1
|
Pooja, Thapa N, Rani R, Shanmugasundaram K, Jhandai P, Rakshita, Bhattacharya TK, Singha H. Antibody isotyping and cytokine profiling in natural cases of Burkholderia mallei infection (glanders) in equines. Cytokine 2025; 185:156799. [PMID: 39549470 DOI: 10.1016/j.cyto.2024.156799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/23/2024] [Accepted: 10/27/2024] [Indexed: 11/18/2024]
Abstract
OBJECTIVES Immunological aspects of B. mallei infection were rarely studied in natural cases of equines. The present study was conducted to determine IgG, IgM, IgA and IgG (T) titre against recombinant Hcp1, TssA and TssB proteins and PilA-Hcp1-TssN-BipD and BpaB-BpaC- BMAA0553 chimeras and cytokine responses in glanders affected equine serum. METHODS The study was conducted on serum samples collected from 151 glanders positive equines which include horses (n = 134), mules (n = 16), and donkeys (n = 01). The IgM, IgG, IgA and IgG (T) titre were determined against recombinant antigens by indirect ELISA and interleukin(IL)-1β, IL-17, IL-6, tumor necrosis factor alpha(TNF-α), monocyte chemoattractant protein 1 (MCP-1) and interferon gamma (IFN-γ) responses were measured by commercial ELISA kits. RESULTS The study showed that glanders affected equines elicited strong antibody response against Hcp1, moderate responses against TssA and TssB, and weak responses against two chimeras. Among the cytokines, IL-1β, MCP-1, IL-17 and IL-6 concentration were significantly higher in glanders affected equine serum. CONCLUSION We found that IgG antibody titre was higher than IgM, IgG (T) and IgA isotypes and Hcp1 was most predominant antibody inducers in comparison to TssA, TssB, PilA-Hcp1-TssN-BipD and BpaB-BpaC-T2SS proteins. The elevated level of IL-1β, MCP-1, IL-17, IL-6, IFN-γ and TNF-α observed in this study support the important role of this cytokines for augmenting cellular defence by recruitment of macrophages, neutrophil and dendritic cells against B. mallei infection. Further studies should be conducted to determine memory cell responses in natural cases of equine glanders using recombinant B. mallei proteins for identifying well-characterized immuno-protective vaccine candidates.
Collapse
Affiliation(s)
- Pooja
- ICAR- National Research Centre in Equines, Sirsa Road, Hisar, 125001 Haryana, India
| | | | - Radha Rani
- ICAR- National Research Centre in Equines, Sirsa Road, Hisar, 125001 Haryana, India
| | - Karuppusamy Shanmugasundaram
- National Centre for Veterinary Type Cultures, ICAR- National Research Centre in Equines, Sirsa Road, Hisar, 125001 Haryana, India
| | - Punit Jhandai
- ICAR- National Research Centre in Equines, Sirsa Road, Hisar, 125001 Haryana, India
| | - Rakshita
- ICAR- National Research Centre in Equines, Sirsa Road, Hisar, 125001 Haryana, India
| | | | - Harisankar Singha
- ICAR- National Research Centre in Equines, Sirsa Road, Hisar, 125001 Haryana, India.
| |
Collapse
|
2
|
Selvam K, Najib MA, Khalid MF, Harun A, Aziah I. Performance of Antibody-Detection Tests for Human Melioidosis: A Systematic Review and Meta-analysis. Malays J Med Sci 2024; 31:34-56. [PMID: 39830111 PMCID: PMC11740806 DOI: 10.21315/mjms2024.31.6.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/22/2024] [Indexed: 01/22/2025] Open
Abstract
Melioidosis is a life-threatening infectious disease caused by the bacterium Burkholderia pseudomallei. Although culture is the gold standard for diagnosing melioidosis, it is time-consuming and delays timely treatment. Non-culture-based diagnostic techniques are interesting alternatives for the rapid detection of melioidosis. This systematic review provides an overview of the performance of antibody-detection tests for melioidosis. A thorough literature search was conducted in two databases to identify relevant studies published until 31 December 2023. Among the 453 studies identified, 29 were included for further analysis. Various antibody-detection methods have been developed, primarily enzyme-linked immunosorbent assays (ELISAs). Recombinant outer membrane protein A-(OmpA)-specific immunoglobulin G (IgG), immunoglobulin A (IgA), immunoglobulin M (IgM), and immunoglobulin D (IgD) exhibited the highest accuracy, with a sensitivity of 95.0% and a specificity of 98.0% in ELISA. Furthermore, immunochromatographic testing has emerged as a promising rapid diagnostic test (RDT), with haemolysin co-regulated protein 1 (Hcp1) demonstrating significant accuracy, a sensitivity of 88.3%, and a specificity of 91.6%. Additionally, IgG against Burkholderia invasion protein D (BipD) showed excellent accuracy, with a sensitivity of 100.0% and a specificity of 100.0% in surface plasmon resonance assay. Combining multiple antigens or employing different detection techniques can enhance the accuracy of melioidosis diagnosis.
Collapse
Affiliation(s)
- Kasturi Selvam
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kelantan, Malaysia
| | - Mohamad Ahmad Najib
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kelantan, Malaysia
| | - Muhammad Fazli Khalid
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kelantan, Malaysia
| | - Azian Harun
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
- Hospital Universiti Sains Malaysia, Kelantan, Malaysia
| | - Ismail Aziah
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kelantan, Malaysia
| |
Collapse
|
3
|
Badten AJ, Torres AG. Burkholderia pseudomallei Complex Subunit and Glycoconjugate Vaccines and Their Potential to Elicit Cross-Protection to Burkholderia cepacia Complex. Vaccines (Basel) 2024; 12:313. [PMID: 38543947 PMCID: PMC10975474 DOI: 10.3390/vaccines12030313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/01/2024] Open
Abstract
Burkholderia are a group of Gram-negative bacteria that can cause a variety of diseases in at-risk populations. B. pseudomallei and B. mallei, the etiological agents of melioidosis and glanders, respectively, are the two clinically relevant members of the B. pseudomallei complex (Bpc). The development of vaccines against Bpc species has been accelerated in recent years, resulting in numerous promising subunits and glycoconjugate vaccines incorporating a variety of antigens. However, a second group of pathogenic Burkholderia species exists known as the Burkholderia cepacia complex (Bcc), a group of opportunistic bacteria which tend to affect individuals with weakened immunity or cystic fibrosis. To date, there have been few attempts to develop vaccines to Bcc species. Therefore, the primary goal of this review is to provide a broad overview of the various subunit antigens that have been tested in Bpc species, their protective efficacy, study limitations, and known or suspected mechanisms of protection. Then, we assess the reviewed Bpc antigens for their amino acid sequence conservation to homologous proteins found in Bcc species. We propose that protective Bpc antigens with a high degree of Bpc-to-Bcc sequence conservation could serve as components of a pan-Burkholderia vaccine capable of protecting against both disease-causing groups.
Collapse
Affiliation(s)
- Alexander J. Badten
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA;
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alfredo G. Torres
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA;
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
4
|
Diep DTH, Vong LB, Tungpradabkul S. Function of Burkholderia pseudomallei RpoS and RpoN2 in bacterial invasion, intracellular survival, and multinucleated giant cell formation in mouse macrophage cell line. Antonie Van Leeuwenhoek 2024; 117:39. [PMID: 38388985 DOI: 10.1007/s10482-024-01944-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 02/05/2024] [Indexed: 02/24/2024]
Abstract
Melioidosis, a human infectious disease with a high mortality rate in many tropical countries, is caused by the pathogen Burkholderia pseudomallei (B. pseudomallei). The function of the B. pseudomallei sigma S (RpoS) transcription factor in survival during the stationary growth phase and conditions of oxidative stress is well documented. Besides the rpoS, bioinformatics analysis of B. pseudomallei genome showed the existence of two rpoN genes, named rpoN1 and rpoN2. In this study, by using the mouse macrophage cell line RAW264.7 as a model of infection, the involvement of B. pseudomallei RpoS and RpoN2 in the invasion, intracellular survival leading to the reduction in multinucleated giant cell (MNGC) formation of RAW264.7 cell line were illustrated. We have demonstrated that the MNGC formation of RAW264.7 cell was dependent on a certain number of intracellular bacteria (at least 5 × 104). In addition, the same MNGC formation (15%) observed in RAW264.7 cells infected with either B. pseudomallei wild type with multiplicity of infection (MOI) 2 or RpoN2 mutant (∆rpoN2) with MOI 10 or RpoS mutant (∆rpoS) with MOI 100. The role of B. pseudomallei RpoS and RpoN2 in the regulation of type III secretion system on bipB-bipC gene expression was also illustrated in this study.
Collapse
Affiliation(s)
- Duong Thi Hong Diep
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam.
- Laboratory Department, University Medical Center HCMC, Ho Chi Minh City, Vietnam.
| | - Long Binh Vong
- School of Biomedical Engineering, International University, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh, Ho Chi Minh City, Vietnam
| | - Sumalee Tungpradabkul
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
5
|
Suvanasuthi R, Cheewasatheinchaiyaporn T, Wat-Aksorn K, Promptmas C. Nucleic Acid Amplification Free-QCM-DNA Biosensor for Burkholderia pseudomallei Detection. Curr Microbiol 2023; 80:376. [PMID: 37861919 DOI: 10.1007/s00284-023-03490-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 09/15/2023] [Indexed: 10/21/2023]
Abstract
Burkholderia pseudomallei is a gram-negative bacterium that causes the infectious disease melioidosis, a disease that can still be fatal despite appropriate treatment. The bacterium contains the gene clusters for the type III secretion system (TTSS), which are essential for its pathogenicity. This gene was often employed for accurate diagnosis through the laborious process of gene amplification. This work intends to develop a quartz crystal microbalance (QCM)-based TTSS gene detection method without gene amplification approaches to simplify the diagnosis process. In this study, it was demonstrated that a 540 bp sequence flanked by BglI restriction sites within the TTSS1 on the B. pseudomallei genome is an effective target for specific detection of the bacteria. After cultivation and genome extraction, the bacteria can be detected by digesting its genome with BglI in which the TTSS1 fragment is detected by a QCM-DNA biosensor, eliminating the need for nucleic acid amplification. A specific probe designed to bind to the TTSSI fragment was utilized as the receptor on the QCM-DNA biosensor which provided the ability to detect the fragment. The limit of detection of the QCM-DNA biosensor was 0.4 µM of the synthetic DNA target oligonucleotide. The system was also capable of specifically detecting the BglI digested-DNA fragment of B. pseudomallei species with significantly higher signal than B. thailandensis. This study provides evidence for an effective QCM-DNA biosensor that can identify B. pseudomallei without the need for nucleic acid amplification.
Collapse
Affiliation(s)
- Rooge Suvanasuthi
- Biosensor Laboratory, Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | | | - Kesara Wat-Aksorn
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Chamras Promptmas
- Biosensor Laboratory, Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Salaya, Nakhon Pathom, Thailand.
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Salaya, Nakhon Pathom, Thailand.
| |
Collapse
|
6
|
Development of Melioidosis Subunit Vaccines Using an Enzymatically Inactive Burkholderia pseudomallei AhpC. Infect Immun 2022; 90:e0022222. [PMID: 35862715 PMCID: PMC9387246 DOI: 10.1128/iai.00222-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Burkholderia pseudomallei, the causative agent of melioidosis, is a facultative intracellular, Gram-negative pathogen that is highly infectious via the respiratory route and can cause severe, debilitating, and often fatal diseases in humans and animals. At present, no licensed vaccines for immunization against this CDC Tier 1 select agent exist. Studies in our lab have previously demonstrated that subunit vaccine formulations consisting of a B. pseudomallei capsular polysaccharide (CPS)-based glycoconjugate (CPS-CRM197) combined with hemolysin-coregulated protein (Hcp1) provided C57BL/6 mice with high-level protection against an acute inhalational challenge of B. pseudomallei. In this study, we evaluated the immunogenicity and protective capacity of B. pseudomallei alkyl hydroperoxide reductase subunit C (AhpC) in combination with CPS-CRM197. AhpC is a peroxiredoxin involved in oxidative stress reduction and is a potential protective antigen. To facilitate our studies and maximize safety in animals, recombinant B. pseudomallei AhpC harboring an active site mutation (AhpCC57G) was expressed in Escherichia coli and purified using tandem nickel-cobalt affinity chromatography. Immunization of C57BL/6 mice with CPS-CRM197 combined with AhpCC57G stimulated high-titer IgG responses against the CPS component of the glycoconjugate as well as stimulated high-titer IgG and robust interferon gamma (IFN-γ)-, interleukin-5 (IL-5)-, and IL-17-secreting T cell responses against AhpCC57G. When challenged via an inhalational route with a high dose (~27 50% lethal doses [LD50s]) of B. pseudomallei, 70% of the immunized mice survived 35 days postchallenge. Collectively, our findings demonstrate that AhpCC57G is a potent activator of cellular and humoral immune responses and may be a promising candidate to include in future melioidosis subunit vaccines.
