1
|
He L, Wang W, Chen H, Ma L, Yu L, Yang Y, Qu Y, Dai P, Wang D, Ma X. Gene expressions of clinical Pseudomonas aeruginosa harboring RND efflux pumps on chromosome and involving a novel integron on a plasmid. Microb Pathog 2025; 203:107512. [PMID: 40154852 DOI: 10.1016/j.micpath.2025.107512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/03/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
The clinical strain of Pseudomonas aeruginosa XM8 harbored multiple RND-type antibiotic efflux pump genes and a novel integron In4881 on its plasmid pXM8-2, rendering it resistant to nearly all conventional antibiotics except colistin. The resistance was primarily attributed to the inactivation of the oprD gene and overexpression of several efflux pump genes, including mexAB-oprM, mexCD-oprJ, oprN-mexFE, and mexXY. In this study, the XM8 strain was comprehensively characterized using various methods. Antimicrobial susceptibility testing was performed using the BioMerieux VITEK2 system and manual double dilution methods. Gene expression levels of efflux pump-related genes were analyzed via quantitative real-time PCR. The bacterial chromosome and plasmid were sequenced using both Illumina and Nanopore platforms, and bioinformatics tools were employed to analyze mobile genetic elements associated with antibiotic resistance. The pXM8-2 plasmid containsed multiple mobile genetic elements, including integrons (In4881, In334, In413) and transposons (Tn3, TnAs1, TnAs3). Notably, In4881 was reported for the first time in this study. The presence of these elements highlights the potential for horizontal gene transfer and further spread of antibiotic resistance. Given the strong resistance profile of the XM8 strain, effective measures should be implemented to prevent the dissemination and prevalence of such multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Long He
- Department of Clinical Laboratory Medicine, Wenling First People's Hospital, Taizhou, Zhejiang, 317500, China
| | - Wenji Wang
- Department of Central Laboratory, Taizhou Municipal Hospital (Taizhou Municipal Hospital Affiliated with Taizhou University), Taizhou, Zhejiang, 318000, China; School of Life Sciences, Taizhou University, Taizhou, Zhejiang, 318000, China
| | - Haiming Chen
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Xiamen University (Xiamen Key Laboratory of Genetic Testing), Xiamen, Fujian, 361003, China
| | - Liman Ma
- Department of Basic Medicine and Medical laboratory Science, School of Medicine, Taizhou University, Taizhou, Zhejiang, 318000, China
| | - Lianhua Yu
- Department of Clinical Laboratory Medicine, Taizhou Municipal Hospital (Taizhou Municipal Hospital Affiliated with Taizhou University), Taizhou, Zhejiang, 318000, China
| | - Yide Yang
- Department of Infectious Disease, Taizhou Municipal Hospital (Taizhou Municipal Hospital Affiliated with Taizhou University), Taizhou, Zhejiang, 318000, China
| | - Ying Qu
- Department of Clinical Laboratory Medicine, Taizhou Municipal Hospital (Taizhou Municipal Hospital Affiliated with Taizhou University), Taizhou, Zhejiang, 318000, China
| | - Piaopiao Dai
- Department of Clinical Laboratory Medicine, Taizhou Municipal Hospital (Taizhou Municipal Hospital Affiliated with Taizhou University), Taizhou, Zhejiang, 318000, China
| | - Dongguo Wang
- Department of Central Laboratory, Taizhou Municipal Hospital (Taizhou Municipal Hospital Affiliated with Taizhou University), Taizhou, Zhejiang, 318000, China.
| | - Xiaobo Ma
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Xiamen University (Xiamen Key Laboratory of Genetic Testing), Xiamen, Fujian, 361003, China.
| |
Collapse
|
2
|
Aleixo-Silva RL, Domingos RM, Trujillo M, Gomes F, Machado LO, Oliveira CLP, Baldini R, Netto LES. Interaction between 1-Cys peroxiredoxin and ascorbate in the response to H 2O 2 exposure in Pseudomonas aeruginosa. Redox Biol 2025; 84:103658. [PMID: 40367862 DOI: 10.1016/j.redox.2025.103658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/28/2025] [Accepted: 05/01/2025] [Indexed: 05/16/2025] Open
Abstract
Pseudomonas aeruginosa, a leading cause of hospital-acquired infections, triggers host defenses, including oxidant release by phagocytes. Targeting bacterial antioxidants could reduce pathogen infectivity. This study investigates LsfA, a 1-Cys peroxiredoxin (Prx), member of the Prx6 subfamily, involved in P. aeruginosa virulence. LsfA efficiently reduced various peroxides (106-107 M-1s-1), while exhibiting hyperoxidation resistance (khyperoxidation ∼102 M-1s-1). Despite its substrate oxidizing promiscuity, LsfA displayed specific reduction by ascorbate (2.2 × 103 M-1s-1). Moreover, elucidating the LsfA's crystallographic structures in the reduced and sulfinic/sulfonic acid states at 2.4 and 2.0 Å resolutions unveiled possible residues related to ascorbate binding. Small-angle X-ray scattering (SAXS) and size-exclusion chromatography (SEC) confirmed LsfA as a dimer regardless of its oxidative state. Microbiological assays, including a real-time analysis employing Hyper7, a genetically encoded probe, showed that ascorbate enhanced H2O2 removal in a LsfA-dependent manner. Hence, our integrated structural, biochemical, and microbiological analyses underscored the significance of the ascorbate-LsfA pathway in P. aeruginosa response to H2O2.
Collapse
Affiliation(s)
- Rogerio L Aleixo-Silva
- From the Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil
| | - Renato M Domingos
- From the Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil
| | - Madia Trujillo
- Departamento de Bioquímica, Facultad de Medicina y Centro de Investigaciones Biomédicas, Universidad de la República, Uruguay
| | - Fernando Gomes
- From the Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil
| | | | | | - Regina Baldini
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brazil
| | - Luis E S Netto
- From the Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil.
| |
Collapse
|
3
|
Aldakheel FM, Alduraywish SA. Discovery of novel DdlA inhibitors in multidrug-resistant Pseudomonas aeruginosa using virtual screening, molecular docking, and dynamics simulations. Sci Rep 2025; 15:15290. [PMID: 40312447 PMCID: PMC12046020 DOI: 10.1038/s41598-025-97698-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/07/2025] [Indexed: 05/03/2025] Open
Abstract
Pseudomonas aeruginosa is a gram-negative, opportunistic pathogen that represents a serious risk factor in healthcare services due to its natural resistance mechanisms and the increasing prevalence of multi-drug resistant strains. This study utilized in silico computational approaches to identify the novel inhibitors for D-alanine-D-alanine ligase A (DdlA), an essential enzyme for the bacterial peptidoglycan biosynthesis pathway necessary for cell wall integrity. A structure-based virtual screening of The Medicinal Fungi Secondary Metabolites and Therapeutics (MeFSAT) chemical library was conducted, followed by molecular docking to evaluate the binding affinity of small molecules to the DdlA active site. MSID000191, MSID000200, and MSID000102 were recognized as the leading candidates in the preliminary docking data due to their low binding energy values. These compounds exhibited binding energies markedly superior to the control drug (D-cycloserine), suggesting a substantial potential for inhibiting the DdlA enzyme. Detailed interaction analyses revealed significant salt bridges and hydrogen bonds with active site residues, which enhance the stability of the complex. Density Functional Theory (DFT) analysis and MMPBSA calculations also provided insights into electronic properties and binding free energy, respectively. These findings highlight the potential of these inhibitors as therapeutic candidates and showcase the effectiveness of computational methods in accelerating drug discovery against multidrug-resistant P. aeruginosa. Future research should incorporate more in-silico techniques and experimental validations to confirm these results.
Collapse
Affiliation(s)
- Fahad M Aldakheel
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, 11433, Riyadh, Saudi Arabia.
| | - Shatha A Alduraywish
- Department of Family and Community Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Garcia JA. Antimicrobial Therapy for Pseudomonas aeruginosa. JOURNAL OF INFUSION NURSING 2025; 48:123-126. [PMID: 40047607 DOI: 10.1097/nan.0000000000000589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Affiliation(s)
- Joshua A Garcia
- Author Affiliation: Marshall B. Ketchum University - College of Pharmacy, Fullerton, CA
- Dr Joshua Garcia is an Associate Professor at Marshall B. Ketchum University - College of Pharmacy. Dr Garcia graduated from the University of the Sciences, Philadelphia College of Pharmacy in 2015. After graduation, he completed a PGY-1 Pharmacy Practice Residency and subsequently a PGY-2 Specialty Residency in Infectious Diseases at the University of California San Francisco Medical Center. Dr Garcia joined Marshall B. Ketchum University's College of Pharmacy in 2017. He serves as a faculty member in the college, teaching clinical infectious disease to 3rd year pharmacy students. His practice site is Providence St. Jude Medical Center in Fullerton, California
| |
Collapse
|
5
|
Tegegn G, Melaku Y, Aliye M, Abebe A, Degu S, Eswaramoorthy R, Hunsen M, Endale M. Essential oil composition, in vitro antidiabetic, cytotoxicity, antimicrobial, antioxidant activity, and in silico molecular modeling analysis of secondary metabolites from Justicia schimperiana. Z NATURFORSCH C 2025:znc-2024-0124. [PMID: 39870575 DOI: 10.1515/znc-2024-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 12/13/2024] [Indexed: 01/29/2025]
Abstract
Justicia schimperiana, known as "Dhumuugaa" in Afan Oromo and "Sensel" or "Smiza" in Amharic, is traditionally used to treat ailments such as scabies, fever, asthma, diarrhea, malaria, and more. This study explored the chemical composition and biological activity of its extracts and isolated compounds. The essential oils were extracted using the hydrodistillation method, and their chemical composition was evaluated using GC-MS. GC-MS analysis identified 54 and 52 chemical components in the essential oils (EOs) from roots and leaves, respectively. The structures of the isolated compounds have been identified using 1D and 2D-NMR techniques. Six compounds - β-sitosterol (1), 5-methoxy durmillone (2), trans-resveratrol (3), tricuspidatol A (4), kaempferol-3-O-α-rhamnopyranoside (5), and kaempferol-3-O-rutinoside (6) - were isolated from the root extracts and reported for the first time in this species. The antimicrobial activity was evaluated using the broth microdilution technique. EOs extracts showed significant antibacterial activity, particularly against Staphylococcus aureus, Streptococcus agalactiae, while compound 6 showed potent activity with an MIC of 0.25 μg/mL. The antioxidant activity revealed strong radical scavenging for compounds 5 and 6, with extracts also demonstrating significant α-amylase inhibitory effects and moderate cytotoxicity against the MCF-7 cell line. Molecular docking and ADMET analysis highlighted compounds 5 and 6 as promising therapeutic agent. These findings highlight the medicinal potential of J. schimperiana roots, warranting further exploration.
Collapse
Affiliation(s)
- Getachew Tegegn
- Department of Applied Chemistry, School of Applied Natural Science, 125545 Adama Science and Technology University , P.O. Box 1888, Adama, Ethiopia
| | - Yadessa Melaku
- Department of Applied Chemistry, School of Applied Natural Science, 125545 Adama Science and Technology University , P.O. Box 1888, Adama, Ethiopia
| | - Muhdin Aliye
- Department of Applied Chemistry, School of Applied Natural Science, 125545 Adama Science and Technology University , P.O. Box 1888, Adama, Ethiopia
| | - Abiy Abebe
- Armauer Hansen Research Institute, P.O. Box 1005, Addis Ababa, Ethiopia
| | - Sileshi Degu
- Armauer Hansen Research Institute, P.O. Box 1005, Addis Ababa, Ethiopia
| | - Rajalakshmanan Eswaramoorthy
- Department of Biomaterials, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
| | - Mo Hunsen
- Department of Chemistry, Kenyon College, Gambier, OH 43022, USA
| | - Milkyas Endale
- Armauer Hansen Research Institute, P.O. Box 1005, Addis Ababa, Ethiopia
| |
Collapse
|
6
|
Elahi G, Goli HR, Shafiei M, Nikbin VS, Gholami M. Antimicrobial resistance, virulence gene profiling, and genetic diversity of multidrug-resistant Pseudomonas aeruginosa isolates in Mazandaran, Iran. BMC Microbiol 2024; 24:546. [PMID: 39732629 PMCID: PMC11681713 DOI: 10.1186/s12866-024-03707-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/13/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Pseudomonas aeruginosa is a major cause of healthcare-associated infections (HAIs), particularly in immunocompromised patients, leading to high morbidity and mortality rates. This study aimed to investigate the antimicrobial resistance patterns, virulence gene profiles, and genetic diversity among P. aeruginosa isolates from hospitalized patients in Mazandaran, Iran. METHODS From September 2021 to April 2022, 82 non-duplicate P. aeruginosa isolates were collected from diverse clinical sources. Identification was confirmed using API 20 NE (bioMérieux, Marcy l'Etoile, France). Antimicrobial susceptibility testing was conducted using the Kirby-Bauer disk diffusion method according to CLSI guidelines to assess resistance to a range of antibiotics. The virulence profile (exoT, exoY, exoU, toxA, plcH, plcN, algD, aprA, lasB and exoS) of each P. aeruginosa isolate was determined by PCR. The genetic diversity among the strains was evaluated using the random amplification of polymorphic DNA (RAPD) technique. Clustering was based on a Dice similarity coefficient of ≥ 85%. RESULTS Of the 82 total strains, P. aeruginosa exhibited the highest and lowest resistance toward ticarcillin-clavulanate (98.78%) and colistin (0%), respectively. Moreover, 100% of the P. aeruginosa isolates were MDR. The following prevalence of virulence factor genes was observed: aprA, lasB, algD, toxA, plcH, exoY, and exoT in 100% of isolates. The plcN, exoS, and exoU were identified 98.78%, 67.07%, and 45.12%, respectively. The RAPD patterns obtained with primers 272 and 208 had respectively 2-19 and 6-17 bands. According to the Dice similarity coefficient of higher than 85%, 56 and 39 clusters were recognized. CONCLUSION The high rate of multidrug resistance combined with the widespread presence of virulence genes in P. aeruginosa isolates highlights the potential for increased infection severity, morbidity, and mortality in hospitalized patients. The substantial genetic diversity observed among isolates suggests that P. aeruginosa in this region may rapidly evolve, necessitating ongoing surveillance and more targeted antimicrobial strategies. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Ghazaleh Elahi
- Department of Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamid Reza Goli
- Department of Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Morvarid Shafiei
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Mehrdad Gholami
- Department of Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
- Molecular and Cell Biology Research Centre, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
7
|
Guibert F, Rojo-Bezares B, Espinoza K, Alonso CA, Oporto-Llerena R, López M, Taboada-Blanco C, Sáenz Y, Pons MJ, Ruiz J. Antibiotic-Resistant Pseudomonas aeruginosa from Market Meat in Peru. Foodborne Pathog Dis 2024. [PMID: 39658015 DOI: 10.1089/fpd.2024.0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Unconsidered microorganisms, such as Pseudomonas aeruginosa, may be often recovered from food samples. This study aimed to characterize seven P. aeruginosa recovered from traditional market chicken meat in Lima, Peru. Antimicrobial susceptibility to 18 antimicrobial agents as well as the presence of amino acid changes in fluoroquinolone targets, 10 mediated colistin resistance (mcr) genes and integrons were analyzed. Clonal relationships were determined through pulsed-field gel electrophoresis (PFGE). Serotype by agglutination, multilocus sequence typing and the presence of 14 virulence factors (VFs) were established. Two isolates were multidrug-resistant, all being fluoroquinolone-resistant and exhibited the amino acid changes GyrA T83I and ParC S87L. No mcr gene was detected in the colistin-resistant isolates. The isolates showed identical PFGE patterns, and the selected P6 isolate belonged to the serotype O:4 and the sequence type 1800, and presented 12 VFs (all but exoU and exlA). The present study highlights the presence of multidrug and virulent P. aeruginosa in market chicken meat, and suggests cross-contamination during meat manipulation.
