1
|
Ben Youssef M, Omrani A, Sifaoui I, Hernández-Álvarez E, Chao-Pellicer J, Bazzocchi IL, Sebai H, Piñero JE, Jimenez IA, Lorenzo-Morales J. Amoebicidal thymol analogues against brain-eating amoeba, Naegleria fowleri. Bioorg Chem 2025; 159:108346. [PMID: 40107039 DOI: 10.1016/j.bioorg.2025.108346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/22/2025]
Abstract
Naegleria fowleri, known as the brain-eating amoeba, is the pathogen parasite that causes primary amoebic meningoencephalitis. None of the currently available therapies are fully effective, mainly due to the inefficacy of pharmacotherapy. In this regard, natural products and related compounds represent a promising strategy for amoebicidal drug discovery. Herein, a series of eight monoterpene phenol derivatives of thymol bearing ester, carbonate, or carbamate moieties were prepared, and screened as potential amoebicidal agents on N. fowleri. The cytotoxicity of these compounds on murine macrophages cell line J774 was also evaluated to assess their selectivity. Compounds 3, 4, 7 and 8 showed significant activity against the N. fowleri trophozoite. Moreover, 4-nitrophenyl thymyl carbonate 8 displayed the highest potency, showing IC50 values of 22.87 and 25.16 μM against N. fowleri trophozoite and cyst stages, respectively, coupled with low cytotoxicity on a mammal cell line. Furthermore, mechanism of action studies revealed that derivative 8 triggered programmed cell death via cytosolic calcium accumulation, mitochondrial alteration, membrane damage, chromatin condensation, and ROS accumulation. In addition, the in-silico ADME analysis indicated that derivative 8 exhibits exceptional drug-likeness meeting all the pharmacokinetic criteria. These results highlight derivative 8 as a promising amoebicidal agent to develop new drugs for the treatment of Naegleria infections.
Collapse
Affiliation(s)
- Meriam Ben Youssef
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, 38296 La Laguna, Tenerife, Spain; Laboratory of Functional Physiology and Valorization of Bio-Ressources, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja 382-9000, Tunisia; Instituto Universitario de Bio-Orgánica Antonio González, and Departamento de Química Orgánica, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain
| | - Amani Omrani
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, 38296 La Laguna, Tenerife, Spain; Laboratory of Functional Physiology and Valorization of Bio-Ressources, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja 382-9000, Tunisia; Instituto Universitario de Bio-Orgánica Antonio González, and Departamento de Química Orgánica, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain
| | - Ines Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, 38296 La Laguna, Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, C/ Sta. María Soledad s/n, 38200 La Laguna, Tenerife, Spain; Consorcio Centro de Investigación Biomédica en Red, Área de Enfermedades Infecciosas (CIBERINFECT), Instituto de Salud Carlos III, Av. Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain
| | - Eduardo Hernández-Álvarez
- Instituto Universitario de Bio-Orgánica Antonio González, and Departamento de Química Orgánica, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain
| | - Javier Chao-Pellicer
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, 38296 La Laguna, Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, C/ Sta. María Soledad s/n, 38200 La Laguna, Tenerife, Spain; Consorcio Centro de Investigación Biomédica en Red, Área de Enfermedades Infecciosas (CIBERINFECT), Instituto de Salud Carlos III, Av. Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain
| | - Isabel L Bazzocchi
- Instituto Universitario de Bio-Orgánica Antonio González, and Departamento de Química Orgánica, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain
| | - Hichem Sebai
- Laboratory of Functional Physiology and Valorization of Bio-Ressources, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja 382-9000, Tunisia
| | - José E Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, 38296 La Laguna, Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, C/ Sta. María Soledad s/n, 38200 La Laguna, Tenerife, Spain; Consorcio Centro de Investigación Biomédica en Red, Área de Enfermedades Infecciosas (CIBERINFECT), Instituto de Salud Carlos III, Av. Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain
| | - Ignacio A Jimenez
- Instituto Universitario de Bio-Orgánica Antonio González, and Departamento de Química Orgánica, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain.
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, 38296 La Laguna, Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, C/ Sta. María Soledad s/n, 38200 La Laguna, Tenerife, Spain; Consorcio Centro de Investigación Biomédica en Red, Área de Enfermedades Infecciosas (CIBERINFECT), Instituto de Salud Carlos III, Av. Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain
| |
Collapse
|
2
|
Lazarte-Rantes C, Sinti-Ycochea M, Guillen-Pinto D. Pediatric non-congenital central nervous system infections: role of imaging in the emergency department. Pediatr Radiol 2025; 55:806-823. [PMID: 40019500 DOI: 10.1007/s00247-025-06193-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 03/01/2025]
Abstract
Neurological emergencies in pediatric patients, including central nervous system infections like meningitis and encephalitis, account for significant morbidity and mortality. Neuroimaging plays an important role in the management of these infections, especially when children present with non-specific symptoms such as fever, seizures, or altered consciousness. While computed tomography scans are typically the initial imaging step, magnetic resonance imaging is preferred for its superior detail and lack of ionizing radiation. Radiologists play a crucial role in guiding clinicians to select the appropriate imaging modality based on clinical presentation, patient age, and available technology. Optimizing techniques for these studies may help to give an overview of imaging protocols and an optimal diagnostic algorithm for these patients. In this article, we delineate the prevalent radiological manifestations associated with the primary etiological agents of central nervous system infections, encompassing bacteria, fungi, viruses, and parasites. Furthermore, we share our clinical experience with particular radiologic findings in select pathologies, underscoring the critical importance of evaluating these non-congenital infections within the context of emergency medical care.
Collapse
Affiliation(s)
- Claudia Lazarte-Rantes
- Instituto Nacional de Salud del Niño-San Borja, Av. Javier Prado Este 3101, San Borja, 5037, Peru, Lima.
- RESOCENTRO, Av. Petit Thouars 4427, Miraflores, 15046, Peru, Lima.
| | - Mario Sinti-Ycochea
- Instituto Nacional de Salud del Niño-San Borja, Av. Javier Prado Este 3101, San Borja, 5037, Peru, Lima
- Children's Hospital of Philadelphia, 734 Schuylkill Ave, Philadelphia, PA, 19146, USA
| | - Daniel Guillen-Pinto
- Hospital Nacional Cayetano Heredia, Av. Honorio Delgado 262, San Martín de Porres, 15102, Peru, Lima
| |
Collapse
|
3
|
Alanazi A, Younas S, Ejaz H, Alruwaili M, Alruwaili Y, Mazhari BBZ, Atif M, Junaid K. Advancing the understanding of Naegleria fowleri: Global epidemiology, phylogenetic analysis, and strategies to combat a deadly pathogen. J Infect Public Health 2025; 18:102690. [PMID: 39913985 DOI: 10.1016/j.jiph.2025.102690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 03/15/2025] Open
Abstract
Naegleria fowleri is a rare but deadly pathogen that has emerged as an important global public health concern. The pathogen induces primary amoebic meningoencephalitis (PAM), a rapidly progressive and almost always fatal life-threatening brain infection. The devastating impact of N. fowleri and the high mortality rate underscores a deeper understanding and the development of innovative strategies to tackle this issue. Despite various studies that have been conducted on N. fowleri, a comprehensive review that integrates recent findings and addresses critical gaps in understanding remains lacking. This review provides a detailed overview of N. fowleri epidemiology, transmission dynamics, phylogenetic diversity, state-of-the-art diagnostic techniques, therapeutic approaches, and preventive measures. We identified 488 PAM cases globally, reported since 1962, with the highest numbers in the US, Pakistan, and Australia. A phylogenetic analysis of 41 N. fowleri ITS-1, 5.8S, ITS-2 region-based sequences showed genotypic diversity, with genotypes II and III being the most prevalent in Asia, North America, and Europe. Effective approaches to preventing N. fowleri transmission include applying free chlorine to water in storage tanks, taking precautions while swimming, and performing ablution with sterilized water (e.g., boiled or distilled) while avoiding deep inhalation of water, especially in regions with high water contamination. This review highlights the global impact of N. fowleri, future surveillance strategies, prompt diagnosis, potential therapeutic options, and vaccine development to prevent PAM outbreaks. It highlights the importance of joint government and public health efforts to combat this deadly pathogen.
Collapse
Affiliation(s)
- Awadh Alanazi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia.
| | - Sonia Younas
- HKU-Pasteur Research Pole, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong; Centre for Immunology and Infection (C2i), Hong Kong Science and Technology Park, Hong Kong
| | - Hasan Ejaz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia.
| | - Muharib Alruwaili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Yasir Alruwaili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia; Sustainable Development Research and Innovation Center, Deanship of Graduate Studies and Scientific Research, Jouf University, Sakaka, Saudi Arabia
| | - Bi Bi Zainab Mazhari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Qurayyat, Saudi Arabia
| | - Muhammad Atif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Kashaf Junaid
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
4
|
Rodríguez-Mera IB, Rojas-Hernández S, Bonilla-Lemus P, Esquivel-Solís M, Carrillo-Morales F, Gutiérrez-Sánchez M, López-Reyes I, Osornio-Rojas JL, Carrasco-Yépez MM. Identification of Naegleria fowleri antigens recognized by serum antibodies from people of Mexicali Valley, México. Parasitol Res 2025; 124:33. [PMID: 40088312 PMCID: PMC11910403 DOI: 10.1007/s00436-025-08476-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/28/2025] [Indexed: 03/17/2025]
Abstract
Naegleria fowleri is an amoeba that causes a fatal disease in the central nervous system known as primary amoebic meningoencephalitis (PAM) in humans. Most of the infections are acquired by people who practice recreational activities in water contaminated with trophozoites. Swimming and wading in irrigation channels of Mexicali are common practices for local people. Although there are some warning signposts in the surrounding sites, people continue using these channels for recreational purposes. In that region, cases of PAM have been reported; however, not everyone who comes into contact with contaminated water containing trophozoites becomes infected, and the factors influencing their immune response to N. fowleri remain unknown. We analyzed the levels of antibodies against N. fowleri in two groups: local individuals, including visitors who swam in the Mexicali channels, and a group from Mexico City (CDMX). In both groups, specific antibody responses were analyzed using immunoassays, including Western blot, ELISA, and cytochemistry. The highest levels of both IgG and IgA were found in samples from Mexicali, compared to those from CDMX. In both groups, IgG recognized polypeptide bands from N. fowleri at molecular weights of 100, 50, and 19 kDa, bands that we have already reported as immunogenic. Moreover, the IgG subjects recognized trophozoite structures such as membrane, pseudopodia, food cups, and even small like-vesicles. This antibody immune response directed against these polypeptide bands and trophozoite structures along with other factors could be participating in the defense of these people against PAM.
Collapse
Affiliation(s)
- Itzel Berenice Rodríguez-Mera
- Laboratorio de Microbiología Ambiental, Grupo CyMA, UIICSE, FES Iztacala, Universidad Nacional Autónoma de México, Estado de México, Tlalnepantla de Baz, México
| | - Saúl Rojas-Hernández
- Laboratorio de Inmunología Molecular y de Mucosas, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico, México
| | - Patricia Bonilla-Lemus
- Laboratorio de Microbiología Ambiental, Grupo CyMA, UIICSE, FES Iztacala, Universidad Nacional Autónoma de México, Estado de México, Tlalnepantla de Baz, México
| | - Mariela Esquivel-Solís
- Laboratorio de Inmunología Molecular y de Mucosas, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico, México
| | - Frida Carrillo-Morales
- Laboratorio de Inmunología Molecular y de Mucosas, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico, México
| | - Mara Gutiérrez-Sánchez
- Laboratorio de Inmunología Molecular y de Mucosas, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico, México
| | - Israel López-Reyes
- Universidad Autónoma de La Ciudad de México (UACM), Plantel Cuautepec, Av. La Corona 320, Col. Loma La Palma, Alcaldía Gustavo A. Madero, C.P. 07160, Ciudad de Mexico, México
| | - José Luis Osornio-Rojas
- Departamento de Estomatología, Universidas Autónoma de Ciudad Juarez, Ciudad Juárez, Chihuahua, México
| | - María Maricela Carrasco-Yépez
- Laboratorio de Microbiología Ambiental, Grupo CyMA, UIICSE, FES Iztacala, Universidad Nacional Autónoma de México, Estado de México, Tlalnepantla de Baz, México.
