1
|
Ji J, Yang H, Li Y, Wang Q, Dong Y, Hu F, Wu G, Bai Z, Chai F, Liu L, Jin B. Response of the partial denitrification coupled with anaerobic ammonia oxidation system to disinfectant residues stress. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137723. [PMID: 40010223 DOI: 10.1016/j.jhazmat.2025.137723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/17/2025] [Accepted: 02/22/2025] [Indexed: 02/28/2025]
Abstract
The extensive use of disinfectants, especially NaClO, has resulted in chlorine disinfectant residues entering and impairing the biological treatment system. This study combined with long-term stress and transient shock of chlorine residues to comprehensively evaluate the variations of nitrogen removal performance, microbial community and antibiotic resistance genes composition in the PD/A system. The results showed that low concentration NaClO had no obvious harm to the system, but high concentration (>1 mg/L) NaClO would destroy the nitrogen removal performance of PD/A system. Interestingly, microorganisms in biofilm were more resistant to chlorine residues than that in sludge. Anaerobic ammonia oxidizing bacteria suffered more harm than denitrifying microorganisms, and chlorine residues mainly inhibited the process of converting N2H4 to N2 in anammox reaction. In addition, this study found that sludge showed a more significant increase in ARGs abundance and risk than biofilm. Moreover, risk assessments indicated that chlorine residues increased the risk of ARGs in PD/A systems.
Collapse
Affiliation(s)
- Jiantao Ji
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Haosen Yang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Ying Li
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Qiyue Wang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Yongen Dong
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Feiyue Hu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Guanqi Wu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Zhixuan Bai
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Fengguang Chai
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Lanhua Liu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China.
| | - Baodan Jin
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China.
| |
Collapse
|
2
|
Farooq S, Talat A, Dhariwal A, Petersen FC, Khan AU. Transgenerational gut dysbiosis: Unveiling the dynamics of antibiotic resistance through mobile genetic elements from mothers to infants. Int J Antimicrob Agents 2025; 65:107458. [PMID: 39921114 DOI: 10.1016/j.ijantimicag.2025.107458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/04/2025] [Accepted: 01/29/2025] [Indexed: 02/10/2025]
Abstract
OBJECTIVES The initial microbial colonization of the gut is seeded by microbes transmitted from the mother's gut, skin, and vaginal tract. As the gut microbiome evolves, a few transmitted microbes persist throughout life. Understanding the impact of mother-to-neonate gut microbiome and antibiotic resistance genes (ARGs) transmission is crucial for establishing its role in infants' immunity against pathogens. METHODS This study primarily explores mother-neonate ARG transmission through 125 publicly available fecal metagenomes, isolated from eighteen mother-neonate pairs. RESULTS The core ARGs, detected in both mothers and their respective infants at all stages (birth, 1st, 2nd, 3rd, 4th, 8th and 12th months) included aminoglycosidases APH(3')-IIIa, Bifidobacterium adolescentis rpoB mutants conferring resistance to rifampicin, β-lactamases CblA-1, CfxA2, multidrug resistance gene CRP, diaminopyrimidine resistance gene dfrF, fluoroquinolone-resistance gene emrR, macrolide; lincosamide; streptogramin resistance gene ErmB, ErmG, macrolide resistance gene Mef(En2), nucleosidase SAT-4, and tetracycline-resistance genes tet(O), tet(Q), and tet(W). Most of these infants and mothers were not administered any antibiotics. In infants, ARGs were predominantly carried by Bacillota, Pseudomonadota, and Actinomycetota, similar to the mothers. The dominant ARG-carrying opportunistic pathogens were Escherichia coli, Klebsiella, and Streptococcus, found across all infant cohorts. All the core ARGs were associated with mobile genetic elements, signifying the role of horizontal gene transfer(HGT). We detected 132 virulence determinants, mostly E. coli-specific, including pilus chaperones, general secretion pathway proteins, type III secretion system effectors, and heme-binding proteins. CONCLUSIONS Maternal-neonate transmission of ARGs along with possible nosocomial infections, mode of delivery, breastfeeding versus formula feeding, and gestation period, must be considered for mother-neonate health.
Collapse
Affiliation(s)
- Samiya Farooq
- Antimicrobial Resistance Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India; Bioinformatics and Computational Biology Centre of DBT Government of India, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Absar Talat
- Antimicrobial Resistance Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India; Bioinformatics and Computational Biology Centre of DBT Government of India, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Achal Dhariwal
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | | | - Asad U Khan
- Antimicrobial Resistance Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India; Bioinformatics and Computational Biology Centre of DBT Government of India, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India.
| |
Collapse
|
3
|
Wright M, Kaur M, Thompson LK, Cox G. A historical perspective on the multifunctional outer membrane channel protein TolC in Escherichia coli. NPJ ANTIMICROBIALS AND RESISTANCE 2025; 3:6. [PMID: 39863731 PMCID: PMC11762307 DOI: 10.1038/s44259-025-00078-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
Since its discovery nearly 60 years ago, TolC has been associated with various cellular functions in Escherichia coli, including the efflux of environmental stressors and virulence factors. It also acts as a receptor for specific bacteriophages and the colicin E1 toxin. This review highlights key discoveries over the past six decades and emphasizes the remaining gaps in understanding how TolC contributes to physiological functions in E. coli.
Collapse
Affiliation(s)
- Mallory Wright
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph, ON, Canada
| | - Mandeep Kaur
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph, ON, Canada
| | - Laura K Thompson
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph, ON, Canada
| | - Georgina Cox
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph, ON, Canada.
| |
Collapse
|
4
|
Silva TO, Bulla ACS, Teixeira BA, Gomes VMS, Raposo T, Barbosa LS, da Silva ML, Moreira LO, Olsen PC. Bacterial efflux pump OMPs as vaccine candidates against multidrug-resistant Gram-negative bacteria. J Leukoc Biol 2024; 116:1237-1253. [PMID: 39011942 DOI: 10.1093/jleuko/qiae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 07/17/2024] Open
Abstract
The emergence and propagation of bacteria resistant to antimicrobial drugs is a serious public health threat worldwide. The current antibacterial arsenal is becoming obsolete, and the pace of drug development is decreasing, highlighting the importance of investment in alternative approaches to treat or prevent infections caused by antimicrobial-resistant bacteria. A significant mechanism of antimicrobial resistance employed by Gram-negative bacteria is the overexpression of efflux pumps that can extrude several compounds from the bacteria, including antimicrobials. The overexpression of efflux pump proteins has been detected in several multidrug-resistant Gram-negative bacteria, drawing attention to these proteins as potential targets against these pathogens. This review will focus on the role of outer membrane proteins from efflux pumps as potential vaccine candidates against clinically relevant multidrug-resistant Gram-negative bacteria, discussing advantages and pitfalls. Additionally, we will explore the relevance of efflux pump outer membrane protein diversity and the possible impact of vaccination on microbiota.
Collapse
Affiliation(s)
- Thaynara O Silva
- Laboratório de Estudos em Imunologia, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Bloco A 2º Andar sala 05, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
- Laboratório de Bacteriologia e Imunologia Clínica, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Bloco A 2º Andar sala 07, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Ana Carolina S Bulla
- Programa de Pós-graduação em Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Bárbara A Teixeira
- Laboratório de Estudos em Imunologia, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Bloco A 2º Andar sala 05, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Vinnicius Machado Schelk Gomes
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Instituto de Biodiversidade e Sustentabilidade NUPEM, Universidade Federal do Rio de Janeiro, Avenida São José do Barreto, 764. Centro, Macaé, RJ, 27965-045, Brazil
| | - Thiago Raposo
- Laboratório de Estudos em Imunologia, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Bloco A 2º Andar sala 05, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Luiza S Barbosa
- Laboratório de Estudos em Imunologia, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Bloco A 2º Andar sala 05, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
- Laboratório de Bacteriologia e Imunologia Clínica, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Bloco A 2º Andar sala 07, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Manuela Leal da Silva
- Programa de Pós-graduação em Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, 21040-900, Brazil
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Instituto de Biodiversidade e Sustentabilidade NUPEM, Universidade Federal do Rio de Janeiro, Avenida São José do Barreto, 764. Centro, Macaé, RJ, 27965-045, Brazil
| | - Lilian O Moreira
- Laboratório de Bacteriologia e Imunologia Clínica, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Bloco A 2º Andar sala 07, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Priscilla C Olsen
- Laboratório de Estudos em Imunologia, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Bloco A 2º Andar sala 05, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| |
Collapse
|
5
|
Sun H, Huang D, Pang Y, Chen J, Kang C, Zhao M, Yang B. Key roles of two-component systems in intestinal signal sensing and virulence regulation in enterohemorrhagic Escherichia coli. FEMS Microbiol Rev 2024; 48:fuae028. [PMID: 39537200 PMCID: PMC11644481 DOI: 10.1093/femsre/fuae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a foodborne pathogen that infects humans by colonizing the large intestine. Upon reaching the large intestine, EHEC mediates local signal recognition and the transcriptional regulation of virulence genes to promote adherence and colonization in a highly site-specific manner. Two-component systems (TCSs) represent an important strategy used by EHEC to couple external stimuli with the regulation of gene expression, thereby allowing EHEC to rapidly adapt to changing environmental conditions. An increasing number of studies published in recent years have shown that EHEC senses a variety of host- and microbiota-derived signals present in the human intestinal tract and coordinates the expression of virulence genes via multiple TCS-mediated signal transduction pathways to initiate the disease-causing process. Here, we summarize how EHEC detects a wide range of intestinal signals and precisely regulates virulence gene expression through multiple signal transduction pathways during the initial stages of infection, with a particular emphasis on the key roles of TCSs. This review provides valuable insights into the importance of TCSs in EHEC pathogenesis, which has relevant implications for the development of antibacterial therapies against EHEC infection.
Collapse
Affiliation(s)
- Hongmin Sun
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| | - Di Huang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| | - Yu Pang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| | - Jingnan Chen
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| | - Chenbo Kang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| | - Mengjie Zhao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| | - Bin Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| |
Collapse
|
6
|
Brück M, Köbel TS, Dittmar S, Ramírez Rojas AA, Georg J, Berghoff BA, Schindler D. A library-based approach allows systematic and rapid evaluation of seed region length and reveals design rules for synthetic bacterial small RNAs. iScience 2024; 27:110774. [PMID: 39280619 PMCID: PMC11402225 DOI: 10.1016/j.isci.2024.110774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/14/2024] [Accepted: 08/15/2024] [Indexed: 09/18/2024] Open
Abstract
All organisms must respond to environmental changes. In bacteria, small RNAs (sRNAs) are an important aspect of the regulation network underlying the adaptation to such changes. sRNAs base-pair with their target mRNAs, allowing rapid modulation of the proteome. This post-transcriptional regulation is usually facilitated by RNA chaperones, such as Hfq. sRNAs have a potential as synthetic regulators that can be modulated by rational design. In this study, we use a library-based approach and oxacillin susceptibility assays to investigate the importance of the seed region length for synthetic sRNAs based on RybB and SgrS scaffolds in Escherichia coli. In the presence of Hfq we show that 12 nucleotides are sufficient for regulation. Furthermore, we observe a scaffold-specific Hfq-dependency and processing by RNase E. Our results provide information for design considerations of synthetic sRNAs in basic and applied research.
Collapse
Affiliation(s)
- Michel Brück
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043 Marburg, Germany
- Institute for Microbiology and Molecular Biology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Tania S Köbel
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043 Marburg, Germany
| | - Sophie Dittmar
- Institute for Microbiology and Molecular Biology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Adán A Ramírez Rojas
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043 Marburg, Germany
| | - Jens Georg
- Institut für Biologie III, Albert-Ludwigs-Universität Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Bork A Berghoff
- Institute for Microbiology and Molecular Biology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Daniel Schindler
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043 Marburg, Germany
- Center for Synthetic Microbiology, Philipps-University Marburg, Karl-von-Frisch-Straße 14, 35032 Marburg, Germany
| |
Collapse
|
7
|
Zhang R, Wang Y. EvgS/EvgA, the unorthodox two-component system regulating bacterial multiple resistance. Appl Environ Microbiol 2023; 89:e0157723. [PMID: 38019025 PMCID: PMC10734491 DOI: 10.1128/aem.01577-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE EvgS/EvgA, one of the five unorthodox two-component systems in Escherichia coli, plays an essential role in adjusting bacterial behaviors to adapt to the changing environment. Multiple resistance regulated by EvgS/EvgA endows bacteria to survive in adverse conditions such as acidic pH, multidrug, and heat. In this minireview, we summarize the specific structures and regulation mechanisms of EvgS/EvgA and its multiple resistance. By discussing several unresolved issues and proposing our speculations, this review will be helpful and enlightening for future directions about EvgS/EvgA.