Collapse
|
7
|
Oslan SNH, Yusoff AH, Mazlan M, Lim SJ, Khoo JJ, Oslan SN, Ismail A. Comprehensive approaches for the detection of Burkholderia pseudomallei and diagnosis of melioidosis in human and environmental samples. Microb Pathog 2022; 169:105637. [PMID: 35710088 DOI: 10.1016/j.micpath.2022.105637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022]
Abstract
Melioidosis is endemic in Southeast Asia and northern Australia. The causative agent of melioidosis is a Gram-negative bacterium, Burkholderia pseudomallei. Its invasion can be fatal if melioidosis is not treated promptly. It is intrinsically resistant to a variety of antibiotics. In this paper, we present a comprehensive overview of the current trends on melioidosis cases, treatments, B. pseudomallei virulence factors, and molecular techniques to detect the bacterium from different samples. The clinical and microbial diagnosis methods of identification and detection of B. pseudomallei are commonly used for the rapid diagnosis and typing of strains, such as polymerase chain reaction or multi-locus sequence typing. The genotyping strategies and techniques have been constantly evolving to identify genomic loci linked to or associated with this human disease. More research strategies for detecting and controlling melioidosis should be encouraged and conducted to understand the current situation. In conclusion, we review existing diagnostic methodologies for melioidosis detection and provide insights on prospective diagnostic methods for the bacterium.
Collapse
Affiliation(s)
- Siti Nur Hazwani Oslan
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
| | - Abdul Hafidz Yusoff
- Gold Rare Earth and Material Technopreneurship Centre (GREAT), Faculty of Bioengineering and Technology, Universiti Malaysia Kelantan, Jeli Campus, Jeli, 17600, Kelantan, Malaysia.
| | - Mazlina Mazlan
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Si Jie Lim
- Enzyme Technology and X-Ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Jing Jing Khoo
- Tropical Infectious Diseases Research and Education Centre (TIDREC), High Impact Research Building, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Siti Nurbaya Oslan
- Enzyme Technology and X-Ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Aziah Ismail
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
8
|
Recent Progress in Shigella and Burkholderia pseudomallei Vaccines. Pathogens 2021; 10:pathogens10111353. [PMID: 34832508 PMCID: PMC8621228 DOI: 10.3390/pathogens10111353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/28/2022] Open
Abstract
Significant advancement has been made in the development of vaccines against bacterial pathogens. However, several roadblocks have been found during the evaluation of vaccines against intracellular bacterial pathogens. Therefore, new lessons could be learned from different vaccines developed against unrelated intracellular pathogens. Bacillary dysentery and melioidosis are important causes of morbidity and mortality in developing nations, which are caused by the intracellular bacteria Shigella and Burkholderia pseudomallei, respectively. Although the mechanisms of bacterial infection, dissemination, and route of infection do not provide clues about the commonalities of the pathogenic infectious processes of these bacteria, a wide variety of vaccine platforms recently evaluated suggest that in addition to the stimulation of antibodies, identifying protective antigens and inducing T cell responses are some additional required elements to induce effective protection. In this review, we perform a comparative evaluation of recent candidate vaccines used to combat these two infectious agents, emphasizing the common strategies that can help investigators advance effective and protective vaccines to clinical trials.
Collapse
|
9
|
BipD of Burkholderia pseudomallei: Structure, Functions, and Detection Methods. Microorganisms 2021; 9:microorganisms9040711. [PMID: 33808203 PMCID: PMC8067316 DOI: 10.3390/microorganisms9040711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 01/13/2023] Open
Abstract
Melioidosis is a severe disease caused by Burkholderia pseudomallei (B. pseudomallei), a Gram-negative environmental bacterium. It is endemic in Southeast Asia and Northern Australia, but it is underreported in many other countries. The principal routes of entry for B. pseudomallei are skin penetration, inhalation, and ingestion. It mainly affects immunocompromised populations, especially patients with type 2 diabetes mellitus. The laboratory diagnosis of melioidosis is challenging due to its non-specific clinical manifestations, which mimic other severe infections. The culture method is considered an imperfect gold standard for the diagnosis of melioidosis due to its low sensitivity. Antibody detection has low sensitivity and specificity due to the high seropositivity among healthy people in endemic regions. Antigen detection using various proteins has been tested for the rapid determination of B. pseudomallei; however, it presents certain limitations in terms of its sensitivity and specificity. Therefore, this review aims to frame the present knowledge of a potential target known as the Burkholderia invasion protein D (BipD), including future directions for its detection using an aptamer-based sensor (aptasensor).
Collapse
|
10
|
Wang G, Zarodkiewicz P, Valvano MA. Current Advances in Burkholderia Vaccines Development. Cells 2020; 9:E2671. [PMID: 33322641 PMCID: PMC7762980 DOI: 10.3390/cells9122671] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/01/2020] [Accepted: 12/09/2020] [Indexed: 12/18/2022] Open
Abstract
The genus Burkholderia includes a wide range of Gram-negative bacterial species some of which are pathogenic to humans and other vertebrates. The most pathogenic species are Burkholderia mallei, Burkholderia pseudomallei, and the members of the Burkholderia cepacia complex (Bcc). B. mallei and B. pseudomallei, the cause of glanders and melioidosis, respectively, are considered potential bioweapons. The Bcc comprises a subset of Burkholderia species associated with respiratory infections in people with chronic granulomatous disease and cystic fibrosis. Antimicrobial treatment of Burkholderia infections is difficult due to the intrinsic multidrug antibiotic resistance of these bacteria; prophylactic vaccines provide an attractive alternative to counteract these infections. Although commercial vaccines against Burkholderia infections are still unavailable, substantial progress has been made over recent years in the development of vaccines against B. pseudomallei and B. mallei. This review critically discusses the current advances in vaccine development against B. mallei, B. pseudomallei, and the Bcc.
Collapse
Affiliation(s)
| | | | - Miguel A. Valvano
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (G.W.); (P.Z.)
| |
Collapse
|
11
|
Multinucleated Giant Cell Formation as a Portal to Chronic Bacterial Infections. Microorganisms 2020; 8:microorganisms8111637. [PMID: 33113944 PMCID: PMC7690659 DOI: 10.3390/microorganisms8111637] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 12/20/2022] Open
Abstract
This review provides a snapshot of chronic bacterial infections through the lens of Burkholderia pseudomallei and detailing its ability to establish multi-nucleated giant cells (MNGC) within the host, potentially leading to the formation of pyogranulomatous lesions. We explore the role of MNGC in melioidosis disease progression and pathology by comparing the similarities and differences of melioidosis to tuberculosis, outline the concerted events in pathogenesis that lead to MNGC formation, discuss the factors that influence MNGC formation, and consider how they fit into clinical findings reported in chronic cases. Finally, we speculate about future models and techniques that can be used to delineate the mechanisms of MNGC formation and function.
Collapse
|
12
|
Tan KY, Dutta A, Tan TK, Hari R, Othman RY, Choo SW. Comprehensive genome analysis of a pangolin-associated Paraburkholderia fungorum provides new insights into its secretion systems and virulence. PeerJ 2020; 8:e9733. [PMID: 32953261 PMCID: PMC7474880 DOI: 10.7717/peerj.9733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/25/2020] [Indexed: 12/26/2022] Open
Abstract
Background Paraburkholderia fungorum (P. fungorum) is a Gram-negative environmental species that has been commonly used as a beneficial microorganism in agriculture as an agent for biocontrol and bioremediation. Its use in agriculture is controversial as many people believe that it could harm human health; however, there is no clear evidence to support. Methodology The pangolin P. fungorum (pangolin Pf) genome has a genomic size of approximately 7.7 Mbps with N50 of 69,666 bps. Our study showed that pangolin Pf is a Paraburkholderia fungorum supported by evidence from the core genome SNP-based phylogenetic analysis and the ANI analysis. Functional analysis has shown that the presence of a considerably large number of genes related to stress response, virulence, disease, and defence. Interestingly, we identified different types of secretion systems in the genome of pangolin Pf, which are highly specialized and responsible for a bacterium’s response to its environment and in physiological processes such as survival, adhesion, and adaptation. The pangolin Pf also shared some common virulence genes with the known pathogenic member of the Burkholderiales. These genes play important roles in adhesion, motility, and invasion. Conclusion This study may provide better insights into the functions, secretion systems and virulence of this pangolin-associated bacterial strain. The addition of this genome sequence is also important for future comparative analysis and functional work of P. fungorum.
Collapse
Affiliation(s)
- Ka Yun Tan
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia.,Genome Informatics Research Laboratory, Centre for Research in Biotechnology for Agriculture (CEBAR), High Impact Research Building, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Avirup Dutta
- Genome Informatics Research Laboratory, Centre for Research in Biotechnology for Agriculture (CEBAR), High Impact Research Building, Universiti Malaya, Kuala Lumpur, Malaysia.,Current affiliation: The Novo Nordisk Foundation Center for Basic Metabolic Research, Human Genomics and Metagenomics in Metabolism, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tze King Tan
- Genome Informatics Research Laboratory, Centre for Research in Biotechnology for Agriculture (CEBAR), High Impact Research Building, Universiti Malaya, Kuala Lumpur, Malaysia.,Current affiliation: Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Ranjeev Hari
- Genome Informatics Research Laboratory, Centre for Research in Biotechnology for Agriculture (CEBAR), High Impact Research Building, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Rofina Y Othman
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia.,Centre for Research in Biotechnology for Agriculture (CEBAR), Level 3, Research Management & Innovation Complex, Universiti Malaya, Copenhagen, Kuala Lumpur, Malaysia
| | - Siew Woh Choo
- College of Science and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
13
|
Abstract
The causative agent of melioidosis, Burkholderia pseudomallei, a tier 1 select agent, is endemic in Southeast Asia and northern Australia, with increased incidence associated with high levels of rainfall. Increasing reports of this condition have occurred worldwide, with estimates of up to 165,000 cases and 89,000 deaths per year. The ecological niche of the organism has yet to be clearly defined, although the organism is associated with soil and water. The culture of appropriate clinical material remains the mainstay of laboratory diagnosis. Identification is best done by phenotypic methods, although mass spectrometric methods have been described. Serology has a limited diagnostic role. Direct molecular and antigen detection methods have limited availability and sensitivity. Clinical presentations of melioidosis range from acute bacteremic pneumonia to disseminated visceral abscesses and localized infections. Transmission is by direct inoculation, inhalation, or ingestion. Risk factors for melioidosis include male sex, diabetes mellitus, alcohol abuse, and immunosuppression. The organism is well adapted to intracellular survival, with numerous virulence mechanisms. Immunity likely requires innate and adaptive responses. The principles of management of this condition are drainage and debridement of infected material and appropriate antimicrobial therapy. Global mortality rates vary between 9% and 70%. Research into vaccine development is ongoing.
Collapse
Affiliation(s)
- I Gassiep
- Pathology Queensland, Townsville Hospital, Townsville, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - M Armstrong
- Pathology Queensland, Townsville Hospital, Townsville, Queensland, Australia
| | - R Norton
- Pathology Queensland, Townsville Hospital, Townsville, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
14
|
Schierstaedt J, Grosch R, Schikora A. Agricultural production systems can serve as reservoir for human pathogens. FEMS Microbiol Lett 2020; 366:5715908. [PMID: 31981360 DOI: 10.1093/femsle/fnaa016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/21/2020] [Indexed: 12/31/2022] Open
Abstract
Food-borne diseases are a threat to human health and can cause severe economic losses. Nowadays, in a growing and increasingly interconnected world, food-borne diseases need to be dealt with in a global manner. In order to tackle this issue, it is essential to consider all possible entry routes of human pathogens into the production chain. Besides the post-harvest handling of the fresh produce itself, also the prevention of contamination in livestock and agricultural soils are of particular importance. While the monitoring of human pathogens and intervening measures are relatively easy to apply in livestock and post-harvest, the investigation of the prevention strategies in crop fields is a challenging task. Furthermore, crop fields are interconnected with livestock via fertilizers and feed; therefore, a poor hygiene management can cause cross-contamination. In this review, we highlight the possible contamination of crop plants by bacterial human pathogens via the rhizosphere, their interaction with the plant and possible intervention strategies. Furthermore, we discuss critical issues and questions that are still open.
Collapse
Affiliation(s)
- Jasper Schierstaedt
- Plant-Microbe Systems, Leibniz Institute of Vegetable and Ornamental Crops, 14979 Großbeeren, Germany
| | - Rita Grosch
- Plant-Microbe Systems, Leibniz Institute of Vegetable and Ornamental Crops, 14979 Großbeeren, Germany
| | - Adam Schikora
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, 38104 Braunschweig, Germany
| |
Collapse
|
15
|
The Role of Membrane Surface Charge in Phagocytosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1246:43-54. [DOI: 10.1007/978-3-030-40406-2_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
16
|
Peptidyl-Prolyl Isomerase ppiB Is Essential for Proteome Homeostasis and Virulence in Burkholderia pseudomallei. Infect Immun 2019; 87:IAI.00528-19. [PMID: 31331957 DOI: 10.1128/iai.00528-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 07/13/2019] [Indexed: 12/17/2022] Open
Abstract
Burkholderia pseudomallei is the causative agent of melioidosis, a disease endemic to Southeast Asia and northern Australia. Mortality rates in these areas are high even with antimicrobial treatment, and there are few options for effective therapy. Therefore, there is a need to identify antibacterial targets for the development of novel treatments. Cyclophilins are a family of highly conserved enzymes important in multiple cellular processes. Cyclophilins catalyze the cis-trans isomerization of xaa-proline bonds, a rate-limiting step in protein folding which has been shown to be important for bacterial virulence. B. pseudomallei carries a putative cyclophilin B gene, ppiB, the role of which was investigated. A B. pseudomallei ΔppiB (BpsΔppiB) mutant strain demonstrates impaired biofilm formation and reduced motility. Macrophage invasion and survival assays showed that although the BpsΔppiB strain retained the ability to infect macrophages, it had reduced survival and lacked the ability to spread cell to cell, indicating ppiB is essential for B. pseudomallei virulence. This is reflected in the BALB/c mouse infection model, demonstrating the requirement of ppiB for in vivo disease dissemination and progression. Proteomic analysis demonstrates that the loss of PpiB leads to pleiotropic effects, supporting the role of PpiB in maintaining proteome homeostasis. The loss of PpiB leads to decreased abundance of multiple virulence determinants, including flagellar machinery and alterations in type VI secretion system proteins. In addition, the loss of ppiB leads to increased sensitivity toward multiple antibiotics, including meropenem and doxycycline, highlighting ppiB inhibition as a promising antivirulence target to both treat B. pseudomallei infections and increase antibiotic efficacy.
