1
|
Ghonaim AH, Yi G, Lei M, Xie D, Ma H, Yang Z, Usama U, Wu H, Jiang Y, Li W, He Q. Isolation, characterization and whole-genome analysis of G9 group a rotaviruses in China: Evidence for possible Porcine-Human interspecies transmission. Virology 2024; 597:110129. [PMID: 38908046 DOI: 10.1016/j.virol.2024.110129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/22/2024] [Accepted: 06/02/2024] [Indexed: 06/24/2024]
Abstract
Group A rotaviruses (RVAs) are major causes of severe gastroenteritis in infants and young animals. To enhance our understanding of the relationship between human and animals RVAs, complete genome data are necessary. We screened 92 intestinal and stool samples from diarrheic piglets by RT‒PCR targeting the VP6 gene, revealing a prevalence of 10.9%. RVA was confirmed in two out of 5 calf samples. We successfully isolated two porcine samples using MA104 cell line. The full-length genetic constellation of the two isolates were determined to be G9-P[23]-I5-R1-C1-M1-A8-N1-T7-E1-H1, with close similarity to human Wa-like and porcine strains. Sequence analysis revealed the majority of genes were closely related to porcine and human RVAs. Phylogenetic analysis revealed that these isolates might have their ancestral origin from pigs, although some of their gene segments were related to human strains. This study reveals evidence of reassortment and possible interspecies transmission between pigs and humans in China.
Collapse
Affiliation(s)
- Ahmed H Ghonaim
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan, China; Desert Research Centre, Cairo, Egypt
| | - GuangYuan Yi
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan, China
| | - Mingkai Lei
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan, China
| | - Dongqi Xie
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan, China
| | - Hailong Ma
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Zhengxin Yang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan, China
| | - Usama Usama
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan, China
| | - Hao Wu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan, China
| | - Yunbo Jiang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan, China
| | - Wentao Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China; The Animal Disease Diagnostic Centre of Huazhong Agricultural University, Wuhan, 430070, China.
| | - Qigai He
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan, China; The Animal Disease Diagnostic Centre of Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
2
|
Li Y, Wang F, Kan R, Cao H, Tang C, Yue H, Zhang B. Genetic and immunological characterization of G9 group A porcine rotaviruses in China. Zoonoses Public Health 2022; 69:694-703. [PMID: 35608375 DOI: 10.1111/zph.12958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/18/2022] [Accepted: 04/29/2022] [Indexed: 11/28/2022]
Abstract
G9 group A rotaviruses (RVAs) are considered emerging pathogens in pigs and humans, and pigs are considered a potential host reservoir for human G9 RVAs. In this study, RVAs of two genotypes, G9P[23] and G9P[13], were successfully isolated and the genomic sequences were obtained, the genome constellation is G9-P[23]-I5-R1-C1-M1-A8-N1-T1-E1-H1 and G9-P[13]-I5-R1-C1-M1-A8-N1-T7-E1-H1 respectively. One strain which amplified from clinic faecal sample had an unique genome constellation G9-P[23]-I1-R1-C1-M1-A8-N1-T1-E1-H1. All the genomic segments of three porcine G9 RVAs were closely related to those of porcine and/or porcine-like human RVAs, demonstrating that the three viruses were porcine-human reassortant strains. To study the immunogenicity of the porcine G9 RVAs, 6-week-old female BALB/c mice were immunized with inactivated vaccines derived from porcine RVAs and then mated. The highest titres of neutralizing antibodies against G9P[23] and G9P[13] porcine RVAs (1,291 ± 35.22 and 1:232 ± 39.28 respectively) were produced in mice 7 days after the second immunization. Suckling mice born to the vaccinated dams were protected by maternal antibodies against challenge with homologous strains. Overall, our data demonstrate the occurrence of porcine-human reassortants of G9 RVAs, and extend our understanding of the immunogenicity of porcine G9 rotaviruses. They also provide a basis for the development of a porcine G9 RVA vaccine.