Collapse
Affiliation(s)
- Fernando Guibert
- Grupo de Investigación en Dinámicas y Epidemiología de la Resistencia a Antimicrobianos - "One Health", Universidad Científica del Sur, Lima, Peru
| | - Beatriz Rojo-Bezares
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja, Logroño, Spain
| | - Kathya Espinoza
- Grupo de Investigación en Dinámicas y Epidemiología de la Resistencia a Antimicrobianos - "One Health", Universidad Científica del Sur, Lima, Peru
| | - Carla A Alonso
- Departamento de Diagnóstico Biomédico, Laboratorio de Microbiología, Hospital San Pedro, Logroño, Spain
| | - Rosario Oporto-Llerena
- Grupo de Investigación en Dinámicas y Epidemiología de la Resistencia a Antimicrobianos - "One Health", Universidad Científica del Sur, Lima, Peru
| | - María López
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja, Logroño, Spain
| | - Clara Taboada-Blanco
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja, Logroño, Spain
| | - Yolanda Sáenz
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja, Logroño, Spain
| | - Maria J Pons
- Grupo de Investigación en Dinámicas y Epidemiología de la Resistencia a Antimicrobianos - "One Health", Universidad Científica del Sur, Lima, Peru
| | - Joaquim Ruiz
- Grupo de Investigación en Dinámicas y Epidemiología de la Resistencia a Antimicrobianos - "One Health", Universidad Científica del Sur, Lima, Peru
| |
Collapse
|
8
|
Tovar-Carrillo KL, Trujillo-Morales L, Cuevas-González JC, Ríos-Arana JV, Espinosa-Cristobal LF, Zaragoza-Contreras EA. Antibacterial Properties of Grape Seed Extract-Enriched Cellulose Hydrogels for Potential Dental Application: In Vitro Assay, Cytocompatibility, and Biocompatibility. Gels 2024; 10:606. [PMID: 39330208 PMCID: PMC11431176 DOI: 10.3390/gels10090606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/11/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Hydrogels elaborated from Dasylirion spp. and enriched with grape seed extract (GSE) were investigated for tentative use in dental treatment. Cellulose-GSE hydrogels were elaborated with varying GSE contents from 10 to 50 wt%. The mechanical and physical properties, antimicrobial effect, biocompatibility, and in vitro cytotoxicity were studied. In all the cases, the presence of GSE affects the hydrogel's mechanical properties. The elongation decreased from 12.67 mm for the hydrogel without GSE to 6.33 mm for the hydrogel with the highest GSE content. The tensile strength decrease was from 52.33 N/mm2 (for the samples without GSE) and went to 40 N/mm2 for the highest GSE content. Despite the adverse effects, hydrogels possess suitable properties for manipulation. In addition, all hydrogels exhibited excellent biocompatibility and no cytotoxicity, and the antibacterial performance was demonstrated against S. mutans, E. Faecalis, S. aureus, and P. aureginosa. Furthermore, the hydrogels with 30 wt% GSE inhibited more than 90% of the bacterial growth.
Collapse
Affiliation(s)
- Karla Lizette Tovar-Carrillo
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Cd. Juárez, Av. Benjamín Franklin # 4960, Zona Pronaf, Ciudad Juárez 32315, Chihuahua, Mexico
| | - Lizett Trujillo-Morales
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Cd. Juárez, Av. Benjamín Franklin # 4960, Zona Pronaf, Ciudad Juárez 32315, Chihuahua, Mexico
| | - Juan Carlos Cuevas-González
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Cd. Juárez, Av. Benjamín Franklin # 4960, Zona Pronaf, Ciudad Juárez 32315, Chihuahua, Mexico
| | - Judith Virginia Ríos-Arana
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Cd. Juárez, Av. Benjamín Franklin # 4960, Zona Pronaf, Ciudad Juárez 32315, Chihuahua, Mexico
| | - León Francisco Espinosa-Cristobal
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Cd. Juárez, Av. Benjamín Franklin # 4960, Zona Pronaf, Ciudad Juárez 32315, Chihuahua, Mexico
| | - Erasto Armando Zaragoza-Contreras
- Centro de Investigación en Materiales Avanzados, S.C. Miguel de Cervantes No. 180, Complejo Industrial, Chihuahua 31136, Chihuahua, Mexico
| |
Collapse
|
9
|
Strateva T, Stratev A, Peykov S. Genomic Insights into Vietnamese Extended-Spectrum β-Lactamase-9-Producing Extensively Drug-Resistant Pseudomonas aeruginosa Isolates Belonging to the High-Risk Clone ST357 Obtained from Bulgarian Intensive Care Unit Patients. Pathogens 2024; 13:719. [PMID: 39338911 PMCID: PMC11435151 DOI: 10.3390/pathogens13090719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Extensively drug-resistant P. aeruginosa (XDR-PA) has been highlighted as a serious public health threat. The present study aimed to explore the genomic characteristics of two Vietnamese extended-spectrum β-lactamase-9 (VEB-9)-producing XDR-PA isolates from Bulgaria in comparison to all blaVEB-9-positive strains with available genomes. The isolates designated Pae51 and Pae52 were obtained from tracheobronchial aspirates of intensive care unit (ICU) patients. Antimicrobial susceptibility testing, whole-genome sequencing, RT-qPCR, and phylogenomic analysis were performed. Pae51 and Pae52 were resistant to most antipseudomonal β-lactams including carbapenems, aminoglycosides, and fluoroquinolones but remained susceptible to colistin and cefiderocol. Numerous resistance determinants were detected: blaVEB-9, blaPDC-3, blaOXA-10, blaOXA-50, aac(6')-II, ant(2″)-Ia, ant(3″)-IIa, aph(3')-IIb, cprP, catB7, dfrB2, sul1, fosA, and tet(A). Both isolates carried complex integrons with blaVEB-9 and tet(A) embedded next to the conservative 3' end sequences. A variety of virulence factors were also identified, including the type III secretion system exotoxin U. Pae51 and Pae52 differed by only four SNPs and belonged to the high-risk clone ST357. To our knowledge, this is the first report of blaVEB-9-positive XDR-PA isolates in Bulgaria presenting a detailed genomic analysis. The development of novel antimicrobial strategies for such pathogens should be an essential part of infection control stewardship practices in ICU wards.
Collapse
Affiliation(s)
- Tanya Strateva
- Department of Medical Microbiology “Corr. Mem. Prof. Ivan Mitov, MD, DMSc”, Faculty of Medicine, Medical University of Sofia, 2 Zdrave Str., 1431 Sofia, Bulgaria;
| | - Alexander Stratev
- Intensive Care Unit, University Multiprofile Hospital for Active Treatment ‘St. Ivan Rilski’, 15 Acad. Ivan Geshov Blvd., 1431 Sofia, Bulgaria;
- Department of Anaesthesiology and Intensive Care, Faculty of Medicine, Medical University of Sofia, 1 St. Georgi Sofiyski Str., 1431 Sofia, Bulgaria
| | - Slavil Peykov
- Department of Medical Microbiology “Corr. Mem. Prof. Ivan Mitov, MD, DMSc”, Faculty of Medicine, Medical University of Sofia, 2 Zdrave Str., 1431 Sofia, Bulgaria;
- Department of Genetics, Faculty of Biology, University of Sofia ‘St. Kliment Ohridski’, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
- BioInfoTech Laboratory, Sofia Tech Park, 111 Tsarigradsko Shose Blvd., 1784 Sofia, Bulgaria
| |
Collapse
|
10
|
Belay WY, Getachew M, Tegegne BA, Teffera ZH, Dagne A, Zeleke TK, Abebe RB, Gedif AA, Fenta A, Yirdaw G, Tilahun A, Aschale Y. Mechanism of antibacterial resistance, strategies and next-generation antimicrobials to contain antimicrobial resistance: a review. Front Pharmacol 2024; 15:1444781. [PMID: 39221153 PMCID: PMC11362070 DOI: 10.3389/fphar.2024.1444781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Antibacterial drug resistance poses a significant challenge to modern healthcare systems, threatening our ability to effectively treat bacterial infections. This review aims to provide a comprehensive overview of the types and mechanisms of antibacterial drug resistance. To achieve this aim, a thorough literature search was conducted to identify key studies and reviews on antibacterial resistance mechanisms, strategies and next-generation antimicrobials to contain antimicrobial resistance. In this review, types of resistance and major mechanisms of antibacterial resistance with examples including target site modifications, decreased influx, increased efflux pumps, and enzymatic inactivation of antibacterials has been discussed. Moreover, biofilm formation, and horizontal gene transfer methods has also been included. Furthermore, measures (interventions) taken to control antimicrobial resistance and next-generation antimicrobials have been discussed in detail. Overall, this review provides valuable insights into the diverse mechanisms employed by bacteria to resist the effects of antibacterial drugs, with the aim of informing future research and guiding antimicrobial stewardship efforts.
Collapse
Affiliation(s)
- Wubetu Yihunie Belay
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Melese Getachew
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Bantayehu Addis Tegegne
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Zigale Hibstu Teffera
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Abebe Dagne
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Tirsit Ketsela Zeleke
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Rahel Belete Abebe
- Department of clinical pharmacy, College of medicine and health sciences, University of Gondar, Gondar, Ethiopia
| | - Abebaw Abie Gedif
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Abebe Fenta
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Getasew Yirdaw
- Department of environmental health science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Adane Tilahun
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Yibeltal Aschale
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
11
|
Gyger J, Torrens G, Cava F, Bernhardt TG, Fumeaux C. A potential space-making role in cell wall biogenesis for SltB1and DacB revealed by a beta-lactamase induction phenotype in Pseudomonas aeruginosa. mBio 2024; 15:e0141924. [PMID: 38920394 PMCID: PMC11253642 DOI: 10.1128/mbio.01419-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 06/27/2024] Open
Abstract
Pseudomonas aeruginosa encodes the beta-lactamase AmpC, which promotes resistance to beta-lactam antibiotics. Expression of ampC is induced by anhydro-muropeptides (AMPs) released from the peptidoglycan (PG) cell wall upon beta-lactam treatment. AmpC can also be induced via genetic inactivation of PG biogenesis factors such as the endopeptidase DacB that cleaves PG crosslinks. Mutants in dacB occur in beta-lactam-resistant clinical isolates of P. aeruginosa, but it has remained unclear why DacB inactivation promotes ampC induction. Similarly, the inactivation of lytic transglycosylase (LT) enzymes such as SltB1 that cut PG glycans has also been associated with ampC induction and beta-lactam resistance. Given that LT enzymes are capable of producing AMP products that serve as ampC inducers, this latter observation has been especially difficult to explain. Here, we show that ampC induction in sltB1 or dacB mutants requires another LT enzyme called MltG. In Escherichia coli, MltG has been implicated in the degradation of nascent PG strands produced upon beta-lactam treatment. Accordingly, in P. aeruginosa sltB1 and dacB mutants, we detected the MltG-dependent production of pentapeptide-containing AMP products that are signatures of nascent PG degradation. Our results therefore support a model in which SltB1 and DacB use their PG-cleaving activity to open space in the PG matrix for the insertion of new material. Thus, their inactivation mimics low-level beta-lactam treatment by reducing the efficiency of new PG insertion into the wall, causing the degradation of some nascent PG material by MltG to produce the ampC-inducing signal. IMPORTANCE Inducible beta-lactamases like the ampC system of Pseudomonas aeruginosa are a common determinant of beta-lactam resistance among gram-negative bacteria. The regulation of ampC is elegantly tuned to detect defects in cell wall synthesis caused by beta-lactam drugs. Studies of mutations causing ampC induction in the absence of drug therefore promise to reveal new insights into the process of cell wall biogenesis in addition to aiding our understanding of how resistance to beta-lactam antibiotics arises in the clinic. In this study, the ampC induction phenotype for mutants lacking a glycan-cleaving enzyme or an enzyme that cuts cell wall crosslinks was used to uncover a potential role for these enzymes in making space in the wall matrix for the insertion of new material during cell growth.
Collapse
Affiliation(s)
- Joël Gyger
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Gabriel Torrens
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Center for Microbial Research (UCMR), Umea, Sweden
- Department of Molecular Biology, Science for Life Laboratory (SciLifeLab), Umeå University, Umeå, Sweden
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Center for Microbial Research (UCMR), Umea, Sweden
- Department of Molecular Biology, Science for Life Laboratory (SciLifeLab), Umeå University, Umeå, Sweden
| | - Thomas G. Bernhardt
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Coralie Fumeaux
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Yadav SA, Pawar SK, Datkhile KD, Mohite ST, Patil SR, More AL. Phenotypic and Genotypic Characterization of AmpC Beta-Lactamase in Clinical Isolates of Pseudomonas aeruginosa Findings From a Tertiary Care Hospital. Cureus 2024; 16:e65185. [PMID: 39176317 PMCID: PMC11341105 DOI: 10.7759/cureus.65185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/22/2024] [Indexed: 08/24/2024] Open
Abstract
Background and aim Pseudomonas aeruginosa is an opportunistic pathogen responsible for various healthcare-related infections, which are difficult to treat due to intrinsic and acquired resistance. This study aimed to investigate AmpC β-lactamase production using phenotypic and genotypic methods in Pseudomonas aeruginosa strains isolated from a tertiary care hospital in Karad, Maharashtra, India. Material and methods Over one year, a descriptive cross-sectional study was conducted at the Department of Microbiology, Krishna Institute Medical Sciences, Krishna Vishwa Vidyapeeth, Karad. Phenotypic detection of AmpC beta-lactamase was performed using the Cefoxitin-Cloxacillin Double-Disc Synergy Test method, and genotypic detection was conducted using conventional polymerase chain reaction (PCR) targeting the bla Pseudomonas-derived cephalosporinases (PDC) and bla cephamycinase (CMY) genes. Results Out of 205 clinical isolates of Pseudomonas aeruginosa, 110 (53.66%) showed AmpC production phenotypically, while 86 (41.95%) were positive genotypically. The blaPDC gene was detected in 36.10% of isolates, and the blaCMY gene in 10.73% of isolates. Conclusions The study findings indicate that AmpC-β-lactamase stands out as the primary resistance mechanism in strains of Pseudomonas aeruginosa isolated from the hospital. PCR study concluded that blaPDC (36.10 %) was the leading gene responsible for AmpC synthesis among study isolates. Early detection of AmpC beta-lactamase production by employing phenotypic and genotypic methods is crucial for detecting antibiotic resistance. This dual approach enables healthcare professionals to decide on the most effective antibiotics and mitigate the development of resistance.
