1
|
Sayed Y, Hassan M, Salem HM, Al-Amry K, Eid G. Probiotics/prebiotics effect on chicken gut microbiota and immunity in relation to heat-stress and climate-change mitigation. J Therm Biol 2025; 129:104097. [PMID: 40186955 DOI: 10.1016/j.jtherbio.2025.104097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/07/2025] [Accepted: 03/14/2025] [Indexed: 04/07/2025]
Abstract
Heat stress is a serious hazard that threatens world poultry production. The avian gut microbiome plays a critical role in improving nutrient utilization, competing with pathogens, stimulating an immune response, and reducing inflammatory reactions. Hence, the gut microbiome has a positive impact on the host's health which appears in the shape of improved body weight, feed conversion rate, and increased birds' productivity (meat or eggs). Accordingly, this review shed light on the chicken gut microbiome, its correlation with the immunity of chicken, and how this affects the general health condition of the bird as well as, the role of prebiotics and probiotics in improving the gut health and increasing birds' productivity, especially under climate change and heat stress condition. The review aims to focus on the significance of maintaining healthy chickens in order to increase the production of poultry meat to satisfy human needs. A robust microbiota and a well-functioning immune system synergistically contribute to the optimal health and productivity of chickens.
Collapse
Affiliation(s)
- Yara Sayed
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Mariam Hassan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, 43511, Suez, Egypt; Department of Microbiology and Immunology, Faculty of Pharmacy Cairo University, Kasr El-Aini Street, Cairo, 11562, Cairo, Egypt.
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt; Department of Diseases of Birds, Rabbits, Fish & their Care & Wildlife, School of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Khaled Al-Amry
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Gamal Eid
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
2
|
Willer T, Han Z, Pielsticker C, Rautenschlein S. In vitro investigations on interference of selected probiotic candidates with Campylobacter jejuni adhesion and invasion of primary chicken derived cecal and Caco-2 cells. Gut Pathog 2024; 16:30. [PMID: 38907359 PMCID: PMC11191211 DOI: 10.1186/s13099-024-00623-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/09/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Campylobacter (C.) jejuni is one of the most important bacterial foodborne pathogens worldwide. Probiotics such as Lactobacillus or Bacillus species are considered one option for reducing the colonization rate and magnitude in poultry, the most frequent source of human infections. Due to the lack of suitable avian in vitro models such as chicken intestinal cell lines, especially those derived from the cecum, most in vitro studies on C. jejuni host interaction have been conducted with human intestinal cell lines. In this study, we compared C. jejuni-cell interactions between primary chicken cecal cells and the human intestinal cell line Caco-2, which is derived from colorectal adenocarcinoma, and investigated possible interfering effects of selected probiotic candidates. RESULTS We detected differences in adhesion and invasion between the two tested gut cell types and between different C. jejuni strains. The probiotic inhibition of C. jejuni adhesion and invasion of human and avian gut cells was affected by host cell type, investigated C. jejuni strain and time points of probiotic treatment. Additionally, our results suggest a possible correlation between C. jejuni invasion and the detected increase in IL-6 mRNA expression. CONCLUSIONS Our results indicate distinct differences between avian and human gut cells in their interaction with C. jejuni. Therefore, data obtained in one host species on C. jejuni-host interaction may not easily be transferrable to another one. The factors influencing the variable efficacy of probiotic intervention in chicken and human derived cells should be investigated further.
Collapse
Affiliation(s)
- Thomas Willer
- Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559, Hanover, Germany
| | - Zifeng Han
- Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559, Hanover, Germany
| | - Colin Pielsticker
- Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559, Hanover, Germany
| | - Silke Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559, Hanover, Germany.
| |
Collapse
|
3
|
Yildiz M, Sahin O, Adiguzel MC. Prevalence and antimicrobial resistance of Campylobacter species in shelter-housed healthy and diarrheic cats and dogs in Turkey. Vet Med Sci 2024; 10:e1327. [PMID: 37990962 PMCID: PMC10766042 DOI: 10.1002/vms3.1327] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/13/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Campylobacter spp. are among the leading foodborne bacterial pathogens. Pet animals may be an important reservoir for human infection. OBJECTIVES To determine the prevalence and antimicrobial resistance profiles and mechanisms of Campylobacter isolates recovered from shelter-housed healthy and diarrheic cats and dogs in Erzurum province in Turkey. METHODS A total of 250 rectal swabs (from 124 cats and 126 dogs) collected between 2020 and 2021 were included in this study. The samples were cultured using a Campylobacter-selective agar medium. A single suspect colony from each plate was purified and species identification was performed by PCR. Minimum inhibitory concentration (MIC) values were determined against eight antibiotics. Specific antimicrobial resistance genes (tetO and aphA-3) and mutations (in gyrA) were screened by PCR and/or sequencing. RESULTS A total of 26 (10.4%) isolates (25 Campylobacter jejuni and 1 Campylobacter coli) were obtained from the dogs; no Campylobacter was isolated from the cats. Of the C. jejuni isolates, 19.2% were resistant to nalidixic acid, 7.7% to ciprofloxacin and 3.8% to tetracycline and gentamicin per the CLSI interpretative criteria. The C. coli isolate was susceptible to all of the tested antibiotics. Thr-86-Ile mutation was the most common change detected in the gyrA gene in the quinolone-resistant isolates. CONCLUSION While geographic and population differences exist, Campylobacter carriage and associated antibiotic resistance in dogs is common, emphasising the need for continuous surveillance in this species, particularly given its zoonotic potential.
Collapse
Affiliation(s)
- Mustafa Yildiz
- Faculty of Veterinary MedicineDepartment of MicrobiologyAtaturk UniversityErzurumTurkey
| | - Orhan Sahin
- Department of Veterinary Diagnostic and Production Animal MedicineCollege of Veterinary MedicineIowa State UniversityAmesIowaUSA
| | - Mehmet Cemal Adiguzel
- Faculty of Veterinary MedicineDepartment of MicrobiologyAtaturk UniversityErzurumTurkey
- Veterinary Vaccine and Biological Product Development Application and Research CenterAtaturk UniversityErzurumTurkey
| |
Collapse
|
4
|
Ghiselli F, Felici M, Piva A, Grilli E. Establishment and characterization of an SV40 immortalized chicken intestinal epithelial cell line. Poult Sci 2023; 102:102864. [PMID: 37517361 PMCID: PMC10400971 DOI: 10.1016/j.psj.2023.102864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 08/01/2023] Open
Abstract
Primary chicken intestinal epithelial cells or 3D enteroids are a powerful tool to study the different biological mechanisms that occur in the chicken intestine. Unfortunately, they are not ideal for large-scale screening or long-term studies due to their short lifespan. Moreover, they require expensive culture media, coatings, or the usage of live embryos for each isolation. The aim of this study was to establish and characterize an immortalized chicken intestinal epithelial cell line to help the study of host-pathogen interactions in poultry. This cell line was established by transducing into primary chicken enterocytes the SV40 large-T antigen through a lentiviral vector. The transduced cells grew without changes up to 40 passages maintaining, after a differentiation phase of 48 h with epidermal growth factor, the biological properties of mature enterocytes such as alkaline phosphatase activity and tight junction formation. Immortalized enterocytes were able to generate a cytokine response during an inflammatory challenge, and showed to be susceptible to Eimeria tenella sporozoites invasion and generate a proper immune response to parasitic and lipopolysaccharide (Escherichia coli) stimulation. This immortalized cell line could be a cost-effective and easy-to-maintain model for all the public health, food safety, or research and pharmaceutical laboratories that study host-pathogen interactions, foodborne pathogens, and food or feed science in vitro.
Collapse
Affiliation(s)
| | - Martina Felici
- DIMEVET, Ozzano dell'Emilia (BO) - University of Bologna, Bologna 40064, Italy
| | - Andrea Piva
- Vetagro S.p.A., Reggio Emilia 42124, Italy; DIMEVET, Ozzano dell'Emilia (BO) - University of Bologna, Bologna 40064, Italy
| | - Ester Grilli
- DIMEVET, Ozzano dell'Emilia (BO) - University of Bologna, Bologna 40064, Italy; Vetagro Inc., Chicago, IL 60603, USA.
| |
Collapse
|
5
|
El-Saadony MT, Saad AM, Yang T, Salem HM, Korma SA, Ahmed AE, Mosa WFA, Abd El-Mageed TA, Selim S, Al Jaouni SK, Zaghloul RA, Abd El-Hack ME, El-Tarabily KA, Ibrahim SA. Avian campylobacteriosis, prevalence, sources, hazards, antibiotic resistance, poultry meat contamination, and control measures: a comprehensive review. Poult Sci 2023; 102:102786. [PMID: 37454641 PMCID: PMC10371856 DOI: 10.1016/j.psj.2023.102786] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/05/2023] [Accepted: 05/13/2023] [Indexed: 07/18/2023] Open
Abstract
Avian campylobacteriosis is a vandal infection that poses human health hazards. Campylobacter is usually colonized in the avian gut revealing mild signs in the infected birds, but retail chicken carcasses have high contamination levels of Campylobacter spp. Consequently, the contaminated avian products constitute the main source of human infection with campylobacteriosis and result in severe clinical symptoms such as diarrhea, abdominal pain, spasm, and deaths in sensitive cases. Thus, the current review aims to shed light on the prevalence of Campylobacter in broiler chickens, Campylobacter colonization, bird immunity against Campylobacter, sources of poultry infection, antibiotic resistance, poultry meat contamination, human health hazard, and the use of standard antimicrobial technology during the chicken processing of possible control strategies to overcome such problems.
Collapse
Affiliation(s)
- Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Ahmed M Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Tao Yang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, 571199, China
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Sameh A Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, Abha, 61413, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, 61413, Saudi Arabia
| | - Walid F A Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, 21531, Egypt
| | - Taia A Abd El-Mageed
- Department of Soils and Water, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia
| | - Soad K Al Jaouni
- Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Rashed A Zaghloul
- Department Agricultural Microbiology, Faculty of Agriculture, Benha University, Moshtohor, Qaluybia, 13736, Egypt
| | - Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.
| | - Salam A Ibrahim
- Food Microbiology and Biotechnology Laboratory, Carver Hall, College of Agriculture and Environmental Sciences, North Carolina A & T State University, Greensboro, NC, 27411-1064
| |
Collapse
|
6
|
Al Hakeem WG, Fathima S, Shanmugasundaram R, Selvaraj RK. Campylobacter jejuni in Poultry: Pathogenesis and Control Strategies. Microorganisms 2022; 10:2134. [PMID: 36363726 PMCID: PMC9697106 DOI: 10.3390/microorganisms10112134] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 07/29/2023] Open
Abstract
C. jejuni is the leading cause of human foodborne illness associated with poultry, beef, and pork consumption. C. jejuni is highly prevalent in commercial poultry farms, where horizontal transmission from the environment is considered to be the primary source of C. jejuni. As an enteric pathogen, C. jejuni expresses virulence factors regulated by a two-component system that mediates C. jejuni's ability to survive in the host. C. jejuni survives and reproduces in the avian intestinal mucus. The avian intestinal mucus is highly sulfated and sialylated compared with the human mucus modulating C. jejuni pathogenicity into a near commensal bacteria in poultry. Birds are usually infected from two to four weeks of age and remain colonized until they reach market age. A small dose of C. jejuni (around 35 CFU/mL) is sufficient for successful bird colonization. In the U.S., where chickens are raised under antibiotic-free environments, additional strategies are required to reduce C. jejuni prevalence on broilers farms. Strict biosecurity measures can decrease C. jejuni prevalence by more than 50% in broilers at market age. Vaccination and probiotics, prebiotics, synbiotics, organic acids, bacteriophages, bacteriocins, and quorum sensing inhibitors supplementation can improve gut health and competitively exclude C. jejuni load in broilers. Most of the mentioned strategies showed promising results; however, they are not fully implemented in poultry production. Current knowledge on C. jejuni's morphology, source of transmission, pathogenesis in poultry, and available preharvest strategies to decrease C. jejuni colonization in broilers are addressed in this review.
Collapse
Affiliation(s)
| | - Shahna Fathima
- Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA
| | - Revathi Shanmugasundaram
- Toxicology and Mycotoxin Research Unit, US National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA
| | - Ramesh K. Selvaraj
- Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
7
|
Balta I, Butucel E, Stef L, Pet I, Gradisteanu-Pircalabioru G, Chifiriuc C, Gundogdu O, McCleery D, Corcionivoschi N. Anti- Campylobacter Probiotics: Latest Mechanistic Insights. Foodborne Pathog Dis 2022; 19:693-703. [PMID: 35905047 PMCID: PMC9595622 DOI: 10.1089/fpd.2022.0039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The Campylobacter genus is the leading cause of human gastroenteritis, with the consumption of contaminated poultry meat as the main route of infection. Probiotic bacteria, such as Lactobacillus, Bacillus, Escherichia coli Nissle, and Bifidobacterium species, have a great immunomodulatory capacity and exhibit antipathogenic effects through various molecular mechanisms. Reducing Campylobacter levels in livestock animals, such as poultry, will have a substantial benefit to humans as it will reduce disease transmissibility through the food chain. Moreover, probiotic-based strategies might attenuate intestinal inflammatory processes, which consequently reduce the severity of Campylobacter disease progression. At a molecular level, probiotics can also negatively impact on the functionality of various Campylobacter virulence and survival factors (e.g., adhesion, invasion), and on the associated colonization proteins involved in epithelial translocation. The current review describes recent in vitro, in vivo, and preclinical findings on probiotic therapies, aiming to reduce Campylobacter counts in poultry and reduce the pathogen's virulence in the avian and human host. Moreover, we focused in particular on probiotics with known anti-Campylobacter activity seeking to understand the biological mechanisms involved in their mode of action.
