1
|
Yang Q, Guo H, Li H, Li Z, Ni F, Wen Z, Liu K, Kong H, Wei W. The CXCL8/MAPK/hnRNP-K axis enables susceptibility to infection by EV-D68, rhinovirus, and influenza virus in vitro. Nat Commun 2025; 16:1715. [PMID: 39962077 PMCID: PMC11832783 DOI: 10.1038/s41467-025-57094-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 02/11/2025] [Indexed: 02/20/2025] Open
Abstract
Respiratory viruses pose an ongoing threat to human health with excessive cytokine secretion contributing to severe illness and mortality. However, the relationship between cytokine secretion and viral infection remains poorly understood. Here we elucidate the role of CXCL8 as an early response gene to EV-D68 infection. Silencing CXCL8 or its receptors, CXCR1/2, impedes EV-D68 replication in vitro. Upon recognition of CXCL8 by CXCR1/2, the MAPK pathway is activated, facilitating the translocation of nuclear hnRNP-K to the cytoplasm. This translocation increases the recognition of viral RNA by hnRNP-K in the cytoplasm, promoting the function of the 5' untranslated region in the viral genome. Moreover, our investigations also reveal the importance of the CXCL8 signaling pathway in the replication of both influenza virus and rhinovirus. In summary, our findings hint that these viruses exploit the CXCL8/MAPK/hnRNP-K axis to enhance viral replication in respiratory cells in vitro.
Collapse
Affiliation(s)
- Qingran Yang
- Department of Respiration, Children's Medical Center, First Hospital, Jilin University, Changchun, Jilin, China
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Haoran Guo
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Huili Li
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Zhaoxue Li
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Fushun Ni
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Zhongmei Wen
- Center for Pathogen Biology and Infectious Diseases, Department of Respiratory Medicine, First Hospital, Jilin University, Changchun, Jilin, China
| | - Kai Liu
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Huihui Kong
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wei Wei
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China.
- Cancer Center, Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin, China.
| |
Collapse
|
2
|
Song Y, Zhang Y, Xiao S, Li P, Lu L, Wang H. Akt inhibitors prevent CyHV-2 infection in vitro. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109940. [PMID: 39389175 DOI: 10.1016/j.fsi.2024.109940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
Cyprinid herpesvirus 2 (CyHV-2) is a double-stranded DNA virus that infects goldfish (Carassius auratus) and crucian carp (C. carassius), resulting in substantial mortality rates and significant epidemiological implications. To gain deeper insights into CyHV-2-host interactions and identify potential therapeutic targets, quantitative proteomics analysis was conducted on CyHV-2-infected Ryukin goldfish fin (RyuF-2) cells. Our findings revealed significant alterations in the expression of proteins associated with the PI3K/Akt signaling pathway, which were up-regulated upon viral infection. Building on these observations, we employed LY294002, a specific inhibitor of PI3K, to investigate its impact on viral replication by inhibiting the PI3K/Akt pathway in GiCF cell line derived from the caudal fin of Carassius auratus gibelio (Bloch). Our results demonstrated the inhibition of both CyHV-2 replication and Akt phosphorylation within this pathway. Quercetin, a plant-derived analogue of LY294002, was further investigated for its anti-CyHV-2 effects in vitro as well as its underlying mechanism. The results suggested that quercetin exhibits antiviral properties against CyHV-2 and may exert its effects through mechanisms similar to those observed with LY294002. Given that aquaculture water serves as a vector for aquaculture viral diseases and the release of chemical compounds can lead to pollution of the aquatic environment, our study shifted focus to crude extracts obtained from plants. We confirmed crude quercetin extract derived from Cuminum anisum has antiviral activity against CyHV-2 in vitro. Therefore, based on our identification of the involvement of PI3K/Akt signaling pathway in CyHV-2 replication, along with verification of its antiviral mechanism using LY294002, we propose natural dietary quercetin as a promising candidate for development into a novel anti-CyHV-2 drug.
Collapse
Affiliation(s)
- Yu Song
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, 201306, China
| | - Ye Zhang
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, 201306, China
| | - Simin Xiao
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, 201306, China
| | - Pengfei Li
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, 530007, China
| | - Liqun Lu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Hao Wang
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
3
|
Elste J, Saini A, Mejia-Alvarez R, Mejía A, Millán-Pacheco C, Swanson-Mungerson M, Tiwari V. Significance of Artificial Intelligence in the Study of Virus-Host Cell Interactions. Biomolecules 2024; 14:911. [PMID: 39199298 PMCID: PMC11352483 DOI: 10.3390/biom14080911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/11/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
A highly critical event in a virus's life cycle is successfully entering a given host. This process begins when a viral glycoprotein interacts with a target cell receptor, which provides the molecular basis for target virus-host cell interactions for novel drug discovery. Over the years, extensive research has been carried out in the field of virus-host cell interaction, generating a massive number of genetic and molecular data sources. These datasets are an asset for predicting virus-host interactions at the molecular level using machine learning (ML), a subset of artificial intelligence (AI). In this direction, ML tools are now being applied to recognize patterns in these massive datasets to predict critical interactions between virus and host cells at the protein-protein and protein-sugar levels, as well as to perform transcriptional and translational analysis. On the other end, deep learning (DL) algorithms-a subfield of ML-can extract high-level features from very large datasets to recognize the hidden patterns within genomic sequences and images to develop models for rapid drug discovery predictions that address pathogenic viruses displaying heightened affinity for receptor docking and enhanced cell entry. ML and DL are pivotal forces, driving innovation with their ability to perform analysis of enormous datasets in a highly efficient, cost-effective, accurate, and high-throughput manner. This review focuses on the complexity of virus-host cell interactions at the molecular level in light of the current advances of ML and AI in viral pathogenesis to improve new treatments and prevention strategies.
Collapse
Affiliation(s)
- James Elste
- Department of Microbiology & Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA; (J.E.); (M.S.-M.)
| | - Akash Saini
- Hinsdale Central High School, 5500 S Grant St, Hinsdale, IL 60521, USA;
| | - Rafael Mejia-Alvarez
- Department of Physiology, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA;
| | - Armando Mejía
- Departamento de Biotechnology, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de Mexico 09340, Mexico;
| | - Cesar Millán-Pacheco
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col Chamilpa, Cuernavaca 62209, Mexico;
| | - Michelle Swanson-Mungerson
- Department of Microbiology & Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA; (J.E.); (M.S.-M.)
| | - Vaibhav Tiwari
- Department of Microbiology & Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA; (J.E.); (M.S.-M.)
| |
Collapse
|
4
|
Sasivimolrattana T, Bhattarakosol P. Impact of actin polymerization and filopodia formation on herpes simplex virus entry in epithelial, neuronal, and T lymphocyte cells. Front Cell Infect Microbiol 2023; 13:1301859. [PMID: 38076455 PMCID: PMC10704452 DOI: 10.3389/fcimb.2023.1301859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) has been known as a common viral pathogen that can infect several parts of the body, leading to various clinical manifestations. According to this diverse manifestation, HSV-1 infection in many cell types was demonstrated. Besides the HSV-1 cell tropism, e.g., fibroblast, epithelial, mucosal cells, and neurons, HSV-1 infections can occur in human T lymphocyte cells, especially in activated T cells. In addition, several studies found that actin polymerization and filopodia formation support HSV-1 infection in diverse cell types. Hence, the goal of this review is to explore the mechanism of HSV-1 infection in various types of cells involving filopodia formation and highlight potential future directions for HSV-1 entry-related research. Moreover, this review covers several strategies for possible anti-HSV drugs focused on the entry step, offering insights into potential therapeutic interventions.
Collapse
Affiliation(s)
| | - Parvapan Bhattarakosol
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Division of Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
5
|
Niu Y, Fu X, Lin Q, Liang H, Luo X, Zuo S, Liu L, Li N. Epidermal growth factor receptor promotes infectious spleen and kidney necrosis virus invasion via PI3K-Akt signaling pathway. J Gen Virol 2023; 104. [PMID: 37561118 DOI: 10.1099/jgv.0.001882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023] Open
Abstract
Infectious spleen and kidney necrosis virus disease (ISKNVD) caused significant economic losses to the fishery industry. Epidermal growth factor receptor (EGFR), phosphatidylinositide 3-kinase (PI3K) played an important role in ISKNV invasion. However, the molecular regulatory mechanisms among EGFR, PI3K-Akt, and ISKNV invasion are not clear. In this study, ISKNV infection rapidly induced EGFR activation. While, EGFR activation promoted virus entry, but EGFR inhibitors and specific RNA (siRNA) decreased virus invasion. The PI3K-Akt as downstream signalling of EGFR was activated upon ISKNV infection. Consistent with the trends of EGFR, Akt activation increased ISKNV entry into cells, Akt inhibition by specific inhibitor or siRNA decreased ISKNV invasion. Akt silencing combination with EGFR activation showed that EGFR activation regulation ISKNV invasion is required for activation of the Akt signalling pathway. Those data demonstrated that ISKNV-induced EGFR activation positively regulated virus invasion by PI3K-Akt pathway and provided a better understanding of the mechanism of EGFR-PI3K-Akt involved in ISKNV invasion.
Collapse
Affiliation(s)
- Yinjie Niu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou 510380, PR China
| | - Xiaozhe Fu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou 510380, PR China
| | - Qiang Lin
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou 510380, PR China
| | - Hongru Liang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou 510380, PR China
| | - Xia Luo
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou 510380, PR China
| | - Shaozhi Zuo
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou 510380, PR China
| | - Lihui Liu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou 510380, PR China
| | - Ningqiu Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou 510380, PR China
| |
Collapse
|
6
|
Targeting Human Proteins for Antiviral Drug Discovery and Repurposing Efforts: A Focus on Protein Kinases. Viruses 2023; 15:v15020568. [PMID: 36851782 PMCID: PMC9966946 DOI: 10.3390/v15020568] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
Despite the great technological and medical advances in fighting viral diseases, new therapies for most of them are still lacking, and existing antivirals suffer from major limitations regarding drug resistance and a limited spectrum of activity. In fact, most approved antivirals are directly acting antiviral (DAA) drugs, which interfere with viral proteins and confer great selectivity towards their viral targets but suffer from resistance and limited spectrum. Nowadays, host-targeted antivirals (HTAs) are on the rise, in the drug discovery and development pipelines, in academia and in the pharmaceutical industry. These drugs target host proteins involved in the virus life cycle and are considered promising alternatives to DAAs due to their broader spectrum and lower potential for resistance. Herein, we discuss an important class of HTAs that modulate signal transduction pathways by targeting host kinases. Kinases are considered key enzymes that control virus-host interactions. We also provide a synopsis of the antiviral drug discovery and development pipeline detailing antiviral kinase targets, drug types, therapeutic classes for repurposed drugs, and top developing organizations. Furthermore, we detail the drug design and repurposing considerations, as well as the limitations and challenges, for kinase-targeted antivirals, including the choice of the binding sites, physicochemical properties, and drug combinations.