| |
Collapse
|
5
|
Siddiqui R, Lloyd D, Khan NA. Emerging patents versus brain eating amoebae, Naegleria fowleri. Pharm Pat Anal 2025:1-6. [PMID: 39901763 DOI: 10.1080/20468954.2025.2459584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/21/2025] [Indexed: 02/05/2025]
Abstract
Primary Amoebic Meningoencephalitis (PAM) is a severe and often fatal infection caused by the free-living amoebae Naegleria fowleri. This condition typically results from exposure to contaminated warm freshwater/inadequately treated recreational water/or ablution/nasal irrigation with contaminated water. The management of PAM is hindered by the absence of effective treatment coupled with challenges in early diagnosis. This review explores emerging patents that could be utilized for the treatment, diagnosis of PAM, as well as water treatment. Recent patents from the past five years, along with research and innovations are reviewed and categorized into therapeutic agents, water treatment technologies, and diagnostic methods. It is hoped that collaboration and awareness between pharmaceutical companies, water industries, and academic institutions is essential for advancing effective strategies against this severe central nervous system pathogen.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University Edinburgh, Edinburgh, UK
- Microbiota Research Center, Istinye University, Istanbul, Turkey
| | - David Lloyd
- Microbiology Research, School of Biosciences, Cardiff University, Cardiff, UK
| | - Naveed Ahmed Khan
- Microbiota Research Center, Istinye University, Istanbul, Turkey
- School of Science, College of Science and Engineering, University of Derby, Derby, UK
| |
Collapse
|
6
|
Phung NTN, Pham HT, Tran TT, Dinh VH, Tran NM, Tran NAN, Ngo MQN, Nguyen HTT, Tran DK, Le TKT, Quek C, Pham VH, Pham ST. Naegleria fowleri: Portrait of a Cerebral Killer. Diagnostics (Basel) 2025; 15:89. [PMID: 39795618 PMCID: PMC11719733 DOI: 10.3390/diagnostics15010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Background: Primary amebic meningoencephalitis (PAM) caused by Naegleria fowleri is a rare and devastating infection of the central nervous system, often diagnosed late, due to its rapid progression and nonspecific symptoms. Case Presentation: We report one of the youngest documented pediatric Vietnamese cases of PAM in a 10-month-old girl from the Mekong Delta, Vietnam. The diagnosis was confirmed through multiplex real-time PCR (MPL-rPCR), microscopy, and sequencing. Clinical data were gathered retrospectively from medical records, and additional details were provided by the patient's family. Treatment regimens, disease progression, and diagnostic challenges were reviewed and compared to existing literature. With intensive treatment, the child survived for 14 days, representing one of the longest reported pediatric PAM survival durations. No direct exposure to untreated freshwater or other typical risk factors for Naegleria fowleri infection was identified, underscoring the unique epidemiological nature of this case. MPL-rPCR enabled timely detection of the pathogen and demonstrated its utility in resource-limited settings. Conclusions: This case highlights the critical need for rapid, accessible diagnostic tools such as MPL-rPCR, particularly in resource-constrained environments where traditional diagnostics may not be feasible. It also emphasizes the importance of international collaboration and investment in cost-effective diagnostics and novel therapeutic strategies. The geographical expansion of PAM due to climate change further underscores the urgency of these measures to improve health outcomes in vulnerable populations.
Collapse
Affiliation(s)
- Nguyen The Nguyen Phung
- Department of Pediatrics, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam; (N.T.N.P.); (T.T.T.)
- Children’s Hospital 1, Ho Chi Minh City 700000, Vietnam; (V.H.D.); (N.M.T.); (N.A.N.T.); (M.Q.N.N.); (H.T.T.N.)
| | - Huong Thien Pham
- Vietnam Research and Development Institute of Clinical Microbiology, Ho Chi Minh City 700000, Vietnam; (H.T.P.); (D.K.T.); (T.K.T.L.)
| | - Thuc Thanh Tran
- Department of Pediatrics, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam; (N.T.N.P.); (T.T.T.)
- Children’s Hospital 1, Ho Chi Minh City 700000, Vietnam; (V.H.D.); (N.M.T.); (N.A.N.T.); (M.Q.N.N.); (H.T.T.N.)
| | - Vu Hoang Dinh
- Children’s Hospital 1, Ho Chi Minh City 700000, Vietnam; (V.H.D.); (N.M.T.); (N.A.N.T.); (M.Q.N.N.); (H.T.T.N.)
| | - Nhut Minh Tran
- Children’s Hospital 1, Ho Chi Minh City 700000, Vietnam; (V.H.D.); (N.M.T.); (N.A.N.T.); (M.Q.N.N.); (H.T.T.N.)
| | - Nuong Ai Nguyen Tran
- Children’s Hospital 1, Ho Chi Minh City 700000, Vietnam; (V.H.D.); (N.M.T.); (N.A.N.T.); (M.Q.N.N.); (H.T.T.N.)
| | - Minh Quang Ngoc Ngo
- Children’s Hospital 1, Ho Chi Minh City 700000, Vietnam; (V.H.D.); (N.M.T.); (N.A.N.T.); (M.Q.N.N.); (H.T.T.N.)
| | - Huong Thanh Thi Nguyen
- Children’s Hospital 1, Ho Chi Minh City 700000, Vietnam; (V.H.D.); (N.M.T.); (N.A.N.T.); (M.Q.N.N.); (H.T.T.N.)
| | - Duy Khanh Tran
- Vietnam Research and Development Institute of Clinical Microbiology, Ho Chi Minh City 700000, Vietnam; (H.T.P.); (D.K.T.); (T.K.T.L.)
| | - Thao Kieu Thi Le
- Vietnam Research and Development Institute of Clinical Microbiology, Ho Chi Minh City 700000, Vietnam; (H.T.P.); (D.K.T.); (T.K.T.L.)
| | - Camelia Quek
- Sydney Medical School–Westmead, Sydney, NSW 2006, Australia;
| | - Van Hung Pham
- Vietnam Research and Development Institute of Clinical Microbiology, Ho Chi Minh City 700000, Vietnam; (H.T.P.); (D.K.T.); (T.K.T.L.)
| | - Son Truong Pham
- Vietnam Research and Development Institute of Clinical Microbiology, Ho Chi Minh City 700000, Vietnam; (H.T.P.); (D.K.T.); (T.K.T.L.)
- Sydney Medical School–Westmead, Sydney, NSW 2006, Australia;
- New South Wales Health, Sydney, NSW 2065, Australia
- Royal Australian College of General Practitioners, Sydney, NSW 2000, Australia
- Australasian College for Emergency Medicine, Melbourne, VIC 3003, Australia
| |
Collapse
|
7
|
Aurongzeb M, Nazir MA, Yasmin R, Kiran A, Fatima R, Ali R, Khan SA, Ul-Haq A, Al-Regaiey K, Abualait T, Kaleem I, Bashir S. Detection and Confirmation of Naegleria fowleri in a Primary Amebic Meningoencephalitis Patient Using a Molecular Approach. J Parasitol Res 2024; 2024:5514520. [PMID: 39629299 PMCID: PMC11614516 DOI: 10.1155/2024/5514520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/22/2024] [Accepted: 10/12/2024] [Indexed: 12/07/2024] Open
Abstract
The Naegleria fowleri amoeba stands as the primary culprit behind primary amebic meningoencephalitis (PAM), presenting a substantial global public health concern. In recent years, over 17 cases of PAM have been reported in Karachi, Pakistan, highlighting its increased prevalence in the country's most densely populated city. This study scrutinized 74 cerebrospinal fluid (CSF) samples collected from meningitis patients across various health facilities in the city. These samples underwent thorough examination employing biochemical, microbial, and cytological methods. Additionally, polymerase chain reaction (PCR) with specific primers targeting the Naegleria genus and N. fowleri was employed to ascertain the presence of N. fowleri in the CSF samples. While biochemical and cytological analyses provided supportive information, they failed to yield a distinct diagnostic pattern. Nevertheless, through direct microscopic observation, cultural growth, and PCR-based analyses, N. fowleri was definitively identified in one CSF sample.
Collapse
Affiliation(s)
- Muhammad Aurongzeb
- Department of Applied Sciences, FEST, Hamdard University, Karachi 74600, Pakistan
| | - Muhammad Amer Nazir
- Department of Applied Sciences, FEST, Hamdard University, Karachi 74600, Pakistan
| | - Raheela Yasmin
- HITEC-IMS Taxila, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Ammeema Kiran
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Raiha Fatima
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Rehan Ali
- Department of Biosciences, Faculty of Life Sciences, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology (SZABIST), Karachi 75600, Pakistan
| | - Salman Ahmed Khan
- Department of Molecular Medicine, Dow College of Biotechnology, Dow University of Health Sciences, Karachi, Pakistan
| | - Asad Ul-Haq
- Division of Rheumatology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| | - Khalid Al-Regaiey
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Turki Abualait
- College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Eastern Province 34212, Saudi Arabia
| | - Imdad Kaleem
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Shahid Bashir
- Neuroscience Center, King Fahed Specialist Hospital, Dammam, Saudi Arabia
| |
Collapse
|
8
|
Borkens Y. The Pathology of the Brain Eating Amoeba Naegleria fowleri. Indian J Microbiol 2024; 64:1384-1394. [PMID: 39282207 PMCID: PMC11399382 DOI: 10.1007/s12088-024-01218-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 02/02/2024] [Indexed: 09/18/2024] Open
Abstract
The genus Naegleria is a taxonomic subfamily consisting of 47 free-living amoebae. The genus can be found in warm aqueous or soil habitats worldwide. The species Naegleria fowleri is probably the best-known species of this genus. As a facultative parasite, the protist is not dependent on hosts to complete its life cycle. However, it can infect humans by entering the nose during water contact, such as swimming, and travel along the olfactory nerve to the brain. There it causes a purulent meningitis (primary amoebic meningoencephalitis or PAME). Symptoms are severe and death usually occurs within the first week. PAME is a frightening infectious disease for which there is neither a proven cure nor a vaccine. In order to contain the disease and give patients any chance to survival, action must be taken quickly. A rapid diagnosis is therefore crucial. PAME is diagnosed by the detection of amoebae in the liquor and later in the cerebrospinal fluid. For this purpose, CSF samples are cultured and stained and finally examined microscopically. Molecular techniques such as PCR or ELISA support the microscopic analysis and secure the diagnosis.
Collapse
Affiliation(s)
- Yannick Borkens
- Institut für Pathologie, Charité Campus Mitte, Virchowweg 15, Charité, 10117 Berlin, Germany
- Humboldt-Universität zu Berlin, Unter den Linden 6, 10117 Berlin, Germany
| |
Collapse
|
9
|
Fong H, Leid ZH, Debnath A. Approaches for Targeting Naegleria fowleri Using Nanoparticles and Artificial Peptides. Pathogens 2024; 13:695. [PMID: 39204295 PMCID: PMC11357329 DOI: 10.3390/pathogens13080695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
Naegleria fowleri is a free-living amoeba which causes primary amoebic meningoencephalitis (PAM). Although PAM is rare, the fatality rate is staggering at over 97%. So, the importance of finding an effective treatment and cure for PAM caused by N. fowleri is a crucial area of research. Existing research on developing novel therapeutic strategies to counter N. fowleri infection is limited. Since the blood-brain barrier (BBB) presents an obstacle to delivering drugs to the site of infection, it is important to employ strategies that can effectively direct the therapeutics to the brain. In this regard, our review focuses on understanding the physiology and mechanisms by which molecules pass through the BBB, the current treatment options available for PAM, and the recent research conducted in the decade of 2012 to 2022 on the use of nanomaterials to enhance drug delivery. In addition, we compile research findings from other central nervous system (CNS) diseases that use shuttle peptides which allow for transport of molecules through the BBB. The approach of utilizing BBB shuttles to administer drugs through the BBB may open up new areas of drug discovery research in the field of N. fowleri infection.
Collapse
Affiliation(s)
| | | | - Anjan Debnath
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA; (H.F.); (Z.H.L.)
| |
Collapse
|
10
|
Martinez-Castillo M, Ramírez-Rico G, Shibayama M, de la Garza M, Serrano-Luna J. Lactoferrin and Lysozyme Inhibit the Proteolytic Activity and Cytopathic Effect of Naegleria fowleri Enzymes. Pathogens 2024; 13:44. [PMID: 38251351 PMCID: PMC10819050 DOI: 10.3390/pathogens13010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/21/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024] Open
Abstract
Naegleria fowleri is a ubiquitous free-living amoeba that causes primary amoebic meningoencephalitis. As a part of the innate immune response at the mucosal level, the proteins lactoferrin (Lf) and lysozyme (Lz) are secreted and eliminate various microorganisms. We demonstrate that N. fowleri survives the individual and combined effects of bovine milk Lf (bLf) and chicken egg Lz (cLz). Moreover, amoebic proliferation was not altered, even at 24 h of co-incubation with each protein. Trophozoites' ultrastructure was evaluated using transmission electron microscopy, and these proteins did not significantly alter their organelles and cytoplasmic membranes. Protease analysis using gelatin-zymograms showed that secreted proteases of N. fowleri were differentially modulated by bLf and cLz at 3, 6, 12, and 24 h. The bLf and cLz combination resulted in the inhibition of N. fowleri-secreted proteases. Additionally, the use of protease inhibitors on bLf-zymograms demonstrated that secreted cysteine proteases participate in the degradation of bLf. Nevertheless, the co-incubation of trophozoites with bLf and/or cLz reduced the cytopathic effect on the MDCK cell line. Our study suggests that bLf and cLz, alone or together, inhibited secreted proteases and reduced the cytopathic effect produced by N. fowleri; however, they do not affect the viability and proliferation of the trophozoites.
