1
|
Saitoh Y, Mizusawa H. Prion diseases, always a threat? J Neurol Sci 2024; 463:123119. [PMID: 39029285 DOI: 10.1016/j.jns.2024.123119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/21/2024]
Abstract
Prion diseases are caused by prions, which are proteinaceous infectious particles that have been identified as causative factors of transmissible spongiform encephalopathies such as Creutzfeldt-Jakob disease (CJD). Prion diseases are devastating neurodegenerative disorders in humans and many animals, including sheep, cows, deer, cats, and camels. Prion diseases are classified into sporadic and genetic forms. Additionally, a third, environmentally acquired category exists. This type includes kuru, iatrogenic CJD caused by human dura mater grafts or human pituitary-derived hormones, and variant CJD transmitted through food contaminated with bovine spongiform encephalopathy prions. Bovine spongiform encephalopathy and variant CJD have nearly been controlled, but chronic wasting disease, a prion disease affecting deer, is spreading widely in North America and South Korea and recently in Northern Europe. Recently, amyloid-beta, alpha-synuclein, and other proteins related to Alzheimer's disease, Parkinson's disease, and other neurodegenerative diseases were reported to have prion features such as transmission to animals. Amyloid-beta transmission to humans has been suggested in iatrogenic CJD cases and in cerebral amyloid angiopathy cases with cerebral bleeding occurring long after childhood neurosurgery with or without cadaveric dura mater transplantation. These findings indicate that diseases caused by various prions, namely various transmissible proteins, appear to be a threat, particularly in the current longevity society. Prion disease represented by CJD has obvious transmissibility and is considered to be an "archetype of various neurodegenerative diseases". Overcoming prion diseases is a top priority currently in our society, and this strategy will certainly contribute to elucidating pathomechanism of other neurodegenerative diseases and developing new therapies for them.
Collapse
Affiliation(s)
- Yuji Saitoh
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai, Fuchu, Tokyo 183-0042, Japan
| | - Hidehiro Mizusawa
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8551, Japan.
| |
Collapse
|
2
|
Mackenzie G, Summers D, Mackenzie J, Knight R. Diagnostic accuracy of diffusion-weighted imaging in variant Creutzfeldt-Jakob disease. Neuroradiology 2023; 65:1715-1727. [PMID: 37831099 PMCID: PMC10654212 DOI: 10.1007/s00234-023-03230-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023]
Abstract
PURPOSE This study sought to investigate the diagnostic sensitivity of diffusion-weighted imaging (DWI) in variant Creutzfeldt-Jakob disease (vCJD), a prion disease with significant public health implications on account of its transmissibility. The importance of this research stemmed from the first neuropathologically confirmed vCJD case in a PRNP heterozygous individual in 2016, which displayed DWI features typical of sporadic CJD (sCJD). The case was classified as 'probable' sCJD in life, predominantly based on these imaging findings. While DWI has proven valuable in diagnosing sCJD, its utility in vCJD diagnosis remains unclear. METHODS DWI and Fluid-attenuated inversion recovery (FLAIR) images from probable and definite vCJD cases referred to the National CJD Research and Surveillance Unit (NCJDRSU) were independently analysed by an expert neuroradiologist. Scans were reviewed within a mixed cohort of CJD cases including definite sCJD and non-CJD controls. RESULTS FLAIR sequences demonstrated greater sensitivity in identifying the pulvinar sign in vCJD compared to DWI (73% vs 41%, p-value <0.001). Basal ganglia hyperintensities were more prevalent in DWI (84%) than FLAIR (64%), and cortical hyperintensities were exclusive to DWI (24%). The pulvinar sign showed a specificity of 98% for vCJD and was rare in sCJD. CONCLUSION DWI showed reduced sensitivity compared to FLAIR imaging in detecting the pulvinar sign in vCJD. Conversely, DWI can more distinctively identify basal ganglia and cortical hyperintensities, thus leading to imaging patterns more characteristic of sCJD. Therefore, DWI should be cautiously interpreted in vCJD diagnosis, with axial FLAIR potentially providing a more precise evaluation of the pulvinar sign.
Collapse
Affiliation(s)
- G Mackenzie
- National CJD Research and Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.
| | - D Summers
- Department of Neuroradiology, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - J Mackenzie
- National CJD Research and Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - R Knight
- National CJD Research and Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
3
|
Suleiman S, McGuire LI, Chong A, Ritchie DL, Boyle A, McManus L, Brydon F, Smith C, Knight R, Green A, Diack AB, Barria MA. Conservation of vCJD Strain Properties After Extraction and In Vitro Propagation of PrP Sc from Archived Formalin-Fixed Brain and Appendix Tissues Using Highly Sensitive Protein Misfolding Cyclic Amplification. Mol Neurobiol 2023; 60:6275-6293. [PMID: 37442858 PMCID: PMC10533579 DOI: 10.1007/s12035-023-03444-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023]
Abstract
Three retrospective lymphoreticular tissue studies (Appendix I, II, and III) aimed to estimate the UK prevalence of variant Creutzfeldt-Jakob disease (vCJD), following exposure of the population to the bovine spongiform encephalopathy (BSE) agent, in the late 1980s and 1990s. These studies evaluated the presence of abnormal prion protein aggregates, in archived formalin-fixed paraffin-embedded (FFPE) appendectomy samples, by immunohistochemical detection. Although there was concordance in the estimated prevalence of vCJD from these studies, the identification of positive specimens from pre- and post-BSE-exposure periods in Appendix III study has raised questions regarding the nature and origin of the detected abnormal prion protein. We applied a robust and novel approach in the extraction of disease-associated prion protein (PrPSc) present in frozen and FFPE samples of brain and appendix from a patient with pathologically confirmed vCJD. The extracted material was used to seed the highly sensitive protein misfolding cyclic amplification assay (hsPMCA) to investigate the in vitro and in vivo propagation properties of the extracted abnormal prion protein. We demonstrate that PrPSc can be successfully extracted from FFPE appendix tissue and propagated in vitro. Bioassay in wild-type and gene-targeted mouse models confirmed that the extracted and amplified product is infectious and retains strain properties consistent with vCJD. This provides a highly sensitive and reliable platform for subsequent analysis of the archived FFPE appendix tissue derived from the Appendix II and III surveys, to further evaluate the nature of the abnormal PrP detected in the positive samples.
Collapse
Affiliation(s)
- Suzanne Suleiman
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, Deanery of Clinical Medicine, The University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Lynne I McGuire
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK
| | - Angela Chong
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, Deanery of Clinical Medicine, The University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Diane L Ritchie
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, Deanery of Clinical Medicine, The University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Aileen Boyle
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK
| | - Lee McManus
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK
| | - Fraser Brydon
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, Deanery of Clinical Medicine, The University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Colin Smith
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, Deanery of Clinical Medicine, The University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Richard Knight
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, Deanery of Clinical Medicine, The University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Alison Green
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, Deanery of Clinical Medicine, The University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Abigail B Diack
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK
| | - Marcelo A Barria
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, Deanery of Clinical Medicine, The University of Edinburgh, Edinburgh, EH4 2XU, UK.
| |
Collapse
|
4
|
Groveman BR, Race B, Foliaki ST, Williams K, Hughson AG, Baune C, Zanusso G, Haigh CL. Sporadic Creutzfeldt-Jakob disease infected human cerebral organoids retain the original human brain subtype features following transmission to humanized transgenic mice. Acta Neuropathol Commun 2023; 11:28. [PMID: 36788566 PMCID: PMC9930245 DOI: 10.1186/s40478-023-01512-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/11/2023] [Indexed: 02/16/2023] Open
Abstract
Human cerebral organoids (COs) are three-dimensional self-organizing cultures of cerebral brain tissue differentiated from induced pluripotent stem cells. We have recently shown that COs are susceptible to infection with different subtypes of Creutzfeldt-Jakob disease (CJD) prions, which in humans cause different manifestations of the disease. The ability to study live human brain tissue infected with different CJD subtypes opens a wide array of possibilities from differentiating mechanisms of cell death and identifying neuronal selective vulnerabilities to testing therapeutics. However, the question remained as to whether the prions generated in the CO model truly represent those in the infecting inoculum. Mouse models expressing human prion protein are commonly used to characterize human prion disease as they reproduce many of the molecular and clinical phenotypes associated with CJD subtypes. We therefore inoculated these mice with COs that had been infected with two CJD subtypes (MV1 and MV2) to see if the original subtype characteristics (referred to as strains once transmitted into a model organism) of the infecting prions were maintained in the COs when compared with the original human brain inocula. We found that disease characteristics caused by the molecular subtype of the disease associated prion protein were similar in mice inoculated with either CO derived material or human brain material, demonstrating that the disease associated prions generated in COs shared strain characteristics with those in humans. As the first and only in vitro model of human neurodegenerative disease that can faithfully reproduce different subtypes of prion disease, these findings support the use of the CO model for investigating human prion diseases and their subtypes.