Collapse
|
7
|
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the pathogen responsible for the coronavirus disease 2019 (COVID-19) pandemic. Of particular interest for this topic are the signaling cascades that regulate cell survival and death, two opposite cell programs whose control is hijacked by viral infections. The AKT and the Unfolded Protein Response (UPR) pathways, which maintain cell homeostasis by regulating these two programs, have been shown to be deregulated during SARS-CoVs infection as well as in the development of cancer, one of the most important comorbidities in relation to COVID-19. Recent evidence revealed two way crosstalk mechanisms between the AKT and the UPR pathways, suggesting that they might constitute a unified homeostatic control system. Here, we review the role of the AKT and UPR pathways and their interaction in relation to SARS-CoV-2 infection as well as in tumor onset and progression. Feedback regulation between AKT and UPR pathways emerges as a master control mechanism of cell decision making in terms of survival or death and therefore represents a key potential target for developing treatments for both viral infection and cancer. In particular, drug repositioning, the investigation of existing drugs for new therapeutic purposes, could significantly reduce time and costs compared to de novo drug discovery.
Collapse
|
8
|
Zhao G, Gao Y, Zhang J, Zhang H, Xie C, Nan F, Feng S, Ha Z, Li C, Zhu X, Li Z, Zhang P, Zhang Y, Lu H, Jin N. Toll-like receptor 2 signaling pathway activation contributes to a highly efficient inflammatory response in Japanese encephalitis virus-infected mouse microglial cells by proteomics. Front Microbiol 2022; 13:989183. [PMID: 36171749 PMCID: PMC9511957 DOI: 10.3389/fmicb.2022.989183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/12/2022] [Indexed: 12/02/2022] Open
Abstract
Thousands of people die each year from Japanese encephalitis (JE) caused by the Japanese encephalitis virus (JEV), probably due to exacerbation of the inflammatory response that impairs the course of the disease. Microglia are mononuclear phagocytic cells located within the parenchyma of the central nervous system; these play a key role in the innate immune response against JEV infections. However, the involvement of toll-like receptor 2 (TLR2) in the inflammatory response during the early stages of JEV infection in BV2 cells remains. Here, we evaluated protein profiles and determined the role of TLR2 in the inflammatory response of JEV-infected BV2 cells. High-depth tandem mass tags labeling for quantitative proteomics was used to assess JEV infected-BV2 cells and compare immune response profiles at 6, 12, and 24 h post-infection (hpi). In total, 212 upregulated proteins were detected at 6 hpi, 754 at 12 h, and 191 at 24 h. According to GO and KEGG enrichment analysis, the upregulated proteins showed enrichment for proteins related to the immune response. Parallel reaction monitoring tests, western blotting, and qPCR results showed that the adaptor protein MyD88 was not activated. The expression levels of key proteins downstream of MyD88, such as IRAK1, IRAK4, and TRAF6 did not increase; however, the expression levels of PI3K-AKT did increase. By inhibiting key proteins (TLR2, PI3K, and AKT) we confirmed that JEV activated TLR2, thus resulting in a robust inflammatory response. Consequently, the TLR2-PI3K-AKT signaling axis was proven to play a critical in the early stages of the JEV infection-induced inflammatory response in microglia.
Collapse
Affiliation(s)
- Guanyu Zhao
- College of Veterinary Medicine, College of Animal Science, Jilin University, Changchun, China
| | - Yan Gao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jiaqi Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - He Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun, China
| | - Changzhan Xie
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Fulong Nan
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Sheng Feng
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zhuo Ha
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun, China
| | - Chenghui Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xiangyu Zhu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zhuoxin Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Ping Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Ying Zhang
- College of Veterinary Medicine, College of Animal Science, Jilin University, Changchun, China
- *Correspondence: Ying Zhang,
| | - Huijun Lu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun, China
- Huijun Lu,
| | - Ningyi Jin
- College of Veterinary Medicine, College of Animal Science, Jilin University, Changchun, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun, China
- Ningyi Jin,
| |
Collapse
|
9
|
Tang Q, Luan F, Yuan A, Sun J, Rao Z, Wang B, Liu Y, Zeng N. Sophoridine Suppresses Herpes Simplex Virus Type 1 Infection by Blocking the Activation of Cellular PI3K/Akt and p38 MAPK Pathways. Front Microbiol 2022; 13:872505. [PMID: 35756044 PMCID: PMC9229184 DOI: 10.3389/fmicb.2022.872505] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a ubiquitous and important human pathogen capable of causing significant clinical diseases ranging from skin damage to encephalitis, particularly in immunocompromised and neonatal hosts. Currently, widely used nucleoside analogs, including acyclovir and penciclovir, have some limitations in their use due to side effects and drug resistance. Herein, we report sophoridine's (SRI) dramatic inhibition of HSV-1 replication in vitro. SRI exhibited a remarkable inhibitory influence on HSV-1 virus-induced cytopathic effect and plaque formation, as well as on progeny viruses in Vero and HeLa cells, with selection indexes (SI) of 38.96 and 22.62, respectively. Moreover, SRI also considerably suppressed HSV-1 replication by hindering the expression of viral immediate-early (ICP0 and ICP22), early (ICP8 and TK), and late (gB and gD) genes and the expression of viral proteins ICP0, gB, and gD. We suggest that SRI can directly inactivate viral particles and block some stages in the life cycle of HSV-1 after adsorption. Further experiments showed that SRI downregulated the cellular PI3K/Akt signaling pathway and obstructed HSV-1 replication even more. Most importantly, SRI markedly repressed HSV-1-induced p38 MAPK pathway activation. Collectively, this natural bioactive alkaloid could be a promising therapeutic candidate against HSV-1 via the modulation of cellular PI3K/Akt and p38 MAPK pathways.
Collapse
Affiliation(s)
- Qiong Tang
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Luan
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - An Yuan
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiayi Sun
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhili Rao
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Baojun Wang
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yao Liu
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Nan Zeng
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Liu Y, Chen L, Liu W, Li D, Zeng J, Tang Q, Zhang Y, Luan F, Zeng N. Cepharanthine Suppresses Herpes Simplex Virus Type 1 Replication Through the Downregulation of the PI3K/Akt and p38 MAPK Signaling Pathways. Front Microbiol 2021; 12:795756. [PMID: 34956164 PMCID: PMC8696181 DOI: 10.3389/fmicb.2021.795756] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/08/2021] [Indexed: 12/23/2022] Open
Abstract
Cepharanthine (CEP) is a naturally occurring isoquinoline alkaloid extracted from Stephania cepharantha Hayata. Although its underlying molecular mechanism is not fully understood, this compound is reported as a promising antiviral drug. In the present study, we explore the anti-HSV-1 effects and the underlying molecular mechanisms of CEP in vitro. Our results show that CEP could significantly inhibit the formation of plaque and the expression of viral proteins and exhibit a general suppression of replication-associated genes. Whereas HSV-1 infection increases the expressions of phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), and p38 mitogen-activated protein kinase (p38 MAPK) in host cells, CEP was effective indirectly inhibiting phosphorylation levels of the targets in PI3K/Akt and p38 MAPK signaling pathways. Moreover, CEP markedly decreased G0/G1 phase and increased G2/M phase cells and decreased the expression of cyclin-dependent kinase1 (CDK1) and cyclinB1 in a dose-dependent manner. Additionally, CEP increased apoptosis in infected cells, reduced B cell lymphoma-2 (Bcl-2) protein levels, and increased the protein levels of Bcl-associated X protein (Bax), cleaved-caspase3, and nuclear IκB kinaseα (IκBα). Collectively, CEP could arrest the cell cycle in the G2/M phase and induce apoptosis in infected cells by inhibiting the PI3K/Akt and p38 MAPK signaling pathways, hence further reducing HSV-1 infection and subsequent reproduction.
Collapse
Affiliation(s)
- Yao Liu
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Li Chen
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Wenjun Liu
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Dan Li
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Jiuseng Zeng
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiong Tang
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuexin Zhang
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Fei Luan
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nan Zeng
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
11
|
Actin Polymerization Is Required for Filopodia Formation Supporting HSV-1 Entry into Activated T Cells. Curr Microbiol 2021; 79:23. [PMID: 34905091 DOI: 10.1007/s00284-021-02716-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022]
Abstract
Enhanced HSV-1 production is found in activated T-lymphocytes, but the mechanism is still unknown. In this paper, the HSV-1 entry step in CD3+CD4-CD8-Jurkat T lymphocytes was investigated. Observation under electron microscopy revealed the level of filopodia formation on the surface of activated Jurkat cells was significantly higher than that of non-activated Jurkat cells especially after adding HSV-1 for 15 min. A significant increase of actin protein was demonstrated in HSV-1 infected, activated Jurkat cells compared to HSV-1 infected, non-activated Jurkat cells. After the cells were treated with 2.5 and 5 µg/mL cytochalasin D, an inhibitor of actin polymerization that causes depolymerization of actin's filamentous form, the actin protein was decreased significantly, resulting in an absence of filopodia formation. In summary, this is the first study revealing that HSV-1 induced filopodia formation through actin polymerization in activated T cells similar to epithelial, mucosal and neuronal cells. This phenomenon supported the virus entry resulting to increased yield of HSV-1 production.
Collapse
|
12
|
Abstract
Viral infections are a major health problem; therefore, there is an urgent need for novel therapeutic strategies. Antivirals used to target proteins encoded by the viral genome usually enhance drug resistance generated by the virus. A potential solution may be drugs acting at host-based targets since viruses are dependent on numerous cellular proteins and phosphorylation events that are crucial during their life cycle. Repurposing existing kinase inhibitors as antiviral agents would help in the cost and effectiveness of the process, but this strategy usually does not provide much improvement, and specific medicinal chemistry programs are needed in the field. Anyway, extensive use of FDA-approved kinase inhibitors has been quite useful in deciphering the role of host kinases in viral infection. The present perspective aims to review the state of the art of kinase inhibitors that target viral infections in different development stages.
