1
|
Ren S, Zhang Y, Wang X, Su J, Wang X, Yuan Z, He X, Guo S, Chen Y, Deng S, Wu X, Li M, Du F, Zhao Y, Shen J, Hu W, Li X, Xiao Z. Emerging insights into the gut microbiota as a key regulator of immunity and response to immunotherapy in hepatocellular carcinoma. Front Immunol 2025; 16:1526967. [PMID: 40070843 PMCID: PMC11893557 DOI: 10.3389/fimmu.2025.1526967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/10/2025] [Indexed: 03/14/2025] Open
Abstract
The gut microbiota, a complex microbial ecosystem closely connected to the liver via the portal vein, has emerged as a critical regulator of liver health and disease. Numerous studies have underscored its role in the onset and progression of liver disorders, including alcoholic liver disease, metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction-associated steatohepatitis (MASH), liver fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). This review provides a comprehensive overview of current insights into the influence of the gut microbiota on HCC progression, particularly its effects on immune cells within the HCC tumor microenvironment (TME). Furthermore, we explore the potential of gut microbiota-targeted interventions, such as antibiotics, probiotics, prebiotics, and fecal microbiota transplantation (FMT), to modulate the immune response and improve outcomes of immunotherapy in HCC. By synthesizing insights from recent studies, this review aims to highlight microbiota-based strategies that may enhance immunotherapy outcomes, advancing personalized approaches in HCC treatment.
Collapse
Affiliation(s)
- Siqi Ren
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yinping Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xingyue Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jiahong Su
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiang Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Zijun Yuan
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xinyu He
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Sipeng Guo
- Research and Experiment Center, Sichuan College of Traditional Chinese Medicine, Mianyang, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Wei Hu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Xiaobing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Research and Experiment Center, Sichuan College of Traditional Chinese Medicine, Mianyang, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
- Gulin Traditional Chinese Medicine Hospital, Luzhou, China
| |
Collapse
|
2
|
Yang S, Hao S, Ye H, Zhang X. Crosstalk between gut microbiota and cancer chemotherapy: current status and trends. Discov Oncol 2024; 15:833. [PMID: 39715958 DOI: 10.1007/s12672-024-01704-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/13/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND Chemotherapy is crucial in the management of tumors, but challenges such as chemoresistance and adverse reactions frequently lead to therapeutic delays or even premature cessation. A growing body of research underscores a profound connection between the gut microbiota (GM) and cancer chemotherapy (CC). This paper aims to pinpoint highly influential publications and monitor the current landscape and evolving trends within the realm of GM/CC research. METHODS On October 1st, 2024, a comprehensive search for GM/CC publications spanning the past 20 years from 2004 to 2023 was conducted utilizing the Web of Science Core Collection (WoSCC). The scope encompassed both articles and reviews, and the data was subsequently extracted. To gain insights into the evolution and dynamics of this research field, we employed bibliometric analysis tools such as the Bibliometrix R package, VOSviewer, and Microsoft Excel to visualize and analyze various dimensions, including prominent journals, leading authors, esteemed institutions, contributing countries/regions, highly cited papers, and frequently occurring keywords. RESULTS A total of 888 papers were obtained. The number of publications about GM/CC studies has increased gradually. China and the United States published the largest number of papers. The INSERM was in the leading position in publishers. The most productive authors were Zitvogel L from France. Cancers had the largest number of papers. Citation analysis explained the historical evolution and breakthroughs in GM/CC research. Highly cited papers and common keywords illustrated the status and trends of GM/CC research. Four clusters were identified, and the hot topics included the role of the GM in the efficacy and toxicity of CC, the targeting of the GM to improve the outcome of CC, the mechanism by which the GM affects CC, and the correlation of the GM with carcinogenesis and cancer therapy. Metabolism, GM-derived metabolites, tumor microenvironment, immunity, intestinal barrier, tumor microbiota and Fusobacterium nucleatum may become the new hotspots and trends of GM/CC research. CONCLUSION This study analyzed global publications and bibliometric characteristics of the links between GM and CC, identified highly cited papers in GM/CC, provided insight into the status, hotspots, and trends of global GM/CC research, and showed that the GM can be used to predict the efficacy and toxicity of CC and modifying the GM can improve the outcomes of chemotherapeutics, which may inform clinical researchers of future directions.
Collapse
Affiliation(s)
- Shanshan Yang
- Department of Traditional Chinese Medicine, Peking University First Hospital, Beijing, China
| | - Shaodong Hao
- Spleen-Stomach Department, Fangshan Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Ye
- Department of Traditional Chinese Medicine, Peking University First Hospital, Beijing, China.
| | - Xuezhi Zhang
- Department of Traditional Chinese Medicine, Peking University First Hospital, Beijing, China.
| |
Collapse
|
3
|
Kavyani B, Ahmadi S, Nabizadeh E, Abdi M. Anti-oxidative activity of probiotics; focused on cardiovascular disease, cancer, aging, and obesity. Microb Pathog 2024; 196:107001. [PMID: 39384024 DOI: 10.1016/j.micpath.2024.107001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 10/01/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Abstract
By disturbing the prooxidant-antioxidant balance in the cell, a condition called oxidative stress is created, causing severe damage to the nucleic acid, protein, and lipid of the host cell, and as a result, endangers the viability of the host cell. A relationship between oxidative stress and several different diseases such as cardiovascular diseases, cancer, and obesity has been reported. Therefore, maintaining this prooxidant-antioxidant balance is vital for the cell. Probiotics as one of the potent antioxidants have recently received attention. Many health-promoting and beneficial effects of probiotics are known, and it has been found that the consumption of certain strains of probiotics alone or in combination with food exerts antioxidant efficacy and reduces oxidative damage. Studies have reported that certain probiotic strains implement their antioxidant effects by producing metabolites and antioxidant enzymes, increasing the antioxidant capacity, and reducing host oxidant metabolites. Therefore, we aimed to review and summarize the latest anti-oxidative activity of probiotics and its efficacy in aging, cardiovascular diseases, cancer, and obesity.
Collapse
Affiliation(s)
- Batoul Kavyani
- Department of Medical Microbiology (Bacteriology & Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Somayeh Ahmadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Edris Nabizadeh
- Imam Khomeini Hospital of Piranshahr City, Urmia University of Medical Sciences, Piranshahr, Iran
| | - Milad Abdi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
4
|
Dobreva L, Atanasova N, Donchev P, Krumova E, Abrashev R, Karakirova Y, Mladenova R, Tolchkov V, Ralchev N, Dishliyska V, Danova S. Candidate-Probiotic Lactobacilli and Their Postbiotics as Health-Benefit Promoters. Microorganisms 2024; 12:1910. [PMID: 39338583 PMCID: PMC11434380 DOI: 10.3390/microorganisms12091910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Lactobacillus species are widely recognized for their probiotic potential, focusing on their mechanisms of health benefits and protection. Here we conducted an in vitro investigation of the probiotic potential with a role in microbiome homeostasis of four strains: Lactiplantibacillus plantarum L6 and F53, Ligilactobacillus salivarius 1, and Lactobacillus helveticus 611. A broad spectrum of antibacterial and antifungal activity was determined. The strain-specific inhibition of Staphylococcus aureus, Streptococcus mutans, Escherichia coli, Pseudomonas aeruginosa, and saprophytic/toxigenic fungi makes them promising as protective cultures. DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic) acid) measurements showed that tested samples had strain-specific capacity for scavenging of radicals. The molecular base for the antioxidant potential of two lyophilized forms of active strains was investigated by electron paramagnetic resonance spectroscopy. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, with fractions of the most active postbiotics obtained by SEC-FPLC (fast protein liquid chromatography) analysis, showed a wide variety of effects on the growth of a K562 myeloid leukemia cell line. The IC50 (half-maximal inhibitory concentration) of L. salivarius 1 was determined to be 46.15 mg/mL. The proven in vitro functionality of the selected lactobacilli make them suitable for development of target probiotics with specific beneficial effects expected in vivo. Further investigations on produced postbiotics and safety have to be completed before they can be considered as scientifically proven probiotic strains.
Collapse
Affiliation(s)
- Lili Dobreva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
| | - Nikoleta Atanasova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
| | - Petar Donchev
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
| | - Ekaterina Krumova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
| | - Radoslav Abrashev
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
| | - Yordanka Karakirova
- Institute of Catalysis, Bulgarian Academy of Sciences, 11 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
| | - Ralitsa Mladenova
- Institute of Catalysis, Bulgarian Academy of Sciences, 11 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
| | - Vladimir Tolchkov
- National Center of Infectious and Parasitic Diseases, Yanko Sakuzov Blvd 26, 1504 Sofia, Bulgaria
| | - Nikola Ralchev
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
| | - Vladislava Dishliyska
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
| | - Svetla Danova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
| |
Collapse
|
5
|
Supriya Y, Sivamalar S, Nallusamy D, Sureka V, Arunagirinathan N, Saravanan S, Balakrishnan P, Viswanathan D, Rajakumar G. Application of probiotics in cervical cancer infections to enhance the immune response. Microb Pathog 2024; 193:106764. [PMID: 38944216 DOI: 10.1016/j.micpath.2024.106764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/13/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
Cervical cancer (CC) is the fourth most common cancer among female patients. The primary cause of all types of cervical cancer is human papillomavirus (HPV), which was projected to account for 5,70,000 reported cases in 2018. Two HPV strains (16 and 18) account for 70 % of cervical abnormalities and precancerous cervical cancers. CC is one of the main causes of the 17 % cancer-related death rate among Indian women between the ages of 30 and 69 is CC. The side effects of the currently approved treatments for cervical cancer could endanger the lives of women affected by the illness. Thus, probiotics may be extremely important in the management of CC. Numerous studies on probiotics and their potential for use in cancer diagnosis, prevention, and treatment have been conducted. This review describes the enhancement of the immune system, promotion of a balanced vaginal microbiome, and decreased risk of secondary infections, which have anti-inflammatory effects on the body. Probiotics have the potential to reduce inflammation, thereby adversely affecting cancer cell growth and metastasis. During the course of antibiotic therapy, they support a balanced vaginal microbiome. Oncogenic virus inactivation is possible with probiotic strains. In postmenopausal women, the use of vaginal probiotics helps lessen menopausal symptoms caused by Genitourinary Syndrome of Menopause (GSM). The antitumor effects of other medications can be enhanced by them as potential agents, because they can both promote the growth of beneficial bacteria and reduce the quantity of potentially harmful bacteria. The development of tumors and the proliferation of cancer cells may be indirectly affected by the restoration of the microbial balance. Probiotics may be able to prevent and treat cervical cancer, as they seem to have anticancer properties. To identify probiotics with anticancer qualities that can supplement and possibly even replace traditional cancer treatments, further investigation is required, including carefully planned clinical trials.