Collapse
|
17
|
Burkholderia pseudomallei Δ tonB Δ hcp1 Live Attenuated Vaccine Strain Elicits Full Protective Immunity against Aerosolized Melioidosis Infection. mSphere 2019; 4:4/1/e00570-18. [PMID: 30602524 PMCID: PMC6315081 DOI: 10.1128/msphere.00570-18] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In recent years, an increasing number of melioidosis cases have been reported in several regions where melioidosis is endemic and in areas where melioidosis had not commonly been diagnosed. Currently, the estimated burden of disease is around 165,000 new cases annually, including 89,000 cases that have fatal outcomes. This life-threatening infectious disease is caused by B. pseudomallei, which is classified as a Tier 1 select agent. Due to the high case fatality rate, intrinsic resistance to multiple antibiotic treatments, susceptibility to infection via the aerosol route, and potential use as a bioweapon, we have developed an effective live attenuated PBK001 vaccine capable of protecting against aerosolized melioidosis. Burkholderia pseudomallei is a Gram-negative facultative intracellular bacterium and the causative agent of melioidosis, a severe infectious disease found throughout the tropics. This organism is closely related to Burkholderia mallei, the etiological agent of glanders disease which primarily affects equines. These two pathogenic bacteria are classified as Tier 1 select agents due to their amenability to aerosolization, limited treatment options, and lack of an effective vaccine. We have previously successfully demonstrated the immunogenicity and protective efficacy of a live attenuated vaccine strain, B. malleiΔtonB Δhcp1 (CLH001). Thus, we applied this successful approach to the development of a similar vaccine against melioidosis by constructing the B. pseudomalleiΔtonB Δhcp1 (PBK001) strain. C57BL/6 mice were vaccinated intranasally with the live attenuated PBK001 strain and then challenged with wild-type B. pseudomallei K96243 by the aerosol route. Immunization with strain PBK001 resulted in full protection (100% survival) against acute aerosolized melioidosis with very low bacterial burden as observed in the lungs, livers, and spleens of immunized mice. PBK001 vaccination induced strong production of B. pseudomallei-specific serum IgG antibodies and both Th1 and Th17 CD4+ T cell responses. Further, humoral immunity appeared to be essential for vaccine-induced protection, whereas CD4+ and CD8+ T cells played a less direct immune role. Overall, PBK001 was shown to be an effective attenuated vaccine strain that activates a robust immune response and offers full protection against aerosol infection with B. pseudomallei. IMPORTANCE In recent years, an increasing number of melioidosis cases have been reported in several regions where melioidosis is endemic and in areas where melioidosis had not commonly been diagnosed. Currently, the estimated burden of disease is around 165,000 new cases annually, including 89,000 cases that have fatal outcomes. This life-threatening infectious disease is caused by B. pseudomallei, which is classified as a Tier 1 select agent. Due to the high case fatality rate, intrinsic resistance to multiple antibiotic treatments, susceptibility to infection via the aerosol route, and potential use as a bioweapon, we have developed an effective live attenuated PBK001 vaccine capable of protecting against aerosolized melioidosis.
Collapse
|
18
|
MarR Family Transcription Factors from Burkholderia Species: Hidden Clues to Control of Virulence-Associated Genes. Microbiol Mol Biol Rev 2018; 83:83/1/e00039-18. [PMID: 30487164 DOI: 10.1128/mmbr.00039-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Species within the genus Burkholderia exhibit remarkable phenotypic diversity. Genomic plasticity, including genome reduction and horizontal gene transfer, has been correlated with virulence traits in several species. However, the conservation of virulence genes in species otherwise considered to have limited potential for infection suggests that phenotypic diversity may not be explained solely on the basis of genetic diversity. Instead, differential organization and control of gene regulatory networks may underlie many phenotypic differences. In this review, we evaluate how regulation of gene expression by members of the multiple antibiotic resistance regulator (MarR) family of transcription factors may contribute to shaping the physiological diversity of Burkholderia species, with a focus on the clinically relevant human pathogens. All Burkholderia species encode a relatively large number of MarR proteins, a feature common to bacteria that must respond to environmental changes such as those associated with host invasion. However, evolution of gene regulatory networks has likely resulted in orthologous transcription factors controlling disparate sets of genes. Adaptation to, and survival in, diverse habitats, including a human or plant host, is key to the success of Burkholderia species as (opportunistic) pathogens, and recent reports suggest that control of virulence-associated genes by MarR proteins features prominently among the survival strategies employed by these species. We suggest that identification of MarR regulons will contribute significantly to clarification of virulence determinants and phenotypic diversity.
Collapse
|
19
|
Franco M, D'haeseleer PM, Branda SS, Liou MJ, Haider Y, Segelke BW, El-Etr SH. Proteomic Profiling of Burkholderia thailandensis During Host Infection Using Bio-Orthogonal Noncanonical Amino Acid Tagging (BONCAT). Front Cell Infect Microbiol 2018; 8:370. [PMID: 30406044 PMCID: PMC6206043 DOI: 10.3389/fcimb.2018.00370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/03/2018] [Indexed: 01/01/2023] Open
Abstract
Burkholderia pseudomallei and B. mallei are the causative agents of melioidosis and glanders, respectively, and are often fatal to humans and animals. Owing to the high fatality rate, potential for spread by aerosolization, and the lack of efficacious therapeutics, B. pseudomallei and B. mallei are considered biothreat agents of concern. In this study, we investigate the proteome of Burkholderia thailandensis, a closely related surrogate for the two more virulent Burkholderia species, during infection of host cells, and compare to that of B. thailandensis in culture. Studying the proteome of Burkholderia spp. during infection is expected to reveal molecular mechanisms of intracellular survival and host immune evasion; but proteomic profiling of Burkholderia during host infection is challenging. Proteomic analyses of host-associated bacteria are typically hindered by the overwhelming host protein content recovered from infected cultures. To address this problem, we have applied bio-orthogonal noncanonical amino acid tagging (BONCAT) to B. thailandensis, enabling the enrichment of newly expressed bacterial proteins from virtually any growth condition, including host cell infection. In this study, we show that B. thailandensis proteins were selectively labeled and efficiently enriched from infected host cells using BONCAT. We also demonstrate that this method can be used to label bacteria in situ by fluorescent tagging. Finally, we present a global proteomic profile of B. thailandensis as it infects host cells and a list of proteins that are differentially regulated in infection conditions as compared to bacterial monoculture. Among the identified proteins are quorum sensing regulated genes as well as homologs to previously identified virulence factors. This method provides a powerful tool to study the molecular processes during Burkholderia infection, a much-needed addition to the Burkholderia molecular toolbox.
Collapse
Affiliation(s)
- Magdalena Franco
- Lawrence Livermore National Laboratory, Livermore, CA, United States
| | | | | | - Megan J Liou
- Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Yasmeen Haider
- Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Brent W Segelke
- Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Sahar H El-Etr
- Lawrence Livermore National Laboratory, Livermore, CA, United States
| |
Collapse
|
20
|
Krakauer T. Living dangerously: Burkholderia pseudomallei modulates phagocyte cell death to survive. Med Hypotheses 2018; 121:64-69. [PMID: 30396496 DOI: 10.1016/j.mehy.2018.09.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/12/2018] [Indexed: 12/24/2022]
Abstract
Melioidosis, caused by the Gram-negative bacterium Burkholderia pseudomallei, is a major cause of sepsis and mortality in endemic regions of Southeast Asia and Northern Australia. As a facultative intracellular pathogen, B. pseudomallei produces virulence factors to evade innate host response and survive within host cells. Neutrophils and macrophages are phagocytes that play critical roles in host defense against pathogens by their ability to detect and eliminate microbes. Host defense processes against B. pseudomallei including phagocytosis, oxidative burst, autophagy, apoptosis, and proinflammatory cytokine release are all initiated by these two phagocytes in the fight against this bacterium. In vitro studies with mouse macrophage cell lines revealed multiple evasion strategies used by B. pseudomallei to counteract these innate processes. B. pseudomallei invades and replicates in neutrophils but little is known regarding its evasion mechanisms. The bidirectional interaction of neutrophils and macrophages in controlling B. pseudomallei infection has also been overlooked. Here the hypothesis that B. pseudomallei hijacks neutrophils and uses them to transport and infect new phagocytes is proposed as an evasion strategy to survive and persist in host phagocytes. This two-pronged approach by B. pseudomallei to replicate in two different types of phagocytes and to modulate their cell death modes is effective in promoting persistence and survival of the bacterium.
Collapse
Affiliation(s)
- Teresa Krakauer
- Department of Immunology, Molecular Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702-5011, United States.
| |
Collapse
|
21
|
Duangurai T, Indrawattana N, Pumirat P. Burkholderia pseudomallei Adaptation for Survival in Stressful Conditions. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3039106. [PMID: 29992136 PMCID: PMC5994319 DOI: 10.1155/2018/3039106] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/09/2018] [Accepted: 04/05/2018] [Indexed: 12/19/2022]
Abstract
Burkholderia pseudomallei is a Gram-negative bacterium that causes melioidosis, which can be fatal in humans. Melioidosis is prevalent in the tropical regions of Southeast Asia and Northern Australia. Ecological data have shown that this bacterium can survive as a free-living organism in environmental niches, such as soil and water, as well as a parasite living in host organisms, such as ameba, plants, fungi, and animals. This review provides an overview of the survival and adaptation of B. pseudomallei to stressful conditions induced by hostile environmental factors, such as salinity, oxidation, and iron levels. The adaptation of B. pseudomallei in host cells is also reviewed. The adaptive survival mechanisms of this pathogen mainly involve modulation of gene and protein expression, which could cause alterations in the bacteria's cell membrane, metabolism, and virulence. Understanding the adaptations of this organism to environmental factors provides important insights into the survival and pathogenesis of B. pseudomallei, which may lead to the development of novel strategies for the control, prevention, and treatment of melioidosis in the future.
Collapse
Affiliation(s)
- Taksaon Duangurai
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Nitaya Indrawattana
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Pornpan Pumirat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
22
|
Duong LT, Schwarz S, Gross H, Breitbach K, Hochgräfe F, Mostertz J, Eske-Pogodda K, Wagner GE, Steinmetz I, Kohler C. GvmR - A Novel LysR-Type Transcriptional Regulator Involved in Virulence and Primary and Secondary Metabolism of Burkholderia pseudomallei. Front Microbiol 2018; 9:935. [PMID: 29867844 PMCID: PMC5964159 DOI: 10.3389/fmicb.2018.00935] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 04/23/2018] [Indexed: 01/22/2023] Open
Abstract
Burkholderia pseudomallei is a soil-dwelling bacterium able to survive not only under adverse environmental conditions, but also within various hosts which can lead to the disease melioidosis. The capability of B. pseudomallei to adapt to environmental changes is facilitated by the large number of regulatory proteins encoded by its genome. Among them are more than 60 uncharacterized LysR-type transcriptional regulators (LTTRs). Here we analyzed a B. pseudomallei mutant harboring a transposon in the gene BPSL0117 annotated as a LTTR, which we named gvmR (globally acting virulence and metabolism regulator). The gvmR mutant displayed a growth defect in minimal medium and macrophages in comparison with the wild type. Moreover, disruption of gvmR rendered B. pseudomallei avirulent in mice indicating a critical role of GvmR in infection. These defects of the mutant were rescued by ectopic expression of gvmR. To identify genes whose expression is modulated by GvmR, global transcriptome analysis of the B. pseudomallei wild type and gvmR mutant was performed using whole genome tiling microarrays. Transcript levels of 190 genes were upregulated and 141 genes were downregulated in the gvmR mutant relative to the wild type. Among the most downregulated genes in the gvmR mutant were important virulence factor genes (T3SS3, T6SS1, and T6SS2), which could explain the virulence defect of the gvmR mutant. In addition, expression of genes related to amino acid synthesis, glyoxylate shunt, iron-sulfur cluster assembly, and syrbactin metabolism (secondary metabolite) was decreased in the mutant. On the other hand, inactivation of GvmR increased expression of genes involved in pyruvate metabolism, ATP synthesis, malleobactin, and porin genes. Quantitative real-time PCR verified the differential expression of 27 selected genes. In summary, our data show that GvmR acts as an activating and repressing global regulator that is required to coordinate expression of a diverse set of metabolic and virulence genes essential for the survival in the animal host and under nutrient limitation.