Collapse
Affiliation(s)
- Yu Li
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Fengxuan Wang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
- Key laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, China
| | - Ruici Kan
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Hui Cao
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Cheng Tang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
- Key laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, China
| | - Hua Yue
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
- Key laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, China
- Sichuan Veterinary Medicine and Drug Innovation Group of China Agricultural Research System, China, Chengdu
| | - Bin Zhang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
- Key laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, China
- Sichuan Veterinary Medicine and Drug Innovation Group of China Agricultural Research System, China, Chengdu
| |
Collapse
|
3
|
Duarte Júnior JWB, Chagas EHN, Serra ACS, Souto LCDS, da Penha Júnior ET, Bandeira RDS, e Guimarães RJDPS, Oliveira HGDS, Sousa TKS, Lopes CTDA, Domingues SFS, Pinheiro HHC, Malik YS, Salvarani FM, Mascarenhas JDP. Ocurrence of rotavirus and picobirnavirus in wild and exotic avian from amazon forest. PLoS Negl Trop Dis 2021; 15:e0008792. [PMID: 34506499 PMCID: PMC8432778 DOI: 10.1371/journal.pntd.0008792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 08/11/2021] [Indexed: 12/25/2022] Open
Abstract
The present study reports the occurrence of rotavirus A (RVA), rotavirus D (RVD), rotavirus F (RVF), rotavirus G (RVG), and picobirnavirus (PBV) in fecal specimens of wild (n = 22), and exotic birds (n = 1) from different cities of Pará state. These animals were hospitalized at Veterinary Hospital of the Federal University of Pará, Brazil, in a period from January 2018 to June 2019. The animals exhibited different clinical signs, such as diarrhea, malnutrition, dehydration, and fractures. The results showed 39.1% (9/23) of positivity for RVA by RT-qPCR. Among these, one sample (1/9) for the NSP3 gene of T2 genotype was characterized. About 88.9% (8/9) for the VP7 gene belonging to G1, G3 equine like and G6 genotypes, and 55.5% (5/9) for the VP4 gene of P[2] genotype were obtained. In the current study, approximately 4.5% of the samples (1/23) revealed coinfection for the RVA, RVD and RVF groups. Furthermore, picobirnavirus (PBV) was detected in one of the 23 samples tested, and was classified in the Genogroup I. The findings represent the first report of RVA, RVD, RVF, RVG, and PBV genotypes in wild birds in Brazil, and due to wide distribution it can implies potential impacts of RVs, and PBVs on avian health, and other animals contributing to construction of new knowledge, and care perspectives.
Collapse
|
4
|
Vlasova AN, Amimo JO, Saif LJ. Porcine Rotaviruses: Epidemiology, Immune Responses and Control Strategies. Viruses 2017; 9:v9030048. [PMID: 28335454 PMCID: PMC5371803 DOI: 10.3390/v9030048] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/13/2017] [Accepted: 03/13/2017] [Indexed: 12/13/2022] Open
Abstract
Rotaviruses (RVs) are a major cause of acute viral gastroenteritis in young animals and children worldwide. Immunocompetent adults of different species become resistant to clinical disease due to post-infection immunity, immune system maturation and gut physiological changes. Of the 9 RV genogroups (A–I), RV A, B, and C (RVA, RVB, and RVC, respectively) are associated with diarrhea in piglets. Although discovered decades ago, porcine genogroup E RVs (RVE) are uncommon and their pathogenesis is not studied well. The presence of porcine RV H (RVH), a newly defined distinct genogroup, was recently confirmed in diarrheic pigs in Japan, Brazil, and the US. The complex epidemiology, pathogenicity and high genetic diversity of porcine RVAs are widely recognized and well-studied. More recent data show a significant genetic diversity based on the VP7 gene analysis of RVB and C strains in pigs. In this review, we will summarize previous and recent research to provide insights on historic and current prevalence and genetic diversity of porcine RVs in different geographic regions and production systems. We will also provide a brief overview of immune responses to porcine RVs, available control strategies and zoonotic potential of different RV genotypes. An improved understanding of the above parameters may lead to the development of more optimal strategies to manage RV diarrheal disease in swine and humans.
Collapse
Affiliation(s)
- Anastasia N Vlasova
- Food Animal Health Research Program, CFAES, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, USA.
| | - Joshua O Amimo
- Department of Animal Production, Faculty of Veterinary Medicine, University of Nairobi, Nairobi 30197, Kenya.
- Bioscience of Eastern and Central Africa, International Livestock Research Institute (BecA-ILRI) Hub, Nairobi 30709, Kenya.
| | - Linda J Saif
- Food Animal Health Research Program, CFAES, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, USA.
| |
Collapse
|
5
|
Komoto S, Wandera Apondi E, Shah M, Odoyo E, Nyangao J, Tomita M, Wakuda M, Maeno Y, Shirato H, Tsuji T, Ichinose Y, Taniguchi K. Whole genomic analysis of human G12P[6] and G12P[8] rotavirus strains that have emerged in Kenya: identification of porcine-like NSP4 genes. INFECTION GENETICS AND EVOLUTION 2014; 27:277-93. [PMID: 25111611 DOI: 10.1016/j.meegid.2014.08.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/24/2014] [Accepted: 08/01/2014] [Indexed: 02/03/2023]
Abstract
G12 rotaviruses are globally emerging rotavirus strains causing severe childhood diarrhea. However, the whole genomes of only a few G12 strains have been fully sequenced and analyzed, of which only one G12P[4] and one G12P[6] are from Africa. In this study, we sequenced and characterized the complete genomes of three G12 strains (RVA/Human-tc/KEN/KDH633/2010/G12P[6], RVA/Human-tc/KEN/KDH651/2010/G12P[8], and RVA/Human-tc/KEN/KDH684/2010/G12P[6]) identified in three stool specimens from children with acute diarrhea in Kenya, Africa. On whole genomic analysis, all three Kenyan G12 strains were found to have a Wa-like genetic backbone: G12-P[6]-I1-R1-C1-M1-A1-N1-T1-E1-H1 (strains KDH633 and KDH684) and G12-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1 (strain KDH651). Phylogenetic analysis showed that most genes of the three strains examined in this study were genetically related to globally circulating human G1, G9, and G12 strains. Of note is that the NSP4 genes of strains KDH633 and KDH684 appeared to be of porcine origin, suggesting the occurrence of reassortment between human and porcine strains. Furthermore, strains KDH633 and KDH684 were very closely related to each other in all the 11 gene segments, indicating derivation of the two strains from a common origin. On the other hand, strain KDH651 consistently formed distinct clusters of 10 of the 11 gene segments (VP1-2, VP4, VP6-7, and NSP1-5), indicating a distinct origin of strain KDH651 from that of strains KDH633 and KDH684. To our knowledge, this is the first report on whole genome-based characterization of G12 strains that have emerged in Kenya. Our observations will provide important insights into the evolutionary dynamics of emerging G12 rotaviruses in Africa.