Collapse
Affiliation(s)
- Javier García-Cárceles
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Elena Caballero
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Carmen Gil
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ana Martínez
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
13
|
Inhibitory Effect of PIK-24 on Respiratory Syncytial Virus Entry by Blocking Phosphatidylinositol-3 Kinase Signaling. Antimicrob Agents Chemother 2020; 64:AAC.00608-20. [PMID: 32718963 DOI: 10.1128/aac.00608-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/15/2020] [Indexed: 12/21/2022] Open
Abstract
Phosphoinositide-3 kinase signaling modulates many cellular processes, including cell survival, proliferation, differentiation, and apoptosis. Currently, it is known that the establishment of respiratory syncytial virus infection requires phosphoinositide-3 kinase signaling. However, the regulatory pattern of phosphoinositide-3 kinase signaling or its corresponding molecular mechanism during respiratory syncytial virus entry remains unclear. Here, the involvement of phosphoinositide-3 kinase signaling in respiratory syncytial virus entry was studied. PIK-24, a novel compound designed with phosphoinositide-3 kinase as a target, had potent anti-respiratory syncytial virus activity both in vitro and in vivo PIK-24 significantly reduced viral entry into the host cell through blocking the late stage of the fusion process. In a mouse model, PIK-24 effectively reduced the viral load and alleviated inflammation in lung tissue. Subsequent studies on the antiviral mechanism of PIK-24 revealed that viral entry was accompanied by phosphoinositide-3 kinase signaling activation, downstream RhoA and cofilin upregulation, and actin cytoskeleton rearrangement. PIK-24 treatment significantly reversed all these effects. The disruption of actin cytoskeleton dynamics or the modulation of phosphoinositide-3 kinase activity by knockdown also affected viral entry efficacy. Altogether, it is reasonable to conclude that the antiviral activity of PIK-24 depends on the phosphoinositide-3 kinase signaling and that the use of phosphoinositide-3 kinase signaling to regulate actin cytoskeleton rearrangement plays a key role in respiratory syncytial virus entry.
Collapse
|
14
|
Li W, Xu C, Hao C, Zhang Y, Wang Z, Wang S, Wang W. Inhibition of herpes simplex virus by myricetin through targeting viral gD protein and cellular EGFR/PI3K/Akt pathway. Antiviral Res 2020; 177:104714. [PMID: 32165083 PMCID: PMC7111628 DOI: 10.1016/j.antiviral.2020.104714] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/23/2019] [Accepted: 01/20/2020] [Indexed: 12/21/2022]
Abstract
Myricetin, a common dietary flavonoid, was reported to possess many different biological activities such as anti-oxidant, anti-inflammatory, and antiviral effects. In this study, we explored the anti-HSV effects and mechanisms of myricetin both in vitro and in vivo. The results showed that myricetin possessed anti-HSV-1 and HSV-2 activities with very low toxicity, superior to the effects of acyclovir. Myricetin may block HSV infection through direct interaction with virus gD protein to interfere with virus adsorption and membrane fusion, which was different from the nucleoside analogues such as acyclovir. Myricetin also down-regulate the cellular EGFR/PI3K/Akt signaling pathway to further inhibit HSV infection and its subsequent replication. Most importantly, intraperitoneal therapy of myricetin markedly improved mice survival and reduced virus titers in both lungs and spinal cord. Therefore, the natural dietary flavonoid myricetin has potential to be developed into a novel anti-HSV agent targeting both virus gD protein and cellular EGFR/PI3K/Akt pathway. Myricetin possessed anti-HSV-1 and HSV-2 activities in vitro with low toxicity. Myricetin may be able to block HSV binding and entry process in HeLa cells. Myricetin may directly bind to virus gD protein rather than cellular receptors of HSV. The EGFR/PI3K/Akt pathway may be involved in the anti-HSV actions of myricetin. Myricetin markedly improved survival and reduced virus titers in HSV infected mice.
Collapse
Affiliation(s)
- Wenmiao Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, PR China
| | - Cuijing Xu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, PR China
| | - Cui Hao
- Systems Biology & Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, 266003, PR China.
| | - Yang Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, PR China
| | - Zhaoqi Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, PR China
| | - Shuyao Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, PR China
| | - Wei Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China.
| |
Collapse
|
15
|
Wang W, Xu C, Zhang J, Wang J, Yu R, Wang D, Yin R, Li W, Jiang T. Guanidine modifications enhance the anti-herpes simplex virus activity of (E,E)-4,6-bis(styryl)-pyrimidine derivatives in vitro and in vivo. Br J Pharmacol 2020; 177:1568-1588. [PMID: 31709511 DOI: 10.1111/bph.14918] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/03/2019] [Accepted: 10/24/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE The worldwide prevalence of herpes simplex virus (HSV) and shortage of efficient therapeutic strategies to counteract it are global concerns. In terms of treatment, the widely utilized anti-HSV drugs such as acyclovir have serious limitations, for example, drug resistance and side effects. Here, we have identified the guanidine-modified (E,E)-4,6-bis(styryl)-pyrimidine (BS-pyrimidine) derivative compound 5d as an inhibitor of HSV and further elucidated the anti-HSV mechanisms of compound 5d both in vitro and in vivo. EXPERIMENTAL APPROACH Cytopathic effect inhibition assay, plaque assay, and immunofluorescence assay were used to evaluate the anti-HSV effects of compound 5d in vitro. Membrane fusion assays, immunofluorescence assays, Western blotting assays, and pull-down assays were used to explore the anti-HSV mechanisms of compound 5d. HSV-1-infected mice, combined with haematoxylin-eosin staining and quantitative RT-PCR, were used to study the anti-HSV effects of compound 5d in vivo. KEY RESULTS The guanidine-modified compound 5d rather than the un-modified compound 3a effectively inhibited both HSV-1 and HSV-2 multiplication in different cell lines, more effectively than acyclovir. Compound 5d may block virus binding and post-binding processes such as membrane fusion, by targeting virus gB protein. In addition, compound 5d may also down-regulate the cellular PI3K/Akt signalling pathway to interfere with HSV replication. Treatment with compound 5d also markedly improved survival and decreased viral titres in HSV-infected mice. CONCLUSIONS AND IMPLICATIONS Thus, the guanidine-modified BS-pyrimidine derivatives have the potential to be developed into novel anti-HSV agents targeting both virus gB protein and cellular PI3K/Akt signalling pathways.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Cuijing Xu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Jianqiang Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Jinpeng Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Dongping Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Ruijuan Yin
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Wenmiao Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
16
|
Graber K, Khan F, Glück B, Weigel C, Marzo S, Doshi H, Ehrhardt C, Heller R, Gräler M, Henke A. The role of sphingosine-1-phosphate signaling in HSV-1-infected human umbilical vein endothelial cells. Virus Res 2020; 276:197835. [DOI: 10.1016/j.virusres.2019.197835] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 01/14/2023]
|
17
|
Jaishankar D, Yakoub AM, Yadavalli T, Agelidis A, Thakkar N, Hadigal S, Ames J, Shukla D. An off-target effect of BX795 blocks herpes simplex virus type 1 infection of the eye. Sci Transl Med 2019; 10:10/428/eaan5861. [PMID: 29444978 DOI: 10.1126/scitranslmed.aan5861] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/04/2017] [Accepted: 12/15/2017] [Indexed: 12/16/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) causes recurrent mucocutaneous lesions in the eye that may advance to corneal blindness. Nucleoside analogs exemplified by acyclovir (ACV) form the primary class of antiherpetic drugs, but this class suffers limitations due to the emergence of viral resistance and other side effects. While studying the molecular basis of ocular HSV-1 infection, we observed that BX795, a commonly used inhibitor of TANK-binding kinase 1 (TBK1), strongly suppressed infection by multiple strains of HSV-1 in transformed and primary human cells, cultured human and animal corneas, and a murine model of ocular infection. Our investigations revealed that the antiviral activity of BX795 relies on targeting Akt phosphorylation in infected cells, leading to the blockage of viral protein synthesis. This small-molecule inhibitor, which was also effective against an ACV-resistant HSV-1 strain, shows promise as an alternative to existing drugs and as an effective topical therapy for ocular herpes infection. Collectively, our results obtained using multiple infection models and virus strains establish BX795 as a promising lead compound for broad-spectrum antiviral applications in humans.
Collapse
Affiliation(s)
- Dinesh Jaishankar
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL 60612, USA.,Department of Bioengineering, University of Illinois, Chicago, IL 60607, USA
| | - Abraam M Yakoub
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94304, USA.,Department of Microbiology and Immunology, University of Illinois, Chicago, IL 60612, USA
| | - Tejabhiram Yadavalli
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL 60612, USA
| | - Alex Agelidis
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL 60612, USA.,Department of Microbiology and Immunology, University of Illinois, Chicago, IL 60612, USA
| | - Neel Thakkar
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL 60612, USA
| | - Satvik Hadigal
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL 60612, USA
| | - Joshua Ames
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL 60612, USA.,Department of Microbiology and Immunology, University of Illinois, Chicago, IL 60612, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL 60612, USA.,Department of Bioengineering, University of Illinois, Chicago, IL 60607, USA.,Department of Microbiology and Immunology, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
18
|
Phosphatidylinositol 3-Kinase/Akt and MEK/ERK Signaling Pathways Facilitate Sapovirus Trafficking and Late Endosomal Acidification for Viral Uncoating in LLC-PK Cells. J Virol 2018; 92:JVI.01674-18. [PMID: 30282712 PMCID: PMC6258943 DOI: 10.1128/jvi.01674-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 09/22/2018] [Indexed: 12/24/2022] Open
Abstract
Sapovirus, an important cause of acute gastroenteritis in humans and animals, travels from the early to the late endosomes and requires late endosomal acidification for viral uncoating. However, the signaling pathways responsible for these viral entry processes remain unknown. Here we demonstrate the receptor-mediated early activation of phosphatidylinositol 3-kinase (PI3K)/Akt and mitogen-activated protein extracellular signal-regulated kinase/extracellular signal-regulated kinase (MEK/ERK) signaling pathways involved in sapovirus entry processes. Both signaling pathways were activated during the early stage of porcine sapovirus (PSaV) infection. However, depletion of the cell surface carbohydrate receptors by pretreatment with sodium periodate or neuraminidase reduced the PSaV-induced early activation of these signaling pathways, indicating that PSaV binding to the cell surface carbohydrate receptors triggered these cascades. Addition of bile acid, known to be essential for PSaV escape from late endosomes, was also found to exert a stiffening effect to stimulate both pathways. Inhibition of these signaling pathways by use of inhibitors specific for PI3K or MEK or small interfering RNAs (siRNAs) against PI3K or MEK resulted in entrapment of PSaV particles in early endosomes and prevented their trafficking to late endosomes. Moreover, phosphorylated PI3K and ERK coimmunoprecipitated subunit E of the V-ATPase proton pump that is important for endosomal acidification. Based on our data, we conclude that receptor binding of PSaV activates both PI3K/Akt and MEK/ERK signaling pathways, which in turn promote PSaV trafficking from early to late endosomes and acidification of late endosomes for PSaV uncoating. These signaling cascades may provide a target for potent therapeutics against infections by PSaV and other caliciviruses.IMPORTANCE Sapoviruses cause acute gastroenteritis in both humans and animals. However, the host signaling pathway(s) that facilitates host cell entry by sapoviruses remains largely unknown. Here we demonstrate that porcine sapovirus (PSaV) activates both PI3K/Akt and MEK/ERK cascades at an early stage of infection. Removal of cell surface receptors decreased PSaV-induced early activation of both cascades. Moreover, blocking of PI3K/Akt and MEK/ERK cascades entrapped PSaV particles in early endosomes and prevented their trafficking to the late endosomes. PSaV-induced early activation of PI3K and ERK molecules further mediated V-ATPase-dependent late endosomal acidification for PSaV uncoating. This work unravels a new mechanism by which receptor-mediated early activation of both cascades may facilitate PSaV trafficking from early to late endosomes and late endosomal acidification for PSaV uncoating, which in turn can be a new target for treatment of sapovirus infection.