Collapse
Affiliation(s)
- Bradley R. Groveman
- grid.419681.30000 0001 2164 9667Laboratory of Persistent Viral Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840 USA
| | - Brent Race
- grid.419681.30000 0001 2164 9667Laboratory of Persistent Viral Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840 USA
| | - Simote T. Foliaki
- grid.419681.30000 0001 2164 9667Laboratory of Persistent Viral Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840 USA
| | - Katie Williams
- grid.419681.30000 0001 2164 9667Laboratory of Persistent Viral Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840 USA
| | - Andrew G. Hughson
- grid.419681.30000 0001 2164 9667Laboratory of Persistent Viral Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840 USA
| | - Chase Baune
- grid.419681.30000 0001 2164 9667Laboratory of Persistent Viral Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840 USA
| | - Gianluigi Zanusso
- grid.5611.30000 0004 1763 1124Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Cathryn L. Haigh
- grid.419681.30000 0001 2164 9667Laboratory of Persistent Viral Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840 USA
| |
Collapse
|
5
|
Variant CJD: Reflections a Quarter of a Century on. Pathogens 2021; 10:pathogens10111413. [PMID: 34832569 PMCID: PMC8619291 DOI: 10.3390/pathogens10111413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 01/18/2023] Open
Abstract
Twenty-five years has now passed since variant Creutzfeldt-Jakob disease (vCJD) was first described in the United Kingdom (UK). Early epidemiological, neuropathological and biochemical investigations suggested that vCJD represented a new zoonotic form of human prion disease resulting from dietary exposure to the bovine spongiform encephalopathy (BSE) agent. This hypothesis has since been confirmed though a large body of experimental evidence, predominantly using animal models of the disease. Today, the clinical, pathological and biochemical phenotype of vCJD is well characterized and demonstrates a unique and remarkably consistent pattern between individual cases when compared to other human prion diseases. While the numbers of vCJD cases remain reassuringly low, with 178 primary vCJD cases reported in the UK and a further 54 reported worldwide, concerns remain over the possible appearance of new vCJD cases in other genetic cohorts and the numbers of asymptomatic individuals in the population harboring vCJD infectivity. This review will provide a historical perspective on vCJD, examining the origins of this acquired prion disease and its association with BSE. We will investigate the epidemiology of the disease along with the unique clinicopathological and biochemical phenotype associated with vCJD cases. Additionally, this review will examine the impact vCJD has had on public health in the UK and the ongoing concerns raised by this rare group of disorders.
Collapse
|
6
|
Ritchie DL, Barria MA. Prion Diseases: A Unique Transmissible Agent or a Model for Neurodegenerative Diseases? Biomolecules 2021; 11:biom11020207. [PMID: 33540845 PMCID: PMC7912988 DOI: 10.3390/biom11020207] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/21/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
The accumulation and propagation in the brain of misfolded proteins is a pathological hallmark shared by many neurodegenerative diseases such as Alzheimer's disease (Aβ and tau), Parkinson's disease (α-synuclein), and prion disease (prion protein). Currently, there is no epidemiological evidence to suggest that neurodegenerative disorders are infectious, apart from prion diseases. However, there is an increasing body of evidence from experimental models to suggest that other pathogenic proteins such as Aβ and tau can propagate in vivo and in vitro in a prion-like mechanism, inducing the formation of misfolded protein aggregates such as amyloid plaques and neurofibrillary tangles. Such similarities have raised concerns that misfolded proteins, other than the prion protein, could potentially transmit from person-to-person as rare events after lengthy incubation periods. Such concerns have been heightened following a number of recent reports of the possible inadvertent transmission of Aβ pathology via medical and surgical procedures. This review will provide a historical perspective on the unique transmissible nature of prion diseases, examining their impact on public health and the ongoing concerns raised by this rare group of disorders. Additionally, this review will provide an insight into current evidence supporting the potential transmissibility of other pathogenic proteins associated with more common neurodegenerative disorders and the potential implications for public health.
Collapse
|
7
|
Uttley L, Carroll C, Wong R, Hilton DA, Stevenson M. Creutzfeldt-Jakob disease: a systematic review of global incidence, prevalence, infectivity, and incubation. THE LANCET. INFECTIOUS DISEASES 2020; 20:e2-e10. [PMID: 31876504 DOI: 10.1016/s1473-3099(19)30615-2] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 09/13/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022]
Abstract
Creutzfeldt-Jakob disease (CJD) is a fatal disease presenting with rapidly progressive dementia, and most patients die within a year of clinical onset. CJD poses a potential risk of iatrogenic transmission, as it can incubate asymptomatically in humans for decades before becoming clinically apparent. In this Review, we sought evidence to understand the current iatrogenic risk of CJD to public health by examining global evidence on all forms of CJD, including clinical incidence and prevalence of subclinical disease. We found that although CJD, particularly iatrogenic CJD, is rare, the incidence of sporadic CJD is increasing. Incubation periods as long as 40 years have been observed, and all genotypes have now been shown to be susceptible to CJD. Clinicians and surveillance programmes should maintain awareness of CJD to mitigate future incidences of its transmission. Awareness is particularly relevant for sporadic CJD, which occurs in older people in whom clinical presentation could resemble rapidly developing dementia.
Collapse
Affiliation(s)
- Lesley Uttley
- School of Health and Related Research, University of Sheffield, Sheffield, UK.
| | - Christopher Carroll
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Ruth Wong
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - David A Hilton
- Department of Neuropathology, University Hospitals Plymouth National Health Service Trust, Plymouth, UK
| | - Matt Stevenson
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| |
Collapse
|
8
|
Stevenson M, Uttley L, Oakley JE, Carroll C, Chick SE, Wong R. Interventions to reduce the risk of surgically transmitted Creutzfeldt-Jakob disease: a cost-effective modelling review. Health Technol Assess 2020; 24:1-150. [PMID: 32122460 PMCID: PMC7103914 DOI: 10.3310/hta24110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Creutzfeldt-Jakob disease is a fatal neurological disease caused by abnormal infectious proteins called prions. Prions that are present on surgical instruments cannot be completely deactivated; therefore, patients who are subsequently operated on using these instruments may become infected. This can result in surgically transmitted Creutzfeldt-Jakob disease. OBJECTIVE To update literature reviews, consultation with experts and economic modelling published in 2006, and to provide the cost-effectiveness of strategies to reduce the risk of surgically transmitted Creutzfeldt-Jakob disease. METHODS Eight systematic reviews were undertaken for clinical parameters. One review of cost-effectiveness was undertaken. Electronic databases including MEDLINE and EMBASE were searched from 2005 to 2017. Expert elicitation sessions were undertaken. An advisory committee, convened by the National Institute for Health and Care Excellence to produce guidance, provided an additional source of information. A mathematical model was updated focusing on brain and posterior eye surgery and neuroendoscopy. The model simulated both patients and instrument sets. Assuming that there were potentially 15 cases of surgically transmitted Creutzfeldt-Jakob disease between 2005 and 2018, approximate Bayesian computation was used to obtain samples from the posterior distribution of the model parameters to generate results. Heuristics were used to improve computational efficiency. The modelling conformed to the National Institute for Health and Care Excellence reference case. The strategies evaluated included neither keeping instruments moist nor prohibiting set migration; ensuring that instruments were kept moist; prohibiting instrument migration between sets; and employing single-use instruments. Threshold analyses were undertaken to establish prices at which single-use sets or completely effective decontamination solutions would be cost-effective. RESULTS A total of 169 papers were identified for the clinical review. The evidence from published literature was not deemed sufficiently strong to take precedence over the distributions obtained from expert elicitation. Forty-eight papers were identified in the review of cost-effectiveness. The previous modelling structure was revised to add the possibility of misclassifying surgically transmitted Creutzfeldt-Jakob disease as another neurodegenerative disease, and assuming that all patients were susceptible to infection. Keeping instruments moist was estimated to reduce the risk of surgically transmitted Creutzfeldt-Jakob disease cases and associated costs. Based on probabilistic sensitivity analyses, keeping instruments moist was estimated to on average result in 2.36 (range 0-47) surgically transmitted Creutzfeldt-Jakob disease cases (across England) caused by infection occurring between 2019 and 2023. Prohibiting set migration or employing single-use instruments reduced the estimated risk of surgically transmitted Creutzfeldt-Jakob disease cases further, but at considerable cost. The estimated costs per quality-adjusted life-year gained of these strategies in addition to keeping instruments moist were in excess of £1M. It was estimated that single-use instrument sets (currently £350-500) or completely effective cleaning solutions would need to cost approximately £12 per patient to be cost-effective using a £30,000 per quality-adjusted life-year gained value. LIMITATIONS As no direct published evidence to implicate surgery as a cause of Creutzfeldt-Jakob disease has been found since 2005, the estimations of potential cases from elicitation are still speculative. A particular source of uncertainty was in the number of potential surgically transmitted Creutzfeldt-Jakob disease cases that may have occurred between 2005 and 2018. CONCLUSIONS Keeping instruments moist is estimated to reduce the risk of surgically transmitted Creutzfeldt-Jakob disease cases and associated costs. Further surgical management strategies can reduce the risks of surgically transmitted Creutzfeldt-Jakob disease but have considerable associated costs. STUDY REGISTRATION This study is registered as PROSPERO CRD42017071807. FUNDING This project was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 24, No. 11. See the NIHR Journals Library website for further project information.