Collapse
Affiliation(s)
- Igori Balta
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom.,Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania.,Faculty of Bioengineering of Animal Resources, Banat University of Agricultural Sciences and Veterinary Medicine-King Michael I of Romania, Timisoara, Romania
| | - Eugenia Butucel
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom.,Faculty of Bioengineering of Animal Resources, Banat University of Agricultural Sciences and Veterinary Medicine-King Michael I of Romania, Timisoara, Romania
| | - Lavinia Stef
- Faculty of Bioengineering of Animal Resources, Banat University of Agricultural Sciences and Veterinary Medicine-King Michael I of Romania, Timisoara, Romania
| | - Ioan Pet
- Faculty of Bioengineering of Animal Resources, Banat University of Agricultural Sciences and Veterinary Medicine-King Michael I of Romania, Timisoara, Romania
| | | | - Carmen Chifiriuc
- Research Institute of University of Bucharest, Bucharest, Romania
| | - Ozan Gundogdu
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - David McCleery
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom
| | - Nicolae Corcionivoschi
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom.,Faculty of Bioengineering of Animal Resources, Banat University of Agricultural Sciences and Veterinary Medicine-King Michael I of Romania, Timisoara, Romania
| |
Collapse
|
8
|
Russell KM, Smith J, Bremner A, Chintoan-Uta C, Vervelde L, Psifidi A, Stevens MP. Transcriptomic analysis of caecal tissue in inbred chicken lines that exhibit heritable differences in resistance to Campylobacter jejuni. BMC Genomics 2021; 22:411. [PMID: 34082718 PMCID: PMC8176612 DOI: 10.1186/s12864-021-07748-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/20/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Campylobacter jejuni is the leading cause of bacterial gastroenteritis in humans and the handling or consumption of contaminated poultry meat is a key source of infection. Selective breeding of poultry that exhibit elevated resistance to Campylobacter is an attractive control strategy. Here we studied the global transcriptional response of inbred chicken lines that differ in resistance to C. jejuni colonisation at a key site of bacterial persistence. RESULTS Three-week-old chickens of line 61 and N were inoculated orally with C. jejuni strain M1 and caecal contents and tonsils were sampled at 1 and 5 days post-infection. Caecal colonisation was significantly lower in line 61 compared to line N at 1 day post-infection, but not 5 days post-infection. RNA-Seq analysis of caecal tonsils of both lines revealed a limited response to C. jejuni infection compared to age-matched uninfected controls. In line N at days 1 and 5 post-infection, just 8 and 3 differentially expressed genes (DEGs) were detected (fold-change > 2 and false-discovery rate of < 0.05) relative to uninfected controls, respectively. In the relatively resistant line 61, a broader response to C. jejuni was observed, with 69 DEGs relating to immune regulation, cell signalling and metabolism at 1 day post-infection. However, by day 5 post-infection, no DEGs were detected. By far, the greatest number of DEGs were between uninfected birds of the two lines implying that differential resistance to C. jejuni is intrinsic. Of these genes, several Major Histocompatibility Complex class I-related genes (MHCIA1, MHCBL2 and MHCIY) and antimicrobial peptides (MUC2, AvBD10 and GZMA) were expressed to a greater extent in line N. Two genes within quantitative trait loci associated with C. jejuni colonisation were also more highly expressed in line N (ASIC4 and BZFP2). Quantitative reverse-transcriptase PCR analysis of a subset of transcripts confirmed the RNA-Seq results. CONCLUSIONS Our data indicate a limited transcriptional response in the caecal tonsils of inbred chickens to intestinal colonisation by Campylobacter but identify a large number of differentially transcribed genes between lines 61 and N that may underlie variation in heritable resistance to C. jejuni.
Collapse
Affiliation(s)
- Kay M Russell
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Jacqueline Smith
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Abi Bremner
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Cosmin Chintoan-Uta
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Lonneke Vervelde
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Androniki Psifidi
- The Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire, AL9 7TA, UK
| | - Mark P Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| |
Collapse
|
9
|
Ghiselli F, Rossi B, Felici M, Parigi M, Tosi G, Fiorentini L, Massi P, Piva A, Grilli E. Isolation, culture, and characterization of chicken intestinal epithelial cells. BMC Mol Cell Biol 2021; 22:12. [PMID: 33579204 PMCID: PMC7881477 DOI: 10.1186/s12860-021-00349-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 01/31/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Enterocytes exert an absorptive and protective function in the intestine, and they encounter many different challenging factors such as feed, bacteria, and parasites. An intestinal epithelial in vitro model can help to understand how enterocytes are affected by these factors and contribute to the development of strategies against pathogens. RESULTS The present study describes a novel method to culture and maintain primary chicken enterocytes and their characterization by immunofluorescence and biomolecular approaches. Starting from 19-day-old chicken embryos it was possible to isolate viable intestinal cell aggregates that can expand and produce a self-maintaining intestinal epithelial cell population that survives until 12 days in culture. These cells resulted positive in immunofluorescence to Cytokeratin 18, Zonula occludens 1, Villin, and Occludin that are common intestinal epithelial markers, and negative to Vimentin that is expressed by endothelial cells. Cells were cultured also on Transwell® permeable supports and trans-epithelial electrical resistance, was measured. This value gradually increased reaching 64 Ω*cm2 7 days after seeding and it remained stable until day 12. CONCLUSIONS Based on these results it was confirmed that it is possible to isolate and maintain chicken intestinal epithelial cells in culture and that they can be suitable as in vitro intestinal model for further studies.
Collapse
Affiliation(s)
- Federico Ghiselli
- DIMEVET, University of Bologna, Via Tolara di Sopra, 50, Ozzano dell'Emilia, 40064, Bologna, BO, Italy
| | - Barbara Rossi
- Vetagro S.p.A., Via Ignazio Porro, 2, 42124, Reggio Emilia, RE, Italy
| | - Martina Felici
- DIMEVET, University of Bologna, Via Tolara di Sopra, 50, Ozzano dell'Emilia, 40064, Bologna, BO, Italy
| | - Maria Parigi
- Istituto Zooprofilattico Sperimentale Della Lombardia e Dell'Emilia Romagna, Sede Territoriale di Forlì, Via Don Eugenio Servadei, 47122, Forlì, FC, Italy
| | - Giovanni Tosi
- Istituto Zooprofilattico Sperimentale Della Lombardia e Dell'Emilia Romagna, Sede Territoriale di Forlì, Via Don Eugenio Servadei, 47122, Forlì, FC, Italy
| | - Laura Fiorentini
- Istituto Zooprofilattico Sperimentale Della Lombardia e Dell'Emilia Romagna, Sede Territoriale di Forlì, Via Don Eugenio Servadei, 47122, Forlì, FC, Italy
| | - Paola Massi
- Istituto Zooprofilattico Sperimentale Della Lombardia e Dell'Emilia Romagna, Sede Territoriale di Forlì, Via Don Eugenio Servadei, 47122, Forlì, FC, Italy
| | - Andrea Piva
- DIMEVET, University of Bologna, Via Tolara di Sopra, 50, Ozzano dell'Emilia, 40064, Bologna, BO, Italy.,Vetagro S.p.A., Via Ignazio Porro, 2, 42124, Reggio Emilia, RE, Italy
| | - Ester Grilli
- DIMEVET, University of Bologna, Via Tolara di Sopra, 50, Ozzano dell'Emilia, 40064, Bologna, BO, Italy. .,Vetagro, Inc., 116 W. Jackson Blwd., Suite #320, Chicago, IL, 60604, USA.
| |
Collapse
|
10
|
Abd El-Hack ME, El-Saadony MT, Shehata AM, Arif M, Paswan VK, Batiha GES, Khafaga AF, Elbestawy AR. Approaches to prevent and control Campylobacter spp. colonization in broiler chickens: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:4989-5004. [PMID: 33242194 DOI: 10.1007/s11356-020-11747-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 11/18/2020] [Indexed: 06/11/2023]
Abstract
Campylobacter, Gram-negative bacteria, is the most common cause of acute bacterial enteritis in human beings, both in developing and developed countries. It is believed that poultry, in particular broiler chickens, is the main host of human infection with Campylobacter. Handling and consumption of contaminated chicken meat are the usual modes of transmission. Prevention and reduction of Campylobacter colonization in poultry farms will cut off the road of infection transmission to humans throughout the food chain. With the incidence of antibiotic resistance and with growing concern about superbugs, the search for natural and safe alternatives will considerably increase in the coming years. In this review, we will discuss the prevalence and risk factors of Campylobacter colonization in broiler chickens and sources of infection. This review also provides extensive and recent approaches to prevent and control Campylobacter colonization in broiler chickens, including biosecurity measures, natural feed/drinking water additives with antimicrobial properties, bacteriocins, bacteriophages, antimicrobial peptides, and vaccination strategies to prevent and control the incidence of human campylobacteriosis.
Collapse
Affiliation(s)
- Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Abdelrazeq M Shehata
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo, 11651, Egypt
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Muhammad Arif
- Department of Animal Sciences, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Vinod K Paswan
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Al-Beheira, Damanhour, 22511, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Ahmed R Elbestawy
- Poultry and Fish Diseases Department, Faculty of Veterinary Medicine, El-Behera University, Damanhour, 22511, Egypt
| |
Collapse
|
11
|
Serotonin modulates Campylobacter jejuni physiology and invitro interaction with the gut epithelium. Poult Sci 2021; 100:100944. [PMID: 33652538 PMCID: PMC7936195 DOI: 10.1016/j.psj.2020.12.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 11/25/2022] Open
Abstract
Microbial endocrinology, which is the study of neurochemical-based host–microbe interaction, has demonstrated that neurochemicals affect bacterial pathogenicity. A variety of neurochemicals, including norepinephrine, were shown to enhance intestinal epithelial colonization by Campylobacter jejuni. Yet, little is known whether serotonin, an abundant neurochemical produced in the gut, affects the physiology of C. jejuni and its interaction with the host gut epithelium. Considering the avian gut produces serotonin and serves as a major reservoir of C. jejuni, we sought to investigate whether serotonin can affect C. jejuni physiology and gut epithelial colonization in vitro. We first determined the biogeographical distribution of serotonin concentrations in the serosa, mucosa, as well as the luminal contents of the broiler chicken ileum, cecum, and colon. Serotonin concentrations were greater (P < 0.05) in the mucosa and serosa compared to the luminal content in each gut region examined. Among the ileum, colon, and cecum, the colon was found to contain the greatest concentrations of serotonin. We then investigated whether serotonin may effect changes in C. jejuni growth and motility in vitro. The C. jejuni used in this study was previously isolated from the broiler chicken ceca. Serotonin at concentrations of 1mM or below did not elicit changes in growth (P > 0.05) or motility (P > 0.05) of C. jejuni. Next, we utilized liquid chromatography tandem mass spectrometry to investigate whether serotonin affected the proteome of C. jejuni. Serotonin caused (P < 0.05) the downregulation of a protein (CJJ81176_1037) previously identified to be essential in C. jejuni colonization. Based on our findings, we evaluated whether serotonin would cause a functional change in C. jejuni adhesion and invasion of the HT29MTX-E12 colonic epithelial cell line. Serotonin was found to cause a reduction in adhesion (P < 0.05) but not invasion (P > 0.05). Together, we have identified a potential role for serotonin in modulating C. jejuni colonization in the gut in vitro. Further studies are required to understand the practical implications of these findings for the control of C. jejuni enteric colonization in vivo.
Collapse
|
12
|
Elgamoudi BA, Andrianova EP, Shewell LK, Day CJ, King RM, Taha, Rahman H, Hartley-Tassell LE, Zhulin IB, Korolik V. The Campylobacter jejuni chemoreceptor Tlp10 has a bimodal ligand-binding domain and specificity for multiple classes of chemoeffectors. Sci Signal 2021; 14:14/664/eabc8521. [PMID: 33402336 DOI: 10.1126/scisignal.abc8521] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Campylobacter jejuni is a bacterial pathogen that is a common cause of enteritis in humans. We identified a previously uncharacterized type of sensory domain in the periplasmic region of the C. jejuni chemoreceptor Tlp10, termed the DAHL domain, that is predicted to have a bimodular helical architecture. Through two independent ligand-binding sites in this domain, Tlp10 responded to molecular aspartate, isoleucine, fumarate, malate, fucose, and mannose as attractants and to arginine, galactose, and thiamine as repellents. Tlp10 also recognized glycan ligands when present as terminal and intermediate residues of complex structures, such as the fucosylated human ganglioside GM1 and Lewisa antigen. A tlp10 mutant strain lacking the ligand-binding sites was attenuated in its ability to colonize avian caeca and to adhere to cultured human intestinal cells, indicating the potential involvement of the DAHL domain in host colonization and disease. The Tlp10 intracellular signaling domain interacted with the scaffolding proteins CheV and CheW, which couple chemoreceptors to intracellular signaling machinery, and with the signaling domains of other chemoreceptors, suggesting a key role for Tlp10 in signal transduction and incorporation into sensory arrays. We identified the DAHL domain in other bacterial signal transduction proteins, including the essential virulence induction protein VirA from the plant pathogen Agrobacterium tumefaciens Together, these results suggest a potential link between Tlp10 and C. jejuni virulence.