Collapse
Affiliation(s)
- Satoshi Komoto
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan.
| | - Ernest Wandera Apondi
- Kenya Research Station, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nairobi 19993-00202, Kenya
| | - Mohammad Shah
- Kenya Research Station, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nairobi 19993-00202, Kenya
| | - Erick Odoyo
- Kenya Research Station, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nairobi 19993-00202, Kenya
| | - James Nyangao
- Center for Virus Research, Kenya Medical Research Institute (KEMRI), Nairobi 54840-00200, Kenya
| | - Mayuko Tomita
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Mitsutaka Wakuda
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Yoshimasa Maeno
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Haruko Shirato
- Department of Virology II, National Institute of Infectious Diseases, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Takao Tsuji
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Yoshio Ichinose
- Kenya Research Station, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nairobi 19993-00202, Kenya
| | - Koki Taniguchi
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| |
Collapse
|
6
|
Genetic diversity of porcine sapoviruses in pigs from the Amazon region of Brazil. Arch Virol 2013; 159:927-33. [PMID: 24197790 DOI: 10.1007/s00705-013-1904-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 10/21/2013] [Indexed: 10/26/2022]
Abstract
Sapoviruses (SaVs) belong to the family Caliciviridae and are related to gastroenteritis viruses of humans and animals. These agents have been reported from several countries of the world and represent an important cause of economic loss. The Amazon area has a high degree of diversity of animals and plants, is located in the Northern Region of Brazil and accounts for a large part of the Brazilian territory. In this study, stool samples were collected from pigs during the phase of nursing (less than 28 days of age) and post-weaning (29 to 56 days of age) from January 2008 to February 2009. A total of 169 specimens (108 nursing and 61 post-weaning pigs) were tested by reverse transcription polymerase chain reaction (RT-PCR) using the primers p289/p290 for the detection of caliciviruses (CVs), i.e., SaVs and noroviruses (NoVs). Positive sequences were analyzed using BioEdit software (v. 7.1.3.0) and compared with other sequences registered in the GenBank database. A positive frequency of 12.4 % (21/169) was observed, and all of the viruses found were identified as SaVs, with 15 belonging to genogroup GIII (71.4 %), three to GVII-1 (14.3 %) and three to GVIII-2 (14.3 %). No NoVs were detected. The frequency of SaV infections was significantly higher in nursing pigs (17.6 %-19/108) than in post-weaning pigs (3.3 %-2/61). Considering the consistency of the samples, 14.7 % of the samples were classified as diarrheic, but statistical analysis demonstrated that there was no significant difference compared to normal specimens (p = 0.5795). For the first time, we have demonstrated the circulation of SaVs in pigs from the Amazon.
Collapse
|
7
|
da Silva Soares L, de Fátima Dos Santos Guerra S, do Socorro Lima de Oliveira A, da Silva Dos Santos F, de Fátima Costa de Menezes EM, Mascarenhas JDP, Linhares AC. Diversity of rotavirus strains circulating in Northern Brazil after introduction of a rotavirus vaccine: high prevalence of G3P[6] genotype. J Med Virol 2013; 86:1065-72. [PMID: 24136444 DOI: 10.1002/jmv.23797] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2013] [Indexed: 12/29/2022]
Abstract
Rotavirus A (RVA) is the most common cause of severe acute gastroenteritis in infants and young children worldwide, causing 453,000 deaths annually. In Brazil, the most frequent genotype identified was G1 during almost three decades in the pre-vaccination period; however, after anti-rotavirus vaccine introduction, there was a predominance of G2 genotype. The aim of this study was to determine the G and P genotypes of rotaviruses isolated from children under 5 years of age with acute gastroenteritis in the Northern region of Brazil, and discuss the emergence of G3P[6] genotype. A total of 783 stool specimens were obtained between January 2011 and March 2012. RVA antigen was detected in 33% (272/783) of samples using a commercial enzyme-linked immunosorbent assay and type-specificity was determined by reverse-transcription polymerase chain reaction. The most common binary combination was G2P[4], representing 41% of cases, followed by G3P[6] (15%), G1P[8] (8%), G3P[8] (4%), G9P[8] (3%), and G12P[6] (2%). G3P[6] strains were analyzed further and phylogenetic analysis of VP7 gene showed that G3 strains clustered into lineage I and showed a high degree of amino acid identity with vaccine strain RV3 (95.1-95.6%). For VP4 sequences, G3P[6] clustered into lineage Ia. It was demonstrated by the first time the emergence of unusual genotype G3P[6] in the Amazon region of Brazil. This genotype shares neither VP7 nor VP4 specificity with the used vaccine and may represent a challenge to vaccination strategies. A continuous monitoring of circulating strains is therefore needed during the post-vaccine era in Brazil.