Collapse
Affiliation(s)
- Matt Stevenson
- School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, UK
| | - Lesley Uttley
- School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, UK
| | - Jeremy E Oakley
- School of Mathematics and Statistics, University of Sheffield, Sheffield, UK
| | - Christopher Carroll
- School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, UK
| | | | - Ruth Wong
- School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, UK
| |
Collapse
|
9
|
Diack AB, Boyle A, Plinston C, Hunt E, Bishop MT, Will RG, Manson JC. Variant Creutzfeldt-Jakob disease strain is identical in individuals of two PRNP codon 129 genotypes. Brain 2019; 142:1416-1428. [PMID: 30938429 PMCID: PMC6487331 DOI: 10.1093/brain/awz076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/17/2019] [Accepted: 01/31/2019] [Indexed: 01/09/2023] Open
Abstract
In 2004, a subclinical case of variant Creutzfeldt-Jakob disease in a PRNP 129 methionine/valine heterozygous individual infected via blood transfusion was reported, and we established that the spleen from this individual was infectious. Since host genetics is an important factor in strain modification, the identification of variant Creutzfeldt-Jakob disease infection in a PRNP 129 methionine/valine heterozygous individual has raised the possibility that the properties of the variant Creutzfeldt-Jakob disease agent could change after transmission to this different genetic background and concerns that this could lead to a more virulent strain of variant Creutzfeldt-Jakob disease. The variant Creutzfeldt-Jakob disease strain has to date been characterized only in methionine homozygous individuals, therefore to establish whether the strain characteristics of variant Creutzfeldt-Jakob disease had been modified by the host genotype, spleen material with prion protein deposition from a PRNP 129 methionine/valine individual was inoculated into a panel of wild-type mice. Three passages in mice were undertaken to allow stabilization of the strain characteristics following its passage into mice. In each passage, a combination of clinical signs, neuropathology (transmissible spongiform encephalopathy vacuolation and prion protein deposition) were analysed and biochemical analysis carried out. While some differences were observed at primary and first subpassage, following the second subpassage, strain characteristics in the methionine/valine individual were totally consistent with those of variant Creutzfeldt-Jakob disease transmitted to 129 methionine/methionine individuals thus demonstrated no alteration in strain properties were imposed by passage through the different host genotype. Thus we have demonstrated variant Creutzfeldt-Jakob disease strain properties are not affected by transmission through an individual with the PRNP methionine/valine codon 129 genotype and thus no alteration in virulence should be associated with the different host genotype.
Collapse
Affiliation(s)
- Abigail B Diack
- 1 The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, UK,Correspondence to: Abigail Diack The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, UK, EH25 9RG E-mail:
| | - Aileen Boyle
- 1 The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, UK
| | | | - Emma Hunt
- 1 The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, UK
| | - Matthew T Bishop
- 1 The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, UK,Present address: Edinburgh Genomics, University of Edinburgh, Edinburgh, UK
| | - Robert G Will
- 1 The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, UK
| | - Jean C Manson
- 1 The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, UK
| |
Collapse
|
10
|
Rossi M, Baiardi S, Parchi P. Understanding Prion Strains: Evidence from Studies of the Disease Forms Affecting Humans. Viruses 2019; 11:E309. [PMID: 30934971 PMCID: PMC6520670 DOI: 10.3390/v11040309] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/11/2022] Open
Abstract
Prion diseases are a unique group of rare neurodegenerative disorders characterized by tissue deposition of heterogeneous aggregates of abnormally folded protease-resistant prion protein (PrPSc), a broad spectrum of disease phenotypes and a variable efficiency of disease propagation in vivo. The dominant clinicopathological phenotypes of human prion disease include Creutzfeldt⁻Jakob disease, fatal insomnia, variably protease-sensitive prionopathy, and Gerstmann⁻Sträussler⁻Scheinker disease. Prion disease propagation into susceptible hosts led to the isolation and characterization of prion strains, initially operatively defined as "isolates" causing diseases with distinctive characteristics, such as the incubation period, the pattern of PrPSc distribution, and the regional severity of neuropathological changes after injection into syngeneic hosts. More recently, the structural basis of prion strains has been linked to amyloid polymorphs (i.e., variant amyloid protein conformations) and the concept extended to all protein amyloids showing polymorphic structures and some evidence of in vivo or in vitro propagation by seeding. Despite the significant advances, however, the link between amyloid structure and disease is not understood in many instances. Here we reviewed the most significant contributions of human prion disease studies to current knowledge of the molecular basis of phenotypic variability and the prion strain phenomenon and underlined the unsolved issues from the human disease perspective.
Collapse
Affiliation(s)
- Marcello Rossi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna 40138, Italy.
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna 40139, Italy.
| | - Simone Baiardi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40123, Italy.
| | - Piero Parchi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna 40139, Italy.
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna 40138, Italy.
| |
Collapse
|
11
|
Scialò C, De Cecco E, Manganotti P, Legname G. Prion and Prion-Like Protein Strains: Deciphering the Molecular Basis of Heterogeneity in Neurodegeneration. Viruses 2019; 11:E261. [PMID: 30875755 PMCID: PMC6466326 DOI: 10.3390/v11030261] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/08/2019] [Accepted: 03/10/2019] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence suggests that neurodegenerative disorders share a common pathogenic feature: the presence of deposits of misfolded proteins with altered physicochemical properties in the Central Nervous System. Despite a lack of infectivity, experimental data show that the replication and propagation of neurodegenerative disease-related proteins including amyloid-β (Aβ), tau, α-synuclein and the transactive response DNA-binding protein of 43 kDa (TDP-43) share a similar pathological mechanism with prions. These observations have led to the terminology of "prion-like" to distinguish between conditions with noninfectious characteristics but similarities with the prion replication and propagation process. Prions are considered to adapt their conformation to changes in the context of the environment of replication. This process is known as either prion selection or adaptation, where a distinct conformer present in the initial prion population with higher propensity to propagate in the new environment is able to prevail over the others during the replication process. In the last years, many studies have shown that prion-like proteins share not only the prion replication paradigm but also the specific ability to aggregate in different conformations, i.e., strains, with relevant clinical, diagnostic and therapeutic implications. This review focuses on the molecular basis of the strain phenomenon in prion and prion-like proteins.
Collapse
Affiliation(s)
- Carlo Scialò
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy.
| | - Elena De Cecco
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy.
| | - Paolo Manganotti
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, University Hospital and Health Services of Trieste, University of Trieste, 34149 Trieste, Italy.
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy.