Collapse
Affiliation(s)
- Moises Martinez-Castillo
- Liver, Pancreas and Motility Laboratory, Unit of Research in Experimental Medicine, School of Medicine, Autonomous National University of Mexico (UNAM), Mexico City 06720, Mexico;
| | - Gerardo Ramírez-Rico
- Department of Cell Biology, Center for Research and Advanced Studies, Mexico City 07360, Mexico; (G.R.-R.); (M.d.l.G.)
- Faculty of Professional Studies Cuautitlan, Autonomous National University of Mexico, Mexico City 54714, Mexico
| | - Mineko Shibayama
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies, Mexico City 07360, Mexico
| | - Mireya de la Garza
- Department of Cell Biology, Center for Research and Advanced Studies, Mexico City 07360, Mexico; (G.R.-R.); (M.d.l.G.)
| | - Jesús Serrano-Luna
- Department of Cell Biology, Center for Research and Advanced Studies, Mexico City 07360, Mexico; (G.R.-R.); (M.d.l.G.)
| |
Collapse
|
11
|
Yuan A, Fong H, Nguyen JV, Nguyen S, Norman P, Cullum R, Fenical W, Debnath A. High-Throughput Screen of Microbial Metabolites Identifies F 1F O ATP Synthase Inhibitors as New Leads for Naegleria fowleri Infection. ACS Infect Dis 2023; 9:2622-2631. [PMID: 37943251 DOI: 10.1021/acsinfecdis.3c00437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Primary amebic meningoencephalitis (PAM), a brain infection caused by a free-living ameba Naegleria fowleri, leads to an extensive inflammation of the brain and death within 1-18 (median 5) days after symptoms begin. Although natural products have played a significant role in the development of drugs for over a century, research focusing on identifying new natural product-based anti-N. fowleri agents is limited. We undertook a large-scale ATP bioluminescence-based screen of about 10,000 unique marine microbial metabolite mixtures against the trophozoites of N. fowleri. Our screen identified about 100 test materials with >90% inhibition at 50 μg/mL and a dose-response study found 20 of these active test materials exhibiting an EC50 ranging from 0.2 to 2 μg/mL. Examination of four of these potent metabolite mixtures, derived from our actinomycete strains CNT671, CNT756, and CNH301, resulted in the isolation of a pure metabolite identified as oligomycin D. Oligomycin D exhibited nanomolar potency on multiple genotypes of N. fowleri, and it was five- or 850-times more potent than the recommended drugs amphotericin B or miltefosine. Oligomycin D is fast-acting and reached its EC50 in 10 h, and it was also able to inhibit the invasiveness of N. fowleri significantly when tested on a matrigel invasion assay. Since oligomycin is known to manifest inhibitory activity against F1FO ATP synthase, we tested different F1FO ATP synthase inhibitors and identified a natural peptide leucinostatin as a fast-acting amebicidal compound with nanomolar potency on multiple strains.
Collapse
Affiliation(s)
- Alice Yuan
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Hayley Fong
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Jennifer V Nguyen
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Sophia Nguyen
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Payton Norman
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Reiko Cullum
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - William Fenical
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Anjan Debnath
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
12
|
Karimi A, Kheirandish F, Javadi Mamaghani A, Taghipour N, Mousavi SF, Aghajani A, Zebardast N, Faraji M, Fallahi S. Identification and genotyping of Acanthamoeba spp. in the water resources of western Iran. Parasite Epidemiol Control 2023; 22:e00308. [PMID: 37638113 PMCID: PMC10450349 DOI: 10.1016/j.parepi.2023.e00308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 08/29/2023] Open
Abstract
Background Acanthamoeba spp. is opportunistic amoeba that resides in water, soil, and air. Some pathogenic genotypes of the genus of Acanthamoeba can cause granulomatous amoebic encephalitis (GAE) in people with a defective immune system. The parasite can also cause Acanthamoeba keratitis (AK) among contact lens users. This study was conducted to isolate and identify the Acanthamoeba genotypes in water resources in Lorestan province, western Iran. Methods Collected 72 water samples from surface and groundwater (springs and aqueducts) in Lorestan province. Samples were filtered and cultured in non-nutrient 1.5% agar medium covered with Escherichia coli (E. coli) at 25 °C. DNA extraction was done and the PCR reaction was performed to detect the Acanthamoeba spp. The positive PCR products were sequenced to determine the genotypes of Acanthamoeba. Results Out of 72 examined water samples, 23.61% were positive for Acanthamoeba sp. by PCR. From PCR-positive samples, 8 (47.05%) samples were T4 genotypes and others were other Acanthamoeba genotypes (T1-T23). Therefore, approximately half of the genotypes belong to the pathogenic T4 genotype. Conclusions The water examined samples in western provinces of Iran have the potential risk factor for public health. Therefore, the efforts of healthcare providers are needed to identify, train, and prevention from human infections.
Collapse
Affiliation(s)
- Azadeh Karimi
- Department of Medical Parasitology and Mycology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Farnaz Kheirandish
- Department of Medical Parasitology and Mycology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Amirreza Javadi Mamaghani
- Hepatitis Research Center, Department of Medical Parasitology and Mycology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Niloofar Taghipour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Syedeh Fatemeh Mousavi
- Department of Medical Parasitology and Mycology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Ali Aghajani
- Department of Medical Parasitology and Mycology, faculty of medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Nozhat Zebardast
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Majid Faraji
- MSc in Parasitology, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shirzad Fallahi
- Department of Medical Parasitology and Mycology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
13
|
Gutiérrez-Sánchez M, Carrasco-Yépez MM, Correa-Basurto J, Ramírez-Salinas GL, Rojas-Hernández S. Two MP2CL5 Antigen Vaccines from Naegleria fowleri Stimulate the Immune Response against Meningitis in the BALB/c Model. Infect Immun 2023; 91:e0018123. [PMID: 37272791 PMCID: PMC10353451 DOI: 10.1128/iai.00181-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 06/06/2023] Open
Abstract
Naegleria fowleri is an etiological agent that generates primary amoebic meningoencephalitis; unfortunately, no effective treatment or vaccine is available. The objective of this work was to determine the immunoprotective response of two vaccine antigens, as follows: (i) the polypeptide band of 19 kDa or (ii) a predicted immunogenic peptide from the membrane protein MP2CL5 (Smp145). Both antigens were administered intranasally in mice using cholera toxin (CT) as an adjuvant. The survival rate and immune response of immunized mice with both antigens and challenged with N. fowleri trophozoites were measured in the nose-associated lymphoid tissue (NALT) and nasal passages (NPs) by flow cytometry and enzyme-linked immunosorbent assay (ELISA). We also determined the immunolocalization of both antigens in N. fowleri trophozoites by confocal microscopy. Immunization with the polypeptide band of 19 kDa alone or coadministered with CT was able to confer 80% and 100% of protection, respectively. The immunization with both antigens (alone or coadministered with CT) showed an increase in T and B lymphocytes. In addition, there was an increase in the expression of integrin α4β1 and IgA in the nasal cavity of protected mice, and the IgA, IgG, and IgM levels were increased in serum and nasal washes. The immunolocalization of both antigens in N. fowleri trophozoites was observed in the plasma membrane, specifically in pseudopod-like structures. The MP2CL5 antigens evaluated in this work were capable of conferring protection which would lead us to consider them as potential candidates for vaccines against meningitis caused by N. fowleri.
Collapse
Affiliation(s)
- Mara Gutiérrez-Sánchez
- Laboratorio de Inmunobiología Molecular y Celular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - María Maricela Carrasco-Yépez
- Laboratorio de Microbiología, Grupo CyMA, Unidad de Investigación Interdisciplinaria en Ciencias de la Salud y la Educación, Universidad Nacional Autónoma de México, UNAM FES Iztacala, Tlalnepantla, Mexico
| | - José Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotécnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Mexico City, Mexico
| | - Gema Lizbeth Ramírez-Salinas
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotécnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Mexico City, Mexico
| | - Saúl Rojas-Hernández
- Laboratorio de Inmunobiología Molecular y Celular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
14
|
Arberas-Jiménez I, Rodríguez-Expósito RL, San Nicolás-Hernández D, Chao-Pellicer J, Sifaoui I, Díaz-Marrero AR, Fernández JJ, Piñero JE, Lorenzo-Morales J. Marine Meroterpenoids Isolated from Gongolaria abies-marina Induce Programmed Cell Death in Naegleria fowleri. Pharmaceuticals (Basel) 2023; 16:1010. [PMID: 37513922 PMCID: PMC10384572 DOI: 10.3390/ph16071010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Naegleria fowleri is the causative agent of a central nervous system affecting disease called primary amoebic meningoencephalitis. It is a fulminant disease with a rapid progression that affects mainly children and young adults who report previous water exposure. Current treatment options are not totally effective and involve several side effects. In this work, six meroterpenoids isolated from the brown algae Gongolaria abies-marina were evaluated against N. fowleri. Gongolarone B (1), 6Z-1'-methoxyamentadione (2), and 1'-methoxyamentadione (3) were the most active molecules against N. fowleri with IC50 values between 13.27 ± 0.96 µM and 21.92 ± 1.60 µM. However, cystomexicone B (6) was the molecule with the highest selectivity index (>8.5). Moreover, all these compounds induced different cellular events compatible with the apoptosis-like PCD process, such as chromatin condensation, damages at the mitochondrial level, cell membrane disruption, and production of reactive oxygen species (ROS). Therefore, G. abies-marina could be considered as a promising source of active molecules to treat the N. fowleri infections.
Collapse
Affiliation(s)
- Iñigo Arberas-Jiménez
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38206 La Laguna, Tenerife, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38206 La Laguna, Tenerife, Spain
| | - Rubén L Rodríguez-Expósito
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38206 La Laguna, Tenerife, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38206 La Laguna, Tenerife, Spain
| | - Desirée San Nicolás-Hernández
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38206 La Laguna, Tenerife, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38206 La Laguna, Tenerife, Spain
| | - Javier Chao-Pellicer
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38206 La Laguna, Tenerife, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38206 La Laguna, Tenerife, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Ines Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38206 La Laguna, Tenerife, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38206 La Laguna, Tenerife, Spain
| | - Ana R Díaz-Marrero
- Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez 3, 38206 La Laguna, Tenerife, Spain
- Instituto de Productos Naturales y Agrobiología (IPNA), Consejo Superior de Investigaciones Científicas (CSIC), Avda. Astrofísico Fco. Sánchez 3, 38206 La Laguna, Tenerife, Spain
| | - José J Fernández
- Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez 3, 38206 La Laguna, Tenerife, Spain
- Departamento de Química Orgánica, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez 3, 38206 La Laguna, Tenerife, Spain
| | - José E Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38206 La Laguna, Tenerife, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38206 La Laguna, Tenerife, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38206 La Laguna, Tenerife, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38206 La Laguna, Tenerife, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28220 Madrid, Spain
| |
Collapse
|
15
|
Baqer NN, Mohammed AS, A.AL-Aboody B, Ismail AM. Genetic Detection of Amoebic Meningoencephalitis Causing by Naegleria Fowleri in Iraq: A Case Report. IRANIAN JOURNAL OF PARASITOLOGY 2023; 18:408-413. [PMID: 37886244 PMCID: PMC10597877 DOI: 10.18502/ijpa.v18i3.13765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/09/2023] [Indexed: 10/28/2023]
Abstract
We diagnosed a case report of amoebic meningoencephalitis by Naegleria fowleri. This case represented the first recording in Iraq where it was not recording previously. This case was diagnosed after the death of an 18-year-old girl patient who lived in a rural area of Mosul in Iraq. Genetics detection of N. fowleri showed PCR product was 183bp for 18S rRNA gene. It was registered as the first recording of Iraqi isolate N. fowleri in GenBank with accession number OP380864.1. It is necessary to examine microscopically the cerebral spinal fluid (CSF) to observe the amoeba stages and exclude the bacterial causative. Rapid diagnosis may help in the treatment of amoebic meningoencephalitis. In addition, genetic identification can diagnose amoeba. Avoiding swimming or using freshwater contributes to prevent amoebic meningoencephalitis infection.
