1
|
Chen MN, Cai XY, Ye ZX, Feng KH, Ren PP, Zhang CX, Chen JP, Li JM, Mao Q. Complete genome analysis of a novel nyamivirus from the leaf beetle Aulacophora lewisii. Arch Virol 2025; 170:54. [PMID: 39939470 DOI: 10.1007/s00705-025-06246-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/27/2025] [Indexed: 02/14/2025]
Abstract
Leaf beetles of the subfamily Chrysomelinae are not only herbivorous pests but also potential vectors of plant pathogens. Here, we describe a novel negative-sense virus named "Aulacophora lewisii nyamivirus 1" (ALNyV1), discovered in a leaf beetle (Aulacophora lewisii), a prevalent pest of cucurbitaceous vegetables. Using transcriptome sequencing and rapid amplification of cDNA ends (RACE) techniques, the complete genome sequence of ALNyV1, spanning 10,339 nucleotides (excluding the polyA tail), was determined. A homology search and phylogenetic analysis indicated that ALNyV1 belongs to an unclassified clade in the family Nyamiviridae. This virus contains five open reading frames (ORFs) with typical conserved domains of nyamiviruses. The mean coverage of the ALNyV1 genome was 249, suggesting that active replication had occurred within the leaf beetle host. Furthermore, the virus was found to trigger a small-RNA interference response, with virus-derived small RNAs (vsiRNA) of ALNyV1 displaying a distinct pattern with 21 nucleotides being the most frequent length and exhibiting an A/U bias at the 5' end. This is the first detection of a negative-sense RNA virus in this leaf beetle species, providing important new information about the characteristics of viruses found in leaf beetles.
Collapse
Affiliation(s)
- Meng-Nan Chen
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, 315211, Ningbo, China
| | - Xin-Yi Cai
- Southern Zhejiang Key Laboratory of Crop Breeding, Wenzhou Vocational College of Science and Technology (Wenzhou Academy of Agricultural Sciences), 325000, Wenzhou, China
| | - Zhuang-Xin Ye
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, 315211, Ningbo, China
- College of Forestry, Nanjing Forestry University, 210037, Nanjing, China
| | - Ke-Hui Feng
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, 315211, Ningbo, China
| | - Peng-Peng Ren
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, 315211, Ningbo, China
- College of Plant Protection, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Chuan-Xi Zhang
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, 315211, Ningbo, China
| | - Jian-Ping Chen
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, 315211, Ningbo, China
| | - Jun-Min Li
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, 315211, Ningbo, China
| | - Qianzhuo Mao
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, 315211, Ningbo, China.
| |
Collapse
|
2
|
Chen MN, Ye ZX, Feng KH, Yuan JN, Chen JP, Zhang CX, Li JM, Mao QZ. Genetic Characterization of Two Novel Insect-Infecting Negative-Sense RNA Viruses Identified in a Leaf Beetle, Aulacophora indica. INSECTS 2024; 15:615. [PMID: 39194819 DOI: 10.3390/insects15080615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
Herbivorous insects harbor a variety of insect-specific viruses (ISVs) some of which are considered to be valuable biological agents for potential applications in biological defense and control strategies. Leaf beetles with chewing mouthparts are particularly known for their capacity to disrupt plant tissue while feeding, often creating openings that can act as entry points for plant pathogens. In this study, we have identified two new negative-sense RNA viruses infecting the leaf beetle Aulacophora indica, an important member of the Chrysomelidae family. These recently discovered viruses belong to the viral families Nyamiviridae and Chuviridae and have been preliminarily named Aulacophora indica nyami-like virus 1 (AINlV1) and Aulacophora indica chu-like virus 1 (AIClV1), respectively. The complete genomic sequences of these viruses were obtained using rapid amplification of cDNA ends (RACE) techniques. Detailed analysis of their genomic structures has confirmed their similarity to other members within their respective families. Furthermore, analysis of virus-derived small interfering RNA (vsiRNA) demonstrated a high abundance and typical vsiRNA pattern of AINlV1 and AIClV1, offering substantial evidence to support their classification as ISVs. This research enhances our understanding of viral diversity within insects.