- ELETTRA Sincrotrone Trieste S.C.p.A, Basovizza, 34149 Trieste, Italy.
| |
Collapse
|
12
|
Bett C, Piccardo P, Cervenak J, Torres JM, Asher DM, Gregori L. Both murine host and inoculum modulate expression of experimental variant Creutzfeldt-Jakob disease. J Gen Virol 2018; 99:422-433. [PMID: 29458529 DOI: 10.1099/jgv.0.001017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transmissible spongiform encephalopathies (TSEs) are infections that are experimentally transmissible to laboratory animals. TSE agents (prions) can be serially passaged in the same animal species. The susceptibility of mice to infection with specific TSE agents can be unpredictable and must be established empirically. We challenged wild-type C57BL/6 and RIIIS/J mice and transgenic mice overexpressing bovine prion protein (TgBo110) with a human brain infected with variant Creutzfeldt-Jakob disease (vCJD) agent and pooled brains of macaques experimentally infected with human vCJD agent (first-passage macaque vCJD). The human vCJD brain yielded a wide range of infectivity titres in different mouse models; TgBo110 mice were the most sensitive. In contrast, infectivity titres of macaque vCJD brain were similar in all three murine models. The brains of RIIIS/J mice infected with both human and macaque vCJD had mild or no vacuolation, while infected C57BL/6 and TgBo110 mice had spongiform degeneration with vacuolation. Abnormal prion protein (PrPTSE) extracted from the brains of vCJD-infected TgBo110 mice displayed different glycosylation profiles and had greater resistance to denaturation by guanidine hydrochloride than PrPTSE from infected wild-type mice or from either inoculum. Those histopathological features of TSE and physical properties of PrPTSE in mice with experimental vCJD were intrinsic to the host, even though we also observed differences between wild-type mice infected with either agent, suggesting a modulatory effect of the inoculum. This study compared three widely used mouse models infected with two different vCJD inocula. The results show that the host plays a major role in manifestations of experimental TSEs.
Collapse
Affiliation(s)
- Cyrus Bett
- U.S. Food and Drug Administration, Center for Biologics Evaluation and Research, Office of Blood Research and Review, Department of Emerging and Transfusion Transmitted Diseases, Laboratory of Bacterial and Transmissible Spongiform Encephalopathy Agents, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Pedro Piccardo
- U.S. Food and Drug Administration, Center for Biologics Evaluation and Research, Office of Blood Research and Review, Department of Emerging and Transfusion Transmitted Diseases, Laboratory of Bacterial and Transmissible Spongiform Encephalopathy Agents, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Juraj Cervenak
- U.S. Food and Drug Administration, Center for Biologics Evaluation and Research, Office of Blood Research and Review, Department of Emerging and Transfusion Transmitted Diseases, Laboratory of Bacterial and Transmissible Spongiform Encephalopathy Agents, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Juan-Maria Torres
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CISA-INIA), 28130 Valdeolmos, Madrid, Spain
| | - David M Asher
- U.S. Food and Drug Administration, Center for Biologics Evaluation and Research, Office of Blood Research and Review, Department of Emerging and Transfusion Transmitted Diseases, Laboratory of Bacterial and Transmissible Spongiform Encephalopathy Agents, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Luisa Gregori
- U.S. Food and Drug Administration, Center for Biologics Evaluation and Research, Office of Blood Research and Review, Department of Emerging and Transfusion Transmitted Diseases, Laboratory of Bacterial and Transmissible Spongiform Encephalopathy Agents, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| |
Collapse
|
13
|
Abstract
Variant CJD (vCJD) was described first in the United Kingdom in 1996. It is a zoonotic form of human prion disease, originating from dietary contamination of human food with material from bovine spongiform encephalopathy (BSE)-affected cattle. It has important epidemiologic, clinical, and neuropathogic differences from other forms of human prion disease. Cases have occurred in several countries but the United Kingdom and France have been most affected. Following the decline in BSE in cattle and the dietary protective measures adopted, vCJD has become an extremely rare disease. However, important concerns remain about asymptomatic infection in human populations (especially the United Kingdom) and the possibility of human-to-human transmission via medical and surgical interventions. Definitive diagnosis depends on neuropathology, usually undertaken at autopsy, but sometimes on brain biopsy. Clinical diagnosis with a reasonable degree of likelihood is, however, possible based on the clinical features and the finding of the pulvinar sign on cerebral magnetic resonance. There are also emerging tests (including blood tests) that have promising sensitivity and specificity for vCJD. It is a progressive illness, inevitably fatal with no curative treatment.
Collapse
Affiliation(s)
| | - Richard Knight
- National CJD Research and Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, United Kingdom.
| |
Collapse
|
14
|
Affiliation(s)
- Abigail B. Diack
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, United Kingdom
| | - Robert G. Will
- National CJD Research and Surveillance Unit, University of Edinburgh, Edinburgh, United Kingdom
| | - Jean C. Manson
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, United Kingdom
- The Centre for Dementia Prevention, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Neuroscience, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
15
|
Diack AB, Boyle A, Ritchie D, Plinston C, Kisielewski D, de Pedro-Cuesta J, Rábano A, Will RG, Manson JC. Similarities of Variant Creutzfeldt-Jakob Disease Strain in Mother and Son in Spain to UK Reference Case. Emerg Infect Dis 2017; 23:1593-1596. [PMID: 28820380 PMCID: PMC5572887 DOI: 10.3201/eid2309.170159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We investigated transmission characteristics of variant Creutzfeldt-Jakob disease in a mother and son from Spain. Despite differences in patient age and disease manifestations, we found the same strain properties in these patients as in UK vCJD cases. A single strain of agent appears to be responsible for all vCJD cases to date.
Collapse
|
16
|
Knight R. Infectious and Sporadic Prion Diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:293-318. [PMID: 28838665 DOI: 10.1016/bs.pmbts.2017.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Prion diseases are progressive fatal encephalopathies characterized by a neurodegenerative pathology, the tissue deposition of abnormally folded prion protein and, in general, potential transmissibility. Creutzfeldt-Jakob disease (CJD) is the commonest human prion disease and occurs in three principal forms: sporadic (idiopathic), acquired (infectious), and inherited (genetic). This chapter concerns the sporadic and acquired forms. Sporadic CJD occurs worldwide and affects mainly the middle aged and elderly. There are recognized genetic risk factors-most importantly the PRNP-129 polymorphism. The acquired forms of CJD consist of iatrogenic CJD (accidental transmission of CJD via medical or surgical procedures) and variant CJD (vJCD) (which originated as a zoonosis via bovine spongiform encephalopathy (BSE)-contamination of human food). The main causes of iatrogenic CJD are cadaveric-derived human growth hormone treatment and dura mater surgical grafts. The PRNP-129 polymorphism has important effects on iatrogenic infection, including overall susceptibility and incubation period. vCJD, resulting from dietary exposure to BSE, has affected mostly the United Kingdom, followed by France. All tested cases were originally PRNP-129MM, although two MV cases have been identified recently (one possible; one definite). vCJD has been secondarily transmitted via blood transfusion and a blood product. There is continuing concern over secondary transmission since there is evidence-from lymphoreticular tissue studies-of extensive subclinical infection in the UK general population, although a further recent study has caused uncertainty over the significance of the previous studies. While definitive diagnosis of CJD is pathological, recent developments in protein amplification and detection have led to significantly better clinical diagnosis.
Collapse
Affiliation(s)
- Richard Knight
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
17
|
Diack AB, Alibhai JD, Manson JC. Gene Targeted Transgenic Mouse Models in Prion Research. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:157-179. [PMID: 28838660 DOI: 10.1016/bs.pmbts.2017.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The production of transgenic mice expressing different forms of the prion protein (PrP) or devoid of PrP has enabled researchers to study the role of PrP in the infectious process of a prion disease and its normal function in the healthy individual. A wide range of transgenic models have been produced ranging from PrP null mice, normal expression levels to overexpression models, models expressing different species of the Prnp gene and different mutations and polymorphisms within the gene. Using this range of transgenic models has allowed us to define the influence of PrP expression on disease susceptibility and transmission, assess zoonotic potential, define strains of human prion diseases, elucidate the function of PrP, and start to unravel the mechanisms involved in chronic neurodegeneration. This chapter focuses mainly on the use of the gene targeted transgenic models and summarizes the ways in which they have allowed us to study the role of PrP in prion disease and the insights they have provided into the mechanisms of neurodegenerative diseases.
