1
|
Schulze K, Weber U, Schuy C, Durante M, Guzmán CA. Influenza Virus Inactivated by Heavy Ion Beam Irradiation Stimulates Antigen-Specific Immune Responses. Pharmaceutics 2024; 16:465. [PMID: 38675126 PMCID: PMC11054185 DOI: 10.3390/pharmaceutics16040465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/28/2024] Open
Abstract
The COVID-19 pandemic has made clear the need for effective and rapid vaccine development methods. Conventional inactivated virus vaccines, together with new technologies like vector and mRNA vaccines, were the first to be rolled out. However, the traditional methods used for virus inactivation can affect surface-exposed antigen, thereby reducing vaccine efficacy. Gamma rays have been used in the past to inactivate viruses. We recently proposed that high-energy heavy ions may be more suitable as an inactivation method because they increase the damage ratio between the viral nucleic acid and surface proteins. Here, we demonstrate that irradiation of the influenza virus using heavy ion beams constitutes a suitable method to develop effective vaccines, since immunization of mice by the intranasal route with the inactivated virus resulted in the stimulation of strong antigen-specific humoral and cellular immune responses.
Collapse
Affiliation(s)
- Kai Schulze
- Department of Vaccinology and Applied Microbiology, Helmholtz Zentrum für Infektionsforschung (HZI), 38124 Braunschweig, Germany;
| | - Ulrich Weber
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany; (U.W.); (C.S.); (M.D.)
- Fachbereich Mathematik, Naturwissenschaften und Informatik, Technische Hochschule Mittelhessen, 35390 Gießen, Germany
| | - Christoph Schuy
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany; (U.W.); (C.S.); (M.D.)
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany; (U.W.); (C.S.); (M.D.)
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, 64289 Darmstadt, Germany
- Department of Physics “Ettore Pancini”, University Federico II, 80138 Naples, Italy
| | - Carlos Alberto Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Zentrum für Infektionsforschung (HZI), 38124 Braunschweig, Germany;
| |
Collapse
|
2
|
Razali SA, Shamsir MS, Ishak NF, Low CF, Azemin WA. Riding the wave of innovation: immunoinformatics in fish disease control. PeerJ 2023; 11:e16419. [PMID: 38089909 PMCID: PMC10712311 DOI: 10.7717/peerj.16419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/17/2023] [Indexed: 12/18/2023] Open
Abstract
The spread of infectious illnesses has been a significant factor restricting aquaculture production. To maximise aquatic animal health, vaccination tactics are very successful and cost-efficient for protecting fish and aquaculture animals against many disease pathogens. However, due to the increasing number of immunological cases and their complexity, it is impossible to manage, analyse, visualise, and interpret such data without the assistance of advanced computational techniques. Hence, the use of immunoinformatics tools is crucial, as they not only facilitate the management of massive amounts of data but also greatly contribute to the creation of fresh hypotheses regarding immune responses. In recent years, advances in biotechnology and immunoinformatics have opened up new research avenues for generating novel vaccines and enhancing existing vaccinations against outbreaks of infectious illnesses, thereby reducing aquaculture losses. This review focuses on understanding in silico epitope-based vaccine design, the creation of multi-epitope vaccines, the molecular interaction of immunogenic vaccines, and the application of immunoinformatics in fish disease based on the frequency of their application and reliable results. It is believed that it can bridge the gap between experimental and computational approaches and reduce the need for experimental research, so that only wet laboratory testing integrated with in silico techniques may yield highly promising results and be useful for the development of vaccines for fish.
Collapse
Affiliation(s)
- Siti Aisyah Razali
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
- Biological Security and Sustainability Research Interest Group (BIOSES), Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Mohd Shahir Shamsir
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Nur Farahin Ishak
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Chen-Fei Low
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Wan-Atirah Azemin
- School of Biological Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia
| |
Collapse
|
3
|
Zhdanov DD, Ivin YY, Shishparenok AN, Kraevskiy SV, Kanashenko SL, Agafonova LE, Shumyantseva VV, Gnedenko OV, Pinyaeva AN, Kovpak AA, Ishmukhametov AA, Archakov AI. Perspectives for the creation of a new type of vaccine preparations based on pseudovirus particles using polio vaccine as an example. BIOMEDITSINSKAIA KHIMIIA 2023; 69:253-280. [PMID: 37937429 DOI: 10.18097/pbmc20236905253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Traditional antiviral vaccines are currently created by inactivating the virus chemically, most often using formaldehyde or β-propiolactone. These approaches are not optimal since they negatively affect the safety of the antigenic determinants of the inactivated particles and require additional purification stages. The most promising platforms for creating vaccines are based on pseudoviruses, i.e., viruses that have completely preserved the outer shell (capsid), while losing the ability to reproduce owing to the destruction of the genome. The irradiation of viruses with electron beam is the optimal way to create pseudoviral particles. In this review, with the example of the poliovirus, the main algorithms that can be applied to characterize pseudoviral particles functionally and structurally in the process of creating a vaccine preparation are presented. These algorithms are, namely, the analysis of the degree of genome destruction and coimmunogenicity. The structure of the poliovirus and methods of its inactivation are considered. Methods for assessing residual infectivity and immunogenicity are proposed for the functional characterization of pseudoviruses. Genome integrity analysis approaches, atomic force and electron microscopy, surface plasmon resonance, and bioelectrochemical methods are crucial to structural characterization of the pseudovirus particles.
Collapse
Affiliation(s)
- D D Zhdanov
- Institute of Biomedical Chemistry, Moscow, Russia
| | - Yu Yu Ivin
- Institute of Biomedical Chemistry, Moscow, Russia; Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | - V V Shumyantseva
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | - O V Gnedenko
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A N Pinyaeva
- Institute of Biomedical Chemistry, Moscow, Russia; Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, Russia
| | - A A Kovpak
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A A Ishmukhametov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, Russia
| | - A I Archakov
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
4
|
Chen F, Park HR, Ji HJ, Kwon Y, Kim MK, Song JY, Ahn KB, Seo HS. Gamma Irradiation-Inactivated Respiratory Syncytial Virus Vaccine Provides Protection but Exacerbates Pulmonary Inflammation by Switching from Prefusion to Postfusion F Protein. Microbiol Spectr 2023; 11:e0135823. [PMID: 37272801 PMCID: PMC10434263 DOI: 10.1128/spectrum.01358-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 04/30/2023] [Indexed: 06/06/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a common respiratory pathogen that causes lower respiratory diseases among infants and elderly people. Moreover, formalin-inactivated RSV (FI-RSV) vaccine induces serious enhanced respiratory disease (ERD). Radiation has been investigated as an alternative approach for producing inactivated or live-attenuated vaccines, which enhance the antigenicity and heterogeneous protective effects of vaccines compared with conventional formalin inactivation. In this study, we developed an RSV vaccine using gamma irradiation and analyzed its efficacy against RSV vaccine-induced ERD in a mouse model. Although gamma irradiation-inactivated RSV (RI-RSV) carbonylation was lower than FI-RSV carbonylation and RI-RSV showed a significant antibody production and viral clearance, RI-RSV caused more obvious body weight loss, pulmonary eosinophil infiltration, and pulmonary mucus secretion. Further, the conversion of prefusion F (pre-F) to postfusion F (post-F) was significant for both RI-RSV and FI-RSV, while that of RI-RSV was significantly higher than that of FI-RSV. We found that the conversion from pre- to post-F during radiation was caused by radiation-induced reactive oxygen species. Although we could not propose an effective RSV vaccine manufacturing method, we found that ERD was induced by RSV vaccine by various biochemical effects that affect antigen modification during RSV vaccine manufacturing, rather than simply by the combination of formalin and alum. Therefore, these biochemical actions should be considered in future developments of RSV vaccine. IMPORTANCE Radiation inactivation for viral vaccine production has been known to elicit a better immune response than other inactivation methods due to less surface protein damage. However, we found in this study that radiation-inactivated RSV (RI-RSV) vaccine induced a level of immune response similar to that induced by formalin-inactivated RSV (FI-RSV). Although RI-RSV vaccine showed less carbonylation than FI-RSV, it induced more conformational changes from pre-F to post-F due to the gamma radiation-induced reactive oxygen species response, which may be a key factor in RI-RSV-induced ERD. Therefore, ERD induced by RSV vaccine may be due to pre-F to post-F denaturation by random protein modifications caused by external stress. Our findings provide new ideas for inactivated vaccines for RSV and other viruses and confirm the importance of pre-F in RSV vaccines.
Collapse
Affiliation(s)
- Fengjia Chen
- Accelerator Radioisotope Research Section, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Hae-Ran Park
- Accelerator Radioisotope Research Section, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Hyun Jung Ji
- Accelerator Radioisotope Research Section, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Yeongkag Kwon
- Accelerator Radioisotope Research Section, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Min-Kyu Kim
- Accelerator Radioisotope Research Section, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Joon Young Song
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Ki Bum Ahn
- Accelerator Radioisotope Research Section, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
- Animal Production and Health Laboratory, Joint FAO/IAEA Centre for Nuclear Applications in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Seibersdorf, Austria
| | - Ho Seong Seo
- Accelerator Radioisotope Research Section, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
- Department of Radiation Science, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
5
|
Resch MD, Wen K, Mazboudi R, Mulhall Maasz H, Persaud M, Garvey K, Gallardo L, Gottlieb P, Alimova A, Khayat R, Morales J, Bielefeldt-Ohmann H, Bowen RA, Galarza JM. Immunogenicity and Efficacy of Monovalent and Bivalent Formulations of a Virus-Like Particle Vaccine against SARS-CoV-2. Vaccines (Basel) 2022; 10:1997. [PMID: 36560407 PMCID: PMC9782034 DOI: 10.3390/vaccines10121997] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Virus-like particles (VLPs) offer great potential as a safe and effective vaccine platform against SARS-CoV-2, the causative agent of COVID-19. Here, we show that SARS-CoV-2 VLPs can be generated by expression of the four viral structural proteins in a mammalian expression system. Immunization of mice with a monovalent VLP vaccine elicited a potent humoral response, showing neutralizing activity against multiple variants of SARS-CoV-2. Subsequent immunogenicity and efficacy studies were performed in the Golden Syrian hamster model, which closely resembles the pathology and progression of COVID-19 in humans. Hamsters immunized with a bivalent VLP vaccine were significantly protected from infection with the Beta or Delta variant of SARS-CoV-2. Vaccinated hamsters showed reduced viral load, shedding, replication, and pathology in the respiratory tract. Immunized hamsters also showed variable levels of cross-neutralizing activity against the Omicron variant. Overall, the VLP vaccine elicited robust protective efficacy against SARS-CoV-2. These promising results warrant further study of multivalent VLP vaccines in Phase I clinical trials in humans.
Collapse
Affiliation(s)
| | - Ke Wen
- TechnoVax, Inc., 6 Westchester Plaza, Elmsford, NY 10523, USA
| | - Ryan Mazboudi
- TechnoVax, Inc., 6 Westchester Plaza, Elmsford, NY 10523, USA
| | | | - Mirjana Persaud
- TechnoVax, Inc., 6 Westchester Plaza, Elmsford, NY 10523, USA
| | - Kaitlyn Garvey
- TechnoVax, Inc., 6 Westchester Plaza, Elmsford, NY 10523, USA
| | - Leslie Gallardo
- TechnoVax, Inc., 6 Westchester Plaza, Elmsford, NY 10523, USA
| | - Paul Gottlieb
- CUNY School of Medicine, The City College of New York, New York, NY 10031, USA
| | - Aleksandra Alimova
- CUNY School of Medicine, The City College of New York, New York, NY 10031, USA
| | - Reza Khayat
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA
| | - Jorge Morales
- Microscopy Facility, Division of Science, The City College of New York, New York, NY 10031, USA
| | - Helle Bielefeldt-Ohmann
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Richard A. Bowen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80521, USA
| | - Jose M. Galarza
- TechnoVax, Inc., 6 Westchester Plaza, Elmsford, NY 10523, USA
| |
Collapse
|
6
|
Quiroga J, Vidal S, Siel D, Caruffo M, Valdés A, Cabrera G, Lapierre L, Sáenz L. Novel Proteoliposome-Based Vaccine against E. coli: A Potential New Tool for the Control of Bovine Mastitis. Animals (Basel) 2022; 12:ani12192533. [PMID: 36230275 PMCID: PMC9558995 DOI: 10.3390/ani12192533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/13/2022] [Accepted: 09/18/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Mastitis is a highly prevalent disease in dairy cattle, affecting animal welfare and generating economic losses for the dairy industry. Control measures for coliform mastitis are limited, due to the constant exposure of the teat to bacteria and the emergence of antimicrobial-resistant bacteria, making vaccination an important strategy for control of mastitis. However, currently available vaccines show limited efficacy, which could be attributed to inactivation processes that alter the antigenic preservation of the vaccines. The aim of this study was to assess the efficacy of a novel vaccine against mastitis using proteoliposomes obtained from E. coli in a murine model of coliform mastitis. We demonstrated that the proteoliposome vaccine was safe, immunogenic and effective against an experimental model of E. coli mastitis, decreasing bacterial count and tissue damage. This proteoliposome vaccine is a potential new tool for prevention of mastitis. Abstract Escherichia coli is an important causative agent of clinical mastitis in cattle. Current available vaccines have shown limited protection. We evaluated the efficacy of a novel vaccine based on bacterial proteoliposomes derived from an E. coli field strain. Female BALB/c mice were immunized subcutaneously with two doses of the vaccine, 3 weeks apart. Between days 5 and 8 after the first inoculation, the females were mated. At 5–8 days postpartum, the mice were intramammary challenged with the same E. coli strain. Two days after bacterial infection, mice were euthanized, and the mammary glands were examined and removed to evaluate the efficacy and safety of the vaccine as well as the immune response generated by the new formulation. The vaccinated mice showed mild clinical symptoms and a lower mammary bacterial load as compared to non-vaccinated animals. The vaccination induced an increase in levels of IgG, IgG1 and IgG2a against E. coli in blood and mammary glands that showed less inflammatory infiltration and tissue damage, as compared to the control group. In summary, the vaccine based on bacterial proteoliposomes is safe, immunogenic, and effective against E. coli, constituting a new potential tool for mastitis control.