Collapse
Affiliation(s)
- Bassam A Elgamoudi
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD 4222, Australia
| | | | - Lucy K Shewell
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD 4222, Australia
| | - Christopher J Day
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD 4222, Australia
| | - Rebecca M King
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD 4222, Australia
| | - Taha
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD 4222, Australia
| | - Hossinur Rahman
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD 4222, Australia
| | | | - Igor B Zhulin
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Victoria Korolik
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD 4222, Australia. .,School of Medical Science, Griffith University, Gold Coast Campus, Southport, QLD 4222, Australia
| |
Collapse
|
13
|
Whelan MVX, Simpson JC, Ó Cróinín T. A novel high-content screening approach for the elucidation of C. jejuni biofilm composition and integrity. BMC Microbiol 2021; 21:2. [PMID: 33397288 PMCID: PMC7784365 DOI: 10.1186/s12866-020-02062-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/23/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Campylobacter jejuni is the leading cause of bacterial gastroenteritis worldwide and the main source of infection is contaminated chicken meat. Although this important human pathogen is an obligate microaerophile, it must survive atmospheric oxygen conditions to allow transmission from contaminated chicken meat to humans. It is becoming increasingly evident that formation of biofilm plays a key role in the survival of this organism for extended periods on poultry products. We have recently demonstrated a novel inducible model for the study of adherent C. jejuni biofilm formation under aerobic conditions. By taking advantage of supercoiling mediated gene regulation, incubation of C. jejuni with subinhibitory concentrations of the Gyrase B inhibitor novobiocin was shown to promote the consistent formation of metabolically active adherent biofilm. RESULTS In this study, we implement this model in conjunction with the fluorescent markers: TAMRA (live cells) and SytoX (dead cells, eDNA) to develop a novel systematic high-content imaging approach and describe how it can be implemented to gain quantifiable information about the integrity and extracellular polymeric substance (EPS) composition of adherent C. jejuni biofilm in aerobic conditions. We show that this produces a model with a consistent, homogenous biofilm that can be induced and used to screen a range of inhibitors of biofilm adherence and matrix formation. CONCLUSIONS This model allows for the first time a high throughput analysis of C. jejuni biofilms which will be invaluable in enabling researchers to develop mechanisms to disrupt these biofilms and reduce the viability of these bacteria under aerobic conditions.
Collapse
Affiliation(s)
- Matthew V X Whelan
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jeremy C Simpson
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Tadhg Ó Cróinín
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
14
|
Broom LJ. Evidence-based consideration of dietary ‘alternatives’ to anticoccidial drugs to help control poultry coccidial infections. WORLD POULTRY SCI J 2021. [DOI: 10.1080/00439339.2021.1873713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Leon J. Broom
- Gut Health Consultancy, Exeter, UK
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
15
|
Kreling V, Falcone FH, Kehrenberg C, Hensel A. Campylobacter sp.: Pathogenicity factors and prevention methods-new molecular targets for innovative antivirulence drugs? Appl Microbiol Biotechnol 2020; 104:10409-10436. [PMID: 33185702 PMCID: PMC7662028 DOI: 10.1007/s00253-020-10974-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 08/24/2020] [Accepted: 10/21/2020] [Indexed: 02/08/2023]
Abstract
Infections caused by bacterial species from the genus Campylobacter are one of the four main causes of strong diarrheal enteritis worldwide. Campylobacteriosis, a typical food-borne disease, can range from mild symptoms to fatal illness. About 550 million people worldwide suffer from campylobacteriosis and lethality is about 33 million p.a. This review summarizes the state of the current knowledge on Campylobacter with focus on its specific virulence factors. Using this knowledge, multifactorial prevention strategies can be implemented to reduce the prevalence of Campylobacter in the food chain. In particular, antiadhesive strategies with specific adhesion inhibitors seem to be a promising concept for reducing Campylobacter bacterial load in poultry production. Antivirulence compounds against bacterial adhesion to and/or invasion into the host cells can open new fields for innovative antibacterial agents. Influencing chemotaxis, biofilm formation, quorum sensing, secretion systems, or toxins by specific inhibitors can help to reduce virulence of the bacterium. In addition, the unusual glycosylation of the bacterium, being a prerequisite for effective phase variation and adaption to different hosts, is yet an unexplored target for combating Campylobacter sp. Plant extracts are widely used remedies in developing countries to combat infections with Campylobacter. Therefore, the present review summarizes the use of natural products against the bacterium in an attempt to stimulate innovative research concepts on the manifold still open questions behind Campylobacter towards improved treatment and sanitation of animal vectors, treatment of infected patients, and new strategies for prevention. KEY POINTS: • Campylobacter sp. is a main cause of strong enteritis worldwide. • Main virulence factors: cytolethal distending toxin, adhesion proteins, invasion machinery. • Strong need for development of antivirulence compounds.
Collapse
Affiliation(s)
- Vanessa Kreling
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Franco H Falcone
- Institute of Parasitology, University of Gießen, Schubertstraße 81, 35392, Gießen, Germany
| | - Corinna Kehrenberg
- Institute of Veterinary Food Science, University of Gießen, Frankfurterstraße 81, 35392, Gießen, Germany
| | - Andreas Hensel
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany.
| |
Collapse
|
16
|
Luijkx YMCA, Bleumink NMC, Jiang J, Overkleeft HS, Wösten MMSM, Strijbis K, Wennekes T. Bacteroides fragilis fucosidases facilitate growth and invasion of Campylobacter jejuni in the presence of mucins. Cell Microbiol 2020; 22:e13252. [PMID: 32827216 PMCID: PMC7685106 DOI: 10.1111/cmi.13252] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/11/2022]
Abstract
The enteropathogenic bacterium, Campylobacter jejuni, was considered to be non‐saccharolytic, but recently it emerged that l‐fucose plays a central role in C. jejuni virulence. Half of C. jejuni clinical isolates possess an operon for l‐fucose utilisation. In the intestinal tract, l‐fucose is abundantly available in mucin O‐linked glycan structures, but C. jejuni lacks a fucosidase enzyme essential to release the l‐fucose. We set out to determine how C. jejuni can gain access to these intestinal l‐fucosides. Growth of the fuc + C. jejuni strains, 129,108 and NCTC 11168, increased in the presence of l‐fucose while fucose permease knockout strains did not benefit from additional l‐fucose. With fucosidase assays and an activity‐based probe, we confirmed that Bacteriodes fragilis, an abundant member of the intestinal microbiota, secretes active fucosidases. In the presence of mucins, C. jejuni was dependent on B. fragilis fucosidase activity for increased growth. Campylobacter jejuni invaded Caco‐2 intestinal cells that express complex O‐linked glycan structures that contain l‐fucose. In infection experiments, C. jejuni was more invasive in the presence of B. fragilis and this increase is due to fucosidase activity. We conclude that C. jejuni fuc + strains are dependent on exogenous fucosidases for increased growth and invasion.
Collapse
Affiliation(s)
- Yvette M C A Luijkx
- Department Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.,Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Nancy M C Bleumink
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jianbing Jiang
- Leiden institute of Chemistry, Leiden University, Leiden, The Netherlands.,Health Science Center, School of Pharmacy, Shenzhen University, Shenzhen, China
| | | | - Marc M S M Wösten
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Karin Strijbis
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Tom Wennekes
- Department Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
17
|
Wagle BR, Donoghue AM, Shrestha S, Upadhyaya I, Arsi K, Gupta A, Liyanage R, Rath NC, Donoghue DJ, Upadhyay A. Carvacrol attenuates Campylobacter jejuni colonization factors and proteome critical for persistence in the chicken gut. Poult Sci 2020; 99:4566-4577. [PMID: 32868001 PMCID: PMC7598144 DOI: 10.1016/j.psj.2020.06.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/25/2020] [Accepted: 06/17/2020] [Indexed: 12/16/2022] Open
Abstract
Campylobacter jejuni is a major foodborne pathogen that causes gastroenteritis in humans. Chickens act as the reservoir host for C. jejuni, wherein the pathogen asymptomatically colonizes the ceca leading to contamination of carcasses during slaughter. The major colonization factors in C. jejuni include motility, intestinal epithelial attachment, acid/bile tolerance, and quorum sensing. Reducing the expression of the aforementioned factors could potentially reduce C. jejuni colonization in chickens. This study investigated the efficacy of subinhibitory concentration (SIC; compound concentration not inhibiting bacterial growth) of carvacrol in reducing the expression of C. jejuni colonization factors in vitro. Moreover, the effect of carvacrol on the expression of C. jejuni proteome was investigated using liquid chromatography-tandem mass spectrometry. The motility assay was conducted at 42°C, and the motility zone was measured after 24 h of incubation. For the adhesion assay, monolayers of primary chicken enterocytes (∼105 cells/well) were inoculated with C. jejuni (6 log cfu/well) either in the presence or absence of carvacrol, and the adhered C. jejuni were enumerated after 90 min of incubation at 42°C. The effect of carvacrol on C. jejuni quorum sensing and susceptibility to acid/bile stress was investigated using a bioluminescence assay and an acid–bile survival assay, respectively. The SIC (0.002%) of carvacrol reduced the motility of C. jejuni strains S-8 and NCTC 81-176 by ∼50 and 35%, respectively (P < 0.05). Carvacrol inhibited C. jejuni S-8 and NCTC 81-176 adhesion to chicken enterocytes by ∼0.8 and 1.5 log cfu/mL, respectively (P < 0.05). Moreover, carvacrol reduced autoinducer-2 activity and increased the susceptibility of C. jejuni to acid and bile in both the strains (P < 0.05). Liquid chromatography-tandem mass spectrometry revealed that the SIC of carvacrol reduced the expression of selected C. jejuni colonization proteins critical for motility (methyl-accepting chemotaxis protein), adhesion (GroL), growth and metabolism (AspA, AcnB, Icd, Fba, Ppa, AnsA, Ldh, Eno, PurB-1), and anaerobic respiration (NapB, HydB, SdhA, NrfA) (P < 0.05). Results suggest the mechanisms by which carvacrol could reduce C. jejuni colonization in chickens.
Collapse
Affiliation(s)
- B R Wagle
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - A M Donoghue
- Poultry Production and Product Safety Research Unit, United State Department of Agriculture-Agriculture Research Station, Fayetteville, AR, USA
| | - S Shrestha
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - I Upadhyaya
- Department of Extension, University of Connecticut, Storrs, CT, USA
| | - K Arsi
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - A Gupta
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - R Liyanage
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - N C Rath
- Poultry Production and Product Safety Research Unit, United State Department of Agriculture-Agriculture Research Station, Fayetteville, AR, USA
| | - D J Donoghue
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - A Upadhyay
- Department of Animal Science, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
18
|
Simson D, Boehm M, Backert S. HtrA-dependent adherence and invasion of Campylobacter jejuni in human vs avian cells. Lett Appl Microbiol 2020; 70:326-330. [PMID: 31981418 DOI: 10.1111/lam.13277] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/15/2020] [Accepted: 01/15/2020] [Indexed: 12/13/2022]
Abstract
The aim of this study was to investigate whether HtrA is responsible for differences in adherence and invasion of Campylobacter jejuni towards human and chicken cell lines. Gentamicin protection assays were performed with either human Caco-2 or chicken 2G4 cells using C. jejuni strain NCTC11168 to compare the adhesion and invasion rates towards these two cell types. The results revealed significant differences in the adhesion and invasion rates between the human and avian cells. Deletion of the Campylobacter htrA gene, coding for the dual function of serine protease and chaperonin with a role in pathogenesis, led to a reduction of the rates in both cell lines. Using a single-amino acid substitution mutant (ΔhtrA/htrAS197A ) that lacked protease activity, but retained chaperonin activity, we show that the first is involved in the invasion of human Caco-2 and chicken 2G4 cells, whereas the latter mutant invaded at lower levels. Adherence towards the chicken cells is higher than towards Caco-2 cells and this is also dependent on HtrA. Together, these data suggest that the proteolytic activity of HtrA is involved in the difference in host response of C. jejuni towards human and chicken-derived cells. SIGNIFICANCE AND IMPACT OF THE STUDY: Campylobacter jejuni is the main cause for bacterial foodborne enterocolitis worldwide. While colonization of the human intestine can lead to severe problems, avian hosts - as the major source of infection - remain unaffected by the bacteria. We showed that the bacterial serine protease and chaperonin HtrA are involved in adhesion and invasion in both species and not responsible for the discrepancy of virulence between the different hosts. In future, HtrA might act as a target for inhibitors to avoid or eradicate colonization in chickens as a less problematic alternative to antibiotics in commercial livestock breeding.
Collapse
Affiliation(s)
- D Simson
- Division of Microbiology, Department of Biology, Friedrich Alexander University Erlangen/Nuremberg, Erlangen, Germany
| | - M Boehm
- Division of Microbiology, Department of Biology, Friedrich Alexander University Erlangen/Nuremberg, Erlangen, Germany
| | - S Backert
- Division of Microbiology, Department of Biology, Friedrich Alexander University Erlangen/Nuremberg, Erlangen, Germany
| |
Collapse
|
19
|
Šikić Pogačar M, Langerholc T, Mičetić-Turk D, Možina SS, Klančnik A. Effect of Lactobacillus spp. on adhesion, invasion, and translocation of Campylobacter jejuni in chicken and pig small-intestinal epithelial cell lines. BMC Vet Res 2020; 16:34. [PMID: 32013961 PMCID: PMC6998324 DOI: 10.1186/s12917-020-2238-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/09/2020] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Campylobacter spp. are a major cause of bacterial food-borne diarrhoeal disease. This mainly arises through contamination of meat products during processing. For infection, Campylobacter spp. must adhere to epithelial cells of the mucus layer, survive conditions of the gastrointestinal tract, and colonise the intestine of the host. Addition of probiotic bacteria might promote competitive adhesion to epithelial cells, consequently reducing Campylobacter jejuni colonisation. Effect of Lactobacillus spp. (PCS20, PCS22, PCS25, LGG, PCK9) on C. jejuni adhesion, invasion and translocation in pig (PSI cl.1) and chicken (B1OXI) small-intestine cell lines, as well as pig enterocytes (CLAB) was investigated. RESULTS Overall, in competitive adhesion assays with PSI cl.1 and CLAB cell monolayers, the addition of Lactobacillus spp. reduced C. jejuni adherence to the cell surface, and negatively affected the C. jejuni invasion. Interestingly, Lactobacillus spp. significantly impaired C. jejuni adhesion in three-dimensional functional PSI cl.1 and B1OXI cell models. Also, C. jejuni did not translocate across PSI cl.1 and B1OXI cell monolayers when co-incubated with probiotics. Among selected probiotics, Lactobacillus rhamnosus LGG was the strain that reduced adhesion efficacy of C. jejuni most significantly under co-culture conditions. CONCLUSION The addition of Lactobacillus spp. to feed additives in livestock nutrition might be an effective novel strategy that targets Campylobacter adhesion to epithelial cells, and thus prevents colonisation, reduces the transmission, and finally lowers the incidence of human campylobacteriosis.