Collapse
Affiliation(s)
- Yatakona Supriya
- Department of Research, Meenakshi Academy of Higher Education and Research, Chennai, 600078, Tamilnadu, India
| | - Sathasivam Sivamalar
- Department of Research, Meenakshi Academy of Higher Education and Research, Chennai, 600078, Tamilnadu, India.
| | - Duraisamy Nallusamy
- Department of Research, Meenakshi Academy of Higher Education and Research, Chennai, 600078, Tamilnadu, India
| | - Varalakshmi Sureka
- Department of Research, Meenakshi Academy of Higher Education and Research, Chennai, 600078, Tamilnadu, India
| | - Narasingam Arunagirinathan
- Department of Research, Meenakshi Academy of Higher Education and Research, Chennai, 600078, Tamilnadu, India
| | - Shanmugam Saravanan
- Centre for Infectious Diseases, Saveetha Medical College & Hospitals [SMCH], Saveetha Institute of Medical and Technical Sciences [SIMATS], Saveetha University, Thandalam, Chennai, India
| | - Pachamuthu Balakrishnan
- Centre for Infectious Diseases, Saveetha Medical College & Hospitals [SMCH], Saveetha Institute of Medical and Technical Sciences [SIMATS], Saveetha University, Thandalam, Chennai, India
| | - Dhivya Viswanathan
- Centre for Nanobiosciences, Department of Orthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamilnadu, India
| | - Govindasamy Rajakumar
- Centre for Nanobiosciences, Department of Orthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamilnadu, India.
| |
Collapse
|
6
|
Khaleel SM, Shanshal SA, Khalaf MM. The Role of Probiotics in Colorectal Cancer: A Review. J Gastrointest Cancer 2023; 54:1202-1211. [PMID: 36622515 DOI: 10.1007/s12029-022-00903-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2022] [Indexed: 01/10/2023]
Abstract
PURPOSE Globally, cancer is among the principal causes of death, and the incidence of colorectal cancer is increasing annually around the world, and it is currently ranked third most diagnosed cancer type. Despite the development in the treatment procedures for colorectal cancer including chemotherapy, surgery, immunotherapy and radiotherapy, the death rates from this cancer type are still elevated due to the adverse effects associated with treatment that may affect patients' quality of life. Recently, the global interest in probiotics research has grown with significant positive results. METHODS: This review discusses the role of probiotics in normal colorectal physiology and cancer. RESULTS Probiotics will become an essential part in the prevention and management of colorectal cancer in the near future as they are expected to provide a solution to the problems associated with cancer treatment. Probiotics' properties open the way for multiple effective uses in colorectal cancer prevention strategies. Additionally, probiotics can reduce the problems associated with chemotherapy and surgery when used synergistically. Probiotics can also increase the efficacy of chemotherapeutic medications. Targeted drug delivery and TRAIL collaboration techniques are other effective and promising methods that involve probiotics. CONCLUSIONS Probiotics have properties that make them useful in the management and prevention of colorectal cancer and can provide new avenue to reduce the occurrence of this malignancy and enhance the patients' quality of life.
Collapse
Affiliation(s)
- Shahad M Khaleel
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Sadeel A Shanshal
- Department of Clinical Pharmacy, College of Pharmacy, University of Mosul, Mosul, Nineveh, Iraq.
| | - Musab M Khalaf
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
7
|
Javid H, Oryani MA, Akbari S, Amiriani T, Ravanbakhsh S, Rezagholinejad N, Afshari AR, Karimi-Shahri M. L. plantarum and L. lactis as a promising agent in treatment of inflammatory bowel disease and colorectal cancer. Future Microbiol 2023; 18:1197-1209. [PMID: 37882738 DOI: 10.2217/fmb-2023-0076] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/23/2023] [Indexed: 10/27/2023] Open
Abstract
It has been understood for nearly a century that patients with intestinal inflammatory disease (IBD) have a higher risk of developing colorectal cancer (CRC). Recently, two species of lactic acid bacteria, Lactobacillus plantarum and Lactococcus lactis, have been investigated as therapeutic agents for IBD. These bacteria have been shown to survive gastric transit, to adhere and colonize in the intestinal tract of humans and modulate the intestinal microbiota and immune response. L. plantarum and L. lactis might be used as multifunctional drugs for the treatment of IBD and the prevention or treatment of CRC. This article summarizes current knowledge of L. plantarum and L. lactis as therapeutic and preventative agents for IBD and CRC, respectively.
Collapse
Affiliation(s)
- Hossein Javid
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, 1313199137, Iran
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, 917966679, Iran
| | - Mahsa Akbari Oryani
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, 1313199137, Iran
| | - Sanaz Akbari
- Department of Biology, Islamic Azad University, Mashhad Branch, Mashhad, 9133736351, Iran
| | - Taghi Amiriani
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, 4918936316, Iran
| | - Samaneh Ravanbakhsh
- Biology Expert, Plant Sciences, graduate of Golestan University, Gorgan, 4918936316, Iran
| | | | - Amir-R Afshari
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, 9414974877, Iran
| | - Mehdi Karimi-Shahri
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, 1313199137, Iran
- Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, 9691657678, Iran
| |
Collapse
|
8
|
Bahuguna A, Dubey SK. Overview of the Mechanistic Potential of Probiotics and Prebiotics in Cancer Chemoprevention. Mol Nutr Food Res 2023; 67:e2300221. [PMID: 37552810 DOI: 10.1002/mnfr.202300221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/15/2023] [Indexed: 08/10/2023]
Abstract
Despite of strides in modern cancer therapeutic strategies, there has not been a successful cure for it until now and prognostic side effects and substantial toxicity to chemotherapy and subsequent homeostatic imbalance remains a major concern for professionals in this field. The significance of the human microbiome in the pathogenesis of cancer is being recognized, documented, and established worldwide. Probiotics and prebiotics are some of the most extensively researched approaches to modulate the microbiota for therapeutic purposes, and research on their potential to prevent and treat cancer has sparked an immense amount of interest. The characteristics of probiotics and prebiotics allow for an array of efficient applications in cancer preventive measures. Probiotics can also be administered coupled with chemotherapy and surgery to alleviate their side effects and help promote the effectiveness of chemotherapeutic drugs. Besides showing promising results they are accompanied by potential risks and controversies that may eventually result in clinical repercussions. This review emphasizes the mechanistic potential and oncosuppressive effects of probiotic and prebiotics through maintenance of intestinal barrier function, modifying innate immune system, immunomodulation, intestinal microbiota metabolism, inhibition of host cell proliferation, preventing pathogen colonization, and exerting selective cytotoxicity against tumor cells.
Collapse
Affiliation(s)
- Ananya Bahuguna
- Department of Biochemistry, C.B.S.H., G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, 263145, India
| | - Shiv Kumar Dubey
- Department of Biochemistry, C.B.S.H., G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, 263145, India
| |
Collapse
|
9
|
Hassan DS, Hasary HJ, Hassan ZS. Role of Probiotics in the Prevention and Treatment of GIT Cancers: Updated Review. AL-RAFIDAIN JOURNAL OF MEDICAL SCIENCES ( ISSN: 2789-3219 ) 2023; 4:52-59. [DOI: 10.54133/ajms.v4i.103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Cancer, one of the leading causes of death worldwide, has been the subject of extensive study by many researchers. Cancer is affected by both genetic and immune system factors in the human body. The gut microbiota plays an important role in the body's capacity to maintain homeostasis. Because of their beneficial effects on human health and their ability to successfully prevent and treat various chronic diseases, such as cancer, probiotics are becoming increasingly important in medicine. A wealth of research has shown that probiotic consumption can significantly helpful in cancer prevention and treatment. The goal of this review is to provide a thorough overview of the research on the function of probiotic bacteria in the prevention and treatment of gastrointestinal cancers.
Collapse
|
10
|
Masood M, Nasser MI. Gut microbial metabolites and colorectal cancer. MICROBIAL BIOMOLECULES 2023:353-373. [DOI: 10.1016/b978-0-323-99476-7.00011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
11
|
Agrawal MY, Gaikwad S, Srivastava S, Srivastava SK. Research Trend and Detailed Insights into the Molecular Mechanisms of Food Bioactive Compounds against Cancer: A Comprehensive Review with Special Emphasis on Probiotics. Cancers (Basel) 2022; 14:5482. [PMID: 36428575 PMCID: PMC9688469 DOI: 10.3390/cancers14225482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/26/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
In an attempt to find a potential cure for cancer, scientists have been probing the efficacy of the food we eat and its bioactive components. Over the decades, there has been an exponentially increasing trend of research correlating food and cancer. This review explains the molecular mechanisms by which bioactive food components exhibit anticancer effects in several cancer models. These bioactive compounds are mainly plant based or microbiome based. While plants remain the primary source of these phytochemicals, little is known about probiotics, i.e., microbiome sources, and their relationships with cancer. Thus, the molecular mechanisms underlying the anticancer effect of probiotics are discussed in this review. The principal mode of cell death for most food bioactives is found to be apoptosis. Principal oncogenic signaling axes such as Akt/PI3K, JAK/STAT, and NF-κB seem to be modulated due to these bioactives along with certain novel targets that provide a platform for further oncogenic research. It has been observed that probiotics have an immunomodulatory effect leading to their chemopreventive actions. Various foods exhibit better efficacy as complete extracts than their individual phytochemicals, indicating an orchestrated effect of the food components. Combining bioactive agents with available chemotherapies helps synergize the anticancer action of both to overcome drug resistance. Novel techniques to deliver bioactive agents enhance their therapeutic response. Such combinations and novel approaches are also discussed in this review. Notably, most of the food components that have been studied for cancer have shown their efficacy in vivo. This bolsters the claims of these studies and, thus, provides us with hope of discovering anticancer agents in the food that we eat.
Collapse
Affiliation(s)
- Manas Yogendra Agrawal
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
- Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Shreyas Gaikwad
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
- Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | | | - Sanjay K. Srivastava
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
- Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| |
Collapse
|
12
|
Yinhang W, Wei W, Jing Z, Qing Z, Yani Z, Yangyanqiu W, Shuwen H. Biological roles of toll-like receptors and gut microbiota in colorectal cancer. Future Microbiol 2022; 17:1071-1089. [PMID: 35916158 DOI: 10.2217/fmb-2021-0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most considerably common malignancies of the alimentary system, with high mortality and incidence rates. The present study suggested that the occurrence of CRC is closely related to bacteria, as the large intestine is a gathering place for human micro-organisms. However, the nosogenesis of bacteria leading to tumorigenesis is still obscure. Recently, many studies have reported that toll-like receptors and their related molecular pathways are involved in the process of gut micro-organisms generating CRC. Gut micro-organisms can promote or inhibit the development of CRC via binding to special toll-like receptors. In this paper, the authors review the relationship among toll-like receptors, gut micro-organisms and CRC in order to provide a reference for future tumor immunotherapy and targeted therapy.
Collapse
Affiliation(s)
- Wu Yinhang
- Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, 1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, China.,The Second School of Clinical Medicine, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, Zhejiang Province, 310053, China.,Key Laboratory of Multiomics Research & Clinical Transformation of Digestive Cancer of Huzhou,1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, China
| | - Wu Wei
- Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, 1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, China.,Key Laboratory of Multiomics Research & Clinical Transformation of Digestive Cancer of Huzhou,1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, China
| | - Zhuang Jing
- Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, 1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, China.,Key Laboratory of Multiomics Research & Clinical Transformation of Digestive Cancer of Huzhou,1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, China
| | - Zhou Qing
- Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, 1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, China.,Key Laboratory of Multiomics Research & Clinical Transformation of Digestive Cancer of Huzhou,1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, China
| | - Zhou Yani
- Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, 1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, China.,Graduate School of Medicine Faculty, Zhejiang University, 866 Yuhangtang Road, Xihu District, Hangzhou, Zhejiang Province, 310058, China
| | - Wang Yangyanqiu
- Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, 1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, China.,Graduate School of Medicine Faculty, Zhejiang University, 866 Yuhangtang Road, Xihu District, Hangzhou, Zhejiang Province, 310058, China
| | - Han Shuwen
- Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, 1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, China.,Key Laboratory of Multiomics Research & Clinical Transformation of Digestive Cancer of Huzhou,1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, China
| |
Collapse
|
13
|
Yalçınkaya S, Yalçın Azarkan S, Karahan Çakmakçı AG. Determination of the effect of L. plantarum AB6-25, L. plantarum MK55 and S. boulardii T8-3C microorganisms on colon, cervix, and breast cancer cell lines: Molecular docking, and molecular dynamics study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Role of a mixed probiotic product, VSL#3, in the prevention and treatment of colorectal cancer. Eur J Pharmacol 2022; 930:175152. [PMID: 35835181 DOI: 10.1016/j.ejphar.2022.175152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/03/2022] [Accepted: 07/07/2022] [Indexed: 12/09/2022]
Abstract
Colorectal cancer (CRC) is a multifactorial disease. The incidence of this type of cancer in younger patients has increased in recent years, and more strategies are needed to prevent and delay the progression of CRC. Probiotics play an adjunctive role in the prevention and treatment of CRC and can not only prevent the onset and delay the progression of disease but also reduce the side effects after the application of anti-cancer drugs. The anti-cancer effect of individual probiotics has been extensively studied, and the exact curative effect of various probiotics has been found, but the anti-cancer effect of mixed probiotics is still not well summarized. In this review, we discuss the positive effects of mixed probiotics on CRC and the related mechanisms of action, especially VSL#3 (VSL Pharmaceuticals, Inc., Gaithersburg, MD, USA), thus providing new ideas for the treatment of CRC. Moreover, we suggest the need to search for more therapeutic possibilities, especially via the research and application of synbiotics and postbiotics.