Collapse
Affiliation(s)
- Suvarna A Yadav
- Microbiology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidhyapeeth (Deemed to be University), Karad, IND
| | - Satyajeet K Pawar
- Microbiology, Krishna Institute of Medical Science, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Kailas D Datkhile
- Molecular Biology and Genetics, Krishna Institute of Allied Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Shivaji T Mohite
- Microbiology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Satish R Patil
- Microbiology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Ashwini L More
- Molecular Biology and Genetics, Krishna Institute of Allied Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| |
Collapse
|
13
|
Chen H, Ng C, Tran NH, Haller L, Goh SG, Charles FR, Wu Z, Lim JX, Gin KYH. Removal efficiency of antibiotic residues, antibiotic resistant bacteria, and genes across parallel secondary settling tank and membrane bioreactor treatment trains in a water reclamation plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171723. [PMID: 38492595 DOI: 10.1016/j.scitotenv.2024.171723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/07/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
Antimicrobial resistance is recognized as a potent threat to human health. Wastewater treatment facilities are viewed as hotspots for the spread of antimicrobial resistance. This study provides comprehensive data on the occurrences of 3 different antibiotic resistant opportunistic pathogens (with resistance to up to 5 antibiotics), 13 antibiotic resistant genes and intI1, and 22 different antimicrobial residues in a large water reclamation plant (176 million gallons per day) that runs a conventional Modified Ludzack-Ettinger (MLE) reactor followed by a secondary settling tank (SST) and membrane bioreactor (MBR) in parallel. All the antibiotic resistant bacteria and most of the antibiotic resistance genes were present in the raw influent, ranging from 2.5 × 102-3.7 × 106 CFU/mL and 1.2× 10-1-6.5 × 1010 GCN/mL, respectively. MBR outperformed the SST system in terms of ARB removal as the ARB targets were largely undetected in MBR effluent, with log removals ranging from 2.7 to 6.8, while SST only had log removals ranging from 0.27 to 4.6. Most of the ARG concentrations were found to have significantly higher in SST effluent than MBR permeate, and MBR had significantly higher removal efficiency for most targets (p < 0.05) except for sul1, sul2, blaOXA48, intI1 and 16S rRNA genes (p > 0.05). As for the antibiotic residues (AR), there was no significant removal from the start to the end of the treatment process, although MBR had higher removal efficiencies for azithromycin, chloramphenicol, erythromycin, erythromycin-H2O, lincomycin, sulfamethoxazole and triclosan, compared to the SST system. In conclusion, MBR outperformed SST in terms of ARB and ARGs removal. However low removal efficiencies of most AR targets were apparent.
Collapse
Affiliation(s)
- Hongjie Chen
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 1 Create Way, Singapore 138602, Singapore
| | - Charmaine Ng
- NUS Environmental Research Institute (NERI), National University of Singapore, T-Lab Building (#02-01), 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Ngoc Han Tran
- NUS Environmental Research Institute (NERI), National University of Singapore, T-Lab Building (#02-01), 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Laurence Haller
- NUS Environmental Research Institute (NERI), National University of Singapore, T-Lab Building (#02-01), 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Shin Giek Goh
- NUS Environmental Research Institute (NERI), National University of Singapore, T-Lab Building (#02-01), 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Francis Rathinam Charles
- NUS Environmental Research Institute (NERI), National University of Singapore, T-Lab Building (#02-01), 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Zhixin Wu
- NUS Environmental Research Institute (NERI), National University of Singapore, T-Lab Building (#02-01), 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Jit Xin Lim
- NUS Environmental Research Institute (NERI), National University of Singapore, T-Lab Building (#02-01), 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Karina Yew-Hoong Gin
- NUS Environmental Research Institute (NERI), National University of Singapore, T-Lab Building (#02-01), 5A Engineering Drive 1, Singapore 117411, Singapore; Department of Civil & Environmental Engineering, National University of Singapore, Block E1A-07-03, 1 Engineering Drive 2, 117576, Singapore.
| |
Collapse
|
14
|
Rodríguez-Gascón A, Lloréns-Villar Y, Solinís MÁ, Barrasa H, Canut-Blasco A. Does selective digestive decontamination (SDD) increase antibiotic resistance? Long-term comparison of two intensive care units (with and without SDD) of the same tertiary hospital. Eur J Clin Microbiol Infect Dis 2024; 43:885-893. [PMID: 38460030 PMCID: PMC11108900 DOI: 10.1007/s10096-024-04792-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/26/2024] [Indexed: 03/11/2024]
Abstract
PURPOSE The aim of this study was to to compare the antimicrobial resistance rate and its relationship with the antibiotic consumption in two separate Intensive Care Units (ICUs) of the same hospital, one with and other without selective decontamination of the digestive tract (SDD). METHODS We performed a retrospective study in the two ICUs of the Araba University Hospital. Trauma and neurosurgical patients are admitted to the SDD-ICU, and general digestive surgery patients go to the no SDD-ICU. From 2014 to 2018 we analyzed the number of isolates, and the bacterial resistance trends of 47 antimicrobial-microorganism combinations. Additionally, antimicrobial consumption was estimated in both ICUs. Resistance rates were also compared with those reported in ENVIN-HELICS Spanish national registry. RESULTS In the ICU with SDD protocol, there was a significant decrease in the resistance of E. coli to amoxicillin/clavulanic acid and in the resistance of E. faecalis to high concentration of gentamycin and high concentration of streptomycin. A significant increase of resistance of Staphylococcus coagulasa negative (CoNS) to linezolid in the no SDD-ICU was also detected. Overall, the level of resistance in the SDD-ICU was lower or of the same order than in the ICU without SDD and that reported in the Spanish national registry. CONCLUSIONS SDD had neither a clinically relevant impact on emergence and spread of resistance, nor in the overall systemic antimicrobial use. The patient type rather than the SDD protocol showed to condition the ecology and therefore, the resistance rate in the ICUs.
Collapse
Affiliation(s)
- Alicia Rodríguez-Gascón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (Pharma Nano Gene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz, 01006, Spain.
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, Vitoria-Gasteiz, 01009, Spain.
| | - Yanire Lloréns-Villar
- Hospital Pharmacy Service, Araba University Hospital, Osakidetza Basque Health Service, Vitoria-Gasteiz, 01009, Spain
| | - María Ángeles Solinís
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (Pharma Nano Gene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz, 01006, Spain
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, Vitoria-Gasteiz, 01009, Spain
| | - Helena Barrasa
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, Vitoria-Gasteiz, 01009, Spain
- Intensive Care Unit, Osakidetza Basque Health Service, Araba University Hospital, Vitoria-Gasteiz, 01009, Spain
| | - Andrés Canut-Blasco
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, Vitoria-Gasteiz, 01009, Spain
- Microbiology Service, Osakidetza Basque Health Service, Araba University Hospital, Vitoria-Gasteiz, 01009, Spain
| |
Collapse
|
15
|
Manrique PD, Leus IV, López CA, Mehla J, Malloci G, Gervasoni S, Vargiu AV, Kinthada RK, Herndon L, Hengartner NW, Walker JK, Rybenkov VV, Ruggerone P, Zgurskaya HI, Gnanakaran S. Predicting permeation of compounds across the outer membrane of P. aeruginosa using molecular descriptors. Commun Chem 2024; 7:84. [PMID: 38609430 PMCID: PMC11015012 DOI: 10.1038/s42004-024-01161-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
The ability Gram-negative pathogens have at adapting and protecting themselves against antibiotics has increasingly become a public health threat. Data-driven models identifying molecular properties that correlate with outer membrane (OM) permeation and growth inhibition while avoiding efflux could guide the discovery of novel classes of antibiotics. Here we evaluate 174 molecular descriptors in 1260 antimicrobial compounds and study their correlations with antibacterial activity in Gram-negative Pseudomonas aeruginosa. The descriptors are derived from traditional approaches quantifying the compounds' intrinsic physicochemical properties, together with, bacterium-specific from ensemble docking of compounds targeting specific MexB binding pockets, and all-atom molecular dynamics simulations in different subregions of the OM model. Using these descriptors and the measured inhibitory concentrations, we design a statistical protocol to identify predictors of OM permeation/inhibition. We find consistent rules across most of our data highlighting the role of the interaction between the compounds and the OM. An implementation of the rules uncovered in our study is shown, and it demonstrates the accuracy of our approach in a set of previously unseen compounds. Our analysis sheds new light on the key properties drug candidates need to effectively permeate/inhibit P. aeruginosa, and opens the gate to similar data-driven studies in other Gram-negative pathogens.
Collapse
Affiliation(s)
- Pedro D Manrique
- Physics Department, George Washington University, Washington, 20052, DC, USA.
| | - Inga V Leus
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, 73019, OK, USA
| | - César A López
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, 87545, NM, USA
| | - Jitender Mehla
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, 73019, OK, USA
| | - Giuliano Malloci
- Department of Physics, University of Cagliari, Monserrato, 20052, CA, Italy
| | - Silvia Gervasoni
- Department of Physics, University of Cagliari, Monserrato, 20052, CA, Italy
| | - Attilio V Vargiu
- Department of Physics, University of Cagliari, Monserrato, 20052, CA, Italy
| | - Rama K Kinthada
- Department of Pharmacology and Physiology, Saint Louis University, St. Louis, 63103, MO, USA
| | - Liam Herndon
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, 87545, NM, USA
| | - Nicolas W Hengartner
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, 87545, NM, USA
| | - John K Walker
- Department of Pharmacology and Physiology, Saint Louis University, St. Louis, 63103, MO, USA
| | - Valentin V Rybenkov
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, 73019, OK, USA
| | - Paolo Ruggerone
- Department of Physics, University of Cagliari, Monserrato, 20052, CA, Italy
| | - Helen I Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, 73019, OK, USA
| | - S Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, 87545, NM, USA.
| |
Collapse
|
16
|
Dirr L, Cleeves S, Ramón Roth I, Li L, Fiebig T, Ve T, Häussler S, Braun A, von Itzstein M, Führing JI. Tetramerization is essential for the enzymatic function of the Pseudomonas aeruginosa virulence factor UDP-glucose pyrophosphorylase. mBio 2024; 15:e0211423. [PMID: 38470050 PMCID: PMC11005391 DOI: 10.1128/mbio.02114-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/20/2024] [Indexed: 03/13/2024] Open
Abstract
Multidrug-resistant bacteria such as the opportunistic pathogen Pseudomonas aeruginosa, which causes life-threatening infections especially in immunocompromised individuals and cystic fibrosis patients, pose an increasing threat to public health. In the search for new treatment options, P. aeruginosa uridine diphosphate-glucose pyrophosphorylase (PaUGP) has been proposed as a novel drug target because it is required for the biosynthesis of important virulence factors and linked to pathogenicity in animal models. Here, we show that UGP-deficient P. aeruginosa exhibits severely reduced virulence against human lung tissue and cells, emphasizing the enzyme's suitability as a drug target. To establish a basis for the development of selective PaUGP inhibitors, we solved the product-bound crystal structure of tetrameric PaUGP and conducted a comprehensive structure-function analysis, identifying key residues at two different molecular interfaces that are essential for tetramer integrity and catalytic activity and demonstrating that tetramerization is pivotal for PaUGP function. Importantly, we show that part of the PaUGP oligomerization interface is uniquely conserved across bacterial UGPs but does not exist in the human enzyme, therefore representing an allosteric site that may be targeted to selectively inhibit bacterial UGPs.IMPORTANCEInfections with the opportunistic bacterial pathogen Pseudomonas aeruginosa are becoming increasingly difficult to treat due to multidrug resistance. Here, we show that the enzyme uridine diphosphate-glucose pyrophosphorylase (UGP) is involved in P. aeruginosa virulence toward human lung tissue and cells, making it a potential target for the development of new antibacterial drugs. Our exploration of P. aeruginosa (Pa)UGP structure-function relationships reveals that the activity of PaUGP depends on the formation of a tetrameric enzyme complex. We found that a molecular interface involved in tetramer formation is conserved in all bacterial UGPs but not in the human enzyme, and therefore hypothesize that it provides an ideal point of attack to selectively inhibit bacterial UGPs and exploit them as drug targets.
Collapse
Affiliation(s)
- Larissa Dirr
- Institute for Glycomics, Gold Coast Campus, Griffith University, Gold Coast, Queensland, Australia
| | - Sven Cleeves
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Isabel Ramón Roth
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Linghui Li
- Institute for Glycomics, Gold Coast Campus, Griffith University, Gold Coast, Queensland, Australia
| | - Timm Fiebig
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Thomas Ve
- Institute for Glycomics, Gold Coast Campus, Griffith University, Gold Coast, Queensland, Australia
| | - Susanne Häussler
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Molecular Bacteriology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
- Department of Clinical Microbiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Armin Braun
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Mark von Itzstein
- Institute for Glycomics, Gold Coast Campus, Griffith University, Gold Coast, Queensland, Australia
| | - Jana I. Führing
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| |
Collapse
|
17
|
Monteagudo de Barros V, da Rocha BS, Rhoden J, Stein JF, Picoli SU, Rigotto C. Detection of metallo-beta-lactamase-producing genes blaSPM and blaNDM in Pseudomonas aeruginosa isolated from wastewater in Southern Brazil. JOURNAL OF WATER AND HEALTH 2024; 22:689-700. [PMID: 38678422 DOI: 10.2166/wh.2024.305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/01/2024] [Indexed: 04/30/2024]
Abstract
Pseudomonas aeruginosa is commonly associated with the ability to acquire antimicrobial resistance. The surveillance of resistance genes in various environmental matrices has gained prominence in recent years, being seen as a potential threat to public health. The objective of this study was to investigate genes encoding metallo-beta-lactamases (MBLs), which confer resistance to carbapenems, in wastewater. Fifteen isolates of P. aeruginosa were collected for five months from samples obtained from a municipal wastewater treatment plant in Rio Grande do Sul. These isolates were subjected to disk diffusion testing using 10 different antimicrobials. Phenotypic enzymatic tests for MBLs were conducted, and positive isolates underwent DNA extraction and gene detection using the polymerase chain reaction. The resistance rate to ceftazidime was 100%, cefepime 73.3%, piperacillin-tazobactam 66.67%, imipenem 53.30%, levofloxacin 46.67%, tobramycin 40%, and ciprofloxacin and amikacin 13.33%. Both meropenem and aztreonam resistances were rare accounting for 6.60% of the tested isolates. Among these isolates, 20% were classified as multidrug-resistant and were found to carry the blaNDM and blaSPM genes. The results suggest that evaluating resistance genes in bacteria from urban raw sewage can provide data that assist in surveillance, as this environment can stimulate increased bacterial resistance.