Collapse
Affiliation(s)
- Noor Nihad Baqer
- Water and Environment Directorate, Ministry of Science and Technology, Baghdad, Iraq
| | | | - Bassad A.AL-Aboody
- Department of Biology, College of Science, University of Thi-Qar, Nasiriyah, Iraq
| | | |
Collapse
|
16
|
Arberas-Jiménez I, Cen-Pacheco F, Chao-Pellicer J, Sifaoui I, Rizo-Liendo A, Morales EQ, Daranas AH, Díaz-Marrero AR, Piñero JE, Fernández JJ, Lorenzo-Morales J. Identification and characterization of novel marine oxasqualenoid yucatecone against Naegleria fowleri. Int J Parasitol Drugs Drug Resist 2023; 22:61-71. [PMID: 37270868 PMCID: PMC10258243 DOI: 10.1016/j.ijpddr.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/06/2023]
Abstract
Naegleria fowleri is an opportunistic protozoan, belonging to the free-living amoeba group, that can be found in warm water bodies. It is causative agent the primary amoebic meningoencephalitis, a fulminant disease with a rapid progression that affects the central nervous system. However, no 100% effective treatments are available and those that are currently used involve the appearance of severe side effects, therefore, there is an urgent need to find novel antiamoebic compounds with low toxicity. In this study, the in vitro activity of six oxasqualenoids obtained from the red algae Laurencia viridis was evaluated against two different strains of N. fowleri (ATCC® 30808 and ATCC® 30215) as well as their cytotoxicity against murine macrophages. Yucatecone was the molecule with the highest selectivity index (>2.98 and 5.23 respectively) and it was selected to continue with the cell death type determination assays. Results showed that yucatone induced programmed cell death like responses in treated amoebae causing DNA condensation and cellular membrane damage among others. In this family of oxasqualenoids, it seems that the most significative structural feature to induce activity against N. fowleri is the presence of a ketone at C-18. This punctual oxidation transforms an inactive compound into a lead compound as the yucatecone and 18-ketodehydrotyrsiferol with IC50 values of 16.25 and 12.70 μM, respectively. The assessment of in silico ADME/Tox analysis revealed that the active compounds showed good Human Oral Absorption and demonstrate that are found to be within the limit of approved drug parameter range. Hence, the study highlights promising potential of yucatone to be tested for therapeutic use against primary amoebic meningoencephalitis.
Collapse
Affiliation(s)
- Iñigo Arberas-Jiménez
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n, 38206, La Laguna, Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Tenerife, Spain
| | - Francisco Cen-Pacheco
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain; Facultad de Bioanálisis, Universidad Veracruzana (UV), Agustín de Iturbide s/n, Centro, Veracruz, 91700, Mexico
| | - Javier Chao-Pellicer
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n, 38206, La Laguna, Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Tenerife, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, 28220, Spain
| | - Ines Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n, 38206, La Laguna, Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Tenerife, Spain
| | - Aitor Rizo-Liendo
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n, 38206, La Laguna, Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Tenerife, Spain
| | - Ezequiel Q Morales
- Instituto de Productos Naturales y Agrobiología (IPNA), Consejo Superior de Investigaciones Científicas (CSIC), Avda. Astrofísico Francisco Sánchez 3, La Laguna, 38206, Tenerife, Spain
| | - Antonio H Daranas
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain; Instituto de Productos Naturales y Agrobiología (IPNA), Consejo Superior de Investigaciones Científicas (CSIC), Avda. Astrofísico Francisco Sánchez 3, La Laguna, 38206, Tenerife, Spain
| | - Ana R Díaz-Marrero
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain; Instituto de Productos Naturales y Agrobiología (IPNA), Consejo Superior de Investigaciones Científicas (CSIC), Avda. Astrofísico Francisco Sánchez 3, La Laguna, 38206, Tenerife, Spain.
| | - José E Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n, 38206, La Laguna, Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Tenerife, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, 28220, Spain.
| | - José J Fernández
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain; Departamento de Química Orgánica, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n, 38203 La Laguna, Tenerife, Spain.
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n, 38206, La Laguna, Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Tenerife, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, 28220, Spain.
| |
Collapse
|
17
|
Sousa-Ramos D, Reyes-Batlle M, Bellini NK, Rodríguez-Expósito RL, Piñero JE, Lorenzo-Morales J. Naegleria australiensis isolated from a wastewater treatment station in Santiago Island, Cape Verde. JOURNAL OF WATER AND HEALTH 2023; 21:443-450. [PMID: 37338323 PMCID: wh_2023_008 DOI: 10.2166/wh.2023.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Despite the Naegleria genus being isolated from different natural environments such as water, soil, and air, not all Naegleria species are capable of causing infections in humans, and they are capable of completing their life cycle in environmental niches. However, the presence of this genus may suggest the existence of one of the highly pathogenic free-living amoeba (FLA) species: Naegleria fowleri or the brain-eating amoeba. This facultative parasitic protozoon represents a risk to public health, mainly related to domestic and agricultural waters. In this research, our main objective was to determine the existence of pathogenic protozoa in the Santa Cruz wastewater treatment plant, Santiago Island. Using 5 L of water we confirmed the presence of potentially pathogenic Naegleria australiensis, being the first report on Naegleria species in Cape Verde. This fact demonstrates the low efficiency in the treatment of wastewater and, consequently, a potential threat to public health. Nevertheless, more studies will be needed for the prevention and control of possible infections in this Macaronesian country.
Collapse
Affiliation(s)
- Djeniffer Sousa-Ramos
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez s/n, San Cristóbal de La Laguna, Tenerife 38203, Spain E-mail: ; Both authors have contributed equally to this study
| | - María Reyes-Batlle
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez s/n, San Cristóbal de La Laguna, Tenerife 38203, Spain E-mail: ; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna (ULL), San Cristóbal de La Laguna, Tenerife 38200, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid 28029, Spain; Both authors have contributed equally to this study
| | - Natalia Karla Bellini
- Laboratory of Cell Cycle, Butantan Institute, São Paulo, Brazil; Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Rubén Leocadio Rodríguez-Expósito
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez s/n, San Cristóbal de La Laguna, Tenerife 38203, Spain E-mail: ; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna (ULL), San Cristóbal de La Laguna, Tenerife 38200, Spain
| | - José Enrique Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez s/n, San Cristóbal de La Laguna, Tenerife 38203, Spain E-mail: ; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna (ULL), San Cristóbal de La Laguna, Tenerife 38200, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez s/n, San Cristóbal de La Laguna, Tenerife 38203, Spain E-mail: ; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna (ULL), San Cristóbal de La Laguna, Tenerife 38200, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid 28029, Spain
| |
Collapse
|
18
|
Stahl LM, Olson JB. Investigating the interactive effects of temperature, pH, and salinity on Naegleria fowleri persistence. J Eukaryot Microbiol 2023; 70:e12964. [PMID: 36709487 DOI: 10.1111/jeu.12964] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/14/2022] [Accepted: 01/19/2023] [Indexed: 01/30/2023]
Abstract
Naegleria fowleri causes primary amoebic meningoencephalitis, a deadly infection that occurs when free-living amoebae enter the nose via freshwater and travel to the brain. N. fowleri naturally thrives in freshwater and soil and is thought to be associated with elevated water temperatures. While environmental and laboratory studies have sought to identify what environmental factors influence its presence, many questions remain. This study investigated the interactive effects of temperature, pH, and salinity on N. fowleri in deionized and environmental waters. Three temperatures (15, 25, 35°C), pH values (6.5, 7.5, 8.5), and salinity concentrations (0.5%, 1.5%, 2.5% NaCl) were used to evaluate the growth of N. fowleri via ATP luminescent assays. Results indicated N. fowleri grew best at 25°C, and multiple interactive effects occurred between abiotic factors. Interactions varied slightly by water type but were largely driven by temperature and salinity. Lower temperature increased N. fowleri persistence at higher salinity levels, while low salinity (0.5% NaCl) supported N. fowleri growth at all temperatures. This research provided an experimental approach to assess interactive effects influencing the persistence of N. fowleri. As climate change impacts water temperatures and conditions, understanding the microbial ecology of N. fowleri will be needed minimize pathogen exposure.
Collapse
Affiliation(s)
- Leigha M Stahl
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Julie B Olson
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
| |
Collapse
|
19
|
Distribution and Current State of Molecular Genetic Characterization in Pathogenic Free-Living Amoebae. Pathogens 2022; 11:pathogens11101199. [PMID: 36297255 PMCID: PMC9612019 DOI: 10.3390/pathogens11101199] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/03/2022] [Accepted: 10/15/2022] [Indexed: 11/17/2022] Open
Abstract
Free-living amoebae (FLA) are protozoa widely distributed in the environment, found in a great diversity of terrestrial biomes. Some genera of FLA are linked to human infections. The genus Acanthamoeba is currently classified into 23 genotypes (T1-T23), and of these some (T1, T2, T4, T5, T10, T12, and T18) are known to be capable of causing granulomatous amoebic encephalitis (GAE) mainly in immunocompromised patients while other genotypes (T2, T3, T4, T5, T6, T10, T11, T12, and T15) cause Acanthamoeba keratitis mainly in otherwise healthy patients. Meanwhile, Naegleria fowleri is the causative agent of an acute infection called primary amoebic meningoencephalitis (PAM), while Balamuthia mandrillaris, like some Acanthamoeba genotypes, causes GAE, differing from the latter in the description of numerous cases in patients immunocompetent. Finally, other FLA related to the pathologies mentioned above have been reported; Sappinia sp. is responsible for one case of amoebic encephalitis; Vermamoeba vermiformis has been found in cases of ocular damage, and its extraordinary capacity as endocytobiont for microorganisms of public health importance such as Legionella pneumophila, Bacillus anthracis, and Pseudomonas aeruginosa, among others. This review addressed issues related to epidemiology, updating their geographic distribution and cases reported in recent years for pathogenic FLA.
Collapse
|
20
|
Rodríguez-Mera IB, Carrasco-Yépez MM, Vásquez-Moctezuma I, Correa-Basurto J, Salinas GR, Castillo-Ramírez DA, Rosales-Cruz É, Rojas-Hernández S. Role of cathepsin B of Naegleria fowleri during primary amebic meningoencephalitis. Parasitol Res 2022; 121:3287-3303. [PMID: 36125528 PMCID: PMC9485797 DOI: 10.1007/s00436-022-07660-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022]
Abstract
Naegleria fowleri causes primary amoebic meningoencephalitis in humans and experimental animals. It has been suggested that cysteine proteases of parasites play key roles in metabolism, nutrient uptake, host tissue invasion, and immune evasion. The aim of this work was to evaluate the presence, expression, and role of cathepsin B from N. fowleri in vitro and during PAM. Rabbit-specific polyclonal antibodies against cathepsin B were obtained from rabbit immunization with a synthetic peptide obtained by bioinformatic design. In addition, a probe was designed from mRNA for N. fowleri cathepsin B. Both protein and messenger were detected in fixed trophozoites, trophozoites interacted with polymorphonuclear and histological sections of infected mice. The main cathepsin B distribution was observed in cytoplasm or membrane mainly pseudopods and food-cups while messenger was in nucleus and cytoplasm. Surprisingly, both the messenger and enzyme were observed in extracellular medium. To determine cathepsin B release, we used trophozoites supernatant recovered from nasal passages or brain of infected mice. We observed the highest release in supernatant from recovered brain amoebae, and when we analyzed molecular weight of secreted proteins by immunoblot, we found 30 and 37 kDa bands which were highly immunogenic. Finally, role of cathepsin B during N. fowleri infection was determined; we preincubated trophozoites with E-64, pHMB or antibodies with which we obtained 60%, 100%, and 60% of survival, respectively, in infected mice. These results suggest that cathepsin B plays a role during pathogenesis caused by N. fowleri mainly in adhesion and contributes to nervous tissue damage.