Collapse
Affiliation(s)
- Ruizhen Zhang
- MoE Key Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Yan Wang
- MoE Key Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
8
|
Zhang J, Xu Z, Chu W, Ju F, Jin W, Li P, Xiao R. Residual chlorine persistently changes antibiotic resistance gene composition and increases the risk of antibiotic resistance in sewer systems. WATER RESEARCH 2023; 245:120635. [PMID: 37738943 DOI: 10.1016/j.watres.2023.120635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/24/2023]
Abstract
During the COVID-19 pandemic, excessive amounts of disinfectants and their transformation products entered sewer systems worldwide, which was an extremely rare occurrence before. The stress of residual chlorine and disinfection by-products is not only likely to promote the spread of antibiotic resistance genes (ARGs), but also leads to the enrichment of chlorine-resistant bacteria that may also be resistant to antibiotics. Therefore, the potential impact of such discharge on ARG composition should be studied and the health risks should be assessed. Thus, this study combined high-throughput 16S rRNA gene amplicon sequencing and metagenomic analysis with long-term batch tests that involved two stages of stress and recovery to comprehensively evaluate the impact of residual chlorine on the microbial community and ARG compositions in sewer systems. The tests demonstrated that the disturbance of the microbial community structure by residual chlorine was reversible, but the change in ARG composition was persistent. This study found that vertical propagation and horizontal gene transfer jointly drove ARG composition succession in the biofilm, while the driving force was mainly horizontal gene transfer in the sediment. In this process, the biocide resistance gene (BRG) subtype chtR played an important role in promoting co-selection with ARGs through plasmids and integrative and conjugative elements. Moreover, it was further shown that the addition of sodium hypochlorite increased the risk of ARGs to human health, even after discontinuation of dosing, signifying that the impact was persistent. In general, this study strengthens the co-selection theory of ARGs and BRGs, and calls for improved disinfection strategies and more environmentally friendly disinfectants.
Collapse
Affiliation(s)
- Jingyi Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zuxin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Wei Jin
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Peng Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; College of Resources and Environmental Engineering, Shandong Agriculture and Engineering University, Jinan, Shandong 250100, China
| | - Rong Xiao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
9
|
Yang W, Sun H, Yan J, Kang C, Wu J, Yang B. Enterohemorrhagic Escherichia coli senses microbiota-derived nicotinamide to increase its virulence and colonization in the large intestine. Cell Rep 2023; 42:112638. [PMID: 37294635 DOI: 10.1016/j.celrep.2023.112638] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/05/2023] [Accepted: 05/25/2023] [Indexed: 06/11/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a foodborne pathogen that specifically colonizes and infects the human large intestine. EHEC O157:H7 engages intricate regulatory pathways to detect host intestinal signals and regulate virulence-related gene expression during colonization and infection. However, the overall EHEC O157:H7 virulence regulatory network in the human large intestine remains incompletely understood. Here, we report a complete signal regulatory pathway where the EvgSA two-component system responds to high-nicotinamide levels produced by microbiota in the large intestine and directly activates loci of enterocyte effacement genes to promote EHEC O157:H7 adherence and colonization. This EvgSA-mediated nicotinamide signaling regulatory pathway is conserved and widespread among several other EHEC serotypes. Moreover, disruption of this virulence-regulating pathway by the deletion of evgS or evgA significantly decreased EHEC O157:H7 adherence and colonization in the mouse intestinal tract, indicating that these genes could be potential targets for the development of new therapeutics for EHEC O157:H7 infection.
Collapse
Affiliation(s)
- Wen Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, P.R. China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300071, P.R. China
| | - Hongmin Sun
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, P.R. China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300071, P.R. China
| | - Jun Yan
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, P.R. China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300071, P.R. China
| | - Chenbo Kang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, P.R. China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300071, P.R. China
| | - Junli Wu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, P.R. China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300071, P.R. China
| | - Bin Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, P.R. China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300071, P.R. China.
| |
Collapse
|
10
|
De Gaetano GV, Lentini G, Famà A, Coppolino F, Beninati C. Antimicrobial Resistance: Two-Component Regulatory Systems and Multidrug Efflux Pumps. Antibiotics (Basel) 2023; 12:965. [PMID: 37370284 DOI: 10.3390/antibiotics12060965] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
The number of multidrug-resistant bacteria is rapidly spreading worldwide. Among the various mechanisms determining resistance to antimicrobial agents, multidrug efflux pumps play a noteworthy role because they export extraneous and noxious substrates from the inside to the outside environment of the bacterial cell contributing to multidrug resistance (MDR) and, consequently, to the failure of anti-infective therapies. The expression of multidrug efflux pumps can be under the control of transcriptional regulators and two-component systems (TCS). TCS are a major mechanism by which microorganisms sense and reply to external and/or intramembrane stimuli by coordinating the expression of genes involved not only in pathogenic pathways but also in antibiotic resistance. In this review, we describe the influence of TCS on multidrug efflux pump expression and activity in some Gram-negative and Gram-positive bacteria. Taking into account the strict correlation between TCS and multidrug efflux pumps, the development of drugs targeting TCS, alone or together with already discovered efflux pump inhibitors, may represent a beneficial strategy to contribute to the fight against growing antibiotic resistance.
Collapse
Affiliation(s)
| | - Germana Lentini
- Department of Human Pathology, University of Messina, 98124 Messina, Italy
| | - Agata Famà
- Department of Human Pathology, University of Messina, 98124 Messina, Italy
| | - Francesco Coppolino
- Department of Biomedical, Dental and Imaging Sciences, University of Messina, 98124 Messina, Italy
| | - Concetta Beninati
- Department of Human Pathology, University of Messina, 98124 Messina, Italy
- Scylla Biotech Srl, 98124 Messina, Italy
| |
Collapse
|
11
|
Hu M, Zhang Y, Huang X, He M, Zhu J, Zhang Z, Cui Y, He S, Shi X. PhoPQ Regulates Quinolone and Cephalosporin Resistance Formation in Salmonella Enteritidis at the Transcriptional Level. mBio 2023:e0339522. [PMID: 37184399 DOI: 10.1128/mbio.03395-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
The two-component system (TCS) PhoPQ has been demonstrated to be crucial for the formation of resistance to quinolones and cephalosporins in Salmonella Enteritidis (S. Enteritidis). However, the mechanism underlying PhoPQ-mediated antibiotic resistance formation remains poorly understood. Here, it was shown that PhoP transcriptionally regulated an assortment of genes associated with envelope homeostasis, the osmotic stress response, and the redox balance to confer resistance to quinolones and cephalosporins in S. Enteritidis. Specifically, cells lacking the PhoP regulator, under nalidixic acid and ceftazidime stress, bore a severely compromised membrane on the aspects of integrity, fluidity, and permeability, with deficiency to withstand osmolarity stress, an increased accumulation of intracellular reactive oxygen species, and dysregulated redox homeostasis, which are unfavorable for bacterial survival. The phosphorylated PhoP elicited transcriptional alterations of resistance-associated genes, including the outer membrane porin ompF and the aconitate hydratase acnA, by directly binding to their promoters, leading to a limited influx of antibiotics and a well-maintained intracellular metabolism. Importantly, it was demonstrated that the cavity of the PhoQ sensor domain bound to and sensed quinolones/cephalosporins via the crucial surrounding residues, as their mutations abrogated the binding and PhoQ autophosphorylation. This recognition mode promoted signal transduction that activated PhoP, thereby modulating the transcription of downstream genes to accommodate cells to antibiotic stress. These findings have revealed how bacteria employ a specific TCS to sense antibiotics and combat them, suggesting PhoPQ as a potential drug target with which to surmount S. Enteritidis. IMPORTANCE The prevalence of quinolone and cephalosporin-resistant S. Enteritidis is of increasing clinical concern. Thus, it is imperative to identify novel therapeutic targets with which to treat S. Enteritidis-associated infections. The PhoPQ two-component system is conserved across a variety of Gram-negative pathogens, by which bacteria adapt to a range of environmental stimuli. Our earlier work has demonstrated the importance of PhoPQ in the resistance formation in S. Enteritidis to quinolones and cephalosporins. In the current work, we identified a global profile of genes that are regulated by PhoP under antibiotic stresses, with a focus on how PhoP regulated downstream genes, either positively or negatively. Additionally, we established that PhoQ sensed quinolones and cephalosporins in a manner of directly binding to them. These identified genes and pathways that are mediated by PhoPQ represent promising targets for the development of a drug potentiator with which to neutralize antibiotic resistance in S. Enteritidis.
Collapse
Affiliation(s)
- Mengjun Hu
- Department of Food Science & Technology, School of Agriculture & Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Yuyan Zhang
- Department of Food Science & Technology, School of Agriculture & Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaozhen Huang
- Department of Food Science & Technology, School of Agriculture & Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Mu He
- Department of Food Science & Technology, School of Agriculture & Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Jinyu Zhu
- Department of Food Science & Technology, School of Agriculture & Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Zengfeng Zhang
- Department of Food Science & Technology, School of Agriculture & Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Cui
- Department of Food Science & Technology, School of Agriculture & Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Shoukui He
- Department of Food Science & Technology, School of Agriculture & Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Xianming Shi
- Department of Food Science & Technology, School of Agriculture & Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
12
|
Characterization of the Role of Two-Component Systems in Antibiotic Resistance Formation in Salmonella enterica Serovar Enteritidis. mSphere 2022; 7:e0038322. [PMID: 36286534 PMCID: PMC9769886 DOI: 10.1128/msphere.00383-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The two-component system (TCS) is one of the primary pathways by which bacteria adapt to environmental stresses such as antibiotics. This study aimed to systematically explore the role of TCSs in the development of multidrug resistance (MDR) in Salmonella enterica serovar Enteritidis. Twenty-six in-frame deletion mutants of TCSs were generated from S. Enteritidis SJTUF12367 (the wild type [WT]). Antimicrobial susceptibility tests with these mutants revealed that 10 TCSs were involved in the development of antibiotic resistance in S. Enteritidis. In these 10 pairs of TCSs, functional defects in CpxAR, PhoPQ, and GlnGL in various S. Enteritidis isolates led to a frequent decrease in MIC values against at least three classes of clinically important antibiotics, including cephalosporins and quinolones, which indicated the importance of these TCSs to the formation of MDR. Interaction network analysis via STRING revealed that the genes cpxA, cpxR, phoP, and phoQ played important roles in the direct interaction with global regulatory genes and the relevant genes of efflux pumps and outer membrane porins. Quantitative reverse transcription-PCR analysis further demonstrated that the increased susceptibility to cephalosporins and quinolones in ΔphoP and ΔcpxR mutant cells was accompanied by increased expression of membrane porin genes (ompC, ompD, and ompF) and reduced expression of efflux pump genes (acrA, macB, and mdtK), as well as an adverse transcription of the global regulatory genes (ramA and crp). These results indicated that CpxAR and PhoPQ played an important role in the development of MDR in S. Enteritidis through regulation of cell membrane permeability and efflux pump activity. IMPORTANCE S. Enteritidis is a predominant Salmonella serotype that causes human salmonellosis and frequently exhibits high-level resistance to commonly used antibiotics, including cephalosporins and quinolones. Although TCSs are known as regulators for bacterial adaptation to stressful conditions, which modulates β-lactam resistance in Vibrio parahaemolyticus and colistin resistance in Salmonella enterica serovar Typhimurium, there is little knowledge of their functional mechanisms underlying the development of antibiotic resistance in S. Enteritidis. Here, we systematically identified the TCS elements in S. Enteritidis SJTUF12367, revealed that the three TCSs CpxAR, PhoPQ, and GlnGL were crucial for the MDR formation in S. Enteritidis, and preliminarily illustrated the regulatory functions of CpxAR and PhoPQ for antimicrobial resistance genes. Our work provides the basis to understand the important TCSs that regulate formation of antibiotic resistance in S. Enteritidis.