Collapse
Affiliation(s)
| | - Tomaž Langerholc
- Department of Microbiology, Biochemistry, Molecular Biology and Biotechnology, Faculty of Agriculture and Life Science, University of Maribor, 2311, Hoče, Slovenia
| | | | - Sonja Smole Možina
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Anja Klančnik
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| |
Collapse
|
20
|
Liaw J, Hong G, Davies C, Elmi A, Sima F, Stratakos A, Stef L, Pet I, Hachani A, Corcionivoschi N, Wren BW, Gundogdu O, Dorrell N. The Campylobacter jejuni Type VI Secretion System Enhances the Oxidative Stress Response and Host Colonization. Front Microbiol 2019; 10:2864. [PMID: 31921044 PMCID: PMC6927950 DOI: 10.3389/fmicb.2019.02864] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 11/26/2019] [Indexed: 12/15/2022] Open
Abstract
The role of the Type VI secretion system (T6SS) in Campylobacter jejuni is poorly understood despite an increasing prevalence of the T6SS in recent C. jejuni isolates in humans and chickens. The T6SS is a contractile secretion machinery capable of delivering effectors that can play a role in host colonization and niche establishment. During host colonization, C. jejuni is exposed to oxidative stress in the host gastrointestinal tract, and in other bacteria the T6SS has been linked with the oxidative stress response. In this study, comparisons of whole genome sequences of a novel human isolate 488 with previously sequenced strains revealed a single highly conserved T6SS cluster shared between strains isolated from humans and chickens. The presence of a functional T6SS in the 488 wild-type strain is indicated by expression of T6SS genes and secretion of the effector TssD. Increased expression of oxidative stress response genes katA, sodB, and ahpC, and increased oxidative stress resistance in 488 wild-type strain suggest T6SS is associated with oxidative stress response. The role of the T6SS in interactions with host cells is explored using in vitro and in vivo models, and the presence of the T6SS is shown to increase C. jejuni cytotoxicity in the Galleria mellonella infection model. In biologically relevant models, the T6SS enhances C. jejuni interactions with and invasion of chicken primary intestinal cells and enhances the ability of C. jejuni to colonize chickens. This study demonstrates that the C. jejuni T6SS provides defense against oxidative stress and enhances host colonization, and highlights the importance of the T6SS during in vivo survival of T6SS-positive C. jejuni strains.
Collapse
Affiliation(s)
- Janie Liaw
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Geunhye Hong
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Cadi Davies
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Abdi Elmi
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Filip Sima
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom
| | - Alexandros Stratakos
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom
| | - Lavinia Stef
- Bioengineering of Animal Science Resources, Banat University of Agricultural Sciences and Veterinary Medicine - King Michael the I of Romania, Timisoara, Romania
| | - Ioan Pet
- Bioengineering of Animal Science Resources, Banat University of Agricultural Sciences and Veterinary Medicine - King Michael the I of Romania, Timisoara, Romania
| | - Abderrahman Hachani
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom.,The Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC, Australia
| | - Nicolae Corcionivoschi
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom.,Bioengineering of Animal Science Resources, Banat University of Agricultural Sciences and Veterinary Medicine - King Michael the I of Romania, Timisoara, Romania
| | - Brendan W Wren
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Ozan Gundogdu
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Nick Dorrell
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
21
|
Whelan MVX, Ardill L, Koide K, Nakajima C, Suzuki Y, Simpson JC, Ó Cróinín T. Acquisition of fluoroquinolone resistance leads to increased biofilm formation and pathogenicity in Campylobacter jejuni. Sci Rep 2019; 9:18216. [PMID: 31796849 PMCID: PMC6890674 DOI: 10.1038/s41598-019-54620-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/23/2019] [Indexed: 12/14/2022] Open
Abstract
The World Health Organization has listed C. jejuni as one of 12 microorganisms on a global priority list for antibiotic resistance due to a rapid increase in strains resistant to fluoroquinolone antibiotics. This fluoroquinolone resistance is conferred through a single point mutation in the QRDR region within the gyrA gene known to be involved in DNA supercoiling. We have previously revealed that changes in DNA supercoilikng play a major role in the regulation of virulence in C. jejuni with relaxation of DNA supercoiling associated with increased attachment to and invasion of human epithelial cells. The aim of this study was to investigate whether fluoroquinolone resistant strains of C. jejuni displayed altered supercoiling associated phenotypes. A panel of fluoroquinolone resistant mutants were derived and shown to have a greater ability to form viable biofilms under aerobic conditions, invade epithelial cells and promote virulence in the Galleria mellonella model of infection. We thus report for the first time that fluoroquinolone resistance in C. jejuni is associated with an increase in virulence and the ability to form viable biofilms in oxygen rich environments. These altered phenotypes likely play a critical role in the continued increase in fluoroquinolone resistance observed for this important pathogen.
Collapse
Affiliation(s)
- Matthew V X Whelan
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Laura Ardill
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kentaro Koide
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
- The Global Station for Zoonosis Control, Hokkaido University Global Institution for Collaborative Research and Education, Kita 20 Nishi 10, Kita-ku, Sapporo, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
- The Global Station for Zoonosis Control, Hokkaido University Global Institution for Collaborative Research and Education, Kita 20 Nishi 10, Kita-ku, Sapporo, Japan
| | - Jeremy C Simpson
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Tadhg Ó Cróinín
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
22
|
Zhang H, Li D, Liu L, Xu L, Zhu M, He X, Liu Y. Cellular Composition and Differentiation Signaling in Chicken Small Intestinal Epithelium. Animals (Basel) 2019; 9:E870. [PMID: 31717851 PMCID: PMC6912625 DOI: 10.3390/ani9110870] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 12/18/2022] Open
Abstract
The small intestine plays an important role for animals to digest and absorb nutrients. The epithelial lining of the intestine develops from the embryonic endoderm of the embryo. The mature intestinal epithelium is composed of different types of functional epithelial cells that are derived from stem cells, which are located in the crypts. Chickens have been widely used as an animal model for researching vertebrate embryonic development. However, little is known about the molecular basis of development and differentiation within the chicken small intestinal epithelium. This review introduces processes of development and growth in the chicken gut, and compares the cellular characteristics and signaling pathways between chicken and mammals, including Notch and Wnt signaling that control the differentiation in the small intestinal epithelium. There is evidence that the chicken intestinal epithelium has a distinct cellular architecture and proliferation zone compared to mammals. The establishment of an in vitro cell culture model for chickens will provide a novel tool to explore molecular regulation of the chicken intestinal development and differentiation.
Collapse
Affiliation(s)
- Haihan Zhang
- Department of Animal Sciences, Hunan Agricultural University, Changsha 410128, Hunan, China; (H.Z.); (L.X.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China; (D.L.); (M.Z.)
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana, IN 47408, USA
| | - Dongfeng Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China; (D.L.); (M.Z.)
| | - Lingbin Liu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China;
| | - Ling Xu
- Department of Animal Sciences, Hunan Agricultural University, Changsha 410128, Hunan, China; (H.Z.); (L.X.)
| | - Mo Zhu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China; (D.L.); (M.Z.)
| | - Xi He
- Department of Animal Sciences, Hunan Agricultural University, Changsha 410128, Hunan, China; (H.Z.); (L.X.)
| | - Yang Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China; (D.L.); (M.Z.)
| |
Collapse
|
23
|
Ramesh A, Ikeda N, Rubinchik S, Karlyshev AV. Expression of Escherichia coli araE and modified lacY genes in Campylobacter jejuni is not sufficient for arabinose transport. Access Microbiol 2019; 1:e000042. [PMID: 32974528 PMCID: PMC7470287 DOI: 10.1099/acmi.0.000042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/24/2019] [Indexed: 11/18/2022] Open
Abstract
Introduction Unlike Escherichia coli, Campylobacter jejuni is unable to import a range of sugars, including arabinose, which makes common expression vectors, such as pBAD33, non-functional in these bacteria. Aim The aim of this study was to investigate whether the E. coli transporters AraE and modified LacY (LacYA177C) would enable C. jejuni to uptake arabinose. Methodology and Results The respective genes of E. coli were constitutively expressed in C. jejuni strain 11168H after integration into the chromosome via homologous recombination. Vectors carrying these genes also contained a reporter gene, gfp, under the control of the arabinose-inducible promoter, pBAD. These constructs were verified in E. coli by demonstrating the induction of gfp in the presence of arabinose. Integration of the genes into one of the rRNA gene clusters was verified by PCR and genome sequencing. The latter also confirmed that the inserted gene clusters contained no mutations. Expression of the gfp gene in the presence of arabinose inducer was monitored using fluorescence microscopy of colonies and fluorimetry using both whole cells and lysates. Conclusion The results demonstrated the inability of C. jejuni to use arabinose transporters, which are fully functional in E. coli, suggesting a remarkable difference in the physiology of these bacteria.
Collapse
Affiliation(s)
- Amritha Ramesh
- SEC Faculty, Kingston University, Kingston upon Thames, Penrhyn Road, KT1 2EE, UK
| | - Naomi Ikeda
- SEC Faculty, Kingston University, Kingston upon Thames, Penrhyn Road, KT1 2EE, UK
| | - Sona Rubinchik
- SEC Faculty, Kingston University, Kingston upon Thames, Penrhyn Road, KT1 2EE, UK
| | - Andrey V Karlyshev
- SEC Faculty, Kingston University, Kingston upon Thames, Penrhyn Road, KT1 2EE, UK
| |
Collapse
|
24
|
Singh A, Mallick AI. Role of putative virulence traits of Campylobacter jejuni in regulating differential host immune responses. J Microbiol 2019; 57:298-309. [DOI: 10.1007/s12275-019-8165-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 10/16/2018] [Accepted: 10/24/2018] [Indexed: 02/06/2023]
|
25
|
Impact of Eimeria tenella Coinfection on Campylobacter jejuni Colonization of the Chicken. Infect Immun 2019; 87:IAI.00772-18. [PMID: 30510107 DOI: 10.1128/iai.00772-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/26/2018] [Indexed: 11/20/2022] Open
Abstract
Eimeria tenella can cause the disease coccidiosis in chickens. The direct and often detrimental impact of this parasite on chicken health, welfare, and productivity is well recognized; however, less is known about the secondary effects that infection may have on other gut pathogens. Campylobacter jejuni is the leading cause of human bacterial foodborne disease in many countries and has been demonstrated to exert negative effects on poultry welfare and production in some broiler lines. Previous studies have shown that concurrent Eimeria infection can influence the colonization and replication of bacteria, such as Clostridium perfringens and Salmonella enterica serovar Typhimurium. Through a series of in vivo coinfection experiments, this study evaluated the impact that E. tenella infection had on C. jejuni colonization of chickens, including the influence of variations in parasite dose and sampling time after bacterial challenge. Coinfection with E. tenella resulted in a significant increase in C. jejuni colonization in the cecum in a parasite dose-dependent manner but a significant decrease in C. jejuni colonization in the spleen and liver of chickens. The results were reproducible at 3 and 10 days after bacterial infection. This work highlights that E. tenella not only has a direct impact on the health and well-being of chickens but can have secondary effects on important zoonotic pathogens.
Collapse
|
26
|
Looft T, Cai G, Choudhury B, Lai LX, Lippolis JD, Reinhardt TA, Sylte MJ, Casey TA. Avian Intestinal Mucus Modulates Campylobacter jejuni Gene Expression in a Host-Specific Manner. Front Microbiol 2019; 9:3215. [PMID: 30687245 PMCID: PMC6338021 DOI: 10.3389/fmicb.2018.03215] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/11/2018] [Indexed: 12/28/2022] Open
Abstract
Campylobacter jejuni is a leading cause of bacterial foodborne illness in humans worldwide. However, C. jejuni naturally colonizes poultry without causing pathology where it resides deep within mucus of the cecal crypts. Mucus may modulate the pathogenicity of C. jejuni in a species-specific manner, where it is pathogenic in humans and asymptomatic in poultry. Little is known about how intestinal mucus from different host species affects C. jejuni gene expression. In this study we characterized the growth and transcriptome of C. jejuni NCTC11168 cultured in defined media supplemented with or without mucus isolated from avian (chicken or turkey) or mammalian (cow, pig, or sheep) sources. C. jejuni showed substantially improved growth over defined media, with mucus from all species, showing that intestinal mucus was an energy source for C. jejuni. Seventy-three genes were differentially expressed when C. jejuni was cultured in avian vs. mammalian mucus. Genes associated with iron acquisition and resistance to oxidative stress were significantly increased in avian mucus. Many of the differentially expressed genes were flanked by differentially expressed antisense RNA asRNA, suggesting a role in gene regulation. This study highlights the interactions between C. jejuni and host mucus and the impact on gene expression, growth and invasion of host cells, suggesting important responses to environmental cues that facilitate intestinal colonization. IMPORTANCE Campylobacter jejuni infection of humans is an important health problem world-wide and is the leading bacterial cause of foodborne illnesses in U.S. The main route for exposure for humans is consumption of poultry meat contaminated during processing. C. jejuni is frequently found in poultry, residing within the mucus of the intestinal tract without causing disease. It is not clear why C. jejuni causes disease in some animals and humans, while leaving birds without symptoms. To understand its activity in birds, we characterized C. jejuni responses to poultry mucus to identify genes turned on in the intestinal tract of birds. We identified genes important for colonization and persistence within the poultry gut, turned on when C. jejuni was exposed to poultry mucus. Our findings are an important step in understanding how C. jejuni responds and interacts in the poultry gut, and may identify ways to reduce C. jejuni in birds.