Collapse
Affiliation(s)
- Itzel Berenice Rodríguez-Mera
- Laboratorio de Inmunología Molecular, Instituto Politécnico Nacional, Escuela Superior de Medicina, Salvador Díaz Mirón Esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Ciudad de México, CDMX, 11340, México
| | - María Maricela Carrasco-Yépez
- Laboratorio de Microbiología Ambiental, Estado de México, Universidad Nacional Autónoma de México, Grupo CyMA, UIICSE, FES Iztacala, Tlalnepantla de Baz, México
| | - Ismael Vásquez-Moctezuma
- Laboratorio de Bioquímica, Instituto Politécnico Nacional, Escuela Superior de Medicina, Ciudad de Mexico, México
| | - José Correa-Basurto
- Laboratorio de Modelado Molecular y Diseño de Fármacos, Instituto Politécnico Nacional, Escuela Superior de Medicina, Ciudad de Mexico, México
| | - Gema Ramírez- Salinas
- Laboratorio de Modelado Molecular y Diseño de Fármacos, Instituto Politécnico Nacional, Escuela Superior de Medicina, Ciudad de Mexico, México
| | - Diego Arturo Castillo-Ramírez
- Laboratorio de Inmunología Molecular, Instituto Politécnico Nacional, Escuela Superior de Medicina, Salvador Díaz Mirón Esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Ciudad de México, CDMX, 11340, México
| | - Érika Rosales-Cruz
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Ciudad de Mexico, México
| | - Saúl Rojas-Hernández
- Laboratorio de Inmunología Molecular, Instituto Politécnico Nacional, Escuela Superior de Medicina, Salvador Díaz Mirón Esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Ciudad de México, CDMX, 11340, México.
| |
Collapse
|
21
|
Zinc Oxide Nanoconjugates against Brain-Eating Amoebae. Antibiotics (Basel) 2022; 11:antibiotics11101281. [DOI: 10.3390/antibiotics11101281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Naegleria fowleri and Balamuthia mandrillaris are opportunistic protists, responsible for fatal central nervous system infections such as primary amoebic meningoencephalitis (PAM) and granulomatous amoebic encephalitis (GAE) with mortality rates higher than 90%. Threatening a rise in cases is the increase in temperature due to global warming. No effective treatment is currently available. Herein, nanotechnology was used to conjugate Zinc oxide with Ampicillin, Ceftrixon, Naringin, Amphotericin B, and Quericitin, and the amoebicidal activity and host cell cytotoxicity of these resulting compounds were investigated. The compounds ZnO-CD-AMPi, ZnO-CD-CFT, ZnO-CD-Nar, ZnO-CD-AMB, and ZnO-CD-QT were found to reduce N. fowleri viability to 35.5%, 39.6%, 52.0%, 50.8%, 35.9%, and 69.9%, respectively, and B. mandrillaris viability to 40.9%, 48.2%, 51.6%, 43.8%, and 62.4%, respectively, when compared with their corresponding controls. Furthermore, the compounds reduced N. fowleri-mediated and B. mandrillaris-mediated host cell death significantly. Additionally, the compounds showed limited cytotoxicity against human cells; cell toxicity was 35.5%, 36.4%, 30.9%, 36.6%, and 35.6%, respectively, for the compounds ZnO-CD-AMPi, ZnO-CD-CFT, ZnO-CD-Nar, ZnO-CD-AMB, and ZnO-CD-QT. Furthermore, the minimum inhibitory concentrations to inhibit amoeba growth by 50% were determined for N. fowleri and B. mandrillaris. The MIC50 for N. fowleri were determined to be 69.52 µg/mL, 82.05 µg/mL, 88.16 µg/mL, 95.61 µg/mL, and 85.69 µg/mL, respectively; the MIC50 of the compounds for B. mandrillaris were determined to be 113.9 µg/mL, 102.3 µg/mL, 106.9 µg/mL, 146.4 µg/mL, and 129.6 µg/mL, respectively. Translational research to further develop therapies based on these compounds is urgently warranted, given the lack of effective therapies currently available against these devastating infections.
Collapse
|
22
|
Arberas-Jiménez I, Rizo-Liendo A, Sifaoui I, Chao-Pellicer J, Piñero JE, Lorenzo-Morales J. A Fluorometric Assay for the In Vitro Evaluation of Activity against Naegleria fowleri Cysts. Microbiol Spectr 2022; 10:e0051522. [PMID: 35862997 PMCID: PMC9430148 DOI: 10.1128/spectrum.00515-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/27/2022] [Indexed: 11/20/2022] Open
Abstract
Primary amoebic meningoencephalitis (PAM) is a lethal and rapid infection that affects the central nervous system and is caused by the free-living amoeba Naegleria fowleri. The life cycle of this protozoa consists of three different stages: The trophozoite, flagellate and cyst stages. Currently, no fully effective molecules have been found to treat PAM. In the search of new antiamoebic molecules, most of the efforts have focused on the trophozoidal activity of the compounds. However, there are no reports on the effect of the compounds on the N. fowleri cyst viability. In the present study, the cysticidal activity of four different molecules was evaluated using an alamarBlue based fluorometric assay. All the tested compounds were active against the cyst stage of N. fowleri. In fact, all the molecules except the amphotericin B, showed highest activity toward the cyst stage than the trophozoite stage. This work could be an effective protocol to select molecules with cysticidal and trophozoidal activity that can be considered a future PAM treatment. IMPORTANCE In the search of new anti-Naegleria fowleri compounds, most of the works focus on the activity of different molecules against the trophozoite stage; however, none of them include the effect of those compounds on the cyst viability. This manuscript presents a solid and reliable assay to evaluate the activity of compounds against the cyst stage of N. fowleri.
Collapse
Affiliation(s)
- Iñigo Arberas-Jiménez
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, La Laguna, Spain
- Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, La Laguna, Spain
- Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), Madrid, Spain
| | - Aitor Rizo-Liendo
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, La Laguna, Spain
- Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, La Laguna, Spain
- Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), Madrid, Spain
| | - Ines Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, La Laguna, Spain
- Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, La Laguna, Spain
- Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), Madrid, Spain
| | - Javier Chao-Pellicer
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, La Laguna, Spain
- Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, La Laguna, Spain
- Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), Madrid, Spain
| | - José E. Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, La Laguna, Spain
- Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, La Laguna, Spain
- Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), Madrid, Spain
- Consorcio Centro de Investigacion Biomedica En Red M.P. (CIBER) de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, La Laguna, Spain
- Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, La Laguna, Spain
- Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), Madrid, Spain
- Consorcio Centro de Investigacion Biomedica En Red M.P. (CIBER) de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
23
|
Aykur M, Dirim Erdogan D, Selvi Gunel N, Guler A, Biray Avci C, Celebisoy N, Gunduz C, Dagci H. Genotyping and Molecular Identification of Acanthamoeba Genotype T4 and Naegleria fowleri from Cerebrospinal Fluid Samples of Patients in Turkey: Is it the Pathogens of Unknown Causes of Death? Acta Parasitol 2022; 67:1372-1383. [PMID: 35864411 DOI: 10.1007/s11686-022-00597-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/07/2022] [Indexed: 12/01/2022]
Abstract
PURPOSE This study was aimed to investigate the presence of pathogenic free-living amoebae (FLA) in suspected cases of meningoencephalitis with unknown causes of death in Turkey. METHOD A total of 92 patients, who were diagnosed as meningoencephalitis, were enrolled. All cerebrospinal fluid (CSF) samples were directly microscopically examined and cultured. Acanthamoeba, N. fowleri and B. mandrillaris were further investigated using molecular diagnostic tools including real-time PCR, sequencing, and phylogenetic analyses. RESULTS The examined CSF samples were not found positive for the presence of FLA by microscopic examination and culture method. However, two CSF samples were detected positive by real-time PCR assay. Of the positive CSF samples, one was identified as Acanthamoeba genotype T4 and the second positive sample was identified as N. fowleri belonging to genotype II. Furthermore, the pathogens diagnoses was verified through Sanger sequencing. CONCLUSION This study was significant to report the presence of Acanthamoeba genotype T4 and N. fowleri genotype II in CSF samples by real-time PCR assay. The present study shows the significance of primary amoebic meningoencephalitis (PAM) and granulomatous amoebic encephalitis (GAE) as one of the differential diagnoses to be considered by clinicians during the evaluation of suspected meningoencephalitis or cases of unknown cause in Turkey. Using real-time PCR, this has made the rapid detection, in a short time-frame, of Acanthamoeba and N. fowleri in CSF samples from patients. The problems with qPCR is that it is not available in every laboratory, reagents are expensive, and it requires skilled and expert personnel to set up these assays.
Collapse
Affiliation(s)
- Mehmet Aykur
- Department of Parasitology, Faculty of Medicine, Ege University, Bornova/İzmir, Turkey. .,Department of Parasitology, Faculty of Medicine, Tokat Gaziosmanpaşa University, PO Box 60030, Tokat, Turkey.
| | - Derya Dirim Erdogan
- Department of Parasitology, Faculty of Medicine, Ege University, Bornova/İzmir, Turkey
| | - Nur Selvi Gunel
- Department of Medical Biology, Faculty of Medicine, Ege University, Bornova/İzmir, Turkey
| | - Ayse Guler
- Department of Neurology, Faculty of Medicine, Ege University, Bornova/İzmir, Turkey
| | - Cigir Biray Avci
- Department of Medical Biology, Faculty of Medicine, Ege University, Bornova/İzmir, Turkey
| | - Nese Celebisoy
- Department of Neurology, Faculty of Medicine, Ege University, Bornova/İzmir, Turkey
| | - Cumhur Gunduz
- Department of Medical Biology, Faculty of Medicine, Ege University, Bornova/İzmir, Turkey
| | - Hande Dagci
- Department of Parasitology, Faculty of Medicine, Ege University, Bornova/İzmir, Turkey
| |
Collapse
|
24
|
Ekici A, Alkan S, Aydemir S, Gurbuz E, Unlu AH. Trends in Naegleria fowleri global research: A bibliometric analysis study. Acta Trop 2022; 234:106603. [PMID: 35817194 DOI: 10.1016/j.actatropica.2022.106603] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 01/18/2023]
Abstract
Naegleria fowleri is one of the most dangerous protozoan agents. This article describes a bibliometric review of the literature on N. fowleri research indexed in WoS during a 51-year period. The VOSviewer visualization methodology was used to conduct a bibliometric study. The data included articles from the Web of Science database, nations, institutions, journals, keywords, co-authorship, co-citations, international collaborations, and citation rates. A total of 1106 articles were retrieved from the Web of Science database. The articles were cited 21,904 times in total (cited 12,138 times without self-citations). The average citation per article was 19.82. The Hirsch index was 63. The leading country according to the number of published articles was the United States of America (USA) (n = 447; 40.416%), followed by Mexico (n = 80; 7.233%), and Australia (n = 63; 5.696%). Other than these top three countries, the publications were from 74 countries globally. Especially after the 2000s, both the number of citations and the number of publications exhibited an increasing trend. The Virginia Commonwealth University (USA) (9.584%), Centers for Disease Control Prevention (USA) (8.770%), and Instituto Politecnico Nacional Mexico (4.069%) were the leading affiliations. Most of the leading affiliations were from the USA and Mexico. In conclusion, a bibliometric evaluation of N. fowleri was performed for the first time. Authors affiliated with institutions in the USA and Mexico have led scientific production on PAM. Efforts should be made to help developing countries with the highest prevalence of N. fowleri to develop scientific research networks with the USA and/or Mexico in order to increase research with interdisciplinary teams.
Collapse
Affiliation(s)
- Abdurrahman Ekici
- Van Yuzuncu Yil University, Faculty of Medicine, Department of Parasitology, Van, Turkey.
| | - Sevil Alkan
- Çanakkale Onsekiz Mart University, Faculty of Medicine, Department of Infectious Disease and Clinical Microbiology, Canakkale, Turkey
| | - Selahattin Aydemir
- Van Yuzuncu Yil University, Faculty of Medicine, Department of Parasitology, Van, Turkey
| | - Esra Gurbuz
- SBU Van Training and Research Hospital, Infectious Diseases and Clinical Microbiology, Van, Turkey
| | - Ahmet Hakan Unlu
- Van Yuzuncu Yil University, Vocational School of Gevas, Division of Veterinary, Van, Turkey
| |
Collapse
|
25
|
Real-Time PCR Confirmation of a Fatal Case of Primary Amoebic Meningoencephalitis in Turkey Caused by Naegleria fowleri or Brain-Eating Amoeba. Acta Parasitol 2022; 67:697-704. [PMID: 35020127 DOI: 10.1007/s11686-021-00514-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/16/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Naegleria fowleri, the causative agent of primary amoebic meningoencephalitis (PAM), is a free-living amoeba. It is a water-borne infection usually detected in children and young people with healthy immune system who swim, dive and perform activities in fresh and hot springs. PURPOSE In this study, it was aimed to raise awareness in the differential diagnosis of meningitis etiopathogenesis by showing that N. fowleri may also be the causative agent, albeit very rarely, in meningitis cases in Turkey. METHODS Our case was an 18-year-old male patient whose relatives stated that he has gone to the hot spring; his headache complaint started after 2 to 3 days after return from the hot spring. Cerebrospinal fluid (CSF) sample taken from the patient was investigated by direct microscopic examination, real-time PCR method and sequence analysis. RESULTS The CSF sample collected was taken into distilled water considering the possibility of transformation of trophozoites to intermediate form and incubated at 37 °C for 1 to 2 h, and pear-shaped non-permanent flagellated forms were observed in the direct microscopic examination, and molecular typing was performed to confirm the diagnosis. This study was a comprehensive case of N. fowleri whose etiological agent was isolated and confirmed by real-time PCR in Turkey. CONCLUSION Clinician awareness would be the key factor in correctly diagnosing PAM. It is also recommended to investigate all likely environmental water sources in Turkey for more detailed information on the distribution and molecular identification of Naegleria species, ultimately to evaluate the potential pathogenic threat to human health and to develop strategies to combat such threats.
