1
|
Prpić J, Keros T, Božiković M, Kamber M, Jemeršić L. Current Insights into Porcine Bocavirus (PBoV) and Its Impact on the Economy and Public Health. Vet Sci 2024; 11:677. [PMID: 39729017 DOI: 10.3390/vetsci11120677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/11/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024] Open
Abstract
Effective control of animal infectious diseases is crucial for maintaining robust livestock production systems worldwide. Porcine meat constitutes approximately 35-40% of global meat production with the largest producers being China and the European Union (EU). Emerging viral pathogens in swine, like porcine bocavirus (PBoV), have not garnered significant attention, leaving their pathogenic characteristics largely unexplored. This review aims to bridge this knowledge gap by conducting a comprehensive analysis of the existing literature on PBoV. We explore the virus's genome structure, discovery, classification, detection methods, pathogenesis, and its potential public health implications. Additionally, we discuss the distribution and economic impact of PBoV, which includes potential losses due to decreased productivity, increased veterinary costs, and trade restrictions. By highlighting the current state of knowledge, this review seeks to enhance the understanding of PBoV, thereby aiding in its prevention and control, and mitigating its economic impact on the swine industry.
Collapse
Affiliation(s)
- Jelena Prpić
- Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia
| | | | | | - Magda Kamber
- Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia
| | - Lorena Jemeršić
- Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia
| |
Collapse
|
2
|
Gong C, He H, Fu Y, Li B, Yang B, Li J, He X, Han J, Zhang Y, Liu G, Guo Q. Development of a Synthetic VP1 Protein Peptide-Based ELISA to Detect Antibodies Against Porcine Bocavirus Group 3. Viruses 2024; 16:1946. [PMID: 39772251 PMCID: PMC11680204 DOI: 10.3390/v16121946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/11/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Porcine bocavirus (PBoV), classified within the genus Bocaparvovirus, has been reported worldwide. PBoV has been divided into group 1, group 2, and group 3. PBoV group 3 (G3) viruses are the most prevalent in China. Currently, effective serological methods for the detection of antibodies against PBoV G3 are limited. In this study, we developed an indirect ELISA using a synthetic VP1 peptide designed on the basis of the conserved region of the PBoV VP1 protein as a coating antigen. Through matrix titration, the optimal coating concentration of the VP1 peptide (0.5 μg/mL), serum dilution (1:200), and working concentration of the secondary antibody (1:50,000) were determined. The cutoff value of this developed ELISA was set as 0.4239. Further investigations revealed that this developed ELISA had no cross-reactivity with positive serum antibodies against FMDV-O, FMDV-A, PRV, ASFV, SF, PCV2, PEDV, and TGEV. The detection limit of the method was a 1:1600 dilution of standard positive serum against PBoV G3. The coefficients of variation for both the intra- and interassay data were lower than 10%. A total of 1373 serum samples collected from 12 provinces in China between 2022 and 2023 were subjected to indirect ELISA. The results showed that 47.56% of the samples were PBoV G3 positive. These results reveal that peptide-based ELISA is a reliable and cost-effective method for detecting PBoV G3 antibodies. It also facilitates the investigation of the prevalence and distribution of PBoV G3.
Collapse
Affiliation(s)
- Chao Gong
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals (XJ-KLNDSCHA), College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (C.G.); (H.H.); (J.L.); (X.H.); (J.H.); (Y.Z.)
| | - Hui He
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals (XJ-KLNDSCHA), College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (C.G.); (H.H.); (J.L.); (X.H.); (J.H.); (Y.Z.)
| | - Yuguang Fu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou University, Lanzhou 730000, China; (Y.F.); (B.L.); (B.Y.)
| | - Baoyu Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou University, Lanzhou 730000, China; (Y.F.); (B.L.); (B.Y.)
| | - Bin Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou University, Lanzhou 730000, China; (Y.F.); (B.L.); (B.Y.)
| | - Jianlong Li
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals (XJ-KLNDSCHA), College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (C.G.); (H.H.); (J.L.); (X.H.); (J.H.); (Y.Z.)
| | - Xiaodong He
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals (XJ-KLNDSCHA), College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (C.G.); (H.H.); (J.L.); (X.H.); (J.H.); (Y.Z.)
| | - Juncheng Han
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals (XJ-KLNDSCHA), College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (C.G.); (H.H.); (J.L.); (X.H.); (J.H.); (Y.Z.)
| | - Yi Zhang
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals (XJ-KLNDSCHA), College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (C.G.); (H.H.); (J.L.); (X.H.); (J.H.); (Y.Z.)
| | - Guangliang Liu
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals (XJ-KLNDSCHA), College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (C.G.); (H.H.); (J.L.); (X.H.); (J.H.); (Y.Z.)
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou University, Lanzhou 730000, China; (Y.F.); (B.L.); (B.Y.)
| | - Qingyong Guo
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals (XJ-KLNDSCHA), College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (C.G.); (H.H.); (J.L.); (X.H.); (J.H.); (Y.Z.)
| |
Collapse
|
3
|
Hong Y, Ma B, Li J, Shuai J, Zhang X, Xu H, Zhang M. Triplex-Loop-Mediated Isothermal Amplification Combined with a Lateral Flow Immunoassay for the Simultaneous Detection of Three Pathogens of Porcine Viral Diarrhea Syndrome in Swine. Animals (Basel) 2023; 13:1910. [PMID: 37370420 DOI: 10.3390/ani13121910] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), porcine bocavirus (PBoV), and porcine rotavirus (PoRV) are associated with porcine viral diarrhea. In this study, triplex loop-mediated isothermal amplification (LAMP) combined with a lateral flow dipstick (LFD) was established for the simultaneous detection of PEDV, PoRV, and PBoV. The PEDV-gp6, PoRV-vp6, and PBoV-vp1 genes were selected to design LAMP primers. The amplification could be carried out at 64 °C using a miniature metal bath within 30 min. The triplex LAMP-LFD assay exhibited no cross-reactions with other porcine pathogens. The limits of detection (LODs) of PEDV, PoRV, and PBoV were 2.40 × 101 copies/μL, 2.89 × 101 copies/μL, and 2.52 × 101 copies/μL, respectively. The consistency between rt-qPCR and the triplex LAMP-LFD was over 99% in field samples testing. In general, the triplex LAMP-LFD assay was suitable for the rapid and simultaneous detection of the three viruses in the field.
Collapse
Affiliation(s)
- Yi Hong
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China
| | - Biao Ma
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China
| | - Jiali Li
- Hangzhou Quickgene Sci-Tech. Co., Ltd., Hangzhou 310018, China
| | - Jiangbing Shuai
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, Hangzhou 310016, China
| | - Xiaofeng Zhang
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, Hangzhou 310016, China
| | - Hanyue Xu
- College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Mingzhou Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
4
|
Trapani S, Caporizzi A, Ricci S, Indolfi G. Human Bocavirus in Childhood: A True Respiratory Pathogen or a "Passenger" Virus? A Comprehensive Review. Microorganisms 2023; 11:1243. [PMID: 37317217 DOI: 10.3390/microorganisms11051243] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 06/16/2023] Open
Abstract
Recently, human bocavirus (HBoV) has appeared as an emerging pathogen, with an increasing number of cases reported worldwide. HBoV is mainly associated with upper and lower respiratory tract infections in adults and children. However, its role as a respiratory pathogen is still not fully understood. It has been reported both as a co-infectious agent (predominantly with respiratory syncytial virus, rhinovirus, parainfluenza viruses, and adenovirus), and as an isolated viral pathogen during respiratory tract infections. It has also been found in asymptomatic subjects. The authors review the available literature on the epidemiology of HBoV, the underlying risk factors associated with infection, the virus's transmission, and its pathogenicity as a single pathogen and in co-infections, as well as the current hypothesis about the host's immune response. An update on different HBoV detection methods is provided, including the use of quantitative single or multiplex molecular methods (screening panels) on nasopharyngeal swabs or respiratory secretions, tissue biopsies, serum tests, and metagenomic next-generations sequencing in serum and respiratory secretions. The clinical features of infection, mainly regarding the respiratory tract but also, though rarely, the gastrointestinal one, are extensively described. Furthermore, a specific focus is dedicated to severe HBoV infections requiring hospitalization, oxygen therapy, and/or intensive care in the pediatric age; rare fatal cases have also been reported. Data on tissue viral persistence, reactivation, and reinfection are evaluated. A comparison of the clinical characteristics of single infection and viral or bacterial co-infections with high or low HBoV rates is carried out to establish the real burden of HBoV disease in the pediatric population.
Collapse
Affiliation(s)
- Sandra Trapani
- Department of Health Sciences, University of Florence, Viale Pieraccini, 24, 50139 Florence, Italy
- Pediatric Unit, Meyer Children's Hospital IRCCS, Viale Pieraccini, 24, 50139 Florence, Italy
| | - Alice Caporizzi
- Pediatric Unit, Meyer Children's Hospital IRCCS, Viale Pieraccini, 24, 50139 Florence, Italy
| | - Silvia Ricci
- Department of Health Sciences, University of Florence, Viale Pieraccini, 24, 50139 Florence, Italy
- Division of Immunology, Meyer Children's Hospital IRCCS, Viale Pieraccini, 24, 50139 Florence, Italy
| | - Giuseppe Indolfi
- Pediatric Unit, Meyer Children's Hospital IRCCS, Viale Pieraccini, 24, 50139 Florence, Italy
- NEUROFARBA Department, University of Florence, Viale Pieraccini, 24, 50139 Florence, Italy
| |
Collapse
|
5
|
Wang W, Guan R, Liu Z, Zhang F, Sun R, Liu S, Shi X, Su Z, Liang R, Hao K, Wang Z, Liu X. Epidemiologic and clinical characteristics of human bocavirus infection in children hospitalized for acute respiratory tract infection in Qingdao, China. Front Microbiol 2022; 13:935688. [PMID: 36033842 PMCID: PMC9399728 DOI: 10.3389/fmicb.2022.935688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Persistent infection and prolonged shedding of human bocavirus 1 (HBoV1) in children have been reported, and the role of HBoV1 as a sole causative pathogen in acute respiratory infection (ARI) is yet to be established. While the reported prevalence of HBoV infection varies due to different detection methods and sampling criteria, determining the viral and bacterial etiology of HBoV infection using multiplex real-time PCR is yet to be reported. Herein, we aimed to further explore the pathogenicity of HBoV in patients with ARI by screening the viral and bacterial infections in children with ARI in Qingdao and comparing the epidemiological, clinical characteristics, and etiological results. Human bocavirus was identified in 28.1% of the samples, and further sequencing analysis of the detected HBoV confirmed 96.4% as HBoV1. The rate of HBoV as a single viral infection was 75%, and the rate of coinfection with bacteria was 66.1%, suggesting the need for continued monitoring of HBoV in children with ARIs. Clinical characterization suggested that HBoV infection may affect the function of organs, such as the liver, kidney, and heart, and the blood acid–base balance. Additionally, it is essential to promote awareness about the importance of disinfection and sterilization of the hospital environment and standardizing operations. The interactions between HBoV and other pathogens remain to be investigated in further detail in the future.