Collapse
Affiliation(s)
- Torey Looft
- Food Safety and Enteric Pathogens Research Unit, United States Department of Agriculture, National Animal Disease Center, Agricultural Research Service, Ames, IA, United States
| | - Guohong Cai
- Crop Production and Pest Control Research Unit, United States Department of Agriculture, Agricultural Research Service, West Lafayette, IN, United States
| | - Biswa Choudhury
- GlycoAnalytics Core, University of California, San Diego, San Diego, CA, United States
| | - Lisa X Lai
- Food Safety and Enteric Pathogens Research Unit, United States Department of Agriculture, National Animal Disease Center, Agricultural Research Service, Ames, IA, United States
| | - John D Lippolis
- Ruminant Diseases and Immunology Research Unit, Agricultural Research Service, United States Department of Agriculture, National Animal Disease Center, Ames, IA, United States
| | - Timothy A Reinhardt
- Ruminant Diseases and Immunology Research Unit, Agricultural Research Service, United States Department of Agriculture, National Animal Disease Center, Ames, IA, United States
| | - Matthew J Sylte
- Food Safety and Enteric Pathogens Research Unit, United States Department of Agriculture, National Animal Disease Center, Agricultural Research Service, Ames, IA, United States
| | - Thomas A Casey
- Food Safety and Enteric Pathogens Research Unit, United States Department of Agriculture, National Animal Disease Center, Agricultural Research Service, Ames, IA, United States
| |
Collapse
|
27
|
Fuirst M, Veit RR, Hahn M, Dheilly N, Thorne LH. Effects of urbanization on the foraging ecology and microbiota of the generalist seabird Larus argentatus. PLoS One 2018; 13:e0209200. [PMID: 30562368 PMCID: PMC6298667 DOI: 10.1371/journal.pone.0209200] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/01/2018] [Indexed: 01/22/2023] Open
Abstract
Larus gull species have proven adaptable to urbanization and due to their generalist feeding behaviors, they provide useful opportunities to study how urban environments impact foraging behavior and host-associated microbiota. We evaluated how urbanization influenced the foraging behavior and microbiome characteristics of breeding herring gulls (Larus argentatus) at three different colonies on the east coast of the United States. Study colonies represented high, medium and low degrees of urbanization, respectively. At all colonies, gulls frequently foraged at landfills and in other urban environments, but both the use of urban environments and gull foraging metrics differed with the degree of urbanization. Gulls at the more urban colonies used urban environments more frequently, showed higher rates of site fidelity and took shorter trips. Gulls at less urban colonies used a greater diversity of habitat types and foraged offshore. We observed high microbial diversity at all colonies, though microbial diversity was highest at the least urban colony where gulls used a wider variety of foraging habitats. This suggests that gulls may acquire a wider range of bacteria when visiting a higher variety of foraging sites. Our findings highlight the influence of urban habitats on gull movements and microbiome composition and diversity during the breeding season and represent the first application of amplicon sequence variants, an objective and repeatable method of bacterial classification, to study the microbiota of a seabird species.
Collapse
Affiliation(s)
- Matthew Fuirst
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, United States of America
| | - Richard R. Veit
- Department of Biology, College of Staten Island (CSI) CUNY, Staten Island, NY, United States of America
| | - Megan Hahn
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, United States of America
| | - Nolwenn Dheilly
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, United States of America
| | - Lesley H. Thorne
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, United States of America
| |
Collapse
|
28
|
Torkan S, Vazirian B, Khamesipour F, Dida GO. Prevalence of thermotolerant Campylobacter species in dogs and cats in Iran. Vet Med Sci 2018; 4:296-303. [PMID: 30168285 PMCID: PMC6236136 DOI: 10.1002/vms3.117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Campylobacter is considered the most common bacterial cause of human gastroenteritis in the world with C. jejuni being regarded as the primary cause of bacterial gastroenteritis. A broad range of other Campylobacter species, including C. coli have also been implicated in human gastroenteritis. This study sought to isolate, characterize and assess the antibiogram of Campylobacter jejuni and C. coli from faecal samples obtained from cats and dogs in Isfahan and Shahrekord cities in Iran. Faecal samples were collected from 100 pets comprising of 50 dogs and 50 cats from March 2015 to March 2016; incorporating the four seasons (spring, summer, autumn and winter). Campylobacter spp. was isolated by culture, characterized by biochemical tests and confirmed by PCR-based assays. Antimicrobial susceptibility test was performed by the Kirby-Bauer disk diffusion method, using Mueller Hinton agar. A total of 19 Campylobacter isolates among them two C. jejuni and one C. coli were recovered from dogs and cats' faecal samples. The prevalence rates of Campylobacter spp. were 16.0% (8 out of 50) in dogs and 22.0% (11 out of 50) in cats. The highest (4 out of 16, 25%) Campylobacter spp. prevalence among dogs was reported in autumn and the lowest (1 out of 11, 9.1%) in spring, while among the cats, the highest (4 out of 12, 33.3%) Campylobacter spp. prevalence was reported in summer and lowest (1 out of 11, 9.09%) in spring. Campylobacter spp. isolated from faecal samples obtained from cats and dogs exhibited the most frequent antimicrobial resistance against tetracycline at 81.8% and 87.5%, respectively, compared to all other antimicrobial agents. These results show a low prevalence of Campylobacter spp. in faecal samples obtained from pet dogs and cats in Shahrekord and Isfahan cities in Iran. Given the relatively low prevalence of the C. jejuni and C. coli in pet dogs and cats in Isfahan and Shahrekord cities, it can be assumed that their importance as reservoirs for infection in humans is likely to be limited to the studied cities, but should not be neglected.
Collapse
Affiliation(s)
- Saam Torkan
- Department of Small Animal Internal MedicineFaculty of Veterinary MedicineShahrekord BranchIslamic Azad UniversityShahrekordIran
| | - Behnam Vazirian
- Young Researchers and Elite ClubShahrekord BranchIslamic Azad UniversityShahrekordIran
| | - Faham Khamesipour
- Cellular and Molecular Research CenterSabzevar University of Medical SciencesSabzevarIran
- Student Research CommitteeShiraz University of Medical SciencesShirazIran
| | - Gabriel O. Dida
- School of Public Health and Community DevelopmentMaseno UniversityMasenoKenya
| |
Collapse
|
29
|
Sima F, Stratakos AC, Ward P, Linton M, Kelly C, Pinkerton L, Stef L, Gundogdu O, Lazar V, Corcionivoschi N. A Novel Natural Antimicrobial Can Reduce the in vitro and in vivo Pathogenicity of T6SS Positive Campylobacter jejuni and Campylobacter coli Chicken Isolates. Front Microbiol 2018; 9:2139. [PMID: 30245680 PMCID: PMC6137164 DOI: 10.3389/fmicb.2018.02139] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/21/2018] [Indexed: 01/17/2023] Open
Abstract
Human campylobacteriosis is considered one of the most common foodborne diseases worldwide with poultry identified as the main source of infection accounting for 50-80% of human cases. Highly virulent Campylobacter spp., positive for the Type VI secretion system (T6SS), which have an increased ability to adhere to and invade the host gastrointestinal epithelium are highly prevalent in poultry. Multidrug resistant strains of bacteria are rapidly evolving and therefore, new antimicrobials to supplement animal feed that are able to control Campylobacter species, are in great need. The work presented herein indicates that a novel phenolic antimicrobial, Auranta 3001, is able to reduce the adhesion and invasion of human intestinal epithelial cells (HCT-8) by two T6SS positive chicken isolates, C. jejuni RC039 (p < 0.05) and C. coli RC013 (p < 0.001). Exposure of C. jejuni RC039 and C. coli RC013 to Auranta 3001 downregulated the expression of hcp and cetB genes, known to be important in the functionality of T6SS. Furthermore, the reduced adhesion and invasion is associated with a significant decrease in bacterial motility of both isolates (p < 0.05-p < 0.001) in vitro. Most importantly our in vivo results show that Auranta 3001 is able to reduce cecum colonization levels from log 8 CFU/ml to log 2 CFU/ml for C. jejuni RC039 and from log 7 CFU/ml to log 2 CFU/ml for C. coli RC013. In conclusion, this novel antimicrobial is able to reduce the pathogenic properties of T6SS campylobacters in vitro and also to decrease colonization in vivo.
Collapse
Affiliation(s)
- Filip Sima
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Auranta, NovaUCD, Dublin, Ireland
| | - Alexandros Ch. Stratakos
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom
- Auranta, NovaUCD, Dublin, Ireland
| | | | - Mark Linton
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom
| | - Carmel Kelly
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom
| | - Laurette Pinkerton
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom
| | - Lavinia Stef
- School of Animal Science and Biotechnology, Banat University of Animal Sciences and Veterinary Medicine – King Michael I of Romania, Timisoara, Romania
| | - Ozan Gundogdu
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Veronica Lazar
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Nicolae Corcionivoschi
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom
- School of Animal Science and Biotechnology, Banat University of Animal Sciences and Veterinary Medicine – King Michael I of Romania, Timisoara, Romania
| |
Collapse
|
30
|
Sima F, Stratakos AC, Ward P, Linton M, Kelly C, Pinkerton L, Stef L, Gundogdu O, Lazar V, Corcionivoschi N. A Novel Natural Antimicrobial Can Reduce the in vitro and in vivo Pathogenicity of T6SS Positive Campylobacter jejuni and Campylobacter coli Chicken Isolates. Front Microbiol 2018; 9:2139. [PMID: 30245680 DOI: 10.3389/fmicb.2018.02139/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/21/2018] [Indexed: 05/27/2023] Open
Abstract
Human campylobacteriosis is considered one of the most common foodborne diseases worldwide with poultry identified as the main source of infection accounting for 50-80% of human cases. Highly virulent Campylobacter spp., positive for the Type VI secretion system (T6SS), which have an increased ability to adhere to and invade the host gastrointestinal epithelium are highly prevalent in poultry. Multidrug resistant strains of bacteria are rapidly evolving and therefore, new antimicrobials to supplement animal feed that are able to control Campylobacter species, are in great need. The work presented herein indicates that a novel phenolic antimicrobial, Auranta 3001, is able to reduce the adhesion and invasion of human intestinal epithelial cells (HCT-8) by two T6SS positive chicken isolates, C. jejuni RC039 (p < 0.05) and C. coli RC013 (p < 0.001). Exposure of C. jejuni RC039 and C. coli RC013 to Auranta 3001 downregulated the expression of hcp and cetB genes, known to be important in the functionality of T6SS. Furthermore, the reduced adhesion and invasion is associated with a significant decrease in bacterial motility of both isolates (p < 0.05-p < 0.001) in vitro. Most importantly our in vivo results show that Auranta 3001 is able to reduce cecum colonization levels from log 8 CFU/ml to log 2 CFU/ml for C. jejuni RC039 and from log 7 CFU/ml to log 2 CFU/ml for C. coli RC013. In conclusion, this novel antimicrobial is able to reduce the pathogenic properties of T6SS campylobacters in vitro and also to decrease colonization in vivo.
Collapse
Affiliation(s)
- Filip Sima
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Auranta, NovaUCD, Dublin, Ireland
| | - Alexandros Ch Stratakos
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom
- Auranta, NovaUCD, Dublin, Ireland
| | | | - Mark Linton
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom
| | - Carmel Kelly
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom
| | - Laurette Pinkerton
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom
| | - Lavinia Stef
- School of Animal Science and Biotechnology, Banat University of Animal Sciences and Veterinary Medicine - King Michael I of Romania, Timisoara, Romania
| | - Ozan Gundogdu
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Veronica Lazar
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Nicolae Corcionivoschi
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom
- School of Animal Science and Biotechnology, Banat University of Animal Sciences and Veterinary Medicine - King Michael I of Romania, Timisoara, Romania
| |
Collapse
|
31
|
Correlations between intestinal innate immune genes and cecal microbiota highlight potential for probiotic development for immune modulation in poultry. Appl Microbiol Biotechnol 2018; 102:9317-9329. [DOI: 10.1007/s00253-018-9281-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/24/2018] [Accepted: 07/29/2018] [Indexed: 12/24/2022]
|
32
|
A peculiar case of Campylobacter jejuni attenuated aspartate chemosensory mutant, able to cause pathology and inflammation in avian and murine model animals. Sci Rep 2018; 8:12594. [PMID: 30135522 PMCID: PMC6105663 DOI: 10.1038/s41598-018-30604-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 08/01/2018] [Indexed: 01/25/2023] Open
Abstract
An attenuated Campylobacter jejuni aspartate chemoreceptor ccaA mutant caused gross pathological changes despite reduced colonisation ability in animal models. In chickens, the pathological changes included connective tissue and thickening of the mesenteric fat, as well as the disintegration of the villus tips in the large intestine, whereas in mice, hepatomegaly occurred between 48–72 hours post infection and persisted for the six days of the time course. In addition, there was a significant change in the levels of IL-12p70 in mice infected with the C. jejuni ccaA mutant. CcaA isogenic mutant was hyper-invasive in cell culture and microscopic examination revealed that it had a “run” bias in its “run-and-tumble” chemotactic behaviour. The mutant cells also exhibited lower level of binding to fucosylated and higher binding to sialylated glycan structures in glycan array analysis. This study highlights the importance of investigating phenotypic changes in C. jejuni, as we have shown that specific mutants can cause pathological changes in the host, despite reduction in colonisation potential.
Collapse
|
33
|
Corfield AP. The Interaction of the Gut Microbiota with the Mucus Barrier in Health and Disease in Human. Microorganisms 2018; 6:microorganisms6030078. [PMID: 30072673 PMCID: PMC6163557 DOI: 10.3390/microorganisms6030078] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/25/2018] [Accepted: 07/30/2018] [Indexed: 02/07/2023] Open
Abstract
Glycoproteins are major players in the mucus protective barrier in the gastrointestinal and other mucosal surfaces. In particular the mucus glycoproteins, or mucins, are responsible for the protective gel barrier. They are characterized by their high carbohydrate content, present in their variable number, tandem repeat domains. Throughout evolution the mucins have been maintained as integral components of the mucosal barrier, emphasizing their essential biological status. The glycosylation of the mucins is achieved through a series of biosynthetic pathways processes, which generate the wide range of glycans found in these molecules. Thus mucins are decorated with molecules having information in the form of a glycocode. The enteric microbiota interacts with the mucosal mucus barrier in a variety of ways in order to fulfill its many normal processes. How bacteria read the glycocode and link to normal and pathological processes is outlined in the review.