Collapse
|
26
|
Zhou W, Ouyang Y, Zhang D, Liao S, Liang H, Zhao L, Chen C. Case Report and Literature Review: Bacterial Meningoencephalitis or Not? Naegleria fowleri Related Primary Amoebic Meningoencephalitis in China. Front Pediatr 2022; 10:785735. [PMID: 35463884 PMCID: PMC9033202 DOI: 10.3389/fped.2022.785735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/21/2022] [Indexed: 11/17/2022] Open
Abstract
In China, a 9-year-old boy was transferred to the hospital with fever, vomiting, and headache. The disease rapidly deteriorated into vague consciousness. Applying conventional clinical examinations such as blood and cerebrospinal fluid (CSF) tests, the diagnosis of bacterial meningoencephalitis was first drawn, and expectant treatments were adopted immediately. However, the symptoms did not alleviate, adversely, this boy died 3 days after admission. Considering the skeptical points of the duration, such as the unknown infectious bacteria and the pathogen invasion path, blood and CSF samples were then sent for metagenomic next-generation sequencing (mNGS) to ascertain the cause of death. The 42,899 and 1,337 specific sequences of N. fowleri were detected by mNGS in the CSF sample and the blood sample, respectively. PCR results and pathological smear subsequently confirmed the mNGS detection. The patient was finally diagnosed as primary amoebic meningoencephalitis. Besides, in this article, 15 similar child infection cases in the past 10 years are summarized and analyzed to promote the early diagnosis of this rare disease.
Collapse
Affiliation(s)
- Wenjuan Zhou
- Third Xiangya Hospital, Central South University, Changsha, China
| | - Yuzhen Ouyang
- Third Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Di Zhang
- Third Xiangya Hospital, Central South University, Changsha, China
| | - Sheng Liao
- Third Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Hui Liang
- Third Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Lingling Zhao
- Third Xiangya Hospital, Central South University, Changsha, China
| | - Chunyuan Chen
- Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
27
|
Martín-Escolano R, Yiangou L, Kazana E, Robinson GK, Michaelis M, Tsaousis AD. Repurposing in vitro approaches for screening anti-parasitic drugs against the brain-eating amoeba Naegleria fowleri. Int J Parasitol Drugs Drug Resist 2021; 17:204-212. [PMID: 34875573 PMCID: PMC8652063 DOI: 10.1016/j.ijpddr.2021.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 11/22/2022]
Abstract
Naegleria fowleri is both a pathogenic and a free-living microbial eukaryote, responsible for the development of primary amoebic meningoencephalitis (PAM) in humans. PAM is a rapid, severe and fatal underestimated infectious disease, which has been reported in countries with warmer climates. The major drawbacks with PAM are the lack of effective therapies and delay in diagnosis. The current frontline treatment presents a low rate of recovery (5%) and severe adverse effects. For example, many drug candidates lack efficacy, since they do not effectively cross the blood-brain-barrier. Consequently, more effective drugs are urgently needed. Herein, we report a new in vitro method suitable for medium- and high-throughput drug discovery assays, using the closely related Naegleria gruberi as a model. We have subsequently used this method to screen a library of 1175 Food and Drug Administration-approved drugs. As a result, we present three drugs (camptothecin, pyrimethamine, and terbinafine) that can be repurposed, and are anticipated to readily cross the blood-brain-barrier with activity against Naegleria species in therapeutically achievable concentrations. Successively, we integrated several in vitro assays that resulted in identifying fast-acting and high amoebicidal drugs. In conclusion, we present a new approach for the identification of anti-Naegleria drugs along with three potential drug candidates for further development for the treatment of PAM.
Collapse
Affiliation(s)
- Rubén Martín-Escolano
- Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | - Lyto Yiangou
- Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK; School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | - Eleanna Kazana
- Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | - Gary K Robinson
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | - Martin Michaelis
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK.
| | - Anastasios D Tsaousis
- Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK; School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK.
| |
Collapse
|
28
|
Various brain-eating amoebae: the protozoa, the pathogenesis, and the disease. Front Med 2021; 15:842-866. [PMID: 34825341 DOI: 10.1007/s11684-021-0865-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/25/2021] [Indexed: 10/19/2022]
Abstract
Among various genera of free-living amoebae prevalent in nature, some members are identified as causative agents of human encephalitis, in which Naegleria fowleri followed by Acanthamoeba spp. and Balamuthia mandrillaris have been successively discovered. As the three dominant genera responsible for infections, Acanthamoeba and Balamuthia work as opportunistic pathogens of granulomatous amoebic encephalitis in immunocompetent and immunocompromised individuals, whereas Naegleria induces primary amoebic meningoencephalitis mostly in healthy children and young adults as a more violent and deadly disease. Due to the lack of typical symptoms and laboratory findings, all these amoebic encephalitic diseases are difficult to diagnose. Considering that subsequent therapies are also affected, all these brain infections cause significant mortality worldwide, with more than 90% of the cases being fatal. Along with global warming and population explosion, expanding areas of human and amoebae activity in some regions lead to increased contact, resulting in more serious infections and drawing increased public attention. In this review, we summarize the present information of these pathogenic free-living amoebae, including their phylogeny, classification, biology, and ecology. The mechanisms of pathogenesis, immunology, pathophysiology, clinical manifestations, epidemiology, diagnosis, and therapies are also discussed.
Collapse
|
29
|
Khan NA, Muhammad JS, Siddiqui R. Brain-eating amoebae: is killing the parasite our only option to prevent death? Expert Rev Anti Infect Ther 2021; 20:1-2. [PMID: 33960281 DOI: 10.1080/14787210.2021.1927712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Naveed Ahmed Khan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, University City, Sharjah, United Arab Emirates
| | - Jibran Sualeh Muhammad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, University City, Sharjah, United Arab Emirates
| | - Ruqaiyyah Siddiqui
- College of Arts and Sciences, University of Sharjah, University City, Sharjah, United Arab Emirates
| |
Collapse
|
30
|
Debnath A. Drug discovery for primary amebic meningoencephalitis: from screen to identification of leads. Expert Rev Anti Infect Ther 2021; 19:1099-1106. [PMID: 33496193 DOI: 10.1080/14787210.2021.1882302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: Naegleria fowleri is responsible for primary amebic meningoencephalitis (PAM) which has a fatality rate of >97%. Because of the rarity of the disease, pharmaceutical companies do not pursue new drug discovery for PAM. Yet, it is possible that the infection is underreported and finding a better drug would have an impact on people suffering from this deadly infection.Areas covered: This paper reports the efforts undertaken by different academic groups over the last 20 years to test different compounds against N. fowleri. The drug discovery research encompassed synthesis of new compounds, development and use of high-throughput screening methods and attempts to repurpose clinically developed or FDA-approved compounds for the treatment of PAM.Expert opinion: In absence of economic investment to develop new drugs for PAM, repurposing the FDA-approved drugs has been the best strategy so far to identify new leads against N. fowleri. Increasing use of high-throughput phenotypic screening has the potential to accelerate the identification of new leads, either in monotherapy or in combination treatment. Since phase II clinical trial is not possible for PAM, it is critical to demonstrate in vivo efficacy of a clinically safe compound to translate the discovery from lab to the clinic.
Collapse
Affiliation(s)
- Anjan Debnath
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
31
|
Stahl LM, Olson JB. Environmental abiotic and biotic factors affecting the distribution and abundance of Naegleria fowleri. FEMS Microbiol Ecol 2020; 97:6006869. [PMID: 33242082 PMCID: PMC8068756 DOI: 10.1093/femsec/fiaa238] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/23/2020] [Indexed: 12/15/2022] Open
Abstract
Naegleria fowleri is a free-living protozoan that resides in soil and freshwater. Human intranasal amoebae exposure through water or potentially dust particles can culminate in primary amoebic meningoencephalitis, which generally causes death. While many questions remain regarding pathogenesis, the microbial ecology of N. fowleri is even less understood. This review outlines current knowledge of the environmental abiotic and biotic factors that affect the distribution and abundance of N. fowleri. Although the impacts of some abiotic factors remain poorly investigated or inconclusive, N. fowleri appears to have a wide pH range, low salinity tolerance and thermophilic preference. From what is known about biotic factors, the amoebae preferentially feed upon bacteria and are preyed upon by other free-living amoebae. Additional laboratory and environmental studies are needed to fill in knowledge gaps, which are crucial for surveillance and management of N. fowleri in freshwaters. As surface water temperatures increase with climate change, it is likely that this amoeba will pose a greater threat to human health, suggesting that identifying its abiotic and biotic preferences is critical to mitigating this risk.
Collapse
Affiliation(s)
- Leigha M Stahl
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Julie B Olson
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| |
Collapse
|
32
|
Hahn HJ, Abagyan R, Podust LM, Roy S, Ali IKM, Debnath A. HMG-CoA Reductase Inhibitors as Drug Leads against Naegleria fowleri. ACS Chem Neurosci 2020; 11:3089-3096. [PMID: 32881478 DOI: 10.1021/acschemneuro.0c00428] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Primary amebic meningoencephalitis (PAM), caused by the free-living ameba Naegleria fowleri, has a fatality rate of over 97%. Treatment of PAM relies on amphotericin B in combination with other drugs, but few patients have survived with the existing drug treatment regimens. Therefore, development of effective drugs is a critical unmet need to avert deaths from PAM. Since ergosterol is one of the major sterols in the membrane of N. fowleri, disruption of isoprenoid and sterol biosynthesis by small-molecule inhibitors may be an effective intervention strategy against N. fowleri. The genome of N. fowleri contains a gene encoding HMG-CoA reductase (HMGR); the catalytic domains of human and N. fowleri HMGR share <60% sequence identity with only two amino acid substitutions in the active site of the enzyme. Considering the similarity of human and N. fowleri HMGR, we tested well-tolerated and widely used HMGR inhibitors, known as cholesterol-lowering statins, against N. fowleri. We identified blood-brain-barrier-permeable pitavastatin as a potent amebicidal agent against the U.S., Australian, and European strains of N. fowleri. Pitavastatin was equipotent to amphotericin B against the European strain of N. fowleri; it killed about 80% of trophozoites within 16 h of drug exposure. Pretreatment of trophozoites with mevalonate, the product of HMGR, rescued N. fowleri from inhibitory effects of statins, demonstrating that HMGR of N. fowleri is the target of statins. Because of the good safety profile and availability for both adult and pediatric uses, consideration should be given to repurposing the fast-acting pitavastatin for the treatment of PAM.
Collapse
Affiliation(s)
- Hye Jee Hahn
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0756, United States
| | - Ruben Abagyan
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0756, United States
| | - Larissa M. Podust
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0756, United States
| | - Shantanu Roy
- Free-Living and Intestinal Amebas (FLIA) Laboratory, Waterborne Disease Prevention Branch, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia 30329-4018, United States
| | - Ibne Karim M. Ali
- Free-Living and Intestinal Amebas (FLIA) Laboratory, Waterborne Disease Prevention Branch, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia 30329-4018, United States
| | - Anjan Debnath
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0756, United States
| |
Collapse
|
33
|
Isolation and Identification of Naegleria Species in Irrigation Channels for Recreational Use in Mexicali Valley, Mexico. Pathogens 2020; 9:pathogens9100820. [PMID: 33036396 PMCID: PMC7600940 DOI: 10.3390/pathogens9100820] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022] Open
Abstract
Members of the genus Naegleria are free-living amoebae that are widely distributed in water and soil environments. Moreover, Naegleria fowleri is a pathogenic amoeba species that causes a fatal disease in the central nervous system known as primary amoebic meningoencephalitis (PAM) in humans. Since most reported infections due to N. fowleri are reported in recreational waters worldwide, this study was aimed to describe the presence of these amoebic genus in Mexicali Valley irrigation channels of recreational use. A total of nine water samples were collected and processed by triplicate, in nine different sites of the Valley. After filtering and culturing the samples, plates were examined, and the observed amoebae were morphologically identified at the genus level. In addition, the pathogenicity of these amoebic isolates was checked, and molecular characterization was performed by PCR/sequencing. The results revealed the presence of Naegleria spp. in all the channels sampled. Finally, molecular identification confirmed the presence of five different species of Naegleria: N. fowleri, N. australiensis, N. gruberi, N. clarki and N. pagei. The presence of these protists, particularly N. fowleri, should be considered as a potential human health risk in the region.
Collapse
|
34
|
Retana Moreira L, Zamora Rojas L, Grijalba Murillo M, Molina Castro SE, Abrahams Sandí E. Primary Amebic Meningoencephalitis Related to Groundwater in Costa Rica: Diagnostic Confirmation of Three Cases and Environmental Investigation. Pathogens 2020; 9:pathogens9080629. [PMID: 32752181 PMCID: PMC7459727 DOI: 10.3390/pathogens9080629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 11/18/2022] Open
Abstract
During the first trimester of 2020, the Ministry of Health of Costa Rica reported the first three cases of primary amebic meningoencephalitis (PAM). In two cases, laboratory personnel of the hospitals preliminarily identified amoeboid forms in cerebrospinal fluid (CSF) samples. For the molecular confirmation of species, CSF samples were sent to our laboratory. We carried out microscopic analyses and exflagellation assays. Besides, samples were cultured in 2% casein hydrolysate medium and in non-nutrient agar plates supplemented with Escherichia coli. Finally, PCR and sequencing were employed for the molecular diagnosis and species identification. In all cases, the presence of Naegleria fowleri was confirmed. An environmental investigation to identify the possible infection sources was also performed. Water samples from hot springs and groundwater from an artisan well were collected and after filtration and culture in non-nutrient agar plates supplemented with E. coli, thermotolerance and exflagellation assays were carried out. For the positive samples, PCR and sequencing were performed, confirming the presence of N. fowleri in several water samples. The report of these cases and the possible association with hot springs has had a significant impact on the population and health authorities of Costa Rica.