Collapse
Affiliation(s)
- John Quiroga
- Faculty of Veterinary Sciences, Universidad de Chile, Santiago 8820808, Chile
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Sonia Vidal
- Faculty of Veterinary Sciences, Universidad de Chile, Santiago 8820808, Chile
| | - Daniela Siel
- Faculty of Veterinary Sciences, Universidad de Chile, Santiago 8820808, Chile
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370035, Chile
| | - Mario Caruffo
- Faculty of Veterinary Sciences, Universidad de Chile, Santiago 8820808, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Santo Tomás, Santiago 8370003, Chile
| | - Andrea Valdés
- Faculty of Veterinary Sciences, Universidad de Chile, Santiago 8820808, Chile
| | - Gonzalo Cabrera
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| | - Lissette Lapierre
- Faculty of Veterinary Sciences, Universidad de Chile, Santiago 8820808, Chile
- Correspondence: (L.L.); (L.S.); Tel.: +56-9229-785689 (L.S.)
| | - Leonardo Sáenz
- Faculty of Veterinary Sciences, Universidad de Chile, Santiago 8820808, Chile
- Correspondence: (L.L.); (L.S.); Tel.: +56-9229-785689 (L.S.)
| |
Collapse
|
7
|
Motamedi Sedeh F, Khalili I, Wijewardana V, Unger H, Shawrang P, Behgar M, Moosavi SM, Arbabi A, Hosseini SM. Improved Whole Gamma Irradiated Avian Influenza Subtype H9N2 Virus Vaccine Using Trehalose and Optimization of Vaccination Regime on Broiler Chicken. Front Vet Sci 2022; 9:907369. [PMID: 35903140 PMCID: PMC9315219 DOI: 10.3389/fvets.2022.907369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022] Open
Abstract
Gamma (γ)-radiation can target viral genome replication and preserve viral structural proteins compared to formalin inactivation. Thus, a stronger immunity could be induced after the inoculation of the irradiated virus. In this study, γ-irradiated low-pathogenic avian influenza virus-H9N2 (LPAIV-H9N2) was used to immunize the broiler chicken in two formulations, including γ-irradiated LPAIV-H9N2 with 20% Trehalose intranasally (IVT.IN) or γ-irradiated LPAIV-H9N2 plus Montanide oil adjuvant ISA70 subcutaneously (IV+ISA.SC) in comparison with formalin-inactivated LPAIV-H9N2 vaccine intranasally (FV.IN) or formalin-inactivated LPAIV-H9N2 plus ISA70 subcutaneously (FV+ISA.SC). Two vaccination regimes were employed; the first one was primed on day 1 and boosted on day 15 (early regime), and the second one was primed on day 11 and boosted on day 25 (late regime). A challenge test was performed with a live homologous subtype virus. Virus shedding was monitored by quantifying the viral load via RT-qPCR on tracheal and cloacal swabs. Hemagglutination inhibition (HI) antibody titration and stimulation index (SI) of the splenic lymphocyte proliferation were measured, respectively, by HI test and Cell Proliferation assay. Cytokine assay was conducted by the RT-qPCR on antigen-stimulated spleen cells. The results of the HI test showed significant increases in antibody titer in all vaccinated groups, but it was more evident in the IVT late vaccination regime, reaching 5.33 log2. The proliferation of stimulated spleen lymphocytes was upregulated more in the IVT.IN vaccine compared to other vaccines. The mRNA transcription levels of T-helper type 1 cytokines such as interferon-gamma (IFN-γ) and interleukin 2 (IL-2) were upregulated in all vaccinated groups at the late regime. Moreover, IL-6, a pro-inflammatory cytokine was upregulated as well. However, upregulation was more noticeable in the early vaccination than the late vaccination (p< 0.05). After the challenge, the monitoring of virus shedding for the H9 gene represented an extremely low viral load. The body weight loss was not significant (p > 0.05) among the vaccinated groups. In addition, the viral load of <100.5 TCID50/ml in the vaccinated chicken indicated the protective response for all the vaccines. Accordingly, the IVT vaccine is a good candidate for the immunization of broiler chicken via the intranasal route at late regime.
Collapse
Affiliation(s)
- Farahnaz Motamedi Sedeh
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, Iran
- *Correspondence: Farahnaz Motamedi Sedeh ;
| | - Iraj Khalili
- Quality Control Department, Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Viskam Wijewardana
- Animal Production and Health Section, Department of Nuclear Sciences and Applications, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture International Atomic Energy Agency (IAEA), Vienna, Austria
| | - Hermann Unger
- Animal Production and Health Section, Department of Nuclear Sciences and Applications, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture International Atomic Energy Agency (IAEA), Vienna, Austria
| | - Parvin Shawrang
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, Iran
| | - Mehdi Behgar
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, Iran
| | - Sayed Morteza Moosavi
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, Iran
| | - Arash Arbabi
- School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | | |
Collapse
|
8
|
Bortolami A, Mazzetto E, Kangethe RT, Wijewardana V, Barbato M, Porfiri L, Maniero S, Mazzacan E, Budai J, Marciano S, Panzarin V, Terregino C, Bonfante F, Cattoli G. Protective Efficacy of H9N2 Avian Influenza Vaccines Inactivated by Ionizing Radiation Methods Administered by the Parenteral or Mucosal Routes. Front Vet Sci 2022; 9:916108. [PMID: 35898545 PMCID: PMC9309530 DOI: 10.3389/fvets.2022.916108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
H9N2 viruses have become, over the last 20 years, one of the most diffused poultry pathogens and have reached a level of endemicity in several countries. Attempts to control the spread and reduce the circulation of H9N2 have relied mainly on vaccination in endemic countries. However, the high level of adaptation to poultry, testified by low minimum infectious doses, replication to high titers, and high transmissibility, has severely hampered the results of vaccination campaigns. Commercially available vaccines have demonstrated high efficacy in protecting against clinical disease, but variable results have also been observed in reducing the level of replication and viral shedding in domestic poultry species. Antigenic drift and increased chances of zoonotic infections are the results of incomplete protection offered by the currently available vaccines, of which the vast majority are based on formalin-inactivated whole virus antigens. In our work, we evaluated experimental vaccines based on an H9N2 virus, inactivated by irradiation treatment, in reducing viral shedding upon different challenge doses and compared their efficacy with formalin-inactivated vaccines. Moreover, we evaluated mucosal delivery of inactivated antigens as an alternative route to subcutaneous and intramuscular vaccination. The results showed complete protection and prevention of replication in subcutaneously vaccinated Specific Pathogen Free White Leghorn chickens at low-to-intermediate challenge doses but a limited reduction of shedding at a high challenge dose. Mucosally vaccinated chickens showed a more variable response to experimental infection at all tested challenge doses and the main effect of vaccination attained the reduction of infected birds in the early phase of infection. Concerning mucosal vaccination, the irradiated vaccine was the only one affording complete protection from infection at the lowest challenge dose. Vaccine formulations based on H9N2 inactivated by irradiation demonstrated a potential for better performances than vaccines based on the formalin-inactivated antigen in terms of reduction of shedding and prevention of infection.
Collapse
Affiliation(s)
- Alessio Bortolami
- Department of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Eva Mazzetto
- Department of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Richard Thiga Kangethe
- Animal Production and Health Laboratory, Department of Nuclear Sciences and Applications, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency (IAEA), Vienna, Austria
| | - Viskam Wijewardana
- Animal Production and Health Laboratory, Department of Nuclear Sciences and Applications, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency (IAEA), Vienna, Austria
| | - Mario Barbato
- Animal Production and Health Laboratory, Department of Nuclear Sciences and Applications, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency (IAEA), Vienna, Austria
- Department of Animal Science Food and Nutrition–DIANA, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Luca Porfiri
- Animal Production and Health Laboratory, Department of Nuclear Sciences and Applications, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency (IAEA), Vienna, Austria
| | - Silvia Maniero
- Department of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Elisa Mazzacan
- Department of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Jane Budai
- Department of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Sabrina Marciano
- Department of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Valentina Panzarin
- Department of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Calogero Terregino
- Department of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Francesco Bonfante
- Department of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Giovanni Cattoli
- Animal Production and Health Laboratory, Department of Nuclear Sciences and Applications, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency (IAEA), Vienna, Austria
| |
Collapse
|
9
|
Motamedi‐sedeh F, Saboorizadeh A, Khalili I, Sharbatdaran M, Wijewardana V, Arbabi A. Carboxymethyl chitosan bounded iron oxide nanoparticles and gamma-irradiated avian influenza subtype H9N2 vaccine to development of immunity on mouse and chicken. Vet Med Sci 2022; 8:626-634. [PMID: 34878724 PMCID: PMC8959295 DOI: 10.1002/vms3.680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Avian influenza virus (AIV) subtype H9N2 is a low pathogenic avian influenza virus (LPAIV). OBJECTIVE This study aims to evaluate the humoral and cellular immunity in vaccinated mice and broiler chicken by irradiated AIV antigen plus carboxymethyl chitosan bounded iron oxide nanoparticles (CMC-IO NPs) as an adjuvant. METHODS AIV subtype H9N2 with 108.5 EID50 /ml and haemagglutinin antigen assay about 10 log2 was irradiated by 30 kGy gamma radiation dose. Then, the gamma-irradiated AIV was used as an inactivated vaccine and conjugated with CMC-IO NPs to improve immune responses on mice. IO NPs must be applied in all activated tests using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysulfosuccinimide sodium salt (sulfo-NHS), and then functionalized by CMC as IO-CMC. Fourier transform infrared (FTIR) spectra on functionalized IO-CMC showed a peak of 638 cm-1 which is a band between metal and O (Fe-O). RESULTS Based on the comparison between the two X-ray diffraction (XRD) patterns on Fe2 O3 -NPs and IO-CMC, the characteristics of IO-NPs did not change after carboxymethylation. A CHN Analyzer was applied to measure the molecular weight of IO-CMC that was calculated as 1045 g. IO-CMC, irradiated AIV-IO-CMC and formalin AIV-IO-CMC were injected into 42 BALB/c mice in six groups. The fourth group was the negative control, and the fifth and sixth groups were inoculated by irradiated AIV-ISA70 and formalin AIV-ISA70 vaccines. An increase in haemagglutination inhibition (HI) antibody titration was observed in the irradiated AIV-IO-CMC and formalin AIV-IO-CMC groups (p < 0.05). In addition, increases in the lymphoproliferative activity of re-stimulated splenic lymphocytes, interfron-γ (IFN-γ) and interleukin-2 (IL-2) concentration in the irradiated AIV-IO-CMC group demonstrated the activation of Type 1 helper cells. The concentration of IL-4 was without any significant increases in non-group. CONCLUSIONS Accordingly, Th2 activation represented no increase. Finally, the finding showed that AIV-IO-CMC was effective on enhancing immunogenicity as irradiated AIV antigen administered with a clinically acceptable adjuvant (i.e. IO-CMC).
Collapse
Affiliation(s)
- Farahnaz Motamedi‐sedeh
- Department of Veterinary and Animal ScienceNuclear Agriculture Research SchoolNuclear Science and Technology Research InstituteKarajIran
| | - Atefeh Saboorizadeh
- Department of MicrobiologyScience FacultyIslamic Azad UniversityKaraj BranchKarajIran
| | - Iraj Khalili
- Razi Vaccine and Serum Research InstituteAgricultural Research, Education and Extension OrganizationKarajIran
| | - Massomeh Sharbatdaran
- Physics and accelerator Research SchoolNuclear Science and Technology Research InstituteTehranIran
| | - Viskam Wijewardana
- Department of Nuclear Sciences and ApplicationsAnimal Production and Health Section, International Atomic Energy Agency (IAEA), Vienna International Centre (VIC)ViennaAustria
| | - Arash Arbabi
- Faulty of Medical Science, Tehran University of Medical ScienceTehranIran
| |
Collapse
|
10
|
Bhatia B, Meade-White K, Haddock E, Feldmann F, Marzi A, Feldmann H. A live-attenuated viral vector vaccine protects mice against lethal challenge with Kyasanur Forest disease virus. NPJ Vaccines 2021; 6:152. [PMID: 34907224 PMCID: PMC8671490 DOI: 10.1038/s41541-021-00416-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/18/2021] [Indexed: 12/02/2022] Open
Abstract
Kyasanur Forest disease virus (KFDV) is a tick-borne flavivirus endemic in India known to cause severe hemorrhagic and encephalitic disease in humans. In recent years, KFDV has spread beyond its original endemic zone raising public health concerns. Currently, there is no treatment available for KFDV but a vaccine with limited efficacy is used in India. Here, we generated two new KFDV vaccine candidates based on the vesicular stomatitis virus (VSV) platform. We chose the VSV-Ebola virus (VSV-EBOV) vector either with the full-length or a truncated EBOV glycoprotein as the vehicle to express the precursor membrane (prM) and envelope (E) proteins of KFDV (VSV-KFDV). For efficacy testing, we established a mouse disease model by comparing KFDV infections in three immunocompetent mouse strains (BALB/c, C57Bl/6, and CD1). Both vaccine vectors provided promising protection against lethal KFDV challenge in the BALB/c model following prime-only prime-boost and immunizations. Only prime-boost immunization with VSV-KFDV expressing full-length EBOV GP resulted in uniform protection. Hyperimmune serum derived from prime-boost immunized mice protected naïve BALB/c mice from lethal KFDV challenge indicating the importance of antibodies for protection. The new VSV-KFDV vectors are promising vaccine candidates to combat an emerging, neglected public health problem in a densely populated part of the world.