Collapse
Affiliation(s)
- Luana da Silva Soares
- Virology Section, Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Brazil
| | | | | | | | | | | | | |
Collapse
|
8
|
Kim HH, Park JG, Matthijnssens J, Kim HJ, Kwon HJ, Son KY, Ryu EH, Kim DS, Lee WS, Kang MI, Yang DK, Lee JH, Park SJ, Cho KO. Pathogenicity of porcine G9P[23] and G9P[7] rotaviruses in piglets. Vet Microbiol 2013; 166:123-37. [PMID: 23827353 PMCID: PMC7117468 DOI: 10.1016/j.vetmic.2013.05.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 05/05/2013] [Accepted: 05/22/2013] [Indexed: 01/20/2023]
Abstract
G9 group A rotaviruses (RVAs) are considered important pathogens in pigs and humans, and pigs are hypothesized to be a potential host reservoir for human. However, intestinal and extra-intestinal pathogenicity and viremia of porcine G9 RVAs has remained largely unreported. In this study, colostrum-deprived piglets were orally infected with a porcine G9P[23] or G9P[7] strain. Histopathologically, both strains induced characteristic small intestinal lesions. Degeneration and necrosis of parenchymal cells were observed in the extra-intestinal tissues, but most predominantly in the mesenteric lymph nodes (MLNs). RVA antigen was continuously detected in the small intestinal mucosa and MLNs, but only transiently in cells of the liver, lung, and choroid plexus. Viral RNA levels were much higher in the feces and the MLNs compared to other tissues. The onset of viremia occurred at day post infection (DPI) 1 with the amount of viral RNA reaching its peak at DPI 3 or 5, before decreasing significantly at DPI 7 and remaining detectable until DPI 14. Our data suggest that porcine G9 RVAs have a strong small intestinal tropism, are highly virulent for piglets, have the ability to escape the small intestine, spread systemically via viremia, and replicate in extra-intestinal tissues. In addition, MLNs might act as a secondary site for viral amplification and the portal of systemic entry. These results add to our understanding of the pathogenesis of human G9 RVAs, and the validity of the pig model for use with both human and pig G9 RVAs in further studies.
Collapse
Affiliation(s)
- Ha-Hyun Kim
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Maestri RP, Kaiano JHL, Neri DL, Soares LDS, Guerra SDFDS, Oliveira DDS, Farias YN, Gabbay YB, Leite JPG, Linhares ADC, Mascarenhas JDP. Phylogenetic analysis of probable non-human genes of group A rotaviruses isolated from children with acute gastroenteritis in Belém, Brazil. J Med Virol 2013; 84:1993-2002. [PMID: 23080508 DOI: 10.1002/jmv.23364] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Rotaviruses (RVs) are the main cause of acute viral gastroenteritis in both humans and young animals of various species such as calves, horses, pigs, dogs, cats, and birds. The genetic diversity of RVs is related to a variety of evolutionary mechanisms, including point mutation, and genome reassortment. The objective of this study was to characterize molecularly genes that encode structural and nonstructural proteins in unusual RV strains. The clinical specimens selected for this study were obtained from children and newborn with RV gastroenteritis, who participated in research projects on viral gastroenteritis conducted at the Evandro Chagas Institute. Structural (VP1-VP4, VP6, and VP7) and nonstructural (NSP1-NSP6) genes were amplified from stool samples by the polymerase chain reaction and subsequently sequenced. Eight unusual RV strains isolated from children and newborn with gastroenteritis were studied. Reassortment between genes of animal origin were observed in 5/8 (62.5%) strains analyzed. These results demonstrate that, although rare, interspecies (animal-human) transmission of RVs occurs in nature, as observed in the present study in strains NB150, HSP034, HSP180, HST327, and RV10109. This study is the first to be conducted in the Amazon region and supports previous data showing a close relationship between genes of human and animal origin, representing a challenge to the large-scale introduction of RV vaccines in national immunization programs.