Collapse
Affiliation(s)
- Lissette Retana Moreira
- Departamento de Parasitología, Universidad de Costa Rica, San Pedro, Montes de Oca 11501, Costa Rica;
- Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San Pedro, Montes de Oca 11501, Costa Rica
| | - Leidy Zamora Rojas
- Hospital Maximiliano Peralta Jiménez, Caja Costarricense de Seguro Social, Cartago 30102, Costa Rica;
| | - Muriel Grijalba Murillo
- Laboratorio Clínico Hospital Enrique Baltodano, Caja Costarricense de Seguro Social, Liberia, Guanacaste 50101, Costa Rica;
| | - Silvia Elena Molina Castro
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San Pedro, Montes de Oca 11501, Costa Rica;
| | - Elizabeth Abrahams Sandí
- Departamento de Parasitología, Universidad de Costa Rica, San Pedro, Montes de Oca 11501, Costa Rica;
- Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San Pedro, Montes de Oca 11501, Costa Rica
- Correspondence: ; Tel.: +506-2511-8586
| |
Collapse
|
35
|
Inhibition of Fatty Acid Oxidation as a New Target To Treat Primary Amoebic Meningoencephalitis. Antimicrob Agents Chemother 2020; 64:AAC.00344-20. [PMID: 32513800 PMCID: PMC7526813 DOI: 10.1128/aac.00344-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/03/2020] [Indexed: 12/20/2022] Open
Abstract
Primary amoebic meningoencephalitis (PAM) is a rapidly fatal infection caused by the free-living amoeba Naegleria fowleri. The amoeba migrates along the olfactory nerve to the brain, resulting in seizures, coma, and, eventually, death. Previous research has shown that Naegleria gruberi, a close relative of N. fowleri, prefers lipids over glucose as an energy source. Therefore, we tested several already-approved inhibitors of fatty acid oxidation alongside the currently used drugs amphotericin B and miltefosine. Primary amoebic meningoencephalitis (PAM) is a rapidly fatal infection caused by the free-living amoeba Naegleria fowleri. The amoeba migrates along the olfactory nerve to the brain, resulting in seizures, coma, and, eventually, death. Previous research has shown that Naegleria gruberi, a close relative of N. fowleri, prefers lipids over glucose as an energy source. Therefore, we tested several already-approved inhibitors of fatty acid oxidation alongside the currently used drugs amphotericin B and miltefosine. Our data demonstrate that etomoxir, orlistat, perhexiline, thioridazine, and valproic acid inhibited growth of N. gruberi. We then tested these compounds on N. fowleri and found etomoxir, perhexiline, and thioridazine to be effective growth inhibitors. Hence, not only are lipids the preferred food source for N. gruberi, but also oxidation of fatty acids seems to be essential for growth of N. fowleri. Inhibition of fatty acid oxidation could result in new treatment options, as thioridazine inhibits N. fowleri growth in concentrations that can be reached at the site of infection. It could also potentiate currently used therapy, as checkerboard assays revealed synergy between miltefosine and etomoxir. Animal testing should be performed to confirm the added value of these inhibitors. Although the development of new drugs and randomized controlled trials for this rare disease are nearly impossible, inhibition of fatty acid oxidation seems a promising strategy as we showed effectivity of several drugs that are or have been in use and that thus could be repurposed to treat PAM in the future.
Collapse
|
36
|
Guzmán-Téllez P, Martínez-Castillo M, Flores-Huerta N, Rosales-Morgan G, Pacheco-Yépez J, la Garza MD, Serrano-Luna J, Shibayama M. Lectins as virulence factors in Entamoeba histolytica and free-living amoebae. Future Microbiol 2020; 15:919-936. [PMID: 32716210 DOI: 10.2217/fmb-2019-0275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 06/02/2020] [Indexed: 02/08/2023] Open
Abstract
Currently, there is growing interest in the identification and purification of microbial lectins due to their involvement in the pathogenicity mechanisms of pathogens, such as Entamoeba histolytica and free-living amoebae. The Gal/GalNAc lectin from E. histolytica participates in adhesion, cytotoxicity and regulation of immune responses. Furthermore, mannose- and galactose-binding protein have been described in Acanthamoeba castellanii and Balamuthia mandrillaris, respectively and they also contribute to host damage. Finally, in Naegleria fowleri, molecules containing mannose and fucose are implicated in adhesion and cytotoxicity. Considering their relevance in the pathogenesis of the diseases caused by these protozoa, lectins appear to be promising targets in the diagnosis, vaccination and treatment of these infections.
Collapse
Affiliation(s)
- Paula Guzmán-Téllez
- Department of Infectomics & Molecular Pathogenesis, Center for Research & Advanced Studies of The National Polytechnic Institute, Av. IPN 2508, Mexico City 07360, Mexico
| | - Moisés Martínez-Castillo
- Department of Infectomics & Molecular Pathogenesis, Center for Research & Advanced Studies of The National Polytechnic Institute, Av. IPN 2508, Mexico City 07360, Mexico
- Department of Experimental Medicine, Liver, Pancreas & Motility Laboratory (HIPAM), School of Medicine, National Autonomous University of Mexico (UNAM) Mexico City, Mexico
| | - Nadia Flores-Huerta
- Department of Infectomics & Molecular Pathogenesis, Center for Research & Advanced Studies of The National Polytechnic Institute, Av. IPN 2508, Mexico City 07360, Mexico
| | - Gabriela Rosales-Morgan
- Department of Infectomics & Molecular Pathogenesis, Center for Research & Advanced Studies of The National Polytechnic Institute, Av. IPN 2508, Mexico City 07360, Mexico
| | - Judith Pacheco-Yépez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Mireya de la Garza
- Department of Cell Biology, Center for Research & Advanced Studies of The National Polytechnic Institute, Av. IPN 2508, Mexico City 07360, Mexico
| | - Jesús Serrano-Luna
- Department of Cell Biology, Center for Research & Advanced Studies of The National Polytechnic Institute, Av. IPN 2508, Mexico City 07360, Mexico
| | - Mineko Shibayama
- Department of Infectomics & Molecular Pathogenesis, Center for Research & Advanced Studies of The National Polytechnic Institute, Av. IPN 2508, Mexico City 07360, Mexico
| |
Collapse
|
37
|
Panda A, Mirdha BR, Rastogi N, Kasuhik S. Understanding the true burden of "Naegleria fowleri" (Vahlkampfiidae) in patients from Northern states of India: Source tracking and significance. Eur J Protistol 2020; 76:125726. [PMID: 32682925 DOI: 10.1016/j.ejop.2020.125726] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/18/2020] [Accepted: 06/11/2020] [Indexed: 01/16/2023]
Abstract
The present study is an attempt to investigate the presence of Naegleria fowleri in Indian population. A total of 307 patients were enrolled and water samples were collected from both residential and surrounding areas of patients found positive for N. fowleri. The different species of Naegleria from both clinical and water samples were identified taxonomically. Recommended microbiological conventional techniques were used to identify different Naegleria stages and other free-living amoebae from the samples. PCR assays, using both genus and species specific primers were also optimized. None of the samples were positive by conventional microbiological examinations. However, PCR assays detected only three samples positive for N. fowleri. A total of 10 water bodies (ponds), that were used by Naegleria positive patients were examined. The pH and temperature of the water samples collected from water bodies ranged between 5.6-7.2 and 25-32 °C respectively. Among all the 10 water samples tested, four samples were positive for genus Naegleria by PCR assay, of which only two samples, showed positive amplification for N. fowleri. The sequence analysis of N. fowleri strain belonged to genotype II.
Collapse
Affiliation(s)
- Ashutosh Panda
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Bijay Ranjan Mirdha
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India.
| | - Neha Rastogi
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Samander Kasuhik
- Centre for Biotechnology, Maharishi Dayanand University, Rohtak, India
| |
Collapse
|
38
|
Flores-Huerta N, Pacheco-Yépez J, Sánchez-Monroy V, Rosales-Hernández MC, Silva-Olivares A, Serrano-Luna J, Shibayama M. The MPO system participates actively in the formation of an oxidative environment produced by neutrophils and activates the antioxidant mechanism of Naegleria fowleri. J Leukoc Biol 2020; 108:895-908. [PMID: 32531828 DOI: 10.1002/jlb.4ma0520-565rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/13/2020] [Accepted: 05/24/2020] [Indexed: 12/23/2022] Open
Abstract
Naegleria fowleri produces a fatal disease called primary amebic meningoencephalitis (PAM), which is characterized by an extensive inflammatory reaction in the CNS. It is known that the immune response is orchestrated mainly by neutrophils, which activate several defense mechanisms in the host, including phagocytosis, the release of different enzymes such as myeloperoxidase (MPO), and the production of neutrophil extracellular traps. However, the mechanisms by which amoebas evade the neutrophil response are still unknown. In this study, we analyzed the ability of N. fowleri to respond to the stress exerted by MPO. Interestingly, after the interaction of trophozoites with neutrophils, the amoeba viability was not altered; however, ultrastructural changes were observed. To analyze the influence of MPO against N. fowleri and its participation in free radical production, we evaluated its enzymatic activity, expression, and localization with and without the specific 4-aminobenzoic acid hydrazide inhibitor. The production of oxidizing molecules is the principal mechanism used by neutrophils to eliminate pathogens. In this context, we demonstrated an increase in the production of NO, superoxide anion, and reactive oxygen species; in addition, the overexpression of several antioxidant enzymes present in the trophozoites was quantified. The findings strongly suggest that N. fowleri possesses antioxidant machinery that is activated in response to an oxidative environment, allowing it to evade the neutrophil-mediated immune response, which may contribute to the establishment of PAM.
Collapse
Affiliation(s)
- Nadia Flores-Huerta
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | - Judith Pacheco-Yépez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Virginia Sánchez-Monroy
- Laboratorio de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Ciudad de México, México
| | - Martha Cecilia Rosales-Hernández
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Angélica Silva-Olivares
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | - Jesús Serrano-Luna
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | - Mineko Shibayama
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| |
Collapse
|
39
|
Moussa M, Marcelino I, Richard V, Guerlotté J, Talarmin A. An Optimized Most Probable Number (MPN) Method to Assess the Number of Thermophilic Free-Living Amoebae (FLA) in Water Samples. Pathogens 2020; 9:pathogens9050409. [PMID: 32456327 PMCID: PMC7281388 DOI: 10.3390/pathogens9050409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/01/2020] [Accepted: 05/01/2020] [Indexed: 12/05/2022] Open
Abstract
Detection and quantification of pathogenic free-living amoebae (FLA) in water samples is critical for assessing water quality and for disease management issues. The most probable number (MPN) is commonly used to account for FLA in water. Nevertheless, this requires a high number of water replicates and working volumes, and a consequent number of non-nutrient agar (NNA)-plates seeded with Escherichia coli. Herein, we aimed at optimizing this difficult method, taking also into account key factors such as (i) the counting method, (ii) the delay between sample collection and sample processing, and (iii) the temperature during water sample transportation. To simplify the MPN method, we filtrated 1 × 1000 and 1 × 100 mL water samples, and cellulose acetate filters were cut in 10 parts and inverted on NNA-plates overlaid with E. coli. The comparison between the classical and our optimized MPN method showed that the final counts were similar, therefore validating the use of the optimized method. Our results also showed that for thermophilic FLA (such as Naegleria fowleri), water samples can be kept at around +30°C and processed within 24 h. This improved MPN method is now routinely used in our laboratory to control Naegleria sp. in the water samples in Guadeloupe.
Collapse
Affiliation(s)
- Mirna Moussa
- Unité TReD-Path (Transmission Réservoir & Diversité des Pathogènes), Institut Pasteur de la Guadeloupe, Les Abymes, 97183 Guadeloupe, France; (M.M.); (A.T.)
| | - Isabel Marcelino
- Unité TReD-Path (Transmission Réservoir & Diversité des Pathogènes), Institut Pasteur de la Guadeloupe, Les Abymes, 97183 Guadeloupe, France; (M.M.); (A.T.)