Collapse
Affiliation(s)
- Bharti Bhatia
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Kimberly Meade-White
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Elaine Haddock
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.
| |
Collapse
|
11
|
He C, Yang J, Zhao H, Liu M, Wu D, Liu B, He S, Chen Z. Vaccination with a Brucella ghost developed through a double inactivation strategy provides protection in Guinea pigs and cattle. Microb Pathog 2021; 162:105363. [PMID: 34919994 DOI: 10.1016/j.micpath.2021.105363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/12/2021] [Accepted: 12/12/2021] [Indexed: 01/19/2023]
Abstract
Vaccination can prevent and control animal brucellosis. Currently, live attenuated vaccines are extensively used to prevent Brucella infection. However, traditional vaccines such as live attenuated vaccines are associated with biological safety risks for both humans and animals. The bacterial ghost (BG) is a new form of vaccine with great prospects. However, bacterial cells cannot be completely inactivated by biological lysis, conferring a safety risk associated with the vaccine. In this study, we developed a Brucella abortus A19 bacterial ghost (A19BG) through a double inactivation strategy with sequential biological lysis and hydrogen peroxide treatment. This strategy resulted in 100% inactivation of Brucella, such that viable bacterial cells were not detected even at an ultrahigh concentration of 1010 colony-forming units/mL. Furthermore, A19BG had a typical BG morphology and good genetic stability. Moreover, it did not induce adverse reactions in guinea pigs. The levels of antibodies, interferon-γ, interleukin-4, and CD4+ T cells in guinea pigs inoculated with the A19BG vaccine were similar to those inoculated with the existing A19 vaccine. Immunization with A19BG conferred a similar level of protection with that of A19 against Brucella melitensis M28 in both guinea pigs and cattle. In conclusion, the combination of biological lysis and H2O2-mediated inactivation is a safe and effective strategy that can serve as a reference for the preparation of BG vaccines.
Collapse
Affiliation(s)
- Chuanyu He
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Liaoning Province, Shenyang, 110866, PR China; Tecon Biological Co, Ltd, Urumqi, 830011, PR China
| | - Jianghua Yang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Liaoning Province, Shenyang, 110866, PR China
| | - Hailong Zhao
- Tecon Biological Co, Ltd, Urumqi, 830011, PR China
| | - Mengzhi Liu
- Tecon Biological Co, Ltd, Urumqi, 830011, PR China
| | - Dongling Wu
- Tecon Biological Co, Ltd, Urumqi, 830011, PR China
| | - Baoshan Liu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Liaoning Province, Shenyang, 110866, PR China.
| | - Sun He
- Tecon Biological Co, Ltd, Urumqi, 830011, PR China.
| | - Zeliang Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Liaoning Province, Shenyang, 110866, PR China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China; Brucellosis Prevention and Treatment Engineering Technology Research Center of Inner Mongolia Autonomous Region, Inner Mongolia University for Nationalities, Tongliao, 028000, PR China; School of Public Health, Sun Yat-sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
12
|
Singleton EV, Gates CJ, David SC, Hirst TR, Davies JB, Alsharifi M. Enhanced Immunogenicity of a Whole-Inactivated Influenza A Virus Vaccine Using Optimised Irradiation Conditions. Front Immunol 2021; 12:761632. [PMID: 34899711 PMCID: PMC8652198 DOI: 10.3389/fimmu.2021.761632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Influenza A virus presents a constant pandemic threat due to the mutagenic nature of the virus and the inadequacy of current vaccines to protect against emerging strains. We have developed a whole-inactivated influenza vaccine using γ-irradiation (γ-Flu) that can protect against both vaccine-included strains as well as emerging pandemic strains. γ-irradiation is a widely used inactivation method and several γ-irradiated vaccines are currently in clinical or pre-clinical testing. To enhance vaccine efficacy, irradiation conditions should be carefully considered, particularly irradiation temperature. Specifically, while more damage to virus structure is expected when using higher irradiation temperatures, reduced radiation doses will be required to achieve sterility. In this study, we compared immunogenicity of γ-Flu irradiated at room temperature, chilled on ice or frozen on dry ice using different doses of γ-irradiation to meet internationally accepted sterility assurance levels. We found that, when irradiating at sterilising doses, the structural integrity and vaccine efficacy were well maintained in all preparations regardless of irradiation temperature. In fact, using a higher temperature and lower radiation dose appeared to induce higher neutralising antibody responses and more effective cytotoxic T cell responses. This outcome is expected to simplify irradiation protocols for manufacturing of highly effective irradiated vaccines.
Collapse
Affiliation(s)
- Eve Victoria Singleton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Chloe Jayne Gates
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Shannon Christa David
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Timothy Raymond Hirst
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, SA, Australia
- Gamma Vaccines Pty Ltd, Yarralumla, ACT, Australia
| | - Justin Bryan Davies
- Irradiations Group, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
| | - Mohammed Alsharifi
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, SA, Australia
- Gamma Vaccines Pty Ltd, Yarralumla, ACT, Australia
| |
Collapse
|
13
|
Zhugunissov K, Zakarya K, Khairullin B, Orynbayev M, Abduraimov Y, Kassenov M, Sultankulova K, Kerimbayev A, Nurabayev S, Myrzakhmetova B, Nakhanov A, Nurpeisova A, Chervyakova O, Assanzhanova N, Burashev Y, Mambetaliyev M, Azanbekova M, Kopeyev S, Kozhabergenov N, Issabek A, Tuyskanova M, Kutumbetov L. Development of the Inactivated QazCovid-in Vaccine: Protective Efficacy of the Vaccine in Syrian Hamsters. Front Microbiol 2021; 12:720437. [PMID: 34646246 PMCID: PMC8503606 DOI: 10.3389/fmicb.2021.720437] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
In March 2020, the first cases of the human coronavirus disease COVID-19 were registered in Kazakhstan. We isolated the SARS-CoV-2 virus from clinical materials from some of these patients. Subsequently, a whole virion inactivated candidate vaccine, QazCovid-in, was developed based on this virus. To develop the vaccine, a virus grown in Vero cell culture was used, which was inactivated with formaldehyde, purified, concentrated, sterilized by filtration, and then adsorbed on aluminum hydroxide gel particles. The formula virus and adjuvant in buffer saline solution were used as the vaccine. The safety and protective effectiveness of the developed vaccine were studied in Syrian hamsters. The results of the studies showed the absolute safety of the candidate vaccine in the Syrian hamsters. When studying the protective effectiveness, the developed vaccine with an immunizing dose of 5 μg/dose specific antigen protected animals from a wild homologous virus at a dose of 104.5 TCID50/mL. The candidate vaccine induced the formation of virus-neutralizing antibodies in vaccinated hamsters at titers of 3.3 ± 1.45 log2 to 7.25 ± 0.78 log2, and these antibodies were retained for 6 months (observation period) for the indicated titers. No viral replication was detected in vaccinated hamsters, protected against the development of acute pneumonia, and ensured 100% survival of the animals. Further, no replicative virus was isolated from the lungs of vaccinated animals. However, a virulent virus was isolated from the lungs of unvaccinated animals at relatively high titers, reaching 4.5 ± 0.7 log TCID50/mL. After challenge infection, 100% of unvaccinated hamsters showed clinical symptoms (stress state, passivity, tousled coat, decreased body temperature, and body weight, and the development of acute pneumonia), with 25 ± 5% dying. These findings pave the way for testing the candidate vaccine in clinical human trials.
Collapse
Affiliation(s)
| | - Kunsulu Zakarya
- Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | - Berik Khairullin
- Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | - Mukhit Orynbayev
- Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | - Yergali Abduraimov
- Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | - Markhabat Kassenov
- Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | | | - Aslan Kerimbayev
- Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | - Sergazy Nurabayev
- Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | | | - Aziz Nakhanov
- Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | - Ainur Nurpeisova
- Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | - Olga Chervyakova
- Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | | | - Yerbol Burashev
- Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | | | - Moldir Azanbekova
- Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | - Syrym Kopeyev
- Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | | | - Aisha Issabek
- Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | - Moldir Tuyskanova
- Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | - Lespek Kutumbetov
- Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| |
Collapse
|
14
|
Sabbaghi A, Malek M, Abdolahi S, Miri SM, Alizadeh L, Samadi M, Mohebbi SR, Ghaemi A. A formulated poly (I:C)/CCL21 as an effective mucosal adjuvant for gamma-irradiated influenza vaccine. Virol J 2021; 18:201. [PMID: 34627297 PMCID: PMC8501930 DOI: 10.1186/s12985-021-01672-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Several studies on gamma-irradiated influenza A virus (γ-Flu) have revealed its superior efficacy for inducing homologous and heterologous virus-specific immunity. However, many inactivated vaccines, notably in nasal delivery, require adjuvants to increase the quality and magnitude of vaccine responses. METHODS To illustrate the impacts of co-administration of the gamma-irradiated H1N1 vaccine with poly (I:C) and recombinant murine CCL21, either alone or in combination with each other, as adjuvants on the vaccine potency, mice were inoculated intranasally 3 times at one-week interval with γ-Flu alone or with any of the three adjuvant combinations and then challenged with a high lethal dose (10 LD50) of A/PR/8/34 (H1N1) influenza virus. Virus-specific humoral, mucosal, and cell-mediated immunity, as well as cytokine profiles in the spleen (IFN-γ, IL-12, and IL-4), and in the lung homogenates (IL-6 and IL-10) were measured by ELISA. The proliferative response of restimulated splenocytes was also determined by MTT assay. RESULTS The findings showed that the co-delivery of the γ-Flu vaccine and CCL21 or Poly (I:C) significantly increased the vaccine immunogenicity compared to the non-adjuvanted vaccine, associated with more potent protection following challenge infection. However, the mice given a combination of CCL21 with poly (I:C) had strong antibody- and cell-mediated immunity, which were considerably higher than responses of mice receiving the γ-Flu vaccine with each adjuvant separately. This combination also reduced inflammatory mediator levels (notably IL-10) in lung homogenate samples. CONCLUSIONS The results indicate that adjuvantation with the CCL21 and poly (I:C) can successfully induce vigorous vaccine-mediated protection, suggesting a robust propensity for CCL21 plus poly (I:C) as a potent mucosal adjuvant.
Collapse
Affiliation(s)
- Ailar Sabbaghi
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, P.O.Box: 1316943551, Tehran, Iran
| | - Masoud Malek
- Department of Microbiology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sara Abdolahi
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Seyed Mohammad Miri
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, P.O.Box: 1316943551, Tehran, Iran
| | - Leila Alizadeh
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Mehdi Samadi
- Department of Medical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Mohebbi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Ghaemi
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, P.O.Box: 1316943551, Tehran, Iran.
| |
Collapse
|
15
|
Ji HJ, Byun EB, Chen F, Ahn KB, Jung HK, Han SH, Lim JH, Won Y, Moon JY, Hur J, Seo HS. Radiation-Inactivated S. gallinarum Vaccine Provides a High Protective Immune Response by Activating Both Humoral and Cellular Immunity. Front Immunol 2021; 12:717556. [PMID: 34484221 PMCID: PMC8415480 DOI: 10.3389/fimmu.2021.717556] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/22/2021] [Indexed: 11/19/2022] Open
Abstract
Salmonella enterica subsp. enterica serovar Gallinarum (SG) is a common pathogen in chickens, and causes an acute systemic disease that leads to high mortality. The live attenuated vaccine 9R is able to successfully protect chickens older than six weeks by activating a robust cell-mediated immune response, but its safety and efficacy in young chickens remains controversial. An inactivated SG vaccine is being used as an alternative, but because of its low cellular immune response, it cannot be used as a replacement for live attenuated 9R vaccine. In this study, we employed gamma irradiation instead of formalin as an inactivation method to increase the efficacy of the inactivated SG vaccine. Humoral, cellular, and protective immune responses were compared in both mouse and chicken models. The radiation-inactivated SG vaccine (r-SG) induced production of significantly higher levels of IgG2b and IgG3 antibodies than the formalin-inactivated vaccine (f-SG), and provided a homogeneous functional antibody response against group D, but not group B Salmonella. Moreover, we found that r-SG vaccination could provide a higher protective immune response than f-SG by inducing higher Th17 activation. These results indicate that r-SG can provide a protective immune response similar to the live attenuated 9R vaccine by activating a higher humoral immunity and a lower, but still protective, cellular immune response. Therefore, we expect that the radiation inactivation method might substitute for the 9R vaccine with little or no side effects in chickens younger than six weeks.
Collapse
Affiliation(s)
- Hyun Jung Ji
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea.,Department of Oral Microbiology and Immunology, and DRI, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Eui-Baek Byun
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - Fengjia Chen
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - Ki Bum Ahn
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - Ho Kyoung Jung
- Research and Development Center, HONGCHEON CTCVAC Co., Ltd., Hongcheon, South Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, and DRI, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Jae Hyang Lim
- Department of Microbiology, Ewha Womans University College of Medicine, Seoul, South Korea.,Ewha Education & Research Center for Infection, Ewha Womans University Medical Center, Seoul, South Korea
| | - Yongkwan Won
- Research and Development Center, HONGCHEON CTCVAC Co., Ltd., Hongcheon, South Korea
| | - Ja Young Moon
- Department of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan, South Korea
| | - Jin Hur
- Department of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan, South Korea
| | - Ho Seong Seo
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea.,Department of Radiation Science, University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
16
|
Löffler P. Review: Vaccine Myth-Buster - Cleaning Up With Prejudices and Dangerous Misinformation. Front Immunol 2021; 12:663280. [PMID: 34177902 PMCID: PMC8222972 DOI: 10.3389/fimmu.2021.663280] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/24/2021] [Indexed: 12/19/2022] Open
Abstract
Although vaccines have already saved and will continue to save millions of lives, they are under attack. Vaccine safety is the main target of criticism. The rapid distribution of false information, or even conspiracy theories on the internet has tremendously favored vaccine hesitancy. The World Health Organization (WHO) named vaccine hesitancy one of the top ten threats to global health in 2019. Parents and patients have several concerns about vaccine safety, of which the ubiquitous anxieties include inactivating agents, adjuvants, preservatives, or new technologies such as genetic vaccines. In general, increasing doubts concerning side effects have been observed, which may lead to an increasing mistrust of scientific results and thus, the scientific method. Hence, this review targets five topics concerning vaccines and reviews current scientific publications in order to summarize the available information refuting conspiracy theories and myths about vaccination. The topics have been selected based on the author's personal perception of the most frequently occurring safety controversies: the inactivation agent formaldehyde, the adjuvant aluminum, the preservative mercury, the mistakenly-drawn correlation between vaccines and autism and genetic vaccines. The scientific literature shows that vaccine safety is constantly studied. Furthermore, the literature does not support the allegations that vaccines may cause a serious threat to general human life. The author suggests that more researchers explaining their research ideas, methods and results publicly could strengthen the general confidence in science. In general, vaccines present one of the safest and most cost-effective medications and none of the targeted topics raised serious health concerns.