Collapse
Affiliation(s)
- Wenjing Wang
- Department of Epidemiology and Health Statistics, The College of Public Health of Qingdao University, Qingdao, China
| | - Renzheng Guan
- Department of Pediatrics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ziran Liu
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, China
| | - Feng Zhang
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, China
| | - Rui Sun
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, China
| | - Sitong Liu
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, China
| | - Xiaoyan Shi
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, China
| | - Zhilei Su
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, China
| | - Rongxiang Liang
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, China
| | - Kangyu Hao
- Department of Epidemiology and Health Statistics, The College of Public Health of Qingdao University, Qingdao, China
| | - Zhaoguo Wang
- Department of Epidemiology and Health Statistics, The College of Public Health of Qingdao University, Qingdao, China
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, China
- *Correspondence: Zhaoguo Wang
| | - Xianming Liu
- Department of Neurosurgery, Qingdao Municipal Hospital, Qingdao, China
- Xianming Liu
| |
Collapse
|
6
|
Isolation, pathogenesis, and genetic evolution of a porcine bocavirus PBoV/HB/30/2018 strain in China. Virology 2022; 572:55-63. [PMID: 35597200 DOI: 10.1016/j.virol.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 11/20/2022]
|
7
|
Jager MC, Tomlinson JE, Lopez-Astacio RA, Parrish CR, Van de Walle GR. Small but mighty: old and new parvoviruses of veterinary significance. Virol J 2021; 18:210. [PMID: 34689822 PMCID: PMC8542416 DOI: 10.1186/s12985-021-01677-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
In line with the Latin expression "sed parva forti" meaning "small but mighty," the family Parvoviridae contains many of the smallest known viruses, some of which result in fatal or debilitating infections. In recent years, advances in metagenomic viral discovery techniques have dramatically increased the identification of novel parvoviruses in both diseased and healthy individuals. While some of these discoveries have solved etiologic mysteries of well-described diseases in animals, many of the newly discovered parvoviruses appear to cause mild or no disease, or disease associations remain to be established. With the increased use of animal parvoviruses as vectors for gene therapy and oncolytic treatments in humans, it becomes all the more important to understand the diversity, pathogenic potential, and evolution of this diverse family of viruses. In this review, we discuss parvoviruses infecting vertebrate animals, with a special focus on pathogens of veterinary significance and viruses discovered within the last four years.
Collapse
Affiliation(s)
- Mason C Jager
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Joy E Tomlinson
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Robert A Lopez-Astacio
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Colin R Parrish
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
8
|
Exploring the Cause of Diarrhoea and Poor Growth in 8-11-Week-Old Pigs from an Australian Pig Herd Using Metagenomic Sequencing. Viruses 2021; 13:v13081608. [PMID: 34452472 PMCID: PMC8402840 DOI: 10.3390/v13081608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 12/24/2022] Open
Abstract
Diarrhoea and poor growth among growing pigs is responsible for significant economic losses in pig herds globally and can have a wide range of possible aetiologies. Next generation sequencing (NGS) technologies are useful for the detection and characterisation of diverse groups of viruses and bacteria and can thereby provide a better understanding of complex interactions among microorganisms potentially causing clinical disease. Here, we used a metagenomics approach to identify and characterise the possible pathogens in colon and lung samples from pigs with diarrhoea and poor growth in an Australian pig herd. We identified and characterized a wide diversity of porcine viruses including RNA viruses, in particular several picornaviruses—porcine sapelovirus (PSV), enterovirus G (EV-G), and porcine teschovirus (PTV), and a porcine astrovirus (PAstV). Single stranded DNA viruses were also detected and included parvoviruses like porcine bocavirus (PBoV) and porcine parvovirus 2 (PPV2), porcine parvovirus 7 (PPV7), porcine bufa virus (PBuV), and porcine adeno-associated virus (AAV). We also detected single stranded circular DNA viruses such as porcine circovirus type 2 (PCV2) at very low abundance and torque teno sus viruses (TTSuVk2a and TTSuVk2b). Some of the viruses detected here may have had an evolutionary past including recombination events, which may be of importance and potential involvement in clinical disease in the pigs. In addition, our metagenomics data found evidence of the presence of the bacteria Lawsonia intracellularis, Brachyspira spp., and Campylobacter spp. that may, together with these viruses, have contributed to the development of clinical disease and poor growth.
Collapse
|
9
|
Aryal M, Liu G. Porcine Bocavirus: A 10-Year History since Its Discovery. Virol Sin 2021; 36:1261-1272. [PMID: 33909219 PMCID: PMC8080206 DOI: 10.1007/s12250-021-00365-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022] Open
Abstract
Porcine bocavirus (PBoV) is a single-stranded DNA virus, belongs to the genus Bocaparvovirus of family Parvoviridae. It was discovered along with porcine circovirus 2 (PCV 2) and torque tenovirus (TTV) in the lymph nodes of pigs suffering from postweaning multisystemic wasting syndrome (PMWS) in Sweden in 2009. PBoV has been reported throughout the world, mostly in weaning piglets, and has a broad range of tissue tropism. Since PBoV is prevalent in healthy as well as clinically infected pigs and is mostly associated with coinfection with other viruses, the pathogenic nature of PBoV is still unclear. Currently, there are no cell lines available for the study of PBoV, and animal model experiments have not been described. This review summarizes the current state of knowledge about PBoV, including the epidemiology, evolution analysis, detection methods, pathogenesis and public health concerns.
Collapse
Affiliation(s)
- Manita Aryal
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Guangliang Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| |
Collapse
|
10
|
Paim WP, Maggioli MF, Weber MN, Rezabek G, Narayanan S, Ramachandran A, Canal CW, Bauermann FV. Virome characterization in serum of healthy show pigs raised in Oklahoma demonstrated great diversity of ssDNA viruses. Virology 2021; 556:87-95. [PMID: 33550118 DOI: 10.1016/j.virol.2021.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 02/08/2023]
Abstract
In the United States, show pigs are raised to compete in agricultural events. These animals are usually raised in small herds with extensive human, domestic, and wild animal contact. Therefore, pathogen monitoring in this animal category is critical for improved disease surveillance and preparedness. This study characterized the virome of healthy show pigs using high-throughput sequencing using pooled serum samples from 2018 or 2019 (200 samples each pool). Results demonstrated the presence of DNA viral families (Parvoviridae, Circoviridae, and Herpesviridae) and RNA families (Arteriviridae, Flaviviridae, and Retroviridae). Twenty-three viral species were identified, including the first detection of porcine bufavirus in the US. Moreover, important swine pathogens identified included porcine reproductive and respiratory syndrome virus, atypical porcine pestivirus, and porcine circovirus (PCV). Additionally, complete coding genomes of 17 viruses from the Parvoviridae, Anelloviridae, and Circoviridae families were retrieved and included the first near full-length genomes of US Ungulate bocaparvovirus 3 species.
Collapse
Affiliation(s)
- Willian P Paim
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University (OSU), Stillwater, OK, 74078, USA; Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Mayara F Maggioli
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University (OSU), Stillwater, OK, 74078, USA
| | - Matheus N Weber
- Laboratório de Microbiologia Molecular, Instituto de Ciências da Saúde, Universidade Feevale, Novo Hamburgo, Rio Grande do Sul, Brazil
| | - Grant Rezabek
- Serology diagnostic Section, Oklahoma Animal Disease Diagnostic Laboratory (OADDL), College of Veterinary Medicine, Oklahoma State University (OSU), Stillwater, OK, 74078, USA
| | - Sai Narayanan
- Molecular diagnostic Section, Oklahoma Animal Disease Diagnostic Laboratory (OADDL), College of Veterinary Medicine, Oklahoma State University (OSU), Stillwater, OK, 74078, USA
| | - Akhilesh Ramachandran
- Molecular diagnostic Section, Oklahoma Animal Disease Diagnostic Laboratory (OADDL), College of Veterinary Medicine, Oklahoma State University (OSU), Stillwater, OK, 74078, USA
| | - Cláudio W Canal
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Fernando V Bauermann
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University (OSU), Stillwater, OK, 74078, USA.
| |
Collapse
|
11
|
Zheng LL, Cui JT, Qiao H, Li XS, Li XK, Chen HY. Detection and genetic characteristics of porcine bocavirus in central China. Arch Virol 2021; 166:451-460. [PMID: 33392822 DOI: 10.1007/s00705-020-04879-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/30/2020] [Indexed: 10/22/2022]
Abstract
To investigate the epidemic profile and genetic diversity of porcine bocavirus (PBoV), 281 clinical samples, including 236 intestinal tissue samples and 45 fecal samples were collected from diarrheic piglets on 37 different pig farms in central China, and two SYBR Green I-based quantitative PCR assays were developed to detect PBoV1/2 and PBoV3/4/5, respectively. One hundred forty-eight (52.67%) of the 281 clinical samples were positive for PBoV1/2, 117 (41.63%) were positive for PBoV3/4/5, 55 (19.57%) were positive for both PBoV1/2 and PBoV3/4/5, and 86.49% (32/37) of the pig farms were positive for PBoV. Overall, the prevalence of PBoV was 74.73% (210/281) in central China. Subsequently, nearly full-length genomic sequences of two PBoV strains (designated CH/HNZM and PBoV-TY) from two different farms were determined. Phylogenetic analysis demonstrated that the two PBoV strains obtained in this study belonged to the PBoV G2 group and had a close relationship to 10 other PBoV G2 strains but differed genetically from PBoV G1, PBoV G3, and seven other bocaviruses. CH/HNZM and PBoV-TY were closely related to the PBoV strain GD18 (KJ755666), which may be derived from the PBoV strains 0912/2012 (MH558677) and 57AT-HU (KF206160) through recombination. Compared with reference strain ZJD (HM053694)-China, more amino acid variation was found in the NS1 proteins of CH/HNZM and PBoV-TY. These data extend our understanding of the molecular epidemiology and evolution of PBoV.
Collapse
Affiliation(s)
- Lan-Lan Zheng
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Veterinary Medicine, Henan Agricultural University, Nongye Road 63#, Zhengzhou, 450002, Henan Province, People's Republic of China
| | - Jian-Tao Cui
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Veterinary Medicine, Henan Agricultural University, Nongye Road 63#, Zhengzhou, 450002, Henan Province, People's Republic of China
| | - Han Qiao
- College of Life Science, South China Agricultural University, Guangzhou, 510642, Guangdong Province, People's Republic of China
| | - Xin-Sheng Li
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Veterinary Medicine, Henan Agricultural University, Nongye Road 63#, Zhengzhou, 450002, Henan Province, People's Republic of China
| | - Xiao-Kang Li
- College of Animal Science and Technology, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, 471000, Henan Province, People's Republic of China.
| | - Hong-Ying Chen
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Veterinary Medicine, Henan Agricultural University, Nongye Road 63#, Zhengzhou, 450002, Henan Province, People's Republic of China. .,College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake#15, Zhengzhou, 450046, Henan Province, People's Republic of China.
| |
Collapse
|
12
|
Zheng LL, Cui JT, Han HY, Hou HL, Wang L, Liu F, Chen HY. Development of a duplex SYBR GreenⅠ based real-time PCR assay for detection of porcine epidemic diarrhea virus and porcine bocavirus3/4/5. Mol Cell Probes 2020; 51:101544. [PMID: 32109535 DOI: 10.1016/j.mcp.2020.101544] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/07/2020] [Accepted: 02/24/2020] [Indexed: 02/07/2023]
Abstract
The duplex real-time PCR assay based on SYBR Green І was developed for detection of porcine epidemic diarrhea virus (PEDV) and porcine bocavirus (PBoV) 3/4/5 genotypes simultaneously. Two pairs of specific primers were designed targeting the N gene sequence of PEDV and VP1 gene sequence of PBoV3/4/5. PEDV and PBoV3/4/5 could be distinguished by their different melting temperatures (Tm) in one sample. The Tm value of PEDV was 83.5 °C, and the Tm value of PBoV3/4/5 was 78.5 °C, while other swine pathogens showed no specific melting peaks. The detection limits of this assay were 10 copies/μL for both PEDV and PBoV3/4/5. A total of sixty-three intestinal tissue samples were collected from piglets suffering from diarrhea, and the viral nucleic acids detected and identified by the real-time PCR assay and conventional PCR assay. The duplex real-time PCR detection results showed that the prevalence of PEDV and PBoV3/4/5 was 85.7% and 46%, respectively, and the co-infection rate of the two viruses was 28.6%. These results indicated that this duplex real-time PCR assay was a sensitive, specific and reproducible method for differentiating PEDV and PBoV3/4/5 or their co-infection.