Collapse
|
19
|
Cuartas-López AM, Hernández-Cuellar CE, Gallego-Gómez JC. Disentangling the role of PI3K/Akt, Rho GTPase and the actin cytoskeleton on dengue virus infection. Virus Res 2018; 256:153-165. [DOI: 10.1016/j.virusres.2018.08.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/30/2018] [Accepted: 08/14/2018] [Indexed: 12/22/2022]
|
20
|
Azab W, Osterrieder K. Initial Contact: The First Steps in Herpesvirus Entry. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2018; 223:1-27. [PMID: 28528437 DOI: 10.1007/978-3-319-53168-7_1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The entry process of herpesviruses into host cells is complex and highly variable. It involves a sequence of well-orchestrated events that begin with virus attachment to glycan-containing proteinaceous structures on the cell surface. This initial contact tethers virus particles to the cell surface and results in a cascade of molecular interactions, including the tight interaction of viral envelope glycoproteins to specific cell receptors. These interactions trigger intracellular signaling and finally virus penetration after fusion of the viral envelope with cellular membranes. Based on the engaged cellular receptors and co-receptors, and the subsequent signaling cascades, the entry pathway will be decided on the spot. A number of viral glycoproteins and many cellular receptors and molecules have been identified as players in one or several of these events during virus entry. This chapter will review viral glycoproteins, cellular receptors and signaling cascades associated with the very first interactions of herpesviruses with their target cells.
Collapse
Affiliation(s)
- Walid Azab
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163, Berlin, Germany.
| | - Klaus Osterrieder
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163, Berlin, Germany
| |
Collapse
|
21
|
Choi AH, O’Leary MP, Lu J, Kim SI, Fong Y, Chen NG. Endogenous Akt Activity Promotes Virus Entry and Predicts Efficacy of Novel Chimeric Orthopoxvirus in Triple-Negative Breast Cancer. MOLECULAR THERAPY-ONCOLYTICS 2018; 9:22-29. [PMID: 29988465 PMCID: PMC6026447 DOI: 10.1016/j.omto.2018.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/01/2018] [Indexed: 12/04/2022]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with high recurrence rate and poor prognosis. Here, we describe a novel, chimeric orthopoxvirus (CF33) that efficiently kills TNBC. Cytotoxicity was assayed in vitro in four TNBC cell lines. Viral replication was examined through standard plaque assay. Two orthotopic TNBC xenograft models were generated in athymic nude mice and were injected with CF33 intratumorally. CF33 was effective in vitro with potent cytotoxicity and efficient intracellular replication observed in TNBC lines with phosphatidylinositol 3-kinase (PI3K)/Akt pathway mutations that resulted in endogenous phospho-Akt (p-Akt) activity (BT549, Hs578T, and MDA-MB-468). Relative resistance to CF33 by wild-type PI3K/Akt pathway cell line MDA-MB-231 was overcome using higher MOI. The virus was effective in vivo with significant tumor size reduction in both xenograft models. Mechanistically, CF33 appears to share similar properties to vaccinia virus with respect to Akt-mediated and low-pH-mediated viral entry. In summary, CF33 demonstrated potent antitumoral effect in vitro and in vivo, with the most potent effect predicted by the presence of endogenous Akt activity in the TNBC cell line. Further investigation of its mechanism of action as well as genetic modifications to enhance its natural viral tropism are warranted for preclinical development.
Collapse
Affiliation(s)
- Audrey H. Choi
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Michael P. O’Leary
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Jianming Lu
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Sang-In Kim
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Yuman Fong
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
- Center for Gene Therapy, Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Nanhai G. Chen
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
- Center for Gene Therapy, Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
- Gene Editing and Viral Vector Core, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
- Corresponding author: Nanhai G. Chen, PhD, Department of Surgery, City of Hope National Medical Center, 1500 E. Duarte Road, Rm 1102, Familian Science Building, Duarte, CA 91010, USA.
| |
Collapse
|
22
|
Infection and Transport of Herpes Simplex Virus Type 1 in Neurons: Role of the Cytoskeleton. Viruses 2018; 10:v10020092. [PMID: 29473915 PMCID: PMC5850399 DOI: 10.3390/v10020092] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/16/2018] [Accepted: 02/20/2018] [Indexed: 12/22/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a neuroinvasive human pathogen that has the ability to infect and replicate within epithelial cells and neurons and establish a life-long latent infection in sensory neurons. HSV-1 depends on the host cellular cytoskeleton for entry, replication, and exit. Therefore, HSV-1 has adapted mechanisms to promote its survival by exploiting the microtubule and actin cytoskeletons to direct its active transport, infection, and spread between neurons and epithelial cells during primary and recurrent infections. This review will focus on the currently known mechanisms utilized by HSV-1 to harness the neuronal cytoskeleton, molecular motors, and the secretory and exocytic pathways for efficient virus entry, axonal transport, replication, assembly, and exit from the distinct functional compartments (cell body and axon) of the highly polarized sensory neurons.
Collapse
|
23
|
Rider PJF, Musarrat F, Nabil R, Naidu S, Kousoulas KG. First Impressions-the Potential of Altering Initial Host-Virus Interactions for Rational Design of Herpesvirus Vaccine Vectors. CURRENT CLINICAL MICROBIOLOGY REPORTS 2018; 5:55-65. [PMID: 30560044 DOI: 10.1007/s40588-018-0082-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Purpose The earliest host-virus interactions occur during virus attachment and entry into cells. These initial steps in the virus lifecycle influence the outcome of infection beyond delivery of the viral genome into the cell. Herpesviruses alter host signaling pathways and processes during attachment and entry to facilitate virus infection and modulate innate immune responses. We suggest in this review that understanding these early signaling events may inform the rational design of therapeutic and prevention strategies for herpesvirus infection, as well as the engineering of viral vectors for immunotherapy purposes. Recent Findings Recent reports demonstrate that modulation of Herpes Simplex Virus Type-1 (HSV-1) entry results in unexpected enhancement of antiviral immune responses. Summary A variety of evidence suggests that herpesviruses promote specific cellular signaling responses that facilitate viral replication after binding to cell surfaces, as well as during virus entry. Of particular interest is the ability of the virus to alter innate immune responses through these cellular signaling events. Uncovering the underlying immune evasion strategies may lead to the design of live-attenuated vaccines that can generate robust and protective anti-viral immune responses against herpesviruses. These adjuvant properties may be extended to a variety of heterologous antigens expressed by herpesviral vectors.
Collapse
Affiliation(s)
- Paul J F Rider
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge LA
| | - Farhana Musarrat
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge LA
| | - Rafiq Nabil
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge LA
| | - Shan Naidu
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge LA
| | - Konstantin G Kousoulas
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge LA
| |
Collapse
|
24
|
Differentiated Human SH-SY5Y Cells Provide a Reductionist Model of Herpes Simplex Virus 1 Neurotropism. J Virol 2017; 91:JVI.00958-17. [PMID: 28956768 DOI: 10.1128/jvi.00958-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/19/2017] [Indexed: 12/13/2022] Open
Abstract
Neuron-virus interactions that occur during herpes simplex virus (HSV) infection are not fully understood. Neurons are the site of lifelong latency and are a crucial target for long-term suppressive therapy or viral clearance. A reproducible neuronal model of human origin would facilitate studies of HSV and other neurotropic viruses. Current neuronal models in the herpesvirus field vary widely and have caveats, including incomplete differentiation, nonhuman origins, or the use of dividing cells that have neuropotential but lack neuronal morphology. In this study, we used a robust approach to differentiate human SH-SY5Y neuroblastoma cells over 2.5 weeks, producing a uniform population of mature human neuronal cells. We demonstrate that terminally differentiated SH-SY5Y cells have neuronal morphology and express proteins with subcellular localization indicative of mature neurons. These neuronal cells are able to support a productive HSV-1 infection, with kinetics and overall titers similar to those seen in undifferentiated SH-SY5Y cells and the related SK-N-SH cell line. However, terminally differentiated, neuronal SH-SY5Y cells release significantly less extracellular HSV-1 by 24 h postinfection (hpi), suggesting a unique neuronal response to viral infection. With this model, we are able to distinguish differences in neuronal spread between two strains of HSV-1. We also show expression of the antiviral protein cyclic GMP-AMP synthase (cGAS) in neuronal SH-SY5Y cells, which is the first demonstration of the presence of this protein in nonepithelial cells. These data provide a model for studying neuron-virus interactions at the single-cell level as well as via bulk biochemistry and will be advantageous for the study of neurotropic viruses in vitroIMPORTANCE Herpes simplex virus (HSV) affects millions of people worldwide, causing painful oral and genital lesions, in addition to a multitude of more severe symptoms such as eye disease, neonatal infection, and, in rare cases, encephalitis. Presently, there is no cure available to treat those infected or prevent future transmission. Due to the ability of HSV to cause a persistent, lifelong infection in the peripheral nervous system, the virus remains within the host for life. To better understand the basis of virus-neuron interactions that allow HSV to persist within the host peripheral nervous system, improved neuronal models are required. Here we describe a cost-effective and scalable human neuronal model system that can be used to study many neurotropic viruses, such as HSV, Zika virus, dengue virus, and rabies virus.