Collapse
Affiliation(s)
- Régis Piloni Maestri
- Virology Section, Instituto Evandro Chagas, Secretaria de Vigilância em Saúde, Ministério da Saúde, Ananindeua, Pará, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hwang KP, Wu FT, Bányai K, Wu HS, Yang DCF, Huang YC, Lin JS, Hsiung CA, Huang JC, Jiang B, Gentsch JR. Identification of porcine rotavirus-like genotype P[6] strains in Taiwanese children. J Med Microbiol 2012; 61:990-997. [PMID: 22466032 DOI: 10.1099/jmm.0.042499-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The molecular characterization of genotype P[6] rotavirus strains collected from children admitted to hospital with acute dehydrating diarrhoea during a 6-year surveillance period in Taiwan is described in this study. In total, three G4P[6] strains, one G5P[6] and one G12P[6] were characterized by sequencing and phylogenetic analysis of the VP4, VP7, VP6 and NSP4 genes. Whilst all four genes of the single Taiwanese G12P[6] strain clustered with the respective genes of globally common human rotavirus strains, the G4 and G5 strains showed remarkable similarities to porcine rotavirus strains and putative porcine-origin human P[19] strains reported previously from Taiwan. The overall proportion of porcine rotavirus-like strains in Taiwan remains around 1 % among hospitalized children; however, the circulation and sporadic transmission of these heterotypic strains from pigs to humans could pose a public-health concern. Therefore, continuation of strain monitoring is needed in the vaccine era to detect any possible vaccine breakthrough events associated with the introduction of such heterologous rotavirus strains.
Collapse
Affiliation(s)
- Kao-Pin Hwang
- Division of Pediatric Infectious Disease, Department of Pediatrics, China Medical University Hospital, China Medical University School of Medicine, Taichung, Taiwan ROC
| | - Fang-Tzy Wu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan ROC.,Centers for Disease Control, Department of Health, Taiwan ROC
| | | | - Ho-Sheng Wu
- School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei, Taiwan ROC.,Centers for Disease Control, Department of Health, Taiwan ROC
| | | | - Yhu-Chering Huang
- Division of Pediatric Infectious Disease, Chang Gung Children's Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan ROC
| | - Jen-Shiou Lin
- Department of Laboratory Medicine, Changhua Christian Hospital, Changhua, Taiwan ROC
| | - Chao Agnes Hsiung
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan ROC
| | - Jason C Huang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan ROC
| | - Baoming Jiang
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jon R Gentsch
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
11
|
Detection of a porcine rotavirus strain with VP4, VP7 and NSP4 genes of different animal origins. Arch Virol 2011; 156:2045-52. [PMID: 21796401 DOI: 10.1007/s00705-011-1064-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 06/30/2011] [Indexed: 12/13/2022]
Abstract
A new rotavirus strain, sh0902, was detected in diarrheic piglets on a farm in Shanghai, China, and its genotype was characterized as G1P[7]. Analysis of the VP4, VP7 and NSP4 genes demonstrated VP4 homology to bovine and swine rotavirus strains; the nucleotide (nt) and amino acid (aa) identities were 99.7% and 99.5%, respectively. The VP7 gene was highly homologous to that of a giant panda rotavirus strain, with 98.5% similarity at the nt level and 99% similarity at the aa level. The nucleotide sequence of the NSP4 gene displayed high homology to human rotavirus strain R479, with 99.7% identity at the nt level and 99.3% identity at the aa level. This is the first report of an unusual porcine rotavirus strain with VP4, VP7 and NSP4 genes that are highly homologous to bovine, swine, giant panda and human strains isolated at geographically distant sites (South Korea, China and India). Our data indicate that rotaviruses have circulated among humans and animals and undergone genome reassortment.
Collapse
|
12
|
Genetic heterogeneity of wild-type G4P[6] porcine rotavirus strains detected in a diarrhea outbreak in a regularly vaccinated pig herd. Vet Microbiol 2011; 154:191-6. [PMID: 21775076 DOI: 10.1016/j.vetmic.2011.06.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 06/16/2011] [Accepted: 06/23/2011] [Indexed: 11/20/2022]
Abstract
Group A rotavirus (RV-A) with short electropherotype was identified by ss-PAGE in a neonatal diarrhea outbreak at a Brazilian pig farm where the sows were regularly vaccinated with a commercial vaccine containing OSU (G5P[7]) and Gottfried (G4P[6]) porcine RV-A (PoRV-A) strains. The ss-PAGE positive stool samples (n=20) were characterized as P[6] genotype by multiplex-nested-RT-PCR assay. The nucleotide analysis of the VP4 gene (VP8*) state that the viruses clustered in P[6] lineages that are also shared by RV-A strains identified in human hosts. Nucleotide analysis of the VP7 gene identified different lineages in G4 including a new lineage tentatively designated IX. The immunological pressure induced by commercial vaccine with a rotavirus containing a G4P[6] genotype of porcine origin (Gottfried strain) might have allowed the selection of PoRV-A strains with characteristics found in RV-A strains isolated of human hosts, such as P[6]-Ie and If, and promoted the selection or emergence of RV-A strains with a new lineage of the G4 genotype. The characterization of PoRV-A strains with unusual genotypes described in this study highlight the importance of surveys on the relationship between human and animal rotavirus strains.