Collapse
|
13
|
Radi MS, Munro LJ, Salcedo-Sora JE, Kim SH, Feist AM, Kell DB. Understanding Functional Redundancy and Promiscuity of Multidrug Transporters in E. coli under Lipophilic Cation Stress. MEMBRANES 2022; 12:1264. [PMID: 36557171 PMCID: PMC9783932 DOI: 10.3390/membranes12121264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/27/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Multidrug transporters (MDTs) are major contributors to microbial drug resistance and are further utilized for improving host phenotypes in biotechnological applications. Therefore, the identification of these MDTs and the understanding of their mechanisms of action in vivo are of great importance. However, their promiscuity and functional redundancy represent a major challenge towards their identification. Here, a multistep tolerance adaptive laboratory evolution (TALE) approach was leveraged to achieve this goal. Specifically, a wild-type E. coli K-12-MG1655 and its cognate knockout individual mutants ΔemrE, ΔtolC, and ΔacrB were evolved separately under increasing concentrations of two lipophilic cations, tetraphenylphosphonium (TPP+), and methyltriphenylphosphonium (MTPP+). The evolved strains showed a significant increase in MIC values of both cations and an apparent cross-cation resistance. Sequencing of all evolved mutants highlighted diverse mutational mechanisms that affect the activity of nine MDTs including acrB, mdtK, mdfA, acrE, emrD, tolC, acrA, mdtL, and mdtP. Besides regulatory mutations, several structural mutations were recognized in the proximal binding domain of acrB and the permeation pathways of both mdtK and mdfA. These details can aid in the rational design of MDT inhibitors to efficiently combat efflux-based drug resistance. Additionally, the TALE approach can be scaled to different microbes and molecules of medical and biotechnological relevance.
Collapse
Affiliation(s)
- Mohammad S. Radi
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kongens Lyngby, Denmark
| | - Lachlan J. Munro
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kongens Lyngby, Denmark
| | - Jesus E. Salcedo-Sora
- GeneMill, Shared Research Facilities, Faculty of Health and Life Sciences, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
| | - Se Hyeuk Kim
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kongens Lyngby, Denmark
| | - Adam M. Feist
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kongens Lyngby, Denmark
- Department of Bioengineering, University of California, 9500 Gilman Drive, La Jolla, San Diego, CA 92093, USA
| | - Douglas B. Kell
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kongens Lyngby, Denmark
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
| |
Collapse
|
14
|
Schwarz J, Schumacher K, Brameyer S, Jung K. Bacterial battle against acidity. FEMS Microbiol Rev 2022; 46:6652135. [PMID: 35906711 DOI: 10.1093/femsre/fuac037] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 01/09/2023] Open
Abstract
The Earth is home to environments characterized by low pH, including the gastrointestinal tract of vertebrates and large areas of acidic soil. Most bacteria are neutralophiles, but can survive fluctuations in pH. Herein, we review how Escherichia, Salmonella, Helicobacter, Brucella, and other acid-resistant Gram-negative bacteria adapt to acidic environments. We discuss the constitutive and inducible defense mechanisms that promote survival, including proton-consuming or ammonia-producing processes, cellular remodeling affecting membranes and chaperones, and chemotaxis. We provide insights into how Gram-negative bacteria sense environmental acidity using membrane-integrated and cytosolic pH sensors. Finally, we address in more detail the powerful proton-consuming decarboxylase systems by examining the phylogeny of their regulatory components and their collective functionality in a population.
Collapse
Affiliation(s)
- Julia Schwarz
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | - Kilian Schumacher
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | - Sophie Brameyer
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | - Kirsten Jung
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| |
Collapse
|
15
|
Roles of Two-Component Signal Transduction Systems in Shigella Virulence. Biomolecules 2022; 12:biom12091321. [PMID: 36139160 PMCID: PMC9496106 DOI: 10.3390/biom12091321] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Two-component signal transduction systems (TCSs) are widespread types of protein machinery, typically consisting of a histidine kinase membrane sensor and a cytoplasmic transcriptional regulator that can sense and respond to environmental signals. TCSs are responsible for modulating genes involved in a multitude of bacterial functions, including cell division, motility, differentiation, biofilm formation, antibiotic resistance, and virulence. Pathogenic bacteria exploit the capabilities of TCSs to reprogram gene expression according to the different niches they encounter during host infection. This review focuses on the role of TCSs in regulating the virulence phenotype of Shigella, an intracellular pathogen responsible for severe human enteric syndrome. The pathogenicity of Shigella is the result of the complex action of a wide number of virulence determinants located on the chromosome and on a large virulence plasmid. In particular, we will discuss how five TCSs, EnvZ/OmpR, CpxA/CpxR, ArcB/ArcA, PhoQ/PhoP, and EvgS/EvgA, contribute to linking environmental stimuli to the expression of genes related to virulence and fitness within the host. Considering the relevance of TCSs in the expression of virulence in pathogenic bacteria, the identification of drugs that inhibit TCS function may represent a promising approach to combat bacterial infections.
Collapse
|
16
|
Sionov RV, Steinberg D. Targeting the Holy Triangle of Quorum Sensing, Biofilm Formation, and Antibiotic Resistance in Pathogenic Bacteria. Microorganisms 2022; 10:1239. [PMID: 35744757 PMCID: PMC9228545 DOI: 10.3390/microorganisms10061239] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic and recurrent bacterial infections are frequently associated with the formation of biofilms on biotic or abiotic materials that are composed of mono- or multi-species cultures of bacteria/fungi embedded in an extracellular matrix produced by the microorganisms. Biofilm formation is, among others, regulated by quorum sensing (QS) which is an interbacterial communication system usually composed of two-component systems (TCSs) of secreted autoinducer compounds that activate signal transduction pathways through interaction with their respective receptors. Embedded in the biofilms, the bacteria are protected from environmental stress stimuli, and they often show reduced responses to antibiotics, making it difficult to eradicate the bacterial infection. Besides reduced penetration of antibiotics through the intricate structure of the biofilms, the sessile biofilm-embedded bacteria show reduced metabolic activity making them intrinsically less sensitive to antibiotics. Moreover, they frequently express elevated levels of efflux pumps that extrude antibiotics, thereby reducing their intracellular levels. Some efflux pumps are involved in the secretion of QS compounds and biofilm-related materials, besides being important for removing toxic substances from the bacteria. Some efflux pump inhibitors (EPIs) have been shown to both prevent biofilm formation and sensitize the bacteria to antibiotics, suggesting a relationship between these processes. Additionally, QS inhibitors or quenchers may affect antibiotic susceptibility. Thus, targeting elements that regulate QS and biofilm formation might be a promising approach to combat antibiotic-resistant biofilm-related bacterial infections.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Biofilm Research Laboratory, The Institute of Biomedical and Oral Research, The Faculty of Dental Medicine, Hadassah Medical School, The Hebrew University, Jerusalem 9112102, Israel;
| | | |
Collapse
|
17
|
Ciusa ML, Marshall RL, Ricci V, Stone JW, Piddock LJV. Absence, loss-of-function, or inhibition of Escherichia coli AcrB does not increase expression of other efflux pump genes supporting the discovery of AcrB inhibitors as antibiotic adjuvants. J Antimicrob Chemother 2021; 77:633-640. [PMID: 34897478 PMCID: PMC8865010 DOI: 10.1093/jac/dkab452] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
Objectives To determine whether expression of efflux pumps and antibiotic susceptibility are altered in Escherichia coli in response to efflux inhibition. Methods The promoter regions of nine efflux pump genes (acrAB, acrD, acrEF, emrAB, macAB, cusCFBA, mdtK, mdtABC, mdfA) were fused to gfp in pMW82 and fluorescence from each reporter construct was used as a measure of the transcriptional response to conditions in which AcrB was inhibited, absent or made non-functional. Expression was also determined by RT-qPCR. Drug susceptibility of efflux pump mutants with missense mutations known or predicted to cause loss of function of the encoded efflux pump was investigated. Results Data from the GFP reporter constructs revealed that no increased expression of the tested efflux pump genes was observed when AcrB was absent, made non-functional, or inhibited by an efflux pump inhibitor/competitive substrate, such as PAβN or chlorpromazine. This was confirmed by RT-qPCR for PAβN and chlorpromazine; however, a small but significant increase in macB gene expression was seen when acrB is deleted. Efflux inhibitors only synergized with antibiotics in the presence of a functional AcrB. When AcrB was absent or non-functional, there was no impact on MICs when other efflux pumps were also made non-functional. Conclusions Absence, loss-of-function, or inhibition of E. coli AcrB did not significantly increase expression of other efflux pump genes, which suggests there is no compensatory mechanism to overcome efflux inhibition and supports the discovery of inhibitors of AcrB as antibiotic adjuvants.
Collapse
Affiliation(s)
- Maria Laura Ciusa
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Robert L Marshall
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Vito Ricci
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Jack W Stone
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Laura J V Piddock
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
18
|
Ali S, Alam M, Hasan GM, Hassan MI. Potential therapeutic targets of Klebsiella pneumoniae: a multi-omics review perspective. Brief Funct Genomics 2021; 21:63-77. [PMID: 34448478 DOI: 10.1093/bfgp/elab038] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 11/15/2022] Open
Abstract
The multidrug resistance developed in many organisms due to the prolonged use of antibiotics has been an increasing global health crisis. Klebsiella pneumoniae is a causal organism for various infections, including respiratory, urinary tract and biliary diseases. Initially, immunocompromised individuals are primarily affected by K. pneumoniae. Due to the emergence of hypervirulent strains recently, both healthy and immunocompetent individuals are equally susceptible to K. pneumoniae infections. The infections caused by multidrug-resistant and hypervirulent K. pneumoniae strains are complicated to treat, illustrating an urgent need to develop novel and more practical approaches to combat the pathogen. We focused on the previously performed high-throughput analyses by other groups to discover several novel enzymes that may be considered attractive drug targets of K. pneumoniae. These targets qualify most of the selection criteria for drug targeting, including an absence of its homolog's gene in the host. The capsule, lipopolysaccharide, fimbriae, siderophores and essential virulence factors facilitate the pathogen entry, infection and survival inside the host. This review discusses K. pneumoniae pathophysiology, including its virulence determinants and further the potential drug targets that might facilitate the discovery of novel drugs and effective treatment regimens shortly.
Collapse
Affiliation(s)
- Sabeeha Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar New Delhi 110025, India
| | - Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar New Delhi 110025, India
| |
Collapse
|
19
|
Ma P, Phillips-Jones MK. Membrane Sensor Histidine Kinases: Insights from Structural, Ligand and Inhibitor Studies of Full-Length Proteins and Signalling Domains for Antibiotic Discovery. Molecules 2021; 26:molecules26165110. [PMID: 34443697 PMCID: PMC8399564 DOI: 10.3390/molecules26165110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/02/2021] [Accepted: 08/19/2021] [Indexed: 12/19/2022] Open
Abstract
There is an urgent need to find new antibacterial agents to combat bacterial infections, including agents that inhibit novel, hitherto unexploited targets in bacterial cells. Amongst novel targets are two-component signal transduction systems (TCSs) which are the main mechanism by which bacteria sense and respond to environmental changes. TCSs typically comprise a membrane-embedded sensory protein (the sensor histidine kinase, SHK) and a partner response regulator protein. Amongst promising targets within SHKs are those involved in environmental signal detection (useful for targeting specific SHKs) and the common themes of signal transmission across the membrane and propagation to catalytic domains (for targeting multiple SHKs). However, the nature of environmental signals for the vast majority of SHKs is still lacking, and there is a paucity of structural information based on full-length membrane-bound SHKs with and without ligand. Reasons for this lack of knowledge lie in the technical challenges associated with investigations of these relatively hydrophobic membrane proteins and the inherent flexibility of these multidomain proteins that reduces the chances of successful crystallisation for structural determination by X-ray crystallography. However, in recent years there has been an explosion of information published on (a) methodology for producing active forms of full-length detergent-, liposome- and nanodisc-solubilised membrane SHKs and their use in structural studies and identification of signalling ligands and inhibitors; and (b) mechanisms of signal sensing and transduction across the membrane obtained using sensory and transmembrane domains in isolation, which reveal some commonalities as well as unique features. Here we review the most recent advances in these areas and highlight those of potential use in future strategies for antibiotic discovery. This Review is part of a Special Issue entitled “Interactions of Bacterial Molecules with Their Ligands and Other Chemical Agents” edited by Mary K. Phillips-Jones.