Collapse
Affiliation(s)
- Lan-Lan Zheng
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan Province, People's Republic of China
| | - Jian-Tao Cui
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan Province, People's Republic of China
| | - Hao-Ying Han
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan Province, People's Republic of China
| | - Hua-Lin Hou
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan Province, People's Republic of China; College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi Province, People's Republic of China
| | - Leyi Wang
- Department of Veterinary Clinical Medicine and Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois, Urbana, IL, USA
| | - Fang Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan Province, People's Republic of China.
| | - Hong-Ying Chen
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan Province, People's Republic of China.
| |
Collapse
|
13
|
Wang W, Cao L, Sun W, Xin J, Zheng M, Tian M, Lu H, Jin N. Sequence and phylogenetic analysis of novel porcine parvovirus 7 isolates from pigs in Guangxi, China. PLoS One 2019; 14:e0219560. [PMID: 31291362 PMCID: PMC6619813 DOI: 10.1371/journal.pone.0219560] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 06/26/2019] [Indexed: 12/23/2022] Open
Abstract
Parvoviruses are a diverse group of viruses that infect a wide range of animals and humans. In recent years, advances in molecular techniques have resulted in the identification of several novel parvoviruses in swine. In this study, porcine parvovirus 7 (PPV7) isolates from clinical samples collected in Guangxi, China, were examined to understand their molecular epidemiology and co-infection with porcine circovirus type 2 (PCV2). In this study, among the 385 pig serum samples, 105 were positive for PPV7, representing a 27.3% positive detection rate. The co-infection rate of PPV7 and PCV2 was 17.4% (67/385). Compared with the reference strains, we noted 93.9%-97.9% similarity in the NS1 gene and 87.4%-95.0% similarity in the cap gene. Interestingly, compared with the reference strains, sixteen of the PPV7 strains in this study contained an additional 3 to 15 nucleotides in the middle of the cap gene. Therefore, the Cap protein of fourteen strains encoded 474 amino acids, and the Cap protein of the other two strains encoded 470 amino acids. However, the Cap protein of the reference strain PPV7 isolate 42 encodes 469 amino acids. This is the first report of sequence variation within the cap gene, confirming an increase in the number of amino acids in the Cap protein of PPV7. Our findings provide new insight into the prevalence of PPV7 in swine in Guangxi, China, as well as sequence data and phylogenetic analysis of these novel PPV7 isolates.
Collapse
Affiliation(s)
- Wei Wang
- College of Animal Science and Technology, Guangxi University, Nanning, People’s Republic of China
- Institute of Military Veterinary, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Sciences, Changchun, People’s Republic of China
| | - Liang Cao
- Institute of Military Veterinary, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Sciences, Changchun, People’s Republic of China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Wenchao Sun
- Institute of Military Veterinary, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Sciences, Changchun, People’s Republic of China
- Institute of Virology, Wenzhou University, Wenzhou, People’s Republic of China
| | - Jialiang Xin
- College of Animal Science and Technology, Guangxi University, Nanning, People’s Republic of China
- Guangxi Center for Animal Disease Control and Prevention, Nanning, People’s Republic of China
| | - Min Zheng
- Guangxi Center for Animal Disease Control and Prevention, Nanning, People’s Republic of China
| | - Mingyao Tian
- Institute of Military Veterinary, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Sciences, Changchun, People’s Republic of China
- * E-mail: (MYT); (HJL); (NYJ)
| | - Huijun Lu
- Institute of Military Veterinary, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Sciences, Changchun, People’s Republic of China
- * E-mail: (MYT); (HJL); (NYJ)
| | - Ningyi Jin
- College of Animal Science and Technology, Guangxi University, Nanning, People’s Republic of China
- Institute of Military Veterinary, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Sciences, Changchun, People’s Republic of China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, People’s Republic of China
- Institute of Virology, Wenzhou University, Wenzhou, People’s Republic of China
- * E-mail: (MYT); (HJL); (NYJ)
| |
Collapse
|
14
|
Shi QK, Zhang JL, Gu WY, Hou LS, Yuan GF, Chen SJ, Fan JH, Zuo YZ. Seroprevalence of porcine bocavirus in pigs in north-central China using a recombinant-NP1-protein-based indirect ELISA. Arch Virol 2019; 164:2351-2354. [PMID: 31222429 DOI: 10.1007/s00705-019-04325-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 05/24/2019] [Indexed: 10/26/2022]
Abstract
Porcine bocavirus (PBoV), which belongs the genus Bocaparvovirus, has been identified throughout the world. However, serological methods for detecting anti-PBoV antibodies are presently limited. In the present study, an indirect enzyme-linked immunosorbent assay (PBoV-rNP1 ELISA) based on a recombinant form of nucleoprotein 1 (NP1) of PBoV was established for investigating the seroprevalence of PBoV in 2025 serum specimens collected in north-central China from 2016 to 2018, and 42.3% of the samples tested positive for anti-PBoV IgG antibodies, indicating that the seroprevalence of PBoV is high in pig populations in China.
Collapse
Affiliation(s)
- Qian-Kai Shi
- College of Veterinary Medicine, Hebei Agricultural University, Lucky Street, Baoding, 071001, People's Republic of China
| | - Jian-Lou Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Lucky Street, Baoding, 071001, People's Republic of China
| | - Wen-Yuan Gu
- College of Veterinary Medicine, Hebei Agricultural University, Lucky Street, Baoding, 071001, People's Republic of China.,Animal Diseases Control Center of Hebei, Shijiazhuang, 050053, People's Republic of China
| | - Lin-Shan Hou
- College of Veterinary Medicine, Hebei Agricultural University, Lucky Street, Baoding, 071001, People's Republic of China
| | - Guang-Fu Yuan
- College of Veterinary Medicine, Hebei Agricultural University, Lucky Street, Baoding, 071001, People's Republic of China
| | - Shao-Jie Chen
- College of Veterinary Medicine, Hebei Agricultural University, Lucky Street, Baoding, 071001, People's Republic of China
| | - Jing-Hui Fan
- College of Veterinary Medicine, Hebei Agricultural University, Lucky Street, Baoding, 071001, People's Republic of China.
| | - Yu-Zhu Zuo
- College of Veterinary Medicine, Hebei Agricultural University, Lucky Street, Baoding, 071001, People's Republic of China.
| |
Collapse
|
15
|
Zhang C, Song F, Xiu L, Liu Y, Yang J, Yao L, Peng J. Identification and characterization of a novel rodent bocavirus from different rodent species in China. Emerg Microbes Infect 2018; 7:48. [PMID: 29593218 PMCID: PMC5874251 DOI: 10.1038/s41426-018-0052-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 02/05/2018] [Accepted: 02/11/2018] [Indexed: 01/20/2023]
Abstract
Members in the genus Bocaparvovirus are closely related to human health and have a wide host range. The diverse hosts raise the possibility of crossing species barrier, which is a feature of emerging viruses. Among the mammalian hosts, rodents are generally acknowledged to be important reservoirs of emerging viruses. Here, rodent samples collected from six provinces and autonomous regions of China (Liaoning, Inner Mongolia, Tibet, Xinjiang, Guangxi and Yunnan) were used to investigate the prevalence and distribution of bocaparvoviruses. By using next-generation sequencing first, a partial non-structural protein 1 (NS1) gene belonging to a possible novel bocaparvovirus was discovered. Following this, PCR-based screening of NS1 gene was conducted in 485 rodent samples, with 106 positive results found in seven rodent species (Rattus norvegicus, Mus musculus, Apodemus agrarius, Cricetulus barabensis, Rattus flavipectus, Rattus rattus and Rhombomys opimus). Finally, six nearly full-length genomes and three complete CDS were obtained and the newly identified bocaparvovirus was tentatively named rodent bocavirus (RoBoV). RoBoV has three ORFs: NS1, NP1, and VP, which are characteristics of bocaparvoviruses. Phylogenetic analyses revealed that porcine bocavirus isolate PBoV-KU14, a member of Ungulate bocaparvovirus 4, was the most related virus to RoBoV, with 92.1-92.9% amino acid identities in NS1 protein. Alignments of RoBoV-related sequences showed RoBoV isolates could be classified into two clades, demonstrating an inter-host genetic diversity. The results indicate a potential interspecies transmission of RoBoV between rodents and swine and expand our knowledge on bocaparvoviruses in rodent populations.
Collapse
Affiliation(s)
- Chi Zhang
- Ministry of Health Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100176, China
| | - Fenglin Song
- Liaoning Entry-Exit Inspection and Quarantine Bureau, Shenyang, 116001, China
| | - Leshan Xiu
- Ministry of Health Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100176, China
| | - Yang Liu
- Jilin Entry-Exit Inspection and Quarantine Bureau, Changchun, 130062, China
| | - Jian Yang
- Ministry of Health Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100176, China
| | - Lisi Yao
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, China.
| | - Junping Peng
- Ministry of Health Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100176, China.
| |
Collapse
|
16
|
First molecular detection of porcine bocavirus in Malaysia. Trop Anim Health Prod 2017; 50:733-739. [PMID: 29243138 DOI: 10.1007/s11250-017-1489-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 12/05/2017] [Indexed: 01/19/2023]
Abstract
Several strains of porcine bocaviruses have been reported worldwide since their first detection in Sweden in 2009. Subsequently, the virus has been reported to be associated with gastrointestinal and respiratory signs in weaner and grower pigs. Although Malaysia is host to a self-sufficient swine livestock industry, there is no study that describes porcine bocavirus in the country. This report is the first to describe porcine bocavirus (PBoV) in Malaysian swine herds. PBoV was identified in various tissues from sick and runt pigs using the conventional PCR method with primers targeting conserved regions encoding for the nonstructural protein (NS1) gene. Out of 103 samples tested from 17 pigs, 32 samples from 15 pigs were positive for porcine bocavirus. In addition, a higher detection rate was identified from mesenteric lymph nodes (52.9%), followed by tonsil (37.0%), and lungs (33.3%). Pairwise comparison and phylogenetic analyses based on a 658-bp fragment of NS1 gene revealed that the Malaysian PBoV strains are highly similar to PBoV3 isolated in Minnesota, USA. The presence of porcine bocavirus in Malaysia and their phylogenetic bond was marked for the first time by this study. Further studies will establish the molecular epidemiology of PBoV in Malaysia and clarify pathogenicity of the local isolates.
Collapse
|
17
|
Ao Y, Li X, Li L, Xie X, Jin D, Yu J, Lu S, Duan Z. Two novel bocaparvovirus species identified in wild Himalayan marmots. SCIENCE CHINA-LIFE SCIENCES 2017; 60:1348-1356. [PMID: 29218438 PMCID: PMC7089499 DOI: 10.1007/s11427-017-9231-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 09/16/2017] [Indexed: 12/17/2022]
Abstract
Bocaparvovirus (BOV) is a genetically diverse group of DNA viruses and a possible cause of respiratory, enteric, and neurological diseases in humans and animals. Here, two highly divergent BOVs (tentatively named as Himalayan marmot BOV, HMBOV1 and HMBOV2) were identified in the livers and feces of wild Himalayan marmots in China, by viral metagenomic analysis. Five of 300 liver samples from Himalayan marmots were positive for HMBOV1 and five of 99 fecal samples from these animals for HMBOV2. Their nearly complete genome sequences are 4,672 and 4,887 nucleotides long, respectively, with a standard genomic organization and containing protein-coding motifs typical for BOVs. Based on their NS1, NP1, and VP1, HMBOV1 and HMBOV2 are most closely related to porcine BOV SX/1-2 (approximately 77.0%/50.0%, 50.0%/53.0%, and 79.0%/54.0% amino acid identity, respectively). Phylogenetic analysis of these three proteins showed that HMBOV1 and HMBOV2 formed two distinctly independent branches in BOVs. According to these results, HMBOV1 and HMBOV2 are two different novel species in the Bocaparvovirus genus. Their identification expands our knowledge of the genetic diversity and evolution of BOVs. Further studies are needed to investigate their potential pathogenicity and their impact on Himalayan marmots and humans.