Collapse
Affiliation(s)
- Paul Löffler
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| |
Collapse
|
17
|
Durante M. Failla Memorial Lecture: The Many Facets of Heavy-Ion Science. Radiat Res 2021; 195:403-411. [PMID: 33979440 DOI: 10.1667/rade-21-00029.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 02/22/2021] [Indexed: 11/03/2022]
Abstract
Heavy ions are riveting in radiation biophysics, particularly in the areas of radiotherapy and space radiation protection. Accelerated charged particles can indeed penetrate deeply in the human body to sterilize tumors, exploiting the favorable depth-dose distribution of ions compared to conventional X rays. Conversely, the high biological effectiveness in inducing late effects presents a hazard for manned space exploration. Even after half a century of accelerator-based experiments, clinical applications and flight research, these two topics remain both fascinating and baffling. Heavy-ion therapy is very expensive, and despite the clinical success it remains controversial. Research on late radiation morbidity in spaceflight led to a reduction in uncertainty, but also pointed to new risks previously underestimated, such as possible damage to the central nervous system. Recently, heavy ions have also been used in other, unanticipated biomedical fields, such as treatment of heart arrhythmia or inactivation of viruses for vaccine development. Heavy-ion science nicely merges physics and biology and remains an extraordinary research field for the 21st century.
Collapse
Affiliation(s)
- Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany; and Technische Universität Darmstadt, Institute of Condensed Matter Physics, 64289 Darmstadt, Germany
| |
Collapse
|
18
|
Mollaei Alamuti M, Ravanshad M, Motamedi-Sedeh F, Nabizadeh A, Ahmadi E, Hossieni SM. Immune Response of Gamma-Irradiated Inactivated Bivalent Polio Vaccine Prepared plus Trehalose as a Protein Stabilizer in a Mouse Model. Intervirology 2021; 64:140-146. [PMID: 33853059 DOI: 10.1159/000515392] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 02/22/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Poliovirus causes paralysis by infecting the nervous system. Currently, 2 types of polio vaccine are given in many countries in polio eradication program including inactivated polio vaccine (IPV) and oral polio vaccine (OPV). Because of OPV-related paralysis, OPV should be replaced by IPV. METHODS The aim of this study was to prepare the gamma-irradiated IPV and determine its effectiveness compared with the commercial vaccine (OPV) in the mouse model. The virus titration of OPV was determined and then inactivated by the appropriate dose of gamma radiation into an irradiated vaccine formula. The vaccine was inoculated in BALB/c mice in 2 different formulations of intramuscular injection with 2-week intervals. The level of anti-polio-neutralizing antibody and polio-specific splenocyte proliferation assay were evaluated by collecting the blood samples and spleens of the vaccinated groups with conventional vaccine and irradiated vaccine. RESULTS There was a significant increase in the neutralizing antibody titration between all of the vaccinated groups and negative control group (A) (p < 0.05). And it shows that the IPV by gamma irradiation has the highest antibody titration. Also, the increasing of stimulation index value in the B* group, F group, and G group was the most against other groups. Furthermore, the neutralizing anti-serum titer and splenic lymphocyte proliferation assay show humoral and cellular immunity were significantly increased in the irradiated vaccine group as compared with conventional group. CONCLUSION According to the results, gamma-irradiated IPV could induce humoral and cellular immunity in vaccinated mouse groups, so the irradiated poliovirus could be recommended as a good candidate vaccine to prevent the transport of poliovirus to the central nervous system and thus protect against paralysis.
Collapse
Affiliation(s)
- Maryam Mollaei Alamuti
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehrdad Ravanshad
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farahnaz Motamedi-Sedeh
- Nuclear Science and Technology Research Institute (NSTRI), Nuclear Agriculture Research School, Tehran, Iran
| | - Arezoo Nabizadeh
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Elham Ahmadi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.,Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | |
Collapse
|
19
|
Chariou PL, Beiss V, Ma Y, Steinmetz NF. In situ vaccine application of inactivated CPMV nanoparticles for cancer immunotherapy. MATERIALS ADVANCES 2021; 2:1644-1656. [PMID: 34368764 PMCID: PMC8323807 DOI: 10.1039/d0ma00752h] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/26/2021] [Indexed: 05/24/2023]
Abstract
Cowpea mosaic virus (CPMV) is currently in the development pipeline for multiple biomedical applications, including cancer immunotherapy. In particular the application of CPMV as in situ vaccine has shown promise; here the plant viral nanoparticle is used as an adjuvant and is injected directly into a tumor to reverse immunosuppression and prime systemic anti-tumor immunity. Efficacy of this CPMV-based cancer immunotherapy has been demonstrated in multiple tumor mouse models and canine cancer patients. However, while CPMV is non-infectious to mammals, it is infectious to legumes and therefore, from a safety perspective, it is desired to develop non-infectious CPMV formulations. Non-infectious virus-like particles of CPMV devoid of nucleic acids have been produced; nevertheless, efficacy of such empty CPMV nanoparticles does not match efficacy of nucleic acid-laden CPMV. The multivalent capsid activates the innate immune system through pathogen pattern recognition receptors (PRRs) such as toll-like receptors (TLRs); the RNA cargo provides additional signaling through TLR-7/8, which boosts the efficacy of this adjuvant. Therefore, in this study, we set out to develop RNA-laden, but non-infectious CPMV. We report inactivation of CPMV using UV light and chemical inactivation using β-propiolactone (βPL) or formalin. 7.5 J cm-2 UV, 50 mM βPL or 1 mM formalin was determined to be sufficient to inactivate CPMV and prevented plant infection. We compared the immunogenicity of native CPMV and inactivated CPMV formulations in vitro and in vivo using RAW-Blue™ reporter cells and a murine syngeneic, orthotropic melanoma model (using B16F10 cells and C57BL6 mice). While the in vitro assay indicated activation of the RAW-Blue™ reporter cells by formaldehyde and UV-inactivated CPMV at levels comparable to native CPMV; βPL-inactivated CPMV appeared to have diminished activity. Tumor mouse model experiments indicate potent efficacy of the chemically-inactivated CPMV (UV-treated CPMV was not tested) leading to tumor regression and increased survival; efficacy was somewhat reduced when compared to CPMV, however these samples outperformed the empty CPMV nanoparticles. These results will facilitate the translational development of safe and potent CPMV-based cancer immunotherapies.
Collapse
Affiliation(s)
- Paul L. Chariou
- Department of Bioengineering, University of California-San DiegoLa JollaCA 92039USA
| | - Veronique Beiss
- Department of NanoEngineering, University of California-San DiegoLa JollaCA 92039USA
| | - Yifeng Ma
- Department of NanoEngineering, University of California-San DiegoLa JollaCA 92039USA
| | - Nicole F. Steinmetz
- Department of Bioengineering, University of California-San DiegoLa JollaCA 92039USA
- Department of NanoEngineering, University of California-San DiegoLa JollaCA 92039USA
- Department of Radiology, University of California-San DiegoLa JollaCA 92039USA
- Moores Cancer Center, University of California-San DiegoLa JollaCA 92039USA
- Center for Nano-ImmunoEngineering, University of California-San DiegoLa JollaCA 92039USA
- Institute for Materials Discovery and Design, University of California-San DiegoLa JollaCA 92039USA
| |
Collapse
|
20
|
Protective cellular and mucosal immune responses following nasal administration of a whole gamma-irradiated influenza A (subtype H1N1) vaccine adjuvanted with interleukin-28B in a mouse model. Arch Virol 2021; 166:545-557. [PMID: 33409549 PMCID: PMC7787640 DOI: 10.1007/s00705-020-04900-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/14/2020] [Indexed: 12/22/2022]
Abstract
The use of gamma-irradiated influenza A virus (γ-Flu), retains most of the viral structural antigens, represent a promising option for vaccine development. However, despite the high effectiveness of γ-Flu vaccines, the need to incorporate an adjuvant to improve vaccine-mediated protection seems inevitable. Here, we examined the protective efficacy of an intranasal gamma-irradiated HIN1 vaccine co-administered with a plasmid encoding mouse interleukin-28B (mIL-28B) as a novel adjuvant in BALB/c mice. Animals were immunized intranasally three times at one-week intervals with γ-Flu, alone or in combination with the mIL-28B adjuvant, followed by viral challenge with a high lethal dose (10 LD50) of A/PR/8/34 (H1N1) influenza virus. Virus-specific antibody, cellular and mucosal responses, and the balance of cytokines in the spleen IFN-γ, IL-12, and IL-4) and in lung homogenates (IL-6 and IL-10) were measured by ELISA. The lymphoproliferative activity of restimulated spleen cells was also determined by MTT assay. Furthermore, virus production in the lungs of infected mice was estimated using the Madin-Darby canine kidney (MDCK)/hemagglutination assay (HA). Our data showed that intranasal immunization with adjuvanted γ-Flu vaccine efficiently promoted humoral, cellular, and mucosal immune responses and efficiently decreased lung virus titers, all of which are associated with protection against challenge. This combination also reduced IL-6 and IL-10 levels in lung homogenates. The results suggest that IL-28B can enhance the ability of the vaccine to elicit virus-specific immune responses and could potentially be used as an effective adjuvant.
Collapse
|
21
|
Singleton EV, David SC, Davies JB, Hirst TR, Paton JC, Beard MR, Hemmatzadeh F, Alsharifi M. Sterility of gamma-irradiated pathogens: a new mathematical formula to calculate sterilizing doses. JOURNAL OF RADIATION RESEARCH 2020; 61:886-894. [PMID: 32930781 PMCID: PMC7674690 DOI: 10.1093/jrr/rraa076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/19/2020] [Indexed: 06/11/2023]
Abstract
In recent years there has been increasing advocacy for highly immunogenic gamma-irradiated vaccines, several of which are currently in clinical or pre-clinical trials. Importantly, various methods of mathematical modelling and sterility testing are employed to ensure sterility. However, these methods are designed for materials with a low bioburden, such as food and pharmaceuticals. Consequently, current methods may not be reliable or applicable to estimate the irradiation dose required to sterilize microbiological preparations for vaccine purposes, where bioburden is deliberately high. In this study we investigated the applicability of current methods to calculate the sterilizing doses for different microbes. We generated inactivation curves that demonstrate single-hit and multiple-hit kinetics under different irradiation temperatures for high-titre preparations of pathogens with different genomic structures. Our data demonstrate that inactivation of viruses such as Influenza A virus, Zika virus, Semliki Forest virus and Newcastle Disease virus show single-hit kinetics following exposure to gamma-irradiation. In contrast, rotavirus inactivation shows multiple-hit kinetics and the sterilizing dose could not be calculated using current mathematical methods. Similarly, Streptococcus pneumoniae demonstrates multiple-hit kinetics. These variations in killing curves reveal an important gap in current mathematical formulae to determine sterility assurance levels. Here we propose a simple method to calculate the irradiation dose required for a single log10 reduction in bioburden (D10) value and sterilizing doses, incorporating both single- and multiple-hit kinetics, and taking into account the possible existence of a resistance shoulder for some pathogens following exposure to gamma-irradiation.
Collapse
Affiliation(s)
- Eve V Singleton
- Research Centre for Infectious Diseases, and Department of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Shannon C David
- Research Centre for Infectious Diseases, and Department of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Justin B Davies
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, 2234, Australia
| | - Timothy R Hirst
- Research Centre for Infectious Diseases, and Department of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
- Gamma Vaccines Pty Ltd, Mountbatten Park, Yarralumla, ACT, 2600, Australia
- GPN Vaccines Pty Ltd, Mountbatten Park, Yarralumla, ACT, 2600, Australia
| | - James C Paton
- Research Centre for Infectious Diseases, and Department of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
- GPN Vaccines Pty Ltd, Mountbatten Park, Yarralumla, ACT, 2600, Australia
| | - Michael R Beard
- Research Centre for Infectious Diseases, and Department of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Farhid Hemmatzadeh
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, 5371, Australia
| | - Mohammed Alsharifi
- Corresponding author. Research Centre for Infectious Diseases, University of Adelaide, Adelaide, SA, 5005, Australia.
| |
Collapse
|
22
|
Mullbacher A, Pardo J, Furuya Y. SARS-CoV-2 Vaccines: Inactivation by Gamma Irradiation for T and B Cell Immunity. Pathogens 2020; 9:pathogens9110928. [PMID: 33182546 PMCID: PMC7697093 DOI: 10.3390/pathogens9110928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 11/16/2022] Open
Abstract
Despite accumulating preclinical data demonstrating a crucial role of cytotoxic T cell immunity during viral infections, ongoing efforts on developing COVID-19 vaccines are mostly focused on antibodies. In this commentary article, we discuss potential benefits of cytotoxic T cells in providing long-term protection against COVID-19. Further, we propose that gamma-ray irradiation, which is a previously tested inactivation method, may be utilized to prepare an experimental COVID-19 vaccine that can provide balanced immunity involving both B and T cells.