Collapse
|
15
|
Wang Y, Moon A, Huang J, Sun Y, Qiu HJ. Antiviral Effects and Underlying Mechanisms of Probiotics as Promising Antivirals. Front Cell Infect Microbiol 2022; 12:928050. [PMID: 35734576 PMCID: PMC9207339 DOI: 10.3389/fcimb.2022.928050] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Probiotics exert a variety of beneficial effects, including maintaining homeostasis and the balance of intestinal microorganisms, activating the immune system, and regulating immune responses. Due to the beneficial effects of probiotics, a wide range of probiotics have been developed as probiotic agents for animal and human health. Viral diseases cause serious economic losses to the livestock every year and remain a great challenge for animals. Moreover, strategies for the prevention and control of viral diseases are limited. Viruses enter the host through the skin and mucosal surface, in which are colonized by hundreds of millions of microorganisms. The antiviral effects of probiotics have been proved, including modulation of chemical, microbial, physical, and immune barriers through various probiotics, probiotic metabolites, and host signaling pathways. It is of great significance yet far from enough to elucidate the antiviral mechanisms of probiotics. The major interest of this review is to discuss the antiviral effects and underlying mechanisms of probiotics and to provide targets for the development of novel antivirals.
Collapse
Affiliation(s)
| | | | | | - Yuan Sun
- *Correspondence: Hua-Ji Qiu, ; Yuan Sun,
| | - Hua-Ji Qiu
- *Correspondence: Hua-Ji Qiu, ; Yuan Sun,
| |
Collapse
|
16
|
Patra S, Sahu N, Saxena S, Pradhan B, Nayak SK, Roychowdhury A. Effects of Probiotics at the Interface of Metabolism and Immunity to Prevent Colorectal Cancer-Associated Gut Inflammation: A Systematic Network and Meta-Analysis With Molecular Docking Studies. Front Microbiol 2022; 13:878297. [PMID: 35711771 PMCID: PMC9195627 DOI: 10.3389/fmicb.2022.878297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Background Dysbiosis/imbalance in the gut microbial composition triggers chronic inflammation and promotes colorectal cancer (CRC). Modulation of the gut microbiome by the administration of probiotics is a promising strategy to reduce carcinogenic inflammation. However, the mechanism remains unclear. Methods In this study, we presented a systematic network, meta-analysis, and molecular docking studies to determine the plausible mechanism of probiotic intervention in diminishing CRC-causing inflammations. Results We selected 77 clinical, preclinical, in vitro, and in vivo articles (PRISMA guidelines) and identified 36 probiotics and 135 training genes connected to patients with CRC with probiotic application. The meta-analysis rationalizes the application of probiotics in the prevention and treatment of CRC. An association network is generated with 540 nodes and 1,423 edges. MCODE cluster analysis identifies 43 densely interconnected modules from the network. Gene ontology (GO) and pathway enrichment analysis of the top scoring and functionally significant modules reveal stress-induced metabolic pathways (JNK, MAPK), immunomodulatory pathways, intrinsic apoptotic pathways, and autophagy as contributors for CRC where probiotics could offer major benefits. Based on the enrichment analyses, 23 CRC-associated proteins and 7 probiotic-derived bacteriocins were selected for molecular docking studies. Results indicate that the key CRC-associated proteins (e.g., COX-2, CASP9, PI3K, and IL18R) significantly interact with the probiotic-derived bacteriocins (e.g., plantaricin JLA-9, lactococcin A, and lactococcin mmfii). Finally, a model for probiotic intervention to reduce CRC-associated inflammation has been proposed. Conclusion Probiotics and/or probiotic-derived bacteriocins could directly interact with CRC-promoting COX2. They could modulate inflammatory NLRP3 and NFkB pathways to reduce CRC-associated inflammation. Probiotics could also activate autophagy and apoptosis by regulating PI3K/AKT and caspase pathways in CRC. In summary, the potential mechanisms of probiotic-mediated CRC prevention include multiple signaling cascades, yet pathways related to metabolism and immunity are the crucial ones.
Collapse
Affiliation(s)
- Sinjini Patra
- Biochemistry and Cell Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Nilanjan Sahu
- National Institute of Science Education and Research (NISER) Bhubaneswar, Homi Bhabha National Institute (HBNI), Odisha, India
| | - Shivam Saxena
- Biochemistry and Cell Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Biswaranjan Pradhan
- S. K. Dash Center of Excellence of Biosciences and Engineering & Technology (SKBET), Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Saroj Kumar Nayak
- S. K. Dash Center of Excellence of Biosciences and Engineering & Technology (SKBET), Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Anasuya Roychowdhury
- Biochemistry and Cell Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
- *Correspondence: Anasuya Roychowdhury /0000-0003-3735-3021
| |
Collapse
|
17
|
Zhu Y, Li J, Liu H, Song Z, Yang Q, Lu C, Chen W. Circular RNA, hsa_circRNA_102049, promotes colorectal cancer cell migration and invasion via binding and suppressing miRNA-455-3p. Exp Ther Med 2022; 23:244. [PMID: 35222721 PMCID: PMC8815054 DOI: 10.3892/etm.2022.11169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 04/28/2021] [Indexed: 11/25/2022] Open
Abstract
Colorectal cancer (CRC) is the second most prevalent malignant gastrointestinal tumor type worldwide, displaying poor prognosis. Accumulating studies have reported the significance of circular RNAs (circRNAs) and microRNAs (miRNAs) in CRC carcinogenesis and development. At present, the functions and mechanisms of action underlying the circular RNA, hsa_circRNA_102049, in CRC are not completely understood. The present study aimed to establish the involvement of hsa_circRNA_102049 in CRC, as well as the associated mechanisms. The expression levels of hsa_circRNA_102049 and miRNA-455-3p were measured in CRC cell lines and tissues via reverse transcription-quantitative PCR. CRC progression was evaluated by performing Cell Counting Kit-8, flow cytometry, wound healing and Transwell invasion assays. The results demonstrated that hsa_circRNA_102049 was highly expressed in both CRC tissues and cell lines, which was associated with enhanced CRC cell proliferation, migration and invasion. Furthermore, miR-455-3p expression was downregulated in CRC cells and served as a target of has_circRNA_102049, which was validated by performing the dual luciferase reporter assay. hsa_circRNA_102049 knockdown significantly increased miR-455-3p expression, which was significantly reversed by co-transfection with the miR-455-3p inhibitor. Notably, miRNA-455-3p overexpression alleviated hsa_circRNA_102049-mediated induction of CRC cell proliferation, migration and invasion. The present study clearly demonstrated that miRNA-455-3p was a target of hsa_circRNA_102049. Moreover, the results indicated that the circular RNA, hsa_circRNA_102049, may function as a tumor promoter in CRC via directly sponging miRNA-455-3p.
Collapse
Affiliation(s)
- Yuandong Zhu
- Department of Colorectal and Anal Surgery, Yiwu Central Hospital, Yiwu, Zhejiang 322000, P.R. China
| | - Jianjion Li
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Haiyuan Liu
- Department of Colorectal and Anal Surgery, Yiwu Central Hospital, Yiwu, Zhejiang 322000, P.R. China
| | - Zhengming Song
- Department of Colorectal and Anal Surgery, Yiwu Central Hospital, Yiwu, Zhejiang 322000, P.R. China
| | - Qinghua Yang
- Department of Colorectal and Anal Surgery, Yiwu Central Hospital, Yiwu, Zhejiang 322000, P.R. China
| | - Chengdong Lu
- Department of Colorectal and Anal Surgery, Yiwu Central Hospital, Yiwu, Zhejiang 322000, P.R. China
| | - Wenbin Chen
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
18
|
Gastrointestinal Microbiota Dysbiosis Associated with SARS-CoV-2 Infection in Colorectal Cancer: The Implication of Probiotics. GASTROENTEROLOGY INSIGHTS 2022. [DOI: 10.3390/gastroent13010006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The complexity of coronavirus disease 2019 (COVID-19)’s pathophysiology is such that microbial dysbiosis in the lung and gastrointestinal (GI) microbiota may be involved in its pathogenic process. GI microbiota dysbiosis has been associated with respiratory disorders, including COVID-19, as well as sporadic colorectal cancer (CRC) through imbalanced microbiota and compromised immune response. It is pertinent to understand the possible role of probiotics in stabilizing the microbial environment and maintaining the integrity of the respiratory and GI tracts in SARS-CoV-2 induced dysbiosis and colorectal carcinogenesis. The long-term implication of SARS-CoV-2 in GI dysbiosis via microbiota-gut-lung cross-talk could increase the risk of new CRC diagnosis or worsen the condition of previously diagnosed individuals. Recent knowledge shows that the immune-modulatory response to probiotics is shifting the beneficial use of probiotics towards the treatment of various diseases. In this review, we highlight the potential impact of probiotics on SARS-CoV-2 infection associated with CRC through microbiota imbalance in COVID-19 patients.
Collapse
|
19
|
de la Rosa O, Flores‐Gallegos AC, Ascacio‐Valdés JA, Sepúlveda L, Montáñez JC, Aguilar CN. Fructooligosaccharides as Prebiotics, their Metabolism, and Health Benefits. PROBIOTICS, PREBIOTICS AND SYNBIOTICS 2022:307-337. [DOI: 10.1002/9781119702160.ch13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
20
|
Elham N, Naheed M, Elahe M, Hossein MM, Majid T. Selective Cytotoxic effect of Probiotic, Paraprobiotic and Postbiotics of L.casei strains against Colorectal Cancer Cells: Invitro studies. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e19400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Noroozi Elham
- Islamic Azad University, Science and Research Branch, Iran; Islamic Azad University, Iran
| | - Mojgani Naheed
- Razi Vaccine and Serum Research Institute-Agriculture Research, Education and Extension Organization, Iran
| | | | | | - Tebianian Majid
- Razi Vaccine and Serum Research Institute-Agriculture Research, Education and Extension Organization, Iran
| |
Collapse
|
21
|
Mohammadi M, Mirzaei H, Motallebi M. The role of anaerobic bacteria in the development and prevention of colorectal cancer: A review study. Anaerobe 2021; 73:102501. [PMID: 34906686 DOI: 10.1016/j.anaerobe.2021.102501] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/15/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is the third most frequently diagnosed cancer in both males and females in the Unites States. Colonoscopy is considered a safe method for screening this disorder; however, it can be challenging for patients. As research on microbiota, especially anaerobic microbiota, has expanded substantially, new links have been determined between anaerobic bacteria and CRC progression. These associations can be useful in screening CRC in the near future. This review discusses current research investigating the presence of anaerobic bacteria, including Bacteroides fragilis, Peptostreptococcus anaerobius, Clostridium septicum, Porphyromonas gingivalis, Fusobacterium nucleatum, and Parvimonas micra in CRC and presents an overview about their mechanisms of action. We also discuss the current anaerobic probiotics used for the treatment and prevention of CRC.