Collapse
Affiliation(s)
- Pikyee Ma
- Laboratory of Biomolecular Research, Paul Scherrer Institute, CH-5232 Villigen, Switzerland;
| | - Mary K. Phillips-Jones
- National Centre for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
- Correspondence:
| |
Collapse
|
20
|
Shi H, Li T, Xu J, Yu J, Yang S, Zhang XE, Tao S, Gu J, Deng JY. MgrB Inactivation Confers Trimethoprim Resistance in Escherichia coli. Front Microbiol 2021; 12:682205. [PMID: 34394028 PMCID: PMC8355897 DOI: 10.3389/fmicb.2021.682205] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/30/2021] [Indexed: 11/22/2022] Open
Abstract
After several decades of use, trimethoprim (TMP) remains one of the key access antimicrobial drugs listed by the World Health Organization. To circumvent the problem of trimethoprim resistance worldwide, a better understanding of drug-resistance mechanisms is required. In this study, we screened the single-gene knockout library of Escherichia coli, and identified mgrB and other several genes involved in trimethoprim resistance. Subsequent comparative transcriptional analysis between ΔmgrB and the wild-type strain showed that expression levels of phoP, phoQ, and folA were significantly upregulated in ΔmgrB. Further deleting phoP or phoQ could partially restore trimethoprim sensitivity to ΔmgrB, and co-overexpression of phoP/Q caused TMP resistance, suggesting the involvement of PhoP/Q in trimethoprim resistance. Correspondingly, MgrB and PhoP were shown to be able to modulated folA expression in vivo. After that, efforts were made to test if PhoP could directly modulate the expression of folA. Though phosphorylated PhoP could bind to the promotor region of folA in vitro, the former only provided a weak protection on the latter as shown by the DNA footprinting assay. In addition, deleting the deduced PhoP box in ΔmgrB could only slightly reverse the TMP resistance phenotype, suggesting that it is less likely for PhoP to directly modulate the transcription of folA. Taken together, our data suggested that, in E. coli, MgrB affects susceptibility to trimethoprim by modulating the expression of folA with the involvement of PhoP/Q. This work broadens our understanding of the regulation of folate metabolism and the mechanisms of TMP resistance in bacteria.
Collapse
Affiliation(s)
- Hongmei Shi
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ting Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jintian Xu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jifang Yu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shanshan Yang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xian-En Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shengce Tao
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Jing Gu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jiao-Yu Deng
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Guangdong Province Key Laboratory of TB Systems Biology and Translational Medicine, Foshan, China
| |
Collapse
|
21
|
Pasqua M, Bonaccorsi di Patti MC, Fanelli G, Utsumi R, Eguchi Y, Trirocco R, Prosseda G, Grossi M, Colonna B. Host - Bacterial Pathogen Communication: The Wily Role of the Multidrug Efflux Pumps of the MFS Family. Front Mol Biosci 2021; 8:723274. [PMID: 34381818 PMCID: PMC8350985 DOI: 10.3389/fmolb.2021.723274] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/13/2021] [Indexed: 12/23/2022] Open
Abstract
Bacterial pathogens are able to survive within diverse habitats. The dynamic adaptation to the surroundings depends on their ability to sense environmental variations and to respond in an appropriate manner. This involves, among others, the activation of various cell-to-cell communication strategies. The capability of the bacterial cells to rapidly and co-ordinately set up an interplay with the host cells and/or with other bacteria facilitates their survival in the new niche. Efflux pumps are ubiquitous transmembrane transporters, able to extrude a large set of different molecules. They are strongly implicated in antibiotic resistance since they are able to efficiently expel most of the clinically relevant antibiotics from the bacterial cytoplasm. Besides antibiotic resistance, multidrug efflux pumps take part in several important processes of bacterial cell physiology, including cell to cell communication, and contribute to increase the virulence potential of several bacterial pathogens. Here, we focus on the structural and functional role of multidrug efflux pumps belonging to the Major Facilitator Superfamily (MFS), the largest family of transporters, highlighting their involvement in the colonization of host cells, in virulence and in biofilm formation. We will offer an overview on how MFS multidrug transporters contribute to bacterial survival, adaptation and pathogenicity through the export of diverse molecules. This will be done by presenting the functions of several relevant MFS multidrug efflux pumps in human life-threatening bacterial pathogens as Staphylococcus aureus, Listeria monocytogenes, Klebsiella pneumoniae, Shigella/E. coli, Acinetobacter baumannii.
Collapse
Affiliation(s)
- Martina Pasqua
- Department of Biology and Biotechnology "C. Darwin", Istituto Pasteur Italia, Sapienza Università di Roma, Rome, Italy
| | | | - Giulia Fanelli
- Department of Biology and Biotechnology "C. Darwin", Istituto Pasteur Italia, Sapienza Università di Roma, Rome, Italy
| | - Ryutaro Utsumi
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Osaka, Japan
| | - Yoko Eguchi
- Department of Science and Technology on Food Safety, Kindai University, Kinokawa, Japan
| | - Rita Trirocco
- Department of Biology and Biotechnology "C. Darwin", Istituto Pasteur Italia, Sapienza Università di Roma, Rome, Italy
| | - Gianni Prosseda
- Department of Biology and Biotechnology "C. Darwin", Istituto Pasteur Italia, Sapienza Università di Roma, Rome, Italy
| | - Milena Grossi
- Department of Biology and Biotechnology "C. Darwin", Istituto Pasteur Italia, Sapienza Università di Roma, Rome, Italy
| | - Bianca Colonna
- Department of Biology and Biotechnology "C. Darwin", Istituto Pasteur Italia, Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
22
|
Liu S, Fang R, Zhang Y, Chen L, Huang N, Yu K, Zhou C, Cao J, Zhou T. Characterization of resistance mechanisms of Enterobacter cloacae Complex co-resistant to carbapenem and colistin. BMC Microbiol 2021; 21:208. [PMID: 34238225 PMCID: PMC8268410 DOI: 10.1186/s12866-021-02250-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 06/04/2021] [Indexed: 11/27/2022] Open
Abstract
Background The emergence of carbapenem-resistant and colistin-resistant ECC pose a huge challenge to infection control. The purpose of this study was to clarify the mechanism of the carbapenems and colistin co-resistance in Enterobacter cloacae Complex (ECC) strains. Results This study showed that the mechanisms of carbapenem resistance in this study are: 1. Generating carbapenemase (7 of 19); 2. The production of AmpC or ESBLs combined with decreased expression of out membrane protein (12 of 19). hsp60 sequence analysis suggested 10 of 19 the strains belong to colistin hetero-resistant clusters and the mechanism of colistin resistance is increasing expression of acrA in the efflux pump AcrAB-TolC alone (18 of 19) or accompanied by a decrease of affinity between colistin and outer membrane caused by the modification of lipid A (14 of 19). Moreover, an ECC strain co-harboring plasmid-mediated mcr-4.3 and blaNDM-1 has been found. Conclusions This study suggested that there is no overlap between the resistance mechanism of co-resistant ECC strains to carbapenem and colistin. However, the emergence of strain co-harboring plasmid-mediated resistance genes indicated that ECC is a potential carrier for the horizontal spread of carbapenems and colistin resistance. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02250-x.
Collapse
Affiliation(s)
- Shixing Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Renchi Fang
- Department of Laboratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Ying Zhang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Lijiang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Na Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Kaihang Yu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Cui Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Jianming Cao
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
23
|
Inada S, Okajima T, Utsumi R, Eguchi Y. Acid-Sensing Histidine Kinase With a Redox Switch. Front Microbiol 2021; 12:652546. [PMID: 34093469 PMCID: PMC8174306 DOI: 10.3389/fmicb.2021.652546] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/19/2021] [Indexed: 12/22/2022] Open
Abstract
The EvgS/EvgA two-component signal transduction system in Escherichia coli is activated under mildly acidic pH conditions. Upon activation, this system induces the expression of a number of genes that confer acid resistance. The EvgS histidine kinase sensor has a large periplasmic domain that is required for perceiving acidic signals. In addition, we have previously proposed that the cytoplasmic linker region of EvgS is also involved in the activation of this sensor. The cytoplasmic linker region resembles a Per-ARNT-Sim (PAS) domain, which is known to act as a molecular sensor that is responsive to chemical and physical stimuli and regulates the activity of diverse effector domains. Our EvgS/EvgA reporter assays revealed that under EvgS-activating mildly acidic pH conditions, EvgS was activated only during aerobic growth conditions, and not during anaerobic growth. Studies using EvgS mutants revealed that C671A and C683A mutations in the cytoplasmic PAS domain activated EvgS even under anaerobic conditions. Furthermore, among the electron carriers of the electron transport chain, ubiquinone was required for EvgS activation. The present study proposes a model of EvgS activation by oxidation and suggests that the cytoplasmic PAS domain serves as an intermediate redox switch for this sensor.
Collapse
Affiliation(s)
- Shinya Inada
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Japan
| | - Toshihide Okajima
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Japan
| | - Ryutaro Utsumi
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Japan
| | - Yoko Eguchi
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Japan
| |
Collapse
|
24
|
Alav I, Kobylka J, Kuth MS, Pos KM, Picard M, Blair JMA, Bavro VN. Structure, Assembly, and Function of Tripartite Efflux and Type 1 Secretion Systems in Gram-Negative Bacteria. Chem Rev 2021; 121:5479-5596. [PMID: 33909410 PMCID: PMC8277102 DOI: 10.1021/acs.chemrev.1c00055] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 12/11/2022]
Abstract
Tripartite efflux pumps and the related type 1 secretion systems (T1SSs) in Gram-negative organisms are diverse in function, energization, and structural organization. They form continuous conduits spanning both the inner and the outer membrane and are composed of three principal components-the energized inner membrane transporters (belonging to ABC, RND, and MFS families), the outer membrane factor channel-like proteins, and linking the two, the periplasmic adaptor proteins (PAPs), also known as the membrane fusion proteins (MFPs). In this review we summarize the recent advances in understanding of structural biology, function, and regulation of these systems, highlighting the previously undescribed role of PAPs in providing a common architectural scaffold across diverse families of transporters. Despite being built from a limited number of basic structural domains, these complexes present a staggering variety of architectures. While key insights have been derived from the RND transporter systems, a closer inspection of the operation and structural organization of different tripartite systems reveals unexpected analogies between them, including those formed around MFS- and ATP-driven transporters, suggesting that they operate around basic common principles. Based on that we are proposing a new integrated model of PAP-mediated communication within the conformational cycling of tripartite systems, which could be expanded to other types of assemblies.
Collapse
Affiliation(s)
- Ilyas Alav
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Jessica Kobylka
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Miriam S. Kuth
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Klaas M. Pos
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Martin Picard
- Laboratoire
de Biologie Physico-Chimique des Protéines Membranaires, CNRS
UMR 7099, Université de Paris, 75005 Paris, France
- Fondation
Edmond de Rothschild pour le développement de la recherche
Scientifique, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Jessica M. A. Blair
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Vassiliy N. Bavro
- School
of Life Sciences, University of Essex, Colchester, CO4 3SQ United Kingdom
| |
Collapse
|
25
|
Biofilms as Promoters of Bacterial Antibiotic Resistance and Tolerance. Antibiotics (Basel) 2020; 10:antibiotics10010003. [PMID: 33374551 PMCID: PMC7822488 DOI: 10.3390/antibiotics10010003] [Citation(s) in RCA: 262] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/15/2020] [Accepted: 12/19/2020] [Indexed: 12/12/2022] Open
Abstract
Multidrug resistant bacteria are a global threat for human and animal health. However, they are only part of the problem of antibiotic failure. Another bacterial strategy that contributes to their capacity to withstand antimicrobials is the formation of biofilms. Biofilms are associations of microorganisms embedded a self-produced extracellular matrix. They create particular environments that confer bacterial tolerance and resistance to antibiotics by different mechanisms that depend upon factors such as biofilm composition, architecture, the stage of biofilm development, and growth conditions. The biofilm structure hinders the penetration of antibiotics and may prevent the accumulation of bactericidal concentrations throughout the entire biofilm. In addition, gradients of dispersion of nutrients and oxygen within the biofilm generate different metabolic states of individual cells and favor the development of antibiotic tolerance and bacterial persistence. Furthermore, antimicrobial resistance may develop within biofilms through a variety of mechanisms. The expression of efflux pumps may be induced in various parts of the biofilm and the mutation frequency is induced, while the presence of extracellular DNA and the close contact between cells favor horizontal gene transfer. A deep understanding of the mechanisms by which biofilms cause tolerance/resistance to antibiotics helps to develop novel strategies to fight these infections.