Collapse
Affiliation(s)
- Vinícius Monteagudo de Barros
- Molecular Microbiology Laboratory, Institute of Health Sciences, Feevale University, Red Building 2nd Floor, Room 205, RS 239, No. 2755, Vila Nova, Novo Hamburgo, RS 93352-000, Brazil E-mail:
| | - Bruna Seixas da Rocha
- Molecular Microbiology Laboratory, Institute of Health Sciences, Feevale University, Red Building 2nd Floor, Room 205, RS 239, No. 2755, Vila Nova, Novo Hamburgo, RS 93352-000, Brazil
| | - Jaqueline Rhoden
- Molecular Microbiology Laboratory, Institute of Health Sciences, Feevale University, Red Building 2nd Floor, Room 205, RS 239, No. 2755, Vila Nova, Novo Hamburgo, RS 93352-000, Brazil
| | - Janaína Franciele Stein
- Molecular Microbiology Laboratory, Institute of Health Sciences, Feevale University, Red Building 2nd Floor, Room 205, RS 239, No. 2755, Vila Nova, Novo Hamburgo, RS 93352-000, Brazil
| | - Simone Ulrich Picoli
- Integrated Health Specialties Center - CIES Feevale, Institute of Health Sciences, Feevale University, R. Rubem Berta, 200 - Vila Nova, Novo Hamburgo, RS 93525-080, Brazil
| | - Caroline Rigotto
- Molecular Microbiology Laboratory, Institute of Health Sciences, Feevale University, Red Building 2nd Floor, Room 205, RS 239, No. 2755, Vila Nova, Novo Hamburgo, RS 93352-000, Brazil
| |
Collapse
|
18
|
Zdubek A, Maliszewska I. On the Possibility of Using 5-Aminolevulinic Acid in the Light-Induced Destruction of Microorganisms. Int J Mol Sci 2024; 25:3590. [PMID: 38612403 PMCID: PMC11011456 DOI: 10.3390/ijms25073590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Antimicrobial photodynamic inactivation (aPDI) is a method that specifically kills target cells by combining a photosensitizer and irradiation with light at the appropriate wavelength. The natural amino acid, 5-aminolevulinic acid (5-ALA), is the precursor of endogenous porphyrins in the heme biosynthesis pathway. This review summarizes the recent progress in understanding the biosynthetic pathways and regulatory mechanisms of 5-ALA synthesis in biological hosts. The effectiveness of 5-ALA-aPDI in destroying various groups of pathogens (viruses, fungi, yeasts, parasites) was presented, but greater attention was focused on the antibacterial activity of this technique. Finally, the clinical applications of 5-ALA in therapies using 5-ALA and visible light (treatment of ulcers and disinfection of dental canals) were described.
Collapse
Affiliation(s)
| | - Irena Maliszewska
- Department of Organic and Medicinal Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland;
| |
Collapse
|
19
|
Bo L, Sun H, Li YD, Zhu J, Wurpel JND, Lin H, Chen ZS. Combating antimicrobial resistance: the silent war. Front Pharmacol 2024; 15:1347750. [PMID: 38420197 PMCID: PMC10899355 DOI: 10.3389/fphar.2024.1347750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
Once hailed as miraculous solutions, antibiotics no longer hold that status. The excessive use of antibiotics across human healthcare, agriculture, and animal husbandry has given rise to a broad array of multidrug-resistant (MDR) pathogens, posing formidable treatment challenges. Antimicrobial resistance (AMR) has evolved into a pressing global health crisis, linked to elevated mortality rates in the modern medical era. Additionally, the absence of effective antibiotics introduces substantial risks to medical and surgical procedures. The dwindling interest of pharmaceutical industries in developing new antibiotics against MDR pathogens has aggravated the scarcity issue, resulting in an exceedingly limited pipeline of new antibiotics. Given these circumstances, the imperative to devise novel strategies to combat perilous MDR pathogens has become paramount. Contemporary research has unveiled several promising avenues for addressing this challenge. The article provides a comprehensive overview of these innovative therapeutic approaches, highlighting their mechanisms of action, benefits, and drawbacks.
Collapse
Affiliation(s)
- Letao Bo
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Haidong Sun
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yi-Dong Li
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Jonathan Zhu
- Carle Place Middle and High School, Carle Place, NY, United States
| | - John N. D. Wurpel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Hanli Lin
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zhe-Sheng Chen
- Institute for Biotechnology, St. John’s University, Queens, NY, United States
| |
Collapse
|
20
|
Halawa EM, Fadel M, Al-Rabia MW, Behairy A, Nouh NA, Abdo M, Olga R, Fericean L, Atwa AM, El-Nablaway M, Abdeen A. Antibiotic action and resistance: updated review of mechanisms, spread, influencing factors, and alternative approaches for combating resistance. Front Pharmacol 2024; 14:1305294. [PMID: 38283841 PMCID: PMC10820715 DOI: 10.3389/fphar.2023.1305294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/18/2023] [Indexed: 01/30/2024] Open
Abstract
Antibiotics represent a frequently employed therapeutic modality for the management of bacterial infections across diverse domains, including human health, agriculture, livestock breeding, and fish farming. The efficacy of antibiotics relies on four distinct mechanisms of action, which are discussed in detail in this review, along with accompanying diagrammatic illustrations. Despite their effectiveness, antibiotic resistance has emerged as a significant challenge to treating bacterial infections. Bacteria have developed defense mechanisms against antibiotics, rendering them ineffective. This review delves into the specific mechanisms that bacteria have developed to resist antibiotics, with the help of diagrammatic illustrations. Antibiotic resistance can spread among bacteria through various routes, resulting in previously susceptible bacteria becoming antibiotic-resistant. Multiple factors contribute to the worsening crisis of antibiotic resistance, including human misuse of antibiotics. This review also emphasizes alternative solutions proposed to mitigate the exacerbation of antibiotic resistance.
Collapse
Affiliation(s)
- Esraa M. Halawa
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, Egypt
| | - Mohamed Fadel
- Department of Microbial Chemistry, Biotechnology Research Institute, National Research Centre, Dokki, Cairo, Egypt
| | - Mohammed W. Al-Rabia
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Clinical Laboratories-Diagnostic Immunology Division, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Ali Behairy
- Department of Pharmacology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Nehal A. Nouh
- Department of Microbiology, Medicine Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Inpatient Pharmacy, Mansoura University Hospitals, Mansoura, Egypt
| | - Mohamed Abdo
- Department of Animal Histology and Anatomy, School of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Egypt
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Rada Olga
- Department of Biology and Plant Protection, Faculty of Agriculture, University of Life Sciences “King Michael I” from Timișoara, Timișoara, Romania
| | - Liana Fericean
- Department of Biology and Plant Protection, Faculty of Agriculture, University of Life Sciences “King Michael I” from Timișoara, Timișoara, Romania
| | - Ahmed M. Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Mohammad El-Nablaway
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| |
Collapse
|
21
|
Kariyawasam R, Gascon B, Challa P, Mah J, Lau R, Valencia BM, Llanos-Cuentas A, Boggild AK. Spectrum of bacterial pathogens in inflammatory and noninflammatory cutaneous ulcers of American tegumentary leishmaniasis. Ther Adv Infect Dis 2024; 11:20499361241274200. [PMID: 39296379 PMCID: PMC11409304 DOI: 10.1177/20499361241274200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/25/2024] [Indexed: 09/21/2024] Open
Abstract
Background Cutaneous leishmaniasis (CL) ulcers exhibiting an inflammatory phenotype, characterized by purulent exudate, erythema, pain, and/or lymphatic involvement, are empirically treated with antibiotics. Objective The spectrum of bacteria present in localized versus inflammatory phenotypes of CL is elucidated herein. Methods Filter paper lesion impressions (FPLIs) from 39 patients with CL (19 inflammatory and 20 noninflammatory ulcers) were evaluated via real-time polymerase chain reaction (qPCR) and end-point PCR targeting: Staphylococcus aureus, Enterobacter cloacae, Streptococcus pyogenes, Enterococcus spp., Citrobacter freundii, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, and 16S rDNA. Whole genome sequencing (WGS) was performed on six specimens. Results In total, 30/39 (77%) patients' ulcers had ⩾1 bacterium detected, which included the following species: S. aureus (n = 16, 41%), C. freundii (n = 13, 33%), P. aeruginosa (n = 12, 31%), E. cloacae (n = 12, 31%), K. pneumoniae (n = 11, 28%), Enterococcus spp. (n = 7, 18%), E. coli (n = 6, 15%), and S. pyogenes (n = 4, 10). Prevalence of bacterial species did not differ by CL phenotype (p = 0.63). However, patients with inflammatory phenotypes were, on average, over a decade older than patients with noninflammatory phenotypes (42 years vs 27 years) (p = 0.01). The inflammatory phenotype was more prevalent among ulcers of Leishmania Viannia braziliensis (58%) and L. V. panamensis (83%) compared to those of L. V. guyanensis (20%) (p = 0.0369). Conclusion The distribution of flora did not differ between inflammatory and noninflammatory CL phenotypes. Further prospective analysis, including additional WGS studies of all CL ulcers for nonbacterial organisms, is necessary to determine the role of empiric antibiotic therapy in inflammatory and purulent CL.
Collapse
Affiliation(s)
- Ruwandi Kariyawasam
- Public Health Laboratory, Alberta Precision Laboratories, Edmonton, AB, Canada
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Bryan Gascon
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Priyanka Challa
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada
| | - Jordan Mah
- School of Medicine, Duke University, Durham, NC, USA
| | - Rachel Lau
- Public Health Ontario Laboratories, Public Health Ontario, Toronto, ON, Canada
| | - Braulio M Valencia
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Unidad de Leishmaniasis y Malaria, Lima, Peru
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Alejandro Llanos-Cuentas
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Unidad de Leishmaniasis y Malaria, Lima, Peru
| | - Andrea K Boggild
- Temerty Faculty of Medicine, University of Toronto, ON, Canada
- Tropical Disease Unit, Toronto General Hospital, 200 Elizabeth Street, 13EN-218, Toronto, ON M5G 2C4, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
22
|
MATSUMOTO Y, YAMASAKI S, HAYAMA K, IINO R, NOJI H, YAMAGUCHI A, NISHINO K. Changes in the expression of mexB, mexY, and oprD in clinical Pseudomonas aeruginosa isolates. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2024; 100:57-67. [PMID: 38199247 PMCID: PMC10864171 DOI: 10.2183/pjab.100.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/12/2023] [Indexed: 01/12/2024]
Abstract
Changes in expression levels of drug efflux pump genes, mexB and mexY, and porin gene oprD in Pseudomonas aeruginosa were investigated in this study. Fifty-five multidrug-resistant P. aeruginosa (MDRP) strains were compared with 26 drug-sensitive strains and 21 strains resistant to a single antibiotic. The effect of the efflux inhibitor Phe-Arg-β-naphthylamide on drug susceptibility was determined, and gene expression was quantified using real-time quantitative real-time reverse transcription polymerase chain reaction. In addition, the levels of metallo-β-lactamase (MBL) and 6'-N-aminoglycoside acetyltransferase [AAC(6')-Iae] were investigated. Efflux pump inhibitor treatment increased the sensitivity to ciprofloxacin, aztreonam, and imipenem in 71%, 73%, and 29% of MDRPs, respectively. MBL and AAC(6')-Iae were detected in 38 (69%) and 34 (62%) MDRP strains, respectively. Meanwhile, 76% of MDRP strains exhibited more than 8-fold higher mexY expression than the reference strain PAO1. Furthermore, 69% of MDRP strains expressed oprD at levels less than 0.01-fold of those in PAO1. These findings indicated that efflux pump inhibitors in combination with ciprofloxacin or aztreonam might aid in treating MDRP infections.
Collapse
Affiliation(s)
- Yoshimi MATSUMOTO
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka, Japan
| | - Seiji YAMASAKI
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, Osaka, Japan
| | - Kouhei HAYAMA
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka, Japan
| | - Ryota IINO
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Graduate Institute for Advanced Studies, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa, Japan
| | - Hiroyuki NOJI
- Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Akihito YAMAGUCHI
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka, Japan
| | - Kunihiko NISHINO
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
23
|
Gomersall J, Mortimer K, Hassan D, Whitehead KA, Slate AJ, Ryder SF, Chambers LE, El Mohtadi M, Shokrollahi K. Ten-Year Analysis of Bacterial Colonisation and Outcomes of Major Burn Patients with a Focus on Pseudomonas aeruginosa. Microorganisms 2023; 12:42. [PMID: 38257869 PMCID: PMC10819084 DOI: 10.3390/microorganisms12010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/05/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
A retrospective descriptive study included patients admitted with severe burns over the course of 10 years (2008-2018). Across all patients, there were 39 different species of bacteria, with 23 species being Gram-negative and 16 being Gram-positive bacteria, with also five different species of fungi cultured. Pseudomonas aeruginosa was the most commonly isolated organism, with 57.45% of patients having a positive culture. There was a significant difference in the number of P. aeruginosa isolated from patients that acquired their burns at work, in a garden, inside a vehicle, in a garage or in a public place. In patients that were positive for P. aeruginosa, the number of operations was higher (2.4) and the length of stay was significantly increased (80.1 days). Patients that suffered from substance abuse demonstrated significantly higher numbers of isolated P. aeruginosa (14.8%). Patients that suffered from both mental health illness and substance abuse demonstrated significantly higher numbers of P. aeruginosa isolated (18.5%). In the P. aeruginosa-negative group, there were significantly fewer patients that had been involved in a clothing fire. Furthermore, in the P. aeruginosa-negative patient cohort, the mortality rate was significantly higher (p = 0.002). Since the incidence of P. aeruginosa was also associated with a decreased mortality rate, it may be that patients admitted to hospital for shorter periods of time were less likely to be colonised with P. aeruginosa. This study demonstrates novel factors that may increase the incidence of P. aeruginosa isolated from burn patients.
Collapse
Affiliation(s)
- Jenny Gomersall
- Whiston Hospital, Mersey and West Lancashire Teaching Hospitals NHS Trust, Prescot L35 5DR, UK
| | - Kalani Mortimer
- Department of Microbiology, Whiston Hospital, Mersey and West Lancashire Teaching Hospitals NHS Trust, Prescot L35 5DR, UK
| | - Deniz Hassan
- Mersey Burns Centre, Whiston Hospital, Mersey and West Lancashire Teaching Hospitals NHS Trust, Prescot L35 5DR, UK
| | - Kathryn A. Whitehead
- Microbiology at Interfaces, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK
| | - Anthony J. Slate
- Department of Life Sciences, University of Bath, Bath BA2 7AY, UK;
| | - Steven F. Ryder
- Microbiology at Interfaces, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK
| | - Lucy E. Chambers
- Microbiology at Interfaces, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK
| | | | - Kayvan Shokrollahi
- Mersey Burns Centre, Whiston Hospital, Mersey and West Lancashire Teaching Hospitals NHS Trust, Prescot L35 5DR, UK
- Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK
- University of Liverpool, Foundation Building, Brownlow Hill, Liverpool L69 3BX, UK
| |
Collapse
|
24
|
Vitale M. Antibiotic Resistance: Do We Need Only Cutting-Edge Methods, or Can New Visions Such as One Health Be More Useful for Learning from Nature? Antibiotics (Basel) 2023; 12:1694. [PMID: 38136728 PMCID: PMC10740918 DOI: 10.3390/antibiotics12121694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Antibiotic resistance is an increasing global problem for public health, and focusing on biofilms has provided further insights into resistance evolution in bacteria. Resistance is innate in many bacterial species, and many antibiotics are derived from natural molecules of soil microorganisms. Is it possible that nature can help control AMR diffusion? In this review, an analysis of resistance mechanisms is summarized, and an excursus of the different approaches to challenging resistance spread based on natural processes is presented as "lessons from Nature". On the "host side", immunotherapy strategies for bacterial infections have a long history before antibiotics, but continuous new inputs through biotechnology advances are enlarging their applications, efficacy, and safety. Antimicrobial peptides and monoclonal antibodies are considered for controlling antibiotic resistance. Understanding the biology of natural predators is providing new, effective, and safe ways to combat resistant bacteria. As natural enemies, bacteriophages were used to treat severe infections before the discovery of antibiotics, marginalized during the antibiotic era, and revitalized upon the diffusion of multi-resistance. Finally, sociopolitical aspects such as education, global action, and climate change are also considered as important tools for tackling antibiotic resistance from the One Health perspective.