Collapse
|
25
|
Kim JT, Liu Y, Kulkarni RP, Lee KK, Dai B, Lovely G, Ouyang Y, Wang P, Yang L, Baltimore D. Dendritic cell-targeted lentiviral vector immunization uses pseudotransduction and DNA-mediated STING and cGAS activation. Sci Immunol 2017; 2:2/13/eaal1329. [PMID: 28733470 DOI: 10.1126/sciimmunol.aal1329] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 03/14/2017] [Accepted: 06/12/2017] [Indexed: 12/12/2022]
Abstract
Dendritic cell (DC) activation and antigen presentation are critical for efficient priming of T cell responses. Here, we study how lentiviral vectors (LVs) deliver antigen and activate DCs to generate T cell immunization in vivo. We report that antigenic proteins delivered in vector particles via pseudotransduction were sufficient to stimulate an antigen-specific immune response. The delivery of the viral genome encoding the antigen increased the magnitude of this response in vivo but was irrelevant in vitro. Activation of DCs by LVs was independent of MyD88, TRIF, and MAVS, ruling out an involvement of Toll-like receptor or RIG-I-like receptor signaling. Cellular DNA packaged in LV preparations induced DC activation by the host STING (stimulator of interferon genes) and cGAS (cyclic guanosine monophosphate-adenosine monophosphate synthase) pathway. Envelope-mediated viral fusion also activated DCs in a phosphoinositide 3-kinase-dependent but STING-independent process. Pseudotransduction, transduction, viral fusion, and delivery of cellular DNA collaborate to make the DC-targeted LV preparation an effective immunogen.
Collapse
Affiliation(s)
- Jocelyn T Kim
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.,Division of Infectious Diseases, Department of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yarong Liu
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Rajan P Kulkarni
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.,Division of Dermatology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kevin K Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Bingbing Dai
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Geoffrey Lovely
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yong Ouyang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Pin Wang
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Lili Yang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.,Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - David Baltimore
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
26
|
Vasireddi M, Hilliard JK. Regulation of PI3K/Akt dependent apoptotic markers during b virus infection of human and macaque fibroblasts. PLoS One 2017; 12:e0178314. [PMID: 28558072 PMCID: PMC5448769 DOI: 10.1371/journal.pone.0178314] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 05/11/2017] [Indexed: 12/17/2022] Open
Abstract
B virus (Macacine herpesvirus 1), a simplex virus endemic in macaques, causes encephalitis, encephalomyelitis, and death in 80% of untreated zoonotically infected humans with delayed or no treatment. Here we report a significant difference in PI3K/Akt-dependent apoptosis between B virus infected human and macaque dermal fibroblasts. Our data show that B virus infection in either human or macaque fibroblasts results in activation of Akt via PI3K and this activation does not require viral de novo protein synthesis. Inhibition of PI3K with LY294002 results in a significant reduction of viral titers in B virus infected macaque and human fibroblasts with only a modest difference in the reduction of virus titers between the two cell types. We, therefore, tested the hypothesis that B virus results in the phosphorylation of Akt (S473), which prevents apoptosis, enhancing virus replication in B virus infected macaque dermal fibroblasts. We observed markers of intrinsic apoptosis when PI3K activation of Akt was inhibited in B virus infected macaque cells, while, these apoptotic markers were absent in B virus infected human fibroblasts under the same conditions. From these data we suggest that PI3K activates Akt in B virus infected macaque and human fibroblasts, but this enhances virus replication in macaque fibroblast cells by blocking apoptosis.
Collapse
Affiliation(s)
- Mugdha Vasireddi
- Viral Immunology Center, Biology Department, Georgia State University, Atlanta, GA, United States of America
| | - Julia K. Hilliard
- Viral Immunology Center, Biology Department, Georgia State University, Atlanta, GA, United States of America
- * E-mail:
| |
Collapse
|
27
|
Sharthiya H, Seng C, Van Kuppevelt TH, Tiwari V, Fornaro M. HSV-1 interaction to 3-O-sulfated heparan sulfate in mouse-derived DRG explant and profiles of inflammatory markers during virus infection. J Neurovirol 2017; 23:483-491. [PMID: 28326469 PMCID: PMC5440488 DOI: 10.1007/s13365-017-0521-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/25/2017] [Accepted: 02/09/2017] [Indexed: 11/29/2022]
Abstract
The molecular mechanism of herpes simplex virus (HSV) entry and the associated inflammatory response in the nervous system remain poorly understood. Using mouse-derived ex vivo dorsal root ganglia (DRG) explant model and single cell neurons (SCNs), in this study, we provided a visual evidence for the expression of heparan sulfate (HS) and 3-O-sulfated heparan sulfate (3-OS HS) followed by their interactions with HSV-1 glycoprotein B (gB) and glycoprotein D (gD) during cell entry. Upon heparanase treatment of DRG-derived SCN, a significant inhibition of HSV-1 entry was observed suggesting the involvement of HS role during viral entry. Finally, a cytokine array profile generated during HSV-1 infection in DRG explant indicated an enhanced expression of chemokines (LIX, TIMP-2, and M-CSF)—known regulators of HS. Taken together, these results highlight the significance of HS during HSV-1 entry in DRG explant. Further investigation is needed to understand which isoforms of 3-O-sulfotransferase (3-OST)-generated HS contributed during HSV-1 infection and associated cell damage.
Collapse
Affiliation(s)
- Harsh Sharthiya
- Department of Anatomy, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, 60515, USA
| | - Chanmoly Seng
- Department of Biomedical sciences, College of Health Sciences, Midwestern University, Downers Grove, IL, 60515, USA
| | - T H Van Kuppevelt
- Department of Biochemistry, Nijmegen Institute for Molecular Life Sciences, Radboud University, 6500 HB, Nijmegen, The Netherlands
| | - Vaibhav Tiwari
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, 60515, USA.
| | - Michele Fornaro
- Department of Anatomy, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, 60515, USA.
| |
Collapse
|
28
|
AR-12 suppresses dengue virus replication by down-regulation of PI3K/AKT and GRP78. Antiviral Res 2017; 142:158-168. [PMID: 28238876 DOI: 10.1016/j.antiviral.2017.02.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/22/2017] [Indexed: 02/06/2023]
Abstract
Dengue virus (DENV) infection has become a public health issue of worldwide concern and is a serious health problem in Taiwan, yet there are no approved effective antiviral drugs to treat DENV. The replication of DENV requires both viral and cellular factors. Targeting host factors may provide a potential antiviral strategy. It has been known that up-regulation of PI3K/AKT signaling and GRP78 by DENV infection supports its replication. AR-12, a celecoxib derivative with no inhibiting activity on cyclooxygenase, shows potent inhibitory activities on both PI3K/AKT signaling and GRP78 expression levels, and recently has been found to block the replication of several hemorrhagic fever viruses. However the efficacy of AR-12 in treating DENV infection is still unclear. Here, we provide evidence to show that AR-12 is able to suppress DENV replication before or after virus infection in cell culture and mice. The antiviral activities of AR-12 are positive against infection of the four different DENV serotypes. AR-12 significantly down-regulates the PI3K/AKT activity and GRP78 expression in DENV infected cells whereas AKT and GRP78 rescue are able to attenuate anti-DENV effect of AR-12. Using a DENV-infected suckling mice model, we further demonstrate that treatment of AR-12 before or after DENV infection reduces virus replication and mice mortality. In conclusion, we uncover the potential efficacy of AR-12 as a novel drug for treating dengue.
Collapse
|
29
|
Bhargava AK, Rothlauf PW, Krummenacher C. Herpes simplex virus glycoprotein D relocates nectin-1 from intercellular contacts. Virology 2016; 499:267-277. [PMID: 27723487 DOI: 10.1016/j.virol.2016.09.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/12/2016] [Accepted: 09/20/2016] [Indexed: 11/24/2022]
Abstract
Herpes simplex virus (HSV) uses the cell adhesion molecule nectin-1 as a receptor to enter neurons and epithelial cells. The viral glycoprotein D (gD) is used as a non-canonical ligand for nectin-1. The gD binding site on nectin-1 overlaps with a functional adhesive site involved in nectin-nectin homophilic trans-interaction. Consequently, when nectin-1 is engaged with a cellular ligand at cell junctions, the gD binding site is occupied. Here we report that HSV gD is able to disrupt intercellular homophilic trans-interaction of nectin-1 and induce a rapid redistribution of nectin-1 from cell junctions. This movement does not require the receptor's interaction with the actin-binding adaptor afadin. Interaction of nectin-1 with afadin is also dispensable for virion surfing along nectin-1-rich filopodia. Cells seeded on gD-coated surfaces also fail to accumulate nectin-1 at cell contact. These data indicate that HSV gD affects nectin-1 locally through direct interaction and more globally through signaling.
Collapse
Affiliation(s)
- Arjun K Bhargava
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul W Rothlauf
- Department of Biological Sciences, College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, USA
| | - Claude Krummenacher
- Department of Biological Sciences, College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, USA; Department of Biomedical and Translational Sciences, College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, USA.
| |
Collapse
|
30
|
Cohrs RJ, Badani H, Baird NL, White TM, Sanford B, Gilden D. Induction of varicella zoster virus DNA replication in dissociated human trigeminal ganglia. J Neurovirol 2016; 23:152-157. [PMID: 27683235 DOI: 10.1007/s13365-016-0480-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/02/2016] [Accepted: 09/06/2016] [Indexed: 01/02/2023]
Abstract
Varicella zoster virus (VZV), a human neurotropic alphaherpesvirus, becomes latent after primary infection and reactivates to produce zoster. To study VZV latency and reactivation, human trigeminal ganglia removed within 24 h after death were mechanically dissociated, randomly distributed into six-well tissue culture plates and incubated with reagents to inactivate nerve growth factor (NGF) or phosphoinositide 3-kinase (PI3-kinase) pathways. At 5 days, VZV DNA increased in control and PI3-kinase inhibitor-treated cultures to the same extent, but was significantly more abundant in anti-NGF-treated cultures (p = 0.001). Overall, VZV DNA replication is regulated in part by an NGF pathway that is PI3-kinase-independent.