Collapse
|
26
|
Zhang Z, Yu YX, Wang YG, Liu X, Wang LF, Zhang H, Liao MJ, Li B. Complete genome analysis of a virulent Vibrio scophthalmi strain VSc190401 isolated from diseased marine fish half-smooth tongue sole, Cynoglossus semilaevis. BMC Microbiol 2020; 20:341. [PMID: 33176689 PMCID: PMC7661262 DOI: 10.1186/s12866-020-02028-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 10/30/2020] [Indexed: 12/12/2022] Open
Abstract
Background Vibrio scophthalmi is an opportunistic bacterial pathogen, which is widely distributed in the marine environment. Earlier studies have suggested that it is a normal microorganism in the turbot gut. However, recent studies have confirmed that this bacterial strain can cause diseases in many different marine animals. Therefore, it is necessary to investigate its whole genome for better understanding its physiological and pathogenic mechanisms. Results In the present study, we obtained a pathogenic strain of V. scophthalmi from diseased half-smooth tongue sole (Cynoglossus semilaevis) and sequenced its whole genome. Its genome contained two circular chromosomes and two plasmids with a total size of 3,541,838 bp, which harbored 3185 coding genes. Among these genes, 2648, 2298, and 1915 genes could be found through annotation information in COG, Blast2GO, and KEGG databases, respectively. Moreover, 10 genomic islands were predicted to exist in the chromosome I through IslandViewer online system. Comparison analysis in VFDB and PHI databases showed that this strain had 334 potential virulence-related genes and 518 pathogen-host interaction-related genes. Although it contained genes related to four secretion systems of T1SS, T2SS, T4SS, and T6SS, there was only one complete T2SS secretion system. Based on CARD database blast results, 180 drug resistance genes belonging to 27 antibiotic resistance categories were found in the whole genome of such strain. However, there were many differences between the phenotype and genotype of drug resistance. Conclusions Based on the whole genome analysis, the pathogenic V. scophthalmi strain contained many types of genes related to pathogenicity and drug resistance. Moreover, it showed inconsistency between phenotype and genotype on drug resistance. These results suggested that the physiological mechanism seemed to be complex. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-020-02028-7.
Collapse
Affiliation(s)
- Zheng Zhang
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, Shandong, 266071, PR China. .,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong, 266237, PR China.
| | - Yong-Xiang Yu
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, Shandong, 266071, PR China
| | - Yin-Geng Wang
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, Shandong, 266071, PR China. .,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong, 266237, PR China.
| | - Xiao Liu
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, Shandong, 266071, PR China
| | - Li-Fang Wang
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, Shandong, 266071, PR China
| | - Hao Zhang
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, Shandong, 266071, PR China
| | - Mei-Jie Liao
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, Shandong, 266071, PR China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong, 266237, PR China
| | - Bin Li
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, Shandong, 266071, PR China
| |
Collapse
|
27
|
Teelucksingh T, Thompson LK, Cox G. The Evolutionary Conservation of Escherichia coli Drug Efflux Pumps Supports Physiological Functions. J Bacteriol 2020; 202:e00367-20. [PMID: 32839176 PMCID: PMC7585057 DOI: 10.1128/jb.00367-20] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Bacteria harness an impressive repertoire of resistance mechanisms to evade the inhibitory action of antibiotics. One such mechanism involves efflux pump-mediated extrusion of drugs from the bacterial cell, which significantly contributes to multidrug resistance. Intriguingly, most drug efflux pumps are chromosomally encoded components of the intrinsic antibiotic resistome. In addition, in terms of xenobiotic detoxification, bacterial efflux systems often exhibit significant levels of functional redundancy. Efflux pumps are also considered to be highly conserved; however, the extent of conservation in many bacterial species has not been reported and the majority of genes that encode efflux pumps appear to be dispensable for growth. These observations, in combination with an increasing body of experimental evidence, imply alternative roles in bacterial physiology. Indeed, the ability of efflux pumps to facilitate antibiotic resistance could be a fortuitous by-product of ancient physiological functions. Using Escherichia coli as a model organism, we here evaluated the evolutionary conservation of drug efflux pumps and we provide phylogenetic analysis of the major efflux families. We show the E. coli drug efflux system has remained relatively stable and the majority (∼80%) of pumps are encoded in the core genome. This analysis further supports the importance of drug efflux pumps in E. coli physiology. In this review, we also provide an update on the roles of drug efflux pumps in the detoxification of endogenously synthesized substrates and pH homeostasis. Overall, gaining insight into drug efflux pump conservation, common evolutionary ancestors, and physiological functions could enable strategies to combat these intrinsic and ancient elements.
Collapse
Affiliation(s)
- Tanisha Teelucksingh
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Laura K Thompson
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Georgina Cox
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
28
|
Huang L, Feng Y, Zong Z. Heterogeneous resistance to colistin in Enterobacter cloacae complex due to a new small transmembrane protein. J Antimicrob Chemother 2020; 74:2551-2558. [PMID: 31169899 DOI: 10.1093/jac/dkz236] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/28/2019] [Accepted: 05/05/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Enterobacter strains can display heterogeneous resistance (heteroresistance) to colistin but the mechanisms remain largely unknown. We investigated potential mechanisms of colistin heteroresistance in an Enterobacter clinical strain, WCHECl-1060, and found a new mechanism. METHODS Strain WCHECl-1060 was subjected to WGS to identify known colistin resistance mechanisms. Tn5 insertional mutagenesis, gene knockout and complementation and shotgun cloning were employed to investigate unknown colistin heteroresistance mechanisms. RNA sequencing was performed to link the newly identified mechanism with known ones. RESULTS We showed that the phoP gene [encoding part of the PhoP-PhoQ two-component system (TCS)], the dedA(Ecl) gene (encoding an inner membrane protein of the DedA family) and the tolC gene (encoding part of the AcrAB-TolC efflux pump) are required for colistin heteroresistance. We identified a new gene, ecr, encoding a 72 amino acid transmembrane protein, which was able to mediate colistin heteroresistance. We then performed RNA sequencing and transcriptome analysis and found that in the presence of ecr the expression of phoP and the arnBCADTEF operon, which synthesizes and transfers l-Ara4N to lipid A, was increased significantly. CONCLUSIONS The small protein encoded by ecr represents a new colistin heteroresistance mechanism and is likely to mediate colistin heteroresistance via the PhoP-PhoQ TCS to act on the arnBCADTEF operon.
Collapse
Affiliation(s)
- Liang Huang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.,Public Health Clinical Center of Chengdu, Chengdu, China
| | - Yu Feng
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Zhiyong Zong
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China.,Department of Infection Control, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
29
|
Yu L, Li W, Xue M, Li J, Chen X, Ni J, Shang F, Xue T. Regulatory Role of the Two-Component System BasSR in the Expression of the EmrD Multidrug Efflux in Escherichia coli. Microb Drug Resist 2020; 26:1163-1173. [PMID: 32379525 DOI: 10.1089/mdr.2019.0412] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Due to excessive use of antimicrobial agents in the treatment of infectious diseases, bacteria have developed resistance to antibacterial drugs and toxic compounds. The development of multidrug efflux pumps is one of the important mechanisms of bacterial drug resistance. A multidrug efflux pump, EmrD, belonging to the major facilitator superfamily of transporters, confers resistance to many antimicrobial agents. BasSR, a typical two-component signal transduction system (TCS), regulates susceptibility to the cationic antimicrobial peptide, polymyxin B, and the anionic bile detergent, deoxycholic acid, in Escherichia coli. However, whether or not the BasSR TCS affects susceptibility or resistance to other antimicrobial agents and transcription of emrD has not been reported in E. coli. In the present study, we constructed the basSR mutants of wild-type MG1655 and clinical strain APECX40 and performed antimicrobial susceptibility testing, antibacterial activity assays, real-time reverse transcription-PCR experiments and electrophoretic mobility shift assays (EMSA) to investigate the molecular mechanism by which BasSR regulates the EmrD multidrug efflux pump. Results showed that the basSR mutation increased cell susceptibility to eight antimicrobial agents, including ciprofloxacin, norfloxacin, doxycycline, tetracycline, clindamycin, lincomycin, erythromycin, and sodium dodecyl sulfate, by downregulating the transcriptional levels of emrD. Furthermore, EMSA indicated that BasR could directly bind to the emrD promoter. Therefore, this study was the first to demonstrate that BasSR activates transcription of emrD by binding directly to its promoter region, and then decreases susceptibility to various antimicrobial agents in E. coli strains, APECX40 and MG1655.
Collapse
Affiliation(s)
- Lumin Yu
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Wenchang Li
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Mei Xue
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Hefei, China
| | - Jing Li
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Xiaolin Chen
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Jingtian Ni
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Fei Shang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Ting Xue
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| |
Collapse
|
30
|
Lories B, Roberfroid S, Dieltjens L, De Coster D, Foster KR, Steenackers HP. Biofilm Bacteria Use Stress Responses to Detect and Respond to Competitors. Curr Biol 2020; 30:1231-1244.e4. [PMID: 32084407 PMCID: PMC7322538 DOI: 10.1016/j.cub.2020.01.065] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/30/2019] [Accepted: 01/17/2020] [Indexed: 12/28/2022]
Abstract
Bacteria use complex regulatory networks to cope with stress, but the function of these networks in natural habitats is poorly understood. The competition sensing hypothesis states that bacterial stress response systems can serve to detect ecological competition, but studying regulatory responses in diverse communities is challenging. Here, we solve this problem by using differential fluorescence induction to screen the Salmonella Typhimurium genome for loci that respond, at the single-cell level, to life in biofilms with competing strains of S. Typhimurium and Escherichia coli. This screening reveals the presence of competing strains drives up the expression of genes associated with biofilm matrix production (CsgD pathway), epithelial invasion (SPI1 invasion system), and, finally, chemical efflux and antibiotic tolerance (TolC efflux pump and AadA aminoglycoside 3-adenyltransferase). We validate that these regulatory changes result in the predicted phenotypic changes in biofilm, mammalian cell invasion, and antibiotic tolerance. We further show that these responses arise via activation of major stress responses, providing direct support for the competition sensing hypothesis. Moreover, inactivation of the type VI secretion system (T6SS) of a competitor annuls the responses to competition, indicating that T6SS-derived cell damage activates these stress response systems. Our work shows that bacteria use stress responses to detect and respond to competition in a manner important for major phenotypes, including biofilm formation, virulence, and antibiotic tolerance.
Collapse
Affiliation(s)
- Bram Lories
- Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - Stefanie Roberfroid
- Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - Lise Dieltjens
- Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - David De Coster
- Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - Kevin R Foster
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK.
| | - Hans P Steenackers
- Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium; Department of Zoology, University of Oxford, Oxford OX1 3PS, UK.
| |
Collapse
|
31
|
Yin Z, Yuan C, Du Y, Yang P, Qian C, Wei Y, Zhang S, Huang D, Liu B. Comparative genomic analysis of the Hafnia genus reveals an explicit evolutionary relationship between the species alvei and paralvei and provides insights into pathogenicity. BMC Genomics 2019; 20:768. [PMID: 31646960 PMCID: PMC6806506 DOI: 10.1186/s12864-019-6123-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 09/20/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The Hafnia genus is an opportunistic pathogen that has been implicated in both nosocomial and community-acquired infections. Although Hafnia is fairly often isolated from clinical material, its taxonomy has remained an unsolved riddle, and the involvement and importance of Hafnia in human disease is also uncertain. Here, we used comparative genomic analysis to define the taxonomy of Hafnia, identify species-specific genes that may be the result of ecological and pathogenic specialization, and reveal virulence-related genetic profiles that may contribute to pathogenesis. RESULTS One complete genome sequence and 19 draft genome sequences for Hafnia strains were generated and combined with 27 publicly available genomes. We provided high-resolution typing methods by constructing phylogeny and population structure based on single-copy core genes in combination with whole genome average nucleotide identity to identify two distant Hafnia species (alvei and paralvei) and one mislabeled strain. The open pan-genome and the presence of numerous mobile genetic elements reveal that Hafnia has undergone massive gene rearrangements. Presence of species-specific core genomes associated with metabolism and transport suggests the putative niche differentiation between alvei and paralvei. We also identified possession of diverse virulence-related profiles in both Hafnia species., including the macromolecular secretion system, virulence, and antimicrobial resistance. In the macromolecular system, T1SS, Flagellum 1, Tad pilus and T6SS-1 were conserved in Hafnia, whereas T4SS, T5SS, and other T6SSs exhibited the evolution of diversity. The virulence factors in Hafnia are related to adherence, toxin, iron uptake, stress adaptation, and efflux pump. The identified resistance genes are associated with aminoglycoside, beta-lactam, bacitracin, cationic antimicrobial peptide, fluoroquinolone, and rifampin. These virulence-related profiles identified at the genomic level provide insights into Hafnia pathogenesis and the differentiation between alvei and paralvei. CONCLUSIONS Our research using core genome phylogeny and comparative genomics analysis of a larger collection of strains provides a comprehensive view of the taxonomy and species-specific traits between Hafnia species. Deciphering the genome of Hafnia strains possessing a reservoir of macromolecular secretion systems, virulence factors, and resistance genes related to pathogenicity may provide insights into addressing its numerous infections and devising strategies to combat the pathogen.