Collapse
|
13
|
Trinh QD, Pham NTK, Nguyen TA, Phan TG, Yan H, Hoang LP, Khamrin P, Maneekarn N, Li Y, Okitsu S, Mizuguchi M, Ushijima H. Sequence analysis of the VP7 gene of human rotaviruses G2 and G4 isolated in Japan, China, Thailand, and Vietnam during 2001-2003. J Med Virol 2010; 82:878-85. [PMID: 20336736 DOI: 10.1002/jmv.21630] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Sequence and phylogenetic analyses of the rotavirus VP7 gene were performed on 52 human G2 and G4 strains isolated in Japan, China, Thailand, and Vietnam during 2001-2003. All genotype G2 strains included in the study clustered into lineage II of the phylogenetic tree, together with the majority of global G2 strains detected since 1995. The amino acid substitution at position 96 from aspartic acid to asparagine was noted among the emerging or re-emerging G2 rotavirus strains in Japan, Thailand, and Vietnam during 2002-2003. Genotype G4 strains detected in Vietnam grouped into lineage Ia of the phylogenetic tree, whereas Japanese G4 strains clustered in lineage Ic which included emerging G4 strains from Argentina, Italy, Paraguay, and Uruguay. It is noteworthy that an insertion of asparagine was found at position 76 in all the Japanese strains and that its presence might be involved in the emergence of G4 rotavirus in Japan during 2002-2003.
Collapse
Affiliation(s)
- Quang Duy Trinh
- Department of Developmental Medical Sciences, Institute of International Health, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Collins PJ, Martella V, Sleator RD, Fanning S, O'Shea H. Detection and characterisation of group A rotavirus in asymptomatic piglets in southern Ireland. Arch Virol 2010; 155:1247-59. [PMID: 20526785 DOI: 10.1007/s00705-010-0713-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 05/25/2010] [Indexed: 01/16/2023]
Abstract
Porcine group A rotaviruses (GARV) are causative agents of enteritis in piglets and are a large reservoir of genetic material for the diversification of human GARVs. Accumulation of information on the genetic heterogeneity of porcine viruses is pivotal for readily characterising unusual human strains. Screening of 292 fecal samples, collected from 4-5- to 8-9-week-old asymptomatic pigs from four herds in Ireland between 2005 and 2007 resulted in 19 (6.5%) samples testing positive by reverse-transcription PCR (RT-PCR) for GARV. The strains were molecularly characterized to collate data on the VP7 and partial VP4 outer capsid genes. By sequence analysis of the VP7 gene, the Irish strains were identified as G2, G4, G5, G9 and G11 viruses. The G11 strains were closely related to other human and porcine G11 strains, while the G2 strains resembled porcine G2 viruses detected recently in Europe and southern Asia. The G4 strains were distantly related to other G4 human and animal strains, constituting a separate G4 VP7 lineage. Analysis of the G5 strains revealed that they were similar to a selection of G5 human and porcine strains, while the G9 strains resembled other porcine G9 viruses. By sequence analysis of the VP8* fragment of the VP4, the Irish viruses were characterised as P[6], P[7], P[13], P[13]/[22], P[26] and P[32].
Collapse
Affiliation(s)
- P J Collins
- Department of Biological Sciences, Cork Institute of Technology, Rossa Avenue, Bishopstown, Cork, Ireland
| | | | | | | | | |
Collapse
|
15
|
Molecular characterization of a rare, human-porcine reassortant rotavirus strain, G11P[6], from Ecuador. Arch Virol 2009; 154:1823-9. [PMID: 19763776 DOI: 10.1007/s00705-009-0499-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 08/21/2009] [Indexed: 10/20/2022]
Abstract
The Pan-American Health Organization established a rotavirus pre-vaccination disease burden and strain surveillance network in Latin America and the Caribbean in 2004. During strain surveillance in Ecuador in 2005-2006, a rare rotavirus genotype, G11P[6], was detected among common strains. Sequencing and phylogenetic analysis of this strain identified a novel lineage of the G11 VP7 gene, most closely related to A253 (91.8% nt identity), a porcine rotavirus strain identified in Venezuela. Most genes of this strain clustered with porcine, human-porcine or bovine-porcine reassortant strains; only VP6 and perhaps NSP2 genes were more closely related to cognate genes of human rotaviruses. Thus, this strain was likely generated by gene reassortment between porcine and human parental strains. Our study provides further evidence that animal rotaviruses play an important role in genetic and antigenic diversity of rotaviruses pathogenic for humans.