Collapse
Affiliation(s)
- Mehrdad Mohammadi
- Department of Immunology and Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mitra Motallebi
- Department of Immunology and Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
22
|
Cizkova D, Cizek M, Maloveska M, Kmetova M, Kmet V, Bujnakova D. Cell-Free Lactobacillus casei 21L10 Modulates Nitric Oxide Release and Cell Proliferation/Cell Death in Lipopolysaccharide-Challenged HT-29 Cells. Inflammation 2021; 44:2419-2428. [PMID: 34327573 DOI: 10.1007/s10753-021-01512-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 04/08/2021] [Accepted: 07/05/2021] [Indexed: 12/01/2022]
Abstract
Lactobacillus casei (L. casei) is one of the probiotic strains that may influence intestinal injury and inflammation in nonspecific intestinal diseases. We aimed to evaluate the effect of cell-free Lactobacillus casei 21L10 supernatant (LC) on the cell line HT-29 challenged with lipopolysaccharide (LPS) in order to modulate production of NO, cell proliferation, and apoptosis. Cell line HT-29 was stimulated with LPS in the presence or absence of LC. Our results showed that LC from L. casei 21L10 did not affect the viability of unstimulated HT-29 cells line. HT-29 cell line treatment with LC caused significant decrease of LPS induced NO production after 3 h, and 24 h, but not after 48 h. Proliferation activity of LPS stimulated HT-29 cell line analysed with MTT assay significantly decreased after 24 h and 48 h, but not after 3 h. The majority of LPS stimulated HT-29 cell line treated with LC showed annexin V/PI positivity at 48 h survival, which corresponded to late apoptotic/necrotic cell features. The observed differences suggest that cell-free L. casei 21L10 supernatant could participate in attenuation of LPS-induced inflammation, and may exhibit anti-proliferative and pro-apoptotic/necrotic effects. This study provides pilot data for the further development of L. casei exoproducts as an anti-inflammatory or anti-proliferative agent for the treatment of inflammatory and cancer diseases in gut. However, more data is needed before final conclusions of L. casei cell-free supernatant's efficacy can be drawn.
Collapse
Affiliation(s)
- Dasa Cizkova
- Centre of Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia.,Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Milan Cizek
- Centre of Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Marcela Maloveska
- Centre of Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Marta Kmetova
- University of Pavol Jozef Safarik, Faculty of Medicine, Kosice, Slovakia
| | - Vladimir Kmet
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Kosice, Slovakia
| | - Dobroslava Bujnakova
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Kosice, Slovakia.
| |
Collapse
|
23
|
Chadha S, Kumar A, Srivastava SA, Behl T, Ranjan R. Inulin as a Delivery Vehicle for Targeting Colon-Specific Cancer. Curr Drug Deliv 2021; 17:651-674. [PMID: 32459607 DOI: 10.2174/1567201817666200527133719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/11/2020] [Accepted: 04/01/2020] [Indexed: 12/12/2022]
Abstract
Natural polysaccharides, as well as biopolymers, are now days widely developed for targeting colon cancer using various drug delivery systems. Currently, healing conformations are being explored that can efficiently play a multipurpose role. Owing to the capability of extravagance colonic diseases with the least adverse effects, biopolymers for site specific colon delivery have developed an increased curiosity over the past decades. Inulin (INU) was explored for its probable application as an entrapment material concerning its degradation by enzymes in the colonic microflora and its drug release behavior in a sustained and controlled manner. INU is a polysaccharide and it consists of 2 to 1 linkage having an extensive array of beneficial uses such as a carrier for delivery of therapeutic agents as an indicative/investigative utensil or as a dietary fiber with added well-being aids. In the main, limited research, as well as information, is available on the delivery of therapeutic agents using inulin specifically for colon cancer because of its capability to subsist in the stomach's acidic medium. This exceptional steadiness and robustness properties are exploited in numerous patterns to target drugs securely for the management of colonic cancer, where they effectively act and kills colonic tumor cells easily. In this review article, recent efforts and inulin-based nano-technological approaches for colon cancer targeting are presented and discussed.
Collapse
Affiliation(s)
- Swati Chadha
- Department of Pharmaceutics, Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Arun Kumar
- Department of Pharmaceutics, Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Tapan Behl
- Department of Pharmaceutics, Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Rishu Ranjan
- Department of Pharmaceutics, Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
24
|
Probiotics: A Promising Candidate for Management of Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13133178. [PMID: 34202265 PMCID: PMC8268640 DOI: 10.3390/cancers13133178] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the World's third most frequently diagnosed cancer type. It accounted for about 9.4% mortality out of the total incidences of cancer in the year 2020. According to estimated facts by World Health Organization (WHO), by 2030, 27 million new CRC cases, 17 million deaths, and around 75 million people living with the disease will appear. The facts and evidence that establish a link between the intestinal microflora and the occurrence of CRC are quite intuitive. Current shortcomings of chemo- and radiotherapies and the unavailability of appropriate treatment strategies for CRC are becoming the driving force to search for an alternative approach for the prevention, therapy, and management of CRC. Probiotics have been used for a long time due to their beneficial health effects, and now, it has become a popular candidate for the preventive and therapeutic treatment of CRC. The probiotics adopt different strategies such as the improvement of the intestinal barrier function, balancing of natural gut microflora, secretion of anticancer compounds, and degradation of carcinogenic compounds, which are useful in the prophylactic treatment of CRC. The pro-apoptotic ability of probiotics against cancerous cells makes them a potential therapeutic candidate against cancer diseases. Moreover, the immunomodulatory properties of probiotics have created interest among researchers to explore the therapeutic strategy by activating the immune system against cancerous cells. The present review discusses in detail different strategies and mechanisms of probiotics towards the prevention and treatment of CRC.
Collapse
|
25
|
Kumar R, Harilal S, Carradori S, Mathew B. A Comprehensive Overview of Colon Cancer- A Grim Reaper of the 21st Century. Curr Med Chem 2021; 28:2657-2696. [PMID: 33106132 DOI: 10.2174/0929867327666201026143757] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 12/09/2022]
Abstract
A few decades ago, the incidence of colorectal cancer (CRC) was low and is now the fourth in the list of deadly cancers producing nearly a million deaths annually. A population that is aging along with risk factors such as smoking, obesity, sedentary lifestyle with little or no physical activity, and non-healthy food habits of developed countries can increase the risk of colorectal cancer. The balance in gut microbiota and the metabolites produced during bacterial fermentation within the host plays a significant role in regulating intestinal diseases as well as colorectal cancer development. Recent progress in the understanding of illness resulted in multiple treatment options such as surgery, radiation, and chemotherapy, including targeted therapy and multitherapies. The treatment plan for CRC depends on the location, stage and grade of cancer as well as genomic biomarker tests. Despite all the advancements made in the genetic and molecular aspects of the disease, the knowledge seems inadequate as the drug action as well as the wide variation in drug response did not appear strongly correlated with the individual molecular and genetic characteristics, which suggests the requirement of comprehensive molecular understanding of this complex heterogeneous disease. Furthermore, multitherapies or a broad spectrum approach, which is an amalgamation of the various promising as well as effective therapeutic strategies that can tackle heterogeneity and act on several targets of the disease, need to be validated in clinical studies. The latest treatment options have significantly increased the survival of up to three years in the case of advanced disease. The fact that colorectal cancer is developed from a polypoid precursor, as well as the symptoms of the disease that occur at an advanced stage, underlines how screening programs can help early detection and decrease mortality as well as morbidity from CRC.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of Pharmacy, Kerala University of Health Sciences, Thrissur, Kerala, India
| | - Seetha Harilal
- Department of Pharmacy, Kerala University of Health Sciences, Thrissur, Kerala, India
| | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Italy
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi-682 041, India
| |
Collapse
|
26
|
A review on enzyme-producing lactobacilli associated with the human digestive process: From metabolism to application. Enzyme Microb Technol 2021; 149:109836. [PMID: 34311881 DOI: 10.1016/j.enzmictec.2021.109836] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/30/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022]
Abstract
Complex carbohydrates, proteins, and other food components require a longer digestion process to be absorbed by the lining of the alimentary canal. In addition to the enzymes of the gastrointestinal tract, gut microbiota, comprising a large range of bacteria and fungi, has complementary action on the production of digestive enzymes. Within this universe of "hidden soldiers", lactobacilli are extensively studied because of their ability to produce lactase, proteases, peptidases, fructanases, amylases, bile salt hydrolases, phytases, and esterases. The administration of living lactobacilli cells has been shown to increase nutrient digestibility. However, it is still little known how these microbial-derived enzymes act in the human body. Enzyme secretion may be affected by variations in temperature, pH, and other extreme conditions faced by the bacterial cells in the human body. Besides, lactobacilli administration cannot itself be considered the only factor interfering with enzyme secretion, human diet (microbial substrate) being determinant in their metabolism. This review highlights the potential of lactobacilli to release functional enzymes associated with the digestive process and how this complex metabolism can be explored to contribute to the human diet. Enzymatic activity of lactobacilli is exerted in a strain-dependent manner, i.e., within the same lactobacilli species, there are different enzyme contents, leading to a large variety of enzymatic activities. Thus, we report current methods to select the most promising lactobacilli strains as sources of bioactive enzymes. Finally, a patent landscape and commercial products are described to provide the state of art of the transfer of knowledge from the scientific sphere to the industrial application.
Collapse
|
27
|
Shamekhi S, Abdolalizadeh J, Ostadrahimi A, Mohammadi SA, Barzegari A, Lotfi H, Bonabi E, Zarghami N. Apoptotic Effect of Saccharomyces cerevisiae on Human Colon Cancer SW480 Cells by Regulation of Akt/NF-ĸB Signaling Pathway. Probiotics Antimicrob Proteins 2021; 12:311-319. [PMID: 30788662 DOI: 10.1007/s12602-019-09528-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Drug resistance is one of the major problems, which causes recurrence of cancers. Therefore, complementary treatments are needed to improve the impacts of chemotherapy agents. The effect of probiotics as cancer-preventing agents through involvement in the activation of apoptotic pathways has been established. The present study sought to investigate how the heat-killed form of Saccharomyces cerevisiae (as a probiotic) could affect the Akt/NF-kB-induced apoptosis in colon cancer cells, the SW480 cell line. The cytotoxic effects of heat-killed yeast (HKY) and 5-fluorouracil (5-FU, as a positive control drug) were assayed using the MTT method. Morphological changes followed by apoptosis were examined using DAPI staining. The transcription and translation level of apoptosis genes were explored with qRT-PCR and western blotting. The data were analyzed using GraphPad Prism V6.0 Software. The results showed that HKY could induce apoptosis in colon cancer cell line through downregulation of p-Akt1, Rel A, Bcl-XL, pro-caspase 3, and pro-caspase 9 expressions, and upregulation of BAX, cleaved caspase-3, and cleaved caspase-9. Besides, Akt protein expression was not affected. It is noticeable that HKY had a better modulating effect on BAX expression compared with 5-FU. It was able to modulate Akt/NF-kB signaling pathway followed by the apoptotic cascade.