Collapse
Affiliation(s)
- Anthony P Corfield
- Mucin Research Group, School of Clinical Sciences, Bristol Royal Infirmary, Level 7, Marlborough Street, Bristol BS2 8HW, UK.
| |
Collapse
|
34
|
Quintana-Hayashi MP, Padra M, Padra JT, Benktander J, Lindén SK. Mucus-Pathogen Interactions in the Gastrointestinal Tract of Farmed Animals. Microorganisms 2018; 6:E55. [PMID: 29912166 PMCID: PMC6027344 DOI: 10.3390/microorganisms6020055] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/09/2018] [Accepted: 06/15/2018] [Indexed: 12/29/2022] Open
Abstract
Gastrointestinal infections cause significant challenges and economic losses in animal husbandry. As pathogens becoming resistant to antibiotics are a growing concern worldwide, alternative strategies to treat infections in farmed animals are necessary in order to decrease the risk to human health and increase animal health and productivity. Mucosal surfaces are the most common route used by pathogens to enter the body. The mucosal surface that lines the gastrointestinal tract is covered by a continuously secreted mucus layer that protects the epithelial surface. The mucus layer is the first barrier the pathogen must overcome for successful colonization, and is mainly composed of densely glycosylated proteins called mucins. The vast array of carbohydrate structures present on the mucins provide an important setting for host-pathogen interactions. This review summarizes the current knowledge on gastrointestinal mucins and their role during infections in farmed animals. We examine the interactions between mucins and animal pathogens, with a focus on how pathogenic bacteria can modify the mucin environment in the gut, and how this in turn affects pathogen adhesion and growth. Finally, we discuss analytical challenges and complexities of the mucus-based defense, as well as its potential to control infections in farmed animals.
Collapse
Affiliation(s)
- Macarena P Quintana-Hayashi
- Department of Medical Biochemistry and Cell biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden.
| | - Médea Padra
- Department of Medical Biochemistry and Cell biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden.
| | - János Tamás Padra
- Department of Medical Biochemistry and Cell biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden.
| | - John Benktander
- Department of Medical Biochemistry and Cell biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden.
| | - Sara K Lindén
- Department of Medical Biochemistry and Cell biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden.
| |
Collapse
|
35
|
John DA, Williams LK, Kanamarlapudi V, Humphrey TJ, Wilkinson TS. The Bacterial Species Campylobacter jejuni Induce Diverse Innate Immune Responses in Human and Avian Intestinal Epithelial Cells. Front Microbiol 2017; 8:1840. [PMID: 29033908 PMCID: PMC5626877 DOI: 10.3389/fmicb.2017.01840] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/08/2017] [Indexed: 11/13/2022] Open
Abstract
Campylobacter remain the major cause of human gastroenteritis in the Developed World causing a significant burden to health services. Campylobacter are pathogens in humans and chickens, although differences in mechanistic understanding are incomplete, in part because phenotypic strain diversity creates inconsistent findings. Here, we took Campylobacter jejuni isolates (n = 100) from multi-locus sequence typed collections to assess their pathogenic diversity, through their inflammatory, cytotoxicity, adhesion, invasion and signaling responses in a high-throughput model using avian and human intestinal epithelial cells. C. jejuni induced IL-8 and CXCLi1/2 in human and avian epithelial cells, respectively, in a MAP kinase-dependent manner. In contrast, IL-10 responses in both cell types were PI 3-kinase/Akt-dependent. C. jejuni strains showed diverse levels of invasion with high invasion dependent on MAP kinase signaling in both cell lines. C. jejuni induced diverse cytotoxic responses in both cell lines with cdt-positive isolates showing significantly higher toxicity. Blockade of endocytic pathways suggested that invasion by C. jejuni was clathrin- and dynamin-dependent but caveolae- independent in both cells. In contrast, IL-8 (and CXCLi1/2) production was dependent on clathrin, dynamin, and caveolae. This study is important because of its scale, and the data produced, suggesting that avian and human epithelial cells use similar innate immune pathways where the magnitude of the response is determined by the phenotypic diversity of the Campylobacter species.
Collapse
Affiliation(s)
- Daniel A John
- Microbiology and Infectious Disease, Swansea University Medical School, Institute of Life Science, Swansea University, Swansea, United Kingdom
| | - Lisa K Williams
- Microbiology and Infectious Disease, Swansea University Medical School, Institute of Life Science, Swansea University, Swansea, United Kingdom
| | - Venkateswarlu Kanamarlapudi
- Microbiology and Infectious Disease, Swansea University Medical School, Institute of Life Science, Swansea University, Swansea, United Kingdom.,Cellular Biology, Swansea University Medical School, Institute of Life Science, Swansea University, Swansea, United Kingdom
| | - Thomas J Humphrey
- Microbiology and Infectious Disease, Swansea University Medical School, Institute of Life Science, Swansea University, Swansea, United Kingdom
| | - Thomas S Wilkinson
- Microbiology and Infectious Disease, Swansea University Medical School, Institute of Life Science, Swansea University, Swansea, United Kingdom
| |
Collapse
|
36
|
Kaiser A, Willer T, Steinberg P, Rautenschlein S. Establishment of an In Vitro Intestinal Epithelial Cell Culture Model of Avian Origin. Avian Dis 2017; 61:229-236. [DOI: 10.1637/11524-110216-reg.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Annette Kaiser
- Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559 Hanover, Germany
| | - Thomas Willer
- Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559 Hanover, Germany
| | - Pablo Steinberg
- Institute for Food Toxicology and Analytical Chemistry, University of Veterinary Medicine Hanover, Foundation, Bischofsholer Damm 15, Building 123, 30173 Hanover, Germany
| | - Silke Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559 Hanover, Germany
| |
Collapse
|
37
|
Wagle BR, Upadhyay A, Arsi K, Shrestha S, Venkitanarayanan K, Donoghue AM, Donoghue DJ. Application of β-Resorcylic Acid as Potential Antimicrobial Feed Additive to Reduce Campylobacter Colonization in Broiler Chickens. Front Microbiol 2017; 8:599. [PMID: 28428779 PMCID: PMC5382206 DOI: 10.3389/fmicb.2017.00599] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/23/2017] [Indexed: 12/18/2022] Open
Abstract
Campylobacter is one of the major foodborne pathogens that result in severe gastroenteritis in humans, primarily through consumption of contaminated poultry products. Chickens are the reservoir host of Campylobacter, where the pathogen colonizes the ceca, thereby leading to contamination of carcass during slaughter. A reduction in cecal colonization by Campylobacter would directly translate into reduced product contamination and risk of human infections. With increasing consumer demand for antibiotic free chickens, significant research is being conducted to discover natural, safe and economical antimicrobials that can effectively control Campylobacter colonization in birds. This study investigated the efficacy of in-feed supplementation of a phytophenolic compound, β-resorcylic acid (BR) for reducing Campylobacter colonization in broiler chickens. In two separate, replicate trials, day-old-chicks (Cobb500; n = 10 birds/treatment) were fed with BR (0, 0.25, 0.5, or 1%) in feed for a period of 14 days (n = 40/trial). Birds were challenged with a four-strain mixture of Campylobacter jejuni (∼106 CFU/ml; 250 μl/bird) on day 7 and cecal samples were collected on day 14 for enumerating surviving Campylobacter in cecal contents. In addition, the effect of BR on the critical colonization factors of Campylobacter (motility, epithelial cell attachment) was studied using phenotypic assay, cell culture, and real-time quantitative PCR. Supplementation of BR in poultry feed for 14 days at 0.5 and 1% reduced Campylobacter populations in cecal contents by ∼2.5 and 1.7 Log CFU/g, respectively (P < 0.05). No significant differences in feed intake and body weight gain were observed between control and treatment birds fed the compound (P > 0.05). Follow up mechanistic analysis revealed that sub-inhibitory concentration of BR significantly reduced Campylobacter motility, attachment to and invasion of Caco-2 cells. In addition, the expression of C. jejuni genes coding for motility (motA, motB, fliA) and attachment (jlpA, ciaB) was down-regulated as compared to controls (P < 0.05). These results suggest that BR could potentially be used as a feed additive to reduce Campylobacter colonization in broilers.
Collapse
Affiliation(s)
- Basanta R Wagle
- Department of Poultry Science, University of Arkansas, FayettevilleAR, USA
| | - Abhinav Upadhyay
- Department of Poultry Science, University of Arkansas, FayettevilleAR, USA
| | - Komala Arsi
- Department of Poultry Science, University of Arkansas, FayettevilleAR, USA
| | - Sandip Shrestha
- Department of Poultry Science, University of Arkansas, FayettevilleAR, USA
| | | | - Annie M Donoghue
- Poultry Production and Product Safety Research Unit, United States Department of Agriculture - Agriculture Research Service, FayettevilleAR, USA
| | - Dan J Donoghue
- Department of Poultry Science, University of Arkansas, FayettevilleAR, USA
| |
Collapse
|
38
|
Kelly C, Gundogdu O, Pircalabioru G, Cean A, Scates P, Linton M, Pinkerton L, Magowan E, Stef L, Simiz E, Pet I, Stewart S, Stabler R, Wren B, Dorrell N, Corcionivoschi N. The In Vitro and In Vivo Effect of Carvacrol in Preventing Campylobacter Infection, Colonization and in Improving Productivity of Chicken Broilers. Foodborne Pathog Dis 2017; 14:341-349. [PMID: 28398869 DOI: 10.1089/fpd.2016.2265] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The current trend in reducing the antibiotic usage in animal production imposes urgency in the identification of novel biocides. The essential oil carvacrol, for example, changes the morphology of the cell and acts against a variety of targets within the bacterial membranes and cytoplasm, and our in vitro results show that it reduces adhesion and invasion of chicken intestinal primary cells and also biofilm formation. A trial was conducted to evaluate the effects of dietary supplementation of carvacrol at four concentrations (0, 120, 200, and 300 mg/kg of diet) on the performance of Lactobacillus spp., Escherichia coli, Campylobacter spp., and broilers. Each of the four diets was fed to three replicates/trial of 50 chicks each from day 0 to 35. Our results show that carvacrol linearly decreased feed intake, feed conversion rates and increased body weight at all levels of supplementation. Plate count analysis showed that Campylobacter spp. was only detected at 35 days in the treatment groups compared with the control group where the colonization occurred at 21 days. The absence of Campylobacter spp. at 21 days in the treatment groups was associated with a significant increase in the relative abundance of Lactobacillus spp. Also, carvacrol was demonstrated to have a significant effect on E. coli numbers in the cecum of the treatment groups, at all supplementation levels. In conclusion, this study shows for the first time that at different concentrations, carvacrol can delay Campylobacter spp., colonization of chicken broilers, by inducing changes in gut microflora, and it demonstrates promise as an alternative to the use of antibiotics.
Collapse
Affiliation(s)
- Carmel Kelly
- 1 Veterinary Science Division, Bacteriology Branch, Agri-Food and Biosciences Institute , Belfast, United Kingdom
| | - Ozan Gundogdu
- 2 London School of Hygiene and Tropical Medicine , London, United Kingdom
| | | | - Ada Cean
- 4 School of Animal Science and Biotechnology, Banat University of Animal Sciences and Veterinary Medicine-King Michael I of Romania , Timisoara, Romania
| | - Pam Scates
- 1 Veterinary Science Division, Bacteriology Branch, Agri-Food and Biosciences Institute , Belfast, United Kingdom
| | - Mark Linton
- 1 Veterinary Science Division, Bacteriology Branch, Agri-Food and Biosciences Institute , Belfast, United Kingdom
| | - Laurette Pinkerton
- 1 Veterinary Science Division, Bacteriology Branch, Agri-Food and Biosciences Institute , Belfast, United Kingdom
| | - Elizabeth Magowan
- 5 Sustainable Agri-Food Sciences Division, Agriculture Branch, Agri-Food and Biosciences Institute, Hillsborough, United Kingdom
| | - Lavinia Stef
- 4 School of Animal Science and Biotechnology, Banat University of Animal Sciences and Veterinary Medicine-King Michael I of Romania , Timisoara, Romania
| | - Eliza Simiz
- 4 School of Animal Science and Biotechnology, Banat University of Animal Sciences and Veterinary Medicine-King Michael I of Romania , Timisoara, Romania
| | - Ioan Pet
- 4 School of Animal Science and Biotechnology, Banat University of Animal Sciences and Veterinary Medicine-King Michael I of Romania , Timisoara, Romania
| | - Sharon Stewart
- 1 Veterinary Science Division, Bacteriology Branch, Agri-Food and Biosciences Institute , Belfast, United Kingdom
| | - Richard Stabler
- 2 London School of Hygiene and Tropical Medicine , London, United Kingdom
| | - Brendan Wren
- 2 London School of Hygiene and Tropical Medicine , London, United Kingdom
| | - Nick Dorrell
- 2 London School of Hygiene and Tropical Medicine , London, United Kingdom
| | - Nicolae Corcionivoschi
- 1 Veterinary Science Division, Bacteriology Branch, Agri-Food and Biosciences Institute , Belfast, United Kingdom .,4 School of Animal Science and Biotechnology, Banat University of Animal Sciences and Veterinary Medicine-King Michael I of Romania , Timisoara, Romania
| |
Collapse
|
39
|
Clyne M, Duggan G, Naughton J, Bourke B. Methods to Assess the Direct Interaction of C. jejuni with Mucins. Methods Mol Biol 2017; 1512:107-115. [PMID: 27885602 DOI: 10.1007/978-1-4939-6536-6_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Studies of the interaction of bacteria with mucus-secreting cells can be complemented at a more mechanistic level by exploring the interaction of bacteria with purified mucins. Here we describe a far Western blotting approach to show how C. jejuni proteins separated by SDS PAGE and transferred to a membrane or slot blotted directly onto a membrane can be probed using biotinylated mucin. In addition we describe the use of novel mucin microarrays to assess bacterial interactions with mucins in a high-throughput manner.