Collapse
Affiliation(s)
- Maria Vitale
- Genetics of Microorganisms Laboratory, Molecular Biology Department, Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", 90129 Palermo, Italy
| |
Collapse
|
25
|
Yanten N, Vilches S, Palavecino CE. Photodynamic therapy for the treatment of Pseudomonas aeruginosa infections: A scoping review. Photodiagnosis Photodyn Ther 2023; 44:103803. [PMID: 37709240 DOI: 10.1016/j.pdpdt.2023.103803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Pseudomonas aeruginosa is a Gram-negative bacillus that causes superficial and deep infections, which can be minor to life-threatening. Recently, P. aeruginosa has gained significant relevance due to the increased incidence of multidrug-resistant (MDR) strains that complicate antibiotic treatment. Due to MDR strains, alternative therapies, such as antimicrobial photodynamic therapy (PDT), are presented as a good option to treat nonsystemic infections. PDT combines a photosensitizer agent (PS), light, and oxygen to generate free radicals that destroy bacterial structures such as the envelope, matrix, and genetic material. This work aimed to identify the development stage of the PDT applied to P. aeruginosa to conclude which research stage should be emphasized more. METHODS Systematic bibliographic search in various public databases was performed. Related articles were identified using keywords, and relevant ones were selected using inclusion and exclusion criteria according to the PRISMA protocol. RESULTS We found 29 articles that meet the criteria, constituting a good body of evidence associated with using PDT against P. aeruginosa in vitro and less developed for in vivo research. CONCLUSIONS We conclude that PDT could become an effective adjunct to antimicrobial therapy against P. aeruginosa. This effectiveness depends on the PS used and the location of the infection. Many PS already demonstrated efficacy in PDT, but the evidence is supported significantly by in vitro and very few in vivo studies. Therefore, we conclude that further research efforts should focus on demonstrating the safety and efficacy of these PSs in vivo in animal infection models.
Collapse
Affiliation(s)
- Nicolas Yanten
- Laboratorio de Microbiología Celular, Instituto de Investigación y Postgrado, Facultad de Medicina y Ciencias de la Salud, Universidad Central de Chile, Lord Cochrane 418, 8330546, Santiago, Chile
| | - Selene Vilches
- Laboratorio de Microbiología Celular, Instituto de Investigación y Postgrado, Facultad de Medicina y Ciencias de la Salud, Universidad Central de Chile, Lord Cochrane 418, 8330546, Santiago, Chile
| | - Christian Erick Palavecino
- Laboratorio de Microbiología Celular, Instituto de Investigación y Postgrado, Facultad de Medicina y Ciencias de la Salud, Universidad Central de Chile, Lord Cochrane 418, 8330546, Santiago, Chile.
| |
Collapse
|
26
|
Koh CMM, Ping LSY, Xuan CHH, Theng LB, San HS, Palombo EA, Wezen XC. A data-driven machine learning approach for discovering potent LasR inhibitors. Bioengineered 2023; 14:2243416. [PMID: 37552115 PMCID: PMC10411317 DOI: 10.1080/21655979.2023.2243416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/09/2023] Open
Abstract
The rampant spread of multidrug-resistant Pseudomonas aeruginosa strains severely threatens global health. This severity is compounded against the backdrop of a stagnating antibiotics development pipeline. Moreover, with many promising therapeutics falling short of expectations in clinical trials, targeting the las quorum sensing (QS) system remains an attractive therapeutic strategy to combat P. aeruginosa infection. Thus, our primary goal was to develop a drug prediction algorithm using machine learning to identify potent LasR inhibitors. In this work, we demonstrated using a Multilayer Perceptron (MLP) algorithm boosted with AdaBoostM1 to discriminate between active and inactive LasR inhibitors. The optimal model performance was evaluated using 5-fold cross-validation and test sets. Our best model achieved a 90.7% accuracy in distinguishing active from inactive LasR inhibitors, an area under the Receiver Operating Characteristic Curve value of 0.95, and a Matthews correlation coefficient value of 0.81 when evaluated using test sets. Subsequently, we deployed the model against the Enamine database. The top-ranked compounds were further evaluated for their target engagement activity using molecular docking studies, Molecular Dynamics simulations, MM-GBSA analysis, and Free Energy Landscape analysis. Our data indicate that several of our chosen top hits showed better ligand-binding affinities than naringenin, a competitive LasR inhibitor. Among the six top hits, five of these compounds were predicted to be LasR inhibitors that could be used to treat P. aeruginosa-associated infections. To our knowledge, this study provides the first assessment of using an MLP-based QSAR model for discovering potent LasR inhibitors to attenuate P. aeruginosa infections.
Collapse
Affiliation(s)
- Christabel Ming Ming Koh
- Faculty of Engineering, Computing, and Science, Swinburne University of Technology, Sarawak, Malaysia
| | - Lilian Siaw Yung Ping
- Faculty of Engineering, Computing, and Science, Swinburne University of Technology, Sarawak, Malaysia
| | - Christopher Ha Heng Xuan
- Faculty of Engineering, Computing, and Science, Swinburne University of Technology, Sarawak, Malaysia
| | - Lau Bee Theng
- Faculty of Engineering, Computing, and Science, Swinburne University of Technology, Sarawak, Malaysia
| | - Hwang Siaw San
- Faculty of Engineering, Computing, and Science, Swinburne University of Technology, Sarawak, Malaysia
| | - Enzo A. Palombo
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Xavier Chee Wezen
- Faculty of Engineering, Computing, and Science, Swinburne University of Technology, Sarawak, Malaysia
| |
Collapse
|
27
|
Qiu C, Zhou Y, Wang H, Chu Y, Zheng L, Chen Y, Song Y, Fang C. Microplastics enrichment characteristics of antibiotic resistance genes and pathogens in landfill leachate. CHEMOSPHERE 2023; 341:140100. [PMID: 37683946 DOI: 10.1016/j.chemosphere.2023.140100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Microplastics (MPs) pollution is a pressing environmental issue for aquatic ecosystems. Landfill leachate is an important contributor of MPs and antibiotic resistant genes (ARGs). However, there are few studies on the colonization of ARGs and pathogens on MPs in leachate. This study conducted incubation experiments with polyethylene terephthalate (PET) and polypropylene (PP) MPs in landfill leachate which were about 3-5 years old (PL) and 5-10 years old (AL). After incubation, the bacterial cells colonized and grew on the surface of MPs, inducing the increase of oxygenated oxygen functional groups (e.g., hydroxyl, carbonyl) on the MPs surface. Real-time PCR indicated that MPs selectively enriched ARGs, such as genes tetM, tetC, mcr-1, aac(6')-Ib-cr, blaTEM and blaSHV in leachate. The diversity of bacterial communities on MPs was significantly increased in AL leachate, but decreased in PL leachate. The differences in bacterial communities in MPs biofilms were related to the type of MPs. Compared with AL leachate, the abundance of Chloroflexi increased by 15.7% on the PET, and the abundance of Acidobacteriota increased by 6.23 fold on the PP. The abundance of Firmicutes increased from 20.7% in PL leachate to 65.8% and 60.7% on PET and PP, respectively. Additionally, pathogens were observed to be more abundant on MPs compared to leachate. In particular, pathogens (Staphylococcus, Streptococcus, Enterobacter and Rhodococcus) associated with sul1 and sul2 were generally present at higher levels on MPs than in the surrounding leachate. These results provide significant implications for understanding the health risk of MPs in the environment.
Collapse
Affiliation(s)
- Cheng Qiu
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, 310023, Zhejiang, China
| | - Yiwei Zhou
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, 310023, Zhejiang, China
| | - Hua Wang
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, 310023, Zhejiang, China; Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, 310023, Zhejiang, China.
| | - Yixuan Chu
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, 310023, Zhejiang, China
| | - Lei Zheng
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, 310023, Zhejiang, China
| | - Yongmin Chen
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, 310023, Zhejiang, China; Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, 310023, Zhejiang, China
| | - Yali Song
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, 310023, Zhejiang, China; Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, 310023, Zhejiang, China
| | - Chengran Fang
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, Zhejiang, China
| |
Collapse
|
28
|
Bayat M, Nahand JS, Farsad-Akhatr N, Memar MY. Bile effects on the Pseudomonas aeruginosa pathogenesis in cystic fibrosis patients with gastroesophageal reflux. Heliyon 2023; 9:e22111. [PMID: 38034726 PMCID: PMC10685303 DOI: 10.1016/j.heliyon.2023.e22111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/10/2023] [Accepted: 11/05/2023] [Indexed: 12/02/2023] Open
Abstract
Gastroesophageal reflux (GER) occurs in most cystic fibrosis (CF) patients and is the primary source of bile aspiration in the airway tract of CF individuals. Aspirated bile is associated with the severity of lung diseases and chronic inflammation caused by Pseudomonas aeruginosa as the most common pathogen of CF respiratory tract infections. P. aeruginosa is equipped with several mechanisms to facilitate the infection process, including but not limited to the expression of virulence factors, biofilm formation, and antimicrobial resistance, all of which are under the strong regulation of quorum sensing (QS) mechanism. By increasing the expression of lasI, rhlI, and pqsA-E, bile exposure directly impacts the QS network. An increase in psl expression and pyocyanin production can promote biofilm formation. Along with the loss of flagella and reduced swarming motility, GER-derived bile can repress the expression of genes involved in creating an acute infection, such as expression of Type Three Secretion (T3SS), hydrogen cyanide (hcnABC), amidase (amiR), and phenazine (phzA-E). Inversely, to cause persistent infection, bile exposure can increase the Type Six Secretion System (T6SS) and efflux pump expression, which can trigger resistance to antibiotics such as colistin, polymyxin B, and erythromycin. This review will discuss the influence of aspirated bile on the pathogenesis, resistance, and persistence of P. aeruginosa in CF patients.
Collapse
Affiliation(s)
- Mobina Bayat
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nader Farsad-Akhatr
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
29
|
Cutri A, Shrout JD, Bohn PW. Metabolic and Oxidative Stress Effects on the Spectroelectrochemical Behavior of Single Pseudomonas aeruginosa Cells. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:659-666. [PMID: 37886305 PMCID: PMC10598847 DOI: 10.1021/cbmi.3c00083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen capable of causing a wide range of diseases in immunocompromised patients. In order to better understand P. aeruginosa behavior and virulence and to advance drug therapies to combat infection, it would be beneficial to understand how P. aeruginosa cells survive stressful conditions, especially environmental stressors. Here, we report on a strategy that measures potential-dependent fluorescence of individual P. aeruginosa cells, as a sentinel, for cellular response to starvation, hunger, and oxidative stress. This is accomplished using a micropore electrode array capable of trapping large numbers of isolated, vertically oriented cells at well-defined spatial positions in order to study large arrays of single cells in parallel. We find that conditions promoting either starvation or oxidative stress produce discernible changes in the fluorescence response, demonstrated by an increase in the prevalence of fluorescence transients, one of three canonical spectroelectrochemical behaviors exhibited by single P. aeruginosa cells. In contrast, more modest nutrient limitations have little to no effect on the spectroelectrochemical response when compared to healthy cells in the stationary phase. These findings demonstrate the capabilities of micropore electrode arrays for studying the behavior of single microbial cells under conditions where the intercellular spacing, orientation, and chemical environment of the cells are controlled. Realizing single-cell studies under such well-defined conditions makes it possible to study fundamental stress responses with unprecedented control.
Collapse
Affiliation(s)
- Allison
R. Cutri
- Department
of Chemistry and Biochemistry, University
of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Joshua D. Shrout
- Department
of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department
of Biological Sciences, University of Notre
Dame, Notre Dame, Indiana 46556, United
States
| | - Paul W. Bohn
- Department
of Chemistry and Biochemistry, University
of Notre Dame, Notre
Dame, Indiana 46556, United States
- Department
of Chemical and Biomolecular Engineering, University of Notre Dame, Notre
Dame, Indiana 46556, United States
| |
Collapse
|
30
|
Cai W, Lu M, Dai W. Novel antibiotic susceptibility of an RNA polymerase α-subunit mutant in Pseudomonas aeruginosa. J Antimicrob Chemother 2023; 78:2162-2169. [PMID: 37428003 DOI: 10.1093/jac/dkad207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 06/14/2023] [Indexed: 07/11/2023] Open
Abstract
BACKGROUND RNA polymerase (RNAP) is highly conserved and essential for prokaryotic housekeeping activities, making it an important target for the development of new antibiotics. The rpoB gene, encoding a β-subunit of bacterial RNAP, has a well-known association with rifampicin resistance. However, the roles of other RNAP component genes such as rpoA, encoding an α-subunit of RNAP, in antibiotic resistance remain unexplored. OBJECTIVES To characterize the antibiotic resistance-related role of RpoA. METHODS We measured the expression of the MexEF-OprN efflux pump in an RpoA mutant using a transcriptional reporter. The MICs of various antibiotics for this RpoA mutant were determined. RESULTS We uncover a novel role of antibiotic susceptibility for an RpoA mutant in Pseudomonas aeruginosa. We found that a single amino acid substitution in RpoA resulted in reduced activity of the MexEF-OprN efflux pump, which is responsible for the exportation of various antibiotics, including ciprofloxacin, chloramphenicol, ofloxacin and norfloxacin. This attenuated efflux pump activity, caused by the RpoA mutation, conferred the bacteria further susceptibility to antibiotics regulated by MexEF-OprN. Our work further revealed that certain clinical P. aeruginosa isolates also contained the same RpoA mutation, providing clinical relevance to our findings. Our results elucidate why this new antibiotic-susceptible function of RpoA mutants would have remained undetected in conventional screens for mutants involving antibiotic resistance. CONCLUSIONS The discovery of antibiotic susceptibility in an RpoA mutant implicates a new therapeutic approach for treating clinical isolates of P. aeruginosa with RpoA mutations, using specific antibiotics regulated by MexEF-OprN. More generally, our work suggests that RpoA could serve as a promising candidate target for anti-pathogen therapeutic purposes.
Collapse
Affiliation(s)
- Wenjie Cai
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- College of Plant Protection, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Mingqi Lu
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- College of Plant Protection, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Weijun Dai
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- College of Plant Protection, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
31
|
Ramamurthy SR, Joseph J, Dave VP. Clinical settings, management and factors affecting outcomes in multi and extensively-drug resistant Pseudomonas endophthalmitis. Eur J Ophthalmol 2023; 33:1997-2005. [PMID: 36908204 DOI: 10.1177/11206721231163353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
PURPOSE To report the clinical settings, management and factors affecting outcomes in multi-drug resistant (MDR) and extensively-drug resistant (XDR) Pseudomonas endophthalmitis. SETTINGS Retrospective, consecutive, non-comparative interventional case series. Cases of MDR and XDR Pseudomonas endophthalmitis from January 2012 to December 2020 treated at our tertiary eye care center were included. Data collected included clinical data, anatomic and functional outcome, isolated micro-organisms, and culture sensitivity. RESULTS This study included 29 eyes of 29 patients with MDR/XDR Pseudomonas endophthalmitis. Mean age at presentation was 60.27 ± 14.9 years (median 63). Commonest clinical setting was acute post-operative endophthalmitis in 27 cases (93.1%). Concurrent corneal infiltrate was present in 11 eyes (37.9%). Initial intervention in 19 eyes (65.5%) was vitrectomy, 2 of which underwent endoscopic pars plana vitrectomy. Mean number of interventions was 3.34 ± 1.44 (median 4). Mean follow up was 3.25 ± 3.07 months (median 2). Sensitivity to ceftazidime was 48.28%. All isolates were sensitive to colistin. Mean visual acuity at last follow up in logMAR was 2.64 ± 1.48 (median 3.5). Seven eyes (24.13%) were NPL (nil perception of light) at the last follow up. Two eyes (6.9%) underwent evisceration. Nine eyes (31.03%) had a favourable anatomic and functional outcome. Eyes without a corneal infiltrate at presentation were found to have a favourable anatomic and favourable functional outcome (OR 11.91, P < 0.04, CI 1.08 to 130.93). CONCLUSION Corneal involvement at presentation is associated with poorer outcomes in MDR and XDR Pseudomonas endophthalmitis. There is a potential role of higher newer antibiotics especially colistin in the management of these cases.