Collapse
Affiliation(s)
- Zhiqiu Yin
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, People’s Republic of China
- TEDA institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Microbial Functional Genomeics, TEDA college, Nankai university, Tianjin, People’s Republic of China
| | - Chao Yuan
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, People’s Republic of China
- TEDA institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Microbial Functional Genomeics, TEDA college, Nankai university, Tianjin, People’s Republic of China
| | - Yuhui Du
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, People’s Republic of China
- TEDA institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Microbial Functional Genomeics, TEDA college, Nankai university, Tianjin, People’s Republic of China
| | - Pan Yang
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, People’s Republic of China
- TEDA institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Microbial Functional Genomeics, TEDA college, Nankai university, Tianjin, People’s Republic of China
| | - Chengqian Qian
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, People’s Republic of China
- TEDA institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Microbial Functional Genomeics, TEDA college, Nankai university, Tianjin, People’s Republic of China
| | - Yi Wei
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, People’s Republic of China
- TEDA institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Microbial Functional Genomeics, TEDA college, Nankai university, Tianjin, People’s Republic of China
| | - Si Zhang
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, People’s Republic of China
- TEDA institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Microbial Functional Genomeics, TEDA college, Nankai university, Tianjin, People’s Republic of China
| | - Di Huang
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, People’s Republic of China
- TEDA institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Microbial Functional Genomeics, TEDA college, Nankai university, Tianjin, People’s Republic of China
| | - Bin Liu
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, People’s Republic of China
- TEDA institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Microbial Functional Genomeics, TEDA college, Nankai university, Tianjin, People’s Republic of China
| |
Collapse
|
32
|
Tierney AR, Rather PN. Roles of two-component regulatory systems in antibiotic resistance. Future Microbiol 2019; 14:533-552. [PMID: 31066586 DOI: 10.2217/fmb-2019-0002] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Two-component regulatory systems (TCSs) are a major mechanism by which bacteria sense and respond to changes in their environment. TCSs typically consist of two proteins that bring about major regulation of the cell genome through coordinated action mediated by phosphorylation. Environmental conditions that activate TCSs are numerous and diverse and include exposure to antibiotics as well as conditions inside a host. The resulting regulatory action often involves activation of antibiotic defenses and changes to cell physiology that increase antibiotic resistance. Examples of resistance mechanisms enacted by TCSs contained in this review span those found in both Gram-negative and Gram-positive species and include cell surface modifications, changes in cell permeability, increased biofilm formation, and upregulation of antibiotic-degrading enzymes.
Collapse
Affiliation(s)
- Aimee Rp Tierney
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA, 30322 USA
| | - Philip N Rather
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA, 30322 USA.,Research Service, Department of Veterans' Affairs, Atlanta VA Health Care System, Decatur, GA, 30033 USA
| |
Collapse
|
33
|
Pasqua M, Grossi M, Scinicariello S, Aussel L, Barras F, Colonna B, Prosseda G. The MFS efflux pump EmrKY contributes to the survival of Shigella within macrophages. Sci Rep 2019; 9:2906. [PMID: 30814604 PMCID: PMC6393483 DOI: 10.1038/s41598-019-39749-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 01/29/2019] [Indexed: 02/04/2023] Open
Abstract
Efflux pumps are membrane protein complexes conserved in all living organisms. Beyond being involved in antibiotic extrusion in several bacteria, efflux pumps are emerging as relevant players in pathogen-host interactions. We have investigated on the possible role of the efflux pump network in Shigella flexneri, the etiological agent of bacillary dysentery. We have found that S. flexneri has retained 14 of the 20 pumps characterized in Escherichia coli and that their expression is differentially modulated during the intracellular life of Shigella. In particular, the emrKY operon, encoding an efflux pump of the Major Facilitator Superfamily, is specifically and highly induced in Shigella-infected U937 macrophage-like cells and is activated in response to a combination of high K+ and acidic pH, which are sensed by the EvgS/EvgA two-component system. Notably, we show that following S. flexneri infection, macrophage cytosol undergoes a mild reduction of intracellular pH, permitting EvgA to trigger the emrKY activation. Finally, we present data suggesting that EmrKY is required for the survival of Shigella in the harsh macrophage environment, highlighting for the first time the key role of an efflux pump during the Shigella invasive process.
Collapse
Affiliation(s)
- Martina Pasqua
- Istituto Pasteur Italia, Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, Rome, Italy
| | - Milena Grossi
- Istituto Pasteur Italia, Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, Rome, Italy
| | - Sara Scinicariello
- Istituto Pasteur Italia, Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, Rome, Italy
| | - Laurent Aussel
- Aix-Marseille Univ, CNRS, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Marseille, France
| | | | - Bianca Colonna
- Istituto Pasteur Italia, Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, Rome, Italy
| | - Gianni Prosseda
- Istituto Pasteur Italia, Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, Rome, Italy.
| |
Collapse
|
34
|
Target (MexB)- and Efflux-Based Mechanisms Decreasing the Effectiveness of the Efflux Pump Inhibitor D13-9001 in Pseudomonas aeruginosa PAO1: Uncovering a New Role for MexMN-OprM in Efflux of β-Lactams and a Novel Regulatory Circuit (MmnRS) Controlling MexMN Expression. Antimicrob Agents Chemother 2019; 63:AAC.01718-18. [PMID: 30420483 DOI: 10.1128/aac.01718-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/29/2018] [Indexed: 12/22/2022] Open
Abstract
Efflux pumps contribute to antibiotic resistance in Gram-negative pathogens. Correspondingly, efflux pump inhibitors (EPIs) may reverse this resistance. D13-9001 specifically inhibits MexAB-OprM in Pseudomonas aeruginosa Mutants with decreased susceptibility to MexAB-OprM inhibition by D13-9001 were identified, and these fell into two categories: those with alterations in the target MexB (F628L and ΔV177) and those with an alteration in a putative sensor kinase of unknown function, PA1438 (L172P). The alterations in MexB were consistent with reported structural studies of the D13-9001 interaction with MexB. The PA1438L172P alteration mediated a >150-fold upregulation of MexMN pump gene expression and a >50-fold upregulation of PA1438 and the neighboring response regulator gene, PA1437. We propose that these be renamed mmnR and mmnS for MexMN regulator and MexMN sensor, respectively. MexMN was shown to partner with the outer membrane channel protein OprM and to pump several β-lactams, monobactams, and tazobactam. Upregulated MexMN functionally replaced MexAB-OprM to efflux these compounds but was insusceptible to inhibition by D13-9001. MmnSL172P also mediated a decrease in susceptibility to imipenem and biapenem that was independent of MexMN-OprM. Expression of oprD, encoding the uptake channel for these compounds, was downregulated, suggesting that this channel is also part of the MmnSR regulon. Transcriptome sequencing (RNA-seq) of cells encoding MmnSL172P revealed, among other things, an interrelationship between the regulation of mexMN and genes involved in heavy metal resistance.
Collapse
|
35
|
Using a Chemical Genetic Screen to Enhance Our Understanding of the Antimicrobial Properties of Gallium against Escherichia coli. Genes (Basel) 2019; 10:genes10010034. [PMID: 30634525 PMCID: PMC6356860 DOI: 10.3390/genes10010034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/17/2018] [Accepted: 01/04/2019] [Indexed: 12/13/2022] Open
Abstract
The diagnostic and therapeutic agent gallium offers multiple clinical and commercial uses including the treatment of cancer and the localization of tumors, among others. Further, this metal has been proven to be an effective antimicrobial agent against a number of microbes. Despite the latter, the fundamental mechanisms of gallium action have yet to be fully identified and understood. To further the development of this antimicrobial, it is imperative that we understand the mechanisms by which gallium interacts with cells. As a result, we screened the Escherichia coli Keio mutant collection as a means of identifying the genes that are implicated in prolonged gallium toxicity or resistance and mapped their biological processes to their respective cellular system. We discovered that the deletion of genes functioning in response to oxidative stress, DNA or iron–sulfur cluster repair, and nucleotide biosynthesis were sensitive to gallium, while Ga resistance comprised of genes involved in iron/siderophore import, amino acid biosynthesis and cell envelope maintenance. Altogether, our explanations of these findings offer further insight into the mechanisms of gallium toxicity and resistance in E. coli.
Collapse
|
36
|
Feldheim YS, Zusman T, Kapach A, Segal G. The single-domain response regulator LerC functions as a connector protein in theLegionella pneumophilaeffectors regulatory network. Mol Microbiol 2018; 110:741-760. [DOI: 10.1111/mmi.14101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/29/2018] [Accepted: 08/07/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Yaron S. Feldheim
- Department of Molecular Microbiology and Biotechnology, School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences; Tel-Aviv University; Tel-Aviv Israel
| | - Tal Zusman
- Department of Molecular Microbiology and Biotechnology, School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences; Tel-Aviv University; Tel-Aviv Israel
| | - Anya Kapach
- Department of Molecular Microbiology and Biotechnology, School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences; Tel-Aviv University; Tel-Aviv Israel
| | - Gil Segal
- Department of Molecular Microbiology and Biotechnology, School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences; Tel-Aviv University; Tel-Aviv Israel
| |
Collapse
|
37
|
Shin J, Cho H, Kim S, Kim KS. Role of acid responsive genes in the susceptibility of Escherichia coli to ciclopirox. Biochem Biophys Res Commun 2018; 500:296-301. [PMID: 29654752 DOI: 10.1016/j.bbrc.2018.04.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 04/10/2018] [Indexed: 10/17/2022]
Abstract
Antibiotic resistance poses a huge threat to the effective treatment of bacterial infections. To circumvent the limitations in developing new antibiotics, researchers are attempting to repurpose pre-developed drugs that are known to be safe. Ciclopirox, an off-patent antifungal agent, inhibits the growth of Gram-negative bacteria, and genes involved in galactose metabolism and lipopolysaccharide (LPS) biosynthesis are plausible antibacterial targets for ciclopirox, since their expression levels partially increase susceptibility at restrictive concentrations. In the present study, to identify new target genes involved in the susceptibility of Escherichia coli to ciclopirox, genome-wide mRNA profiling was performed following ciclopirox addition at sublethal concentrations, and glutamate-dependent acid resistance (GDAR) genes were differentially regulated. Additional susceptibility testing, growth analyses and viability assays of GDAR regulatory genes revealed that down-regulation of evgS or hns strongly enhanced susceptibility to ciclopirox. Further microscopy and phenotypic analyses revealed that down-regulation of these genes increased cell size and decreased motility. Our findings could help to maximise the efficacy of ciclopirox against hard-to-treat Gram-negative pathogens.
Collapse
Affiliation(s)
- Jonghoon Shin
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Hyejin Cho
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Suran Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Kwang-Sun Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
38
|
Dwivedi GR, Maurya A, Yadav DK, Singh V, Khan F, Gupta MK, Singh M, Darokar MP, Srivastava SK. Synergy of clavine alkaloid 'chanoclavine' with tetracycline against multi-drug-resistant E. coli. J Biomol Struct Dyn 2018; 37:1307-1325. [PMID: 29595093 DOI: 10.1080/07391102.2018.1458654] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The emergence of multi drug resistance (MDR) in Gram-negative bacteria (GNB) and lack of novel classes of antibacterial agents have raised an immediate need to identify antibacterial agents, which can reverse the phenomenon of MDR. The purpose of present study was to evaluate synergy potential and understanding the drug resistance reversal mechanism of chanoclavine isolated from Ipomoea muricata against the multi-drug-resistant clinical isolate of Escherichia coli (MDREC). Although chanoclavine did not show antibacterial activity of its own, but in combination, it could reduce the minimum inhibitory concentration (MIC) of tetracycline (TET) up to 16-folds. Chanoclavine was found to inhibit the efflux pumps which seem to be ATPase-dependent. In real-time expression analysis, chanoclavine showed down-regulation of different efflux pump genes and decreased the mutation prevention concentration of tetracycline. Further, in silico docking studies revealed significant binding affinity of chanoclavine with different proteins known to be involved in drug resistance. In in silico ADME/toxicity studies, chanoclavine was found safe with good intestinal absorption, aqueous solubility, medium blood-brain barrier (BBB), no CYP 2D6 inhibition, no hepatotoxicity, no skin irritancy, and non-mutagenic indicating towards drug likeliness of this molecule. Based on these observations, it is hypothesized that chanoclavine might be inhibiting the efflux of tetracycline from MDREC and thus enabling the more availability of tetracycline inside the cell for its action.