- Correspondence: ; Tel.: +590-590-897-664
| | | | - Jérôme Guerlotté
- Institut de Systématique, Evolution, Biodiversité (ISYEB) MNHN, CNRS, Sorbonne Université, EPHE Université des Antilles, Pointe-à-Pitre, 97110 Guadeloupe, France;
| | - Antoine Talarmin
- Unité TReD-Path (Transmission Réservoir & Diversité des Pathogènes), Institut Pasteur de la Guadeloupe, Les Abymes, 97183 Guadeloupe, France; (M.M.); (A.T.)
| |
Collapse
|
40
|
|
41
|
Rizo-Liendo A, Sifaoui I, Reyes-Batlle M, Chiboub O, Rodríguez-Expósito RL, Bethencourt-Estrella CJ, San Nicolás-Hernández D, Hendiger EB, López-Arencibia A, Rocha-Cabrera P, Piñero JE, Lorenzo-Morales J. In Vitro Activity of Statins against Naegleria fowleri. Pathogens 2019; 8:E122. [PMID: 31398829 PMCID: PMC6789626 DOI: 10.3390/pathogens8030122] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/03/2019] [Accepted: 08/05/2019] [Indexed: 01/26/2023] Open
Abstract
Naegleria fowleri causes a deadly disease called primary amoebic meningoencephalitis (PAM). Even though PAM is still considered a rare disease, the number of reported cases worldwide has been increasing each year. Among the factors to be considered for this, awareness about this disease, and also global warming, as these amoebae thrive in warm water bodies, seem to be the key factors. Until present, no fully effective drugs have been developed to treat PAM, and the current options are amphotericin B and miltefosine, which present side effects such as liver and kidney toxicity. Statins are able to inhibit the 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, which is a key enzyme for the synthesis of ergosterol of the cell membrane of these amoebae. Therefore, the in vitro activity of a group of statins was tested in this study against two types of strains of Naegleria fowleri. The obtained results showed that fluvastatin was the most effective statin tested in this study and was able to eliminate these amoebae at concentrations of 0.179 ± 0.078 to 1.682 ± 0.775 µM depending on the tested strain of N. fowleri. Therefore, fluvastatin could be a potential novel therapeutic agent against this emerging pathogen.
Collapse
Affiliation(s)
- Aitor Rizo-Liendo
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Av. Astrofísico Francisco Sánchez S/N, 38203 Tenerife, Spain
| | - Ines Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Av. Astrofísico Francisco Sánchez S/N, 38203 Tenerife, Spain
- Laboratoire Matériaux-Molécules et Applications, La Marsa, University of Carthage, Carthage 1054, Tunisia
| | - María Reyes-Batlle
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Av. Astrofísico Francisco Sánchez S/N, 38203 Tenerife, Spain
| | - Olfa Chiboub
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Av. Astrofísico Francisco Sánchez S/N, 38203 Tenerife, Spain
- Laboratoire Matériaux-Molécules et Applications, La Marsa, University of Carthage, Carthage 1054, Tunisia
| | - Rubén L Rodríguez-Expósito
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Av. Astrofísico Francisco Sánchez S/N, 38203 Tenerife, Spain
| | - Carlos J Bethencourt-Estrella
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Av. Astrofísico Francisco Sánchez S/N, 38203 Tenerife, Spain
| | - Desirée San Nicolás-Hernández
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Av. Astrofísico Francisco Sánchez S/N, 38203 Tenerife, Spain
| | - Edyta B Hendiger
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Av. Astrofísico Francisco Sánchez S/N, 38203 Tenerife, Spain
- Department of Medical Biology, Medical University of Warsaw, 02091 Warsaw, Poland
| | - Atteneri López-Arencibia
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Av. Astrofísico Francisco Sánchez S/N, 38203 Tenerife, Spain
| | - Pedro Rocha-Cabrera
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Av. Astrofísico Francisco Sánchez S/N, 38203 Tenerife, Spain
- Clínica Nivaria, Santa Cruz de Tenerife, Canary Islands, 38203 Tenerife, Spain
| | - José E Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Av. Astrofísico Francisco Sánchez S/N, 38203 Tenerife, Spain.
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Av. Astrofísico Francisco Sánchez S/N, 38203 Tenerife, Spain.
| |
Collapse
|
42
|
Wang Q, Li J, Ji J, Yang L, Chen L, Zhou R, Yang Y, Zheng H, Yuan J, Li L, Bi Y, Gao GF, Ma J, Liu Y. A case of Naegleria fowleri related primary amoebic meningoencephalitis in China diagnosed by next-generation sequencing. BMC Infect Dis 2018; 18:349. [PMID: 30055569 PMCID: PMC6064090 DOI: 10.1186/s12879-018-3261-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 07/19/2018] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Primary amoebic meningoencephalitis (PAM), caused by Naegleria fowleri, is a rare protozoan infectious disease in China. A fatality rate of over 95% had been reported due to extremely rapid disease progression in the USA and other countries. Rapid and precise identification of the causative agent is very important to clinicians for guiding their choices for administering countermeasures in the clinic. In this report, we applied the next-generation sequencing (NGS) method to rapidly show that N. fowleri was the causative agent of a fatal case involving a 42-year-old man with severe PAM disease, the first reported in mainland China. CASE PRESENTATION A 42-year old male in a deep coma was admitted to Shenzhen Third People's Hospital, a special medical care unit with expertise in infectious diseases. Increased intracranial pressure was detected. The cerebrospinal fluid (CSF) sample was found to be red and cloudy with increased leukocyte and protein levels. While bacterial cultures with CSF were negative, N. fowleri was determined to be the causative agent with NGS. Amphotericin B (AmB), a drug with anti-amoeba activity, was used immediately, but the treatment came too late and the patient died 2 days after the NGS confirmation. CONCLUSION In this paper, we reported a case of PAM disease for the first time in mainland China. NGS was used for rapid diagnosis and provided guidance for prescribing medications. However, the patient died due to a late admission amid advanced PAM disease. Early detection of N. fowleri is necessary in order to select effective drug treatments and control the disease progression. Despite the negative survival outcome, NGS was shown to be a promising method of rapid and precise identification of N. fowleri.
Collapse
Affiliation(s)
- Qiang Wang
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People’s Hospital, 29 Bulan Rd, Shenzhen, 518112 China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, 100101 China
| | - Jianming Li
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People’s Hospital, 29 Bulan Rd, Shenzhen, 518112 China
| | - Jingkai Ji
- BGI-Shenzhen, Shenzhen, 518083 China
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518120 China
| | - Liuqing Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People’s Hospital, 29 Bulan Rd, Shenzhen, 518112 China
| | - Li Chen
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People’s Hospital, 29 Bulan Rd, Shenzhen, 518112 China
| | - Rongrong Zhou
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People’s Hospital, 29 Bulan Rd, Shenzhen, 518112 China
| | - Yang Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People’s Hospital, 29 Bulan Rd, Shenzhen, 518112 China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, 100101 China
| | - Haixia Zheng
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People’s Hospital, 29 Bulan Rd, Shenzhen, 518112 China
| | - Jing Yuan
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People’s Hospital, 29 Bulan Rd, Shenzhen, 518112 China
| | - Liqiang Li
- BGI-Shenzhen, Shenzhen, 518083 China
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518120 China
| | - Yuhai Bi
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People’s Hospital, 29 Bulan Rd, Shenzhen, 518112 China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, 100101 China
| | - George F. Gao
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People’s Hospital, 29 Bulan Rd, Shenzhen, 518112 China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, 100101 China
- Office of Director-General, Chinese Center for Disease Control and Prevention, Beijing, 102206 China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jinmin Ma
- BGI-Shenzhen, Shenzhen, 518083 China
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518120 China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Yingxia Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People’s Hospital, 29 Bulan Rd, Shenzhen, 518112 China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW International travel, adventure travel, and eco-tourism are increasing over the past few decades. This review aims to summarize the spectrum of infections associated with recreational freshwater activities and international travel. RECENT FINDINGS Recreational water activities can be associated with a wide range of infections. Acute febrile illnesses due to leptospirosis and schistosomiasis are not uncommon in travelers following extensive freshwater exposure. Aeromonas and other water-associated pathogens are important to consider in a traveler presenting with a skin and soft tissue infection. Recreational water activities are often associated with diarrheal illnesses, especially in children, and the range of enteric pathogens includes bacterial pathogens such as Escherichia coli O157:H7 and Shigella species and the protozoan parasites Cryptosporidium and Giardia duodenalis. Infections due to free-living amebas though rare can lead to fulminant central nervous system infections. A diverse range of infections may be associated with freshwater exposure, and it is important that these entities are considered in a returning traveler presenting with an acute illness.
Collapse
|
44
|
Lares-Jiménez LF, Borquez-Román MA, Alfaro-Sifuentes R, Meza-Montenegro MM, Casillas-Hernández R, Lares-Villa F. Detection of serum antibodies in children and adolescents against Balamuthia mandrillaris, Naegleria fowleri and Acanthamoeba T4. Exp Parasitol 2018; 189:28-33. [PMID: 29673623 DOI: 10.1016/j.exppara.2018.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/21/2018] [Accepted: 04/11/2018] [Indexed: 12/31/2022]
Abstract
The presence of free-living amoebae of the genera Naegleria, Acanthamoeba and Balamuthia, which contain pathogenic species for humans and animals, has been demonstrated several times and in different natural aquatic environments in the northwest of Mexico. With the aim of continuing the addition of knowledge about immunology of pathogenic free-living amoebae, 118 sera from children and adolescents, living in three villages, were studied. Humoral IgG response against B. mandrillaris, N. fowleri and Acanthamoeba sp. genotype T4, was analyzed in duplicate to titers 1: 100 and 1: 500 by enzyme-linked immunosorbent assay (ELISA). Children and adolescents ages ranged between 5 and 16 years old, with a mean of 9 years old, 55% males. All tested sera were positive for the 1: 100 dilution, and in the results obtained with the 1: 500 dilution, 116 of 118 (98.3%) were seropositive for N. fowleri, 101 of 118 (85.6%) were seropositive for Acanthamoeba sp. genotype T4, and 43 of 118 (36.4%) were seropositive for B. mandrillaris. The statistical analysis showed different distributions among the three communities and for the three species of pathogenic free-living amoebae, including age. Lysed and complete cells used as Balamuthia antigens gave differences in seropositivity.
Collapse
Affiliation(s)
- Luis Fernando Lares-Jiménez
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Cd. Obregón, Son, Mexico.
| | | | - Rosalía Alfaro-Sifuentes
- Programa de Maestría en Ciencias en Recursos Naturales, Instituto Tecnológico de Sonora, Cd. Obregón, Son, Mexico.
| | | | - Ramón Casillas-Hernández
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Cd. Obregón, Son, Mexico.
| | - Fernando Lares-Villa
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Cd. Obregón, Son, Mexico; Programa de Doctorado en Ciencias en Biotecnología, Instituto Tecnológico de Sonora, Cd. Obregón, Son, Mexico; Programa de Maestría en Ciencias en Recursos Naturales, Instituto Tecnológico de Sonora, Cd. Obregón, Son, Mexico.
| |
Collapse
|
45
|
Cárdenas-Zúñiga R, Silva-Olivares A, Villalba-Magdaleno JDA, Sánchez-Monroy V, Serrano-Luna J, Shibayama M. Amphotericin B induces apoptosis-like programmed cell death in Naegleria fowleri and Naegleria gruberi. MICROBIOLOGY-SGM 2017; 163:940-949. [PMID: 28721850 DOI: 10.1099/mic.0.000500] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Naegleria fowleri and Naegleria gruberi belong to the free-living amoebae group. It is widely known that the non-pathogenic species N. gruberi is usually employed as a model to describe molecular pathways in this genus, mainly because its genome has been recently described. However, N. fowleri is an aetiological agent of primary amoebic meningoencephalitis, an acute and fatal disease. Currently, the most widely used drug for its treatment is amphotericin B (AmB). It was previously reported that AmB has an amoebicidal effect in both N. fowleri and N. gruberi trophozoites by inducing morphological changes that resemble programmed cell death (PCD). PCD is a mechanism that activates morphological, biochemical and genetic changes. However, PCD has not yet been characterized in the genus Naegleria. The aim of the present work was to evaluate the typical markers to describe PCD in both amoebae. These results showed that treated trophozoites displayed several parameters of apoptosis-like PCD in both species. We observed ultrastructural changes, an increase in reactive oxygen species, phosphatidylserine externalization and a decrease in intracellular potassium, while DNA degradation was evaluated using the TUNEL assay and agarose gels, and all of these parameters are related to PCD. Finally, we analysed the expression of apoptosis-related genes, such as sir2 and atg8, in N. gruberi. Taken together, our results showed that AmB induces the morphological, biochemical and genetic changes of apoptosis-like PCD in the genus Naegleria.
Collapse
Affiliation(s)
- Roberto Cárdenas-Zúñiga
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, San Pedro Zacatenco, 07360, Mexico City, Mexico
| | - Angélica Silva-Olivares
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, San Pedro Zacatenco, 07360, Mexico City, Mexico
| | | | - Virginia Sánchez-Monroy
- Laboratorio de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politénico Nacional, Calle Guillermo Massieu H. 239, Col. La Escalera, 07320, Mexico City, Mexico
| | - Jesús Serrano-Luna
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, San Pedro Zacatenco, 07360, Mexico City, Mexico
| | - Mineko Shibayama
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, San Pedro Zacatenco, 07360, Mexico City, Mexico
| |
Collapse
|
46
|
Heggie TW, Küpper T. Surviving Naegleria fowleri infections: A successful case report and novel therapeutic approach. Travel Med Infect Dis 2017; 16:49-51. [DOI: 10.1016/j.tmaid.2016.12.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 10/20/2022]
|