Collapse
Affiliation(s)
- Arno Mullbacher
- Department of Immunology and Infectious Disease, John Curtin School for Medical Research, Australian National University, Canberra 0200, ACT, Australia;
| | - Julian Pardo
- Immunotherapy, Inflammation and Cancer, Biomedical Research Centre of Aragon, ARAID/Aragon Health Research Institute (IIS Aragon)/University of Zaragoza, 50009 Zaragoza, Spain;
| | - Yoichi Furuya
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA
- Correspondence: ; Tel.: +1-518-262-0097
| |
Collapse
|
23
|
Automated application of low energy electron irradiation enables inactivation of pathogen- and cell-containing liquids in biomedical research and production facilities. Sci Rep 2020; 10:12786. [PMID: 32732876 PMCID: PMC7393095 DOI: 10.1038/s41598-020-69347-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 07/08/2020] [Indexed: 01/22/2023] Open
Abstract
Ionizing radiation is widely used to inactivate pathogens. It mainly acts by destroying nucleic acids but causes less damage to structural components like proteins. It is therefore highly suited for the sterilization of biological samples or the generation of inactivated vaccines. However, inactivation of viruses or bacteria requires relatively high doses and substantial amounts of radiation energy. Consequently, irradiation is restricted to shielded facilities—protecting personnel and the environment. We have previously shown that low energy electron irradiation (LEEI) has the same capacity to inactivate pathogens in liquids as current irradiation methods, but generates much less secondary X-ray radiation, which enables the use in normal laboratories by self-shielded irradiation equipment. Here, we present concepts for automated LEEI of liquids, in disposable bags or as a continuous process. As the electrons have a limited penetration depth, the liquid is transformed into a thin film. High concentrations of viruses (Influenza, Zika virus and Respiratory Syncytial Virus), bacteria (E. coli, B. cereus) and eukaryotic cells (NK-92 cell line) are efficiently inactivated by LEEI in a throughput suitable for various applications such as sterilization, vaccine manufacturing or cell therapy. Our results validate the premise that for pathogen and cell inactivation in liquids, LEEI represents a suitable and versatile irradiation method for standard biological research and production laboratories.
Collapse
|
24
|
Chen F, Seong Seo H, Ji HJ, Yang E, Choi JA, Yang JS, Song M, Han SH, Lim S, Lim JH, Ahn KB. Characterization of humoral and cellular immune features of gamma-irradiated influenza vaccine. Hum Vaccin Immunother 2020; 17:485-496. [PMID: 32643515 DOI: 10.1080/21645515.2020.1780091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The most widely used influenza vaccines are prepared by chemical inactivation. However, chemical, especially formalin, treatment-induced modifications of the antigenic structure of the virus are frequently associated with adverse effects including low efficacy of protection, unexpected immune responses, or exacerbation of disease. Gamma-irradiation was suggested as an alternative influenza virus inactivation method due to its great features of completely inactivating virus while not damaging the structures of protein antigens, and cross-protective ability against heterologous strains. However, immunological features of gamma radiation-inactivated influenza vaccine have not been fully understood. In this study, we aimed to investigate the humoral and cellular immune responses of gamma radiation-inactivated influenza vaccine. The gamma irradiation-inactivated influenza vaccine (RADVAXFluA) showed complete viral inactivation but retained normal viral structure with functional activities of viral protein antigens. Intranasal immunization of RADVAXFluA provided better protection against influenza virus infection than formalin-inactivated influenza virus (FIV) in mice. RADVAXFluA greatly enhanced the production of virus-specific serum IgG and alveolar mucosal IgA, which effectively neutralized HA (hemagglutinin) and NA (neuraminidase) activities, and blocked viral binding to the cells, respectively. Further analysis of IgG subclasses showed RADVAXFluA-immunized sera had higher levels of IgG1 and IgG2a than those of FIV-immunized sera. In addition, analysis of cellular immunity found RADVAXFluA induced strong dendritic cells (DC) activation resulting in higher DC-mediated activation of CD8+ T cells than FIV. The results support improved immunogenicity by RADVAXFluA.
Collapse
Affiliation(s)
- Fengjia Chen
- Radiation Research Division, Korea Atomic Energy Research Institute , Jeongeup, Republic of Korea
| | - Ho Seong Seo
- Radiation Research Division, Korea Atomic Energy Research Institute , Jeongeup, Republic of Korea.,Department of Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology , Daejeon, Republic of Korea
| | - Hyun Jung Ji
- Radiation Research Division, Korea Atomic Energy Research Institute , Jeongeup, Republic of Korea.,Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University , Seoul, Republic of Korea
| | - Eunji Yang
- Clinical Research Laboratory, Sciences Unit, International Vaccine Institute , Seoul, Republic of Korea
| | - Jung Ah Choi
- Clinical Research Laboratory, Sciences Unit, International Vaccine Institute , Seoul, Republic of Korea
| | - Jae Seung Yang
- Clinical Research Laboratory, Sciences Unit, International Vaccine Institute , Seoul, Republic of Korea
| | - Manki Song
- Clinical Research Laboratory, Sciences Unit, International Vaccine Institute , Seoul, Republic of Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University , Seoul, Republic of Korea
| | - Sangyong Lim
- Radiation Research Division, Korea Atomic Energy Research Institute , Jeongeup, Republic of Korea.,Department of Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology , Daejeon, Republic of Korea
| | - Jae Hyang Lim
- Department of Microbiology, Ewha Womans University College of Medicine , Seoul, Republic of Korea.,Ewha Education & Research Center for Infection, Ewha Womans University Medical Center , Seoul, Republic of Korea
| | - Ki Bum Ahn
- Radiation Research Division, Korea Atomic Energy Research Institute , Jeongeup, Republic of Korea
| |
Collapse
|
25
|
Formalin treatment increases the stability and immunogenicity of coxsackievirus B1 VLP vaccine. Antiviral Res 2019; 171:104595. [PMID: 31491431 DOI: 10.1016/j.antiviral.2019.104595] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/29/2019] [Accepted: 09/02/2019] [Indexed: 12/17/2022]
Abstract
Type B Coxsackieviruses (CVBs) are a common cause of acute and chronic myocarditis, dilated cardiomyopathy and aseptic meningitis. However, no CVB-vaccines are available for human use. We have previously produced virus-like particles (VLPs) for CVB3 with a baculovirus-insect cell production system. Here we have explored the potential of a VLP-based vaccine targeting CVB1 and describe the production of CVB1-VLPs with a scalable VLP purification method. The developed purification method consisting of tangential flow filtration and ion exchange chromatography is compatible with industrial scale production. CVB1-VLP vaccine was treated with UV-C or formalin to study whether stability and immunogenicity was affected. Untreated, UV treated and formalin treated VLPs remained morphologically intact for 12 months at 4 °C. Formalin treatment increased, whereas UV treatment decreased the thermostability of the VLP-vaccine. High neutralising and total IgG antibody levels, the latter predominantly of a Th2 type (IgG1) phenotype, were detected in female BALB/c mice immunised with non-adjuvanted, untreated CVB1-VLP vaccine. The immunogenicity of the differently treated CVB1-VLPs (non-adjuvanted) were compared in C57BL/6 J mice and animals vaccinated with formalin treated CVB1-VLPs mounted the strongest neutralising and, CVB1-specific IgG and IgG1 antibody responses. This study demonstrates that formalin treatment increases the stability and immunogenicity of CVB1-VLP vaccine and may offer a universal tool for the stabilisation of VLPs in the production of more efficient vaccines.
Collapse
|
26
|
A comparative study of the effect of UV and formalin inactivation on the stability and immunogenicity of a Coxsackievirus B1 vaccine. Vaccine 2019; 37:5962-5971. [PMID: 31471148 DOI: 10.1016/j.vaccine.2019.08.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/07/2019] [Accepted: 08/17/2019] [Indexed: 01/25/2023]
Abstract
Type B Coxsackieviruses (CVBs) belong to the enterovirus genus, and they cause both acute and chronic diseases in humans. CVB infections usually lead to flu-like symptoms but can also result in more serious diseases such as myocarditis, aseptic meningitis and life-threatening multi-organ infections in young infants. Thus, CVBs have long been considered as important targets of future vaccines. We have previously observed CVB1 capsid disintegration and virus concentration decrease with 12-day long formalin inactivation protocol. Here a scalable ion exchange chromatography purification method was developed, and purified CVB1 was inactivated with UV-C or formalin. Virus morphology and concentration remained unchanged, when the UV (2 min) or formalin (5 days) inactivation were performed in the presence of tween80 detergent. The concentration of the native and UV inactivated CVB1 remained constant at 4 °C during a six months stability study, whereas the concentration of the formalin inactivated vaccine decreased 29% during this time. UV treatment decreased, whereas formalin treatment increased the thermal stability of the capsid. The formalin inactivated CVB1 vaccine was more immunogenic than the UV inactivated vaccine; the protective neutralizing antibody levels were higher in mice immunized with formalin inactivated vaccine. High levels of CVB1 neutralizing antibodies as well as IgG1 antibodies were detected in mice that were protected against viremia induced by experimental CVB1 infection. In conclusion, this study describes a scalable ion exchange chromatography purification method and optimized 5-day long formalin inactivation method that preserves CVB1 capsid structure and immunogenicity. Formalin treatment stabilizes the virus particle at elevated temperatures, and the formalin inactivated vaccine induces high levels of serum IgG1 antibodies (Th2 type response) and protective levels of neutralizing antibodies. Formalin inactivated CVB vaccines are promising candidates for human clinical trials.
Collapse
|
27
|
Sabbaghi A, Miri SM, Keshavarz M, Zargar M, Ghaemi A. Inactivation methods for whole influenza vaccine production. Rev Med Virol 2019; 29:e2074. [PMID: 31334909 DOI: 10.1002/rmv.2074] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/16/2019] [Accepted: 06/19/2019] [Indexed: 12/16/2022]
Abstract
Despite tremendous efforts toward vaccination, influenza remains an ongoing global threat. The induction of strain-specific neutralizing antibody responses is a common phenomenon during vaccination with the current inactivated influenza vaccines, so the protective effect of these vaccines is mostly strain-specific. There is an essential need for the development of next-generation vaccines, with a broad range of immunogenicity against antigenically drifted or shifted influenza viruses. Here, we evaluate the potential of whole inactivated vaccines, based on chemical and physical methods, as well as new approaches to generate cross-protective immune responses. We also consider the mechanisms by which some of these vaccines may induce CD8+ T-cells cross-reactivity with different strains of influenza. In this review, we have focused on conventional and novel methods for production of whole inactivated influenza vaccine. As well as chemical modification, using formaldehyde or β-propiolactone and physical manipulation by ultraviolet radiation or gamma-irradiation, novel approaches, including visible ultrashort pulsed laser, and low-energy electron irradiation are discussed. These two latter methods are considered to be attractive approaches to design more sophisticated vaccines, due to their ability to maintain most of the viral antigenic properties during inactivation and potential to produce cross-protective immunity. However, further studies are needed to validate them before they can replace traditional methods for vaccine manufacturing.
Collapse
Affiliation(s)
- Ailar Sabbaghi
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran.,Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran
| | | | - Mohsen Keshavarz
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohsen Zargar
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | - Amir Ghaemi
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
28
|
Herrera-Rodriguez J, Signorazzi A, Holtrop M, de Vries-Idema J, Huckriede A. Inactivated or damaged? Comparing the effect of inactivation methods on influenza virions to optimize vaccine production. Vaccine 2019; 37:1630-1637. [PMID: 30765167 PMCID: PMC7115651 DOI: 10.1016/j.vaccine.2019.01.086] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 11/27/2022]
Abstract
β-propiolactone (BPL) and formaldehyde (FA) were used to inactivate several influenza virus strains. BPL abolished the infectivity, FA was unable to completely inactivate the virus. All methods damaged the binding and fusion capacity; BPL caused greater loss than FA. FA treatments caused the highest reduction in TLR-7 stimulation. All the observed effects were strain-dependent.
The vast majority of commercially available inactivated influenza vaccines are produced from egg-grown or cell-grown live influenza virus. The first step in the production process is virus inactivation with β-propiolactone (BPL) or formaldehyde (FA). Recommendations for production of inactivated vaccines merely define the maximal concentration for both reagents, leaving the optimization of the process to the manufacturers. We assessed the effect of inactivation with BPL and FA on 5 different influenza virus strains. The properties of the viral formulation, such as successful inactivation, preservation of hemagglutinin (HA) binding ability, fusion capacity and the potential to stimulate a Toll-like receptor 7 (TLR7) reporter cell line were then assessed and compared to the properties of the untreated virus. Inactivation with BPL resulted in undetectable infectivity levels, while FA-treated virus retained very low infectious titers. Hemagglutination and fusion ability were highly affected by those treatments that conferred higher inactivation, with BPL-treated virus binding and fusing at a lower degree compared to FA-inactivated samples. On the other hand, BPL-inactivated virus induced higher levels of activation of TLR7 than FA-inactivated virus. The alterations caused by BPL or FA treatments were virus strain dependent. This data shows that the inactivation procedures should be tailored on the virus strain, and that many other elements beside the concentration of the inactivating agent, such as incubation time and temperature, buffer and virus concentration, have to be defined to achieve a functional product.
Collapse
Affiliation(s)
- José Herrera-Rodriguez
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Aurora Signorazzi
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Marijke Holtrop
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jacqueline de Vries-Idema
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Anke Huckriede
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
29
|
Trobaugh DW, Sun C, Dunn MD, Reed DS, Klimstra WB. Rational design of a live-attenuated eastern equine encephalitis virus vaccine through informed mutation of virulence determinants. PLoS Pathog 2019; 15:e1007584. [PMID: 30742691 PMCID: PMC6386422 DOI: 10.1371/journal.ppat.1007584] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 02/22/2019] [Accepted: 01/15/2019] [Indexed: 12/20/2022] Open
Abstract
Live attenuated vaccines (LAVs), if sufficiently safe, provide the most potent and durable anti-pathogen responses in vaccinees with single immunizations commonly yielding lifelong immunity. Historically, viral LAVs were derived by blind passage of virulent strains in cultured cells resulting in adaptation to culture and a loss of fitness and disease-causing potential in vivo. Mutations associated with these phenomena have been identified but rarely have specific attenuation mechanisms been ascribed, thereby limiting understanding of the attenuating characteristics of the LAV strain and applicability of the attenuation mechanism to other vaccines. Furthermore, the attenuated phenotype is often associated with single nucleotide changes in the viral genome, which can easily revert to the virulent sequence during replication in animals. Here, we have used a rational approach to attenuation of eastern equine encephalitis virus (EEEV), a mosquito-transmitted alphavirus that is among the most acutely human-virulent viruses endemic to North America and has potential for use as an aerosolized bioweapon. Currently, there is no licensed antiviral therapy or vaccine for this virus. Four virulence loci in the EEEV genome were identified and were mutated individually and in combination to abrogate virulence and to resist reversion. The resultant viruses were tested for virulence in mice to examine the degree of attenuation and efficacy was tested by subcutaneous or aerosol challenge with wild type EEEV. Importantly, all viruses containing three or more mutations were avirulent after intracerebral infection of mice, indicating a very high degree of attenuation. All vaccines protected from subcutaneous EEEV challenge while a single vaccine with three mutations provided reproducible, near-complete protection against aerosol challenge. These results suggest that informed mutation of virulence determinants is a productive strategy for production of LAVs even with highly virulent viruses such as EEEV. Furthermore, these results can be directly applied to mutation of analogous virulence loci to create LAVs from other viruses.