Collapse
Affiliation(s)
- Yuanyun Ao
- National Institute for Viral Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100052, China
| | - Xiaoyue Li
- Laboratory Department, the First People's Hospital of Anqing, Anqing, 246000, China
| | - Lili Li
- National Institute for Viral Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100052, China
| | - Xiaolu Xie
- Peking Union Medical College Hospital, Beijing, 100730, China
| | - Dong Jin
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Jiemei Yu
- National Institute for Viral Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100052, China.
| | - Shan Lu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| | - Zhaojun Duan
- National Institute for Viral Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100052, China.
| |
Collapse
|
18
|
Woo PCY, Lau SKP, Tsoi HW, Patteril NG, Yeung HC, Joseph S, Wong EYM, Muhammed R, Chow FWN, Wernery U, Yuen KY. Two novel dromedary camel bocaparvoviruses from dromedaries in the Middle East with unique genomic features. J Gen Virol 2017; 98:1349-1359. [PMID: 28613145 DOI: 10.1099/jgv.0.000775] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The recent emergence of Middle East respiratory syndrome (MERS) coronavirus and its discovery from dromedary camels has boosted interest in the search for novel viruses in dromedaries. While bocaparvoviruses are known to infect various animals, it was not known that they exist in dromedaries. In this study, we describe the discovery of two novel dromedary camel bocaparvoviruses (DBoVs), DBoV1 and DBoV2, from dromedary faecal samples in Dubai. Among 667 adult dromedaries and 72 dromedary calves, 13.9 % of adult dromedaries and 33.3 % of dromedary calves were positive for DBoV1, while 7.0 % of adult dromedaries and 25.0 % of dromedary calves were positive for DBoV2, as determined by PCR. Sequencing of 21 DBoV1 and 18 DBoV2 genomes and phylogenetic analysis showed that DBoV1 and DBoV2 formed two distinct clusters, with only 32.6-36.3 % amino acid identities between the DBoV1 and DBoV2 strains. Quasispecies were detected in both DBoVs. The amino acid sequences of the NS1 proteins of all the DBoV1 and DBoV2 strains showed <85 % identity to those of all the other bocaparvoviruses, indicating that DBoV1 and DBoV2 are two bocaparvovirus species according to the ICTV criteria. Although the typical genome structure of NS1-NP1-VP1/VP2 was observed in DBoV1 and DBoV2, no phospholipase A2 motif and associated calcium binding site were observed in the predicted VP1 sequences for any of the 18 sequenced DBoV2, and no start codons were found for their VP1. For all 18 DBoV2 genomes, an AT-rich region of variable length and composition was present downstream to NP1. Further studies will be crucial to understand the pathogenic potential of DBoVs in this unique group of animals.
Collapse
Affiliation(s)
- Patrick C Y Woo
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong SAR.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR.,Department of Microbiology, The University of Hong Kong, Hong Kong SAR.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong SAR.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong SAR
| | - Susanna K P Lau
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong SAR.,Department of Microbiology, The University of Hong Kong, Hong Kong SAR.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong SAR.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong SAR.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR
| | - Hoi-Wah Tsoi
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR
| | | | - Hazel C Yeung
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR
| | | | - Emily Y M Wong
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR
| | | | - Franklin W N Chow
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR
| | | | - Kwok-Yung Yuen
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong SAR.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong SAR.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong SAR.,Department of Microbiology, The University of Hong Kong, Hong Kong SAR
| |
Collapse
|
19
|
Blomström AL, Fossum C, Wallgren P, Berg M. Viral Metagenomic Analysis Displays the Co-Infection Situation in Healthy and PMWS Affected Pigs. PLoS One 2016; 11:e0166863. [PMID: 27907010 PMCID: PMC5131951 DOI: 10.1371/journal.pone.0166863] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 11/05/2016] [Indexed: 11/18/2022] Open
Abstract
The development of high-throughput sequencing technologies have allowed the possibility to investigate and characterise the entire microbiome of individuals, providing better insight to the complex interaction between different microorganisms. This will help to understand how the microbiome influence the susceptibility of secondary agents and development of disease. We have applied viral metagenomics to investigate the virome of lymph nodes from Swedish pigs suffering from the multifactorial disease postweaning multisystemic wasting syndrome (PMWS) as well as from healthy pigs. The aim is to increase knowledge of potential viruses, apart from porcine circovirus type 2 (PCV2), involved in PMWS development as well as to increase knowledge on the virome of healthy individuals. In healthy individuals, a diverse viral flora was seen with several different viruses present simultaneously. The majority of the identified viruses were small linear and circular DNA viruses, such as different circoviruses, anelloviruses and bocaviruses. In the pigs suffering from PMWS, PCV2 sequences were, as expected, detected to a high extent but other viruses were also identified in the background of PCV2. Apart from DNA viruses also RNA viruses were identified, among them were a porcine pestivirus showing high similarity to a recently (in 2015) discovered atypical porcine pestivirus in the US. Majority of the viruses identified in the background of PCV2 in PMWS pigs could also be identified in the healthy pigs. PCV2 sequences were also identified in the healthy pigs but to a much lower extent than in PMWS affected pigs. Although the method used here is not quantitative the very clear difference in amount of PCV2 sequences in PMWS affected pigs and healthy pigs most likely reflect the very strong replication of PCV2 known to be a hallmark of PMWS. Taken together, these findings illustrate that pigs appear to have a considerable viral flora consisting to a large extent of small single-stranded and circular DNA viruses. Future research on these types of viruses will help to better understand the role that these ubiquitous viruses may have on health and disease of pigs. We also demonstrate for the first time, in Europe, the presence of a novel porcine pestivirus.
Collapse
Affiliation(s)
- Anne-Lie Blomström
- Department of Biomedical Sciences and Veterinary Public Health, Section of Virology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- * E-mail:
| | - Caroline Fossum
- Department of Biomedical Sciences and Veterinary Public Health, Section of Immunology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Per Wallgren
- National Veterinary Institute (SVA), Uppsala, Sweden
| | - Mikael Berg
- Department of Biomedical Sciences and Veterinary Public Health, Section of Virology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
20
|
Lau SKP, Yeung HC, Li KSM, Lam CSF, Cai JP, Yuen MC, Wang M, Zheng BJ, Woo PCY, Yuen KY. Identification and genomic characterization of a novel rat bocavirus from brown rats in China. INFECTION GENETICS AND EVOLUTION 2016; 47:68-76. [PMID: 27871815 DOI: 10.1016/j.meegid.2016.11.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/15/2016] [Accepted: 11/14/2016] [Indexed: 01/19/2023]
Abstract
Despite recent discoveries of novel animal bocaparvoviruses, current understandings on the diversity and evolution of bocaparvoviruses are still limited. We report the identification and genome characterization of a novel bocaparvovirus, rat bocaparvovirus (RBoV), in brown rats (Rattus norvegicus) in China. RBoV was detected in 11.5%, 2.4%, 16.2% and 0.3% of alimentary, respiratory, spleen and kidney samples respectively, of 636 brown rats by PCR, but not in samples of other rodent species, suggesting that brown rats are the primary reservoir of RBoV. Six RBoV genomes sequenced from three brown rats revealed the presence of three ORFs, characteristic of bocaparvoviruses. Phylogenetic analysis showed that RBoV was distantly related to other bocaparvoviruses, forming a distinct cluster within the genus, with ≤55.5% nucleotide identities to the genome of ungulate bocaparvovirus 3, supporting its classification as a novel bocaparvovirus species. RBoV possessed a putative second exon encoding the C-terminal region of NS1 and conserved RNA splicing signals, similar to human bocaparvoviruses and canine bocaparvovirus. In contrast to human, feline and canine bocaparvoviruses which demonstrates inter/intra-host viral diversity, partial VP1/VP2 sequences of 49 RBoV strains demonstrated little inter-host genetic diversity, suggesting a single genetic group. Although the pathogenicity of RBoV remains to be determined, its presence in different host tissues suggests wide tissue tropism. RBoV represents the first bocaparvovirus in rodents with genome sequenced, which extends our knowledge on the host range of bocaparvoviruses. Further studies are required to better understand the epidemiology, genetic diversity and pathogenicity of bocaparvoviruses in different rodent populations.
Collapse
Affiliation(s)
- Susanna K P Lau
- State Key Laboratory of Emerging Infectious Diseases, Hong Kong, China; Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China; Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Hazel C Yeung
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Kenneth S M Li
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Carol S F Lam
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Jian-Piao Cai
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Ming-Chi Yuen
- Food and Environmental Hygiene Department, The Government of the Hong Kong Special Administrative Region, Hong Kong, China
| | - Ming Wang
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Bo-Jian Zheng
- State Key Laboratory of Emerging Infectious Diseases, Hong Kong, China; Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China; Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Patrick C Y Woo
- State Key Laboratory of Emerging Infectious Diseases, Hong Kong, China; Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China; Department of Microbiology, The University of Hong Kong, Hong Kong, China.
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Hong Kong, China; Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China; Department of Microbiology, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
21
|
Lau SKP, Ahmed SS, Yeung HC, Li KSM, Fan RYY, Cheng TYC, Cai JP, Wang M, Zheng BJ, Wong SSY, Woo PCY, Yuen KY. Identification and interspecies transmission of a novel bocaparvovirus among different bat species in China. J Gen Virol 2016; 97:3345-3358. [PMID: 27902362 DOI: 10.1099/jgv.0.000645] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We report the discovery of a novel bocaparvovirus, bat bocaparvovirus (BtBoV), in one spleen, four respiratory and 61 alimentary samples from bats of six different species belonging to three families, Hipposideridae, Rhinolophidae and Vespertilionidae. BtBoV showed a higher detection rate in alimentary samples of Rhinolophus sinicus (5.7 %) than those of other bat species (0.43-1.59 %), supporting R. sinicus as the primary reservoir and virus spillover to accidental bat species. BtBoV peaked during the lactating season of R. sinicus, and it was more frequently detected among female than male adult bats (P<0.05), and among lactating than non-lactating female bats (P<0.0001). Positive BtBoV detection was associated with lower body weight in lactating bats (P<0.05). Ten nearly complete BtBoV genomes from three bat species revealed a unique large ORF1 spanning NS1 and NP1 in eight genomes and conserved splicing signals leading to multiple proteins, as well as a unique substitution in the conserved replication initiator motif within NS1. BtBoV was phylogenetically distantly related to known bocaparvoviruses with ≤57.3 % genome identities, supporting BtBoV as a novel species. Ms-BtBoV from Miniopterus schreibersii and Hp-BtBoV from Hipposideros pomona demonstrated 97.2-99.9 % genome identities with Rs-BtBoVs from R. sinicus, supporting infection of different bat species by a single BtBoV species. Rs-BtBoV_str15 represents the first bat parvovirus genome with non-coding regions sequenced, which suggested the presence of head-to-tail genomic concatamers or episomal forms of the genome. This study represents the first to describe interspecies transmission in BoVs. The high detection rates in lactating female and juvenile bats suggest possible vertical transmission of BtBoV.