Collapse
Affiliation(s)
- Linh Tuan Duong
- Friedrich Loeffler Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Sandra Schwarz
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany
| | - Harald Gross
- Department of Pharmaceutical Biology, Pharmaceutical Institute, Eberhard Karls University of Tübingen, Tübingen, Germany.,German Centre for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Katrin Breitbach
- Friedrich Loeffler Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Falko Hochgräfe
- Competence Center Functional Genomics, Junior Research Group Pathoproteomics, University of Greifswald, Greifswald, Germany
| | - Jörg Mostertz
- Competence Center Functional Genomics, Junior Research Group Pathoproteomics, University of Greifswald, Greifswald, Germany
| | - Kristin Eske-Pogodda
- Friedrich Loeffler Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Gabriel E Wagner
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Ivo Steinmetz
- Friedrich Loeffler Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany.,Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Christian Kohler
- Friedrich Loeffler Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
23
|
Sharmin D, Guo Y, Nishizawa T, Ohshima S, Sato Y, Takashima Y, Narisawa K, Ohta H. Comparative Genomic Insights into Endofungal Lifestyles of Two Bacterial Endosymbionts, Mycoavidus cysteinexigens and Burkholderia rhizoxinica. Microbes Environ 2018. [PMID: 29540638 PMCID: PMC5877345 DOI: 10.1264/jsme2.me17138] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Endohyphal bacteria (EHB), dwelling within fungal hyphae, markedly affect the growth and metabolic potential of their hosts. To date, two EHB belonging to the family Burkholderiaceae have been isolated and characterized as new taxa, Burkholderia rhizoxinica (HKI 454T) and Mycoavidus cysteinexigens (B1-EBT), in Japan. Metagenome sequencing was recently reported for Mortierella elongata AG77 together with its endosymbiont M. cysteinexigens (Mc-AG77) from a soil/litter sample in the USA. In the present study, we elucidated the complete genome sequence of B1-EBT and compared it with those of Mc-AG77 and HKI 454T. The genomes of B1-EBT and Mc-AG77 contained a higher level of prophage sequences and were markedly smaller than that of HKI 454T. Although the B1-EBT and Mc-AG77 genomes lacked the chitinolytic enzyme genes responsible for invasion into fungal cells, they contained several predicted toxin-antitoxin systems including an insecticidal toxin complex and PIN domain imposing an addiction-like mechanism essential for endohyphal growth control during host colonization. Despite the different host fungi, the alignment of amino acid sequences showed that the HKI 454T genome consisted of 1,265 (32.6%) and 1,221 (31.5%) orthologous coding sequences (CDSs) with those of B1-EBT and Mc-AG77, respectively. This comparative study of three phylogenetically associated endosymbionts has provided insights into their origin and evolution, and suggests the later bacterial invasion and adaptation of B1-EBT to its host metabolism.
Collapse
Affiliation(s)
- Dilruba Sharmin
- Ibaraki University College of Agriculture, Department of Bioresource Science
| | - Yong Guo
- Ibaraki University College of Agriculture, Department of Bioresource Science
| | - Tomoyasu Nishizawa
- Ibaraki University College of Agriculture, Department of Bioresource Science.,United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology
| | - Shoko Ohshima
- Ibaraki University College of Agriculture, Department of Bioresource Science
| | - Yoshinori Sato
- Center for Conservation and Restoration Techniques, Tokyo National Research Institute for Cultural Properties
| | - Yusuke Takashima
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology
| | - Kazuhiko Narisawa
- Ibaraki University College of Agriculture, Department of Bioresource Science.,United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology
| | - Hiroyuki Ohta
- Ibaraki University College of Agriculture, Department of Bioresource Science.,United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology
| |
Collapse
|
24
|
Chalupowicz L, Nissan G, Brandl MT, McClelland M, Sessa G, Popov G, Barash I, Manulis-Sasson S. Assessing the Ability of Salmonella enterica to Translocate Type III Effectors Into Plant Cells. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:233-239. [PMID: 28952399 DOI: 10.1094/mpmi-07-17-0166-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Salmonella enterica serovar Typhimurium, a human enteric pathogen, has the ability to multiply and survive endophytically in plants. Genes encoding the type III secretion system (T3SS) or its effectors (T3Es) may contribute to its colonization. Two reporter plasmids for T3E translocation into plant cells that are based on hypersensitive response domains of avirulence proteins from the Pantoea agglomerans-beet and Xanthomonas euvesicatoria-pepper pathosystems were employed in this study to investigate the role of T3Es in the interaction of Salmonella ser. Typhimurium 14028 with plants. The T3Es of Salmonella ser. Typhimurium, SipB and SifA, which are translocated into animal cells, could not be delivered by Salmonella ser. Typhimurium into cells of beet roots or pepper leaves. In contrast, these effectors were translocated into plant cells by the phytopathogenic bacteria P. agglomerans pv. betae, Erwinia amylovora, and X. euvesicatoria. Similarly, HsvG, a T3E of P. agglomerans pv. gypsophilae, and XopAU of X. euvesicatoria could be translocated into beet roots and pepper leaves, respectively, by the plant pathogens but not by Salmonella ser. Typhimurium. Mutations in Salmonella ser. Typhimurium T3SS genes invA, ssaV, sipB, or sifA, did not affect its endophytic colonization of lettuce leaves, supporting the notion that S. enterica cannot translocate T3Es into plant cells.
Collapse
Affiliation(s)
- Laura Chalupowicz
- 1 Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, Rishon LeZion 7528809, Israel
| | - Gal Nissan
- 1 Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, Rishon LeZion 7528809, Israel
- 2 School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv 69978, Israel
| | - Maria T Brandl
- 3 Produce Safety and Microbiology Research Unit, USDA, ARS, WRRC, 800 Buchanan St., Albany, CA 94710, U.S.A.; and
| | - Michael McClelland
- 4 Department of Microbiology, School of Medicine, University of California, Irvine, CA 92697-4025, U.S.A
| | - Guido Sessa
- 2 School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv 69978, Israel
| | - Georgy Popov
- 2 School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv 69978, Israel
| | - Isaac Barash
- 2 School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv 69978, Israel
| | - Shulamit Manulis-Sasson
- 1 Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, Rishon LeZion 7528809, Israel
| |
Collapse
|
25
|
Abstract
Burkholderia pseudomallei is a Gram-negative environmental bacterium and the aetiological agent of melioidosis, a life-threatening infection that is estimated to account for ∼89,000 deaths per year worldwide. Diabetes mellitus is a major risk factor for melioidosis, and the global diabetes pandemic could increase the number of fatalities caused by melioidosis. Melioidosis is endemic across tropical areas, especially in southeast Asia and northern Australia. Disease manifestations can range from acute septicaemia to chronic infection, as the facultative intracellular lifestyle and virulence factors of B. pseudomallei promote survival and persistence of the pathogen within a broad range of cells, and the bacteria can manipulate the host's immune responses and signalling pathways to escape surveillance. The majority of patients present with sepsis, but specific clinical presentations and their severity vary depending on the route of bacterial entry (skin penetration, inhalation or ingestion), host immune function and bacterial strain and load. Diagnosis is based on clinical and epidemiological features as well as bacterial culture. Treatment requires long-term intravenous and oral antibiotic courses. Delays in treatment due to difficulties in clinical recognition and laboratory diagnosis often lead to poor outcomes and mortality can exceed 40% in some regions. Research into B. pseudomallei is increasing, owing to the biothreat potential of this pathogen and increasing awareness of the disease and its burden; however, better diagnostic tests are needed to improve early confirmation of diagnosis, which would enable better therapeutic efficacy and survival.
Collapse
Affiliation(s)
- W Joost Wiersinga
- Department of Medicine, Division of Infectious Diseases, Academic Medical Center, Meibergdreef 9, Rm. G2-132, 1105 AZ Amsterdam, The Netherlands
- Centre for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Harjeet S Virk
- Centre for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Alfredo G Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Bart J Currie
- Menzies School of Health Research, Charles Darwin University and Royal Darwin Hospital, Darwin, Australia
| | - Sharon J Peacock
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - David A B Dance
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Lao-Oxford-Mahosot Hospital Wellcome Trust Research Unit, Vientiane, Lao People's Democratic Republic
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Direk Limmathurotsakul
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- Department of Tropical Hygiene and Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
26
|
Titball RW, Burtnick MN, Bancroft GJ, Brett P. Burkholderia pseudomallei and Burkholderia mallei vaccines: Are we close to clinical trials? Vaccine 2017; 35:5981-5989. [DOI: 10.1016/j.vaccine.2017.03.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/17/2017] [Accepted: 03/07/2017] [Indexed: 10/19/2022]
|
27
|
Muangsombut V, Withatanung P, Srinon V, Chantratita N, Stevens MP, Blackwell JM, Korbsrisate S. Burkholderia pseudomallei Evades Nramp1 (Slc11a1)- and NADPH Oxidase-Mediated Killing in Macrophages and Exhibits Nramp1-Dependent Virulence Gene Expression. Front Cell Infect Microbiol 2017; 7:350. [PMID: 28848712 PMCID: PMC5550678 DOI: 10.3389/fcimb.2017.00350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 07/21/2017] [Indexed: 02/02/2023] Open
Abstract
Bacterial survival in macrophages can be affected by the natural resistance-associated macrophage protein 1 (Nramp1; also known as solute carrier family 11 member a1 or Slc11a1) which localizes to phagosome membranes and transports divalent cations, including iron. Little is known about the role of Nramp1 in Burkholderia infection, in particular whether this differs for pathogenic species like Burkholderia pseudomallei causing melioidosis or non-pathogenic species like Burkholderia thailandensis. Here we show that transfected macrophages stably expressing wild-type Nramp1 (Nramp1+) control the net replication of B. thailandensis, but not B. pseudomallei. Control of B. thailandensis was associated with increased cytokine responses, and could be abrogated by blocking NADPH oxidase-mediated production of reactive oxygen species but not by blocking generation of reactive nitrogen species. The inability of Nramp1+ macrophages to control B. pseudomallei was associated with rapid escape of bacteria from phagosomes, as indicated by decreased co-localization with LAMP1 compared to B. thailandensis. A B. pseudomallei bipB mutant impaired in escape from phagosomes was controlled to a greater extent than the parent strain in Nramp1+ macrophages, but was also attenuated in Nramp1− cells. Consistent with reduced escape from phagosomes, B. thailandensis formed fewer multinucleated giant cells in Nramp1+ macrophages at later time points compared to B. pseudomallei. B. pseudomallei exhibited elevated transcription of virulence-associated genes of Type VI Secretion System cluster 1 (T6SS-1), the Bsa Type III Secretion System (T3SS-3) and the bimA gene required for actin-based motility in Nramp1+ macrophages. Nramp1+ macrophages were found to contain decreased iron levels that may impact on expression of such genes. Our data show that B. pseudomallei is able to evade Nramp1- and NADPH oxidase-mediated killing in macrophages and that expression of virulence-associated genes by pathogenic B pseudomallei is enhanced in macrophages expressing wild-type compared to non-functional Nramp1. B. thailandensis has been proposed as surrogate for B. pseudomallei in the study of melioidosis however our study highlights important differences in the interaction of these bacteria with macrophages.
Collapse
Affiliation(s)
- Veerachat Muangsombut
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol UniversityBangkok, Thailand
| | - Patoo Withatanung
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol UniversityBangkok, Thailand
| | - Varintip Srinon
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol UniversityBangkok, Thailand.,Microbiology Laboratory, Veterinary Diagnostic Center, Faculty of Veterinary Science, Mahidol UniversityNakhon Pathom, Thailand
| | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol UniversityBangkok, Thailand
| | - Mark P Stevens
- Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of EdinburghMidlothian, United Kingdom
| | - Jenefer M Blackwell
- Telethon Kids Institute, The University of Western AustraliaSubiaco, WA, Australia.,Department of Pathology, University of CambridgeCambridge, United Kingdom
| | - Sunee Korbsrisate
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol UniversityBangkok, Thailand
| |
Collapse
|
28
|
Antibodies against In Vivo-Expressed Antigens Are Sufficient To Protect against Lethal Aerosol Infection with Burkholderia mallei and Burkholderia pseudomallei. Infect Immun 2017; 85:IAI.00102-17. [PMID: 28507073 DOI: 10.1128/iai.00102-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 05/08/2017] [Indexed: 12/22/2022] Open
Abstract
Burkholderia mallei, a facultative intracellular bacterium and tier 1 biothreat, causes the fatal zoonotic disease glanders. The organism possesses multiple genes encoding autotransporter proteins, which represent important virulence factors and targets for developing countermeasures in pathogenic Gram-negative bacteria. In the present study, we investigated one of these autotransporters, BatA, and demonstrate that it displays lipolytic activity, aids in intracellular survival, is expressed in vivo, elicits production of antibodies during infection, and contributes to pathogenicity in a mouse aerosol challenge model. A mutation in the batA gene of wild-type strain ATCC 23344 was found to be particularly attenuating, as BALB/c mice infected with the equivalent of 80 median lethal doses cleared the organism. This finding prompted us to test the hypothesis that vaccination with the batA mutant strain elicits protective immunity against subsequent infection with wild-type bacteria. We discovered that not only does vaccination provide high levels of protection against lethal aerosol challenge with B. mallei ATCC 23344, it also protects against infection with multiple isolates of the closely related organism and causative agent of melioidosis, Burkholderia pseudomallei Passive-transfer experiments also revealed that the protective immunity afforded by vaccination with the batA mutant strain is predominantly mediated by IgG antibodies binding to antigens expressed exclusively in vivo Collectively, our data demonstrate that BatA is a target for developing medical countermeasures and that vaccination with a mutant lacking expression of the protein provides a platform to gain insights regarding mechanisms of protective immunity against B. mallei and B. pseudomallei, including antigen discovery.