Collapse
Affiliation(s)
- Gaurav Raj Dwivedi
- a Molecular Bioprospection Department , CSIR-Central Institute of Medicinal and Aromatic Plants , Lucknow 226015 , India.,b Microbiology Department , ICMR-Regional Medical Research Centre , Bhubaneshwar 751023 , Odisha , India
| | - Anupam Maurya
- c Medicinal Chemistry Department , CSIR-Central Institute of Medicinal and Aromatic Plants , Lucknow 226015 , India.,d Pharmacopoeia Commission for Indian Medicine and Homeopathy (PCIM&H) , PLIM Campus, Ghaziabad 201002 , India
| | - Dharmendra Kumar Yadav
- e Metabolic & Structural Biology , CSIR-Central Institute of Medicinal and Aromatic Plants , Lucknow 226015 , India.,f College of Pharmacy , Gachon University , Hambakmoeiro 191, Yeonsu-gu, Incheon City 406-799 , Korea
| | - Vigyasa Singh
- a Molecular Bioprospection Department , CSIR-Central Institute of Medicinal and Aromatic Plants , Lucknow 226015 , India
| | - Feroz Khan
- e Metabolic & Structural Biology , CSIR-Central Institute of Medicinal and Aromatic Plants , Lucknow 226015 , India
| | | | - Mastan Singh
- g Department of Microbiology , King George Medical University , Lucknow , India
| | - Mahendra P Darokar
- a Molecular Bioprospection Department , CSIR-Central Institute of Medicinal and Aromatic Plants , Lucknow 226015 , India
| | - Santosh Kumar Srivastava
- c Medicinal Chemistry Department , CSIR-Central Institute of Medicinal and Aromatic Plants , Lucknow 226015 , India
| |
Collapse
|
39
|
Transcriptome Profiling Reveals Interplay of Multifaceted Stress Response in Escherichia coli on Exposure to Glutathione and Ciprofloxacin. mSystems 2018; 3:mSystems00001-18. [PMID: 29468195 PMCID: PMC5811628 DOI: 10.1128/msystems.00001-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 01/22/2018] [Indexed: 12/16/2022] Open
Abstract
The emergence and spread of multidrug-resistant bacterial strains have serious medical and clinical consequences. In addition, the rate of discovery of new therapeutic antibiotics has been inadequate in last few decades. Fluoroquinolone antibiotics such as ciprofloxacin represent a precious therapeutic resource in the fight against bacterial pathogens. However, these antibiotics have been gradually losing their appeal due to the emergence and buildup of resistance to them. In this report, we shed light on the genome-level expression changes in bacteria with respect to glutathione (GSH) exposure which act as a trigger for fluoroquinolone antibiotic resistance. The knowledge about different bacterial stress response pathways under conditions of exposure to the conditions described above and potential points of cross talk between them could help us in understanding and formulating the conditions under which buildup and spread of antibiotic resistance could be minimized. Our findings are also relevant because GSH-induced genome-level expression changes have not been reported previously for E. coli. We have previously reported that supplementation of exogenous glutathione (GSH) promotes ciprofloxacin resistance in Escherichia coli by neutralizing antibiotic-induced oxidative stress and by enhancing the efflux of antibiotic. In the present study, we used a whole-genome microarray as a tool to analyze the system-level transcriptomic changes of E. coli on exposure to GSH and/or ciprofloxacin. The microarray data revealed that GSH supplementation affects redox function, transport, acid shock, and virulence genes of E. coli. The data further highlighted the interplay of multiple underlying stress response pathways (including those associated with the genes mentioned above and DNA damage repair genes) at the core of GSH, offsetting the effect of ciprofloxacin in E. coli. The results of a large-scale validation of the transcriptomic data using reverse transcription-quantitative PCR (RT-qPCR) analysis for 40 different genes were mostly in agreement with the microarray results. The altered growth profiles of 12 different E. coli strains carrying deletions in the specific genes mentioned above with GSH and/or ciprofloxacin supplementation implicate these genes in the GSH-mediated phenotype not only at the molecular level but also at the functional level. We further associated GSH supplementation with increased acid shock survival of E. coli on the basis of our transcriptomic data. Taking the data together, it can be concluded that GSH supplementation influences the expression of genes of multiple stress response pathways apart from its effect(s) at the physiological level to counter the action of ciprofloxacin in E. coli. IMPORTANCE The emergence and spread of multidrug-resistant bacterial strains have serious medical and clinical consequences. In addition, the rate of discovery of new therapeutic antibiotics has been inadequate in last few decades. Fluoroquinolone antibiotics such as ciprofloxacin represent a precious therapeutic resource in the fight against bacterial pathogens. However, these antibiotics have been gradually losing their appeal due to the emergence and buildup of resistance to them. In this report, we shed light on the genome-level expression changes in bacteria with respect to glutathione (GSH) exposure which act as a trigger for fluoroquinolone antibiotic resistance. The knowledge about different bacterial stress response pathways under conditions of exposure to the conditions described above and potential points of cross talk between them could help us in understanding and formulating the conditions under which buildup and spread of antibiotic resistance could be minimized. Our findings are also relevant because GSH-induced genome-level expression changes have not been reported previously for E. coli.
Collapse
|
40
|
Massip C, Descours G, Ginevra C, Doublet P, Jarraud S, Gilbert C. Macrolide resistance in Legionella pneumophila: the role of LpeAB efflux pump. J Antimicrob Chemother 2018; 72:1327-1333. [PMID: 28137939 DOI: 10.1093/jac/dkw594] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/23/2016] [Indexed: 12/16/2022] Open
Abstract
Objectives A previous study on 12 in vitro -selected azithromycin-resistant Legionella pneumophila lineages showed that ribosomal mutations were major macrolide resistance determinants. In addition to these mechanisms that have been well described in many species, mutations upstream of lpeAB operon, homologous to acrAB in Escherichia coli , were identified in two lineages. In this study, we investigated the role of LpeAB and of these mutations in macrolide resistance of L. pneumophila . Methods The role of LpeAB was studied by testing the antibiotic susceptibility of WT, deleted and complemented L. pneumophila Paris strains. Translational fusion experiments using GFP as a reporter were conducted to investigate the consequences of the mutations observed in the upstream sequence of lpeAB operon. Results We demonstrated the involvement of LpeAB in an efflux pump responsible for a macrolide-specific reduced susceptibility of L. pneumophila Paris strain. Mutations in the upstream sequence of lpeAB operon were associated with an increased protein expression. Increased expression was also observed under sub-inhibitory macrolide concentrations in strains with both mutated and WT promoting regions. Conclusions LpeAB are components of an efflux pump, which is a macrolide resistance determinant in L. pneumophila Paris strain. Mutations observed in the upstream sequence of lpeAB operon in resistant lineages led to an overexpression of this efflux pump. Sub-inhibitory concentrations of macrolides themselves participated in upregulating this efflux and could constitute a first step in the acquisition of a high macrolide resistance level.
Collapse
Affiliation(s)
- Clémence Massip
- CIRI, Centre International de Recherche en Infectiologie, "Legionella pathogenesis" team, Inserm, U1111, Université Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon F-69007, France.,Hospices Civils de Lyon, Groupement Hospitalier Nord, National Reference Centre of Legionella, Institute for Infectious Agents, 103 Grande rue de la Croix rousse, Lyon 69004, France
| | - Ghislaine Descours
- CIRI, Centre International de Recherche en Infectiologie, "Legionella pathogenesis" team, Inserm, U1111, Université Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon F-69007, France.,Hospices Civils de Lyon, Groupement Hospitalier Nord, National Reference Centre of Legionella, Institute for Infectious Agents, 103 Grande rue de la Croix rousse, Lyon 69004, France
| | - Christophe Ginevra
- CIRI, Centre International de Recherche en Infectiologie, "Legionella pathogenesis" team, Inserm, U1111, Université Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon F-69007, France.,Hospices Civils de Lyon, Groupement Hospitalier Nord, National Reference Centre of Legionella, Institute for Infectious Agents, 103 Grande rue de la Croix rousse, Lyon 69004, France
| | - Patricia Doublet
- CIRI, Centre International de Recherche en Infectiologie, "Legionella pathogenesis" team, Inserm, U1111, Université Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon F-69007, France
| | - Sophie Jarraud
- CIRI, Centre International de Recherche en Infectiologie, "Legionella pathogenesis" team, Inserm, U1111, Université Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon F-69007, France.,Hospices Civils de Lyon, Groupement Hospitalier Nord, National Reference Centre of Legionella, Institute for Infectious Agents, 103 Grande rue de la Croix rousse, Lyon 69004, France
| | - Christophe Gilbert
- CIRI, Centre International de Recherche en Infectiologie, "Legionella pathogenesis" team, Inserm, U1111, Université Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon F-69007, France
| |
Collapse
|
41
|
Roggiani M, Yadavalli SS, Goulian M. Natural variation of a sensor kinase controlling a conserved stress response pathway in Escherichia coli. PLoS Genet 2017; 13:e1007101. [PMID: 29140975 PMCID: PMC5706723 DOI: 10.1371/journal.pgen.1007101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 11/29/2017] [Accepted: 11/03/2017] [Indexed: 12/02/2022] Open
Abstract
Previous studies have shown that exponentially growing Escherichia coli can detect mild acidity (~pH 5.5) and, in response, synthesize enzymes that protect against severe acid shock. This adaptation is controlled by the EvgS/EvgA phosphorelay, a signal transduction system present in virtually every E. coli isolate whose genome has been sequenced. Here we show that, despite this high level of conservation, the EvgS/EvgA system displays a surprising natural variation in pH-sensing capacity, with some strains entirely non-responsive to low pH stimulus. In most cases that we have tested, however, activation of the EvgA regulon still confers acid resistance. From analyzing selected E. coli isolates, we find that the natural variation results from polymorphisms in the sensor kinase EvgS. We further show that this variation affects the pH response of a second kinase, PhoQ, which senses pH differently from the closely related PhoQ in Salmonella enterica. The within-species diversification described here suggests EvgS likely responds to additional input signals that may be correlated with acid stress. In addition, this work highlights the fact that even for highly conserved sensor kinases, the activities identified from a subset of isolates may not necessarily generalize to other members of the same bacterial species. Bacteria employ a class of proteins, sensor kinases, to sense environmental cues and initiate cellular responses through phosphorylation of partner response regulator proteins. Individual kinases are generally assumed to have the same sensory activity across members of a bacterial species. In this work, we report an unexpected counterexample in which the well-established capacity of the kinase EvgS to sense mild acidity is limited to a subset of Escherichia coli isolates. Despite this natural variation, EvgS activation still confers resistance to acid stress in strains that have lost EvgS pH-sensing activity. Thus, most E. coli share a conserved output of the Evg system but do not require identical sensory functions. This work highlights the potential for significant functional divergence of a sensor kinase within a species and also indicates that there are additional input signals for the highly conserved EvgS protein.
Collapse
Affiliation(s)
- Manuela Roggiani
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Srujana S. Yadavalli
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Mark Goulian
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
42
|
Structural and Functional Analysis of the Escherichia coli Acid-Sensing Histidine Kinase EvgS. J Bacteriol 2017; 199:JB.00310-17. [PMID: 28674068 PMCID: PMC5573083 DOI: 10.1128/jb.00310-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/19/2017] [Indexed: 01/31/2023] Open
Abstract
The EvgS/EvgA two-component system of Escherichia coli is activated in response to low pH and alkali metals and regulates many genes, including those for the glutamate-dependent acid resistance system and a number of efflux pumps. EvgS, the sensor kinase, is one of five unconventional histidine kinases (HKs) in E. coli and has a large periplasmic domain and a cytoplasmic PAS domain in addition to phospho-acceptor, HK and dimerization, internal receiver, and phosphotransfer domains. Mutations that constitutively activate the protein at pH 7 map to the PAS domain. Here, we built a homology model of the periplasmic region of EvgS, based on the structure of the equivalent region of the BvgS homologue, to guide mutagenesis of potential key residues in this region. We show that histidine 226 is required for induction and that it is structurally colocated with a proline residue (P522) at the top of the predicted transmembrane helix that is expected to play a key role in passing information to the cytoplasmic domains. We also show that the constitutive mutations in the PAS domain can be further activated by low external pH. Expression of the cytoplasmic part of the protein alone also gives constitutive activation, which is lost if the constitutive PAS mutations are present. These findings are consistent with a model in which EvgS senses both external and internal pH and is activated by a shift from a tight inactive to a weak active dimer, and we present an analysis of the purified cytoplasmic portion of EvgS that supports this. IMPORTANCE One of the ways bacteria sense their environment is through two-component systems, which have one membrane-bound protein to do the sensing and another inside the cell to turn genes on or off in response to what the membrane-bound protein has detected. The membrane-bound protein must thus be able to detect the stress and signal this detection event to the protein inside the cell. To understand this process, we studied a protein that helps E. coli to survive exposure to low pH, which it must do before taking up residence in the gastrointestinal tract. We describe a predicted structure for the main sensing part of the protein and identify some key residues within it that are involved in the sensing and signaling processes. We propose a mechanism for how the protein may become activated and present some evidence to support our proposal.