Collapse
Affiliation(s)
- Randall J Cohrs
- Department of Neurology, University of Colorado School of Medicine, 12700 E. 19th Avenue, Box B-182, Aurora, CO, 80045, USA. .,Department of Immunology and Microbiology, University of Colorado School of Medicine, 12700 E. 19th Avenue, Box B-182, Aurora, CO, 80045, USA.
| | - Hussain Badani
- Department of Neurology, University of Colorado School of Medicine, 12700 E. 19th Avenue, Box B-182, Aurora, CO, 80045, USA
| | - Nicholas L Baird
- Department of Neurology, University of Colorado School of Medicine, 12700 E. 19th Avenue, Box B-182, Aurora, CO, 80045, USA
| | - Teresa M White
- Department of Neurology, University of Colorado School of Medicine, 12700 E. 19th Avenue, Box B-182, Aurora, CO, 80045, USA
| | - Bridget Sanford
- Department of Neurology, University of Colorado School of Medicine, 12700 E. 19th Avenue, Box B-182, Aurora, CO, 80045, USA
| | - Don Gilden
- Department of Neurology, University of Colorado School of Medicine, 12700 E. 19th Avenue, Box B-182, Aurora, CO, 80045, USA.,Department of Immunology and Microbiology, University of Colorado School of Medicine, 12700 E. 19th Avenue, Box B-182, Aurora, CO, 80045, USA
| |
Collapse
|
31
|
Jaishankar D, Shukla D. Genital Herpes: Insights into Sexually Transmitted Infectious Disease. MICROBIAL CELL (GRAZ, AUSTRIA) 2016; 3:438-450. [PMID: 28357380 PMCID: PMC5354570 DOI: 10.15698/mic2016.09.528] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/07/2016] [Indexed: 12/20/2022]
Abstract
Etiology, transmission and protection: Herpes simplex virus-2 (HSV-2) is a leading cause of sexually transmitted infections with recurring manifestations throughout the lifetime of infected hosts. Currently no effective vaccines or prophylactics exist that provide complete protection or immunity from the virus, which is endemic throughout the world. Pathology/Symptomatology: Primary and recurrent infections result in lesions and inflammation around the genital area and the latter accounts for majority of genital herpes instances. Immunocompromised patients including neonates are susceptible to additional systemic infections including debilitating consequences of nervous system inflammation. Epidemiology, incidence and prevalence: More than 500 million people are infected worldwide and most reported cases involve the age groups between 16-40 years, which coincides with an increase in sexual activity among this age group. While these numbers are an estimate, the actual numbers may be underestimated as many people are asymptomatic or do not report the symptoms. Treatment and curability: Currently prescribed medications, mostly nucleoside analogs, only reduce the symptoms caused by an active infection, but do not eliminate the virus or reduce latency. Therefore, no cure exists against genital herpes and infected patients suffer from periodic recurrences of disease symptoms for their entire lives. Molecular mechanisms of infection: The last few decades have generated many new advances in our understanding of the mechanisms that drive HSV infection. The viral entry receptors such as nectin-1 and HVEM have been identified, cytoskeletal signaling and membrane structures such as filopodia have been directly implicated in viral entry, host motor proteins and their viral ligands have been shown to facilitate capsid transport and many host and HSV proteins have been identified that help with viral replication and pathogenesis. New understanding has emerged on the role of autophagy and other innate immune mechanisms that are subverted to enhance HSV pathogenesis. This review summarizes our current understanding of HSV-2 and associated diseases and available or upcoming new treatments.
Collapse
Affiliation(s)
- Dinesh Jaishankar
- Departments of Bioengineering and Ophthalmology and Visual
Sciences, University of Illinois at Chicago, IL 60612
- Department of Pathology, University of Illinois at Chicago, IL
60612
| | - Deepak Shukla
- Departments of Bioengineering and Ophthalmology and Visual
Sciences, University of Illinois at Chicago, IL 60612
- Department of Microbiology and Immunology, University of Illinois at
Chicago, IL 60612
| |
Collapse
|
32
|
Agelidis AM, Shukla D. Cell entry mechanisms of HSV: what we have learned in recent years. Future Virol 2015; 10:1145-1154. [PMID: 27066105 DOI: 10.2217/fvl.15.85] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
HSV type-1 and -2 are widespread pathogens producing lifelong infection with multiple sequelae, including oral, ocular and genital disease. The process of herpesvirus entry is a highly complex process involving numerous viral and cellular factors. Entry begins with attachment of virus to the cell surface followed by interactions between viral glycoproteins and cellular receptors to facilitate capsid penetration. The nucleocapsid is then transported along microtubules to the nuclear membrane, where viral DNA is released for replication in the nucleus. The work reviewed here comprises the most recent advancements in our understanding of the mechanism involved in the herpesvirus entry process.
Collapse
Affiliation(s)
- Alex M Agelidis
- Ocular Virology Laboratory, Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, 1855 West Taylor Street, M/C 648, Chicago, IL 60612, USA; Department of Microbiology and Immunology, College of Medicine, E-704 Medical Sciences Building, University of Illinois at Chicago, M/C 790, 835 South Wolcott Avenue, Chicago, IL 60612, USA
| | - Deepak Shukla
- Ocular Virology Laboratory, Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, 1855 West Taylor Street, M/C 648, Chicago, IL 60612, USA; Department of Microbiology and Immunology, College of Medicine, E-704 Medical Sciences Building, University of Illinois at Chicago, M/C 790, 835 South Wolcott Avenue, Chicago, IL 60612, USA
| |
Collapse
|
33
|
Abstract
This paper discusses physical and structural aspects of the mechanisms herpes simplex virus (HSV) uses for membrane fusion. Calculations show that herpes simplex virus glycoprotein D has such avidity for its receptors that it can hold the virion against the plasma membrane of a neuron strongly enough for glycoprotein B (gB) to disrupt both leaflets of the bilayer. The strong electric field generated by the cell potential across perforations at this disruption would break the hydrogen bonds securing the gB fusion loops, leading to fusion of the plasma and viral membranes. This mechanism agrees with the high stability of the tall trimeric spike structure of gB and is consistent with the probable existence of a more compact initial conformation that would allow it to closely approach the plasma membrane. The release of the fusion domains by disruption of hydrogen bonds is shared with the endocytotic entry pathway where, for some cell types not punctured by gB, the virus is able to induce inward forces that cause endocytosis and the fusion loops are released by acidification. The puncture-fusion mechanism requires low critical strain or high tissue strain, matching primary tropism of neural processes at the vermillion border. In support of this mechanism, this paper proposes a functional superstructure of the antigens essential to entry and reviews its consistency with experimental evidence.
Collapse
Affiliation(s)
- Richard W. Clarke
- Chemistry Department, Cambridge University, Lensfield Road, Cambridge CB21EW, United Kingdom
| |
Collapse
|
34
|
McCormick S, He Q, Stern J, Khodarev N, Weichselbaum R, Skelly CL. Evidence for the Use of Multiple Mechanisms by Herpes Simplex Virus-1 R7020 to Inhibit Intimal Hyperplasia. PLoS One 2015; 10:e0130264. [PMID: 26132411 PMCID: PMC4488439 DOI: 10.1371/journal.pone.0130264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 05/18/2015] [Indexed: 01/01/2023] Open
Abstract
Intimal hyperplasia (IH) is the primary cause of vein bypass graft failure. The smooth muscle cell (SMC) is a key element of IH as it phenotypically switches from a contractile to a synthetic state which can become pathological. R7020, which is an engineered strain of Herpes Simplex Virus-1, inhibits IH in animal models. Although it has many characteristics which make it a strong candidate for use as a prophylactic agent how it inhibits IH is not well understood. The objective of this study was to identify modes of action used by R7020 to function in blood vessels that may also contribute to its inhibition of IH. The cytopathic effect of R7020 on SMCs was determined in vitro and in a rabbit IH model. In vitro assays with R7020 infected SMCs were used to quantify the effect of dose on the release kinetics of the virus as well as the effects of R7020 on cell viability and the adhesion of peripheral blood mononuclear cells (PBMCs) to SMCs in the absence and presence of tumor necrosis factor alpha (TNF-α). The observed cytopathic effect, which included R7020 positive filopodia that extend from cell to cell and the formation of syncytia, suggests that R7020 remains cell associated after egress and spreads cell to cell instead of by diffusion through the extracellular fluid. This would allow the virus to rapidly infect vascular cells while evading the immune system. The directionality of the filopodia in vivo suggests that the virus preferentially travels from the media towards the intima targeting SMCs that would lead to IH. The formation of syncytia would inhibit SMC proliferation as incorporated cells are not able to multiply. It was also observed that R7020 induced the fusion of PBMCs with syncytia suggesting the virus may limit the effect of macrophages on IH. Furthermore, R7020 inhibited the proliferative effect of TNF-α, an inflammatory cytokine associated with increased IH. Thus, the results of this study suggest that R7020 inhibits IH through multiple mechanisms.
Collapse
MESH Headings
- Animals
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- Herpesvirus 1, Human/pathogenicity
- Herpesvirus 1, Human/physiology
- Humans
- Hyperplasia/virology
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/virology
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/physiology
- Myocytes, Smooth Muscle/virology
- Rabbits
- Tunica Intima/pathology
- Tunica Intima/virology
Collapse
Affiliation(s)
- Susan McCormick
- Section of Vascular Surgery, Department of Surgery, University of Chicago, Chicago, Illinois, United States of America
| | - Qi He
- Section of Vascular Surgery, Department of Surgery, University of Chicago, Chicago, Illinois, United States of America
| | - Jordan Stern
- Section of Vascular Surgery, Department of Surgery, University of Chicago, Chicago, Illinois, United States of America
| | - Nikolai Khodarev
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, University of Chicago, Chicago, Illinois, United States of America
| | - Ralph Weichselbaum
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, University of Chicago, Chicago, Illinois, United States of America
| | - Christopher L. Skelly
- Section of Vascular Surgery, Department of Surgery, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
35
|
Liu X, Cohen JI. The role of PI3K/Akt in human herpesvirus infection: From the bench to the bedside. Virology 2015; 479-480:568-77. [PMID: 25798530 PMCID: PMC4424147 DOI: 10.1016/j.virol.2015.02.040] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/17/2015] [Accepted: 02/18/2015] [Indexed: 12/25/2022]
Abstract
The phosphatidylinositol-3-kinase (PI3K)-Akt signaling pathway regulates several key cellular functions including protein synthesis, cell growth, glucose metabolism, and inflammation. Many viruses have evolved mechanisms to manipulate this signaling pathway to ensure successful virus replication. The human herpesviruses undergo both latent and lytic infection, but differ in cell tropism, growth kinetics, and disease manifestations. Herpesviruses express multiple proteins that target the PI3K/Akt cell signaling pathway during the course of their life cycle to facilitate viral infection, replication, latency, and reactivation. Rare human genetic disorders with mutations in either the catalytic or regulatory subunit of PI3K that result in constitutive activation of the protein predispose to severe herpesvirus infections as well as to virus-associated malignancies. Inhibiting the PI3K/Akt pathway or its downstream proteins using drugs already approved for other diseases can block herpesvirus lytic infection and may reduce malignancies associated with latent herpesvirus infections.