Collapse
Affiliation(s)
- Srishti Raksheeth Ramamurthy
- Anant Bajaj Retina Institute, Kallam Anji Reddy Campus, LV Prasad Eye Institute, Hyderabad, India
- Standard Chartered Academy for Eye Care Education, Kallam Anji Reddy Campus, LV Prasad Eye Institute, Hyderabad, India
| | - Joveeta Joseph
- Jhaveri Microbiology Center, Kallam Anji Reddy Campus, LV Prasad Eye Institute, Hyderabad, India
| | - Vivek Pravin Dave
- Anant Bajaj Retina Institute, Kallam Anji Reddy Campus, LV Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
32
|
Thabit AK, Alabbasi AY, Alnezary FS, Almasoudi IA. An Overview of Antimicrobial Resistance in Saudi Arabia (2013-2023) and the Need for National Surveillance. Microorganisms 2023; 11:2086. [PMID: 37630646 PMCID: PMC10460018 DOI: 10.3390/microorganisms11082086] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Antimicrobial resistance (AMR) is a well-recognized global threat. The World Health Organization (WHO) issued a report ranking the critical types of bacterial resistance that need to be monitored. Several studies from individual institutions in Saudi Arabia have reported rates of antimicrobial resistance using automated methods. However, no national surveillance study has been conducted to date using gold standard methods for antimicrobial susceptibility testing. This review summarizes AMR rates for major bacterial pathogens in Saudi Arabia and provides a justification for the need for a national surveillance project. In Saudi Arabia, AMR rates for both Gram-positive and Gram-negative bacteria are on the rise. Surveillance studies help identify AMR trends and emergence of outbreaks. The WHO has started a program, the Global Antimicrobial Resistance Surveillance System (GLASS), encouraging its member states, including Saudi Arabia, to conduct antimicrobial surveillance studies to estimate AMR rates worldwide. Of the microbiological methods used to test antimicrobial susceptibility, only broth microdilution (BMD) is considered the "gold standard." As AMR studies in Saudi Arabia are sparse, mostly limited to single centers and were conducted using automated methods, a national AMR surveillance project is needed to evaluate the current status and to inform stewardship decisions.
Collapse
Affiliation(s)
- Abrar K. Thabit
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, 7027 Abdullah Al-Sulaiman Rd, Jeddah 22254-2265, Saudi Arabia
| | - Afaq Y. Alabbasi
- Eastern Health Cluster, Ministry of Health, Dammam 32253, Saudi Arabia
| | - Faris S. Alnezary
- Department of Clinical and Hospital Pharmacy, College of Pharmacy, Taibah University, Madinah 41477, Saudi Arabia
| | - Imtinan A. Almasoudi
- Clinical Pharmacy Department, King Saud Medical City, Ministry of Health, Riyadh 12746, Saudi Arabia
| |
Collapse
|
33
|
Das A, Patro S, Simnani FZ, Singh D, Sinha A, Kumari K, Rao PV, Singh S, Kaushik NK, Panda PK, Suar M, Verma SK. Biofilm modifiers: The disparity in paradigm of oral biofilm ecosystem. Biomed Pharmacother 2023; 164:114966. [PMID: 37269809 DOI: 10.1016/j.biopha.2023.114966] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/19/2023] [Accepted: 05/29/2023] [Indexed: 06/05/2023] Open
Abstract
A biofilm is a population of sessile microorganisms that has a distinct organized structure and characteristics like channels and projections. Good oral hygiene and reduction in the prevalence of periodontal diseases arise from minimal biofilm accumulation in the mouth, however, studies focusing on modifying the ecology of oral biofilms have not yet been consistently effective. The self-produced matrix of extracellular polymeric substances and greater antibiotic resistance make it difficult to target and eliminate biofilm infections, which lead to serious clinical consequences that are often lethal. Therefore, a better understanding is required to target and modify the ecology of biofilms in order to eradicate the infection, not only in instances of oral disorders but also in terms of nosocomial infections. The review focuses on several biofilm ecology modifiers to prevent biofilm infections, as well as the involvement of biofilm in antibiotic resistance, implants or in-dwelling device contamination, dental caries, and other periodontal disorders. It also discusses recent advances in nanotechnology that may lead to novel strategies for preventing and treating infections caused by biofilms as well as a novel outlook to infection control.
Collapse
Affiliation(s)
- Antarikshya Das
- KIIT School of Dental Sciences, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Swadheena Patro
- KIIT School of Dental Sciences, KIIT University, Bhubaneswar 751024, Odisha, India.
| | | | - Dibyangshee Singh
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Adrija Sinha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Khushbu Kumari
- KIIT School of Dental Sciences, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Patnala Vedika Rao
- KIIT School of Medical Sciences, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Sarita Singh
- BVG Life Sciences Limited, Sagar Complex, Old Pune-Mumbai Road, Chinchwad, Pune 411034, India
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, Republic of Korea.
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden.
| | - Mrutyunjay Suar
- KIIT School of Dental Sciences, KIIT University, Bhubaneswar 751024, Odisha, India.
| | - Suresh K Verma
- KIIT School of Dental Sciences, KIIT University, Bhubaneswar 751024, Odisha, India.
| |
Collapse
|
34
|
Frolov NA, Seferyan MA, Valeev AB, Saverina EA, Detusheva EV, Vereshchagin AN. The Antimicrobial and Antibiofilm Potential of New Water-Soluble Tris-Quaternary Ammonium Compounds. Int J Mol Sci 2023; 24:10512. [PMID: 37445691 DOI: 10.3390/ijms241310512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/10/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
The invention and innovation of highly effective antimicrobials are always crucial tasks for medical and organic chemistry, especially at the current time, when there is a serious threat of shortages of effective antimicrobials following the pandemic. In the study presented in this article, we established a new approach to synthesizing three novel series of bioactive water-soluble tris-quaternary ammonium compounds using an optimized one-pot method, and we assessed their antimicrobial and antibiofilm potential. Five pathogenic microorganisms of the ESKAPE group, including highly resistant clinical isolates, were used as the test samples. Moreover, we highlighted the dependence of antibacterial activity from the hydrophilic-hydrophobic balance of the QACs and noted the significant performance of the desired products on biofilms with MBEC as low as 16 mg/L against bacteria and 8 mg/L against fungi. Particularly notable was the high activity against Pseudomonas aeruginosa and Acinetobacter baumannii, which are among the most resilient bacteria known. The presented work will provide useful insights for future research on the topic.
Collapse
Affiliation(s)
- Nikita A Frolov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Mary A Seferyan
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Anvar B Valeev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
- Higher Chemical College of the Russian Academy of Sciences, D. Mendeleev University of Chemical Technology of Russia, Miusskaya Square 9, 125047 Moscow, Russia
| | - Evgeniya A Saverina
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
- Laboratory of Biologically Active Compounds and Biocomposites, Tula State University, Lenin Prospect. 92, 300012 Tula, Russia
| | - Elena V Detusheva
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia
| | - Anatoly N Vereshchagin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| |
Collapse
|
35
|
Jiang B, Luo Y, Yan N, Shen Z, Li W, Hou C, Xiao L, Ma C, Zhang L, Chen Y, Cheng X, Lian M, Ji C, Zhu Z, Wang Z. An X-ray inactivated vaccine against Pseudomonas aeruginosa Keratitis in mice. Vaccine 2023:S0264-410X(23)00627-8. [PMID: 37353454 DOI: 10.1016/j.vaccine.2023.05.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/25/2023]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is one of the most prevalent pathogens of bacterial keratitis. Bacterial keratitis is a major cause of blindness worldwide. The rising incidence of multidrug resistance of P. aeruginosa precludes treatment with conventional antibiotics. Herein, we evaluated the protective efficiency and explored the possible underlying mechanism of an X-ray inactivated vaccine (XPa) using a murine P. aeruginosa keratitis model. Mice immunized with XPa exhibit reduced corneal bacterial loads and pathology scores. XPa vaccination induced corneal macrophage polarization toward M2, averting an excessive inflammatory reaction. Furthermore, histological observations indicated that XPa vaccination suppressed corneal fibroblast activation and prevented irreversible visual impairment. The potency of XPa against keratitis highlights its potential utility as an effective and promising vaccine candidate for P. aeruginosa.
Collapse
Affiliation(s)
- Boguang Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Yingjie Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Naihong Yan
- Research Laboratory of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhixue Shen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Wenfang Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Chen Hou
- Research Laboratory of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lirong Xiao
- Research Laboratory of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Cuicui Ma
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Li Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Yanwei Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Xingjun Cheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Mao Lian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Chengjie Ji
- Department of Laboratory Medicine, The People's Hospital of Jianyang City, Chengdu 641400, China
| | - Ziyi Zhu
- Department of Laboratory Medicine, The People's Hospital of Jianyang City, Chengdu 641400, China
| | - Zhenling Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China.
| |
Collapse
|
36
|
Seferyan MA, Saverina EA, Frolov NA, Detusheva EV, Kamanina OA, Arlyapov VA, Ostashevskaya II, Ananikov VP, Vereshchagin AN. Multicationic Quaternary Ammonium Compounds: A Framework for Combating Bacterial Resistance. ACS Infect Dis 2023; 9:1206-1220. [PMID: 37161274 DOI: 10.1021/acsinfecdis.2c00546] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
During previous stages of research, high biocidal activity toward microorganism archival strains has been used as the main indicator in the development of new antiseptic formulations. Although this factor remains one of the most important characteristics of biocide efficiency, the scale of antimicrobial resistance spread causes serious concern. Therefore, focus shifts toward the development of formulations with a stable effect even in the case of prolonged contact with pathogens. Here, we introduce an original isocyanuric acid alkylation method with the use of available alkyl dichlorides, which opened access to a wide panel of multi-QACs with alkyl chains of various lengths between the nitrogen atoms of triazine and pyridine cycles. We used a complex approach for the resulting series of 17 compounds, including their antibiofilm properties, bacterial tolerance development, and antimicrobial activity toward multiresistant pathogenic strains. As a result of these efforts, available compounds have shown higher levels of antibacterial activity against ESKAPE pathogens than widely used commercial QACs. Hit compounds possessed high activity toward clinical bacterial strains and have also demonstrated a long-term biocidal effect without significant development of microorganism tolerance. The overall results indicated a high level of antibacterial activity and the broad application prospects of multi-QACs based on isocyanuric acid against multiresistant bacterial strains.
Collapse
Affiliation(s)
- Mary A Seferyan
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky pr. 47, 119991 Moscow, Russia
| | - Evgeniya A Saverina
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky pr. 47, 119991 Moscow, Russia
- Tula State University, Lenin pr. 92, 300012 Tula, Russia
| | - Nikita A Frolov
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky pr. 47, 119991 Moscow, Russia
| | - Elena V Detusheva
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky pr. 47, 119991 Moscow, Russia
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, 142279 Serpukhov, Moscow Region, Russia
| | | | | | - Irina I Ostashevskaya
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky pr. 47, 119991 Moscow, Russia
- Faculty of Chemistry, Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Valentine P Ananikov
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky pr. 47, 119991 Moscow, Russia
| | | |
Collapse
|
37
|
Sakurai A, Dinh AQ, Hanson BM, Shropshire WC, Rizvi SA, Rydell K, Tran TT, Wanger A, Arias CA, Miller WR. Evolving landscape of carbapenem-resistant Pseudomonas aeruginosa at a single centre in the USA. JAC Antimicrob Resist 2023; 5:dlad070. [PMID: 37288080 PMCID: PMC10243771 DOI: 10.1093/jacamr/dlad070] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/12/2023] [Indexed: 06/09/2023] Open
Abstract
Objectives The increased identification of carbapenem-resistant Pseudomonas aeruginosa (CR-PA) is an ongoing concern. However, information on the evolving antimicrobial resistance profile and molecular epidemiology of CR-PA over time is scarce. Thus, we conducted a cross-sectional analysis to investigate the phenotypic and genotypic characteristics of CR-PA recovered over different time periods, focusing on the isolates exhibiting a ceftolozane/tazobactam resistance phenotype. Methods A total of 169 CR-PA isolated from clinical specimens at a single centre in Houston, TX, USA were studied. Among them, 61 isolates collected between 1999 and 2005 were defined as historical strains, and 108 collected between 2017 and 2018 were defined as contemporary strains. Antimicrobial susceptibilities against selected β-lactams was determined. WGS data were used for the identification of antimicrobial resistance determinants and phylogenetic analysis. Results Non-susceptibility to ceftolozane/tazobactam and ceftazidime/avibactam increased from 2% (1/59) to 17% (18/108) and from 7% (4/59) to 17% (18/108) from the historical to the contemporary collection, respectively. Carbapenemase genes, which were not identified in the historical collection, were harboured by 4.6% (5/108) of the contemporary strains, and the prevalence of ESBL genes also increased from 3.3% (2/61) to 16% (17/108). Genes encoding acquired β-lactamases were largely confined to the high-risk clones. Among ceftolozane/tazobactam-resistant isolates, non-susceptibility to ceftazidime/avibactam, imipenem/relebactam and cefiderocol was observed in 94% (15/16), 56% (9/16) and 12.5% (2/16), respectively. Resistance to ceftolozane/tazobactam and imipenem/relebactam was primarily associated with the presence of exogenous β-lactamases. Conclusions Acquisition of exogenous carbapenemases and ESBLs may be a worrisome trend in P. aeruginosa.