Collapse
Affiliation(s)
- Susanna K P Lau
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, PR China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong SAR, PR China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR, PR China.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong SAR, PR China
| | - Syed Shakeel Ahmed
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, PR China
| | - Hazel C Yeung
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, PR China
| | - Kenneth S M Li
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, PR China
| | - Rachel Y Y Fan
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, PR China
| | - Toni Y C Cheng
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, PR China
| | - Jian-Piao Cai
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, PR China
| | - Ming Wang
- Guangzhou Center for Disease Control and Prevention, Guangzhou, PR China
| | - Bo-Jian Zheng
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR, PR China.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong SAR, PR China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong SAR, PR China.,Department of Microbiology, The University of Hong Kong, Hong Kong SAR, PR China
| | - Samson S Y Wong
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, PR China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong SAR, PR China.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong SAR, PR China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR, PR China
| | - Patrick C Y Woo
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR, PR China.,Department of Microbiology, The University of Hong Kong, Hong Kong SAR, PR China.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong SAR, PR China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong SAR, PR China
| | - Kwok-Yung Yuen
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, PR China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong SAR, PR China.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong SAR, PR China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR, PR China
| |
Collapse
|
22
|
Zheng X, Liu G, Opriessnig T, Wang Z, Yang Z, Jiang Y. Development and validation of a multiplex conventional PCR assay for simultaneous detection and grouping of porcine bocaviruses. J Virol Methods 2016; 236:164-169. [PMID: 27448821 DOI: 10.1016/j.jviromet.2016.06.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/22/2016] [Accepted: 06/22/2016] [Indexed: 12/13/2022]
Abstract
Porcine bocavirus (PBoV), a newly described porcine parvovirus, has received attention because it can be commonly identified in clinically affected pigs including pigs with post-weaning multisystemic wasting syndrome (PWMS) and pigs with diarrhea. In recent years, novel PBoVs have been identified and were classified into three genogroups, but the ability to detect and classify these novel PBoVs is not comprehensive to date. In this study, a multiplex conventional PCR assay for simultaneous detection and grouping of PBoVs was developed by screening combinations of mixed primer pairs followed by optimization of the PCR conditions. This method exclusively amplifies targeted fragments of 531bp from the VP1 gene of PBoV G1, 291bp from the NP1 gene of PBoV G2, and 384bp from the NP1/VP1 gene of PBoV G3. The assay has a detection limit of 1.0×10(3)copies/μL for PBoV G1 4.5×10(3) for PBoV G2 and 3.8×10(3) for PBoV G3 based on testing mixed purified plasmid constructs containing the specific viral target fragments. The performance of the multiplex PCR assay was comparable to that of the single PCRs which used the same primer pairs. Using the newly established multiplex PCR assay, 227 field samples including faeces, serum and tissue samples from pigs were investigated. All three PBoV genogroups were detected in the clinical samples with a detection rate of 1.3%, 2.6% and 12.3%, respectively for PBoV G1, G2 and G3. Additionally, coinfections with two or more PBoV were detected in 1.7% of the samples investigated. These results indicate the multiplex PCR assay is specific, sensitive and rapid, and can be used for the detection and differentiation of single and multiple infections of the three PBoV genogroups in pigs.
Collapse
Affiliation(s)
- Xiaowen Zheng
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Gaopeng Liu
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Tanja Opriessnig
- The Roslin Institute and The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK; Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Zining Wang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zongqi Yang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yonghou Jiang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China.
| |
Collapse
|
23
|
Zheng X, Liu G, Opriessnig T, Wang Z, Yang Z, Jiang Y. Rapid detection and grouping of porcine bocaviruses by an EvaGreen(®) based multiplex real-time PCR assay using melting curve analysis. Mol Cell Probes 2016; 30:195-204. [PMID: 27180269 DOI: 10.1016/j.mcp.2016.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/08/2016] [Accepted: 05/10/2016] [Indexed: 01/20/2023]
Abstract
Several novel porcine bocaviruses (PBoVs) have been identified in pigs in recent years and association of these viruses with respiratory signs or diarrhea has been suggested. In this study, an EvaGreen(®)-based multiplex real-time PCR (EG-mPCR) with melting curve analysis was developed for simultaneous detection and grouping of novel PBoVs into the same genogroups G1, G2 and G3. Each target produced a specific amplicon with a melting peak of 81.3 ± 0.34 °C for PBoV G1, 78.2 ± 0.37 °C for PBoV G2, and 85.0 ± 0.29 °C for PBoV G3. Non-specific reactions were not observed when other pig viruses were used to assess the EG-mPCR assay. The sensitivity of the EG-mPCR assay using purified plasmid constructs containing the specific viral target fragments was 100 copies for PBoV G1, 50 for PBoV G2 and 100 for PBoV G3. The assay is able to detect and distinguish three PBoV groups with intra-assay and inter-assay variations ranging from 0.13 to 1.59%. The newly established EG-mPCR assay was validated with 227 field samples from pigs. PBoV G1, G2 and G3 was detected in 15.0%, 25.1% and 41.9% of the investigated samples and coinfections of two or three PBoV groups were also detected in 25.1% of the cases, indicating that all PBoV groups are prevalent in Chinese pigs. The agreement of the EG-mPCR assay with an EvaGreen-based singleplex real-time PCR (EG-sPCR) assay was 99.1%. This EG-mPCR will serve as a rapid, sensitive, reliable and cost effective alternative for routine surveillance testing of multiple PBoVs in pigs and will enhance our understanding of the epidemiological features and possible also pathogenetic changes associated with these viruses in pigs.
Collapse
Affiliation(s)
- Xiaowen Zheng
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Gaopeng Liu
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Tanja Opriessnig
- The Roslin Institute and The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK; Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Zining Wang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zongqi Yang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yonghou Jiang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China.
| |
Collapse
|
24
|
Zhang R, Fang L, Cai K, Zeng S, Wu W, An K, Chen H, Xiao S. Differential contributions of porcine bocavirus NP1 protein N- and C-terminal regions to its nuclear localization and immune regulation. J Gen Virol 2016; 97:1178-1188. [DOI: 10.1099/jgv.0.000413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Ruoxi Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine,Huazhong Agricultural University, Wuhan 430070, PRChina
- The Cooperative Innovation Center for Sustainable Pig Production,Wuhan 430070, PRChina
| | - Liurong Fang
- The Cooperative Innovation Center for Sustainable Pig Production,Wuhan 430070, PRChina
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine,Huazhong Agricultural University, Wuhan 430070, PRChina
| | - Kaimei Cai
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine,Huazhong Agricultural University, Wuhan 430070, PRChina
- The Cooperative Innovation Center for Sustainable Pig Production,Wuhan 430070, PRChina
| | - Songlin Zeng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine,Huazhong Agricultural University, Wuhan 430070, PRChina
- The Cooperative Innovation Center for Sustainable Pig Production,Wuhan 430070, PRChina
| | - Wei Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine,Huazhong Agricultural University, Wuhan 430070, PRChina
- The Cooperative Innovation Center for Sustainable Pig Production,Wuhan 430070, PRChina
| | - Kang An
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine,Huazhong Agricultural University, Wuhan 430070, PRChina
- The Cooperative Innovation Center for Sustainable Pig Production,Wuhan 430070, PRChina
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine,Huazhong Agricultural University, Wuhan 430070, PRChina
- The Cooperative Innovation Center for Sustainable Pig Production,Wuhan 430070, PRChina
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine,Huazhong Agricultural University, Wuhan 430070, PRChina
- The Cooperative Innovation Center for Sustainable Pig Production,Wuhan 430070, PRChina
| |
Collapse
|
25
|
Amimo JO, El Zowalaty ME, Githae D, Wamalwa M, Djikeng A, Nasrallah GK. Metagenomic analysis demonstrates the diversity of the fecal virome in asymptomatic pigs in East Africa. Arch Virol 2016; 161:887-897. [PMID: 26965436 DOI: 10.1007/s00705-016-2819-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 03/03/2016] [Indexed: 01/01/2023]
Abstract
Pigs harbor a variety of viruses that are closely related to human viruses and are suspected to have zoonotic potential. Little is known about the presence of viruses in smallholder farms where pigs are in close contact with humans and wildlife. This study provides insight into viral communities and the prevalence and characteristics of enteric viral co-infections in smallholder pigs in East Africa. Sequence-independent amplification and high-throughput sequencing were applied to the metagenomics analysis of viruses in feces collected from asymptomatic pigs. A total of 47,213 de novo-assembled contigs were constructed and compared with sequences from the GenBank database. Blastx search results revealed that 1039 contigs (>200 nt) were related to viral sequences in the GenBank database. Of the 1039 contigs, 612 were not assigned to any viral taxa because they had little similarity to known viral genomic or protein sequences, while 427 contigs had a high level of sequence similarity to known viruses and were assigned to viral taxa. The most frequent contigs related to mammalian viruses resembling members of the viral genera Astrovirus, Rotavirus, Bocavirus, Circovirus, and Kobuvirus. Other less abundant contigs were related to members of the genera Sapelovirus, Pasivirus, Posavirus, Teschovirus and Picobirnavirus. This is the first report on the diversity of the fecal virome of pig populations in East Africa. The findings of the present study help to elucidate the etiology of diarrheal diseases in pigs and identify potential zoonotic and emerging viruses in the region. Further investigations are required to compare the incidence of these viruses in healthy and diseased pigs in order to better elucidate their pathogenic role.
Collapse
Affiliation(s)
- Joshua O Amimo
- Department of Animal Production, Faculty of Veterinary Medicine, University of Nairobi, P.O Box 29053, Nairobi, 00625, Kenya.
- Bioscieces of Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI), Hub, Nairobi, P.O Box 30709, Nairobi, 00100, Kenya.
| | | | - Dedan Githae
- Bioscieces of Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI), Hub, Nairobi, P.O Box 30709, Nairobi, 00100, Kenya
| | - Mark Wamalwa
- Bioscieces of Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI), Hub, Nairobi, P.O Box 30709, Nairobi, 00100, Kenya
| | - Apollinaire Djikeng
- Bioscieces of Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI), Hub, Nairobi, P.O Box 30709, Nairobi, 00100, Kenya
| | - Gheyath K Nasrallah
- Biomedical Research Center, Qatar University, Doha, 2713, Qatar.
- Department of Health Sciences, College of Arts and Sciences, Qatar University, Doha, 2713, Qatar.
| |
Collapse
|
26
|
Saekhow P, Ikeda H. Prevalence and genomic characterization of porcine parvoviruses detected in Chiangmai area of Thailand in 2011. Microbiol Immunol 2015; 59:82-8. [PMID: 25431024 DOI: 10.1111/1348-0421.12218] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 11/17/2014] [Accepted: 11/24/2014] [Indexed: 12/23/2022]
Abstract
Porcine parvovirus (PPV) causes reproductive failure in sows and has spread worldwide. Several new types of porcine parvoviruses have recently been identified in pig herds. The prevalence of five porcine parvoviruses in the Chiangmai area of Thailand was studied. The prevalence in 80 pigs was 53% for PPV (PPV-Kr or -NADL2 being the new abbreviations), 83% for PPV2 (CnP-PARV4), 73% for PPV3 (P-PARV4), 44% for PPV4 (PPV4), and 18% for PBo-likeV (PBoV7). Over 60% of the pigs carried more than three of the five porcine parvoviruses and occurrence together of the two pairs of viral genes, PPV1/PPV3 and PPV2/PBo-likeV were observed. Phylogenetic analyses for PPV2 and PPV3 indicated the existence of only two major clades of PPV2 and one major clade of PPV3.