Collapse
Affiliation(s)
- Derek W. Trobaugh
- Center for Vaccine Research, Department of Immunology, University of Pittsburgh, Pittsburgh, PA United States of America
| | - Chengqun Sun
- Center for Vaccine Research, Department of Immunology, University of Pittsburgh, Pittsburgh, PA United States of America
| | - Matthew D. Dunn
- Center for Vaccine Research, Department of Immunology, University of Pittsburgh, Pittsburgh, PA United States of America
| | - Douglas S. Reed
- Center for Vaccine Research, Department of Immunology, University of Pittsburgh, Pittsburgh, PA United States of America
| | - William B. Klimstra
- Center for Vaccine Research, Department of Immunology, University of Pittsburgh, Pittsburgh, PA United States of America
| |
Collapse
|
30
|
Quintel BK, Thomas A, Poer DeRaad DE, Slifka MK, Amanna IJ. Advanced oxidation technology for the development of a next-generation inactivated West Nile virus vaccine. Vaccine 2018; 37:4214-4221. [PMID: 30606462 DOI: 10.1016/j.vaccine.2018.12.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/12/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022]
Abstract
West Nile virus (WNV) is the most frequent mosquito-borne disease reported in the continental United States and although an effective veterinary vaccine exists for horses, there is still no commercial vaccine approved for human use. We have previously tested a 3% hydrogen peroxide (H2O2)-based WNV inactivation approach termed, HydroVax, in Phase I clinical trials and the vaccine was found to be safe and modestly immunogenic. Here, we describe an advanced, next-generation oxidation approach (HydroVax-II) for the development of inactivated vaccines that utilizes reduced concentrations of H2O2 in combination with copper (cupric ions, Cu2+) complexed with the antiviral compound, methisazone (MZ). Further enhancement of this oxidative approach included the addition of a low percentage of formaldehyde, a cross-linking reagent with a different mechanism of action that, together with H2O2/Cu/MZ, provides a robust two-pronged approach to virus inactivation. Together, this new approach results in rapid virus inactivation while greatly improving the maintenance of WNV-specific neutralizing epitopes mapped across the three structural domains of the WNV envelope protein. In combination with more refined manufacturing techniques, this inactivation technology resulted in vaccine-mediated WNV-specific neutralizing antibody responses that were 130-fold higher than that observed using the first generation, H2O2-only vaccine approach and provided 100% protection against lethal WNV infection. This new approach to vaccine development represents an important area for future investigation with the potential not only for improving vaccines against WNV, but other clinically relevant viruses as well.
Collapse
Affiliation(s)
| | - Archana Thomas
- Division of Neuroscience, Oregon National Primate Research Center, Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Beaverton, OR, USA
| | | | - Mark K Slifka
- Division of Neuroscience, Oregon National Primate Research Center, Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Beaverton, OR, USA
| | | |
Collapse
|
31
|
Barr IG, Donis RO, Katz JM, McCauley JW, Odagiri T, Trusheim H, Tsai TF, Wentworth DE. Cell culture-derived influenza vaccines in the severe 2017-2018 epidemic season: a step towards improved influenza vaccine effectiveness. NPJ Vaccines 2018; 3:44. [PMID: 30323955 PMCID: PMC6177469 DOI: 10.1038/s41541-018-0079-z] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 11/21/2022] Open
Abstract
The 2017–2018 seasonal influenza epidemics were severe in the US and Australia where the A(H3N2) subtype viruses predominated. Although circulating A(H3N2) viruses did not differ antigenically from that recommended by the WHO for vaccine production, overall interim vaccine effectiveness estimates were below historic averages (33%) for A(H3N2) viruses. The majority (US) or all (Australian) vaccine doses contained multiple amino-acid changes in the hemagglutinin protein, resulting from the necessary adaptation of the virus to embryonated hen’s eggs used for most vaccine manufacturing. Previous reports have suggested a potential negative impact of egg-driven substitutions on vaccine performance. With BARDA support, two vaccines licensed in the US are produced in cell culture: recombinant influenza vaccine (RIV, Flublok™) manufactured in insect cells and inactivated mammalian cell-grown vaccine (ccIIV, Flucelvax™). Quadrivalent ccIIV (ccIIV4) vaccine for the 2017–2018 influenza season was produced using an A(H3N2) seed virus propagated exclusively in cell culture and therefore lacking egg adaptative changes. Sufficient ccIIV doses were distributed (but not RIV doses) to enable preliminary estimates of its higher effectiveness relative to the traditional egg-based vaccines, with study details pending. The increased availability of comparative product-specific vaccine effectiveness estimates for cell-based and egg-based vaccines may provide critical clues to inform vaccine product improvements moving forward.
Collapse
Affiliation(s)
- Ian G Barr
- 1WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute For Infection And Immunity, 792 Elizabeth Street, Melbourne, 3000 Australia
| | - Ruben O Donis
- Biomedical Advanced Research and Development Authority, Influenza and Emerging Infectious Diseases Division, 300 Independence Avenue, SW, Washington, DC 20201 USA
| | - Jacqueline M Katz
- 3Influenza Division, Centers for Disease Control and Prevention (CDC), 1600 Clifton Road MS A-20, Atlanta, GA 30329-4027 USA
| | - John W McCauley
- 4WHO Collaborating Centre for Reference and Research on Influenza, Crick Worldwide Influenza Centre, The Francis Crick Institute, 1, Midland Road, London, NW1 1AT UK
| | - Takato Odagiri
- WHO Collaborating Centre for Reference and Research on Influenza, National Institute of Infectious Diseases, Influenza Virus Research Center, 4-7-1 Gakuen, Musashi-Murayama-shi, Tokyo 208-0011 Japan
| | - Heidi Trusheim
- IDT Biologika GmbH, Am Pharmapark, 06861 Dessau-Rosslau, Germany
| | - Theodore F Tsai
- 7Takeda Vaccines (USA), 75 Sidney St, Cambridge, MA 02139 USA
| | - David E Wentworth
- 8Influenza Division, Centers for Disease Control and Prevention (CDC), 1600 Clifton Road MS A-20, Atlanta, GA 30329-4027 USA
| |
Collapse
|
32
|
Valero Y, Mokrani D, Chaves-Pozo E, Arizcun M, Oumouna M, Meseguer J, Esteban MÁ, Cuesta A. Vaccination with UV-inactivated nodavirus partly protects European sea bass against infection, while inducing few changes in immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 86:171-179. [PMID: 29758230 DOI: 10.1016/j.dci.2018.05.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/10/2018] [Accepted: 05/10/2018] [Indexed: 05/19/2023]
Abstract
Developing viral vaccines through the ultraviolet (UV) inactivation of virus is promising technique since it is straightforward and economically affordable, while the resulting viruses are capable of eliciting an adequate antiviral immune response. Nodavirus (NNV) is a devastating virus that mainly affects European sea bass juveniles and larvae, causing serious economic losses in Mediterranean aquaculture. In this work, a potential vaccine consisting on UV-inactivated NNV (iNNV) was generated and administered to healthy juveniles of European sea bass to elucidate whether it triggers the immune response and improves their survival upon challenge. First, iNNV failed to replicate in cell cultures and its intraperitoneal administration to sea bass juveniles also failed to produce fish mortality and induction of the type I interferon (IFN) pathway, indicating that the NNV was efficiently inactivated. By contrast, iNNV administration induced significant serum non-specific antimicrobial activity as well as a specific antiviral activity and immunoglobulin M (IgM) titres against NNV. Interestingly, few changes were observed at transcriptional level in genes related to either innate or adaptive immunity, suggesting that iNNV could be modulating the immune response at protein or functional level. In addition, the iNNV vaccinated group showed improved survival, reaching a relative survival percentage of 57.9%. Moreover, challenged fish that had been vaccinated presented increased serum antibacterial, antiviral and IgM titres, as well as the higher transcription of mhc1a, ifn, isg15 and cd8a genes in brain, while in the head-kidney the transcription of mhc1a, mhc2b and cd8a was down-regulated and mx, isg15 and tcrb was up-regulated. Although the UV-inactivated vaccine against NNV showed promising results, more effort should be addressed to improving this prophylactic method by increasing our understanding of its action mechanisms, thus enabling the mortality rate of NNV to be further reduced.
Collapse
Affiliation(s)
- Yulema Valero
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO), Carretera de la Azohía s/n, Puerto de Mazarrón, 30860 Murcia, Spain; Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Djamal Mokrani
- Institut des Sciences Vétérinaires, Unniversité de Blida 1, Algeria
| | - Elena Chaves-Pozo
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO), Carretera de la Azohía s/n, Puerto de Mazarrón, 30860 Murcia, Spain
| | - Marta Arizcun
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO), Carretera de la Azohía s/n, Puerto de Mazarrón, 30860 Murcia, Spain
| | - Mustapha Oumouna
- Faculty of Natural Science and Life, University Dr. Yahia Fares, Medea, Algeria
| | - José Meseguer
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - M Ángeles Esteban
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - Alberto Cuesta
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain.
| |
Collapse
|
33
|
Xu C, Goß AV, Dorneburg C, Debatin KM, Wei J, Beltinger C. Proof-of-principle that a decoy virus protects oncolytic measles virus against neutralizing antibodies. Oncolytic Virother 2018; 7:37-41. [PMID: 29750140 PMCID: PMC5933358 DOI: 10.2147/ov.s150637] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background Attenuated oncolytic measles virus (OMV) is a promising antitumor agent in early-phase clinical trials. However, pre-existing immunity against measles might be a hurdle for OMV therapy. Methods OMV was inactivated with short-wavelength ultraviolet light (UV-C). Loss of replication and oncolytic activity of UV-inactivated OMV were confirmed by tissue culture infective dose 50 (TCID50) assay using Vero cells and by flow cytometry using Jurkat cells. An enzyme-linked immunosorbent assay was performed to verify that UV-inactivated OMV remained antigenic. Different doses of UV-inactivated OMV were pre-cultured in media supplemented with measles immune serum. The mixture was transferred to Jurkat cells and active OMV was added. Active OMV-induced death of Jurkat cells was monitored by flow cytometry. Results UV-inactivation abrogates OMV replication while maintaining its antigenicity. UV-inactivated OMV sequesters pre-existing anti-MV antibodies in Jurkat cell culture, thereby protecting active OMV from neutralization and preserving oncolytic activity. Conclusion We prove the principle that a non-replicating OMV can serve as a “decoy” for neutralizing anti-MV antibodies, thereby allowing antitumor activity of OMV.
Collapse
Affiliation(s)
- Chun Xu
- Department of Pediatrics and Adolescent Medicine, Section of Experimental Pediatric Oncology, University Medical Center Ulm, Ulm, Germany.,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, China
| | - Annika Verena Goß
- Department of Pediatrics and Adolescent Medicine, Section of Experimental Pediatric Oncology, University Medical Center Ulm, Ulm, Germany
| | - Carmen Dorneburg
- Department of Pediatrics and Adolescent Medicine, Section of Experimental Pediatric Oncology, University Medical Center Ulm, Ulm, Germany
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Section of Experimental Pediatric Oncology, University Medical Center Ulm, Ulm, Germany
| | - Jiwu Wei
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, China
| | - Christian Beltinger
- Department of Pediatrics and Adolescent Medicine, Section of Experimental Pediatric Oncology, University Medical Center Ulm, Ulm, Germany
| |
Collapse
|
34
|
David SC, Lau J, Singleton EV, Babb R, Davies J, Hirst TR, McColl SR, Paton JC, Alsharifi M. The effect of gamma-irradiation conditions on the immunogenicity of whole-inactivated Influenza A virus vaccine. Vaccine 2017; 35:1071-1079. [PMID: 28109709 DOI: 10.1016/j.vaccine.2016.12.044] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/25/2016] [Accepted: 12/16/2016] [Indexed: 11/27/2022]
Abstract
Gamma-irradiation, particularly an irradiation dose of 50kGy, has been utilised widely to sterilise highly pathogenic agents such as Ebola, Marburg Virus, and Avian Influenza H5N1. We have reported previously that intranasal vaccination with a gamma-irradiated Influenza A virus vaccine (γ-Flu) results in cross-protective immunity. Considering the possible inclusion of highly pathogenic Influenza strains in future clinical development of γ-Flu, an irradiation dose of 50kGy may be used to enhance vaccine safety beyond the internationally accepted Sterility Assurance Level (SAL). Thus, we investigated the effect of irradiation conditions, including high irradiation doses, on the immunogenicity of γ-Flu. Our data confirm that irradiation at low temperatures (using dry-ice) is associated with reduced damage to viral structure compared with irradiation at room temperature. In addition, a single intranasal vaccination with γ-Flu irradiated on dry-ice with either 25 or 50kGy induced seroconversion and provided complete protection against lethal Influenza A challenge. Considering that low temperature is expected to reduce the protein damage associated with exposure to high irradiation doses, we titrated the vaccine dose to verify the efficacy of 50kGy γ-Flu. Our data demonstrate that exposure to 50kGy on dry-ice is associated with limited effect on vaccine immunogenicity, apparent only when using very low vaccine doses. Overall, our data highlight the immunogenicity of influenza virus irradiated at 50kGy for induction of high titre antibody and cytotoxic T-cell responses. This suggests these conditions are suitable for development of γ-Flu vaccines based on highly pathogenic Influenza A viruses.