Collapse
|
16
|
Gregori F, Rosales CA, Brandão PE, Soares RM, Jerez JA. Diversidade genotípica de rotavírus suínos no Estado de São Paulo. PESQUISA VETERINARIA BRASILEIRA 2009. [DOI: 10.1590/s0100-736x2009000900005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rotavírus é uma das causas mais comuns de diarréia tanto em humanos quanto em diferentes espécies animais. Foi conduzido um estudo transversal a partir de 144 amostras fecais diarréicas colhidas de leitões, provenientes de 16 criações comerciais distribuídas por 10 municípios do Estado de São Paulo, Brasil, com o objetivo de se detectar a ocorrência de rotavírus e realizar sua caracterização molecular quanto seus genotipos G e P. Um total de 43 amostras (29,86%) foram positivas para rotavírus por Eletroforese em Gel de Poliacrilamida (PAGE) e ELISA, num esquema de triagem em paralelo. A caracterização mediante reações do tipo nested-multiplex RT-PCR demonstrou que, isoladamente, o genotipo P[6] foi o mais frequente, detectado em 25,58% das amostras, seguido pelo P[1] (11,63%) e P[7] (9,3%). Infecções concomitantes de genotipos P[6]+P[7] (9,3%), P[1]+P[6] (4,65%), P[1]+P[6]+P[7] (2,33%) foram também observadas. Analogamente, o genotipo G[5] foi detectado em 30,23% das amostras, seguido pelo G[10] (20,93%) e G[6] (4,65%) e G[5]+G[10] (18,6%). O genotipo G[5]P[6] foi o mais frequente (11,63%), porém outras combinações e amostras não tipificáveis também foram observadas. Considerando-se a diversidade de rotavírus suínos encontrada na população estudada, medidas profiláticas específicas devem levar em conta, para sua efetividade, o grau de proteção cruzada entre os genotipos presentes nas formulações vacinais e aqueles que realmente são circulantes numa região.
Collapse
|
17
|
Trojnar E, Otto P, Johne R. The first complete genome sequence of a chicken group A rotavirus indicates independent evolution of mammalian and avian strains. Virology 2009; 386:325-33. [DOI: 10.1016/j.virol.2009.01.034] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 11/17/2008] [Accepted: 01/27/2009] [Indexed: 01/30/2023]
|
18
|
Schumann T, Hotzel H, Otto P, Johne R. Evidence of interspecies transmission and reassortment among avian group A rotaviruses. Virology 2009; 386:334-43. [DOI: 10.1016/j.virol.2009.01.040] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 01/20/2009] [Accepted: 01/30/2009] [Indexed: 01/27/2023]
|
19
|
Dhama K, Chauhan RS, Mahendran M, Malik SVS. Rotavirus diarrhea in bovines and other domestic animals. Vet Res Commun 2009; 33:1-23. [PMID: 18622713 PMCID: PMC7088678 DOI: 10.1007/s11259-008-9070-x] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2008] [Indexed: 01/29/2023]
Abstract
Rotavirus diarrhea is the major cause of death of millions of children in developing countries besides causing economically significant malady in neonates of many domestic animals. In neonates, the infection is non-viremic, have very short incubation period, and manifests profuse diarrhea and severe dehydration. Concurrent infection with secondary pathogens may augment the disease severity. Diarrhea occurs due to virus-mediated destruction of absorption efficient enterocytes, activation of enteric nervous system, or due to a rotavirus enterotoxin. Diagnosis of the infection relies on conventional techniques like isolation in MA 104 cell lines, electron microscopy, electro-pherotyping, and various serological tests. Presently, diagnosis and molecular typing is performed using serotype specific RT-PCR, sequencing or genomic hybridization techniques. As the rotaviruses are known to exhibit extreme genetic diversity and outplay disinfection procedures, eradication of the pathogen is often difficult. Hence, for prevention, good management practices coupled with vaccination of dam for protecting young ones, has to be practiced. Recently, new generation prophylactic strategies including DNA vaccines, subunit vaccines, virus-like particles (VLPs) and edible vaccines have been found to induce sufficient levels of passive immunity. Aside to the infection in animals, zoonotic significance of the animal rotaviruses has to be further unearthed. In this review, efforts have been made to highlight the importance and prevalence of the disease in bovines, its pathogenesis along with preventive measures, salient features of rotaviruses and their inter-species transmission abilities, zoonotic implications, and a concise account of the infection in various domestic animals and poultry.
Collapse
Affiliation(s)
- K Dhama
- Division of Pathology, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122, India.
| | | | | | | |
Collapse
|
20
|
Gabbay YB, Borges AA, Oliveira DS, Linhares AC, Mascarenhas JDP, Barardi CRM, Simões CMO, Wang Y, Glass RI, Jiang B. Evidence for zoonotic transmission of group C rotaviruses among children in Belém, Brazil. J Med Virol 2008; 80:1666-74. [PMID: 18649333 DOI: 10.1002/jmv.21250] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The prevalence and potential zoonotic transmission of group C rotavirus (RVC) were examined by testing fecal samples collected from children during a longitudinal study that was carried out in the outskirts of Belém, Brazil, from December 1982 to March 1986. The study involved a group of 30 children who were followed from birth to 3 years. Of the 77 samples tested from 29 children, 5 (6.5%) were positive for human and 3 (4%) for porcine RVC by using nested PCR assay with primers specific for VP6 gene of human or porcine RVC and by Southern hybridization using a probe specific for VP6 gene of both human and porcine RVC. In addition, a total of 59 fecal specimens from the 30th child were tested, 1 (1.7%) and 14 (23.7%) were positive for human and porcine RVC, respectively. Partial nucleotide sequences of VP6 gene demonstrated that the six human strains detected in Brazil were homologous with other human RVC, and 14 of the 17 porcine RVC strains examined showed a complete homology among themselves but differed slightly from the porcine Cowden strain, suggesting that a single porcine RVC strain was circulating in Belém. This study is the first to provide evidence for transmission of RVC from swine to human. They also indicate that both human and porcine RVC were endemic in Belém.