Collapse
Affiliation(s)
- Prayuth Saekhow
- Laboratory of Veterinary Hygiene, Graduate School of Veterinary Medicine and Life Science, Nippon Veterinary and Life Science University, 1-7-1, Kyonan-cho, Musashino-shi, Tokyo, 180-8602, Japan; Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Mae Hia, Muang, Chiang Mai, 50100, Thailand
| | | |
Collapse
|
27
|
Yoo SJ, Sunwoo SY, Ko SS, Je SH, Lee DU, Lyoo YS. A novel porcine bocavirus harbors a variant NP gene. SPRINGERPLUS 2015. [PMID: 26217547 PMCID: PMC4512980 DOI: 10.1186/s40064-015-1155-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Background Porcine bocavirus is classified within the genus Bocaparvovirus, family Parvoviridae. Unlike other parvoviruses, the members of genus Bocaparvovirus (bocaparvoviruses) encode an additional open reading frame (NP1). Many strains of PBoVs have been identified in domestic pigs and recognized as a potential emerging pathogen causing respiratory and gastrointestinal disease. Findings A new strain of porcine bocavirus (PBoV) that harbored the shortest NP1 gene among all currently characterized PBoVs (provisionally named as ‘PBoV-KU14’) was detected in domestic pigs. Almost the complete genome sequence was obtained, approximately 4,630 nucleotides in lengths with putative NS1, NP1, and VP1/2 genes of 1,908, 600, 1,851 bp, respectively. Phylogenetic and comparative analysis was performed using protein and nucleotide sequences. It was revealed that PBoV-KU14 belongs to the genus Bocaparvovirus and species Ungulate bocaparvovirus 4. However, phylogenetic incongruence was observed among species classifications based on the NS1, NP1 and VP1/2 proteins, which indicates a probability of crossover recombination. Conserved protein domains unique for genus Bocaparvovirus in NP1, VP1 protein were also detected. Conclusion NP1 gene truncation supposed to be caused by cross over recombination was detected in a new strain of PBoV (PBoV-KU14). Considering high rates of substitution and recombination in parvovirus, periodic surveillance study to monitor genomic variation and find new strainsof PBoVs seems to be needed.
Collapse
Affiliation(s)
- Sung J Yoo
- Department of Pathology, College of Veterinary Medicine, Konkuk University, 120 Neung-dong Street, Gwangjin-gu, Seoul, 143-701 South Korea
| | - Sun Young Sunwoo
- Department of Pathology, College of Veterinary Medicine, Konkuk University, 120 Neung-dong Street, Gwangjin-gu, Seoul, 143-701 South Korea ; Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506 USA
| | - Seong Sik Ko
- Department of Pathology, College of Veterinary Medicine, Konkuk University, 120 Neung-dong Street, Gwangjin-gu, Seoul, 143-701 South Korea
| | - Sang H Je
- Department of Pathology, College of Veterinary Medicine, Konkuk University, 120 Neung-dong Street, Gwangjin-gu, Seoul, 143-701 South Korea
| | - Dong Uk Lee
- Department of Pathology, College of Veterinary Medicine, Konkuk University, 120 Neung-dong Street, Gwangjin-gu, Seoul, 143-701 South Korea
| | - Young S Lyoo
- Department of Pathology, College of Veterinary Medicine, Konkuk University, 120 Neung-dong Street, Gwangjin-gu, Seoul, 143-701 South Korea
| |
Collapse
|
28
|
Saekhow P, Kishizuka S, Sano N, Mitsui H, Akasaki H, Mawatari T, Ikeda H. Coincidental detection of genomes of porcine parvoviruses and porcine circovirus type 2 infecting pigs in Japan. J Vet Med Sci 2015; 77:1581-6. [PMID: 26166811 PMCID: PMC4710713 DOI: 10.1292/jvms.15-0167] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The infection status of 15 viruses in 120 pigs aged about 6 months was investigated based
on tonsil specimens collected from a slaughterhouse. Only 5 species of porcine
parvoviruses and porcine circovirus type 2 (PCV2) were detected at high frequencies; 67%
for porcine parvovirus (PPV) (PPV-Kr or -NADL2 as the new abbreviation), 58% for PPV2
(CnP-PARV4), 39% for PPV3 (P-PARV4), 33% for PPV4 (PPV4), 55% for PBo-likeV (PBoV7) and
80% for PCV2. A phylogenetic analysis of PPV3 suggested that Japanese PPV3s showed a
slight variation, and possibly, there were farms harboring homogeneous or heterogeneous
PPV3s. Statistical analyses indicated that the detection of PCV2 was significantly
coincidental with each detection of PPV, PPV2 and PPV3, and PPV and PPV4 were also
coincidentally detected. The concurrent infection with PCV2 and porcine parvoviruses in
the subclinically infected pigs may resemble the infection status of pigs with the
clinical manifestations of porcine circovirus associated disease which occurs in 3–5
months old pigs and is thought to be primarily caused by the PCV2 infection.
Collapse
Affiliation(s)
- Prayuth Saekhow
- Laboratory of Veterinary Hygiene, Graduate School of Veterinary Medicine and Life Science, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Gunn L, Collins PJ, Fanning S, McKillen J, Morgan J, Staines A, O'Shea H. Detection and characterisation of novel bocavirus (genus Bocaparvovirus) and gastroenteritis viruses from asymptomatic pigs in Ireland. Infect Ecol Epidemiol 2015; 5:27270. [PMID: 26065833 PMCID: PMC4462827 DOI: 10.3402/iee.v5.27270] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 05/10/2015] [Accepted: 05/11/2015] [Indexed: 12/13/2022] Open
Abstract
Background Livestock animals have been the assumed source of several human epidemics in recent years, for example, influenza H1N1, rotavirus G8/G9, and MERS-CoV. Surveillance of novel viruses in animals is essential to evaluate the risk to human and animal health and to determine any economic impact, for example, failure to thrive. There is a paucity of data regarding detection and characterisation of gastroenteritis viruses, particularly novel viruses, in porcines in Ireland. Recently, a number of small novel porcine DNA viruses have emerged globally, for example, torque teno sus virus, porcine bocavirus, and parvoviruses 2 & 4, and little is known about the biology and potential pathogenicity of these viruses. Bocaparvovirus is a genetically distinct group of viruses which has been recently detected in humans and animals. Methods In this study, the presence of gastroenteritis viruses (rotavirus A, porcine circovirus, adenovirus, and porcine bocavirus) was investigated in a selection of archived faecal samples from asymptomatic piglets from a commercial farm in Ireland. A total of 104 specimens were pooled and screened using conventional molecular techniques (PCR and RT-PCR), a subset of specimens (n=44) were then examined individually. Viral diversity was then investigated using statistical and phylogenetic techniques. Results Initial screening showed a high prevalence of PBoV in this farm, with the formation of three distinct groups in phylogenetic analysis. Other viruses were also investigated in this study with the first report of PCV, PAdV and lineage I G5 RVA in Ireland. Some specimens contained >1 virus, with statistical analysis indicating a strong correlation for mixed infections of PBoV and PAdV on this farm. Conclusion Investigating the diversity of circulating enteric viruses on Irish porcine farms is important to improve the prophylactic tools available and to facilitate the early detection of changes in circulating viruses.
Collapse
Affiliation(s)
- Lynda Gunn
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland
| | | | - Séamus Fanning
- School of Public Health, Physio & Pop Sc, Science Centre - South, Dublin 4, Ireland
| | - John McKillen
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom
| | - John Morgan
- School of Microbiology, University College Cork, Cork, Ireland
| | - Anthony Staines
- School of Nursing, Dublin City University, Dublin 9, Ireland
| | - Helen O'Shea
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland;
| |
Collapse
|
30
|
Luo Y, Liang L, Zhou L, Zhao K, Cui S. Concurrent infections of pseudorabies virus and porcine bocavirus in China detected by duplex nanoPCR. J Virol Methods 2015; 219:46-50. [PMID: 25813598 DOI: 10.1016/j.jviromet.2015.03.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 03/16/2015] [Accepted: 03/16/2015] [Indexed: 12/31/2022]
Abstract
Nanoparticle-assisted polymerase chain reaction (nanoPCR) is a novel method for the simple, rapid, and specific amplification of DNA and has been used to detect viruses. A duplex nanoPCR molecular detection system was developed to detect pseudorabies virus (PRV) and porcine bocavirus (PBoV). Primers were selected to target conserved regions within the PRV gE gene and the PBoV NS1 gene. Under optimized nanoPCR reaction conditions, two specific fragments of 316 bp (PRV) and 996 bp (PBoV) were amplified by the duplex nanoPCR with a detection limit of 6 copies for PRV and 95 copies for PBoV; no fragments were amplified when other porcine viruses were used as template. When used to test 550 clinical samples, the duplex nanoPRC assay and a conventional duplex PCR assay provided very similar results (98.1% consistency); single PRV infections, single PBoV infections, and concurrent PRV and PBoV infections were detected in 37%, 15%, and 9% of the samples, respectively. The results indicate that the novel duplex nanoPCR assay is useful for the rapid detection of PRV and PBoV in pigs.
Collapse
Affiliation(s)
- Yakun Luo
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences, Beijing 100193, China; State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, 427 Maduan Street, Nangang District, Harbin 150001, Heilongjiang, China
| | - Lin Liang
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ling Zhou
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Kai Zhao
- College of Life Science, Heilongjiang University, Harbin 150080, China.
| | - Shangjin Cui
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences, Beijing 100193, China; State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, 427 Maduan Street, Nangang District, Harbin 150001, Heilongjiang, China.
| |
Collapse
|
31
|
Porcine bocavirus: achievements in the past five years. Viruses 2014; 6:4946-60. [PMID: 25514206 PMCID: PMC4276938 DOI: 10.3390/v6124946] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 12/01/2014] [Accepted: 12/02/2014] [Indexed: 01/05/2023] Open
Abstract
Porcine bocavirus is a recently discovered virus that infects pigs and is classified within the Bocavirus genus (family Parvoviridae, subfamily Parvovirinae). The viral genome constitutes linear single-stranded DNA and has three open reading frames that encode four proteins: NS1, NP1, VP1, and VP2. There have been more than seven genotypes discovered to date. These genotypes have been classified into three groups based on VP1 sequence. Porcine bocavirus is much more prevalent in piglets that are co-infected with other pathogens than in healthy piglets. The virus can be detected using PCR, loop-mediated isothermal amplification, cell cultures, indirect immunofluorescence, and other molecular virology techniques. Porcine bocavirus has been detected in various samples, including stool, serum, lymph nodes, and tonsils. Because this virus was discovered only five years ago, there are still many unanswered questions that require further research. This review summarizes the current state of knowledge and primary research achievements regarding porcine bocavirus.
Collapse
|
32
|
Evolutionary, epidemiological, demographical, and geographical dissection of porcine bocavirus in China and America. Virus Res 2014; 195:13-24. [PMID: 25289962 DOI: 10.1016/j.virusres.2014.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 12/26/2022]
Abstract
Porcine bocavirus was first discovered in Swedish pigs with post-weaning multisystemic wasting syndrome (PMWS) in 2009. Many efforts have been implemented to investigate the porcine bocavirus, but it remains enigmatic. In the current study, we utilized data from both China and the USA. The China-derived data included 403 pig samples collected from five provinces, 122 gene sequences from the GenBank database, and 637 old porcine bocavirus (PBoV) cases. The USA-derived data comprised 181 pig samples from 18 states, 39 new gene sequences, and 85 new emerging cases. First, we executed a comprehensive analysis of the disease's prevalence, phylogenetics, evolutionary distances, mutation network, geographical distribution, occurrence frequency, and phylogeographical estimation in both China and the USA. The results showed that the positive rates of PBoV (42.0%, 76/181) in American samples were significantly higher than those (11.4%, 46/403) in the Chinese samples. All PBoV cases from these countries can be divided into six groups: PBoV1 (group 1), PBoV2 (group 2), PBoV3C (group 3), PBoV5 (group 4), PBoV3/4 (group 5), and PBoV6V7V (group 6). PBoV1 and PBoV2 were epidemic strains from 2006 to 2011 in China, whereas the PBoV3 subtypes were epidemic from 2010 to 2012 in China and the USA. At present, PBoV3C (group 3), PBoV5 (group 4), and PBoV3/4 (group 5) are epidemic viruses and co-exist in China and the USA. The geographical distribution of PBoV mainly lies in the east and south coastal areas of China and the central states of the USA. Jiangsu Province and the state of Minnesota were the centers of high occurrence frequency of PBoV with six outbreaks. The old PBoV cases involved 14 provinces and regions of China and North Carolina in the USA, whereas the new emerging cases involved five provinces in China and 13 states in the USA, of which two provinces and 12 states reported for the first time that piglets were infected by PBoV. Hong Kong, Hebei, and Jiangsu Provinces and the states of Minnesota and North Carolina were possibly geographical origins of PBoV in China and America, respectively. These data can help us systematically understand porcine bocavirus in China and America and find effective strategies for its treatment.