Collapse
Affiliation(s)
- Shannon C David
- Research Centre for Infectious Diseases, and Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Josyane Lau
- Research Centre for Infectious Diseases, and Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Eve V Singleton
- Research Centre for Infectious Diseases, and Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Rachelle Babb
- Research Centre for Infectious Diseases, and Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Justin Davies
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia
| | - Timothy R Hirst
- Research Centre for Infectious Diseases, and Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia; Gamma Vaccines Pty Ltd, Mountbatten Park, Yarralumla, ACT 2600, Australia
| | - Shaun R McColl
- Research Centre for Infectious Diseases, and Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - James C Paton
- Research Centre for Infectious Diseases, and Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Mohammed Alsharifi
- Research Centre for Infectious Diseases, and Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia; Gamma Vaccines Pty Ltd, Mountbatten Park, Yarralumla, ACT 2600, Australia.
| |
Collapse
|
35
|
Enhanced protective responses to a serotype-independent pneumococcal vaccine when combined with an inactivated influenza vaccine. Clin Sci (Lond) 2016; 131:169-180. [PMID: 27885052 DOI: 10.1042/cs20160475] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 11/10/2016] [Accepted: 11/23/2016] [Indexed: 12/21/2022]
Abstract
Streptococcus pneumoniae and influenza are the world's foremost bacterial and viral respiratory pathogens. We have previously described a γ-irradiated influenza A virus (γ-FLU) vaccine that provides cross-protective immunity against heterosubtypic infections. More recently, we reported a novel non-adjuvanted γ-irradiated S pneumoniae (γ-PN) vaccine that elicits serotype-independent protection. Considering the clinical synergism of both pathogens, combination of a serotype-independent pneumococcal vaccine with a broad-spectrum influenza vaccine to protect against both infections would have a considerable clinical impact. In the present study, we co-immunized C57BL/6 mice intranasally (IN) with a mixture of γ-PN (whole inactivated cells) and γ-FLU (whole inactivated virions) and examined protective efficacy. Co-immunization enhanced γ-PN vaccine efficacy against virulent pneumococcal challenge, which was dependent on CD4+ T-cell responses. In contrast, vaccination with γ-PN alone, co-immunization enhanced pneumococcal-specific effector T-helper 17 cell (Th17) and Th1 memory cell, promoted development of CD4+ tissue-resident memory (TRM) cells and enhanced Pneumococcus-specific antibody responses. Furthermore, co-immunization elicited significant protection against lethal influenza challenge, as well as against co-infection with both influenza and S pneumoniae. This is the first report showing the synergistic effect of combining whole cell and whole virion vaccines to both S pneumoniae and influenza as a single vaccine to protect against individual and co-infection, without compromising pathogen-specific immunity.
Collapse
|
36
|
Intranasal vaccination with γ-irradiated Streptococcus pneumoniae whole-cell vaccine provides serotype-independent protection mediated by B-cells and innate IL-17 responses. Clin Sci (Lond) 2016; 130:697-710. [PMID: 26831937 DOI: 10.1042/cs20150699] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/01/2016] [Indexed: 12/27/2022]
Abstract
Generating a pneumococcal vaccine that is serotype independent and cost effective remains a global challenge. γ-Irradiation has been used widely to sterilize biological products. It can also be utilized as an inactivation technique to generate whole-cell bacterial and viral vaccines with minimal impact on pathogen structure and antigenic determinants. In the present study, we utilized γ-irradiation to inactivate an un-encapsulated Streptococcus pneumoniae strain Rx1 with an unmarked deletion of the autolysin gene lytA and with the pneumolysin gene ply replaced with an allele encoding a non-toxic pneumolysoid (PdT) (designated γ-PN vaccine). Intranasal vaccination of C57BL/6 mice with γ-PN was shown to elicit serotype-independent protection in lethal challenge models of pneumococcal pneumonia and sepsis. Vaccine efficacy was shown to be reliant on B-cells and interleukin (IL)-17A responses. Interestingly, immunization promoted IL-17 production by innate cells not T helper 17 (Th17) cells. These data are the first to report the development of a non-adjuvanted intranasal γ-irradiated pneumococcal vaccine that generates effective serotype-independent protection, which is mediated by both humoral and innate IL-17 responses.
Collapse
|
37
|
Cha SB, Kim WS, Kim JS, Kim H, Kwon KW, Han SJ, Eum SY, Cho SN, Shin SJ. Repeated Aerosolized-Boosting with Gamma-Irradiated Mycobacterium bovis BCG Confers Improved Pulmonary Protection against the Hypervirulent Mycobacterium tuberculosis Strain HN878 in Mice. PLoS One 2015; 10:e0141577. [PMID: 26509812 PMCID: PMC4624807 DOI: 10.1371/journal.pone.0141577] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 10/09/2015] [Indexed: 12/19/2022] Open
Abstract
Mycobacterium bovis bacillus Calmette-Guerin (BCG), the only licensed vaccine, shows limited protection efficacy against pulmonary tuberculosis (TB), particularly hypervirulent Mycobacterium tuberculosis (Mtb) strains, suggesting that a logistical and practical vaccination strategy is urgently required. Boosting the BCG-induced immunity may offer a potentially advantageous strategy for advancing TB vaccine development, instead of replacing BCG completely. Despite the improved protection of the airway immunization by using live BCG, the use of live BCG as an airway boosting agent may evoke safety concerns. Here, we analyzed the protective efficacy of γ-irradiated BCG as a BCG-prime boosting agent for airway immunization against a hypervirulent clinical strain challenge with Mycobacterium tuberculosis HN878 in a mouse TB model. After the aerosol challenge with the HN878 strain, the mice vaccinated with BCG via the parenteral route exhibited only mild and transient protection, whereas BCG vaccination followed by multiple aerosolized boosting with γ-irradiated BCG efficiently maintained long-lasting control of Mtb in terms of bacterial reduction and pathological findings. Further immunological investigation revealed that this approach resulted in a significant increase in the cellular responses in terms of a robust expansion of antigen (PPD and Ag85A)-specific CD4+ T cells concomitantly producing IFN-γ, TNF-α, and IL-2, as well as a high level of IFN-γ-producing recall response via both the local and systemic immune systems upon further boosting. Collectively, aerosolized boosting of γ-irradiated BCG is able to elicit strong Th1-biased immune responses and confer enhanced protection against a hypervirulent Mycobacterium tuberculosis HN878 infection in a boosting number-dependent manner.
Collapse
Affiliation(s)
- Seung Bin Cha
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Woo Sik Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong-Seok Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Hongmin Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Kee Woong Kwon
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung Jung Han
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Seok-Yong Eum
- Division of Immunopathology and Cellular Immunology, International Tuberculosis Research Center, Changwon, South Korea
| | - Sang-Nae Cho
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
- * E-mail:
| |
Collapse
|
38
|
Formalin Inactivation of Japanese Encephalitis Virus Vaccine Alters the Antigenicity and Immunogenicity of a Neutralization Epitope in Envelope Protein Domain III. PLoS Negl Trop Dis 2015; 9:e0004167. [PMID: 26495991 PMCID: PMC4619746 DOI: 10.1371/journal.pntd.0004167] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 09/23/2015] [Indexed: 11/19/2022] Open
Abstract
Formalin-inactivated Japanese encephalitis virus (JEV) vaccines are widely available, but the effects of formalin inactivation on the antigenic structure of JEV and the profile of antibodies elicited after vaccination are not well understood. We used a panel of monoclonal antibodies (MAbs) to map the antigenic structure of live JEV virus, untreated control virus (UCV), formalin-inactivated commercial vaccine (FICV), and formalin-inactivated virus (FIV). The binding activity of T16 MAb against Nakayama-derived FICV and several strains of FIV was significantly lower compared to live virus and UCV. T16 MAb, a weakly neutralizing JEV serocomplex antibody, was found to inhibit JEV infection at the post-attachment step. The T16 epitope was mapped to amino acids 329, 331, and 389 within domain III (EDIII) of the envelope (E) glycoprotein. When we explored the effect of formalin inactivation on the immunogenicity of JEV, we found that Nakayama-derived FICV, FIV, and UCV all exhibited similar immunogenicity in a mouse model, inducing anti-JEV and anti-EDII 101/106/107 epitope-specific antibodies. However, the EDIII 329/331/389 epitope-specific IgG antibody and neutralizing antibody titers were significantly lower for FICV-immunized and FIV-immunized mouse serum than for UCV-immunized. Formalin inactivation seems to alter the antigenic structure of the E protein, which may reduce the potency of commercially available JEV vaccines. Virus inactivation by H2O2, but not by UV or by short-duration and higher temperature formalin treatment, is able to maintain the antigenic structure of the JEV E protein. Thus, an alternative inactivation method, such as H2O2, which is able to maintain the integrity of the E protein may be essential to improving the potency of inactivated JEV vaccines. We demonstrated that formalin inactivation of Japanese encephalitis virus (JEV) alters the antigenic structure of the JEV envelope glycoprotein (E), in particular an epitope in domain III, and that this reduces the ability of the inactivated vaccine to elicit protective neutralizing antibodies. Ours and others’ previous studies have highlighted the importance of improving the immunogenicity of genotype III (GIII)-derived JEV vaccine in order to provide cross-protection against genotype I (GI) viruses, which are emerging and replacing GIII viruses in many JEV-endemic regions. Encouraging the wide use of live-attenuated or chimeric vaccines, such as SA14-14-2 or yellow-fever 17D/JEV vaccines, respectively, developing GI virus-derived inactivated or premembrane/E–containing, noninfectious virus-like particle (VLP) vaccines are two other possible ways to address this potential problem. In this exploratory study, we highlight an alternative inactivation method, such as H2O2 treatment, which may improve the antigenic stability and immunogenicity of JEV.
Collapse
|
39
|
Pawar SD, Murtadak VB, Kale SD, Shinde PV, Parkhi SS. Evaluation of different inactivation methods for high and low pathogenic avian influenza viruses in egg-fluids for antigen preparation. J Virol Methods 2015; 222:28-33. [PMID: 25997377 DOI: 10.1016/j.jviromet.2015.05.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 04/30/2015] [Accepted: 05/08/2015] [Indexed: 11/24/2022]
Abstract
In view of the emerging avian influenza (AI) viruses, it is important to study the susceptibility of AI viruses to inactivating agents for preparation of antigens and inactivated vaccines. The available information on susceptibility of both the high and low pathogenic AI viruses to different inactivating agents is inadequate and ambiguous. It has been shown that different subtypes of influenza viruses require different physical and chemical conditions for inactivation of infectivity. The present study was undertaken to evaluate the use of beta-propiolactone (BPL), formalin and ether for inactivation and its impact on antigenicity of AI viruses. A total of nine high and low pathogenic AI viruses belonging to four influenza A subtypes were included in the study. The H5N1 viruses were from the clades 2.2, 2.3.2.1 and 2.3.4. The H9N2 virus included in the study was of the G1 genotype, while the H11N1 and H4N6 viruses were from the Eurasian lineage. The viruses were treated with BPL, formalin and with ether. The confirmation of virus inactivation was performed by two serial passages of inactivated viruses in embryonated chicken eggs. The infectivity of all tested AI viruses was eliminated using 0.1% BPL and 0.1% formalin. Ether eliminated infectivity of all tested low pathogenic AI viruses; however, ether with 0.2% or 0.5% Tween-20 was required for inactivation of the highly pathogenic AI H5N1 viruses. Treatment with BPL, ether and formalin retained virus hemagglutination (HA) titers. Interestingly ether treatment resulted in significant rise in HA titers (P<0.05) of all tested AI viruses. This data demonstrated the utility of BPL, formalin and ether for the inactivation of infectivity of AI viruses used in the study for the preparation of inactivated virus antigens for research and diagnosis of AI.
Collapse
Affiliation(s)
- Shailesh D Pawar
- National Institute of Virology-Microbial Containment Complex, 130/1, Sus Road, Pashan, Pune 411021, India.
| | - Vinay B Murtadak
- National Institute of Virology-Microbial Containment Complex, 130/1, Sus Road, Pashan, Pune 411021, India
| | - Sandeep D Kale
- National Institute of Virology-Microbial Containment Complex, 130/1, Sus Road, Pashan, Pune 411021, India
| | - Prashant V Shinde
- National Institute of Virology-Microbial Containment Complex, 130/1, Sus Road, Pashan, Pune 411021, India
| | - Saurabh S Parkhi
- National Institute of Virology-Microbial Containment Complex, 130/1, Sus Road, Pashan, Pune 411021, India
| |
Collapse
|
40
|
Atalla H, Lysnyansky I, Raviv Y, Rottem S. Mycoplasma gallisepticum inactivated by targeting the hydrophobic domain of the membrane preserves surface lipoproteins and induces a strong immune response. PLoS One 2015; 10:e0120462. [PMID: 25781939 PMCID: PMC4363144 DOI: 10.1371/journal.pone.0120462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/22/2015] [Indexed: 11/18/2022] Open
Abstract
An innovative approach for inactivation of Mycoplasma gallisepticum using the hydrophobic photoinduced alkylating probe 1, 5-iodonaphthylazide (INA) is described. Treatment of washed M. gallisepticum mid-exponential culture (0.2 mg cell protein /mL) with INA followed by irradiation with far-ultraviolet light (310–380 nm) completely abolished viability. Transmission electron microscopy showed that the majority of the inactivated M. gallisepticum were comparable in size to intact cells, but that part of the INA-treated M. gallisepticum preparation also contained low density cells and membrane vesicles. Confocal microscopy revealed that untreated M. gallisepticum cells were internalized by chicken red blood cells (c-RBCs), whereas the INA-inactivated cells remained attached to the outer surface of the c-RBCs. INA treatment of M. gallisepticum resulted in a complete inactivation of F0F1 –ATPase and of the L-arginine uptake system, but the cytoplasmatic soluble NADH2 dehydrogenase was only partially affected. Western blot analysis of the lipoprotein fraction showed that the INA-treated M. gallisepticum retained their lipoproteins. Following subcutaneous injection of M. gallisepticum INA-bacterin, 100% and 68.8% of chickens were positive by the rapid serum agglutination test and enzyme-linked immunosorbent assay respectively, 2 weeks post-injection. These data suggest that the photoinducible alkylating agent INA inactivates M. gallisepticum but preserves its surface lipoproteins and thus has the potential to be used as a general approach for the inactivation of mycoplasmas for vaccine development.