Collapse
|
21
|
Abstract
During a 1-year rotavirus surveillance of children hospitalized with acute gastroenteritis in Brescia Hospital, Italy, a chimerical rotavirus strain, G3P[6], was detected, displaying the VP7 and VP4 genes of porcine origin and the NSP4 and VP6 genes of human origin. The reassortant nature of the virus rules out a direct zoonotic event.
Collapse
|
22
|
Steyer A, Poljšak-Prijatelj M, Barlič-Maganja D, Marin J. Human, porcine and bovine rotaviruses in Slovenia: evidence of interspecies transmission and genome reassortment. J Gen Virol 2008; 89:1690-1698. [DOI: 10.1099/vir.0.2008/001206-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
A surveillance of human, porcine and bovine rotaviruses was carried out in Slovenia in 2004 and 2005. Stool samples were collected from a total of 406 pigs (373 from asymptomatic animals), 132 cattle (126 from asymptomatic animals) and 241 humans (all with diarrhoea), tested for group A rotaviruses using RT-PCR and analysed by sequencing. The aims of the study were to determine the incidence of asymptomatic rotavirus infection in animals, to look for evidence of zoonotic transmission and to detect reassortment among rotaviruses. The rates of asymptomatic shedding of rotaviruses in pigs and cattle were 18.0 % (67/373) and 4.0 % (5/126), respectively. Evidence for zoonotic transmission was detected in one human rotavirus strain, SI-MB6, with the G3P[6] genotype combination, as the nucleotide and predicted amino acid sequences of the VP6, VP7, VP8* and NSP4 genes of strain SI-MB6 and of porcine strains showed high nucleotide and amino acid sequence identity. Two porcine rotavirus strains carried VP7 of probable human origin, suggesting an interspecies reassortment event in the past.
Collapse
Affiliation(s)
- Andrej Steyer
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1104 Ljubljana, Slovenia
| | - Mateja Poljšak-Prijatelj
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1104 Ljubljana, Slovenia
| | - Darja Barlič-Maganja
- College of Health Care, University of Primorska, Polje 42, SI-6310 Izola, Slovenia
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, SI-1000 Ljubljana, Slovenia
| | - Jožica Marin
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1104 Ljubljana, Slovenia
| |
Collapse
|
23
|
Assessing the introduction of universal rotavirus vaccination in the Netherlands. Vaccine 2008; 26:3757-64. [DOI: 10.1016/j.vaccine.2008.04.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 04/03/2008] [Accepted: 04/15/2008] [Indexed: 12/31/2022]
|
24
|
Mascarenhas JDP, Linhares AC, Gabbay YB, Lima CS, Guerra SDFS, Soares LS, Oliveira DS, Lima JC, Macêdo O, Leite JPG. Molecular characterization of VP4 and NSP4 genes from rotavirus strains infecting neonates and young children in Belém, Brazil. Virus Res 2007; 126:149-58. [PMID: 17376554 DOI: 10.1016/j.virusres.2007.02.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 02/08/2007] [Accepted: 02/10/2007] [Indexed: 12/31/2022]
Abstract
Several reports have identified P[6] specificities in humans and in animals in different countries of the world, but few sequence data are available in public databases. In this work we have characterized the VP4 strains bearing P[6] specificity and NSP4 genotypes among diarrheic young children and diarrheic and non-diarrheic neonates from three studies previously conducted in Belém, Northern region of Brazil. As the to VP8* fragment, we observed a close relationship to both human prototypes of lineage P[6]-Ia (bootstrap of 99%) and porcine sublineages Ib and Ic (89.2-98.1% aa similarity and mean of 95%). With regards to the NSP4, the samples clustered into genotypes A and B. Of note, of the 27 P[6] strains analyzed in the present study and classified as genotype B, 8 (29.6%) were more similar to porcine prototypes when VP8* and NSP4 genes are compared, and were recovered, one from a neonate and seven from diarrheic children. These preliminary findings reinforce that further investigations are needed to assess the relative frequencies of P[6] strains in our region, as well as to investigate the potential for interspecies transmission involving humans and animals, particularly pigs.
Collapse
Affiliation(s)
- Joana D'Arc P Mascarenhas
- Seção de Virologia, Instituto Evandro Chagas, Secretaria de Vigilância em Saúde, Ministério da Saúde, Rodovia BR 316 KM 07, S/N, Levilândia, 67.030-000 Ananindeua, Pará, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|