Collapse
|
33
|
Wang X, Bai A, Zhang J, Kong M, Cui Y, Ma X, Ai X, Tang Q, Cui S. A new nanoPCR molecular assay for detection of porcine bocavirus. J Virol Methods 2014; 202:106-11. [PMID: 24642242 DOI: 10.1016/j.jviromet.2014.02.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 02/24/2014] [Accepted: 02/27/2014] [Indexed: 01/23/2023]
Abstract
Nanoparticle-assisted polymerase chain reaction (nanoPCR) is a novel method for the rapid amplification of DNA and has been used for the detection of virus. For detection of porcine bocavirus (PBoV), a sensitive and specific nanoPCR assay was developed with a pair of primers that were designed based on NS1 gene sequences available in GenBank. Under the optimized conditions of the PBoV nanoPCR assay, the nanoPCR assay was 100-fold more sensitive than a conventional PCR assay. The lower detection limit of the nanoPCR assay was about 6.70×10(1) copies. The nanoPCR assay amplified the specific 482-bp fragment of the PBoV NS1 recombinant plasmid but did not produce any product with genomic DNA or cDNA of porcine parvovirus, porcine circovirus type II, porcine reproductive and respiratory syndrome virus, pseudorabies virus, classic swine fever virus, Encephalomyocarditis virus, Porcine Teschovirus or African swine fever virus plasmid. Of 65 clinical samples collected from diseased pigs, 73.8% and 86.2% were determined to be PBoV positive by PBoV conventional PCR and PBoV nanoPCR assay, respectively. Of 36 clinical samples from healthy pigs, 27.8% and 44.4% were PBoV positive by PBoV conventional PCR and PBoV nanoPCR assay, respectively. The nanoPCR assay will be useful for diagnosing PBoV and for studying its epidemiology and pathology.
Collapse
Affiliation(s)
- Xiaoling Wang
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, China
| | - Aiquan Bai
- Foshan University, Foshan, Guandong, China.
| | - Jing Zhang
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, China
| | - Miaomiao Kong
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, China
| | - Yuchao Cui
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, China
| | - Xingjie Ma
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, China
| | - Xia Ai
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Qinghai Tang
- Nanyang Normal University, 1638 Wolong Road, Nanyang 473061, China.
| | - Shangjin Cui
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, China.
| |
Collapse
|
34
|
Wang E, Liu W, Yang B, Liu J, Ma X, Lan X. Complete sequence and phylogenetic analysis of a porcine bocavirus strain swBoV CH437. Virus Genes 2014; 48:387-90. [PMID: 24469465 DOI: 10.1007/s11262-013-1032-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 12/31/2013] [Indexed: 12/25/2022]
Abstract
Porcine bocavirus (PBoV), a member of genus Bocavirus, family Parvoviridae, was first identified in 2009 in Swedish swine herds suffering from postweaning multisystemic wasting syndrome. Up to date, the different species of PBoVs have been reported in different countries. Especially, the virus isolated in China was complicated. In this study, we detected a novel PBoV strain swBoV CH437 from clinical samples collected in Gansu Province, Northwest China. The complete genome of swBoV CH437 was 5,275 nucleotides (nt) in length and contains three ORFs: ORF1 encodes NS1 (2,004 nt, 667 aa), ORF3 encodes NP1 (681 nt, 226 aa), and ORF2 encodes VP1 (2,049 nt, 682 aa) and VP2 (1,641 nt, 546 aa). Sequence analysis demonstrated that the NS1 gene shared 24.2-88.6 % nucleotide sequence identity, the NP1 shared 21.3-89.9 %, less than 95 % nucleotide sequence identity with other PBoV strains. Therefore, we propose that swBoV CH437 should be classified as a novel PBoV species.
Collapse
Affiliation(s)
- Enli Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | | | | | | | | | | |
Collapse
|
35
|
Detection and characterization of porcine bocavirus in the United States. Arch Virol 2014; 159:1797-801. [PMID: 24445812 DOI: 10.1007/s00705-013-1972-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 12/29/2013] [Indexed: 12/19/2022]
Abstract
We screened pigs (n = 203) presenting with respiratory illness or diarrhea for porcine bocavirus (PBoV); 88 (43.30 %) were positive by PCR. More positives were seen in diarrhea cases (48.7 %) than in respiratory cases (29.1 %). Based on phylogenetic analysis of 540 nucleotides of the NS1 gene, the viruses could be divided into four possible groups. Group IV sequences did not match any GenBank sequences, while groups I, II and III gave matches with PBoV3, PBoV4 and PBoV5, respectively. The wide range (70 % to 100 %) of nucleotide (nt) sequence identity among strains in this study indicates high genetic diversity among porcine bocaviruses.
Collapse
|
36
|
Molecular detection and genetic analysis of porcine bocavirus in Korean domestic swine herds. Arch Virol 2013; 159:1487-92. [DOI: 10.1007/s00705-013-1944-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 11/06/2013] [Indexed: 12/21/2022]
|
37
|
Bodewes R, van der Giessen J, Haagmans BL, Osterhaus ADME, Smits SL. Identification of multiple novel viruses, including a parvovirus and a hepevirus, in feces of red foxes. J Virol 2013; 87:7758-64. [PMID: 23616657 PMCID: PMC3700315 DOI: 10.1128/jvi.00568-13] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 04/12/2013] [Indexed: 02/07/2023] Open
Abstract
Red foxes (Vulpes vulpes) are the most widespread members of the order of Carnivora. Since they often live in (peri)urban areas, they are a potential reservoir of viruses that transmit from wildlife to humans or domestic animals. Here we evaluated the fecal viral microbiome of 13 red foxes by random PCR in combination with next-generation sequencing. Various novel viruses, including a parvovirus, bocavirus, adeno-associated virus, hepevirus, astroviruses, and picobirnaviruses, were identified.
Collapse
Affiliation(s)
- Rogier Bodewes
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
38
|
Detection of novel porcine bocaviruses in fecal samples of asymptomatic pigs in Cameroon. INFECTION GENETICS AND EVOLUTION 2013; 17:277-82. [DOI: 10.1016/j.meegid.2013.03.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 02/21/2013] [Accepted: 03/01/2013] [Indexed: 12/17/2022]
|
39
|
Xiao CT, Giménez-Lirola LG, Jiang YH, Halbur PG, Opriessnig T. Characterization of a novel porcine parvovirus tentatively designated PPV5. PLoS One 2013; 8:e65312. [PMID: 23762339 PMCID: PMC3676418 DOI: 10.1371/journal.pone.0065312] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 04/25/2013] [Indexed: 12/28/2022] Open
Abstract
A new porcine parvovirus (PPV), provisionally designated as PPV5, was identified in U.S. pigs. Cloning and sequencing from a circular or head-to-tail concatemeric array revealed that the PPV5 possesses the typical genomic organization of parvoviruses with two major predicted open reading frames (ORF1 and ORF2), and is most closely related to PPV4 with overall genomic identities of 64.1–67.3%. The amino acid identities between PPV5 and PPV4 were 84.6%–85.1% for ORF1 and 54.0%–54.3% for ORF2. Unlike PPV4, but similar to bovine parvovirus 2 (BPV2), PPV5 lacks the additional ORF3 and has a much longer ORF2. Moreover, the amino acid sequences of ORF1 and ORF2 of BPV2 showed higher homologies to PPV5 than to PPV4. The conserved motifs of the Ca2+ binding loop (YXGXG) and the catalytic center (HDXXY) of phospholipase A2 (PLA2) were identified in VP1 (ORF2) of PPV5, as well as in BPV2, but were not present in PPV4. Phylogenetic analyses revealed that PPV5, PPV4 and BPV2 form a separate clade different from the genera Parvovirus and Bocavirus. Further epidemiologic investigations of PPV4 and PPV5 in U.S. pigs of different ages indicated a slightly higher prevalence for PPV5 (6.6%; 32/483) compared to PPV4 (4.1%; 20/483), with detection of concurrent PPV4 and PPV5 in 15.6% (7/45) of lungs of infected pigs. Evidence for potential vertical transmission or association with reproductive failure was minimal for both PPV4 and PPV5. The high similarity to PPV4 and the lack of ORF3 may suggest PPV5 is an intermediate of PPV4 during the evolution of parvoviruses in pigs.
Collapse
Affiliation(s)
- Chao-Ting Xiao
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Luis G. Giménez-Lirola
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Yong-Hou Jiang
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Patrick G. Halbur
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Tanja Opriessnig
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
40
|
Molecular evolutionary genetic analysis of emerging parvoviruses identified in pigs. INFECTION GENETICS AND EVOLUTION 2013; 16:369-76. [DOI: 10.1016/j.meegid.2013.03.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/07/2013] [Accepted: 03/12/2013] [Indexed: 12/18/2022]
|
41
|
McMenamy MJ, McKillen J, McNair I, Duffy C, Blomström AL, Charreyre C, Welsh M, Allan G. Detection of a porcine boca-like virus in combination with porcine circovirus type 2 genotypes and Torque teno sus virus in pigs from postweaning multisystemic wasting syndrome (PMWS)-affected and non-PMWS-affected farms in archival samples from Great Britain. Vet Microbiol 2013; 164:293-8. [PMID: 23578709 DOI: 10.1016/j.vetmic.2013.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 10/25/2012] [Accepted: 03/01/2013] [Indexed: 01/14/2023]
Abstract
In this study we detail the detection and genetic analysis of a novel porcine boca-like virus (PBo-likeV) in archival sera and tissue samples from pigs from farms in Great Britain. We also investigate the distribution of porcine circovirus type 2 (PCV2) genotypes and Torque teno sus virus (TTSuV) genogroups 1 and 2 in combination with this novel PBo-likeV. PBo-likeV was detected in over 70% of all tissues investigated. Over 24% of all tissues recovered from PMWS-affected animals had all viruses present and 25% of tissues recovered from non-PMWS-affected pigs were positive for all 4 viruses.
Collapse
Affiliation(s)
- Michael J McMenamy
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, Northern Ireland BT4 3SD, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Evolutionary time-scale of primate bocaviruses. INFECTION GENETICS AND EVOLUTION 2013; 14:265-74. [DOI: 10.1016/j.meegid.2012.12.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 12/16/2012] [Accepted: 12/17/2012] [Indexed: 12/31/2022]
|
43
|
Genetic characterisation of a porcine bocavirus detected in domestic pigs in Uganda. Virus Genes 2012; 47:370-3. [PMID: 23225112 PMCID: PMC3907790 DOI: 10.1007/s11262-012-0855-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 11/21/2012] [Indexed: 12/20/2022]
Abstract
Porcine bocaviruses (PoBoVs) are small linear ssDNA viruses belonging to the genus bocavirus in the family Parvoviridae. The genome encodes four proteins—the non-structural protein 1 (NS1), the NP1 protein (unknown function) and the two structural proteins VP1 and VP2. In recent years, a number of different highly divergent PoBoV species have been discovered. PoBoVs have been shown to be present in pig populations in Europe, Asia and in the United States of America. In this study, we present the first data of the presence of PoBoV in Africa, specifically in Uganda. A PCR targeting a PoBoV species that have previously been detected in both Sweden and China was used to screen 95 serum samples from domestic pigs in Uganda. Two pigs were found to be positive for this specific PoBoV and the complete coding region was amplified from one of these samples. The amino acid sequence comparison of all these proteins showed a high identity (98–99 %) to the published Chinese sequences (strains: H18 and SX) belonging to the same PoBoV species. The same was true for the Swedish sequences from the same species. To the other PoBoV species the divergence was higher and only a 28–43 % protein sequence identity was seen comparing the different proteins.