Collapse
|
29
|
Vander Broek CW, Zainal Abidin N, Stevens JM. BipC, a Predicted Burkholderia pseudomallei Type 3 Secretion System Translocator Protein with Actin Binding Activity. Front Cell Infect Microbiol 2017; 7:333. [PMID: 28770177 PMCID: PMC5515863 DOI: 10.3389/fcimb.2017.00333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 07/06/2017] [Indexed: 11/13/2022] Open
Abstract
Burkholderia pseudomallei is an intracellular bacterial pathogen and the causative agent of melioidosis, a severe disease of humans and animals. Like other clinically important Gram-negative bacteria, fundamental to B. pseudomallei pathogenesis is the Bsa Type III Secretion System. The Bsa system injects bacterial effector proteins into the cytoplasm of target host cells subverting cellular pathways for the benefit of the bacteria. It is required for invasion of non-phagocytic host cells, escape from the endocytic compartment into the host cell cytoplasm, and for virulence in murine models of melioidosis. We have recently described the repertoire of effector proteins secreted by the B. pseudomallei Bsa system, however the functions of many of these effector proteins remain an enigma. One such protein is BipC, a homolog of the translocator/effector proteins SipC and IpaC from Salmonella spp. and Shigella flexneri respectively. SipC and IpaC each have separate and distinct roles acting both as translocators, involved in creating a pore in the eukaryotic cell membrane through which effector proteins can transit, and as effectors by interacting with and polymerizing host cell actin. In this study, pull-down assays demonstrate an interaction between BipC and actin. Furthermore, we show that BipC directly interacts with actin, preferentially with actin polymers (F-actin) and has the ability to polymerize actin in a similar manner as that described for SipC. Yet unlike SipC, BipC does not stabilize F-actin filaments, indicating a functionally distinct interaction with actin. Expression of Myc-tagged BipC in HeLa cells induces the formation of pseudopodia similar to that seen for IpaC. This study explores the effector function of BipC and reveals that actin interaction is conserved within the BipC/SipC/IpaC family of translocator/effector proteins.
Collapse
Affiliation(s)
- Charles W Vander Broek
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of EdinburghScotland, United Kingdom
| | - Nurhamimah Zainal Abidin
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of EdinburghScotland, United Kingdom
| | - Joanne M Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of EdinburghScotland, United Kingdom
| |
Collapse
|
30
|
Abstract
Purpose of review Burkholderia pseudomallei's and Burkholderia mallei's high rate of infectivity, limited treatment options, and potential use as biological warfare agents underscore the need for development of effective vaccines against these bacteria. Research efforts focused on vaccines against these bacteria are in pre-clinical stages, with no approved formulations currently on the market. Recent findings Several live attenuated and subunit vaccine formulations have been evaluated in animal studies, with no reports of significant long term survival after lethal challenge. Summary This review encompasses the most current vaccine strategies to prevent B. pseudomallei and B. mallei infections while providing insight for successful vaccines moving forward.
Collapse
|
31
|
Vander Broek CW, Stevens JM. Type III Secretion in the Melioidosis Pathogen Burkholderia pseudomallei. Front Cell Infect Microbiol 2017; 7:255. [PMID: 28664152 PMCID: PMC5471309 DOI: 10.3389/fcimb.2017.00255] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/31/2017] [Indexed: 02/03/2023] Open
Abstract
Burkholderia pseudomallei is a Gram-negative intracellular pathogen and the causative agent of melioidosis, a severe disease of both humans and animals. Melioidosis is an emerging disease which is predicted to be vastly under-reported. Type III Secretion Systems (T3SSs) are critical virulence factors in Gram negative pathogens of plants and animals. The genome of B. pseudomallei encodes three T3SSs. T3SS-1 and -2, of which little is known, are homologous to Hrp2 secretion systems of the plant pathogens Ralstonia and Xanthomonas. T3SS-3 is better characterized and is homologous to the Inv/Mxi-Spa secretion systems of Salmonella spp. and Shigella flexneri, respectively. Upon entry into the host cell, B. pseudomallei requires T3SS-3 for efficient escape from the endosome. T3SS-3 is also required for full virulence in both hamster and murine models of infection. The regulatory cascade which controls T3SS-3 expression and the secretome of T3SS-3 have been described, as well as the effect of mutations of some of the structural proteins. Yet only a few effector proteins have been functionally characterized to date and very little work has been carried out to understand the hierarchy of assembly, secretion and temporal regulation of T3SS-3. This review aims to frame current knowledge of B. pseudomallei T3SSs in the context of other well characterized model T3SSs, particularly those of Salmonella and Shigella.
Collapse
Affiliation(s)
- Charles W Vander Broek
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of EdinburghMidlothian, United Kingdom
| | - Joanne M Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of EdinburghMidlothian, United Kingdom
| |
Collapse
|
32
|
Perumal Samy R, Stiles BG, Sethi G, Lim LHK. Melioidosis: Clinical impact and public health threat in the tropics. PLoS Negl Trop Dis 2017; 11:e0004738. [PMID: 28493905 PMCID: PMC5426594 DOI: 10.1371/journal.pntd.0004738] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
This review briefly summarizes the geographical distribution and clinical impact of melioidosis, especially in the tropics. Burkholderia pseudomallei (a gram-negative bacterium) is the major causative agent for melioidosis, which is prevalent in Singapore, Malaysia, Thailand, Vietnam, and Northern Australia. Melioidosis patients are increasingly being recognized in other parts of the world. The bacteria are intrinsically resistant to many antimicrobial agents, but prolonged treatment, especially with combinations of antibiotics, may be effective. Despite therapy, the overall case fatality rate of septicemia in melioidosis remains significantly high. Intracellular survival of the bacteria within macrophages may progress to chronic infections, and about 10% of patients suffer relapses. In the coming decades, melioidosis will increasingly afflict travelers throughout many global regions. Clinicians managing travelers returning from the subtropics or tropics with severe pneumonia or septicemia should consider acute melioidosis as a differential diagnosis. Patients with open skin wounds, diabetes, or chronic renal disease are at higher risk for melioidosis and should avoid direct contact with soil and standing water in endemic regions. Furthermore, there are fears that B. pseudomallei may be used as a biological weapon. Technological advancements in molecular diagnostics and antibiotic therapy are improving the disease outcomes in endemic areas throughout Asia. Research and development efforts on vaccine candidates against melioidosis are ongoing.
Collapse
Affiliation(s)
- Ramar Perumal Samy
- Department of Physiology, NUS Immunology Programme, Centre for Life Sciences, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore
| | - Bradley G. Stiles
- Integrated Toxicology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, NUHS, National University of Singapore, Singapore
| | - Lina H. K. Lim
- Department of Physiology, NUS Immunology Programme, Centre for Life Sciences, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore
| |
Collapse
|
33
|
Uehling J, Gryganskyi A, Hameed K, Tschaplinski T, Misztal PK, Wu S, Desirò A, Vande Pol N, Du Z, Zienkiewicz A, Zienkiewicz K, Morin E, Tisserant E, Splivallo R, Hainaut M, Henrissat B, Ohm R, Kuo A, Yan J, Lipzen A, Nolan M, LaButti K, Barry K, Goldstein AH, Labbé J, Schadt C, Tuskan G, Grigoriev I, Martin F, Vilgalys R, Bonito G. Comparative genomics of Mortierella elongata and its bacterial endosymbiont Mycoavidus cysteinexigens. Environ Microbiol 2017; 19:2964-2983. [PMID: 28076891 DOI: 10.1111/1462-2920.13669] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/05/2017] [Accepted: 01/07/2017] [Indexed: 12/13/2022]
Abstract
Endosymbiosis of bacteria by eukaryotes is a defining feature of cellular evolution. In addition to well-known bacterial origins for mitochondria and chloroplasts, multiple origins of bacterial endosymbiosis are known within the cells of diverse animals, plants and fungi. Early-diverging lineages of terrestrial fungi harbor endosymbiotic bacteria belonging to the Burkholderiaceae. We sequenced the metagenome of the soil-inhabiting fungus Mortierella elongata and assembled the complete circular chromosome of its endosymbiont, Mycoavidus cysteinexigens, which we place within a lineage of endofungal symbionts that are sister clade to Burkholderia. The genome of M. elongata strain AG77 features a core set of primary metabolic pathways for degradation of simple carbohydrates and lipid biosynthesis, while the M. cysteinexigens (AG77) genome is reduced in size and function. Experiments using antibiotics to cure the endobacterium from the host demonstrate that the fungal host metabolism is highly modulated by presence/absence of M. cysteinexigens. Independent comparative phylogenomic analyses of fungal and bacterial genomes are consistent with an ancient origin for M. elongata - M. cysteinexigens symbiosis, most likely over 350 million years ago and concomitant with the terrestrialization of Earth and diversification of land fungi and plants.
Collapse
Affiliation(s)
- J Uehling
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - A Gryganskyi
- LF Lambert Spawn Company Coatesville, PA, 19320, USA
| | - K Hameed
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - T Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - P K Misztal
- University of California Berkeley, Berkeley, CA, 94720, USA
| | - S Wu
- Arizona State University Tempe, AZ, 85281, USA
| | - A Desirò
- Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - N Vande Pol
- Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Z Du
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - A Zienkiewicz
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - K Zienkiewicz
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA.,Department of Plant Biochemistry, Georg-August University, Göttingen, 37073, Germany
| | - E Morin
- Institut National de la Recherche Agronomique, UMR 1136 INRA-Université de Lorraine 'Interactions Arbres/Microorganismes', Laboratoire d'excellence ARBRE, INRA-Nancy, Champenoux, 54280, France
| | - E Tisserant
- Institut National de la Recherche Agronomique, UMR 1136 INRA-Université de Lorraine 'Interactions Arbres/Microorganismes', Laboratoire d'excellence ARBRE, INRA-Nancy, Champenoux, 54280, France
| | - R Splivallo
- Goethe University Frankfurt, Institute for Molecular Biosciences, 60438 Frankfurt, Germany Integrative Fungal Research Cluster (IPF), Frankfurt, 60325, Germany
| | - M Hainaut
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille, 13288, France
| | - B Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille, 13288, France
| | - R Ohm
- Microbiology, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - A Kuo
- Department of Energy, Joint Genome Institute, Oakland, CA, 94598, USA
| | - J Yan
- Department of Energy, Joint Genome Institute, Oakland, CA, 94598, USA
| | - A Lipzen
- Department of Energy, Joint Genome Institute, Oakland, CA, 94598, USA
| | - M Nolan
- Department of Energy, Joint Genome Institute, Oakland, CA, 94598, USA
| | - K LaButti
- Department of Energy, Joint Genome Institute, Oakland, CA, 94598, USA
| | - K Barry
- Department of Energy, Joint Genome Institute, Oakland, CA, 94598, USA
| | - A H Goldstein
- University of California Berkeley, Berkeley, CA, 94720, USA
| | - J Labbé
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - C Schadt
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - G Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - I Grigoriev
- Department of Energy, Joint Genome Institute, Oakland, CA, 94598, USA
| | - F Martin
- Institut National de la Recherche Agronomique, UMR 1136 INRA-Université de Lorraine 'Interactions Arbres/Microorganismes', Laboratoire d'excellence ARBRE, INRA-Nancy, Champenoux, 54280, France
| | - R Vilgalys
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - G Bonito
- Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
34
|
Kang WT, Vellasamy KM, Rajamani L, Beuerman RW, Vadivelu J. Burkholderia pseudomallei type III secreted protein BipC: role in actin modulation and translocation activities required for the bacterial intracellular lifecycle. PeerJ 2016; 4:e2532. [PMID: 28028452 PMCID: PMC5180589 DOI: 10.7717/peerj.2532] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 09/06/2016] [Indexed: 01/13/2023] Open
Abstract
Melioidosis, an infection caused by the facultative intracellular pathogen Burkholderia pseudomallei, has been classified as an emerging disease with the number of patients steadily increasing at an alarming rate. B. pseudomalleipossess various virulence determinants that allow them to invade the host and evade the host immune response, such as the type III secretion systems (TTSS). The products of this specialized secretion system are particularly important for the B. pseudomallei infection. Lacking in one or more components of the TTSS demonstrated different degrees of defects in the intracellular lifecycle of B. pseudomallei. Further understanding the functional roles of proteins involved in B. pseudomallei TTSS will enable us to dissect the enigma of B. pseudomallei-host cell interaction. In this study, BipC (a translocator), which was previously reported to be involved in the pathogenesis of B. pseudomallei, was further characterized using the bioinformatics and molecular approaches. The bipCgene, coding for a putative invasive protein, was first PCR amplified from B. pseudomallei K96243 genomic DNA and cloned into an expression vector for overexpression in Escherichia coli. The soluble protein was subsequently purified and assayed for actin polymerization and depolymerization. BipC was verified to subvert the host actin dynamics as demonstrated by the capability to polymerize actin in vitro. Homology modeling was also attempted to predict the structure of BipC. Overall, our findings identified that the protein encoded by the bipC gene plays a role as an effector involved in the actin binding activity to facilitate internalization of B. pseudomalleiinto the host cells.