Collapse
Affiliation(s)
- XueQiao Liu
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jeffrey I Cohen
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
36
|
Herpes simplex virus internalization into epithelial cells requires Na+/H+ exchangers and p21-activated kinases but neither clathrin- nor caveolin-mediated endocytosis. J Virol 2014; 88:13378-95. [PMID: 25210183 DOI: 10.1128/jvi.03631-13] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
UNLABELLED Herpes simplex virus 1 (HSV-1) is an alphaherpesvirus that has been reported to infect some epithelial cell types by fusion at the plasma membrane but others by endocytosis. To determine the molecular mechanisms of productive HSV-1 cell entry, we perturbed key endocytosis host factors using specific inhibitors, RNA interference (RNAi), or overexpression of dominant negative proteins and investigated their effects on HSV-1 infection in the permissive epithelial cell lines Vero, HeLa, HEp-2, and PtK2. HSV-1 internalization required neither endosomal acidification nor clathrin- or caveolin-mediated endocytosis. In contrast, HSV-1 gene expression and internalization were significantly reduced after treatment with 5-(N-ethyl-N-isopropyl)amiloride (EIPA). EIPA blocks the activity of Na(+)/H(+) exchangers, which are plasma membrane proteins implicated in all forms of macropinocytosis. HSV-1 internalization furthermore required the function of p21-activated kinases that contribute to macropinosome formation. However, in contrast to some forms of macropinocytosis, HSV-1 did not enlist the activities of protein kinase C (PKC), tyrosine kinases, C-terminal binding protein 1, or dynamin to activate its internalization. These data suggest that HSV-1 depends on Na(+)/H(+) exchangers and p21-activated kinases either for macropinocytosis or for local actin rearrangements required for fusion at the plasma membrane or subsequent passage through the actin cortex underneath the plasma membrane. IMPORTANCE After initial replication in epithelial cells, herpes simplex viruses (HSVs) establish latent infections in neurons innervating these regions. Upon primary infection and reactivation from latency, HSVs cause many human skin and neurological diseases, particularly in immunocompromised hosts, despite the availability of effective antiviral drugs. Many viruses use macropinocytosis for virus internalization, and many host factors mediating this entry route have been identified, although the specific perturbation profiles vary for different host and viral cargo. In addition to an established entry pathway via acidic endosomes, we show here that HSV-1 internalization depended on sodium-proton exchangers at the plasma membrane and p21-activated kinases. These results suggest that HSV-1 requires a reorganization of the cortical actin cytoskeleton, either for productive cell entry via pH-independent fusion from macropinosomes or for fusion at the plasma membrane, and subsequent cytosolic passage to microtubules that mediate capsid transport to the nucleus for genome uncoating and replication.
Collapse
|
37
|
Epidermal growth factor receptor-PI3K signaling controls cofilin activity to facilitate herpes simplex virus 1 entry into neuronal cells. mBio 2014; 5:e00958-13. [PMID: 24425731 PMCID: PMC3903278 DOI: 10.1128/mbio.00958-13] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) establishes latency in neurons and can cause severe disseminated infection with neurological impairment and high mortality. This neurodegeneration is thought to be tightly associated with virus-induced cytoskeleton disruption. Currently, the regulation pattern of the actin cytoskeleton and the involved molecular mechanisms during HSV-1 entry into neurons remain unclear. Here, we demonstrate that the entry of HSV-1 into neuronal cells induces biphasic remodeling of the actin cytoskeleton and an initial inactivation followed by the subsequent activation of cofilin, a member of the actin depolymerizing factor family that is critical for actin reorganization. The disruption of F-actin dynamics or the modulation of cofilin activity by mutation, knockdown, or overexpression affects HSV-1 entry efficacy and virus-mediated cell ruffle formation. Binding of the HSV-1 envelope initiates the epidermal growth factor receptor (EGFR)-phosphatidylinositide 3-kinase (PI3K) signaling pathway, which leads to virus-induced early cofilin phosphorylation and F-actin polymerization. Moreover, the extracellular signal-regulated kinase (ERK) kinase and Rho-associated, coiled-coil-containing protein kinase 1 (ROCK) are recruited as downstream mediators of the HSV-1-induced cofilin inactivation pathway. Inhibitors specific for those kinases significantly reduce the virus infectivity without affecting virus binding to the target cells. Additionally, lipid rafts are clustered to promote EGFR-associated signaling cascade transduction. We propose that HSV-1 hijacks cofilin to initiate infection. These results could promote a better understanding of the pathogenesis of HSV-1-induced neurological diseases. The actin cytoskeleton is involved in many crucial cellular processes and acts as an obstacle to pathogen entry into host cells. Because HSV-1 establishes lifelong latency in neurons and because neuronal cytoskeletal disruption is thought to be the main cause of HSV-1-induced neurodegeneration, understanding the F-actin remodeling pattern by HSV-1 infection and the molecular interactions that facilitate HSV-1 entry into neurons is important. In this study, we showed that HSV-1 infection induces the rearrangement of the cytoskeleton as well as the initial inactivation and subsequent activation of cofilin. Then, we determined that activation of the EGFR-PI3K-Erk1/2 signaling pathway inactivates cofilin and promotes F-actin polymerization. We postulate that by regulating actin cytoskeleton dynamics, cofilin biphasic activation could represent the specific cellular machinery usurped by pathogen infection, and these results will greatly contribute to the understanding of HSV-1-induced early and complex changes in host cells that are closely linked to HSV-1 pathogenesis.
Collapse
|
38
|
Diehl N, Schaal H. Make yourself at home: viral hijacking of the PI3K/Akt signaling pathway. Viruses 2013; 5:3192-212. [PMID: 24351799 PMCID: PMC3967167 DOI: 10.3390/v5123192] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/03/2013] [Accepted: 12/05/2013] [Indexed: 01/04/2023] Open
Abstract
As viruses do not possess genes encoding for proteins required for translation, energy metabolism or membrane biosynthesis, they are classified as obligatory intracellular parasites that depend on a host cell to replicate. This genome limitation forces them to gain control over cellular processes to ensure their successful propagation. A diverse spectrum of virally encoded proteins tackling a broad spectrum of cellular pathways during most steps of the viral life cycle ranging from the host cell entry to viral protein translation has evolved. Since the host cell PI3K/Akt signaling pathway plays a critical regulatory role in many cellular processes including RNA processing, translation, autophagy and apoptosis, many viruses, in widely varying ways, target it. This review focuses on a number of remarkable examples of viral strategies, which exploit the PI3K/Akt signaling pathway for effective viral replication.
Collapse
Affiliation(s)
| | - Heiner Schaal
- Universitätsklinikum Düsseldorf, Institut für Virologie, Universitätsstraße 1, Düsseldorf 40225, Germany.
| |
Collapse
|
39
|
Hadigal S, Shukla D. Exploiting herpes simplex virus entry for novel therapeutics. Viruses 2013; 5:1447-65. [PMID: 23752649 PMCID: PMC3717716 DOI: 10.3390/v5061447] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 05/25/2013] [Accepted: 05/31/2013] [Indexed: 12/23/2022] Open
Abstract
Herpes Simplex virus (HSV) is associated with a variety of diseases such as genital herpes and numerous ocular diseases. At the global level, high prevalence of individuals who are seropositive for HSV, combined with its inconspicuous infection, remains a cause for major concern. At the molecular level, HSV entry into a host cell involves multiple steps, primarily the interaction of viral glycoproteins with various cell surface receptors, many of which have alternate substitutes. The molecular complexity of the virus to enter a cell is also enhanced by the existence of different modes of viral entry. The availability of many entry receptors, along with a variety of entry mechanisms, has resulted in a virus that is capable of infecting virtually all cell types. While HSV uses a wide repertoire of viral and host factors in establishing infection, current therapeutics aimed against the virus are not as diversified. In this particular review, we will focus on the initial entry of the virus into the cell, while highlighting potential novel therapeutics that can control this process. Virus entry is a decisive step and effective therapeutics can translate to less virus replication, reduced cell death, and detrimental symptoms.
Collapse
Affiliation(s)
- Satvik Hadigal
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, 1855 West Taylor Street, m/c 648, Room 3.138, Chicago, IL 60612, USA; E-Mail:
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, 1855 West Taylor Street, m/c 648, Room 3.138, Chicago, IL 60612, USA; E-Mail:
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, 835 S. Wolcott, Chicago, IL 60612, USA
- Lions of Illinois Eye Research Institute, University of Illinois at Chicago, 1905 West Taylor Street, Chicago, IL 606012, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-312-355-0908; Fax: +1-312-996-7772
| |
Collapse
|
40
|
Varicella-zoster virus ORF12 protein activates the phosphatidylinositol 3-kinase/Akt pathway to regulate cell cycle progression. J Virol 2012. [PMID: 23192871 DOI: 10.1128/jvi.02395-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Varicella-zoster virus (VZV) activates the phosphatidylinositol 3-kinase (PI3K)/Akt pathway and alters cell cycle progression, but the viral protein(s) responsible for these activities is unknown. We previously reported that the VZV open reading frame 12 (ORF12) protein triggers phosphorylation of ERK. Here, we demonstrate that the VZV ORF12 protein also activates the PI3K/Akt pathway to regulate cell cycle progression. Transfection of cells with a plasmid expressing the ORF12 protein induced phosphorylation of Akt, which was dependent on PI3K. Infection of cells with wild-type VZV triggered phosphorylation of Akt, while infection with an ORF12 deletion mutant induced less phosphorylated Akt. The activation of Akt by ORF12 protein was associated with its binding to the p85 subunit of PI3K. Infection of cells with wild-type VZV resulted in increased levels of cyclin B1, cyclin D3, and phosphorylated glycogen synthase kinase 3β (GSK-3β), while infection with the ORF12 deletion mutant induced lower levels of these proteins. Wild-type VZV infection reduced the G(1) phase cell population and increased the M phase cell population, while infection with the ORF12 deletion mutant had a reduced effect on the G(1) and M phase populations. Inhibition of Akt activity with LY294002 reduced the G(1) and M phase differences observed in cells infected with wild-type and ORF12 mutant viruses. In conclusion, we have found that the VZV ORF12 protein activates the PI3K/Akt pathway to regulate cell cycle progression. Since VZV replicates in both dividing (e.g., keratinocytes) and nondividing (neurons) cells, the ability of the VZV ORF12 protein to regulate the cell cycle is likely important for VZV replication in various cell types in the body.