Collapse
Affiliation(s)
- Sara Shamekhi
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Abdolalizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Ostadrahimi
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyed Abolghasem Mohammadi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Abolfazl Barzegari
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajie Lotfi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Esat Bonabi
- Department of Medical Microbiology, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey
| | - Nosratollah Zarghami
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
28
|
Singh TP, Natraj BH. Next-generation probiotics: a promising approach towards designing personalized medicine. Crit Rev Microbiol 2021; 47:479-498. [PMID: 33822669 DOI: 10.1080/1040841x.2021.1902940] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Second brain, forgotten organ, individual's identity card, and host's fingerprint are the few collective terms that are often used to describe the gut microbiome because of its variability, accountability, and its role in deciding the host's health. Also, the understanding of this host health-gut microbiota relationship can create an opportunity to control an individual's health by manipulating the gut microbiota composition. Several approaches like administration of probiotic, prebiotics, synbiotics, faecal microbiota transplantation have been tried to mitigate the dysbiosis originated ill effects. But the effects of these approaches are highly generic and non-specific. This creates the necessity to design personalized medicine that focuses on treatment of specific disease considering the individual specific gut microbiome. The health promoting commensals could be the new promising prophylactic and therapeutic agents for designing personalized medicine. These commensals are designated as next-generation probiotics (NGPs) and their unusual characteristics, unknown identity and special growth requirements have presented difficulties for researcher, industrial exploitation, and regulatory agencies. In this perspective, this review discusses the concept of NGPs, NGP candidates as tool for designing personalized medicine, designer probiotics as NGPs, required regulatory framework, and propose a road map to develop the NGP based product.
Collapse
Affiliation(s)
- Tejinder Pal Singh
- Dairy Microbiology Department, College of Dairy Science and Technology, Lala Lajpat Rai University of Veterinary and Animal Science, Hisar, India
| | | |
Collapse
|
29
|
Dadfarma N, Nowroozi J, Kazemi B, Bandehpour M. Identification of the effects of acid-resistant Lactobacillus casei metallopeptidase gene under colon-specific promoter on the colorectal and breast cancer cell lines. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:506-513. [PMID: 34094033 PMCID: PMC8143706 DOI: 10.22038/ijbms.2021.53015.11950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/02/2021] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Anti-tumor effects of Lactobacilli as normal flora have been described. In a previous study, we identified a protein isolated from the bacterium Lactobacillus casei ATCC 39392 in acidic pH conditions named metallopeptidase. Therefore, we decided to evaluate the effect of the recombinant plasmid coding metallopeptidase protein on the inhibition, proliferation, or apoptosis of the colorectal and breast cancer cell lines. MATERIALS AND METHODS Identified metallopeptidase gene of L. casei under the specific colon cancer promoter was transferred to the Human SW480 and MDA-MB231 cells. Cell viability was evaluated in these two cancer cell lines via MTT assay, apoptotic changes, and expression level of p53 and MAP2K1 genes in comparison with healthy blood cells as a control group. RESULTS Viability of SW480 and MDA-MB231 cells was identified at 25% and 7%, respectively. An increase in apoptotic cell death in the SW480 cell line was observed as revealed by Tunnel staining. The expression assay of TP53 and MAP2K1 genes showed that MPL protein altered gene expression in a cell type-specific manner. Tunnel analyses showed that the pronounced cytotoxic effect of pEGFP-C2/MPL plasmid on SW480 cells was mediated through apoptosis. CONCLUSION These results suggest that endogenous recombinant MPL under colon specific promoter inhibits the proliferation of SW480 colorectal cancer cells by increase in MAP2K1 and P53 activation. L. casei metallopeptidase under the same circumstances could not affect the growth rate and viability of MDA-MB231 breast cancer cells in vitro.
Collapse
Affiliation(s)
- Narges Dadfarma
- Department of Microbiology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Jamileh Nowroozi
- Department of Microbiology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Bahram Kazemi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojgan Bandehpour
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Abstract
In recent years, the consumption of over-the-counter probiotics to promote health has grown rapidly worldwide and become an independent industry. In medicine, various studies have demonstrated that probiotics can help improve the immune system and intestinal health. They are usually safe, but in some rare cases, they may cause concerning adverse reactions. Although the use of probiotics has been widely popularized in the public, the results of many probiotic clinical trials are contradictory. Particularly in cancer patients, the feasibility of probiotic management providing benefits by targeting cancer and lessening anticancer side effects requires further investigation. This review summarizes the interactions between probiotics and the host as well as current knowledge on the pros and cons of utilizing probiotics in cancer patients.
Collapse
Affiliation(s)
- Ke Lu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanwu Dong
- Department of Pediatrics, Wuhan Fourth Hospital, Wuhan, China.,Department of Pediatrics, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyan Wu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Runming Jin
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongbo Chen
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
31
|
Mendes KL, Lelis DDF, de Freitas DF, da Silveira LH, de Paula AMB, Guimarães ALS, Oliveira JR, Andrade MC, Nobre SAM, Santos SHS. Acute oral treatment with resveratrol and Lactococcus Lactis Subsp. Lactis decrease body weight and improve liver proinflammatory markers in C57BL/6 mice. Mol Biol Rep 2021; 48:1725-1734. [PMID: 33586053 DOI: 10.1007/s11033-021-06190-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
The present study aimed to evaluate the effects of resveratrol, a nutraceutical polyphenol, and Lactococcus lactis (bacteria probiotic), on metabolic parameters and hepatic proinflammatory markers expression. C57BL/6 mice were divided into 4 groups: Standard (ST), Lactococcus lactis (LL), Resveratrol (RSV), and Lactococcus lactis plus resveratrol (LL + RSV). Lactococcus lactis and resveratrol were administered by orogastric gavage. Blood parameters were assessed (total cholesterol, triglycerides, ALT and AST). IL-6 mRNA expression was evaluated by Real-time PCR and TNF-α protein expression was assessed by immunohistochemistry. The main findings showed that resveratrol and Lactococcus lactis association decreased body weight, aspartate aminotransferase and total cholesterol levels. LL and LL + RSV decreased triglycerides levels and IL-6 and TNF-α expression. These results open a perspective of using resveratrol and Lactococcus lactis to improve metabolic parameters and Lactococcus lactis in preventing inflammation and the hepatic diseases development.
Collapse
Affiliation(s)
- Keila Lopes Mendes
- Laboratory of Health Science, Postgraduate Program in Health Science, Department of Health Science, Hospital Universitário Clemente Faria, Universidade Estadual de Montes Claros (Unimontes), Avenida Cula Mangabeira, 562 - Santo Expedito, Montes Claros, Minas Gerais, CEP 39401-001, Brazil.,Instituto Federal de Minas Gerais (IFMG), São João Evangelista, Minas Gerais, Brazil
| | - Deborah de Farias Lelis
- Laboratory of Health Science, Postgraduate Program in Health Science, Department of Health Science, Hospital Universitário Clemente Faria, Universidade Estadual de Montes Claros (Unimontes), Avenida Cula Mangabeira, 562 - Santo Expedito, Montes Claros, Minas Gerais, CEP 39401-001, Brazil
| | - Daniela Fernanda de Freitas
- Laboratory of Health Science, Postgraduate Program in Health Science, Department of Health Science, Hospital Universitário Clemente Faria, Universidade Estadual de Montes Claros (Unimontes), Avenida Cula Mangabeira, 562 - Santo Expedito, Montes Claros, Minas Gerais, CEP 39401-001, Brazil
| | - Luiz Henrique da Silveira
- Hospital Universitário Clemente de Faria, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Minas Gerais, Brazil
| | | | - André Luiz Sena Guimarães
- Laboratory of Health Science, Postgraduate Program in Health Science, Department of Health Science, Hospital Universitário Clemente Faria, Universidade Estadual de Montes Claros (Unimontes), Avenida Cula Mangabeira, 562 - Santo Expedito, Montes Claros, Minas Gerais, CEP 39401-001, Brazil
| | - Janaína Ribeiro Oliveira
- Laboratory of Health Science, Postgraduate Program in Health Science, Department of Health Science, Hospital Universitário Clemente Faria, Universidade Estadual de Montes Claros (Unimontes), Avenida Cula Mangabeira, 562 - Santo Expedito, Montes Claros, Minas Gerais, CEP 39401-001, Brazil
| | - Mariléia Chaves Andrade
- Laboratory of Health Science, Postgraduate Program in Health Science, Department of Health Science, Hospital Universitário Clemente Faria, Universidade Estadual de Montes Claros (Unimontes), Avenida Cula Mangabeira, 562 - Santo Expedito, Montes Claros, Minas Gerais, CEP 39401-001, Brazil
| | - Sérgio Avelino Mota Nobre
- Laboratory of Health Science, Postgraduate Program in Health Science, Department of Health Science, Hospital Universitário Clemente Faria, Universidade Estadual de Montes Claros (Unimontes), Avenida Cula Mangabeira, 562 - Santo Expedito, Montes Claros, Minas Gerais, CEP 39401-001, Brazil
| | - Sérgio Henrique Sousa Santos
- Laboratory of Health Science, Postgraduate Program in Health Science, Department of Health Science, Hospital Universitário Clemente Faria, Universidade Estadual de Montes Claros (Unimontes), Avenida Cula Mangabeira, 562 - Santo Expedito, Montes Claros, Minas Gerais, CEP 39401-001, Brazil. .,Institudo de Ciências Agrárias (ICA), Food Engineering Department, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil.
| |
Collapse
|
32
|
Chattopadhyay I, Dhar R, Pethusamy K, Seethy A, Srivastava T, Sah R, Sharma J, Karmakar S. Exploring the Role of Gut Microbiome in Colon Cancer. Appl Biochem Biotechnol 2021; 193:1780-1799. [PMID: 33492552 DOI: 10.1007/s12010-021-03498-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/07/2021] [Indexed: 02/06/2023]
Abstract
Dysbiosis of the gut microbiome has been associated with the development of colorectal cancer (CRC). Gut microbiota is involved in the metabolic transformations of dietary components into oncometabolites and tumor-suppressive metabolites that in turn affect CRC development. In a healthy colon, the major of microbial metabolism is saccharolytic fermentation pathways. The alpha-bug hypothesis suggested that oncogenic bacteria such as enterotoxigenic Bacteroides fragilis (ETBF) induce the development of CRC through direct interactions with colonic epithelial cells and alterations of microbiota composition at the colorectal site. Escherichia coli, E. faecalis, F. nucleatum, and Streptococcus gallolyticus showed higher abundance whereas Bifidobacterium, Clostridium, Faecalibacterium, and Roseburia showed reduced abundance in CRC patients. The alterations of gut microbiota may be used as potential therapeutic approaches to prevent or treat CRC. Probiotics such as Lactobacillus and Bifidobacterium inhibit the growth of CRC through inhibiting inflammation and angiogenesis and enhancing the function of the intestinal barrier through the secretion of short-chain fatty acids (SCFAs). Crosstalk between lifestyle, host genetics, and gut microbiota is well documented in the prevention and treatment of CRC. Future studies are required to understand the interaction between gut microbiota and host to the influence and prevention of CRC. However, a better understanding of bacterial dysbiosis in the heterogeneity of CRC tumors should also be considered. Metatranscriptomic and metaproteomic studies are considered a powerful omic tool to understand the anti-cancer properties of certain bacterial strains. The clinical benefits of probiotics in the CRC context remain to be determined. Metagenomic approaches along with metabolomics and immunology will open a new avenue for the treatment of CRC shortly. Dietary interventions may be suitable to modulate the growth of beneficial microbiota in the gut.