Collapse
Affiliation(s)
- Abigail B Diack
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, United Kingdom.
| | - James D Alibhai
- The National CJD Research and Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Jean C Manson
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, United Kingdom
| |
Collapse
|
18
|
The Canadian Management of Bovine Spongiform Encephalopathy in Historical and Scientific Perspective, 1990-2014. Can J Neurol Sci 2015; 42:472-81. [PMID: 26357946 DOI: 10.1017/cjn.2015.286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
On February 11, 2015, the Canadian Food Inspection Agency announced that a cow born and raised in Alberta had tested positive for bovine spongiform encephalopathy (BSE), commonly known as mad cow disease. BSE is a prion disease of cattle that, when transmitted to humans, produces a fatal neurodegenerative disease known as variant Creutzfeldt-Jakob disease. We believe that this latest case of BSE in Canadian cattle suggests the timeliness of a review of the management of BSE in Canada from a historically and scientifically informed perspective. In this article, we ask: how did the Canadian management of BSE between 1990 and 2014 engage with the contemporary understanding of BSE's human health implications? We propose that Canadian policies largely ignored the implicit medical nature of BSE, treating it as a purely agricultural and veterinary issue. In this way, policies to protect Canadians were often delayed and incomplete, in a manner disturbingly reminiscent of Britain's failed management of BSE. Despite assurances to the contrary, it is premature to conclude that BSE (and with it the risk of variant Creutzfeldt-Jakob disease) is a thing of Canada's past: BSE remains very much an issue in Canada's present.
Collapse
|
19
|
West Greenlee MH, Smith JD, Platt EM, Juarez JR, Timms LL, Greenlee JJ. Changes in retinal function and morphology are early clinical signs of disease in cattle with bovine spongiform encephalopathy. PLoS One 2015; 10:e0119431. [PMID: 25756286 PMCID: PMC4355414 DOI: 10.1371/journal.pone.0119431] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 01/13/2015] [Indexed: 11/19/2022] Open
Abstract
Bovine spongiform encephalopathy (BSE) belongs to a group of fatal, transmissible protein misfolding diseases known as transmissible spongiform encephalopathies (TSEs). All TSEs are caused by accumulation of misfolded prion protein (PrPSc) throughout the central nervous system (CNS), which results in neuronal loss and ultimately death. Like other protein misfolding diseases including Parkinson's disease and Alzheimer's disease, TSEs are generally not diagnosed until the onset of disease after the appearance of unequivocal clinical signs. As such, identification of the earliest clinical signs of disease may facilitate diagnosis. The retina is the most accessible part of the central nervous system, and retinal pathology in TSE affected animals has been previously reported. Here we describe antemortem changes in retinal function and morphology that are detectable in BSE inoculated animals several months (up to 11 months) prior to the appearance of any other signs of clinical disease. We also demonstrate that differences in the severity of these clinical signs reflect the amount of PrPSc accumulation in the retina and the resulting inflammatory response of the tissue. These results are the earliest reported clinical signs associated with TSE infection and provide a basis for understanding the pathology and evaluating therapeutic interventions.
Collapse
Affiliation(s)
- M. Heather West Greenlee
- Department of Biomedical Sciences and Interdepartmental Toxicology Program, Iowa State University, Ames, IA 50010, United States of America
- * E-mail:
| | - Jodi D. Smith
- Virus and Prion Research Unit, National Animal Disease Center, Ames, IA 50010, United States of America
| | - Ekundayo M. Platt
- Department of Genetics and Cell Biology and Interdepartmental Toxicology Program, Iowa State University, Ames, IA 50010, United States of America
| | - Jessica R. Juarez
- Department of Animal Science, Iowa State University, Ames, IA 50010, United States of America
| | - Leo L. Timms
- Department of Animal Science, Iowa State University, Ames, IA 50010, United States of America
| | - Justin J. Greenlee
- Virus and Prion Research Unit, National Animal Disease Center, Ames, IA 50010, United States of America
| |
Collapse
|
20
|
McDowell KL, Nag N, Franco Z, Bu M, Piccardo P, Cervenak J, Deslys JP, Comoy E, Asher DM, Gregori L. Blood reference materials from macaques infected with variant Creutzfeldt-Jakob disease agent. Transfusion 2015; 55:405-12. [PMID: 25154296 DOI: 10.1111/trf.12841] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 07/23/2014] [Accepted: 07/23/2014] [Indexed: 01/09/2023]
Abstract
BACKGROUND Variant Creutzfeldt-Jakob disease (vCJD) is a fatal neurodegenerative infection that can be transmitted by blood and blood products from donors in the latent phase of the disease. Currently, there is no validated antemortem vCJD blood screening test. Several blood tests are under development. Any useful test must be validated with disease-relevant blood reference panels. STUDY DESIGN AND METHODS To generate blood reference materials, we infected four cynomolgus macaques with macaque-adapted vCJD brain homogenates. Blood was collected throughout the preclinical and clinical phases of infection. In parallel, equivalent blood was collected from one uninfected macaque. For each blood collection, an aliquot was stored as whole blood and the remainder was separated into components. Aliquots of plasma from terminally ill macaques were assayed for the presence of PrP(TSE) with the protein misfolding cyclic amplification (PMCA) method. Infectivity of the macaque brain homogenate used to infect macaques was titrated in C57BL/6 and RIII J/S inbred wild-type mice. RESULTS We sampled blood 19 times from the inoculated monkeys at various stages of the disease over a period of 29 months, generating liters of vCJD-infected macaque blood. vCJD was confirmed in all inoculated macaques. After PMCA, PrP(TSE) was detected in plasma from infected monkeys, but not from uninfected animals. Both mouse models were more sensitive to infection with macaque-adapted vCJD agent than to primary human vCJD agent. CONCLUSION The macaque vCJD blood panels generated in this study provide a unique resource to support vCJD assay development and to characterize vCJD infectivity in blood.
Collapse
Affiliation(s)
- Kristy L McDowell
- Division of Emerging and Transfusion-Transmitted Diseases, Office of Blood Research and Review, Food and Drug Administration, Silver Spring, Maryland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Diack AB, Head MW, McCutcheon S, Boyle A, Knight R, Ironside JW, Manson JC, Will RG. Variant CJD. 18 years of research and surveillance. Prion 2014; 8:286-95. [PMID: 25495404 PMCID: PMC4601215 DOI: 10.4161/pri.29237] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
It is now 18 years since the first identification of a case of vCJD in the UK. Since that time, there has been much speculation over how vCJD might impact human health. To date there have been 177 case reports in the UK and a further 51 cases worldwide in 11 different countries. Since establishing that BSE and vCJD are of the same strain of agent, we have also shown that there is broad similarity between UK and non-UK vCJD cases on first passage to mice. Transgenic mouse studies have indicated that all codon 129 genotypes are susceptible to vCJD and that genotype may influence whether disease appears in a clinical or asymptomatic form, supported by the appearance of the first case of potential asymptomatic vCJD infection in a PRNP 129MV patient. Following evidence of blood transfusion as a route of transmission, we have ascertained that all blood components and leucoreduced blood in a sheep model of vCJD have the ability to transmit disease. Importantly, we recently established that a PRNP 129MV patient blood recipient with an asymptomatic infection and limited PrP(Sc) deposition in the spleen could readily transmit disease into mice, demonstrating the potential for peripheral infection in the absence of clinical disease. This, along with the recent appendix survey which identified 16 positive appendices in a study of 32,441 cases, underlines the importance of continued CJD surveillance and maintaining control measures already in place to protect human health.
Collapse
Affiliation(s)
- Abigail B Diack
- The Roslin Institute and R(D)SVS; University of Edinburgh; Easter Bush; Midlothian, Scotland, UK,These authors contributed equally to this work.
| | - Mark W Head
- National CJD Research & Surveillance Unit; School of Clinical Sciences; University of Edinburgh; Western General Hospital; Edinburgh, Scotland, UK,These authors contributed equally to this work.
| | - Sandra McCutcheon
- The Roslin Institute and R(D)SVS; University of Edinburgh; Easter Bush; Midlothian, Scotland, UK
| | - Aileen Boyle
- The Roslin Institute and R(D)SVS; University of Edinburgh; Easter Bush; Midlothian, Scotland, UK
| | - Richard Knight
- National CJD Research & Surveillance Unit; School of Clinical Sciences; University of Edinburgh; Western General Hospital; Edinburgh, Scotland, UK
| | - James W Ironside
- National CJD Research & Surveillance Unit; School of Clinical Sciences; University of Edinburgh; Western General Hospital; Edinburgh, Scotland, UK
| | - Jean C Manson
- The Roslin Institute and R(D)SVS; University of Edinburgh; Easter Bush; Midlothian, Scotland, UK,These authors contributed equally to this work.,Correspondence to: Jean C Manson;
| | - Robert G Will
- National CJD Research & Surveillance Unit; School of Clinical Sciences; University of Edinburgh; Western General Hospital; Edinburgh, Scotland, UK,These authors contributed equally to this work.