Collapse
Affiliation(s)
- Wen Tyng Kang
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| | - Kumutha Malar Vellasamy
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| | | | - Roger W Beuerman
- Antimicrobials, Singapore Eye Research Institute (SERI) , Singapore , Singapore
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| |
Collapse
|
35
|
Chen YS, Lin HH, Hsueh PT, Ni WF, Liu PJ, Chen PS, Chang HH, Sun DS, Chen YL. Involvement of L-selectin expression in Burkholderia pseudomallei-infected monocytes invading the brain during murine melioidosis. Virulence 2016; 8:751-766. [PMID: 27646437 DOI: 10.1080/21505594.2016.1232239] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The development of neurologic melioidosis was linked to the elicitation of Burkholderia pseudomallei-infected L-selectinhiCD11b+ BALB/c cells in our previous study. However, whether monocytic L-selectin (CD62L, encoded by the sell gene) is a key factor remains uncertain. In the present study, after establishing multi-organ foci via hematogenous routes, we demonstrated that B. pseudomallei GFP steadily persisted in blood, splenic, hepatic and bone marrow (BM) Ly6C monocytes; however, the circulating CD16/32+CD45hiGFP+ brain-infiltrating leukocytes (BILs) derived from the blood Ly6C monocytes were expanded in BALB/c but not in C57BL/6 bacteremic melioidosis. Consistent with these results, 60% of BALB/c mice but only 10% of C57BL/6 mice exhibited neurologic melioidosis. In a time-dependent manner, B. pseudomallei invaded C57BL/6 BM-derived phagocytes and monocytic progenitors by 2 d. The number of Ly6C+CD62L+GFP+ inflamed cells that had expanded in the BM and that were ready for emigration peaked on d 21 post-infection. Hematogenous B. pseudomallei-loaded sell+/+Ly6C monocytes exacerbated the bacterial loads and the proportion of Ly6C+GFP+ BILs in the recipient brains compared to sell-/- infected Ly6C cells when adoptively transferred. Moreover, a neutralizing anti-CD62L antibody significantly depleted the bacterial colonization of the brain following adoptive transfer of B. pseudomallei-loaded C57BL/6 or BALB/c Ly6C cells. Our data thus suggest that Ly6C+CD62L+ infected monocytes served as a Trojan horse across the cerebral endothelium to induce brain infection. Therefore, CD62L should be considered as not only a temporally elicited antigen but also a disease-relevant leukocyte marker during the development of neurologic melioidosis.
Collapse
Affiliation(s)
- Yao-Shen Chen
- a Department of Internal Medicine , Kaohsiung Veterans General Hospital , Kaohsiung , Taiwan.,b Department of Internal Medicine , National Yang-Ming University , Taipei , Taiwan
| | - Hsi-Hsun Lin
- c Section of Infectious Disease , Department of Medicine , E-Da Hospital and University , Kaohsiung Taiwan
| | - Pei-Tan Hsueh
- d Department of Biological Science , National Sun Yat-sen University , Kaohsiung , Taiwan.,e Department of Biotechnology , National Kaohsiung Normal University , Kaohsiung , Taiwan
| | - Wei-Fen Ni
- e Department of Biotechnology , National Kaohsiung Normal University , Kaohsiung , Taiwan
| | - Pei-Ju Liu
- e Department of Biotechnology , National Kaohsiung Normal University , Kaohsiung , Taiwan
| | - Pei-Shih Chen
- f Department of Public Health , College of Health Science, Kaohsiung Medical University , Kaohsiung , Taiwan.,g Institute of Environmental Engineering, National Sun Yat-sen University , Kaohsiung , Taiwan
| | - Hsin-Hou Chang
- h Department of Molecular Biology and Human Genetics , Tzu Chi University , Hualien , Taiwan
| | - Der-Shan Sun
- h Department of Molecular Biology and Human Genetics , Tzu Chi University , Hualien , Taiwan
| | - Ya-Lei Chen
- e Department of Biotechnology , National Kaohsiung Normal University , Kaohsiung , Taiwan
| |
Collapse
|
36
|
Kohler C, Dunachie SJ, Müller E, Kohler A, Jenjaroen K, Teparrukkul P, Baier V, Ehricht R, Steinmetz I. Rapid and Sensitive Multiplex Detection of Burkholderia pseudomallei-Specific Antibodies in Melioidosis Patients Based on a Protein Microarray Approach. PLoS Negl Trop Dis 2016; 10:e0004847. [PMID: 27427979 PMCID: PMC4948818 DOI: 10.1371/journal.pntd.0004847] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/22/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The environmental bacterium Burkholderia pseudomallei causes the infectious disease melioidosis with a high case-fatality rate in tropical and subtropical regions. Direct pathogen detection can be difficult, and therefore an indirect serological test which might aid early diagnosis is desirable. However, current tests for antibodies against B. pseudomallei, including the reference indirect haemagglutination assay (IHA), lack sensitivity, specificity and standardization. Consequently, serological tests currently do not play a role in the diagnosis of melioidosis in endemic areas. Recently, a number of promising diagnostic antigens have been identified, but a standardized, easy-to-perform clinical laboratory test for sensitive multiplex detection of antibodies against B. pseudomallei is still lacking. METHODS AND PRINCIPAL FINDINGS In this study, we developed and validated a protein microarray which can be used in a standard 96-well format. Our array contains 20 recombinant and purified B. pseudomallei proteins, previously identified as serodiagnostic candidates in melioidosis. In total, we analyzed 196 sera and plasmas from melioidosis patients from northeast Thailand and 210 negative controls from melioidosis-endemic and non-endemic regions. Our protein array clearly discriminated between sera from melioidosis patients and controls with a specificity of 97%. Importantly, the array showed a higher sensitivity than did the IHA in melioidosis patients upon admission (cut-off IHA titer ≥1:160: IHA 57.3%, protein array: 86.7%; p = 0.0001). Testing of sera from single patients at 0, 12 and 52 weeks post-admission revealed that protein antigens induce either a short- or long-term antibody response. CONCLUSIONS Our protein array provides a standardized, rapid, easy-to-perform test for the detection of B. pseudomallei-specific antibody patterns. Thus, this system has the potential to improve the serodiagnosis of melioidosis in clinical settings. Moreover, our high-throughput assay might be useful for the detection of anti-B. pseudomallei antibodies in epidemiological studies. Further studies are needed to elucidate the clinical and diagnostic significance of the different antibody kinetics observed during melioidosis.
Collapse
Affiliation(s)
- Christian Kohler
- Friedrich Loeffler Institut for Medical Microbiology, Greifswald, Germany
| | - Susanna J. Dunachie
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Elke Müller
- Alere Technologies GmbH, Jena, Germany
- InfectoGnostics Research Campus, Jena, Germany
| | - Anne Kohler
- Friedrich Loeffler Institut for Medical Microbiology, Greifswald, Germany
| | - Kemajittra Jenjaroen
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | | | - Ralf Ehricht
- Alere Technologies GmbH, Jena, Germany
- InfectoGnostics Research Campus, Jena, Germany
| | - Ivo Steinmetz
- Friedrich Loeffler Institut for Medical Microbiology, Greifswald, Germany
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
37
|
Aschenbroich SA, Lafontaine ER, Hogan RJ. Melioidosis and glanders modulation of the innate immune system: barriers to current and future vaccine approaches. Expert Rev Vaccines 2016; 15:1163-81. [PMID: 27010618 DOI: 10.1586/14760584.2016.1170598] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Burkholderia pseudomallei and Burkholderia mallei are pathogenic bacteria causing fatal infections in animals and humans. Both organisms are classified as Tier 1 Select Agents owing to their highly fatal nature, potential/prior use as bioweapons, severity of disease via respiratory exposure, intrinsic resistance to antibiotics, and lack of a current vaccine. Disease manifestations range from acute septicemia to chronic infection, wherein the facultative intracellular lifestyle of these organisms promotes persistence within a broad range of hosts. This ability to thrive intracellularly is thought to be related to exploitation of host immune response signaling pathways. There are currently considerable gaps in our understanding of the molecular strategies employed by these pathogens to modulate these pathways and evade intracellular killing. A better understanding of the specific molecular basis for dysregulation of host immune responses by these organisms will provide a stronger platform to identify novel vaccine targets and develop effective countermeasures.
Collapse
Affiliation(s)
- Sophie A Aschenbroich
- a Department of Pathology , College of Veterinary Medicine, University of Georgia , Athens , GA , USA
| | - Eric R Lafontaine
- b Department of Infectious Diseases , College of Veterinary Medicine, University of Georgia , Athens , GA , USA
| | - Robert J Hogan
- b Department of Infectious Diseases , College of Veterinary Medicine, University of Georgia , Athens , GA , USA.,c Department of Veterinary Biosciences and Diagnostic Imaging , College of Veterinary Medicine, University of Georgia , Athens , GA , USA
| |
Collapse
|
38
|
Swetha RG, Sandhya M, Ramaiah S, Anbarasu A. Identification of CD4+ T-cell epitope and investigation of HLA distribution for the immunogenic proteins of Burkholderia pseudomallei using in silico approaches - A key vaccine development strategy for melioidosis. J Theor Biol 2016; 400:11-8. [PMID: 27086038 DOI: 10.1016/j.jtbi.2016.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 03/18/2016] [Accepted: 04/08/2016] [Indexed: 10/21/2022]
Abstract
Melioidosis is a serious infectious diseases affecting multi-organ system in humans with high mortality rate. The disease is caused by the bacterium, Burkholderia pseudomallei and it is intrinsically resistant to many antibiotics. Thus, there is an urgent need for protective vaccine against B. pseudomallei; which may reduce morbidity and mortality in endemic areas. The identification of peptides that bind to major histocompatibility complex II class helps in understanding the nature of immune response and identifying T-cell epitopes for the design of new vaccines. Previous studies indicate that, ompA, bipB, fliC and groEL proteins of B. pseudomallei stimulate CD4+ T-cell immune response and act as protective immunogens. However, the data for CD4+ T-cell epitopes of these immunogenic proteins are very limited. Hence, in this present study we attempted to identify CD4+ T-cell epitopes in B. pseudomallei immunogenic proteins using in silico approaches. We did population coverage analysis for these identified epitopic core sequences to identify individuals in endemic areas expected to respond to a given set of these epitopes on the basis of HLA genotype frequencies. We observed that eight epitopic core sequences, two from each immunogenic protein, were associated with the maximum number of HLA-DR binding alleles. These eight peptides are found to be immunogenic in more than 90% of population in endemic areas considered. Thus, these eight peptides containing epitopic core sequences may act as probable vaccine candidates and they may be considered for the development of epitope-based vaccines for melioidosis.
Collapse
Affiliation(s)
- Rayapadi G Swetha
- Medical & Biological Computing Laboratory, School of BioSciences and Technology, VIT University, Vellore 632014, India
| | - Madangopal Sandhya
- Medical & Biological Computing Laboratory, School of BioSciences and Technology, VIT University, Vellore 632014, India
| | - Sudha Ramaiah
- Medical & Biological Computing Laboratory, School of BioSciences and Technology, VIT University, Vellore 632014, India
| | - Anand Anbarasu
- Medical & Biological Computing Laboratory, School of BioSciences and Technology, VIT University, Vellore 632014, India.
| |
Collapse
|
39
|
The Burkholderia pseudomallei Proteins BapA and BapC Are Secreted TTSS3 Effectors and BapB Levels Modulate Expression of BopE. PLoS One 2015; 10:e0143916. [PMID: 26624293 PMCID: PMC4666416 DOI: 10.1371/journal.pone.0143916] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 11/11/2015] [Indexed: 12/15/2022] Open
Abstract
Many Gram-negative pathogens use a type III secretion system (TTSS) for the injection of bacterial effector proteins into host cells. The injected effector proteins play direct roles in modulation of host cell pathways for bacterial benefit. Burkholderia pseudomallei, the causative agent of melioidosis, expresses three different TTSSs. One of these systems, the TTSS3, is essential for escape from host endosomes and therefore intracellular survival and replication. Here we have characterized three putative TTSS3 proteins; namely BapA, BapB and BapC. By employing a tetracysteine (TC)-FlAsH™ labelling technique to monitor the secretion of TC-tagged fusion proteins, BapA and BapC were shown to be secreted during in vitro growth in a TTSS3-dependant manner, suggesting a role as TTSS3 effectors. Furthermore, we constructed B. pseudomallei bapA, bapB and bapC mutants and used the well-characterized TTSS3 effector BopE as a marker of secretion to show that BapA, BapB and BapC are not essential for the secretion process. However, BopE transcription and secretion were significantly increased in the bapB mutant, suggesting that BapB levels modulate BopE expression. In a BALB/c mouse model of acute melioidosis, the bapA, bapB and bapC mutants showed a minor reduction of in vivo fitness. Thus, this study defines BapA and BapC as novel TTSS3 effectors, BapB as a regulator of BopE production, and all three as necessary for full B. pseudomallei in vivo fitness.
Collapse
|
40
|
Schully KL, Bell MG, Prouty AM, Gallovic MD, Gautam S, Peine KJ, Sharma S, Bachelder EM, Pesce JT, Elberson MA, Ainslie KM, Keane-Myers A. Evaluation of a biodegradable microparticulate polymer as a carrier for Burkholderia pseudomallei subunit vaccines in a mouse model of melioidosis. Int J Pharm 2015; 495:849-61. [PMID: 26428631 DOI: 10.1016/j.ijpharm.2015.09.059] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 09/15/2015] [Accepted: 09/24/2015] [Indexed: 01/17/2023]
Abstract
Melioidosis, a potentially lethal disease of humans and animals, is caused by the soil-dwelling bacterium Burkholderia pseudomallei. Due to B. pseudomallei's classification as a Tier 1 Select Agent, there is substantial interest in the development of an effective vaccine. Yet, despite decades of research, no effective target, adjuvant or delivery vehicle capable of inducing protective immunity against B. pseudomallei infection has been identified. We propose a microparticulate delivery vehicle comprised of the novel polymer acetalated dextran (Ac-DEX). Ac-DEX is an acid-sensitive biodegradable carrier that can be fabricated into microparticles (MPs) that are relatively stable at pH 7.4, but rapidly degrade after phagocytosis by antigen presenting cells where the pH can drop to 5.0. As compared to other biomaterials, this acid sensitivity has been shown to enhance cross presentation of subunit antigens. To evaluate this platform as a delivery system for a melioidosis vaccine, BALB/c mice were vaccinated with Ac-DEX MPs separately encapsulating B. pseudomallei whole cell lysate and the toll-like receptor (TLR) 7/8 agonist resiquimod. This vaccine elicited a robust antibody response that included both Th1 and Th2 immunity. Following lethal intraperitoneal challenge with B. pseudomallei 1026b, vaccinated mice demonstrated a significant delay to time of death compared to untreated mice. The formulation, however, demonstrated incomplete protection indicating that lysate protein offers limited value as an antigen. Nevertheless, our Ac-DEX MPs may offer an effective delivery vehicle for a subunit B. psuedomallei vaccine.