Collapse
Affiliation(s)
- Indranil Chattopadhyay
- Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, 610005, India
| | - Ruby Dhar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi, India
| | - Karthikeyan Pethusamy
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi, India
| | - Ashikh Seethy
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi, India
| | - Tryambak Srivastava
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi, India
| | - Ramkishor Sah
- Rajendra Prasad Center for Opthalmic Sciences, AIIMS, Ansari Nagar, New Delhi, USA
| | - Jyoti Sharma
- Department of Surgical Oncology, NCI AIIMS, Jhajjar, Haryana, India
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi, India.
| |
Collapse
|
33
|
|
34
|
The Role of Probiotics in Cancer Prevention. Cancers (Basel) 2020; 13:cancers13010020. [PMID: 33374549 PMCID: PMC7793079 DOI: 10.3390/cancers13010020] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Cancer is considered one of the leading causes of human mortality in the world and is the subject of much research. The risk of developing cancer depends on genetic factors, as well as the body’s immune status. The intestinal microbiome plays very important role in maintaining homeostasis in the human body. Probiotics have gained increasing medical significance due to the beneficial effect on the human body associated with the prevention and support of the treatment of many chronic diseases, including cancer in the absence of side effects. The aim of this review was to summarize the knowledge about the effect of probiotic microorganisms in the prevention of cancer. There is a lot of evidence that the use of probiotics can play an important role in cancer prevention and support anti-cancer therapies. Abstract The gut microbiome can play important role in maintaining homeostasis in the human body. An imbalance in the gut microbiome can lead to pro-inflammatory immune responses and the initiation of disease processes, including cancer. The research results prove some strains of probiotics by modulating intestinal microbiota and immune response can be used for cancer prevention or/and as adjuvant treatment during anticancer chemotherapy. This review presents the latest advances in research into the effectiveness of probiotics in the prevention and treatment support of cancer. The described issues concern to the anticancer activity of probiotic microorganisms and their metabolites. In addition, we described the potential mechanisms of probiotic chemoprevention and the advisability of using probiotics.
Collapse
|
35
|
Mendes KL, de Farias Lelis D, Athayde Souza LA, Brito RVJ, Andrade MC, Nobre SAM, Guimarães ALS, Batista de Paula AM, de Lima JP, Hilzendeger AM, Santos SHS. Lactococcus lactis and Resveratrol Decrease Body Weight and Increase Benefic Gastrointestinal Microbiota in Mice. Protein Pept Lett 2020; 28:761-768. [PMID: 33302826 DOI: 10.2174/0929866527999201209214850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/22/2020] [Accepted: 11/09/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND The microbiome is now known for its important role in whole-body homeostasis. A dysbiosis of the normal microbiota is correlated with metabolic disorders. In this sense, the search for compounds able to modulate the microbiome is needed. Resveratrol, a natural compound found in grapes seems to be a promising candidate. OBJECTIVE In this study, our motivation was to evaluate the effects of the association between Resveratrol and Lactococcus lactis, a probiotic, on the composition of the gastrointestinal microbiota and body weight of mice. METHODS Twenty female mice were divided into 4 groups: (1) standard diet, (2) standard diet plus Lactococcus lactis, (3) standard diet plus resveratrol, and (4) standard diet plus Lactococcus lactis and resveratrol. At the end of the treatment period, samples of blood, mucus, stomach, and small and large intestines were collected for analysis. Total levels of Immunoglobulin A and Immunoglobulin E, Lac+ and Lac- bacteria and Lactobacillus were measured. RESULTS The main results indicate that the association between resveratrol and probiotics was able to decrease mice body weight, as compared to the other groups, in addition to decrease the number of Lac- bacteria and increasing the number of Lac+ bacteria. The levels of secretory IgA were also decreased, compared to the animals treated with only probiotics or resveratrol. CONCLUSION We observed potential synergism between Resveratrol and Lactococcus lactis mainly in modulating the stomach and intestinal microbiota.
Collapse
Affiliation(s)
- Keila Lopes Mendes
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros, Montes Claros, Minas Gerais, Brazil
| | - Deborah de Farias Lelis
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros, Montes Claros, Minas Gerais, Brazil
| | - Letícia Antunes Athayde Souza
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros, Montes Claros, Minas Gerais, Brazil
| | - Ronize Viviane Jorge Brito
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros, Montes Claros, Minas Gerais, Brazil
| | - Mariléia Chaves Andrade
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros, Montes Claros, Minas Gerais, Brazil
| | - Sérgio Avelino Mota Nobre
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros, Montes Claros, Minas Gerais, Brazil
| | - André Luiz Sena Guimarães
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros, Montes Claros, Minas Gerais, Brazil
| | - Alfredo Maurício Batista de Paula
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros, Montes Claros, Minas Gerais, Brazil
| | - Juliana Pinto de Lima
- Institute of Agrarian Sciences, Universidade Federal de Minas Gerais, Montes Claros, Minas Gerais, Brazil
| | - Aline M Hilzendeger
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, United States
| | - Sérgio Henrique Sousa Santos
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros, Montes Claros, Minas Gerais, Brazil
| |
Collapse
|
36
|
Abstract
Research on lactic acid bacteria has confirmed how specific strains possess probiotic properties and impart unique sensory characteristics to food products. The use of probiotic lactic acid bacteria (LAB) in many food products, thus confers various health benefits to humans when they are frequently consumed in adequate amounts. The advent of functional food or the concept of nutraceuticals objectively places more emphasis on seeking alternatives to limit the use of medications thus promoting the regular consumption of fermented foods. Probiotic use has thus been recommended to fulfill the role of nutraceuticals, as no side effects on human health have been reported. Probiotics and lactic acid bacteria can boost and strengthen the human immune system, thereby increasing its resistance against numerous disease conditions. Consumer safety and confidence in dairy and fermented food products and the desire of the food industry to meet the sensory and health needs of consumers, has thus increased the demand for probiotic starter cultures with exceptional performance coupled with health benefiting properties. The potential of probiotic cultures and lactic acid bacteria in many industrial applications including fermented food products generally affects product characteristics and also serves as health-promoting foods for humans. The alleviation of lactose intolerance in many populations globally has been one of the widely accepted health claims attributed to probiotics and lactic acid bacteria, although many diseases have been treated with probiotic lactic acid bacteria and have been proven with scientific and clinical studies. The aim of our review was to present information related to lactic acid bacteria, the new classification and perspectives on industrial applications with a special emphasis on food safety and human health.
Collapse
|
37
|
Han S, Zhuang J, Wu Y, Wu W, Yang X. Progress in Research on Colorectal Cancer-Related Microorganisms and Metabolites. Cancer Manag Res 2020; 12:8703-8720. [PMID: 33061569 PMCID: PMC7518784 DOI: 10.2147/cmar.s268943] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/25/2020] [Indexed: 12/24/2022] Open
Abstract
Intestinal flora is an important component in the human body, which have been reported to be involved in the occurrence and development of colorectal cancer (CRC). Indeed, changes in the intestinal flora in CRC patients compared to those in control subjects have been reported. Several bacterial species have been shown to exhibit the pro-inflammatory and pro-carcinogenic properties, which could consequently have an impact on colorectal carcinogenesis. In this review, we summarize the current knowledge on the potential links between the intestinal microbiota and CRC. We illustrated the mechanisms by which intestinal flora imbalance affects CRC, mainly focusing on inflammation, microbial metabolites, and specific bacteria species. In addition, we discuss how a diet exhibits a strong impact on microbial composition and provides risks for developing CRC. Finally, we describe the potential future directions that are based on intestinal microbiota manipulation for CRC diagnosis and treatment.
Collapse
Affiliation(s)
- Shuwen Han
- Department of Oncology, Huzhou Cent Hospital, Affiliated Cent Hospital HuZhou University, Huzhou 313000, People's Republic of China
| | - Jing Zhuang
- Graduate School of Nursing, Huzhou University, Huzhou 313000, People's Republic of China
| | - Yinhang Wu
- Graduate School of Second Clinical Medicine Faculty, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| | - Wei Wu
- Department of Gastroenterology, Huzhou Cent Hospital, Affiliated Cent Hospital HuZhou University, Huzhou 313000, People's Republic of China
| | - Xi Yang
- Department of Oncology, Huzhou Cent Hospital, Affiliated Cent Hospital HuZhou University, Huzhou 313000, People's Republic of China
| |
Collapse
|
38
|
Celiker C, Kalkan R. Genetic and epigenetic perspective of microbiota. Appl Microbiol Biotechnol 2020; 104:8221-8229. [PMID: 32857199 DOI: 10.1007/s00253-020-10849-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/09/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022]
Abstract
The gut microbiota has an extremely important role within the body and it is necessary for the regulation of the metabolism of the host and also for the development of metabolic diseases such as obesity. Here, we show several different factors leading to obesity such as epigenetic changes and how they result in differences to occur in the gut microbiota, along with gut dysbiosis which is caused by disturbances in the microbiota homeostasis. Several studies have been explained in this paper, providing evidence in how these findings can actually decrease the susceptibility of obesity, whether it be by changing an individual's diet pattern or observing the epigenetic changes which are taking place. KEY POINTS: • The microbiota depends on an individual's diet, lifestyle, environment, genetics and epigenetic profile. • Changes of the gut microbiota can increase obesity susceptibility. • Non-coding RNA has an important role in the metabolic homeostasis in check so if a disturbance occurs it can lead to resistance to obesity.
Collapse
Affiliation(s)
- Cigdem Celiker
- Department of Molecular Biology and Genetics, Arts and Science Faculty, Near East University, 99138, Nicosia, Cyprus
| | - Rasime Kalkan
- Department of Medical Genetics, Faculty of Medicine, Near East University, 99138, Nicosia, Cyprus. .,DESAM Institute, Near East University, 99138, Nicosia, Cyprus.
| |
Collapse
|
39
|
Jinendiran S, Teng W, Dahms HU, Liu W, Ponnusamy VK, Chiu CCC, Kumar BSD, Sivakumar N. Induction of mitochondria-mediated apoptosis and suppression of tumor growth in zebrafish xenograft model by cyclic dipeptides identified from Exiguobacterium acetylicum. Sci Rep 2020; 10:13721. [PMID: 32792514 PMCID: PMC7426938 DOI: 10.1038/s41598-020-70516-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 07/30/2020] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer is the most common type of gastrointestinal cancers with poor survival and limited therapeutic options. In this study, four structurally different cyclic dipeptides (or diketopiperazine) were isolated and identified as cyclo (L-Pro-L-Leu), cyclo (L-Pro-L-Val), cyclo (L-Pro-L-Phe) and cyclo (L-Pro-L-Tyr) from the ethyl acetate extract in the cell-free filtrate of Exiguobacterium acetylicum S01. The anticancer potential of identified DKPs on colorectal cancer HT-29 cells in vitro and in vivo zebrafish xenograft model was evaluated. The MTT (3-(4, 5-dimethylthiazol-2yl)-2, 5-diphenyltetrazolium bromide)) assay showed that four DKPs exhibited significant inhibition of HT-29 cells viability in a dose-dependent manner whereas there were no cytotoxic effects on normal mouse fibroblast 3T3 cells. Also, we observed that all DKPs induce early and late apoptotic cell death in HT-29 cells. Moreover, the expression levels of apoptotic (cytochrome-c, caspase-3 and Bid) and anti-apoptotic (Bcl-2) markers were up- and down-regulated in HT-29 cells in response to DKPs treatments. Furthermore, these four DKPs remarkably inhibited the tumor progression in a zebrafish xenograft model within a nonlethal dose range. Overall, our findings suggest that cyclic dipeptides derived from E. acetylicum S01 could be promising chemopreventive/ therapeutic candidates against cancer.