Collapse
Affiliation(s)
- Hazem Atalla
- Department of Microbiology and Molecular Genetics, The Hebrew University—Hadassah Medical School, Jerusalem, Israel
| | - Inna Lysnyansky
- Division of Avian and Aquatic Diseases, Kimron Veterinary Institute, Beit Dagan, Israel
- * E-mail:
| | - Yossef Raviv
- SAIC-Frederick Inc, National Cancer Institute, Frederick, Maryland, United States of America
| | - Shlomo Rottem
- Department of Microbiology and Molecular Genetics, The Hebrew University—Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
41
|
Analysis of genome integrity of influenza virus in formaldehyde-inactivated split vaccines. Genes Genomics 2014. [DOI: 10.1007/s13258-014-0200-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
42
|
Tarahomjoo S. Recent Approaches in Vaccine Development against Streptococcus pneumoniae. J Mol Microbiol Biotechnol 2014; 24:215-27. [DOI: 10.1159/000365052] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
43
|
Second generation inactivated eastern equine encephalitis virus vaccine candidates protect mice against a lethal aerosol challenge. PLoS One 2014; 9:e104708. [PMID: 25116127 PMCID: PMC4130539 DOI: 10.1371/journal.pone.0104708] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 07/16/2014] [Indexed: 11/23/2022] Open
Abstract
Currently, there are no FDA-licensed vaccines or therapeutics for eastern equine encephalitis virus (EEEV) for human use. We recently developed several methods to inactivate CVEV1219, a chimeric live-attenuated eastern equine encephalitis virus (EEEV). Dosage and schedule studies were conducted to evaluate the immunogenicity and protective efficacy of three potential second-generation inactivated EEEV (iEEEV) vaccine candidates in mice: formalin-inactivated CVEV1219 (fCVEV1219), INA-inactivated CVEV1219 (iCVEV1219) and gamma-irradiated CVEV1219 (gCVEV1219). Both fCVEV1219 and gCVEV1219 provided partial to complete protection against an aerosol challenge when administered by different routes and schedules at various doses, while iCVEV1219 was unable to provide substantial protection against an aerosol challenge by any route, dose, or schedule tested. When evaluating antibody responses, neutralizing antibody, not virus specific IgG or IgA, was the best correlate of protection. The results of these studies suggest that both fCVEV1219 and gCVEV1219 should be evaluated further and considered for advancement as potential second-generation inactivated vaccine candidates for EEEV.
Collapse
|
44
|
Abstract
Inactivated polio vaccines, which have been used in many countries for more than 50 years, are produced by treating live poliovirus (PV) with formaldehyde. However, the molecular mechanisms underlying virus inactivation are not well understood. Infection by PV is initiated by virus binding to specific cell receptors, which results in viral particles undergoing sequential conformational changes that generate altered structural forms (135S and 80S particles) and leads to virus cell entry. We have analyzed the ability of inactivated PV to bind to the human poliovirus receptor (hPVR) using various techniques such as ultracentrifugation, fluorescence-activated cell sorting flow cytometry and real-time reverse transcription-PCR (RT-PCR). The results showed that although retaining the ability to bind to hPVR, inactivated PV bound less efficiently in comparison to live PV. We also found that inactivated PV showed resistance to structural conversion in vitro, as judged by measuring changes in antigenicity, the ability to bind to hPVR, and viral RNA release at high temperature. Furthermore, viral RNA from inactivated PV was shown to be modified, since cDNA yields obtained by RT-PCR amplification were severely reduced and no infectious virus was recovered after RNA transfection into susceptible cells. Importance: This study represents a novel insight into the molecular mechanisms responsible for poliovirus inactivation. We show that inactivation with formaldehyde has an effect on early steps of viral replication as it reduces the ability of PV to bind to hPVR, decreases the sensitivity of PV to convert to 135S particles, and abolishes the infectivity of its viral RNA. These changes are likely responsible for the loss of infectivity shown by PV following inactivation. Techniques used in this study represent new approaches for the characterization of inactivated PV products and could be useful in developing improved methods for the production and quality control testing of inactivated polio vaccines. Measuring the antigenicity, capsid stability, and RNA integrity of inactivated PV samples could help establishing the optimal balance between the loss of infectivity and the preservation of virus antigenicity during inactivation.
Collapse
|
45
|
She YM, Cheng K, Farnsworth A, Li X, Cyr TD. Surface modifications of influenza proteins upon virus inactivation by β-propiolactone. Proteomics 2014; 13:3537-47. [PMID: 24123778 PMCID: PMC4265195 DOI: 10.1002/pmic.201300096] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 09/17/2013] [Accepted: 09/23/2013] [Indexed: 12/29/2022]
Abstract
Inactivation of intact influenza viruses using formaldehyde or β-propiolactone (BPL) is essential for vaccine production and safety. The extent of chemical modifications of such reagents on viral proteins needs to be extensively investigated to better control the reactions and quality of vaccines. We have evaluated the effect of BPL inactivation on two candidate re-assortant vaccines (NIBRG-121xp and NYMC-X181A) derived from A/California/07/2009 pandemic influenza viruses using high-resolution FT-ICR MS-based proteomic approaches. We report here an ultra performance LC MS/MS method for determining full-length protein sequences of hemagglutinin and neuraminidase through protein delipidation, various enzymatic digestions, and subsequent mass spectrometric analyses of the proteolytic peptides. We also demonstrate the ability to reliably identify hundreds of unique sites modified by propiolactone on the surface of glycoprotein antigens. The location of these modifications correlated with changes to protein folding, conformation, and stability, but demonstrated no effect on protein disulfide linkages. In some cases, these modifications resulted in suppression of protein function, an effect that correlated with the degree of change of the modified amino acids' side chain length and polarity.
Collapse
Affiliation(s)
- Yi-Min She
- Centre for Vaccine Evaluation, Biologics and Genetic Therapies Directorate, Health Canada, Ottawa, ON, Canada
| | | | | | | | | |
Collapse
|
46
|
Babb R, Chan J, Khairat JE, Furuya Y, Alsharifi M. Gamma-Irradiated Influenza A Virus Provides Adjuvant Activity to a Co-Administered Poorly Immunogenic SFV Vaccine in Mice. Front Immunol 2014; 5:267. [PMID: 24959166 PMCID: PMC4050334 DOI: 10.3389/fimmu.2014.00267] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 05/24/2014] [Indexed: 11/16/2022] Open
Abstract
Many currently available inactivated vaccines require “adjuvants” to maximize the protective immune responses generated against the antigens of interest. Recent studies in mice with gamma-irradiated influenza A virus (γ-FLU) have shown its superior efficacy compared to other forms of inactivated FLU vaccines and its ability to induce both potent interferon type-I (IFN-I) responses and the IFN-I-associated partial lymphocyte activation. Commonly, IFN-I responses induced by adjuvants, combined in vaccine preparations, have been shown to effectively enhance the immunogenicity of the antigens of interest. Therefore, we investigated the potential adjuvant activity of γ-FLU and the possible effect on antibody responses against co-administrated antigens, using gamma-irradiated Semliki Forest virus (γ-SFV) as the experimental vaccine in mice. Our data show that co-vaccination with γ-FLU and γ-SFV resulted in enhanced SFV-specific antibody responses in terms of increased titers by sixfold and greater neutralization efficacy, when compared to vaccination with γ-SFV alone. This study provides promising evidence related to the possible use of γ-FLU as an adjuvant to poorly immunogenic vaccines without compromising the vaccine efficacy of γ-FLU.
Collapse
Affiliation(s)
- Rachelle Babb
- Vaccine Research Laboratory, School of Molecular and Biomedical Science, Centre for Molecular Pathology, The University of Adelaide , Adelaide, SA , Australia
| | - Jennifer Chan
- Vaccine Research Laboratory, School of Molecular and Biomedical Science, Centre for Molecular Pathology, The University of Adelaide , Adelaide, SA , Australia
| | - Jasmine E Khairat
- Vaccine Research Laboratory, School of Molecular and Biomedical Science, Centre for Molecular Pathology, The University of Adelaide , Adelaide, SA , Australia
| | - Yoichi Furuya
- Department of Immunology, The John Curtin School of Medical Research, Australian National University , Canberra, ACT , Australia
| | - Mohammed Alsharifi
- Vaccine Research Laboratory, School of Molecular and Biomedical Science, Centre for Molecular Pathology, The University of Adelaide , Adelaide, SA , Australia
| |
Collapse
|
47
|
Abstract
Optimal protocol for freeze-drying that allows safe and effective preservation of HCoV-NL63 infectious material was developed. Lyophilized virus preparations can be stored either at ambient temperature or at +4 °C. In the latter case samples may be stored for at least two months. HCoV-NL63 virions are exquisitely stable in liquid media and can be stored also without preservatives at ambient temperature for up to 14 days.
The human coronavirus NL63 was identified in 2004 and subsequent studies showed its worldwide distribution. Infection with this pathogen is associated with upper and lower respiratory tract diseases of mild to moderate severity. Furthermore, HCoV-NL63 is the main cause of croup in children. Within this study an optimal protocol for freeze-drying that allows safe and effective preservation of HCoV-NL63 infectious material was developed. Lyophilized virus preparations can be stored either at ambient temperature or at +4 °C. In the latter case samples may be stored for at least two months. Surprisingly, conducted analysis showed that HCoV-NL63 virions are exquisitely stable in liquid media and can be stored also without preservatives at ambient temperature for up to 14 days.
Collapse
|
48
|
Serotype-independent protection against pneumococcal infections elicited by intranasal immunization with ethanol-killed pneumococcal strain, SPY1. J Microbiol 2014; 52:315-23. [PMID: 24682994 DOI: 10.1007/s12275-014-3583-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/28/2014] [Accepted: 02/10/2014] [Indexed: 02/08/2023]
Abstract
The 23-valent polysaccharide vaccine and the 7-valent pneumococcal conjugate vaccine are licensed vaccines that protect against pneumococcal infections worldwide. However, the incidence of pneumococcal diseases remains high in low-income countries. Whole-cell vaccines with high safety and strong immunogenicity may be a favorable choice. We previously obtained a capsule-deficient Streptococcus pneumoniae mutant named SPY1 derived from strain D39. As an attenuated live pneumococcal vaccine, intranasal immunization with SPY1 elicits broad serotype-independent protection against pneumococcal infection. In this study, for safety consideration, we inactivated SPY1 with 70% ethanol and intranasally immunized BALB/c mice with killed SPY1 plus cholera toxin adjuvant for four times. Results showed that intranasal immunization with inactivated SPY1 induced strong humoral and cellular immune responses. Intranasal immunization with inactivated SPY1 plus cholera toxin adjuvant elicited effective serotype-independent protection against the colonization of pneumococcal strains 19F and 4 as well as lethal infection of pneumococcal serotypes 2, 3, 14, and 6B. The protection rates provided by inactivated SPY1 against lethal pneumococcal infection were comparable to those of currently used polysaccharide vaccines. In addition, vaccine-specific B-cell and T-cell immune responses mediated the protection elicited by SPY1. In conclusion, the 70% ethanol-inactivated pneumococcal whole-cell vaccine SPY1 is a potentially safe and less complex vaccine strategy that offers broad protection against S. pneumoniae.
Collapse
|
49
|
An MDCK cell culture-derived formalin-inactivated influenza virus whole-virion vaccine from an influenza virus library confers cross-protective immunity by intranasal administration in mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:998-1007. [PMID: 23637045 DOI: 10.1128/cvi.00024-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It is currently impossible to predict the next pandemic influenza virus strain. We have thus established a library of influenza viruses of all hemagglutinin and neuraminidase subtypes and their genes. In this article, we examine the applicability of a rapid production model for the preparation of vaccines against emerging pandemic influenza viruses. This procedure utilizes the influenza virus library, cell culture-based vaccine production, and intranasal administration to induce a cross-protective immune response. First, an influenza virus reassortant from the library, A/duck/Hokkaido/Vac-3/2007 (H5N1), was passaged 22 times (P22) in Madin-Darby canine kidney (MDCK) cells. The P22 virus had a titer of >2 ×10(8) PFU/ml, which was 40 times that of the original strain, with 4 point mutations, which altered amino acids in the deduced protein sequences encoded by the PB2 and PA genes. We then produced a formalin-inactivated whole-virion vaccine from the MDCK cell-cultured A/duck/Hokkaido/Vac-3/2007 (H5N1) P22 virus. Intranasal immunization of mice with this vaccine protected them against challenges with lethal influenza viruses of homologous and heterologous subtypes. We further demonstrated that intranasal immunization with the vaccine induced cross-reactive neutralizing antibody responses against the homotypic H5N1 influenza virus and its antigenic variants and cross-reactive cell-mediated immune responses to the homologous virus, its variants within a subtype, and even an influenza virus of a different subtype. These results indicate that a rapid model for emergency vaccine production may be effective for producing the next generation of pandemic influenza virus vaccines.
Collapse
|
50
|
Cargnelutti DE, Sánchez MV, Mattion NM, Scodeller EA. Development of a universal CTL-based vaccine for influenza. Bioengineered 2013; 4:374-8. [PMID: 23337287 DOI: 10.4161/bioe.23573] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In pursuit of better influenza vaccines, many strategies are being studied worldwide. An attractive alternative is the generation of a broadly cross-reactive vaccine based on the induction of cytotoxic T-lymphocytes (CTL) directed against conserved internal antigens of influenza A virus. The feasibility of this approach using recombinant viral vectors has recently been demonstrated in mice and humans by several research groups. However, similar results might also be achieved through immunization with viral proteins expressed in a prokaryotic system formulated with the appropriate adjuvants and delivery systems. This approach would be much simpler and less expensive. Recent results from several laboratories seem to confirm this is as a valid option to be considered.
Collapse
Affiliation(s)
- Diego Esteban Cargnelutti
- Institute of Experimental Medicine and Biology of Cuyo (IMBECU-CONICET); Mendoza, Argentina; Animal Virology Center; Institute of Science and Technology Dr César Milstein; CONICET; Buenos Aires, Argentina
| | - María Victoria Sánchez
- Institute of Experimental Medicine and Biology of Cuyo (IMBECU-CONICET); Mendoza, Argentina
| | - Nora Marta Mattion
- Animal Virology Center; Institute of Science and Technology Dr César Milstein; CONICET; Buenos Aires, Argentina
| | | |
Collapse
|