Collapse
Affiliation(s)
- Aki Sakurai
- Department of Infectious Diseases and Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - An Q Dinh
- Department of Internal Medicine, Division of Infectious Diseases, Houston Methodist Hospital, 6560 Fannin St, Scurlock Tower, Suite 1540, Houston, TX, USA
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, TX, USA
- Center for Infectious Diseases, University of Texas Health Science Center, School of Public Health, Houston, TX, USA
| | - Blake M Hanson
- Center for Infectious Diseases, University of Texas Health Science Center, School of Public Health, Houston, TX, USA
- Center for Antimicrobial Resistance and Microbial Genomics, University of Texas Health Science Center, McGovern Medical School, Houston, TX, USA
| | - William C Shropshire
- Department of Infectious Diseases, Infection Control, and Employee Health, University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Samie A Rizvi
- Department of Internal Medicine, Division of Infectious Diseases, Houston Methodist Hospital, 6560 Fannin St, Scurlock Tower, Suite 1540, Houston, TX, USA
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, TX, USA
| | - Kirsten Rydell
- Department of Internal Medicine, Division of Infectious Diseases, Houston Methodist Hospital, 6560 Fannin St, Scurlock Tower, Suite 1540, Houston, TX, USA
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, TX, USA
| | - Truc T Tran
- Department of Internal Medicine, Division of Infectious Diseases, Houston Methodist Hospital, 6560 Fannin St, Scurlock Tower, Suite 1540, Houston, TX, USA
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, TX, USA
| | - Audrey Wanger
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center, McGovern School of Medicine, Houston, TX, USA
| | - Cesar A Arias
- Department of Internal Medicine, Division of Infectious Diseases, Houston Methodist Hospital, 6560 Fannin St, Scurlock Tower, Suite 1540, Houston, TX, USA
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, TX, USA
| | - William R Miller
- Department of Internal Medicine, Division of Infectious Diseases, Houston Methodist Hospital, 6560 Fannin St, Scurlock Tower, Suite 1540, Houston, TX, USA
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, TX, USA
| |
Collapse
|
38
|
Englisch CN, Wadood NA, Pätzold L, Gallagher A, Krasteva-Christ G, Becker SL, Bischoff M. Establishing an Experimental Pseudomonas aeruginosa Keratitis Model in Mice - Challenges and Solutions. Ann Anat 2023; 249:152099. [PMID: 37105406 DOI: 10.1016/j.aanat.2023.152099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023]
Abstract
BACKGROUND With the ongoing increase in antimicrobial resistances seen in bacterial isolates causing a keratitis in humans, animal models have become an important tool to study new antimicrobial therapies. Nevertheless, the establishment of experimental keratitis is difficult. Here, we discuss the impact of different arrangements, including animal age, bacterial strain and dose as well as epithelium removal on the outcome of experimental keratitis. We therefore present the methods and results of our establishing experiments. METHODS Bacterial load determination and flow cytometry were performed using eye homogenate gained from a 72hours lasting murine Pseudomonas aeruginosa keratitis model. Additionally, the intensity of the infection was scored from 0 to 5, the mice weighed, and blood immune cells counted. RESULTS We found that older C57BL/6N mice (8-11 months) are more susceptible to develop a keratitis than younger mice (5-6 weeks). Epithelium removal has no major impact on infectivity and disease progression in aged mice. P. aeruginosa exoU+ strains, such as PA54, should preferentially be used and highly concentrated (∼ 5×107 CFU). Establishing an infection with the exoU- PAO1 derivative DSM 19880 was not possible. CONCLUSIONS We present a replicable method to achieve a successful experimental P. aeruginosa keratitis in C57BL/6N mice that is sustained or aggravated over the observation period of 3 days in 80% of all animals tested. Our work is of particular interest to all researchers planning the establishment of such experimental models. We show some key aspects that can simplify and quicken the procedure, ultimately saving costs and animal life.
Collapse
Affiliation(s)
- Colya N Englisch
- Institute for Medical Microbiology and Hygienics, Saarland University, 66421, Homburg/Saar, Germany.
| | - Noran Abdel Wadood
- Institute for Medical Microbiology and Hygienics, Saarland University, 66421, Homburg/Saar, Germany; Institute of Anatomy and Cell Biology, Saarland University, 66421, Homburg/Saar, Germany.
| | - Linda Pätzold
- Institute for Medical Microbiology and Hygienics, Saarland University, 66421, Homburg/Saar, Germany.
| | | | | | - Sören L Becker
- Institute for Medical Microbiology and Hygienics, Saarland University, 66421, Homburg/Saar, Germany.
| | - Markus Bischoff
- Institute for Medical Microbiology and Hygienics, Saarland University, 66421, Homburg/Saar, Germany.
| |
Collapse
|
39
|
Cutri AR, Sundaresan V, Shrout JD, Bohn PW. Spectroelectrochemical behavior of parallel arrays of single vertically oriented Pseudomonas aeruginosa cells. CELL REPORTS. PHYSICAL SCIENCE 2023; 4:101368. [PMID: 37469850 PMCID: PMC10355145 DOI: 10.1016/j.xcrp.2023.101368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic human pathogen responsible for a number of healthcare-associated infection. It is currently difficult to assess single cell behaviors of P. aeruginosa that might contribute to acquisition of antibiotic resistance, intercellular communication, biofilm development, or virulence, because mechanistic behavior is inferred from ensemble collections of cells, thus averaging effects over a population. Here, we develop and characterize a device that can capture and trap arrays of single P. aeruginosa cells in individual micropores in order to study their behaviors using spectroelectrochemistry. Focused ion beam milling is used to fabricate an array of micropores in a Au/dielectric/Au/SiO2-containing multilayer substrate, in which individual micropores are formed with dimensions that facilitate the capture of single P. aeruginosa cells in a predominantly vertical orientation. The bottom Au ring is then used as a working electrode to explore the spectroelectrochemical behavior of parallel arrays of individual P. aeruginosa cells. Application of step-potential or swept-potential waveforms produces changes in the fluorescence emission that can be imaged and correlated with applied potential. Arrays of P. aeruginosa cells typically exhibit three characteristic fluorescence behaviors that are sensitive to nutritional stress and applied potential. The device developed here enables the study of parallel collections of single bacterial cells with well-defined orientational order and should facilitate efforts to elucidate methods of bacterial communication and multidrug resistance at the single cell level.
Collapse
Affiliation(s)
- Allison R. Cutri
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Vignesh Sundaresan
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Joshua D. Shrout
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556 USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Paul W. Bohn
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556 USA
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
| |
Collapse
|
40
|
Sanya DRA, Onésime D, Vizzarro G, Jacquier N. Recent advances in therapeutic targets identification and development of treatment strategies towards Pseudomonas aeruginosa infections. BMC Microbiol 2023; 23:86. [PMID: 36991325 PMCID: PMC10060139 DOI: 10.1186/s12866-023-02832-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
The opportunistic human pathogen Pseudomonas aeruginosa is the causal agent of a wide variety of infections. This non-fermentative Gram-negative bacillus can colonize zones where the skin barrier is weakened, such as wounds or burns. It also causes infections of the urinary tract, respiratory system or bloodstream. P. aeruginosa infections are common in hospitalized patients for which multidrug-resistant, respectively extensively drug-resistant isolates can be a strong contributor to a high rate of in-hospital mortality. Moreover, chronic respiratory system infections of cystic fibrosis patients are especially concerning, since very tedious to treat. P. aeruginosa exploits diverse cell-associated and secreted virulence factors, which play essential roles in its pathogenesis. Those factors encompass carbohydrate-binding proteins, quorum sensing that monitor the production of extracellular products, genes conferring extensive drug resistance, and a secretion system to deliver effectors to kill competitors or subvert host essential functions. In this article, we highlight recent advances in the understanding of P. aeruginosa pathogenicity and virulence as well as efforts for the identification of new drug targets and the development of new therapeutic strategies against P. aeruginosa infections. These recent advances provide innovative and promising strategies to circumvent infection caused by this important human pathogen.
Collapse
Affiliation(s)
| | - Djamila Onésime
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, 78350, France
| | - Grazia Vizzarro
- Institute of Microbiology, University Hospital and University of Lausanne, Lausanne, 1011, Switzerland
- Present Address: Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Station 19, EPFL-SV-UPBLO, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Nicolas Jacquier
- Institute of Microbiology, University Hospital and University of Lausanne, Lausanne, 1011, Switzerland.
| |
Collapse
|
41
|
Eggers O, Renschler FA, Michalek LA, Wackler N, Walter E, Smollich F, Klein K, Sonnabend MS, Egle V, Angelov A, Engesser C, Borisova M, Mayer C, Schütz M, Bohn E. YgfB increases β-lactam resistance in Pseudomonas aeruginosa by counteracting AlpA-mediated ampDh3 expression. Commun Biol 2023; 6:254. [PMID: 36894667 PMCID: PMC9998450 DOI: 10.1038/s42003-023-04609-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 02/17/2023] [Indexed: 03/11/2023] Open
Abstract
YgfB-mediated β-lactam resistance was recently identified in multi drug resistant Pseudomonas aeruginosa. We show that YgfB upregulates expression of the β-lactamase AmpC by repressing the function of the regulator of the programmed cell death pathway AlpA. In response to DNA damage, the antiterminator AlpA induces expression of the alpBCDE autolysis genes and of the peptidoglycan amidase AmpDh3. YgfB interacts with AlpA and represses the ampDh3 expression. Thus, YgfB indirectly prevents AmpDh3 from reducing the levels of cell wall-derived 1,6-anhydro-N-acetylmuramyl-peptides, required to induce the transcriptional activator AmpR in promoting the ampC expression and β-lactam resistance. Ciprofloxacin-mediated DNA damage induces AlpA-dependent production of AmpDh3 as previously shown, which should reduce β-lactam resistance. YgfB, however, counteracts the β-lactam enhancing activity of ciprofloxacin by repressing ampDh3 expression and lowering the benefits of this drug combination. Altogether, YgfB represents an additional player in the complex regulatory network of AmpC regulation.
Collapse
Affiliation(s)
- Ole Eggers
- Institute for Medical Microbiology and Hygiene, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Fabian A Renschler
- Institute for Medical Microbiology and Hygiene, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Eberhard Karls University Tübingen, Tübingen, Germany
- German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Lydia Anita Michalek
- Institute for Medical Microbiology and Hygiene, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Noelle Wackler
- Institute for Medical Microbiology and Hygiene, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Elias Walter
- Institute for Medical Microbiology and Hygiene, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Fabian Smollich
- Institute for Medical Microbiology and Hygiene, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Kristina Klein
- Institute for Medical Microbiology and Hygiene, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Michael S Sonnabend
- Institute for Medical Microbiology and Hygiene, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Eberhard Karls University Tübingen, Tübingen, Germany
- NGS Competence Center Tübingen (NCCT), Institute for Medical Microbiology and Hygiene, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Valentin Egle
- Institute for Medical Microbiology and Hygiene, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Eberhard Karls University Tübingen, Tübingen, Germany
- Cluster of Excellence "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen, Germany
| | - Angel Angelov
- NGS Competence Center Tübingen (NCCT), Institute for Medical Microbiology and Hygiene, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Christina Engesser
- NGS Competence Center Tübingen (NCCT), Institute for Medical Microbiology and Hygiene, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Marina Borisova
- Cluster of Excellence "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen, Germany
- Department of Biology, Organismic Interactions/Glycobiology, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Christoph Mayer
- Cluster of Excellence "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen, Germany
- Department of Biology, Organismic Interactions/Glycobiology, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Monika Schütz
- Institute for Medical Microbiology and Hygiene, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Eberhard Karls University Tübingen, Tübingen, Germany
- German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Erwin Bohn
- Institute for Medical Microbiology and Hygiene, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Eberhard Karls University Tübingen, Tübingen, Germany.
- German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany.
- Cluster of Excellence "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen, Germany.
| |
Collapse
|
42
|
Peykov S, Strateva T. Whole-Genome Sequencing-Based Resistome Analysis of Nosocomial Multidrug-Resistant Non-Fermenting Gram-Negative Pathogens from the Balkans. Microorganisms 2023; 11:microorganisms11030651. [PMID: 36985224 PMCID: PMC10051916 DOI: 10.3390/microorganisms11030651] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Non-fermenting Gram-negative bacilli (NFGNB), such as Pseudomonas aeruginosa and Acinetobacter baumannii, are among the major opportunistic pathogens involved in the global antibiotic resistance epidemic. They are designated as urgent/serious threats by the Centers for Disease Control and Prevention and are part of the World Health Organization’s list of critical priority pathogens. Also, Stenotrophomonas maltophilia is increasingly recognized as an emerging cause for healthcare-associated infections in intensive care units, life-threatening diseases in immunocompromised patients, and severe pulmonary infections in cystic fibrosis and COVID-19 individuals. The last annual report of the ECDC showed drastic differences in the proportions of NFGNB with resistance towards key antibiotics in different European Union/European Economic Area countries. The data for the Balkans are of particular concern, indicating more than 80% and 30% of invasive Acinetobacter spp. and P. aeruginosa isolates, respectively, to be carbapenem-resistant. Moreover, multidrug-resistant and extensively drug-resistant S. maltophilia from the region have been recently reported. The current situation in the Balkans includes a migrant crisis and reshaping of the Schengen Area border. This results in collision of diverse human populations subjected to different protocols for antimicrobial stewardship and infection control. The present review article summarizes the findings of whole-genome sequencing-based resistome analyses of nosocomial multidrug-resistant NFGNBs in the Balkan countries.
Collapse
Affiliation(s)
- Slavil Peykov
- Department of Genetics, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8, Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Sofia, 2, Zdrave Str., 1431 Sofia, Bulgaria
- BioInfoTech Laboratory, Sofia Tech Park, 111, Tsarigradsko Shosse Blvd., 1784 Sofia, Bulgaria
- Correspondence: (S.P.); (T.S.); Tel.: +359-87-6454492 (S.P.); +359-2-9172750 (T.S.)
| | - Tanya Strateva
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Sofia, 2, Zdrave Str., 1431 Sofia, Bulgaria
- Correspondence: (S.P.); (T.S.); Tel.: +359-87-6454492 (S.P.); +359-2-9172750 (T.S.)
| |
Collapse
|
43
|
Yazdanian M, Barzegar PEF, Ranjbar R, Tahmasebi E, Tebyaniyan H, Barzegar KEF, Hayati FZ, Farjanikish G. The comparative effects of erythromycin and amikacin on acute respiratory Pseudomonas aeruginosa infection. Vet Med Sci 2023; 9:867-875. [PMID: 36318447 PMCID: PMC10029875 DOI: 10.1002/vms3.991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND One of the most common causes of pneumonia is Pseudomonas aeruginosa (P. aeruginosa). As with other microbial pathogens, this bacterium tends to develop resistance to various antibiotics. Amikacin and erythromycin, which are from the aminoglycoside and macrolide antibiotic families, are used to treat respiratory infections caused by P. aeruginosa. OBJECTIVES This study explored whether amikacin, erythromycin or a combination of both works better against P. aeruginosa acute lung infection. METHODS For this study, 32 rats were used. The trachea of rats was exposed aseptically and their lung was infected with P. aeruginosa through trachea. Then, according to the group, they received amikacin, erythromycin or a combination of both for 1 week. Finally, they were euthanised on the 3rd and 7th days post-infection. The macroscopic and microscopic evaluations of the lungs, kidney and liver were performed. The right lung was collected for in vivo bacteriological analysis. RESULTS The amikacin group (A group) had a statistically significantly lower macroscopic and microscopic scores than the other groups (p < 0.05). In vivo bacteriological test revealed that the A group had significantly lower lung bacterial load (p < 0.05). CONCLUSIONS In summary, it was concluded that amikacin could help alleviate the respiratory infection caused by P. aeruginosa solely, and it was more effective than erythromycin.