Collapse
Affiliation(s)
- Sekar Jinendiran
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, India
| | - Weilin Teng
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Hans-Uwe Dahms
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Department of Marine Biotechnology and Bioresources, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan.
| | - Wangta Liu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | | | - B S Dileep Kumar
- Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, 695019, India.
| | - Natesan Sivakumar
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, India.
| |
Collapse
|
40
|
Toumazi D, Constantinou C. A Fragile Balance: The Important Role of the Intestinal Microbiota in the Prevention and Management of Colorectal Cancer. Oncology 2020; 98:593-602. [PMID: 32604093 DOI: 10.1159/000507959] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 04/16/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Colorectal cancer is the second leading cause of cancer-related death worldwide. In recent years, researchers have focussed on the role of the intestinal microbiota in both the prevention and the treatment of colorectal cancer. SUMMARY The evidence in the literature supports that there is a fragile balance between different species of bacteria in the human gut. A disturbance of this balance towards increased levels of the bacteria Fusobacterium nucleatum and Bacteroides fragilis is associated with an increased risk of colorectal cancer. The mechanisms involved include the release of toxins which activate inflammation and the regulation of specific miRNAs (with an increase in the expression of oncogenic miRNAs and a decrease in the expression of tumour suppressor miRNAs), thereby increasing cell proliferation and leading to tumorigenesis. On the other hand, Lactobacillus and Bifidobacterium have a protective effect against the development of colorectal cancer through mechanisms that involve an increase in the levels of anticarcinogenic metabolites such as butyrate and a decrease in the activity of proinflammatory pathways. Even though preliminary studies support that the use of probiotics in the prevention and management of colorectal cancer is promising, more research is needed in this field. Key Message: The association between the intestinal microbiota, diet and colorectal cancer remains an active area of research with expected future applications in the use of probiotics for the prevention and management of this significant disease.
Collapse
Affiliation(s)
- Daniela Toumazi
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia, Cyprus
| | - Constantina Constantinou
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia, Cyprus,
| |
Collapse
|
41
|
Ghanavati R, Akbari A, Mohammadi F, Asadollahi P, Javadi A, Talebi M, Rohani M. Lactobacillus species inhibitory effect on colorectal cancer progression through modulating the Wnt/β-catenin signaling pathway. Mol Cell Biochem 2020; 470:1-13. [PMID: 32419125 DOI: 10.1007/s11010-020-03740-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/02/2020] [Indexed: 12/11/2022]
Abstract
Probiotic bacteria are known to exert a wide range of anticancer activities on their animal hosts. In the present study, the anticancer effect of a cocktail of several potential probiotic Lactobacillus species (potential probiotic L.C) was investigated in vitro and in vivo. MTT and Flow cytometry tests results showed that administration of live potential probiotic L.C significantly decreased the HT-29 and CT-26 cells proliferation and induced late apoptotis in a time-dependent manner. In addition, quantitative real-time polymerase chain reaction (qPCR) results showed that exposure of potential probiotic L.C to both HT-29 and CT-26 cells during the incubation times resulted in the upregulation (apc and CSNK1ε for HT-29, CSNK1ε and gsk3β for CT-26) and downregulation (CTNNB1, CCND1, pygo2, axin2 and id2) of the Wnt/β- catenin pathway-related genes in a time-dependent manner. The significance of in vitro anticancer effect of potential probiotic L.C was further confirmed in an experimental tumor model. Data from the murine model of colorectal cancer (CRC) induced by Azoxymethane (AOM) and Dextran Sulfate Sodium (DSS) showed significantly alleviated inflammation and tumor development in AOM/DSS/L.C-injected mice compared to the AOM/DSS-injected mice. Tumor growth inhibition was accompanied by potential probiotic L.C-driven upregulation and downregulation of the Wnt/β-catenin pathway-related genes, similar to the in vitro results. These results showed that potential probiotic L.C inhibited the tumor growth, and that its anticancer activity was at least partially mediated through suppressing the Wnt/β-catenin pathway. Overall, the present study suggested that this probiotic could be used clinically as a supplement for CRC prevention and treatment.
Collapse
Affiliation(s)
- Roya Ghanavati
- Behbahan Faculty of Medical Sciences, Behbahan, Iran.,Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fahime Mohammadi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parisa Asadollahi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbiology Department, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Abdolreza Javadi
- Pathology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Malihe Talebi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran. .,Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Mahdi Rohani
- Department of Microbiology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
42
|
Rad AH, Aghebati-Maleki L, Kafil HS, Abbasi A. Molecular mechanisms of postbiotics in colorectal cancer prevention and treatment. Crit Rev Food Sci Nutr 2020; 61:1787-1803. [PMID: 32410512 DOI: 10.1080/10408398.2020.1765310] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The occurrence of colorectal cancer (CRC) has been rising expeditiously and anticipated that 2.4 million new occasions of CRC will be detected yearly around the world until the year 2035. Due to some side-effects and complications of conventional CRC therapies, bioactive components such as microbial-derived biomolecules (postbiotics) have been attaining great significance by researchers for adjuvant therapy in CRC patients. The term 'postbiotics' encompasses an extensive range of complex micro- and macro-molecules (<50, 50-100, and 100< kDa) such as inactivated microbial cells, cell fractions or metabolites, which confer various physiological health benefits to the host when administered in adequate amounts. Postbiotics modulate the composition of the gut microbiota and the functionality of the immune system, as well as promote the CRC treatment effectiveness and reduces its side-effects in CRC patients due to possessing anti-oxidant, anti-proliferative, anti-inflammatory, and anti-cancer activities. Presently scientific literature confirms that postbiotics with their unique characteristics in terms of clinical (safe origin), technological (stability), and economic (low production costs) aspects can be used as promising tools for both prevent and adjuvant treat strategies in CRC patients without any serious undesirable side-effects. This review provides an overview of the concept and safety issues regarding postbiotics, with emphasis on their biological role in the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Aziz Homayouni Rad
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Abbasi
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student's research committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
43
|
Ren C, Faas MM, de Vos P. Disease managing capacities and mechanisms of host effects of lactic acid bacteria. Crit Rev Food Sci Nutr 2020; 61:1365-1393. [PMID: 32366110 DOI: 10.1080/10408398.2020.1758625] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Consumption of lactic acid bacteria (LAB) has been suggested to confer health-promoting effects on the host. However, effects of LABs have been reported to be species- and strain-specific and the mechanisms involved are subjects of discussion. Here, the possible mechanisms by which LABs induce antipathogenic, gut barrier enhancing and immune modulating effects in consumers are reviewed. Specific strains for which it has been proven that health is improved by these mechanisms are discussed. However, most strains probably act via several or combinations of mechanisms depending on which effector molecules they express. Current insight is that these effector molecules are either present on the cell wall of LAB or are excreted. These molecules are reviewed as well as the ligand binding receptors in the host. Also postbiotics are discussed. Finally, we provide an overview of the efficacy of LABs in combating infections caused by Helicobacter pylori, Salmonella, Escherichia coli, Streptococcus pneumoniae, and influenza virus, in controlling gut inflammatory diseases, in managing allergic disorders, and in alleviating cancer.
Collapse
Affiliation(s)
- Chengcheng Ren
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Marijke M Faas
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
44
|
Du H, He Z, Feng F, Chen D, Zhang L, Bai J, Wu H, Han E, Zhang J. Hsa_circ_0038646 promotes cell proliferation and migration in colorectal cancer via miR-331-3p/GRIK3. Oncol Lett 2020; 20:266-274. [PMID: 32565953 PMCID: PMC7286133 DOI: 10.3892/ol.2020.11547] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 01/21/2020] [Indexed: 02/06/2023] Open
Abstract
Increasing evidence supports the essential roles of circular RNAs (circRNAs) and microRNAs (miRNAs/miRs) in different types of human cancer. For example, hsa_circ_0137008 functions as a sponge for mi-338-5p and inhibits the malignant phenotype in colorectal cancer. Furthermore, hsa_circ_RNA_0011780 downregulates FBXW7 by targeting miR-554a and suppressing the progression of non-small cell lung cancer. Thus far, only a single report has identified that the miRNA miR-331-3p exerts a pivotal effect on human colorectal cancer (CRC) evolution. However, both the up- and downstream regulatory mechanisms of miR-331-3p are unclear. In the present study, it was predicted via bioinformatics analysis that the circRNA, hsa_circ_0038646, and the glutamate receptor ionotropic kainate 3 (GRIK3) gene contain binding sites that can interact with miR-331-3p. Thus, hsa_circ_0038646/miR-331-3p/GRIK3 may be a novel therapeutic pathway for CRC. Reverse transcription-quantitative PCR and western blotting analyses were performed, as well as cell proliferation, luciferase reporter and Transwell migration assays. Hsa_circ_0038646 was overexpressed in both CRC cells and tissues, and this aberrant expression was positively related with increasing tumor grade. Knockdown of hsa_circ_0038646 significantly weakened human CRC cell proliferation and migration. It was shown that hsa_circ_0038646 can sponge miR-331-3p to suppress its expression, and that suppression of miR-331-3p can reverse the effects of hsa_circ_0038646 inhibition in CRC cells. It was determined that GRIK3 is a downstream target of miR-331-3p, and that hsa_circ_0038646 could increase the levels of GRIK3 by suppressing miR-331-3p in CRC cells. Restoring GRIK3 expression rescued the weakened CRC cell proliferation and migration following hsa_circ_0038646 knockdown. The present study indicated that hsa_circ_0038646 functions as a tumor promoter in CRC by increasing GRIK3 expression via sponging of miR-331-3p. The hsa_circ_0038646/miR-331-3p/GRIK3 axis may be a novel therapeutic and diagnostic target of CRC.
Collapse
Affiliation(s)
- Haipeng Du
- Department of Gastrointestinal Surgery, Tianjin Baodi Hospital, Tianjin 301800, P.R. China
| | - Zhiguo He
- Department of Gastrointestinal Surgery, Tianjin Baodi Hospital, Tianjin 301800, P.R. China
| | - Fumei Feng
- Department of Gastrointestinal Surgery, Tianjin Baodi Hospital, Tianjin 301800, P.R. China
| | - Daming Chen
- Department of Gastrointestinal Surgery, Tianjin Baodi Hospital, Tianjin 301800, P.R. China
| | - Lei Zhang
- Department of Gastrointestinal Surgery, Tianjin Baodi Hospital, Tianjin 301800, P.R. China
| | - Jingzhen Bai
- Department of Gastrointestinal Surgery, Tianjin Baodi Hospital, Tianjin 301800, P.R. China
| | - Huiguo Wu
- Department of Gastrointestinal Surgery, Tianjin Baodi Hospital, Tianjin 301800, P.R. China
| | - Enkun Han
- Department of Gastrointestinal Surgery, Tianjin Baodi Hospital, Tianjin 301800, P.R. China
| | - Jiansheng Zhang
- Department of Gastrointestinal Surgery, Tianjin Baodi Hospital, Tianjin 301800, P.R. China
| |
Collapse
|
45
|
APC gene 3'UTR SNPs and interactions with environmental factors are correlated with risk of colorectal cancer in Chinese Han population. Biosci Rep 2020; 40:222328. [PMID: 32159210 PMCID: PMC7087318 DOI: 10.1042/bsr20192429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 02/19/2020] [Accepted: 03/03/2020] [Indexed: 11/29/2022] Open
Abstract
Objective: To study the correlation between adenomatous polyposis coli (APC) gene 3′ untranslated region (UTR) single nucleotide polymorphisms (SNPs) and their interactions with environmental factors and the risk of colorectal cancer (CRC) in a Chinese Han population. Methods: Genotypes of APC gene 3′UTR rs1804197, rs41116, rs448475, and rs397768 loci in 340 Chinese Han patients with CRC and 340 healthy controls were analyzed. All patients with CRC were analyzed for progression-free survival (PFS) during a 3-year follow-up. Results: The risk of CRC in subjects carrying the APC gene rs1804197 A allele was 2.95-times higher than for the C allele carriers. The interactions of the rs1804197 SNP with body mass index (BMI) and smoking were associated with the risk of CRC. The risk of CRC in the APC gene rs397768 G allele carriers was 1.68-times higher than in the A allele carriers. The interaction between the rs397768 locus SNP and gender was also associated with the risk of CRC. The 3-year PFS of patients with APC gene rs1804197 AA genotype, CA genotype, and CC genotype CRC decreased in this order, with significant difference. In addition, the 3-year PFS of rs397768 locus GG genotype, AG genotype, and AA genotype CRC patients decreased in this order, and the difference was significant. Conclusion: The rs1804197 locus in the 3′UTR region of the APC gene and its interactions with BMI and smoking are associated with the risk of CRC in a Chinese Han population. In addition, the interaction between rs397768 locus SNP and gender is related to the risk of CRC.