Collapse
Affiliation(s)
- Marguerite Clyne
- Conway Institute, School of Medicineand Medical Science, University College Dublin, Dublin, Ireland
| | - Gina Duggan
- Conway Institute, School of Medicineand Medical Science, University College Dublin, Dublin, Ireland
| | - Julie Naughton
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Billy Bourke
- Conway Institute, School of Medicineand Medical Science, University College Dublin, Dublin, Ireland.
| |
Collapse
|
40
|
Gundogdu O, da Silva DT, Mohammad B, Elmi A, Wren BW, van Vliet AHM, Dorrell N. The Campylobacter jejuni Oxidative Stress Regulator RrpB Is Associated with a Genomic Hypervariable Region and Altered Oxidative Stress Resistance. Front Microbiol 2016; 7:2117. [PMID: 28082970 PMCID: PMC5183652 DOI: 10.3389/fmicb.2016.02117] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 12/15/2016] [Indexed: 11/25/2022] Open
Abstract
Campylobacter jejuni is the leading cause of bacterial foodborne diarrhoeal disease worldwide. Despite the microaerophilic nature of the bacterium, C. jejuni can survive the atmospheric oxygen conditions in the environment. Bacteria that can survive either within a host or in the environment like C. jejuni require variable responses to survive the stresses associated with exposure to different levels of reactive oxygen species. The MarR-type transcriptional regulators RrpA and RrpB have recently been shown to play a role in controlling both the C. jejuni oxidative and aerobic stress responses. Analysis of 3,746 C. jejuni and 486 C. coli genome sequences showed that whilst rrpA is present in over 99% of C. jejuni strains, the presence of rrpB is restricted and appears to correlate with specific MLST clonal complexes (predominantly ST-21 and ST-61). C. coli strains in contrast lack both rrpA and rrpB. In C. jejuni rrpB+ strains, the rrpB gene is located within a variable genomic region containing the IF subtype of the type I Restriction-Modification (hsd) system, whilst this variable genomic region in C. jejuni rrpB- strains contains the IAB subtype hsd system and not the rrpB gene. C. jejuni rrpB- strains exhibit greater resistance to peroxide and aerobic stress than C. jejuni rrpB+ strains. Inactivation of rrpA resulted in increased sensitivity to peroxide stress in rrpB+ strains, but not in rrpB- strains. Mutation of rrpA resulted in reduced killing of Galleria mellonella larvae and enhanced biofilm formation independent of rrpB status. The oxidative and aerobic stress responses of rrpB- and rrpB+ strains suggest adaptation of C. jejuni within different hosts and niches that can be linked to specific MLST clonal complexes.
Collapse
Affiliation(s)
- Ozan Gundogdu
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine London, UK
| | - Daiani T da Silva
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine London, UK
| | - Banaz Mohammad
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine London, UK
| | - Abdi Elmi
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine London, UK
| | - Brendan W Wren
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine London, UK
| | - Arnoud H M van Vliet
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey Guildford, UK
| | - Nick Dorrell
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine London, UK
| |
Collapse
|
41
|
Chuma IS, Nonga HE, Mdegela RH, Kazwala RR. Epidemiology and RAPD-PCR typing of thermophilic campylobacters from children under five years and chickens in Morogoro Municipality, Tanzania. BMC Infect Dis 2016; 16:692. [PMID: 27871251 PMCID: PMC5117500 DOI: 10.1186/s12879-016-2031-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Campylobacter species are gram negative and flagellated bacteria under the genus Campylobacter, family Campylobacteriaceae. These pathogens cause zoonotic infections among human and animal populations. This study was undertaken between December 2006 and May 2007 to determine prevalence, risk factors and genetic diversity of thermophilic Campylobacter isolates from children less than 5 years and chickens in Morogoro Municipality, Tanzania. METHODS The Skirrow's protocol was used for isolation and identification of Campylobacter from 268 human stool specimens and 419 chicken cloacal swabs. Patient biodata and risk factors associated with human infection were also collected. Genetic diversity of Campylobacter isolates was determined by a RAPD-PCR technique using OPA 11 primer (5'-CAA TCG CCG T-3'). Phylogenetic analysis and band pattern comparison were done by Bionumerics software and visual inspection. RESULTS Stool samples from 268 children and 419 cloacal swabs from chickens were analyzed. Prevalence of thermophilic Campylobacters in children was 19% with higher isolation frequency (p = 0.046) in males (23.5%) than females (13.8%). Campylobacter jejuni (78.4%) was more isolated (p = 0.000) than C. coli (19.6%) and 2% were unidentified isolates. In chickens, the prevalence was 42.5% with higher isolation rate (p = 0.000) of C. jejuni (87%) than C. coli (13%). Campylobacters were more frequently recovered (p = 0.000) from indigenous/ local chickens (75.0%) followed by cockerels (52.2%), broilers (50.0%) and lowest in layers (22.7%). Keeping chickens without other domestic animals concurrently (p = 0.000), chicken types (p = 0.000) and flock size (p = 0.007) were risk factors for infection in chickens. One hundred and fifty two (152) thermophillic Campylobacter isolates were genotyped by RAPD-PCR of which 114 were C. jejuni (74 from chickens and 40 humans) and 38 C. coli (28 from chickens and 10 humans). Comparison of Campylobacter isolates from children and chickens revealed high diversity with only 6.1% of C. jejuni and 5.3% of C. coli being 100% genetically similar. CONCLUSIONS This study has recorded high prevalence of thermophilic Campylobacter in children less than 5 years and chickens in Morogoro municipality. The observed genetic similarity among few C. jejuni and C. coli isolates from children and chicken suggests existence of cross transmission of these pathogens between children under 5 years and chickens.
Collapse
Affiliation(s)
- Idrissa S. Chuma
- Tanzania National Parks (Serengeti), P. O. Box 3134, Arusha, Tanzania
| | - Hezron E. Nonga
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, College of Veterinary and Medical Sciences, P. O. Box 3021, Morogoro, Tanzania
| | - Robinson H. Mdegela
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, College of Veterinary and Medical Sciences, P. O. Box 3021, Morogoro, Tanzania
| | - Rudovick. R. Kazwala
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, College of Veterinary and Medical Sciences, P. O. Box 3021, Morogoro, Tanzania
| |
Collapse
|
42
|
DNA Supercoiling Regulates the Motility of Campylobacter jejuni and Is Altered by Growth in the Presence of Chicken Mucus. mBio 2016; 7:mBio.01227-16. [PMID: 27624126 PMCID: PMC5021803 DOI: 10.1128/mbio.01227-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Campylobacter jejuni is the leading cause of bacterial gastroenteritis in humans, but relatively little is known about the global regulation of virulence factors during infection of chickens or humans. This study identified DNA supercoiling as playing a key role in regulating motility and flagellar protein production and found that this supercoiling-controlled regulon is induced by growth in chicken mucus. A direct correlation was observed between motility and resting DNA supercoiling levels in different strains of C. jejuni, and relaxation of DNA supercoiling resulted in decreased motility. Transcriptional analysis and Western immunoblotting revealed that a reduction in motility and DNA supercoiling affected the two-component regulatory system FlgRS and was associated with reduced FlgR expression, increased FlgS expression, and aberrant expression of flagellin subunits. Electron microscopy revealed that the flagellar structure remained intact. Growth in the presence of porcine mucin resulted in increased negative supercoiling, increased motility, increased FlgR expression, and reduced FlgS expression. Finally, this supercoiling-dependent regulon was shown to be induced by growth in chicken mucus, and the level of activation was dependent on the source of the mucus from within the chicken intestinal tract. In conclusion, this study reports for the first time the key role played by DNA supercoiling in regulating motility in C. jejuni and indicates that the induction of this supercoiling-induced regulon in response to mucus from different sources could play a critical role in regulating motility in vivo. Although Campylobacter jejuni is the leading cause of bacterial gastroenteritis, very little is understood about how this pathogen controls the expression of genes involved in causing disease. This study for the first time identifies DNA supercoiling as a key regulator of motility in C. jejuni, which is essential for both pathogenesis and colonization. Altering the level of DNA supercoiling results in changes in motility levels, as well as changes in the expression of genes involved in flagellar gene regulation. Furthermore, spontaneous clones of the organism with different motility profiles have altered DNA supercoiling levels. Finally, mucus was identified as a key stimulator of changes in DNA supercoiling, and it was shown that mucus from different sites in the chicken intestine induced different levels of DNA supercoiling. In conclusion, this study implicates DNA supercoiling as a key regulator of motility in C. jejuni in vivo during colonization of the mucus layer.
Collapse
|
43
|
Han Z, Pielsticker C, Gerzova L, Rychlik I, Rautenschlein S. The influence of age on Campylobacter jejuni infection in chicken. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 62:58-71. [PMID: 27131855 DOI: 10.1016/j.dci.2016.04.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/03/2016] [Accepted: 04/26/2016] [Indexed: 05/25/2023]
Abstract
Campylobacter jejuni (C. jejuni)-host-interaction may be affected by the maturation stage of the chicken's immune system and the developing gut microbiota composition. We compared these parameters between birds C. jejuni-inoculated at day one, 10, 22 and 31 post hatch. The highest C. jejuni-colonization rate and numbers of colony forming units (CFU) were detected in caecal content of day-one-inoculated birds while the lowest was detected in 22-days-old birds. The low bacterial colonization of 22-days-old chickens correlated with the most prominent immune reactions in this age group in comparison to other age groups. Age and C. jejuni-inoculation had a significant effect on lymphocyte numbers and cytokine expression levels in caecum as well as on gut flora composition. Overall, the immune response to C. jejuni is significantly influenced by the age of the infected chickens leading to differences in C. jejuni-colonization pattern between age goups.
Collapse
Affiliation(s)
- Zifeng Han
- University of Veterinary Medicine Hannover, Clinic for Poultry, Bünteweg 17, Hannover, Germany
| | - Colin Pielsticker
- University of Veterinary Medicine Hannover, Clinic for Poultry, Bünteweg 17, Hannover, Germany
| | - Lenka Gerzova
- Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic
| | - Ivan Rychlik
- Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic
| | - Silke Rautenschlein
- University of Veterinary Medicine Hannover, Clinic for Poultry, Bünteweg 17, Hannover, Germany.
| |
Collapse
|
44
|
Saint-Cyr MJ, Guyard-Nicodème M, Messaoudi S, Chemaly M, Cappelier JM, Dousset X, Haddad N. Recent Advances in Screening of Anti-Campylobacter Activity in Probiotics for Use in Poultry. Front Microbiol 2016; 7:553. [PMID: 27303366 PMCID: PMC4885830 DOI: 10.3389/fmicb.2016.00553] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 04/04/2016] [Indexed: 12/17/2022] Open
Abstract
Campylobacteriosis is the most common cause of bacterial gastroenteritis worldwide. Campylobacter species involved in this infection usually include the thermotolerant species Campylobacter jejuni. The major reservoir for C. jejuni leading to human infections is commercial broiler chickens. Poultry flocks are frequently colonized by C. jejuni without any apparent symptoms. Risk assessment analyses have identified the handling and consumption of poultry meat as one of the most important sources of human campylobacteriosis, so elimination of Campylobacter in the poultry reservoir is a crucial step in the control of this foodborne infection. To date, the use of probiotics has demonstrated promising results to reduce Campylobacter colonization. This review provides recent insights into methods used for probiotic screening to reduce the prevalence and colonization of Campylobacter at the farm level. Different eukaryotic epithelial cell lines are employed to screen probiotics with an anti-Campylobacter activity and yield useful information about the inhibition mechanism involved. These in vitro virulence models involve only human intestinal or cervical cell lines whereas the use of avian cell lines could be a preliminary step to investigate mechanisms of C. jejuni colonization in poultry in the presence of probiotics. In addition, in vivo trials to evaluate the effect of probiotics on Campylobacter colonization are conducted, taking into account the complexity introduced by the host, the feed, and the microbiota. However, the heterogeneity of the protocols used and the short time duration of the experiments lead to results that are difficult to compare and draw conclusions at the slaughter-age of broilers. Nevertheless, the combined approach using complementary in vitro and in vivo tools (cell cultures and animal experiments) leads to a better characterization of probiotic strains and could be employed to assess reduced Campylobacter spp. colonization in chickens if some parameters are optimized.