| |
Collapse
|
22
|
Griffiths PC, Plater JM, Chave A, Jayasena D, Tout AC, Rice PB, Vickery CM, Spiropoulos J, Stack MJ, Windl O. Overexpression of chimaeric murine/ovine PrP (A136H154Q171) in transgenic mice facilitates transmission and differentiation of ruminant prions. J Gen Virol 2013; 94:2577-2586. [PMID: 23761404 DOI: 10.1099/vir.0.051581-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Development of transgenic mouse models expressing heterologous prion protein (PrP) has facilitated and advanced in vivo studies of prion diseases affecting humans and animals. Here, novel transgenic mouse lines expressing a chimaeric murine/ovine (Mu/Ov) PrP transgene, including amino acid residues alanine, histidine and glutamine at ovine polymorphic codons 136, 154 and 171 (A136H154Q171), were generated to provide a means of assessing the susceptibility of the ovine AHQ allele to ruminant prion diseases in an in vivo model. Transmission studies showed that the highest level of transgene overexpression, in Tg(Mu/OvPrP(AHQ))EM16 (EM16) mice, conferred high susceptibility to ruminant prions. Highly efficient primary transmission of atypical scrapie from sheep was shown, irrespective of donor sheep PrP genotype, with mean incubation periods (IPs) of 154–178 days post-inoculation (p.i.), 100% disease penetrance and early Western blot detection of protease-resistant fragments (PrP(res)) of the disease-associated isoform, PrP(Sc), in EM16 brain from 110 days p.i. onwards. EM16 mice were also highly susceptible to classical scrapie and bovine spongiform encephalopathy (BSE), with mean IPs 320 and 246 days faster, respectively, than WT mice. Primary passage of atypical scrapie, classical scrapie and BSE showed that the PrP(res) profiles associated with disease in the natural host were faithfully maintained in EM16 mice, and were distinguishable based on molecular masses, antibody reactivities and glycoform percentages. Immunohistochemistry was used to confirm PrP(Sc) deposition in brain sections from terminal phase transmissible spongiform encephalopathy-challenged EM16 mice. The findings indicate that EM16 mice represent a suitable bioassay model for detection of atypical scrapie infectivity and offer the prospect of differentiation of ruminant prions.
Collapse
Affiliation(s)
- Peter C Griffiths
- TSE Department, Animal Health and Veterinary Laboratories Agency (AHVLA), Addlestone, Surrey KT15 3NB, UK
| | - Jane M Plater
- TSE Department, Animal Health and Veterinary Laboratories Agency (AHVLA), Addlestone, Surrey KT15 3NB, UK
| | - Alun Chave
- TSE Department, Animal Health and Veterinary Laboratories Agency (AHVLA), Addlestone, Surrey KT15 3NB, UK
| | - Dhanushka Jayasena
- TSE Department, Animal Health and Veterinary Laboratories Agency (AHVLA), Addlestone, Surrey KT15 3NB, UK
| | - Anna C Tout
- TSE Department, Animal Health and Veterinary Laboratories Agency (AHVLA), Addlestone, Surrey KT15 3NB, UK
| | - Paul B Rice
- TSE Department, Animal Health and Veterinary Laboratories Agency (AHVLA), Addlestone, Surrey KT15 3NB, UK
| | - Christopher M Vickery
- TSE Department, Animal Health and Veterinary Laboratories Agency (AHVLA), Addlestone, Surrey KT15 3NB, UK
| | - John Spiropoulos
- Pathology Unit, Specialist Scientific Support Department, Animal Health and Veterinary Laboratories Agency (AHVLA), Addlestone, Surrey KT15 3NB, UK
| | - Michael J Stack
- TSE Department, Animal Health and Veterinary Laboratories Agency (AHVLA), Addlestone, Surrey KT15 3NB, UK
| | - Otto Windl
- TSE Department, Animal Health and Veterinary Laboratories Agency (AHVLA), Addlestone, Surrey KT15 3NB, UK
| |
Collapse
|
23
|
Unique properties of the classical bovine spongiform encephalopathy strain and its emergence from H-type bovine spongiform encephalopathy substantiated by VM transmission studies. J Neuropathol Exp Neurol 2013; 72:211-8. [PMID: 23399901 DOI: 10.1097/nen.0b013e318285c7f9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In addition to classical bovine spongiform encephalopathy (C-BSE), which is recognized as being at the origin of the human variant form of Creutzfeldt-Jakob disease, 2 rare phenotypes of BSE (H-type BSE [H-BSE] and L-type BSE [L-BSE]) were identified in 2004. H-type BSE and L-BSE are considered to be sporadic forms of prion disease in cattle because they differ from C-BSE with respect to incubation period, vacuolar pathology in the brain, and biochemical properties of the protease-resistant prion protein (PrP) in natural hosts and in some mouse models that have been tested. Recently, we showed that H-BSE transmitted to C57Bl/6 mice resulted in a dissociation of the phenotypic features, that is, some mice showed an H-BSE phenotype, whereas others had a C-BSE phenotype. Here, these 2 phenotypes were further studied in VM mice and compared with cattle C-BSE, H-BSE, and L-BSE. Serial passages from the C-BSE-like phenotype on VM mice retained similarities with C-BSE. Moreover, our results indicate that strains 301V and 301C derived from C-BSE transmitted to VM and C57Bl/6 mice, respectively, are fundamentally the same strain. These VM transmission studies confirm the unique properties of the C-BSE strain and support the emergence of a strain that resembles C-BSE from H-BSE.
Collapse
|
24
|
Boerner S, Wagenführ K, Daus ML, Thomzig A, Beekes M. Towards further reduction and replacement of animal bioassays in prion research by cell and protein misfolding cyclic amplification assays. Lab Anim 2013; 47:106-15. [PMID: 23479773 DOI: 10.1177/0023677213476856] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Laboratory animals have long since been used extensively in bioassays for prions in order to quantify, usually in terms of median infective doses [ID50], how infectious these pathogens are in vivo. The identification of aberrant prion protein as the main component and self-replicating principle of prions has given rise to alternative approaches for prion titration. Such approaches often use protein misfolding cyclic amplification (PMCA) for the cell-free biochemical measurement of prion-associated seeding activity, or cell assays for the titration of in vitro infectivity. However, median seeding and cell culture infective doses (SD50 and CCID50, respectively) of prions are neither formally congruent nor definitely representative for ID50 titres in animals and can be therefore only tentatively translated into the latter. This may potentially impede the acceptance and use of alternative methods to animal bioassays in prion research. Thus, we suggest performing PMCA and cell assays jointly, and to check whether these profoundly different test principles deliver consistent results in order to strengthen the reliability and credibility of prion ID50 assessments by in vitro methods. With regard to this rationale, we describe three pairs of PMCA and glial cell assays for different hamster-adapted prion agents (the frequently used 263K scrapie strain, and 22A-H scrapie and BSE-H). In addition, we report on the adaptation of quantitative PMCA to human variant Creutzfeldt-Jakob disease (vCJD) prions on steel wires for prion disinfection studies. Our rationale and methodology can be systematically extended to other types of prions and used to further reduce or replace prion bioassays in rodents.