Collapse
|
46
|
The Role of Probiotics in Colorectal Cancer Management. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3535982. [PMID: 32148539 PMCID: PMC7048916 DOI: 10.1155/2020/3535982] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/16/2020] [Accepted: 01/23/2020] [Indexed: 12/13/2022]
Abstract
Colorectal cancer (CRC) is one of the most common cancerous diseases worldwide and causes leading cancer-associated deaths. Several factors are related to the incidence of CRC such as unhealthy diet and lifestyle, heredity, metabolic disorders, and genetic factors. Even though several advanced medical procedures are available for CRC treatment, the survival rates are poor with many adverse treatments associated side effects, which affects the quality of life. Probiotics are a well-known bioactive candidate for the treatment of several diseases and ill-health conditions. The recent scientific evidence suggested that probiotic supplementation protects the CRC patients from treatment-associated adverse effects. The manuscript summarizes the influence of probiotic supplementation on the health status of CRC patients and discusses the possible mechanism behind the protective effect of probiotics against CRC. The literature survey revealed that beneficial impact of probiotic supplementation depends on several factors such as strain, dosage, duration of the intervention, host physiology, and other food supplements. The probiotic intervention improves the microbiota, releases antimicrobials and anticarcinogenic agents, helps to remove carcinogens, and improves the intestinal permeability, tight junction function, and enzyme activity in CRC patients. Besides, not all probiotic strains exhibit anti-CRC activities; it is necessary to screen the potent strain for the development of a probiotic-based therapeutic agent to control or prevent the incidence of CRC.
Collapse
|
47
|
Gu C, Zou S, He C, Zhou J, Qu R, Wang Q, Qi J, Zhou M, Yan S, Ye Z. Long non-coding RNA CCAT1 promotes colorectal cancer cell migration, invasiveness and viability by upregulating VEGF via negative modulation of microRNA-218. Exp Ther Med 2020; 19:2543-2550. [PMID: 32256733 PMCID: PMC7086191 DOI: 10.3892/etm.2020.8518] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 01/28/2020] [Indexed: 01/28/2023] Open
Abstract
Increasing evidence has demonstrated that long non-coding (lnc) RNA is aberrantly expressed in numerous types of cancer. Colorectal cancer is a common malignancy; however, the role and mechanism underlying the influence of lncRNA-colon cancer associated transcript 1 (CCAT1) in colorectal cancer is yet to be elucidated. The present study revealed that CCAT1 is highly expressed in colorectal cancer tissues. Bioinformatics analysis and a dual-luciferase reporter gene assay indicated that CCAT1 and microRNA (miR)-218 had complementary binding sites. Furthermore, reverse transcription-quantitative PCR revealed that miR-218 was downregulated in colorectal cancer tissues compared with paired adjacent healthy tissues. To investigate the biological effects of CCAT1 on colorectal cancer cells, MTT and Transwell assays were performed. The results revealed that when compared with the control group, CCAT1-short hairpin (sh)RNA significantly inhibited colorectal cancer cell (SW480) viability and decreased migration and invasiveness. In addition, CCAT1-shRNA significantly reduced vascular endothelial growth factor (VEGF) expression in SW480 cells; however, these effects were partially rescued by an miR-218 inhibitor. Furthermore, it was revealed that the CCAT1-plasmid significantly promoted the viability of SW480 cells, increased cell migration and invasiveness, and significantly increased VEGF expression. However, these effects were also partially rescued by with a miR-218 mimic. Taken together, the present results identified that the CCAT1/miR-218 axis serves a key role in the regulation of colorectal cancer progression, which may be used as potential therapeutic target for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Chao Gu
- Gastrointestinal Surgery Department, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215000, P.R. China
| | - Shitao Zou
- Suzhou Cancer Center Core Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215000, P.R. China
| | - Chao He
- Suzhou Cancer Center Core Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215000, P.R. China
| | - Jundong Zhou
- Suzhou Cancer Center Core Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215000, P.R. China
| | - Rui Qu
- Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215000, P.R. China
| | - Qin Wang
- Gastrointestinal Surgery Department, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215000, P.R. China
| | - Jie Qi
- Thyroid and Breast Surgery Department, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215000, P.R. China
| | - Ming Zhou
- General Surgery, The Second Clinical Medical College, Yangtze University, Jingzhou Central Hospital, Jingzhou, Hubei 434020, P.R. China
| | - Shuai Yan
- Colorectal Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215009, P.R. China
| | - Zhenyu Ye
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| |
Collapse
|
48
|
Ghanavati R, Asadollahi P, Shapourabadi MB, Razavi S, Talebi M, Rohani M. Inhibitory effects of Lactobacilli cocktail on HT-29 colon carcinoma cells growth and modulation of the Notch and Wnt/β-catenin signaling pathways. Microb Pathog 2020; 139:103829. [PMID: 31682995 DOI: 10.1016/j.micpath.2019.103829] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 10/02/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022]
Abstract
Probiotics could be considered as attractive candidates for preventing tumor growth through maintaining homeostasis. The aim of this study was to evaluate the inhibitory effect of a cocktail of five Lactobacillus species on human colorectal carcinoma cell line HT-29. The anti-proliferative and apoptotic effects of Lactobacilli cocktail were evaluated using MTT and flow cytometry tests, respectively. Quantitative real-time polymerase chain reaction (qPCR) was used to analyze the expression of several genes in the Notch (notch, hes1, msi1, and numb) and Wnt/β-catenin (CTNNB1 and CCND1) pathways, following the treatment of HT-29 cells with Lactobacilli cocktail. The treatment by Lactobacilli cocktail induced a significant anti-proliferative effect and late stage apoptosis among the cancer cells (p < 0.05). Compared to the untreated cells, Lactobacilli cocktail induced the down-regulation of notch, hes1, and msi1 genes and up-regulation of numb gene in the Notch pathway as well as the down-regulation of CTNNB1 and CCND1 genes in the Wnt/β-catenin pathway in a time-dependent manner (p < 0.05). CONCLUSION: Lactobacilli cocktail was shown to have beneficial anti-tumor effects on HT-29 cells by modulating the Notch and Wnt/β-catenin pathways; therefore, the use of Lactobacilli probiotics as nutritional supplements may prevent the incidence of colon cancer.
Collapse
Affiliation(s)
- Roya Ghanavati
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parisa Asadollahi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Microbiology Department, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | | | - Shabnam Razavi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Malihe Talebi
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mahdi Rohani
- Department of Microbiology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
49
|
Sabit H, Cevik E, Tombuloglu H. Colorectal cancer: The epigenetic role of microbiome. World J Clin Cases 2019; 7:3683-3697. [PMID: 31799293 PMCID: PMC6887622 DOI: 10.12998/wjcc.v7.i22.3683] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 10/23/2019] [Accepted: 10/30/2019] [Indexed: 02/05/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer in men (746000 cases per year) and the second most common cancer in women globally (614000 cases per year). The incidence rate of CRC in developed countries (737000 cases per year) is higher than that in less developed countries (624000 cases per year). CRC can arise from genetic causes such as chromosomal instability and microsatellite instability. Several etiologic factors underlie CRC including age, diet, and lifestyle. Gut microbiota represent a proven cause of the disease, where they play pivotal roles in modulating and reshaping the host epigenome. Several active microbial metabolites have been found to drive carcinogenesis, invasion, and metastasis via modifying both the methylation landscape along with histone structure in intestinal cells. Gut microbiota, in response to diet, can exert both beneficial and harmful functions in humans, according to the intestinal balance of number and types of these bacteria. Although the intestinal microbial community is diverse among individuals, these microbes cumulatively produce 100-fold more proteins than the human genome itself, which calls for further studies to elaborate on the complicated interaction between these microorganisms and intestinal cells. Therefore, understanding the exact role that gut microbiota play in inducing CRC will help attain reliable strategies to precisely diagnose and treat this fatal disease.
Collapse
Affiliation(s)
- Hussein Sabit
- Department of Genetics, Institute for Medical Research and Consultations, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Emre Cevik
- Department of Genetics, Institute for Medical Research and Consultations, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Huseyin Tombuloglu
- Department of Genetics, Institute for Medical Research and Consultations, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| |
Collapse
|
50
|
Tarashi S, Siadat SD, Ahmadi Badi S, Zali M, Biassoni R, Ponzoni M, Moshiri A. Gut Bacteria and their Metabolites: Which One Is the Defendant for Colorectal Cancer? Microorganisms 2019; 7:E561. [PMID: 31766208 PMCID: PMC6920974 DOI: 10.3390/microorganisms7110561] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/22/2019] [Accepted: 09/04/2019] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is a worldwide health concern which requires efficient therapeutic strategies. The mechanisms underlying CRC remain an essential subject of investigations in the cancer biology field. The evaluation of human microbiota can be critical in this regard, since the disruption of the normal community of gut bacteria is an important issue in the development of CRC. However, several studies have already evaluated the different aspects of the association between microbiota and CRC. The current study aimed at reviewing and summarizing most of the studies on the modifications of gut bacteria detected in stool and tissue samples of CRC cases. In addition, the importance of metabolites derived from gut bacteria, their relationship with the microbiota, and epigenetic modifications have been evaluated.
Collapse
Affiliation(s)
- Samira Tarashi
- Microbiology Research Center, Pasteur Institute of Iran, 1316943551 Tehran, Iran; (S.T.); (S.D.S.); (S.A.B.)
- Mycobacteriology and Pulmonary Research Department, Pasteur Institute of Iran, 1316943551 Tehran, Iran
| | - Seyed Davar Siadat
- Microbiology Research Center, Pasteur Institute of Iran, 1316943551 Tehran, Iran; (S.T.); (S.D.S.); (S.A.B.)
- Mycobacteriology and Pulmonary Research Department, Pasteur Institute of Iran, 1316943551 Tehran, Iran
| | - Sara Ahmadi Badi
- Microbiology Research Center, Pasteur Institute of Iran, 1316943551 Tehran, Iran; (S.T.); (S.D.S.); (S.A.B.)
- Mycobacteriology and Pulmonary Research Department, Pasteur Institute of Iran, 1316943551 Tehran, Iran
| | - Mohammadreza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, 19857-17411 Tehran, Iran;
| | - Roberto Biassoni
- Laboratory of Molecular Medicine, IRCCS Instituto Giannina Gaslini, 16147 Genova, Italy;
| | - Mirco Ponzoni
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Arfa Moshiri
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, 19857-17411 Tehran, Iran;
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| |
Collapse
|