations and mortality and between viral load and transmissibility. For this purpose, reference isolates of Alpha, Gamma, Zeta, and Delta variants were inoculated into monolayers of Vero-E6 cells. Viral RNA was quantified in cell supernatants by RT‒PCR, and infected cells were analyzed by Transmission Electron Microscopy (TEM) for qualitative and quantitative evaluation of cellular changes 24, 48, and 72 hours postinfection (hpi). Ultrastructural analyses showed that all variants of SARS-CoV-2 altered the structure and function of mitochondria, nucleus, and rough endoplasmic reticulum of cells. Monolayers infected with the Delta variant showed the highest number of modified cells and the greatest statistically significant differences compared to those of other variants. Viral particles were observed in the cytosol and the cell membrane in 100 % of the cells at 48 hpi. Alpha showed the highest mean particle diameter (79 nm), and Gamma and Delta were the smallest (75 nm). Alpha and Gamma had the highest particle frequency per field at 48 hpi, while the same was observed for Zeta and Delta at 72 hpi and 24 hpi, respectively. The cycle threshold of viral RNA varied among the target protein, VOC, and time of infection. The findings presented here demonstrate that all four VOCs evaluated caused ultrastructural changes in Vero-E6 cells, which were more prominent when infection occured with the Delta variant.
Collapse
Affiliation(s)
- Debora Ferreira Barreto Vieira
- Fundação Oswaldo Cruz (Fiocruz), Instituto Oswaldo Cruz, Laboratório de Morfologia e Morfogênese Viral, Rio de Janeiro, RJ, Brazil.
| | - Derick Mendes Bandeira
- Fundação Oswaldo Cruz (Fiocruz), Instituto Oswaldo Cruz, Laboratório de Morfologia e Morfogênese Viral, Rio de Janeiro, RJ, Brazil
| | - Marcos Alexandre Nunes da Silva
- Fundação Oswaldo Cruz (Fiocruz), Instituto Oswaldo Cruz, Laboratório de Morfologia e Morfogênese Viral, Rio de Janeiro, RJ, Brazil
| | - Ana Luisa Teixeira de Almeida
- Fundação Oswaldo Cruz (Fiocruz), Instituto Oswaldo Cruz, Laboratório de Morfologia e Morfogênese Viral, Rio de Janeiro, RJ, Brazil
| | - Mia Araújo
- Fundação Oswaldo Cruz (Fiocruz), Instituto Oswaldo Cruz, Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Rio de Janeiro, RJ, Brazil
| | - Ana Beatriz Machado
- Fundação Oswaldo Cruz (Fiocruz), Instituto Oswaldo Cruz, Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Rio de Janeiro, RJ, Brazil
| | - Luis Fernando Lopez Tort
- Fundação Oswaldo Cruz (Fiocruz), Instituto Oswaldo Cruz, Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Rio de Janeiro, RJ, Brazil; Universidad de la República, Centro Universitario Regional - Litoral Norte, Laboratório de Virologia Molecular, Departamento de Ciências Biológicas, Salto, Uruguai
| | - Valéria Pereira Nacife
- Fundação Oswaldo Cruz (Fiocruz), Instituto Oswaldo Cruz, Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Rio de Janeiro, RJ, Brazil
| | - Marilda M Siqueira
- Fundação Oswaldo Cruz (Fiocruz), Instituto Oswaldo Cruz, Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Rio de Janeiro, RJ, Brazil
| | - Fernando Couto Motta
- Fundação Oswaldo Cruz (Fiocruz), Instituto Oswaldo Cruz, Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Rio de Janeiro, RJ, Brazil
| | - Alex Pauvolid-Corrêa
- Fundação Oswaldo Cruz (Fiocruz), Instituto Oswaldo Cruz, Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Rio de Janeiro, RJ, Brazil; Universidade Federal de Viçosa, Departamento de Veterinária, Laboratório de Virologia Veterinária de Viçosa, Viçosa, MG, Brazil
| | - Ortrud Monika Barth
- Fundação Oswaldo Cruz (Fiocruz), Instituto Oswaldo Cruz, Laboratório de Morfologia e Morfogênese Viral, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
49
|
Karousis ED, Schubert K, Ban N. Coronavirus takeover of host cell translation and intracellular antiviral response: a molecular perspective. EMBO J 2024; 43:151-167. [PMID: 38200146 PMCID: PMC10897431 DOI: 10.1038/s44318-023-00019-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/01/2023] [Accepted: 11/24/2023] [Indexed: 01/12/2024] Open
Abstract
Coronaviruses are a group of related RNA viruses that cause respiratory diseases in humans and animals. Understanding the mechanisms of translation regulation during coronaviral infections is critical for developing antiviral therapies and preventing viral spread. Translation of the viral single-stranded RNA genome in the host cell cytoplasm is an essential step in the life cycle of coronaviruses, which affects the cellular mRNA translation landscape in many ways. Here we discuss various viral strategies of translation control, including how members of the Betacoronavirus genus shut down host cell translation and suppress host innate immune functions, as well as the role of the viral non-structural protein 1 (Nsp1) in the process. We also outline the fate of viral RNA, considering stress response mechanisms triggered in infected cells, and describe how unique viral RNA features contribute to programmed ribosomal -1 frameshifting, RNA editing, and translation shutdown evasion.