Collapse
Affiliation(s)
- Susann Boerner
- Work Group Unconventional Pathogens and Their Inactivation, Division of Applied Infection Control and Hospital Hygiene, Department of Infectious Diseases, Robert Koch-Institut, 13353 Berlin, Germany
| | | | | | | | | |
Collapse
|
25
|
Bishop MT, Diack AB, Ritchie DL, Ironside JW, Will RG, Manson JC. Prion infectivity in the spleen of a PRNP heterozygous individual with subclinical variant Creutzfeldt-Jakob disease. ACTA ACUST UNITED AC 2013; 136:1139-45. [PMID: 23449776 PMCID: PMC3613713 DOI: 10.1093/brain/awt032] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Blood transfusion has been identified as a source of human-to-human transmission of variant Creutzfeldt–Jakob disease. Three cases of variant Creutzfeldt–Jakob disease have been identified following red cell transfusions from donors who subsequently developed variant Creutzfeldt–Jakob disease and an asymptomatic red cell transfusion recipient, who did not die of variant Creutzfeldt–Jakob disease, has been identified with prion protein deposition in the spleen and a lymph node, but not the brain. This individual was heterozygous (MV) at codon 129 of the prion protein gene (PRNP), whereas all previous definite and probable cases of variant Creutzfeldt–Jakob disease have been methionine homozygotes (MM). A critical question for public health is whether the prion protein deposition reported in peripheral tissues from this MV individual correlates with infectivity. Additionally it is important to establish whether the PRNP codon 129 genotype has influenced the transmission characteristics of the infectious agent. Brain and spleen from the MV blood recipient were inoculated into murine strains that have consistently demonstrated transmission of the variant Creutzfeldt–Jakob disease agent. Mice were assessed for clinical and pathological signs of disease and transmission data were compared with other transmission studies in variant Creutzfeldt–Jakob disease, including those on the spleen and brain of the donor to the index case. Transmission of variant Creutzfeldt–Jakob disease was observed from the MV blood recipient spleen, but not from the brain, whereas there was transmission from both spleen and brain tissues from the red blood cell donor. Longer incubation times were observed for the blood donor spleen inoculum compared with the blood donor brain inoculum, suggesting lower titres of infectivity in the spleen. The distribution of vacuolar pathology and abnormal prion protein in infected mice were similar following inoculation with both donor and recipient spleen homogenates, providing initial evidence of similar transmission properties after propagation in PRNP codon 129 MV and MM individuals. These studies demonstrate that spleen tissue from a PRNP MV genotype individual can propagate the variant Creutzfeldt–Jakob disease agent and that the infectious agent can be present in the spleen without CNS involvement.
Collapse
Affiliation(s)
- Matthew T Bishop
- National Creutzfeldt–Jakob Disease Research and Surveillance Unit, University of Edinburgh, Bryan Matthews Building, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | | | | | | | | | | |
Collapse
|
26
|
Diack AB, Ritchie D, Bishop M, Pinion V, Brandel JP, Haik S, Tagliavini F, Van Duijn C, Belay ED, Gambetti P, Schonberger LB, Piccardo P, Will RG, Manson JC. Constant transmission properties of variant Creutzfeldt-Jakob disease in 5 countries. Emerg Infect Dis 2013; 18:1574-9. [PMID: 23017202 PMCID: PMC3471642 DOI: 10.3201/eid1810.120792] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Current diagnostic criteria should be sufficient to detect new cases of vCJD. Variant Creutzfeldt-Jakob disease (vCJD) has been reported in 12 countries. We hypothesized that a common strain of agent is responsible for all vCJD cases, regardless of geographic origin. To test this hypothesis, we inoculated strain-typing panels of wild-type mice with brain material from human vCJD case-patients from France, the Netherlands, Italy, and the United States. Mice were assessed for clinical disease, neuropathologic changes, and glycoform profile; results were compared with those for 2 reference vCJD cases from the United Kingdom. Transmission to mice occurred from each sample tested, and data were similar between non-UK and UK cases, with the exception of the ranking of mean clinical incubation times of mouse lines. These findings support the hypothesis that a single strain of infectious agent is responsible for all vCJD infections. However, differences in incubation times require further subpassage in mice to establish any true differences in strain properties between cases.
Collapse
|
27
|
Head MW, Ironside JW. Review: Creutzfeldt-Jakob disease: prion protein type, disease phenotype and agent strain. Neuropathol Appl Neurobiol 2012; 38:296-310. [PMID: 22394291 DOI: 10.1111/j.1365-2990.2012.01265.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The human transmissible spongiform encephalopathies or human prion diseases are one of the most intensively investigated groups of rare human neurodegenerative conditions. They are generally held to be unique in terms of their complex epidemiology and phenotypic variability, but they may also serve as a paradigm with which other more common protein misfolding disorders might be compared and contrasted. The clinico-pathological phenotype of human prion diseases appears to depend on a complex interaction between the prion protein genotype of the affected individual and the physico-chemical properties of the neurotoxic and transmissible agent, thought to comprise of misfolded prion protein. A major focus of research in recent years has been to define the phenotypic heterogeneity of the recognized human prion diseases, correlate this with molecular-genetic features and then determine whether this molecular-genetic classification of human prion disease defines the biological properties of the agent as determined by animal transmission studies. This review seeks to survey the field as it currently stands, summarize what has been learned, and explore what remains to be investigated in order to obtain a more complete scientific understanding of prion diseases and to protect public health.
Collapse
Affiliation(s)
- M W Head
- National CJD Research & Surveillance Unit, School of Molecular & Clinical Medicine, University of Edinburgh, Edinburgh, UK.
| | | |
Collapse
|
28
|
Head MW, Ironside JW. The contribution of different prion protein types and host polymorphisms to clinicopathological variations in Creutzfeldt-Jakob disease. Rev Med Virol 2012; 22:214-29. [DOI: 10.1002/rmv.725] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 10/21/2011] [Accepted: 10/21/2011] [Indexed: 01/22/2023]
Affiliation(s)
- Mark W. Head
- The National CJD Research & Surveillance Unit, School of Molecular & Clinical Medicine; University of Edinburgh; Edinburgh UK
| | - James W. Ironside
- The National CJD Research & Surveillance Unit, School of Molecular & Clinical Medicine; University of Edinburgh; Edinburgh UK
| |
Collapse
|
29
|
Torres JM, Andréoletti O, Lacroux C, Prieto I, Lorenzo P, Larska M, Baron T, Espinosa JC. Classical bovine spongiform encephalopathy by transmission of H-type prion in homologous prion protein context. Emerg Infect Dis 2012; 17:1636-44. [PMID: 21888788 PMCID: PMC3322056 DOI: 10.3201/eid1709.101403] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
TOC Summary: An epidemic agent could have originated from such a cattle prion. Bovine spongiform encephalopathy (BSE) and BSE-related disorders have been associated with a single major prion strain. Recently, 2 atypical, presumably sporadic forms of BSE have been associated with 2 distinct prion strains that are characterized mainly by distinct Western blot profiles of abnormal protease-resistant prion protein (PrPres), named high-type (BSE-H) and low-type (BSE-L), that also differed from classical BSE. We characterized 5 atypical BSE-H isolates by analyzing their molecular and neuropathologic properties during transmission in transgenic mice expressing homologous bovine prion protein. Unexpectedly, in several inoculated animals, strain features emerged that were highly similar to those of classical BSE agent. These findings demonstrate the capability of an atypical bovine prion to acquire classical BSE–like properties during propagation in a homologous bovine prion protein context and support the view that the epidemic BSE agent could have originated from such a cattle prion.
Collapse
|
30
|
Avrahami D, Gabizon R. Age-related alterations affect the susceptibility of mice to prion infection. Neurobiol Aging 2011; 32:2006-15. [DOI: 10.1016/j.neurobiolaging.2009.12.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2009] [Revised: 12/10/2009] [Accepted: 12/21/2009] [Indexed: 12/29/2022]
|
31
|
Beck KE, Sallis RE, Lockey R, Vickery CM, Béringue V, Laude H, Holder TM, Thorne L, Terry LA, Tout AC, Jayasena D, Griffiths PC, Cawthraw S, Ellis R, Balkema-Buschmann A, Groschup MH, Simmons MM, Spiropoulos J. Use of murine bioassay to resolve ovine transmissible spongiform encephalopathy cases showing a bovine spongiform encephalopathy molecular profile. Brain Pathol 2011; 22:265-79. [PMID: 21919992 PMCID: PMC3505794 DOI: 10.1111/j.1750-3639.2011.00526.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Two cases of unusual transmissible spongiform encephalopathy (TSE) were diagnosed on the same farm in ARQ/ARQ PrP sheep showing attributes of both bovine spongiform encephalopathy (BSE) and scrapie. These cases, UK-1 and UK-2, were investigated further by transmissions to wild-type and ovine transgenic mice. Lesion profiles (LP) on primary isolation and subpassage, incubation period (IP) of disease, PrP(Sc) immunohistochemical (IHC) deposition pattern and Western blot profiles were used to characterize the prions causing disease in these sheep. Results showed that both cases were compatible with scrapie. The presence of BSE was contraindicated by the following: LP on primary isolation in RIII and/or MR (modified RIII) mice; IP and LP after serial passage in wild-type mice; PrP(Sc) deposition pattern in wild-type mice; and IP and Western blot data in transgenic mice. Furthermore, immunohistochemistry (IHC) revealed that each case generated two distinct PrP(Sc) deposition patterns in both wild-type and transgenic mice, suggesting that two scrapie strains coexisted in the ovine hosts. Critically, these data confirmed the original differential IHC categorization that these UK-1 and UK-2 cases were not compatible with BSE.