Collapse
Affiliation(s)
- K L Schully
- Vaccines and Medical Countermeasures, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Ft Detrick, MD 21702, USA
| | - M G Bell
- Vaccines and Medical Countermeasures, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Ft Detrick, MD 21702, USA
| | - A M Prouty
- Vaccines and Medical Countermeasures, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Ft Detrick, MD 21702, USA
| | - M D Gallovic
- William G. Lowrie Department of Chemical and Biomolecular Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - S Gautam
- Department of Pharmaceutical Sciences, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - K J Peine
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - S Sharma
- Department of Pharmaceutical Sciences, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - E M Bachelder
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - J T Pesce
- Vaccines and Medical Countermeasures, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Ft Detrick, MD 21702, USA
| | - M A Elberson
- Vaccines and Medical Countermeasures, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Ft Detrick, MD 21702, USA
| | - K M Ainslie
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - A Keane-Myers
- Vaccines and Medical Countermeasures, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Ft Detrick, MD 21702, USA
| |
Collapse
|
41
|
Southern SJ, Male A, Milne T, Sarkar-Tyson M, Tavassoli A, Oyston PCF. Evaluating the role of phage-shock protein A in Burkholderia pseudomallei. MICROBIOLOGY-SGM 2015; 161:2192-203. [PMID: 26374246 PMCID: PMC5452601 DOI: 10.1099/mic.0.000175] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The phage-shock protein (Psp) response is an extracytoplasmic response system that is vital for maintenance of the cytoplasmic membrane when the cell encounters stressful conditions. The paradigm of the Psp response has been established in Escherichia coli. The response has been shown to be important for survival during the stationary phase, maintenance of the proton motive force across membranes and implicated in virulence. In this study, we identified a putative PspA homologue in Burkholderia pseudomallei, annotated as BPSL2105. Similar to the induction of PspA in E. coli, the expression of B. pseudomallei BPSL2105 was induced by heat shock. Deletion of BPSL2105 resulted in a survival defect in the late stationary phase coincident with dramatic changes in the pH of the culture medium. The B. pseudomallei BPSL2105 deletion mutant also displayed reduced survival in macrophage infection – the first indication that the Psp response plays a role during intracellular pathogenesis in this species. The purified protein formed large oligomeric structures similar to those observed for the PspA protein of E. coli, and PspA homologues in Bacillus, cyanobacteria and higher plants, providing further evidence to support the identification of BPSL2105 as a PspA-like protein in B. pseudomallei.
Collapse
Affiliation(s)
- Stephanie J Southern
- 1Biomedical Sciences, Defence Science and Technology Laboratory, Porton Down, Salisbury, UK
| | - Abigail Male
- 2Department of Chemistry, University of Southampton, Southampton, UK
| | - Timothy Milne
- 1Biomedical Sciences, Defence Science and Technology Laboratory, Porton Down, Salisbury, UK
| | - Mitali Sarkar-Tyson
- 1Biomedical Sciences, Defence Science and Technology Laboratory, Porton Down, Salisbury, UK 3University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Ali Tavassoli
- 2Department of Chemistry, University of Southampton, Southampton, UK 4The Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Petra C F Oyston
- 1Biomedical Sciences, Defence Science and Technology Laboratory, Porton Down, Salisbury, UK
| |
Collapse
|
42
|
Moustafa DA, Scarff JM, Garcia PP, Cassidy SKB, DiGiandomenico A, Waag DM, Inzana TJ, Goldberg JB. Recombinant Salmonella Expressing Burkholderia mallei LPS O Antigen Provides Protection in a Murine Model of Melioidosis and Glanders. PLoS One 2015; 10:e0132032. [PMID: 26148026 PMCID: PMC4492786 DOI: 10.1371/journal.pone.0132032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 06/09/2015] [Indexed: 11/18/2022] Open
Abstract
Burkholderia pseudomallei and Burkholderia mallei are the etiologic agents of melioidosis and glanders, respectively. These bacteria are highly infectious via the respiratory route and can cause severe and often fatal diseases in humans and animals. Both species are considered potential agents of biological warfare; they are classified as category B priority pathogens. Currently there are no human or veterinary vaccines available against these pathogens. Consequently efforts are directed towards the development of an efficacious and safe vaccine. Lipopolysaccharide (LPS) is an immunodominant antigen and potent stimulator of host immune responses. B. mallei express LPS that is structurally similar to that expressed by B. pseudomallei, suggesting the possibility of constructing a single protective vaccine against melioidosis and glanders. Previous studies of others have shown that antibodies against B. mallei or B. pseudomallei LPS partially protect mice against subsequent lethal virulent Burkholderia challenge. In this study, we evaluated the protective efficacy of recombinant Salmonella enterica serovar Typhimurium SL3261 expressing B. mallei O antigen against lethal intranasal infection with Burkholderia thailandensis, a surrogate for biothreat Burkholderia spp. in a murine model that mimics melioidosis and glanders. All vaccine-immunized mice developed a specific antibody response to B. mallei and B. pseudomallei O antigen and to B. thailandensis and were significantly protected against challenge with a lethal dose of B. thailandensis. These results suggest that live-attenuated SL3261 expressing B. mallei O antigen is a promising platform for developing a safe and effective vaccine.
Collapse
Affiliation(s)
- Dina A. Moustafa
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Pediatrics, Emory University School of Medicine and Children’s Hospital of Atlanta, Inc., Atlanta, Georgia, United States of America
| | - Jennifer M. Scarff
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Preston P. Garcia
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Sara K. B. Cassidy
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Antonio DiGiandomenico
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Infectious Diseases, MedImmune, LLC, Gaithersburg, Maryland, United States of America
| | - David M. Waag
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland, United States of America
| | - Thomas J. Inzana
- Virginia-Maryland Regional College of Veterinary Medicine and Virginia Tech-Carilion School of Medicine, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Joanna B. Goldberg
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Pediatrics, Emory University School of Medicine and Children’s Hospital of Atlanta, Inc., Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
43
|
Martínez-García PM, Ramos C, Rodríguez-Palenzuela P. T346Hunter: a novel web-based tool for the prediction of type III, type IV and type VI secretion systems in bacterial genomes. PLoS One 2015; 10:e0119317. [PMID: 25867189 PMCID: PMC4395097 DOI: 10.1371/journal.pone.0119317] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/05/2015] [Indexed: 11/19/2022] Open
Abstract
T346Hunter (Type Three, Four and Six secretion system Hunter) is a web-based tool for the identification and localisation of type III, type IV and type VI secretion systems (T3SS, T4SS and T6SS, respectively) clusters in bacterial genomes. Non-flagellar T3SS (NF-T3SS) and T6SS are complex molecular machines that deliver effector proteins from bacterial cells into the environment or into other eukaryotic or prokaryotic cells, with significant implications for pathogenesis of the strains encoding them. Meanwhile, T4SS is a more functionally diverse system, which is involved in not only effector translocation but also conjugation and DNA uptake/release. Development of control strategies against bacterial-mediated diseases requires genomic identification of the virulence arsenal of pathogenic bacteria, with T3SS, T4SS and T6SS being major determinants in this regard. Therefore, computational methods for systematic identification of these specialised machines are of particular interest. With the aim of facilitating this task, T346Hunter provides a user-friendly web-based tool for the prediction of T3SS, T4SS and T6SS clusters in newly sequenced bacterial genomes. After inspection of the available scientific literature, we constructed a database of hidden Markov model (HMM) protein profiles and sequences representing the various components of T3SS, T4SS and T6SS. T346Hunter performs searches of such a database against user-supplied bacterial sequences and localises enriched regions in any of these three types of secretion systems. Moreover, through the T346Hunter server, users can visualise the predicted clusters obtained for approximately 1700 bacterial chromosomes and plasmids. T346Hunter offers great help to researchers in advancing their understanding of the biological mechanisms in which these sophisticated molecular machines are involved. T346Hunter is freely available at http://bacterial-virulence-factors.cbgp.upm.es/T346Hunter.
Collapse
Affiliation(s)
- Pedro Manuel Martínez-García
- Área de Genética, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, E-29071, Spain
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Cayo Ramos
- Área de Genética, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, E-29071, Spain
| | - Pablo Rodríguez-Palenzuela
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, Madrid, 28223, Spain
- Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Avenida Complutense 3, Madrid, 28040, Spain
- * E-mail:
| |
Collapse
|
44
|
Gong L, Lai SC, Treerat P, Prescott M, Adler B, Boyce JD, Devenish RJ. Burkholderia pseudomallei type III secretion system cluster 3 ATPase BsaS, a chemotherapeutic target for small-molecule ATPase inhibitors. Infect Immun 2015; 83:1276-85. [PMID: 25605762 PMCID: PMC4363454 DOI: 10.1128/iai.03070-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/05/2015] [Indexed: 12/18/2022] Open
Abstract
Melioidosis is an infectious disease of high mortality for humans and other animal species; it is prevalent in tropical regions worldwide. The pathogenesis of melioidosis depends on the ability of its causative agent, the Gram-negative bacterium Burkholderia pseudomallei, to enter and survive in host cells. B. pseudomallei can escape from the phagosome into the cytosol of phagocytic cells where it replicates and acquires actin-mediated motility, avoiding killing by the autophagy-dependent process, LC3 (microtubule-associated protein light chain 3)-associated phagocytosis (LAP). The type III secretion system cluster 3 (TTSS3) facilitates bacterial escape from phagosomes, although the mechanism has not been fully elucidated. Given the recent identification of small-molecule inhibitors of the TTSS ATPase, we sought to determine the potential of the predicted TTSS3 ATPase, encoded by bsaS, as a target for chemotherapeutic treatment of infection. A B. pseudomallei bsaS deletion mutant was generated and used as a control against which to assess the effect of inhibitor treatment. Infection of RAW 264.7 cells with wild-type bacteria and subsequent treatment with the ATPase inhibitor compound 939 resulted in reduced intracellular bacterial survival, reduced escape from phagosomes, and increased colocalization with both LC3 and the lysosomal marker LAMP1 (lysosome-associated membrane protein 1). These changes were similar to those observed for infection of RAW 264.7 cells with the bsaS deletion mutant. We propose that treatment with the ATPase inhibitor compound 939 decreased intracellular bacterial survival through a reduced ability of bacteria to escape from phagosomes and increased killing via LAP. Therefore, small-molecule inhibitors of the TTSS3 ATPase have potential as therapeutic treatments against melioidosis.
Collapse
Affiliation(s)
- Lan Gong
- Department of Biochemistry and Molecular Biology, Monash University, Victoria, Clayton, Australia Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Victoria, Clayton, Australia
| | - Shu-Chin Lai
- Department of Biochemistry and Molecular Biology, Monash University, Victoria, Clayton, Australia
| | - Puthayalai Treerat
- Department of Microbiology, Monash University, Victoria, Clayton, Australia Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Victoria, Clayton, Australia
| | - Mark Prescott
- Department of Biochemistry and Molecular Biology, Monash University, Victoria, Clayton, Australia
| | - Ben Adler
- Department of Microbiology, Monash University, Victoria, Clayton, Australia Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Victoria, Clayton, Australia
| | - John D Boyce
- Department of Microbiology, Monash University, Victoria, Clayton, Australia Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Victoria, Clayton, Australia
| | - Rodney J Devenish
- Department of Biochemistry and Molecular Biology, Monash University, Victoria, Clayton, Australia Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Victoria, Clayton, Australia
| |
Collapse
|
45
|
Vander Broek CW, Chalmers KJ, Stevens MP, Stevens JM. Quantitative proteomic analysis of Burkholderia pseudomallei Bsa type III secretion system effectors using hypersecreting mutants. Mol Cell Proteomics 2015; 14:905-16. [PMID: 25635268 PMCID: PMC4390269 DOI: 10.1074/mcp.m114.044875] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 01/07/2015] [Indexed: 11/06/2022] Open
Abstract
Burkholderia pseudomallei is an intracellular pathogen and the causative agent of melioidosis, a severe disease of humans and animals. One of the virulence factors critical for early stages of infection is the Burkholderia secretion apparatus (Bsa) Type 3 Secretion System (T3SS), a molecular syringe that injects bacterial proteins, called effectors, into eukaryotic cells where they subvert cellular functions to the benefit of the bacteria. Although the Bsa T3SS itself is known to be important for invasion, intracellular replication, and virulence, only a few genuine effector proteins have been identified and the complete repertoire of proteins secreted by the system has not yet been fully characterized. We constructed a mutant lacking bsaP, a homolog of the T3SS "gatekeeper" family of proteins that exert control over the timing and magnitude of effector protein secretion. Mutants lacking BsaP, or the T3SS translocon protein BipD, were observed to hypersecrete the known Bsa effector protein BopE, providing evidence of their role in post-translational control of the Bsa T3SS and representing key reagents for the identification of its secreted substrates. Isobaric Tags for Relative and Absolute Quantification (iTRAQ), a gel-free quantitative proteomics technique, was used to compare the secreted protein profiles of the Bsa T3SS hypersecreting mutants of B. pseudomallei with the isogenic parent strain and a bsaZ mutant incapable of effector protein secretion. Our study provides one of the most comprehensive core secretomes of B. pseudomallei described to date and identified 26 putative Bsa-dependent secreted proteins that may be considered candidate effectors. Two of these proteins, BprD and BapA, were validated as novel effector proteins secreted by the Bsa T3SS of B. pseudomallei.