Collapse
Affiliation(s)
- Mohsen Yazdanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Reza Ranjbar
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
- School of Dentistry, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Elahe Tahmasebi
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | | | - Farhad Zadeh Hayati
- Faculty of Veterinary Medicine, Department of Clinical Sciences, Lorestan University, Khorramabad, Iran
| | - Ghasem Farjanikish
- Department of Pathobiology, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| |
Collapse
|
44
|
Smitten K, Southam HM, Fairbanks S, Graf A, Chauvet A, Thomas JA. Clearing an ESKAPE Pathogen in a Model Organism; A Polypyridyl Ruthenium(II) Complex Theranostic that Treats a Resistant Acinetobacter baumannii Infection in Galleria mellonella. Chemistry 2023; 29:e202203555. [PMID: 36420820 PMCID: PMC10946903 DOI: 10.1002/chem.202203555] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
Abstract
In previous studies we have described the therapeutic action of luminescent dinuclear ruthenium(II) complexes based on the tetrapyridylphenazine, tpphz, bridging ligand on pathogenic strains of Escherichia coli and Enterococcus faecalis. Herein, the antimicrobial activity of the complex against pernicious Gram-negative ESKAPE pathogenic strains of Acinetobacter baumannii (AB12, AB16, AB184 and AB210) and Pseudomonas aeruginosa (PA2017, PA_ 007_ IMP and PA_ 004_ CRCN) are reported. Estimated minimum inhibitory concentrations and minimum bactericidal concentrations for the complexes revealed the complex shows potent activity against all A. baumannii strains, in both glucose defined minimal media and standard nutrient rich Mueller-Hinton-II. Although the activity was lower in P. aureginosa, a moderately high potency was observed and retained in carbapenem-resistant strains. Optical microscopy showed that the compound is rapidly internalized by A. baumannii. As previous reports had revealed the complex exhibited no toxicity in Galleria Mellonella up to concentrations of 80 mg/kg, the ability to clear pathogenic infection within this model was explored. The pathogenic concentrations to the larvae for each bacterium were determined to be≥105 for AB184 and≥103 CFU/mL for PA2017. It was found a single dose of the compound totally cleared a pathogenic A. baumannii infection from all treated G. mellonella within 96 h. Uniquely, in these conditions thanks to the imaging properties of the complex the clearance of the bacteria within the hemolymph of G. mellonella could be directly visualized through both optical and transmission electron microscopy.
Collapse
Affiliation(s)
- Kirsty Smitten
- Department of ChemistryUniversity of SheffieldSheffieldS3 7HFUK
| | | | - Simon Fairbanks
- Department of ChemistryUniversity of SheffieldSheffieldS3 7HFUK
| | - Arthur Graf
- Department of ChemistryUniversity of SheffieldSheffieldS3 7HFUK
| | - Adrien Chauvet
- Department of ChemistryUniversity of SheffieldSheffieldS3 7HFUK
| | - Jim A Thomas
- Department of ChemistryUniversity of SheffieldSheffieldS3 7HFUK
| |
Collapse
|
45
|
Development Of Amoxicillin Trihydrate-Loaded Lyotropic Liquid Crystal Nanoparticles For Skin Infection. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
46
|
Ghanem SM, Abd El-Baky RM, Abourehab MAS, Fadl GFM, Gamil NGFM. Prevalence of Quorum Sensing and Virulence Factor Genes Among Pseudomonas aeruginosa Isolated from Patients Suffering from Different Infections and Their Association with Antimicrobial Resistance. Infect Drug Resist 2023; 16:2371-2385. [PMID: 37113530 PMCID: PMC10128085 DOI: 10.2147/idr.s403441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Purpose Antimicrobial resistance and virulence genes play important roles in increasing the severity of Pseudomonas aeruginosa infections, especially in hospitalized patients with high antibiotic pressure. Most genes that encode Pseudomonas aeruginosa virulence factors are controlled and regulated by the quorum sensing (QS) system. The aim of this study was to investigate the frequency of some virulence genes (rhlR, rhlI, lasR, lasI, lasB, toxA, aprA, algD, ExoS, and plcH genes) and their association with antibiotic resistance. Methods Antimicrobial susceptibility was determined by Kirby-Bauer agar disk diffusion method. A total of 125 clinical isolates of P. aeruginosa were tested for some virulence genes using polymerase chain reaction (PCR). Results The highest resistance was observed against cefepime (92.8%). Multi-drug resistant (MDR) P. aeruginosa represented 63.2% of total isolates with high distribution among wound isolates (21/79, 26.3% of MDR isolates). LasB was the most prevalent virulence gene among the tested isolates (89.6%) followed by aprA (85.6%), exoS (84%), algD (80%), toxA (76.8%), and plcH (75.2). Furthermore, a significant association (P < 0.05) among most of the tested virulence genes and MDR isolates was found. The presence of more than 5 virulence genes was highly observed among wound infections, otitis media, and respiratory tract infection isolates. Conclusion The complex association of virulence genes including QS system regulating genes with antibiotic resistance indicates the importance of the tested factors in the progression of infections, which is considered a great challenge for the health-care team with the need for specific studies for each area having different antibiotic resistance profiles and the development of effective treatment strategies such as anti-virulent and quorum sensing inhibiting drugs against P. aeruginosa infections.
Collapse
Affiliation(s)
- Shimaa M Ghanem
- Department of Microbiology and Immunology, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Rehab Mahmoud Abd El-Baky
- Department of Microbiology and Immunology, Faculty of Pharmacy, Minia University, Minia, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Mohamed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
- Correspondence: Mohamed AS Abourehab, Email
| | - Gamal F M Fadl
- Department of Microbiology and Immunology, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Nancy G F M Gamil
- Department of Microbiology and Immunology, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
47
|
Jones JD, Varghese D, Pabary R, Langley RJ. The potential of bacteriophage therapy in the treatment of paediatric respiratory infections. Paediatr Respir Rev 2022; 44:70-77. [PMID: 35241371 DOI: 10.1016/j.prrv.2022.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/14/2022]
Abstract
The looming antibiotic resistance crisis is forcing clinicians to consider alternative approaches to treating bacterial infections. As the window of use for current antimicrobial agents becomes ever narrower, we consider if looking back will now be the way forward. Conceptually, phage therapy is simple and specific; a targeted treatment to control bacterial overgrowth. In this article we discuss bacteriophage and potential use in future therapy.
Collapse
Affiliation(s)
- J D Jones
- Infection Medicine, University of Edinburgh, United Kingdom
| | - D Varghese
- Department of Paediatric Respiratory and Sleep Medicine, Royal Hospital for Children, Glasgow, United Kingdom
| | - R Pabary
- Department of Paediatric Respiratory and Sleep Medicine, Royal Brompton Hospital, London, United Kingdom
| | - R J Langley
- Department of Paediatric Respiratory and Sleep Medicine, Royal Hospital for Children, Glasgow, United Kingdom; School of Medicine, Dentistry & Nursing, University of Glasgow, United Kingdom.
| |
Collapse
|
48
|
Ahmad W, Ansari MA, Yusuf M, Amir M, Wahab S, Alam P, Alomary MN, Alhuwayri AA, Khan M, Ali A, Warsi MH, Ashraf K, Ali M. Antibacterial, Anticandidal, and Antibiofilm Potential of Fenchone: In Vitro, Molecular Docking and In Silico/ADMET Study. PLANTS (BASEL, SWITZERLAND) 2022; 11:2395. [PMID: 36145798 PMCID: PMC9505686 DOI: 10.3390/plants11182395] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
The aim of the present study is to investigate the effective antimicrobial and antibiofilm properties of fenchone, a biologically active bicyclic monoterpene, against infections caused by bacteria and Candida spp. The interactions between fenchone and three distinct proteins from Escherichia coli (β-ketoacyl acyl carrier protein synthase), Candida albicans (1, 3-β−D-glucan synthase), and Pseudomonas aeruginosa (Anthranilate-CoA ligase) were predicted using molecular docking and in silico/ADMET methods. Further, to validate the in-silico prediction, the antibacterial and antifungal potential of fenchone was evaluated against E. coli, P. aeruginosa, and C. albicans by determining minimum inhibitory concentration (MIC), minimum bacterial concentration (MBC), and minimum fungicidal concentration (MFC). The lowest MIC/MBC values of fenchone against E. coli and P. aeruginosa obtained was 8.3 ± 3.6/25 ± 0.0 and 266.6 ± 115.4/533.3 ± 230.9 mg/mL, respectively, whereas the MIC/MFC value for C. albicans was found to be 41.6 ± 14.4/83.3 ± 28.8 mg/mL. It was observed that fenchone has a significant effect on antimicrobial activity (p < 0.05). Our findings demonstrated that fenchone at 1 mg/mL significantly reduced the production of biofilm (p < 0.001) in E. coli, P. aeruginosa, and C. albicans by 70.03, 64.72, and 61.71%, respectively, in a dose-dependent manner when compared to control. Based on these results, it has been suggested that the essential oil from plants can be a great source of pharmaceutical ingredients for developing new antimicrobial drugs.
Collapse
Affiliation(s)
- Wasim Ahmad
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Mohammad Yusuf
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Mohd Amir
- Department of Natural Products and Alternative Medicine, College of Clinical Pharmacy, Imam Abdul Rahman bin Faisal University, Dammam 31441, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince-Sattam Bin-Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohammad N. Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | | | - Maria Khan
- Department of Pharmacognosy, R.V. Northland Institute, Dadri 203207, India
| | - Abuzer Ali
- Department of Pharmacognosy, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Musarrat Husain Warsi
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Kamran Ashraf
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Puncak Alam, Bandar Puncak Alam 42300, Selangor Darul Ehsan, Malaysia
| | - Maksood Ali
- Department of Pharmacognosy, Orlean College of Pharmacy 42, Knowledge Park—III, Greater Noida 201308, India
| |
Collapse
|
49
|
Saha K, Kabir ND, Islam MR, Amin MB, Hoque KI, Halder K, Saleh AA, Parvez MAK, Begum K, Alam MJ, Islam MA. Isolation and characterisation of carbapenem-resistant Pseudomonas aeruginosa from hospital environments in tertiary care hospitals in Dhaka, Bangladesh. J Glob Antimicrob Resist 2022; 30:31-37. [PMID: 35447383 DOI: 10.1016/j.jgar.2022.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 01/03/2022] [Accepted: 04/11/2022] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES Increasing evidence of carbapenem-resistant Pseudomonas aeruginosa (CRPA) infection in healthcare facilities poses an alarming threat to public health. There is little evidence on the occurrence of this organism in Bangladeshi hospitals. METHODS We collected 117 environmental swab samples from two tertiary care hospitals in Dhaka, Bangladesh and tested for Pseudomonas species by nonselective enrichment of swabs followed by plating on Cetrimide agar. We confirmed the isolates as P. aeruginosa by API 20NE test and polymerase chain reaction Polymerase Chain Reaction (PCR) for 16S rRNA gene. We analysed P. aeruginosa isolates for susceptibility against 15 clinically important antibiotics and tested the carbapenem-resistant isolates for metallo β-lactamase (MBL). All CRPA isolates were characterised for carbapenem-resistant genes, virulence genes and biofilm formation genes. RESULTS Of 117 swab samples, 82 (70%) were tested positive for P. aeruginosa. All P. aeruginosa isolates were multidrug-resistant, and 39% (n = 32) of isolates were CRPA. Around 56% (n = 18) of CRPA were MBL-producing; 22% (n = 7) of isolates were positive for carbapenemase gene blaNDM followed by 16% (n = 5) for blaVIM and 13% (n = 4) for blaIMP. Sequencing identified these genes as blaNDM-1, blaIMP-13, blaVIM-2 variants. Based on optical density values, 94% (n = 30) of CRPA isolates were capable of producing biofilms. All CRPA isolates (n = 32) were positive for at least 1 of 6 biofilm-associated genes and 4 of 12 virulence genes tested in the study. CONCLUSION Hospital environments in Bangladesh are contaminated with highly virulent CRPA, which might be a potential source of hospital-acquired infections, accentuating the need for strengthening hospital infection control programs.
Collapse
Affiliation(s)
- Karabi Saha
- Laboratory of Food Safety and One Health, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Nayel Daneesh Kabir
- Laboratory of Food Safety and One Health, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Md Rayhanul Islam
- Laboratory of Food Safety and One Health, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Mohammed Badrul Amin
- Laboratory of Food Safety and One Health, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Kazi Injamamul Hoque
- Laboratory of Food Safety and One Health, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Kakali Halder
- Bangabandhu Sheikh Mujib Medical University, Shahbag, Dhaka, Bangladesh
| | - Ahmed Abu Saleh
- Laboratory of Food Safety and One Health, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | | | | | | | - Mohammad Aminul Islam
- Laboratory of Food Safety and One Health, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh; Paul G. Allen School for Global Health, Washington State University, Pullman, Washington.
| |
Collapse
|
50
|
Qader GM, Jarjees KK, Jarjees RK, Jarjees RK. Molecular detection of Metallo-Beta-Lactamase and alginate in multidrug resistance Pseudomonas aeruginosa isolated from the clinical specimen. J Med Life 2022; 15:1105-1109. [PMID: 36415531 PMCID: PMC9635232 DOI: 10.25122/jml-2021-0196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
Pseudomonas aeruginosa pathogen is opportunistic. Several virulence factors and biofilms can cause its pathogenicity. Furthermore, infections triggered via multidrug-resistant P. aeruginosa among hospitalized patients are a public health concern. The primary antimicrobial agents in treating Gram-negative infection include Meropenem and Imipenem. Moreover, the spread of Carbapenem-resistant P. aeruginosa is a focal concern worldwide. The present research aims to determine the spread of Carbapenem-resistant P. aeruginosa, and the distribution of the Alginate and Metallo-beta-lactamase encoding gene in clinical isolates. In the present cross-sectional descriptive research, 50 wound and sputum clinical specimens were obtained. Isolates were all identified by applying cultural characteristics and biochemical tests. The Polymerase Chain Reaction (PCR) was conducted to distinguish algD, BLA-VIM, BLA-IMP, and 16SrRNA genes. Moreover, the phenotypic method was used to detect hemolysin. The disk diffusion technique was applied to screen clinical isolates for eight antimicrobial agents. The PCR results showed all isolates to be positive for algD and negative for BLA-VIM and BLA-IMP genes. Hemolysin and multidrug resistance prevalence was 100% and 76%, respectively. Furthermore, Meropenem proved to be the most efficient antibiotic against clinical isolates. Alginate and hemolysin are considered significant virulence factors for P. aeruginosa, playing a key role in triggering diseases and tissue or skin lesions. The emergence of Multidrug Resistant (MDR) isolates indicates that developing antibiotic stewardship in our regional community hospital is a top priority. Infection control measures could help control the distribution of virulence genes in P. aeruginosa isolates. Moreover, regular observation is needed to decrease public health threats, distributing virulence factors and Imipenem-resistance patterns in clinical isolates of P. aeruginosa.
Collapse
Affiliation(s)
- Govend Musa Qader
- Department of Biology, College of Science, University of Salahaddin-Erbil, Kurdistan Region, Iraq
| | - Khanzad Khudhur Jarjees
- Department of Food Technology, College of Agricultural Engineering Sciences, University of Salahaddin-Erbil, Kurdistan Region, Iraq,Corresponding Author: Khanzad Khudhur Jarjees, Department of Food Technology, College of Agriculture, University of Salahaddin, Erbil, Iraq. E-mail:
| | - Rozhhalat Khudhur Jarjees
- Department of Pharmacy, Erbil Medical Technical Institute, Erbil Polytechnic University, Erbil, Kurdistan Region, Iraq
| | | | | | | | | |
Collapse
|