Collapse
Affiliation(s)
- Katy E Beck
- Animal Health and Veterinary Laboratories Agency, Addlestone, Surrey, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Transmission of prion strains in a transgenic mouse model overexpressing human A53T mutated α-synuclein. J Neuropathol Exp Neurol 2011; 70:377-85. [PMID: 21487306 DOI: 10.1097/nen.0b013e318217d95f] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
There is a growing interest in the potential roles of misfolded protein interactions in neurodegeneration. To investigate this issue, we inoculated 3 prion strains intracerebrally into transgenic (TgM83) mice that overexpress human A53T α-synuclein. In comparison to nontransgenic controls, there was a striking decrease in the incubation periods of scrapie, classic and H-type bovine spongiform encephalopathies(C-BSE and H-BSE), with conservation of the histopathologic and biochemical features characterizing these 3 prion strains. TgM83 mice died of scrapie or C-BSE prion diseases before accumulating the insoluble and phosphorylated forms of α-synuclein specific to late stages of synucleinopathy. In contrast, the median incubation time for TgM83 mice inoculated with H-BSE was comparable to that observed when these mice were uninfected, thereby allowing the development of molecular alterations of α-synuclein. The last 4 mice of this cohort exhibited early accumulations of H-BSE prion protein along with α-synuclein pathology. The results indicate that a prion disease was triggered concomitantly with an overt synucleinopathy in some transgenic mice overexpressing human A53T α-synuclein after intracerebral inoculation with an H-BSE prion strain.
Collapse
|
33
|
Wadsworth JDF, Dalmau-Mena I, Joiner S, Linehan JM, O'Malley C, Powell C, Brandner S, Asante EA, Ironside JW, Hilton DA, Collinge J. Effect of fixation on brain and lymphoreticular vCJD prions and bioassay of key positive specimens from a retrospective vCJD prevalence study. J Pathol 2010; 223:511-8. [PMID: 21294124 DOI: 10.1002/path.2821] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 10/21/2010] [Accepted: 11/06/2010] [Indexed: 11/11/2022]
Abstract
Anonymous screening of lymphoreticular tissues removed during routine surgery has been applied to estimate the UK population prevalence of asymptomatic vCJD prion infection. The retrospective study of Hilton et al (J Pathol 2004; 203: 733-739) found accumulation of abnormal prion protein in three formalin-fixed appendix specimens. This led to an estimated UK prevalence of vCJD infection of ∼1 in 4000, which remains the key evidence supporting current risk reduction measures to reduce iatrogenic transmission of vCJD prions in the UK. Confirmatory testing of these positives has been hampered by the inability to perform immunoblotting of formalin-fixed tissue. Animal transmission studies offer the potential for 'gold standard' confirmatory testing but are limited by both transmission barrier effects and known effects of fixation on scrapie prion titre in experimental models. Here we report the effects of fixation on brain and lymphoreticular human vCJD prions and comparative bioassay of two of the three prevalence study formalin-fixed, paraffin-embedded (FFPE) appendix specimens using transgenic mice expressing human prion protein (PrP). While transgenic mice expressing human PrP 129M readily reported vCJD prion infection after inoculation with frozen vCJD brain or appendix, and also FFPE vCJD brain, no infectivity was detected in FFPE vCJD spleen. No prion transmission was observed from either of the FFPE appendix specimens. The absence of detectable infectivity in fixed, known positive vCJD lymphoreticular tissue precludes interpreting negative transmissions from vCJD prevalence study appendix specimens. In this context, the Hilton et al study should continue to inform risk assessment pending the outcome of larger-scale studies on discarded surgical tissues and autopsy samples.
Collapse
Affiliation(s)
- Jonathan D F Wadsworth
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Choi YP, Gröner A, Ironside JW, Head MW. Comparison of the level, distribution and form of disease-associated prion protein in variant and sporadic Creutzfeldt-Jakob diseased brain using conformation-dependent immunoassay and Western blot. J Gen Virol 2010; 92:727-32. [PMID: 21123539 DOI: 10.1099/vir.0.026948-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Disease-associated prion protein (PrP(Sc)) can be distinguished from the cellular isoform (PrP(C)) by conformation-dependent immunoassay (CDI). This technique exploits the presence of an epitope, accessible in PrP(C), but only unmasked by denaturation in PrP(Sc). In this study, we investigated PrP(Sc) in different brain regions in variant and sporadic Creutzfeldt-Jakob disease (CJD) by using CDI, and directly compared the results with those obtained using the more commonly employed protease digestion and Western blotting. In general, there was good agreement between the results, although there were certain discrepancies in relative abundance when the regional distribution in variant CJD cases was considered. The results largely confirmed the previously described targeting of different brain regions by variant and sporadic CJD. Additionally, the combination of protease digestion and CDI detection demonstrated, for the first time, the presence of PrP(Sc) in variant CJD brains that is susceptible to proteolysis under standard conditions.
Collapse
Affiliation(s)
- Young Pyo Choi
- National CJD Surveillance Unit, School of Molecular & Clinical Medicine (Pathology), University of Edinburgh, Edinburgh, UK
| | | | | | | |
Collapse
|
35
|
Choi YP, Gröner A, Ironside JW, Head MW. Correlation of polydispersed prion protein and characteristic pathology in the thalamus in variant Creutzfeldt-Jakob disease: implication of small oligomeric species. Brain Pathol 2010; 21:298-307. [PMID: 21029243 DOI: 10.1111/j.1750-3639.2010.00446.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The vacuolation, neuronal loss and gliosis that characterize human prion disease pathology are accompanied by the accumulation of an aggregated, insoluble and protease-resistant form (termed PrP(Sc)) of the host-encoded normal cellular prion protein (PrP(C)). In variant Creutzfeldt-Jakob disease the frontal cortex and cerebellum exhibit intense vacuolation and the accumulation of PrP(Sc) in the form of amyloid plaques and plaque-like structures. In contrast the posterior thalamus is characterized by intense gliosis and neuronal loss, but PrP(Sc) plaques are rare and vacuolation is patchy. We have used sucrose density gradient centrifugation coupled with conformation dependent immunoassay to examine the biochemical properties of the PrP(Sc) that accumulates in these different brain regions. The results show a greater degree of PrP(Sc) polydisperal in thalamus compared with frontal cortex or cerebellum, including a subpopulation PrP(Sc) molecules in the thalamus that have sedimentation properties resembling those of PrP(C). Much effort has focused on identifying aspects of PrP(Sc) biochemistry that distinguish between different forms of human prion disease and contribute to differential diagnosis. Here we show that PrP(Sc) sedimentation properties, which can depend on aggregation state, correlate with, and may underlie the distinct neurodegenerative processes occurring in different regions of the variant Creutzfeldt-Jakob disease brain.
Collapse
Affiliation(s)
- Young Pyo Choi
- National Creutzfeldt-Jakob Disease Surveillance Unit, School of Molecular and Clinical Medicine (Pathology), University of Edinburgh, Edinburgh, UK
| | | | | | | |
Collapse
|
36
|
Defining sporadic Creutzfeldt-Jakob disease strains and their transmission properties. Proc Natl Acad Sci U S A 2010; 107:12005-10. [PMID: 20547859 DOI: 10.1073/pnas.1004688107] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The biological determinants of the phenotypic variation in sporadic Creutzfeldt-Jakob disease (sCJD) are unknown. To categorize sCJD cases, the prion protein (PrP) codon 129 genotype and the biochemical characteristics of the disease-associated form of PrP (PrP(Sc)) can be combined to form six subgroups (MM1, MM2, MV1, MV2, VV1, and VV2). This classification largely correlates with the known variation in the clinical and pathological features of sCJD, with the MM1 and MV1 cases representing the "classic" phenotype of sCJD. To address how this classification relates to different strains of sCJD we have inoculated each subgroup of sCJD to a panel of mice expressing different forms of the human PRNP gene (129MM, 129VV, and 129MV). We have established that all subtypes are transmissible to at least one genotype of mouse, and both agent and host factors determine transmission efficiency and the form of PrP(Sc) deposited in the brain. Moreover, we have identified four distinct strains of sCJD using our in vivo strain typing panel.
Collapse
|