Collapse
Affiliation(s)
- Charles W Vander Broek
- From the ‡The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland, UK
| | - Kevin J Chalmers
- §Dundee Cell Products, James Lindsay Place, Dundee Technopole, Dundee, DD1 5JJ, Scotland, UK
| | - Mark P Stevens
- From the ‡The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland, UK
| | - Joanne M Stevens
- From the ‡The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland, UK.;
| |
Collapse
|
46
|
Sahl JW, Allender CJ, Colman RE, Califf KJ, Schupp JM, Currie BJ, Van Zandt KE, Gelhaus HC, Keim P, Tuanyok A. Genomic characterization of Burkholderia pseudomallei isolates selected for medical countermeasures testing: comparative genomics associated with differential virulence. PLoS One 2015; 10:e0121052. [PMID: 25803742 PMCID: PMC4372212 DOI: 10.1371/journal.pone.0121052] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 01/27/2015] [Indexed: 01/06/2023] Open
Abstract
Burkholderia pseudomallei is the causative agent of melioidosis and a potential bioterrorism agent. In the development of medical countermeasures against B. pseudomallei infection, the US Food and Drug Administration (FDA) animal Rule recommends using well-characterized strains in animal challenge studies. In this study, whole genome sequence data were generated for 6 B. pseudomallei isolates previously identified as candidates for animal challenge studies; an additional 5 isolates were sequenced that were associated with human inhalational melioidosis. A core genome single nucleotide polymorphism (SNP) phylogeny inferred from a concatenated SNP alignment from the 11 isolates sequenced in this study and a diverse global collection of isolates demonstrated the diversity of the proposed Animal Rule isolates. To understand the genomic composition of each isolate, a large-scale blast score ratio (LS-BSR) analysis was performed on the entire pan-genome; this demonstrated the variable composition of genes across the panel and also helped to identify genes unique to individual isolates. In addition, a set of ~550 genes associated with pathogenesis in B. pseudomallei were screened against the 11 sequenced genomes with LS-BSR. Differential gene distribution for 54 virulence-associated genes was observed between genomes and three of these genes were correlated with differential virulence observed in animal challenge studies using BALB/c mice. Differentially conserved genes and SNPs associated with disease severity were identified and could be the basis for future studies investigating the pathogenesis of B. pseudomallei. Overall, the genetic characterization of the 11 proposed Animal Rule isolates provides context for future studies involving B. pseudomallei pathogenesis, differential virulence, and efficacy to therapeutics.
Collapse
Affiliation(s)
- Jason W. Sahl
- Department of Pathogen Genomics, Translational Genomics Research Institute, Flagstaff, Arizona, United States of America
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Christopher J. Allender
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Rebecca E. Colman
- Department of Pathogen Genomics, Translational Genomics Research Institute, Flagstaff, Arizona, United States of America
| | - Katy J. Califf
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - James M. Schupp
- Department of Pathogen Genomics, Translational Genomics Research Institute, Flagstaff, Arizona, United States of America
| | - Bart J. Currie
- Department of Tropical and Emerging Infectious Diseases, Menzies School of Health Research, Casuarina NT, Australia
| | | | - H. Carl Gelhaus
- Battelle Biomedical Research Center (BBRC), Columbus, Ohio, United States of America
| | - Paul Keim
- Department of Pathogen Genomics, Translational Genomics Research Institute, Flagstaff, Arizona, United States of America
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Apichai Tuanyok
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, and Pacific Center for Emerging Infections Diseases Research, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| |
Collapse
|
47
|
Memišević V, Zavaljevski N, Rajagopala SV, Kwon K, Pieper R, DeShazer D, Reifman J, Wallqvist A. Mining host-pathogen protein interactions to characterize Burkholderia mallei infectivity mechanisms. PLoS Comput Biol 2015; 11:e1004088. [PMID: 25738731 PMCID: PMC4349708 DOI: 10.1371/journal.pcbi.1004088] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 12/15/2014] [Indexed: 01/01/2023] Open
Abstract
Burkholderia pathogenicity relies on protein virulence factors to control and promote bacterial internalization, survival, and replication within eukaryotic host cells. We recently used yeast two-hybrid (Y2H) screening to identify a small set of novel Burkholderia proteins that were shown to attenuate disease progression in an aerosol infection animal model using the virulent Burkholderia mallei ATCC 23344 strain. Here, we performed an extended analysis of primarily nine B. mallei virulence factors and their interactions with human proteins to map out how the bacteria can influence and alter host processes and pathways. Specifically, we employed topological analyses to assess the connectivity patterns of targeted host proteins, identify modules of pathogen-interacting host proteins linked to processes promoting infectivity, and evaluate the effect of crosstalk among the identified host protein modules. Overall, our analysis showed that the targeted host proteins generally had a large number of interacting partners and interacted with other host proteins that were also targeted by B. mallei proteins. We also introduced a novel Host-Pathogen Interaction Alignment (HPIA) algorithm and used it to explore similarities between host-pathogen interactions of B. mallei, Yersinia pestis, and Salmonella enterica. We inferred putative roles of B. mallei proteins based on the roles of their aligned Y. pestis and S. enterica partners and showed that up to 73% of the predicted roles matched existing annotations. A key insight into Burkholderia pathogenicity derived from these analyses of Y2H host-pathogen interactions is the identification of eukaryotic-specific targeted cellular mechanisms, including the ubiquitination degradation system and the use of the focal adhesion pathway as a fulcrum for transmitting mechanical forces and regulatory signals. This provides the mechanisms to modulate and adapt the host-cell environment for the successful establishment of host infections and intracellular spread. Burkholderia species need to manipulate many host processes and pathways in order to establish a successful intracellular infection in eukaryotic host organisms. Burkholderia mallei uses secreted virulence factor proteins as a means to execute host-pathogen interactions and promote pathogenesis. While validated virulence factor proteins have been shown to attenuate infection in animal models, their actual roles in modifying and influencing host processes are not well understood. Here, we used host-pathogen protein-protein interactions derived from yeast two-hybrid screens to study nine known B. mallei virulence factors and map out potential virulence mechanisms. From the data, we derived both general and specific insights into Burkholderia host-pathogen infectivity pathways. We showed that B. mallei virulence factors tended to target multifunctional host proteins, proteins that interacted with each other, and host proteins with a large number of interacting partners. We also identified similarities between host-pathogen interactions of B. mallei, Yersinia pestis, and Salmonella enterica using a novel host-pathogen interactions alignment algorithm. Importantly, our data are compatible with a framework in which multiple B. mallei virulence factors broadly influence key host processes related to ubiquitin-mediated proteolysis and focal adhesion. This provides B. mallei the means to modulate and adapt the host-cell environment to advance infection.
Collapse
Affiliation(s)
- Vesna Memišević
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, United States of America
| | - Nela Zavaljevski
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, United States of America
| | | | - Keehwan Kwon
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Rembert Pieper
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - David DeShazer
- Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, United States of America
- * E-mail:
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, United States of America
| |
Collapse
|
48
|
Gutierrez MG, Pfeffer TL, Warawa JM. Type 3 secretion system cluster 3 is a critical virulence determinant for lung-specific melioidosis. PLoS Negl Trop Dis 2015; 9:e3441. [PMID: 25569630 PMCID: PMC4287560 DOI: 10.1371/journal.pntd.0003441] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 11/24/2014] [Indexed: 01/20/2023] Open
Abstract
Burkholderia pseudomallei, the bacterial agent of melioidosis, causes disease through inhalation of infectious particles, and is classified as a Tier 1 Select Agent. Optical diagnostic imaging has demonstrated that murine respiratory disease models are subject to significant upper respiratory tract (URT) colonization. Because human melioidosis is not associated with URT colonization as a prominent presentation, we hypothesized that lung-specific delivery of B. pseudomallei may enhance our ability to study respiratory melioidosis in mice. We compared intranasal and intubation-mediated intratracheal (IMIT) instillation of bacteria and found that the absence of URT colonization correlates with an increased bacterial pneumonia and systemic disease progression. Comparison of the LD50 of luminescent B. pseudomallei strain, JW280, in intranasal and IMIT challenges of albino C57BL/6J mice identified a significant decrease in the LD50 using IMIT. We subsequently examined the LD50 of both capsular polysaccharide and Type 3 Secretion System cluster 3 (T3SS3) mutants by IMIT challenge of mice and found that the capsule mutant was attenuated 6.8 fold, while the T3SS3 mutant was attenuated 290 fold, demonstrating that T3SS3 is critical to respiratory melioidosis. Our previously reported intranasal challenge studies, which involve significant URT colonization, did not identify a dissemination defect for capsule mutants; however, we now report that capsule mutants exhibit significantly reduced dissemination from the lung following lung-specific instillation, suggesting that capsule mutants are competent to spread from the URT, but not the lung. We also report that a T3SS3 mutant is defective for dissemination following lung-specific delivery, and also exhibits in vivo growth defects in the lung. These findings highlight the T3SS3 as a critical virulence system for respiratory melioidosis, not only in the lung, but also for subsequent spread beyond the lung using a model system uniquely capable to characterize the fate of lung-delivered pathogen. Respiratory melioidosis is a lethal disease presentation of the bacterium Burkholderia pseudomallei, which is found in tropical regions worldwide. Respiratory melioidosis has also been highlighted as a concern in the biodefense community given the potential for weaponization of B. pseudomallei. This study demonstrates that respiratory melioidosis models can significantly vary in their disease presentations in mice, depending on whether the upper respiratory tract represents an initial site of infection. We have demonstrated that lung-specific infections of mice, which avoid nasal cavity colonization, result in a course of disease with greater maturation of pneumonia and systemic spread, and we propose that this represents a critical advance in the field of studying respiratory melioidosis. We further characterize that the capsule virulence determinant, previously considered important for respiratory melioidosis, has reduced significance when characterized in the context of lung-specific disease, while the Type 3 Secretion System cluster 3 is a critical virulence determinant for B. pseudomallei required for efficient colonization of the lung as well as spread to other tissues.
Collapse
Affiliation(s)
- Maria G. Gutierrez
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, United States of America
| | - Tia L. Pfeffer
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, United States of America
| | - Jonathan M. Warawa
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, United States of America
- Center for Predictive Medicine, University of Louisville, Louisville, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
49
|
Stone JK, DeShazer D, Brett PJ, Burtnick MN. Melioidosis: molecular aspects of pathogenesis. Expert Rev Anti Infect Ther 2014; 12:1487-99. [PMID: 25312349 DOI: 10.1586/14787210.2014.970634] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Burkholderia pseudomallei is a gram-negative bacterium that causes melioidosis, a multifaceted disease that is highly endemic in southeast Asia and northern Australia. This facultative intracellular pathogen possesses a large genome that encodes a wide array of virulence factors that promote survival in vivo by manipulating host cell processes and disarming elements of the host immune system. Antigens and systems that play key roles in B. pseudomallei virulence include capsular polysaccharide, lipopolysaccharide, adhesins, specialized secretion systems, actin-based motility and various secreted factors. This review provides an overview of the current and steadily expanding knowledge regarding the molecular mechanisms used by this organism to survive within a host and their contribution to the pathogenesis of melioidosis.
Collapse
Affiliation(s)
- Joshua K Stone
- Department of Microbiology and Immunology, University of South Alabama, 610 Clinic Drive, Mobile, AL 36688, USA
| | | | | | | |
Collapse
|
50
|
Puangpetch A, Anderson R, Huang YY, Saengsot R, Sermswan RW, Wongratanacheewin S. Comparison of the protective effects of killed Burkholderia pseudomallei and CpG oligodeoxynucleotide against live challenge. Vaccine 2014; 32:5983-8. [PMID: 25223269 DOI: 10.1016/j.vaccine.2014.08.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/22/2014] [Accepted: 08/15/2014] [Indexed: 11/18/2022]
Abstract
Melioidosis is a fatal disease caused by Burkholderia pseudomallei. Currently there is no vaccine available. Synthetic oligodeoxynucleotides with unmethylated CpG dinucleotide motifs (CpG ODN) can stimulate vertebrate immune cells and clear certain pathogens that are susceptible to a strong Th1 response. In our previous study, pretreatment with CpG ODN alone or CpG-ODN with cationic liposomes for 2-10 or 30 days before B. pseudomallei infection in mice conferred 80-100% protection. In the present study we investigated the protective effect of CpG-ODN together with heat-killed (HK) or paraformaldehyde-killed B. pseudomallei (PP). HK or PP were used to immunize BALB/c mice twice at 15-day intervals before intra-peritoneal challenge with 5LD50 of B. pseudomallei and observed for 30 days. We found that PP could significantly protect mice (60%) with an increased survival time (24.8±11.63 days) while in the HK and PBS groups, all infected mice died within 6 days. Although either CpG ODN or PP conferred significant protection, giving them in combination did not enhance it further. Serum IFN-γ levels on day-5 (before challenge) of the PP and PP+CpG ODN groups were significantly higher than those of the PBS control group. The results further support the importance of IFN-γ in host protection against B. pseudomallei and suggest further study on paraformaldehyde-killed bacteria as a component of a future B. pseudomallei vaccine.
Collapse
Affiliation(s)
- Apichaya Puangpetch
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Melioidosis Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Robert Anderson
- Department of Microbiology & Immunology, Canadian Center for Vaccinology, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Pediatrics, Canadian Center for Vaccinology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Yan Y Huang
- Department of Microbiology & Immunology, Canadian Center for Vaccinology, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Pediatrics, Canadian Center for Vaccinology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Rojana Saengsot
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Melioidosis Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Rasana W Sermswan
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Melioidosis Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Surasakdi Wongratanacheewin
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Melioidosis Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|