Collapse
|
41
|
Holm CK, Jensen SB, Jakobsen MR, Cheshenko N, Horan KA, Moeller HB, Gonzalez-Dosal R, Rasmussen SB, Christensen MH, Yarovinsky TO, Rixon FJ, Herold BC, Fitzgerald KA, Paludan SR. Virus-cell fusion as a trigger of innate immunity dependent on the adaptor STING. Nat Immunol 2012; 13:737-43. [PMID: 22706339 PMCID: PMC3411909 DOI: 10.1038/ni.2350] [Citation(s) in RCA: 203] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 05/22/2012] [Indexed: 12/20/2022]
Abstract
The innate immune system senses infection by detecting evolutionarily conserved molecules essential for microbial survival or abnormal location of molecules. Here we demonstrate the existence of a novel innate detection mechanism, which is induced by fusion between viral envelopes and target cells. Virus-cell fusion specifically stimulated a type I interferon (IFN) response with expression of IFN-stimulated genes (ISGs), in vivo recruitment of leukocytes, and potentiation of Toll-like receptor 7 and 9 signaling. The fusion dependent response was dependent on stimulator of interferon genes (STING) but independent of DNA, RNA and viral capsid. We suggest that membrane fusion is sensed as a danger signal with potential implications for defense against enveloped viruses and various conditions of giant cell formation.
Collapse
|
42
|
Nonprofessional phagocytosis can facilitate herpesvirus entry into ocular cells. Clin Dev Immunol 2012; 2012:651691. [PMID: 22481969 PMCID: PMC3312246 DOI: 10.1155/2012/651691] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Accepted: 12/13/2011] [Indexed: 01/10/2023]
Abstract
Phagocytosis is a major mechanism by which the mediators of innate immunity thwart microbial infections. Here we demonstrate that human herpesviruses may have evolved a common mechanism to exploit a phagocytosis-like entrapment to gain entry into ocular cells. While herpes simplex virus-1 (HSV-1) causes corneal keratitis, cytomegalovirus (CMV) is associated with retinitis in immunocompromised individuals. A third herpesvirus, human herpesvirus-8 (HHV-8), is crucial for the pathogenesis of Kaposi's sarcoma, a common AIDS-related tumor of eyelid and conjunctiva. Using laser scanning confocal microscopy, we show that successful infection of ocular cell types by all the three viruses, belonging to three divergent subfamilies of herpesviruses, is facilitated by induction of F-actin rich membrane protrusions. Inhibitors of F-actin polymerization and membrane protrusion formation, cytochalasin D and latrunculin B, were able to block infection by all three viruses. Similar inhibition was seen by blocking phosphoinositide 3 kinase signaling, which is required for microbial phagocytosis. Transmission electron microscopy data using human corneal fibroblasts for HSV-1, human retinal pigment epithelial cells for CMV, and human conjunctival epithelial cells for HHV-8 are consistent with the possibility that pseudopod-like membrane protrusions facilitate virus uptake by the ocular cells. Our findings suggest a novel mechanism by which the nonprofessional mediators of phagocytosis can be infected by human herpesviruses.
Collapse
|
43
|
Viral and cellular contributions to herpes simplex virus entry into the cell. Curr Opin Virol 2012; 2:28-36. [DOI: 10.1016/j.coviro.2011.12.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 11/30/2011] [Accepted: 12/01/2011] [Indexed: 12/19/2022]
|
44
|
Salameh S, Sheth U, Shukla D. Early events in herpes simplex virus lifecycle with implications for an infection of lifetime. Open Virol J 2012; 6:1-6. [PMID: 22291864 PMCID: PMC3267084 DOI: 10.2174/1874357901206010001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Revised: 10/25/2011] [Accepted: 10/28/2011] [Indexed: 12/30/2022] Open
Abstract
Affecting a large percentage of human population herpes simplex virus (HSV) types -1 and -2 mainly cause oral, ocular, and genital diseases. Infection begins with viral entry into a host cell, which may be preceded by viral “surfing” along filopodia. Viral glycoproteins then bind to one or more of several cell surface receptors, such as herpesvirus entry mediator (HVEM), nectin-1, 3-O sulfated heparan sulfate (3-OS HS), paired immunoglobulin-like receptor α, and non-muscle myosin-IIA. At least five viral envelope glycoproteins participate in entry and these include gB, gC, gD and gH-gL. Post-entry, these glycoproteins may also facilitate cell-to-cell spread of the virus, which helps in the evasion of physical barriers as well as several components of the innate and adaptive immune responses. The spread may be facilitated by membrane fusion, movement across tight junctions, transfer across neuronal synapses, or the recruitment of actin-containing structures. This review summarizes some of the recent advances in our understanding of HSV entry and cell-to-cell spread.
Collapse
Affiliation(s)
- Sarah Salameh
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, 60612, USA
| | | | | |
Collapse
|
45
|
Low-pH-dependent changes in the conformation and oligomeric state of the prefusion form of herpes simplex virus glycoprotein B are separable from fusion activity. J Virol 2011; 85:9964-73. [PMID: 21813610 DOI: 10.1128/jvi.05291-11] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The cellular requirements for activation of herpesvirus fusion and entry remain poorly understood. Low pH triggers change in the antigenic reactivity of the prefusion form of the herpes simplex virus (HSV) fusion protein gB in virions, both in vitro and during viral entry via endocytosis (S. Dollery et al., J. Virol. 84:3759-3766, 2010). However, the mechanism and magnitude of gB conformational change are not clear. Here we show that the conformation and oligomeric state of gB with mutations in the bipartite fusion loops were similarly altered despite the fusion-inactivating mutations. Together with previous studies, this suggests that fusion loop mutants undergo conformational changes but are defective for fusion because they fail to make productive contact with the outer leaflet of the host target membrane. A direct, reversible effect of low pH on the structure of gB was detected by fluorescence spectroscopy. A soluble form of gB containing cytoplasmic tail sequences (s-gB) was triggered by mildly acidic pH to undergo changes in tryptophan fluorescence emission, hydrophobicity, antigenic conformation, and oligomeric structure and thus resembled the prefusion form of gB in the virion. In contrast, soluble gB730, for which the postfusion crystal structure is known, was only marginally affected by pH using these measures. The results underscore the importance of using a prefusion form of gB to assess the activation and extent of conformation change. Further, acidic pH had little to no effect on the conformation or hydrophobicity of gD or on gD's ability to bind nectin-1 or HVEM receptors. Our results support a model in which endosomal low pH serves as a cellular trigger of fusion by activating conformational changes in the fusion protein gB.
Collapse
|
46
|
Feng SZ, Cao WS, Liao M. The PI3K/Akt pathway is involved in early infection of some exogenous avian leukosis viruses. J Gen Virol 2011; 92:1688-1697. [DOI: 10.1099/vir.0.030866-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Avian leukosis virus (ALV) is an enveloped and oncogenic retrovirus. Avian leukosis caused by the members of ALV subgroups A, B and J has become one of the major problems challenging the poultry industry in China. However, the cellular factors such as signal transduction pathways involved in ALV infection are not well defined. In this study, our data demonstrated that ALV-J strain NX0101 infection in primary chicken embryo fibroblasts or DF-1 cells was correlated with the activity and phosphorylation of Akt. Akt activation was initiated at a very early stage of infection independently of NX0101 replication. The specific phosphatidylinositol 3-kinase (PI3K) inhibitors LY294002 or wortmannin could suppress Akt phosphorylation, indicating that NX0101-induced Akt phosphorylation is PI3K-dependent. ALV-A strain GD08 or ALV-B strain CD08 infection also demonstrated a similar profile of PI3K/Akt activation. Treatment of DF-1 cells with the drug 5-(N, N-hexamethylene) amiloride that inhibits the activity of chicken Na+/H+ exchanger type 1 significantly reduced Akt activation induced by NX0101, but not by GD08 and CD08. Akt activation triggered by GD08 or CD08 was abolished by clathrin-mediated endocytosis inhibitor chlorpromazine. Receptor-mediated endocytosis inhibitor dansylcadaverine had a negligible effect on all ALV-induced Akt phosphorylation. Moreover, viral replication of ALV was suppressed by LY294002 in a dose-dependent manner, which was due to the inhibition of virus infection by LY294002. These data suggest that the activation of the PI3K/Akt signalling pathway by exogenous ALV infection plays an important role in viral entry, yet the precise mechanism remains under further investigation.
Collapse
Affiliation(s)
- Shao-zhen Feng
- Key Laboratory of Animal Disease Control and Prevention of the Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Wei-sheng Cao
- Key Laboratory of Animal Disease Control and Prevention of the Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Ming Liao
- Key Laboratory of Animal Disease Control and Prevention of the Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| |
Collapse
|
47
|
Zaichick SV, Bohannon KP, Smith GA. Alphaherpesviruses and the cytoskeleton in neuronal infections. Viruses 2011; 3:941-81. [PMID: 21994765 PMCID: PMC3185784 DOI: 10.3390/v3070941] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 06/03/2011] [Accepted: 06/17/2011] [Indexed: 12/13/2022] Open
Abstract
Following infection of exposed peripheral tissues, neurotropic alphaherpesviruses invade nerve endings and deposit their DNA genomes into the nuclei of neurons resident in ganglia of the peripheral nervous system. The end result of these events is the establishment of a life-long latent infection. Neuroinvasion typically requires efficient viral transmission through a polarized epithelium followed by long-distance transport through the viscous axoplasm. These events are mediated by the recruitment of the cellular microtubule motor proteins to the intracellular viral particle and by alterations to the cytoskeletal architecture. The focus of this review is the interplay between neurotropic herpesviruses and the cytoskeleton.
Collapse
Affiliation(s)
- Sofia V Zaichick
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
48
|
Van den Broeke C, Favoreel HW. Actin' up: herpesvirus interactions with Rho GTPase signaling. Viruses 2011; 3:278-92. [PMID: 21994732 PMCID: PMC3185701 DOI: 10.3390/v3040278] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/15/2011] [Accepted: 03/16/2011] [Indexed: 01/06/2023] Open
Abstract
Herpesviruses constitute a very large and diverse family of DNA viruses, which can generally be subdivided in alpha-, beta- and gammaherpesvirus subfamilies. Increasing evidence indicates that many herpesviruses interact with cytoskeleton-regulating Rho GTPase signaling pathways during different phases of their replication cycle. Because of the large differences between herpesvirus subfamilies, the molecular mechanisms and specific consequences of individual herpesvirus interactions with Rho GTPase signaling may differ. However, some evolutionary distinct but similar general effects on Rho GTPase signaling and the cytoskeleton have also been reported. Examples of these include Rho GTPase-mediated nuclear translocation of virus during entry in a host cell and Rho GTPase-mediated viral cell-to-cell spread during later stages of infection. The current review gives an overview of both general and individual interactions of herpesviruses with Rho GTPase signaling.
Collapse
Affiliation(s)
- Céline Van den Broeke
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium.
| | | |
Collapse
|