Collapse
|
44
|
Abstract
Using a high-throughput DNA sequencing method, one DNA sequence (contig01006), suspected to belong to a novel porcine bocavirus (PBoV), was found with a high rate of detection (19.6 %) in fecal samples from healthy piglets. Moreover, a novel PBoV (tentatively named PBoV3C) with a nearly complete genome sequence (5235 bp) was identified. PBoV3C exhibits typical genome characteristics of bocaviruses and shows the highest genomic sequence identity (78 % to 81 %) to PBoV3A/B (PBoV3/4-UK) and PBoV3D/E (PBoV3/4-HK), respectively. Phylogenetic and recombination analysis indicated high diversity, prevalence and complexity among the PBoVs. The phospholipase A2 (PLA2) site of VP1 and the secondary structure of VP2 of PBoV3C were also analyzed. Additionally, we propose a uniform method of PBoV nomenclature based on the VP1 gene.
Collapse
|
45
|
Lau SKP, Woo PCY, Yeung HC, Teng JLL, Wu Y, Bai R, Fan RYY, Chan KH, Yuen KY. Identification and characterization of bocaviruses in cats and dogs reveals a novel feline bocavirus and a novel genetic group of canine bocavirus. J Gen Virol 2012; 93:1573-1582. [PMID: 22495233 DOI: 10.1099/vir.0.042531-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We report the identification and genome characterization of a novel bocavirus, feline bocavirus (FBoV), and novel bocaviruses closely related to canine bocavirus (CBoV) strain Con-161 in stray cats and dogs in Hong Kong, respectively. FBoV was detected by PCR in 7.2, 0.3, 1.6, 2.0 and 0.8% of faecal, nasal, urine, kidney and blood samples, respectively, from 364 cats, while CBoV was detected in 4.6, 5.1, 6.3 and 0.3% of faecal, nasal, urine and blood samples, respectively, from 351 dogs. Three FBoV genomes sequenced revealed the presence of three ORFs characteristic of bocaviruses. Phylogenetic analysis showed that FBoVs were related only distantly to other bocaviruses, forming a distinct cluster within the genus, with ≤ 5.7% nucleotide identities to the genome of minute virus of canines. The four CBoV genomes sequenced shared 87.4-89.2% nucleotide identities with that of CBoV strain Con-161. In addition to the three bocavirus ORFs, they encoded an additional ORF, ORF4, immediately downstream of the ORF for non-structural protein 1 (NS1), which was not found in other bocaviruses including CBoV strain Con-161. They also possessed a putative second exon encoding the C-terminal region of NS1 and conserved RNA-splicing signals, previously described in human bocaviruses. Partial VP1/VP2 sequence analysis of 23 FBoV and 25 CBoV strains demonstrated inter-host genetic diversity, with two potential genetic groups of FBoV and a novel CBoV group, CBoV-HK, distinct from the three groups, CBoV-A to -C, found in the USA. Although the pathogenicity of FBoV and CBoV remains to be determined, their presence in different host tissues suggested wide tissue tropism.
Collapse
Affiliation(s)
- Susanna K P Lau
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong.,State Key Laboratory of Emerging Infectious Diseases, Hong Kong.,Department of Microbiology, The University of Hong Kong, Hong Kong.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong
| | - Patrick C Y Woo
- State Key Laboratory of Emerging Infectious Diseases, Hong Kong.,Department of Microbiology, The University of Hong Kong, Hong Kong.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong
| | - Hazel C Yeung
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Jade L L Teng
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Ying Wu
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Ru Bai
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Rachel Y Y Fan
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Kwok-Hung Chan
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong.,Department of Microbiology, The University of Hong Kong, Hong Kong.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong.,State Key Laboratory of Emerging Infectious Diseases, Hong Kong
| | - Kwok-Yung Yuen
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong.,Department of Microbiology, The University of Hong Kong, Hong Kong.,State Key Laboratory of Emerging Infectious Diseases, Hong Kong
| |
Collapse
|
46
|
Abstract
Porcine bocavirus 5 is a novel porcine bocavirus species found in a pig with clinical diarrhea from a farm in China. Here, we report the complete genome sequence of strain PBoV5/JS677, which will help toward understanding the molecular and evolutionary characteristics of the porcine bocavirus.
Collapse
|
47
|
Abstract
In the past two decades or so, a number of viruses have emerged in the global swine population. Some, such as porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2), cause economically important diseases in pigs, whereas others such as porcine torque teno virus (TTV), now known as Torque teno sus virus (TTSuV), porcine bocavirus (PBoV) and related novel parvoviruses, porcine kobuvirus, porcine toroviruses (PToV) and porcine lymphotropic herpesviruses (PLHV), are mostly subclinical in swine herds. Although some emerging swine viruses such as swine hepatitis E virus (swine HEV), porcine endogenous retrovirus (PERV) and porcine sapovirus (porcine SaV) may have a limited clinical implication in swine health, they do pose a potential public health concern in humans due to zoonotic (swine HEV) or potential zoonotic (porcine SaV) and xenozoonotic (PERV, PLHV) risks. Other emerging viruses such as Nipah virus, Bungowannah virus and Menangle virus not only cause diseases in pigs but some also pose important zoonotic threat to humans. This article focuses on emerging and re-emerging swine viruses that have a limited or uncertain clinical and economic impact on pig health. The transmission, epidemiology and pathogenic potential of these viruses are discussed. In addition, the two economically important emerging viruses, PRRSV and PCV2, are also briefly discussed to identify important knowledge gaps.
Collapse
Affiliation(s)
- X J Meng
- Department of Biomedical Sciences and Pathobiology, Center for Molecular Medicine and Infectious Diseases, College of Veterinary Medicine, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, USA.
| |
Collapse
|
48
|
Li B, Ma JJ, Xiao SB, Zhang XH, Wen LB, Mao L, Ni YX, Guo RL, Zhou JM, Lv LX, He KW. Development of a loop-mediated isothermal amplification method for rapid detection of porcine boca-like virus. J Virol Methods 2011; 179:390-5. [PMID: 22172971 DOI: 10.1016/j.jviromet.2011.11.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 11/18/2011] [Accepted: 11/28/2011] [Indexed: 12/19/2022]
Abstract
The porcine boca-like virus (Pbo-likeV) was recently discovered in Swedish pigs with post-weaning multisystemic wasting syndrome (PMWS). In this study, a loop-mediated isothermal amplification (LAMP) assay was developed for rapid, specific and sensitive detection of Pbo-likeV. A set of four primers specific for six regions of Pbo-likeV VP1/2 genes was designed with the online software. The reaction temperature and time were optimized to 65 °C and 60 min, respectively. LAMP products were detected by agarose gel electrophoresis or by visual inspection of a color change due to addition of fluorescent dye. The developed method was highly specific for detection of Pbo-likeV, and no cross-reaction was observed with other swine viruses, such as porcine reproductive and respiratory syndrome virus (PRRSV), porcine circovirus type 2 (PCV2), porcine parvovirus (PPV) and classic swine fever virus (CSFV) found commonly in China. The lower detection limit of the LAMP assay was approximately 10 copies per reaction, and it was 100 times more sensitive than that of conventional PCR. Furthermore, the efficiency of LAMP for detection Pbo-likeV in clinical samples was comparable to PCR and sequencing. These results showed that the LAMP assay is a simple, rapid, sensitive and specific technique for detection of Pbo-likeV, and the procedure of LAMP does not rely on any special equipment. It has capacity for the detection of Pbo-likeV both in the laboratory and on farms.
Collapse
Affiliation(s)
- Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu Province, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Shan T, Li L, Simmonds P, Wang C, Moeser A, Delwart E. The fecal virome of pigs on a high-density farm. J Virol 2011; 85:11697-708. [PMID: 21900163 PMCID: PMC3209269 DOI: 10.1128/jvi.05217-11] [Citation(s) in RCA: 260] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 08/23/2011] [Indexed: 12/14/2022] Open
Abstract
Swine are an important source of proteins worldwide but are subject to frequent viral outbreaks and numerous infections capable of infecting humans. Modern farming conditions may also increase viral transmission and potential zoonotic spread. We describe here the metagenomics-derived virome in the feces of 24 healthy and 12 diarrheic piglets on a high-density farm. An average of 4.2 different mammalian viruses were shed by healthy piglets, reflecting a high level of asymptomatic infections. Diarrheic pigs shed an average of 5.4 different mammalian viruses. Ninety-nine percent of the viral sequences were related to the RNA virus families Picornaviridae, Astroviridae, Coronaviridae, and Caliciviridae, while 1% were related to the small DNA virus families Circoviridae, and Parvoviridae. Porcine RNA viruses identified, in order of decreasing number of sequence reads, consisted of kobuviruses, astroviruses, enteroviruses, sapoviruses, sapeloviruses, coronaviruses, bocaviruses, and teschoviruses. The near-full genomes of multiple novel species of porcine astroviruses and bocaviruses were generated and phylogenetically analyzed. Multiple small circular DNA genomes encoding replicase proteins plus two highly divergent members of the Picornavirales order were also characterized. The possible origin of these viral genomes from pig-infecting protozoans and nematodes, based on closest sequence similarities, is discussed. In summary, an unbiased survey of viruses in the feces of intensely farmed animals revealed frequent coinfections with a highly diverse set of viruses providing favorable conditions for viral recombination. Viral surveys of animals can readily document the circulation of known and new viruses, facilitating the detection of emerging viruses and prospective evaluation of their pathogenic and zoonotic potentials.
Collapse
Affiliation(s)
- Tongling Shan
- Blood Systems Research Institute, San Francisco, California
- Department of Laboratory Medicine, University of California at San Francisco, San Francisco, California
- Zoonosis and Comparative Medicine Group, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Linlin Li
- Blood Systems Research Institute, San Francisco, California
- Department of Laboratory Medicine, University of California at San Francisco, San Francisco, California
| | - Peter Simmonds
- Centre for Immunology, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | - Chunlin Wang
- Stanford Genome Technology Center, Stanford, California
| | - Adam Moeser
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, California
- Department of Laboratory Medicine, University of California at San Francisco, San Francisco, California
| |
Collapse
|
50
|
Malecki M, Schildgen V, Schildgen O. Human bocavirus: still more questions than answers. Future Virol 2011. [DOI: 10.2217/fvl.11.78] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The human bocavirus was first detected in 2005 and since then has been found in both respiratory secretions from patients with airway infections and in stool samples from patients with gastroenteritis. Meanwhile, four different genotypes have been identified that most likely derive from recombination events. Although the modified Koch’s postulates have not yet been fulfilled completely, owing to the lack of an animal model or a simple cell culture system, there is increasing evidence that the human bocaviruses are serious participants in infectious diseases of the respiratory and the GI tracts. This article reviews the current status of the clinical features of human bocaviruses and provides an overview of the latest findings concerning the biology, phylogeny, epidemiology and diagnostic tools related to human bocaviruses. Furthermore, it discusses the potential pathogenicity of human bocavirus, as well as its persistence and reactivation in hosts.
Collapse
Affiliation(s)
- Monika Malecki
- Kliniken der Stadt Köln gGmbH, Krankenhaus Merheim, Klinikum der Privaten Universität Witten/Herdecke, Institut für Pathologie, Ostmerheimer Str. 200, D-51109 Cologne, Germany
| | - Verena Schildgen
- Kliniken der Stadt Köln gGmbH, Krankenhaus Merheim, Klinikum der Privaten Universität Witten/Herdecke, Institut für Pathologie, Ostmerheimer Str. 200, D-51109 Cologne, Germany
| | | |
Collapse
|