Collapse
Affiliation(s)
| | - Muriel Guyard-Nicodème
- Hygiene and Quality of Poultry and Pork Products Unit, Ploufragan/Plouzané Laboratory, ANSES, Université Bretagne LoirePloufragan, France
| | - Soumaya Messaoudi
- SECALIM Unit UMR1014, Oniris, INRA, Université Bretagne LoireNantes, France
| | - Marianne Chemaly
- Hygiene and Quality of Poultry and Pork Products Unit, Ploufragan/Plouzané Laboratory, ANSES, Université Bretagne LoirePloufragan, France
| | | | - Xavier Dousset
- SECALIM Unit UMR1014, Oniris, INRA, Université Bretagne LoireNantes, France
| | - Nabila Haddad
- SECALIM Unit UMR1014, Oniris, INRA, Université Bretagne LoireNantes, France
| |
Collapse
|
45
|
Kobierecka PA, Wyszyńska AK, Gubernator J, Kuczkowski M, Wiśniewski O, Maruszewska M, Wojtania A, Derlatka KE, Adamska I, Godlewska R, Jagusztyn-Krynicka EK. Chicken Anti-Campylobacter Vaccine - Comparison of Various Carriers and Routes of Immunization. Front Microbiol 2016; 7:740. [PMID: 27242755 PMCID: PMC4872485 DOI: 10.3389/fmicb.2016.00740] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/03/2016] [Indexed: 12/20/2022] Open
Abstract
Campylobacter spp, especially the species Campylobacter jejuni, are important human enteropathogens responsible for millions of cases of gastro-intestinal disease worldwide every year. C. jejuni is a zoonotic pathogen, and poultry meat that has been contaminated by microorganisms is recognized as a key source of human infections. Although numerous strategies have been developed and experimentally checked to generate chicken vaccines, the results have so far had limited success. In this study, we explored the potential use of non-live carriers of Campylobacter antigen to combat Campylobacter in poultry. First, we assessed the effectiveness of immunization with orally or subcutaneously delivered Gram-positive Enhancer Matrix (GEM) particles carrying two Campylobacter antigens: CjaA and CjaD. These two immunization routes using GEMs as the vector did not protect against Campylobacter colonization. Thus, we next assessed the efficacy of in ovo immunization using various delivery systems: GEM particles and liposomes. The hybrid protein rCjaAD, which is CjaA presenting CjaD epitopes on its surface, was employed as a model antigen. We found that rCjaAD administered in ovo at embryonic development day 18 by both delivery systems resulted in significant levels of protection after challenge with a heterologous C. jejuni strain. In practice, in ovo chicken vaccination is used by the poultry industry to protect birds against several viral diseases. Our work showed that this means of delivery is also efficacious with respect to commensal bacteria such as Campylobacter. In this study, we evaluated the protection after one dose of vaccine given in ovo. We speculate that the level of protection may be increased by a post-hatch booster of orally delivered antigens.
Collapse
Affiliation(s)
- Patrycja A. Kobierecka
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of WarsawWarsaw, Poland
| | - Agnieszka K. Wyszyńska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of WarsawWarsaw, Poland
| | - Jerzy Gubernator
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of WrocławWrocław, Poland
| | - Maciej Kuczkowski
- Department of Epizootiology and Clinic of Birds and Exotic Animals, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life SciencesWrocław, Poland
| | - Oskar Wiśniewski
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of WarsawWarsaw, Poland
| | - Marta Maruszewska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of WarsawWarsaw, Poland
| | - Anna Wojtania
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of WarsawWarsaw, Poland
| | - Katarzyna E. Derlatka
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of WarsawWarsaw, Poland
| | - Iwona Adamska
- Department of Animal Physiology, Institute of Zoology, Faculty of Biology, University of WarsawWarsaw, Poland
| | - Renata Godlewska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of WarsawWarsaw, Poland
| | | |
Collapse
|
46
|
Fonseca BB, Ferreira Júnior A, Santos JPD, Coelho LR, Rossi DA, Melo RT, Mendonça EP, Araújo TG, Alves RN, Beletti ME. Campylobacter Jejuni Increases Transcribed Il-1 B and Causes Morphometric Changes in the Ileal Enterocytes of Chickens. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2016. [DOI: 10.1590/1516-635x1801063-068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
47
|
Sahin O, Kassem II, Shen Z, Lin J, Rajashekara G, Zhang Q. Campylobacter in Poultry: Ecology and Potential Interventions. Avian Dis 2015; 59:185-200. [PMID: 26473668 DOI: 10.1637/11072-032315-review] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Avian hosts constitute a natural reservoir for thermophilic Campylobacter species, primarily Campylobacter jejuni and Campylobacter coli, and poultry flocks are frequently colonized in the intestinal tract with high numbers of the organisms. Prevalence rates in poultry, especially in slaughter-age broiler flocks, could reach as high as 100% on some farms. Despite the extensive colonization, Campylobacter is essentially a commensal in birds, although limited evidence has implicated the organism as a poultry pathogen. Although Campylobacter is insignificant for poultry health, it is a leading cause of food-borne gastroenteritis in humans worldwide, and contaminated poultry meat is recognized as the main source for human exposure. Therefore, considerable research efforts have been devoted to the development of interventions to diminish Campylobacter contamination in poultry, with the intention to reduce the burden of food-borne illnesses. During the past decade, significant advance has been made in understanding Campylobacter in poultry. This review summarizes the current knowledge with an emphasis on ecology, antibiotic resistance, and potential pre- and postharvest interventions.
Collapse
Affiliation(s)
- Orhan Sahin
- A Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011
| | - Issmat I Kassem
- B Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691
| | - Zhangqi Shen
- A Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011
| | - Jun Lin
- C Department of Animal Science, The University of Tennessee, Knoxville, TN 37996
| | - Gireesh Rajashekara
- B Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691
| | - Qijing Zhang
- A Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011
| |
Collapse
|
48
|
Ye J, Pan Q, Shang Y, Wei X, Peng Z, Chen W, Chen L, Wang R. Core 2 mucin-type O-glycan inhibits EPEC or EHEC O157:H7 invasion into HT-29 epithelial cells. Gut Pathog 2015; 7:31. [PMID: 26677400 PMCID: PMC4681020 DOI: 10.1186/s13099-015-0078-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/24/2015] [Indexed: 12/17/2022] Open
Abstract
Background How host cell glycosylation affects EPEC or EHEC O157:H7 invasion is unclear. This study investigated whether and how O-glycans were involved in EPEC or EHEC O157:H7 invasion into HT-29 cells. Results Lectin histochemical staining confirmed stronger staining with PNA, which labeled Galβ1, 3 GalNAc (core 1 structure) in HT-29-Gal-OBN and C2GnT2-sh2/HT-29 cells, compared with control cells. EPEC or EHEC O157:H7 invasion into HT-29 and its derived cells was based on the intracellular presence of GFP-labeled bacteria. The differentiation of HT-29 cells led to a reduction in EPEC internalization compared with HT-29 cells (p < 0.01). EPEC or EHEC O157:H7 invasion into HT-29-OBN and HT-29-Gal-OBN cells increased compared with HT-29 and HT-29-Gal cells (p < 0.05 and p < 0.01). Core 2 O-glycan-deficient HT-29 cells underwent a significant increase in EPEC (p < 0.01) or EHEC O157:H7 (p < 0.05) invasion compared with control cells. Methods Bacterial invasion into cultured cells was determined by a gentamicin protection assay and a GFP-labeled bacteria invasion assay. O-glycans biosynthesis was inhibited by benzyl-α-GalNAc, and core 2 O-glycan-deficient HT-29 cells were induced by C2GnT2 interference. Conclusion These data indicated that EPEC or EHEC O157:H7 invasion into HT-29 cells was related to their O-glycosylation status. This study provided the first evidence of carbohydrate-dependent EPEC or EHEC O157:H7 invasion into host cells.
Collapse
Affiliation(s)
- Jun Ye
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing, 400038 People's Republic of China
| | - Qiong Pan
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing, 400038 People's Republic of China
| | - Yangyang Shang
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing, 400038 People's Republic of China
| | - Xiaolong Wei
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing, 400038 People's Republic of China
| | - Zhihong Peng
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing, 400038 People's Republic of China
| | - Wensheng Chen
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing, 400038 People's Republic of China
| | - Lei Chen
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing, 400038 People's Republic of China
| | - Rongquan Wang
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing, 400038 People's Republic of China
| |
Collapse
|
49
|
Thibodeau A, Fravalo P, Taboada EN, Laurent-Lewandowski S, Guévremont E, Quessy S, Letellier A. Extensive characterization of Campylobacter jejuni chicken isolates to uncover genes involved in the ability to compete for gut colonization. BMC Microbiol 2015; 15:97. [PMID: 25958385 PMCID: PMC4425865 DOI: 10.1186/s12866-015-0433-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 04/30/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Campylobacter jejuni is responsible for human foodborne enteritis. This bacterium is a remarkable colonizer of the chicken gut, with some strains outcompeting others for colonization. To better understand this phenomenon, the objective of this study was to extensively characterize the phenotypic performance of C. jejuni chicken strains and associate their gut colonizing ability with specific genes. RESULTS C. jejuni isolates (n = 45) previously analyzed for the presence of chicken colonization associated genes were further characterized for phenotypic properties influencing colonization: autoagglutination and chemotaxis as well as adhesion to and invasion of primary chicken caecal cells. This allowed strains to be ranked according to their in vitro performance. After their in vitro capacity to outcompete was demonstrated in vivo, strains were then typed by comparative genomic fingerprinting (CGF). In vitro phenotypical properties displayed a linear variability among the tested strains. Strains possessing higher scores for phenotypical properties were able to outcompete others during chicken colonization trials. When the gene content of strains was compared, some were associated with different phenotypical scores and thus with different outcompeting capacities. Use of CGF profiles showed an extensive genetic variability among the studied strains and suggested that the outcompeting capacity is not predictable by CGF profile. CONCLUSION This study revealed a wide array of phenotypes present in C. jejuni strains, even though they were all recovered from chicken caecum. Each strain was classified according to its in vitro competitive potential and its capacity to compete for chicken gut colonization was associated with specific genes. This study also exposed the disparity existing between genetic typing and phenotypical behavior of C. jejuni strains.
Collapse
Affiliation(s)
- Alexandre Thibodeau
- Department of Pathology and Microbiology, NSERC Industrial Research Chair in Meat-Safety (CRSV), University of Montreal, Veterinary Medicine Faculty, Saint-Hyacinthe, QC, Canada. .,Department of Pathology and Microbiology, Swine and Avian Infectious Disease Research Centre (CRIPA), University of Montreal, Veterinary Medicine Faculty, Saint-Hyacinthe, QC, Canada. .,Department of Pathology and Microbiology, Groupe de recherche et d'enseignement en salubrité alimentaire (GRESA), University of Montreal, Veterinary Medicine Faculty, Saint-Hyacinthe, QC, Canada.
| | - Philippe Fravalo
- Department of Pathology and Microbiology, NSERC Industrial Research Chair in Meat-Safety (CRSV), University of Montreal, Veterinary Medicine Faculty, Saint-Hyacinthe, QC, Canada. .,Department of Pathology and Microbiology, Swine and Avian Infectious Disease Research Centre (CRIPA), University of Montreal, Veterinary Medicine Faculty, Saint-Hyacinthe, QC, Canada. .,Department of Pathology and Microbiology, Groupe de recherche et d'enseignement en salubrité alimentaire (GRESA), University of Montreal, Veterinary Medicine Faculty, Saint-Hyacinthe, QC, Canada.
| | - Eduardo N Taboada
- Public Health Agency of Canada, Laboratory for Foodborne Zoonoses, Lethbridge, AB, Canada.
| | - Sylvette Laurent-Lewandowski
- Department of Pathology and Microbiology, NSERC Industrial Research Chair in Meat-Safety (CRSV), University of Montreal, Veterinary Medicine Faculty, Saint-Hyacinthe, QC, Canada. .,Department of Pathology and Microbiology, Swine and Avian Infectious Disease Research Centre (CRIPA), University of Montreal, Veterinary Medicine Faculty, Saint-Hyacinthe, QC, Canada.
| | - Evelyne Guévremont
- Department of Pathology and Microbiology, Groupe de recherche et d'enseignement en salubrité alimentaire (GRESA), University of Montreal, Veterinary Medicine Faculty, Saint-Hyacinthe, QC, Canada. .,Agriculture and Agri-Food Canada, Food Research and Development Centre, St-Hyacinthe, QC, Canada.
| | - Sylvain Quessy
- Department of Pathology and Microbiology, NSERC Industrial Research Chair in Meat-Safety (CRSV), University of Montreal, Veterinary Medicine Faculty, Saint-Hyacinthe, QC, Canada. .,Department of Pathology and Microbiology, Swine and Avian Infectious Disease Research Centre (CRIPA), University of Montreal, Veterinary Medicine Faculty, Saint-Hyacinthe, QC, Canada. .,Department of Pathology and Microbiology, Groupe de recherche et d'enseignement en salubrité alimentaire (GRESA), University of Montreal, Veterinary Medicine Faculty, Saint-Hyacinthe, QC, Canada.
| | - Ann Letellier
- Department of Pathology and Microbiology, NSERC Industrial Research Chair in Meat-Safety (CRSV), University of Montreal, Veterinary Medicine Faculty, Saint-Hyacinthe, QC, Canada. .,Department of Pathology and Microbiology, Swine and Avian Infectious Disease Research Centre (CRIPA), University of Montreal, Veterinary Medicine Faculty, Saint-Hyacinthe, QC, Canada. .,Department of Pathology and Microbiology, Groupe de recherche et d'enseignement en salubrité alimentaire (GRESA), University of Montreal, Veterinary Medicine Faculty, Saint-Hyacinthe, QC, Canada.
| |
Collapse
|
50
|
The role of probiotics in the inhibition of Campylobacter jejuni colonization and virulence attenuation. Eur J Clin Microbiol Infect Dis 2015; 34:1503-13. [PMID: 25934376 DOI: 10.1007/s10096-015-2392-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/19/2015] [Indexed: 01/30/2023]
Abstract
Campylobacter jejuni is one of the most common bacterial causes of human gastroenterocolitis worldwide, leading to diarrhea and other serious post-infectious complications. Probiotics form an attractive alternative intervention strategy for most of the enteric infections. However, the role of probiotics in C. jejuni infections requires detailed investigations in order to delineate the probiotic strains that are effective against C. jejuni. Although there are several biological mechanisms involved in the inhibition of pathogenic bacterial growth, the strains of probiotics and their mechanisms of actions through which they combat C. jejuni invasion have not been studied in greater detail. This mini review details the factors that are involved in the colonization and establishment of C. jejuni infection, with special reference to chickens, the natural host of C. jejuni, and the studies that have investigated the effect of different probiotic strains against C. jejuni colonization and growth. This review has collated the studies conducted using probiotics to inhibit C. jejuni colonization and growth to date to provide a collective knowledge about the role of probiotics as an alternative intervention strategy for campylobacteriosis.
Collapse
|