Collapse
Affiliation(s)
- Evangelos D Karousis
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Katharina Schubert
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
50
|
Isham IM, Abd-Elsalam RM, Mahmoud ME, Najimudeen SM, Ranaweera HA, Ali A, Hassan MSH, Cork SC, Gupta A, Abdul-Careem MF. Comparison of Infectious Bronchitis Virus (IBV) Pathogenesis and Host Responses in Young Male and Female Chickens. Viruses 2023; 15:2285. [PMID: 38140526 PMCID: PMC10747771 DOI: 10.3390/v15122285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Infectious bronchitis virus (IBV) is an avian coronavirus that causes a disease in chickens known as infectious bronchitis (IB). The pathogenesis of IBV and the host immune responses against it depend on multiple factors such as the IBV variant, breed and age of the chicken, and the environment provided by the management. Since there is limited knowledge about the influence of the sex of chickens in the pathogenesis of IBV, in this study we aim to compare IBV pathogenesis and host immune responses in young male and female chickens. One-week-old specific pathogen-free (SPF) White Leghorn male and female chickens were infected with Canadian Delmarva (DMV)/1639 IBV variant at a dose of 1 × 106 embryo infectious dose (EID)50 by the oculo-nasal route while maintaining uninfected controls, and these chickens were euthanized and sampled 4- and 11-days post-infection (dpi). No significant difference was observed between the infected male and female chickens in IBV shedding, IBV genome load in the trachea, lung, kidney, bursa of Fabricius (BF), thymus, spleen, and cecal tonsils (CT), and IBV-induced lesion in all the examined tissues at both 4 and 11 dpi. In addition, there was no significant difference in the percentage of IBV immune-positive area observed between the infected male and female chickens in all tissues except for the kidney, which expressed an increased level of IBV antigen in infected males compared with females at both 4 and 11 dpi. The percentage of B lymphocytes was not significantly different between infected male and female chickens in all the examined tissues. The percentage of CD8+ T cells was not significantly different between infected male and female chickens in all the examined tissues except in the trachea at 11 dpi, where female chickens had higher recruitment when compared with male chickens. Overall, although most of the findings of this study suggest that the sex of chickens does not play a significant role in the pathogenesis of IBV and the host immune response in young chickens, marginal differences in viral replication and host responses could be observed to indicate that IBV-induced infection in male chickens is more severe.
Collapse
Affiliation(s)
- Ishara M. Isham
- Health Research Innovation Center 2C53, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; (I.M.I.); (R.M.A.-E.); (M.E.M.); (S.M.N.); (H.A.R.); (A.A.); (M.S.H.H.); (S.C.C.); (A.G.)
| | - Reham M. Abd-Elsalam
- Health Research Innovation Center 2C53, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; (I.M.I.); (R.M.A.-E.); (M.E.M.); (S.M.N.); (H.A.R.); (A.A.); (M.S.H.H.); (S.C.C.); (A.G.)
- Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Motamed E. Mahmoud
- Health Research Innovation Center 2C53, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; (I.M.I.); (R.M.A.-E.); (M.E.M.); (S.M.N.); (H.A.R.); (A.A.); (M.S.H.H.); (S.C.C.); (A.G.)
- Department of Animal Husbandry, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
| | - Shahnas M. Najimudeen
- Health Research Innovation Center 2C53, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; (I.M.I.); (R.M.A.-E.); (M.E.M.); (S.M.N.); (H.A.R.); (A.A.); (M.S.H.H.); (S.C.C.); (A.G.)
| | - Hiruni A. Ranaweera
- Health Research Innovation Center 2C53, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; (I.M.I.); (R.M.A.-E.); (M.E.M.); (S.M.N.); (H.A.R.); (A.A.); (M.S.H.H.); (S.C.C.); (A.G.)
| | - Ahmed Ali
- Health Research Innovation Center 2C53, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; (I.M.I.); (R.M.A.-E.); (M.E.M.); (S.M.N.); (H.A.R.); (A.A.); (M.S.H.H.); (S.C.C.); (A.G.)
- Department of Pathology, Beni-Suef University, Beni Suef 62521, Egypt
| | - Mohamed S. H. Hassan
- Health Research Innovation Center 2C53, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; (I.M.I.); (R.M.A.-E.); (M.E.M.); (S.M.N.); (H.A.R.); (A.A.); (M.S.H.H.); (S.C.C.); (A.G.)
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
| | - Susan C. Cork
- Health Research Innovation Center 2C53, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; (I.M.I.); (R.M.A.-E.); (M.E.M.); (S.M.N.); (H.A.R.); (A.A.); (M.S.H.H.); (S.C.C.); (A.G.)
| | - Ashish Gupta
- Health Research Innovation Center 2C53, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; (I.M.I.); (R.M.A.-E.); (M.E.M.); (S.M.N.); (H.A.R.); (A.A.); (M.S.H.H.); (S.C.C.); (A.G.)
| | - Mohamed Faizal Abdul-Careem
- Health Research Innovation Center 2C53, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; (I.M.I.); (R.M.A.-E.); (M.E.M.); (S.M.N.); (H.A.R.); (A.A.); (M.S.H.H.); (S.C.C.); (A.G.)
| |
Collapse
|