Collapse
|
43
|
Utsumi R. Bacterial signal transduction networks via connectors and development of the inhibitors as alternative antibiotics. Biosci Biotechnol Biochem 2017; 81:1663-1669. [PMID: 28743208 DOI: 10.1080/09168451.2017.1350565] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Bacterial cells possess a signal transduction system that differs from those described in higher organisms, including human cells. These so-called two-component signal transduction systems (TCSs) consist of a sensor (histidine kinase, HK) and a response regulator, and are involved in cellular functions, such as virulence, drug resistance, biofilm formation, cell wall synthesis, cell division. They are conserved in bacteria across all species. Although TCSs are often studied and characterized individually, they are assumed to interact with each other and form signal transduction networks within the cell. In this review, I focus on the formation of TCS networks via connectors. I also explore the possibility of using TCS inhibitors, especially HK inhibitors, as alternative antimicrobial agents.
Collapse
Affiliation(s)
- Ryutaro Utsumi
- a Department of Bioscience, Graduate School of Agriculture , Kindai University , Nara , Japan
| |
Collapse
|
44
|
Telke AA, Olaitan AO, Morand S, Rolain JM. soxRS induces colistin hetero-resistance in Enterobacter asburiae and Enterobacter cloacae by regulating the acrAB-tolC efflux pump. J Antimicrob Chemother 2017; 72:2715-2721. [DOI: 10.1093/jac/dkx215] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 06/07/2017] [Indexed: 11/13/2022] Open
|
45
|
Afzal M, Kuipers OP, Shafeeq S. Niacin-mediated Gene Expression and Role of NiaR as a Transcriptional Repressor of niaX, nadC, and pnuC in Streptococcus pneumoniae. Front Cell Infect Microbiol 2017; 7:70. [PMID: 28337428 PMCID: PMC5343564 DOI: 10.3389/fcimb.2017.00070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/24/2017] [Indexed: 12/21/2022] Open
Abstract
NAD (Nicotinamide Adenine Dinucleotide) biosynthesis is vital for bacterial physiology and plays an important role in cellular metabolism. A naturally occurring vitamin B complex, niacin (nicotinic acid), is a precursor of coenzymes NAD and NADP. Here, we study the impact of niacin on global gene expression of Streptococcus pneumoniae D39 and elucidate the role of NiaR as a transcriptional regulator of niaX, nadC, and pnuC. Transcriptome comparison of the D39 wild-type grown in chemically defined medium (CDM) with 0 to 10 mM niacin revealed elevated expression of various genes, including niaX, nadC, pnuC, fba, rex, gapN, pncB, gap, adhE, and adhB2 that are putatively involved in the transport and utilization of niacin. Niacin-dependent expression of these genes is confirmed by promoter lacZ-fusion studies. Moreover, the role of transcriptional regulator NiaR in the regulation of these genes is explored by DNA microarray analysis. Our transcriptomic comparison of D39 ΔniaR to D39 wild-type revealed that the transcriptional regulator NiaR acts as a transcriptional repressor of niaX, pnuC, and nadC. NiaR-dependent regulation of niaX, nadC, and pnuC is further confirmed by promoter lacZ-fusion studies. The putative operator site of NiaR (5′-TACWRGTGTMTWKACASYTRWAW-3′) in the promoter regions of niaX, nadC, and pnuC is predicted and further confirmed by promoter mutational experiments.
Collapse
Affiliation(s)
- Muhammad Afzal
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningen, Netherlands; Department of Bioinformatics and Biotechnology, Government College UniversityFaisalabad, Pakistan
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen Groningen, Netherlands
| | - Sulman Shafeeq
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet Stockholm, Sweden
| |
Collapse
|
46
|
The role played by drug efflux pumps in bacterial multidrug resistance. Essays Biochem 2017; 61:127-139. [DOI: 10.1042/ebc20160064] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/22/2017] [Accepted: 01/24/2017] [Indexed: 01/19/2023]
Abstract
Antimicrobial resistance is a current major challenge in chemotherapy and infection control. The ability of bacterial and eukaryotic cells to recognize and pump toxic compounds from within the cell to the environment before they reach their targets is one of the important mechanisms contributing to this phenomenon. Drug efflux pumps are membrane transport proteins that require energy to export substrates and can be selective for a specific drug or poly-specific that can export multiple structurally diverse drug compounds. These proteins can be classified into seven groups based on protein sequence homology, energy source and overall structure. Extensive studies on efflux proteins have resulted in a wealth of knowledge that has made possible in-depth understanding of the structures and mechanisms of action, substrate profiles, regulation and possible inhibition of many clinically important efflux pumps. This review focuses on describing known families of drug efflux pumps using examples that are well characterized structurally and/or biochemically.
Collapse
|
47
|
Tramonti A, De Santis F, Pennacchietti E, De Biase D. The yhiM gene codes for an inner membrane protein involved in GABA export in Escherichia coli. AIMS Microbiol 2017; 3:71-87. [PMID: 31294150 PMCID: PMC6604978 DOI: 10.3934/microbiol.2017.1.71] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 02/08/2017] [Indexed: 01/11/2023] Open
Abstract
In order to survive the exposure to acid pH, Escherichia coli activates molecular circuits leading from acid tolerance to extreme acid resistance (AR). The activation of the different circuits involves several global and specific regulators affecting the expression of membrane, periplasmic and cytosolic proteins acting at different levels to dampen the harmful consequences of the uncontrolled entry of protons intracellularly. Many genes coding for the structural components of the AR circuits (protecting from pH ≤ 2.5) and their specific transcriptional regulators cluster in a genomic region named AFI (acid fitness island) and respond in the same way to global regulators (such as RpoS and H-NS) as well as to anaerobiosis, alkaline, cold and respiratory stresses, in addition to the acid stress. Notably some genes coding for structural components of AR, though similarly regulated, are non-AFI localised. Amongst these the gadBC operon, coding for the major structural components of the glutamate-based AR system, and the ybaS gene, coding for a glutaminase required for the glutamine-based AR system. The yhiM gene, a non-AFI gene, appears to belong to this group. We mapped the transcription start of the 1.1 kb monocistronic yhiM transcript: it is an adenine residue located 22 nt upstream a GTG start codon. By real-time PCR we show that GadE and GadX equally affect the expression of yhiM under oxidative growth conditions. While YhiM is partially involved in the RpoS-dependent AR, we failed to detect a significant involvement in the glutamate- or glutamine-dependent AR at pH ≤ 2.5. However, when grown in EG at pH 5.0, the yhiM mutant displays impaired GABA export, whereas when YhiM is overexpressed, an increases of GABA export in EG medium in the pH range 2.5-5.5 is observed. Our data suggest that YhiM is a GABA transporter with a physiological role more relevant at mildly acidic pH, but not a key component of AR at pH < 2.5.
Collapse
Affiliation(s)
- Angela Tramonti
- Institute of Molecular Biology and Pathology, CNR, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Fiorenzo De Santis
- Department of medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Corso della Repubblica 79, 04100 Latina, Italy
| | - Eugenia Pennacchietti
- Department of medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Corso della Repubblica 79, 04100 Latina, Italy
| | - Daniela De Biase
- Department of medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Corso della Repubblica 79, 04100 Latina, Italy
| |
Collapse
|
48
|
Fu Y, Chen L, Zhang W. Regulatory mechanisms related to biofuel tolerance in producing microbes. J Appl Microbiol 2016; 121:320-32. [PMID: 27123568 DOI: 10.1111/jam.13162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/20/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Y. Fu
- Laboratory of Synthetic Microbiology; School of Chemical Engineering & Technology; Tianjin University; Tianjin China
- Key Laboratory of Systems Bioengineering (Ministry of Education); Tianjin University; Tianjin China
- SynBio Research Platform; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin China
| | - L. Chen
- Laboratory of Synthetic Microbiology; School of Chemical Engineering & Technology; Tianjin University; Tianjin China
- Key Laboratory of Systems Bioengineering (Ministry of Education); Tianjin University; Tianjin China
- SynBio Research Platform; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin China
| | - W. Zhang
- Laboratory of Synthetic Microbiology; School of Chemical Engineering & Technology; Tianjin University; Tianjin China
- Key Laboratory of Systems Bioengineering (Ministry of Education); Tianjin University; Tianjin China
- SynBio Research Platform; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin China
| |
Collapse
|
49
|
Small RNA Regulation of TolC, the Outer Membrane Component of Bacterial Multidrug Transporters. J Bacteriol 2016; 198:1101-13. [PMID: 26811318 DOI: 10.1128/jb.00971-15] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 01/19/2016] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Bacteria use multidrug efflux pumps to export drugs and toxic compounds out of the cell. One of the most important efflux pumps in Escherichia coli is the AcrAB-TolC system. Small regulatory RNAs (sRNAs) are known to be major posttranscriptional regulators that can enhance or repress translation by binding to the 5' untranslated region (UTR) of mRNA targets with the help of a chaperone protein, Hfq. In this study, we investigated the expression of acrA, acrB, and tolC translational fusions using 27 Hfq-dependent sRNAs overexpressed from plasmids. No significant sRNA regulation of acrA or acrB was detected. SdsR (also known as RyeB), an abundant and well-conserved stationary-phase sRNA, was found to repress the expression of tolC, the gene encoding the outer membrane protein of many multidrug resistance efflux pumps. This repression was shown to be by direct base pairing occurring upstream from the ribosomal binding site. SdsR overexpression and its regulation of tolC were found to reduce resistance to novobiocin and crystal violet. Our results suggest that additional targets for SdsR exist that contribute to increased antibiotic sensitivity and reduced biofilm formation. In an effort to identify phenotypes associated with single-copy SdsR and its regulation of tolC, the effect of a deletion of sdsR or mutations in tolC that should block SdsR pairing were investigated using a Biolog phenotypic microarray. However, no significant phenotypes were identified. Therefore, SdsR appears to modulate rather than act as a major regulator of its targets. IMPORTANCE AcrAB-TolC is a major efflux pump present in E. coli and Gram-negative bacteria used to export toxic compounds; the pump confers resistance to many antibiotics of unrelated classes. In this study, we found that SdsR, a small RNA expressed in stationary phase, repressed the expression of tolC, resulting in increased sensitivity to some antibiotics. This extends the findings of previous studies showing that sRNAs contribute to the regulation of many outer membrane proteins; manipulating or enhancing their action might help in sensitizing bacteria to antibiotics.
Collapse
|
50
|
Mutations That Enhance the Ciprofloxacin Resistance of Escherichia coli with qnrA1. Antimicrob Agents Chemother 2015; 60:1537-45. [PMID: 26711751 DOI: 10.1128/aac.02167-15] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/13/2015] [Indexed: 01/20/2023] Open
Abstract
Plasmid-mediated qnr genes provide only a modest decrease in quinolone susceptibility but facilitate the selection of higher-level resistance. In Escherichia coli strain J53 without qnr, ciprofloxacin resistance often involves mutations in the GyrA subunit of DNA gyrase. Mutations in gyrA were absent, however, when 43 mutants with decreased ciprofloxacin susceptibility were selected from J53(pMG252) with qnrA1. Instead, in 13 mutants, individual and whole-genome sequencing identified mutations in marR and soxR associated with increased expression of marA and soxS and, through them, increased expression of the AcrAB pump, which effluxes quinolones. Nine mutants had increased expression of the MdtE efflux pump, and six demonstrated increased expression of the ydhE pump gene. Many efflux mutants also had increased resistance to novobiocin, another pump substrate, but other mutants were novobiocin hypersusceptible. Mutations in rfaD and rfaE in the pathway for inner core lipopolysaccharide (LPS) biosynthesis were identified in five such strains. Many of the pump and LPS mutants had decreased expression of OmpF, the major porin channel for ciprofloxacin entry. Three mutants had increased expression of qnrA that persisted when pMG252 from these strains was outcrossed. gyrA mutations were also rare when mutants with decreased ciprofloxacin susceptibility were selected from E. coli J53 with aac(6')-Ib-cr or qepA. We suggest that multiple genes conferring low-level resistance contribute to enhanced ciprofloxacin resistance selected from an E. coli strain carrying qnrA1, aac(6')-Ib-cr, or qepA because these determinants decrease the effective ciprofloxacin concentration and allow more common but lower-resistance mutations than those in gyrA to predominate.
Collapse
|