Collapse
Affiliation(s)
- Meng-Nan Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Zhuang-Xin Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Ke-Hui Feng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jing-Na Yuan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Chuan-Xi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jun-Min Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Qian-Zhuo Mao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
3
|
Jeong DE, Sundrani S, Hall RN, Krupovic M, Koonin EV, Fire AZ. DNA Polymerase Diversity Reveals Multiple Incursions of Polintons During Nematode Evolution. Mol Biol Evol 2023; 40:msad274. [PMID: 38069639 DOI: 10.1093/molbev/msad274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/01/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023] Open
Abstract
Polintons are double-stranded DNA, virus-like self-synthesizing transposons widely found in eukaryotic genomes. Recent metagenomic discoveries of Polinton-like viruses are consistent with the hypothesis that Polintons invade eukaryotic host genomes through infectious viral particles. Nematode genomes contain multiple copies of Polintons and provide an opportunity to explore the natural distribution and evolution of Polintons during this process. We performed an extensive search of Polintons across nematode genomes, identifying multiple full-length Polinton copies in several species. We provide evidence of both ancient Polinton integrations and recent mobility in strains of the same nematode species. In addition to the major nematode Polinton family, we identified a group of Polintons that are overall closely related to the major family but encode a distinct protein-primed DNA polymerase B (pPolB) that is related to homologs from a different group of Polintons present outside of the Nematoda. Phylogenetic analyses on the pPolBs support the evolutionary scenarios in which these extrinsic pPolBs that seem to derive from Polinton families present in oomycetes and molluscs replaced the canonical pPolB in subsets of Polintons found in terrestrial and marine nematodes, respectively, suggesting interphylum horizontal gene transfers. The pPolBs of the terrestrial nematode and oomycete Polintons share a unique feature, an insertion of an HNH nuclease domain, whereas the pPolBs in the marine nematode Polintons share an insertion of a VSR nuclease domain with marine mollusc pPolBs. We hypothesize that horizontal gene transfer occurs among Polintons from widely different but cohabiting hosts.
Collapse
Affiliation(s)
- Dae-Eun Jeong
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sameer Sundrani
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Present address: Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, Archaeal Virology Unit, Paris, France
| | - Eugene V Koonin
- National National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Andrew Z Fire
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
4
|
Jeong DE, Sundrani S, Hall RN, Krupovic M, Koonin EV, Fire AZ. DNA polymerase diversity reveals multiple incursions of Polintons during nematode evolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.22.554363. [PMID: 37662302 PMCID: PMC10473752 DOI: 10.1101/2023.08.22.554363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Polintons are dsDNA, virus-like self-synthesizing transposons widely found in eukaryotic genomes. Recent metagenomic discoveries of Polinton-like viruses are consistent with the hypothesis that Polintons invade eukaryotic host genomes through infectious viral particles. Nematode genomes contain multiple copies of Polintons and provide an opportunity to explore the natural distribution and evolution of Polintons during this process. We performed an extensive search of Polintons across nematode genomes, identifying multiple full-length Polinton copies in several species. We provide evidence of both ancient Polinton integrations and recent mobility in strains of the same nematode species. In addition to the major nematode Polinton family, we identified a group of Polintons that are overall closely related to the major family, but encode a distinct protein-primed B family DNA polymerase (pPolB) that is related to homologs from a different group of Polintons present outside of the Nematoda . Phylogenetic analyses on the pPolBs support the evolutionary scenarios in which these extrinsic pPolBs that seem to derive from Polinton families present in oomycetes and molluscs replaced the canonical pPolB in subsets of Polintons found in terrestrial and marine nematodes, respectively, suggesting inter-phylum horizontal gene transfers. The pPolBs of the terrestrial nematode and oomycete Polintons share a unique feature, an insertion of a HNH nuclease domain, whereas the pPolBs in the marine nematode Polintons share an insertion of a VSR nuclease domain with marine mollusc pPolBs. We hypothesize that horizontal gene transfer occurs among Polintons from widely different but cohabiting hosts.
Collapse
|
5
|
First Discovery of Phenuiviruses within Diverse RNA Viromes of Asiatic Toad (Bufo gargarizans) by Metagenomics Sequencing. Viruses 2023; 15:v15030750. [PMID: 36992458 PMCID: PMC10056474 DOI: 10.3390/v15030750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
Most zoonotic pathogens originate from mammals and avians, but viral diversity and related biosafety risk assessment in lower vertebrates also need to be explored. Amphibians are an important group of lower vertebrates that played a momentous role in animal evolution. To elucidate the diversity of RNA viruses in one important species of amphibians, the Asiatic toad (Bufo gargarizans), we obtained 44 samples including lung, gut, liver, and kidney tissues from Asiatic toads in Sichuan and Jilin provinces, China, for viral metagenomics sequencing. More than 20 novel RNA viruses derived from the order Bunyavirales and 7 families of Astroviridae, Dicistroviridae, Leviviridae, Partitiviridae, Picornaviridae, Rhabdoviridae, and Virgaviridae were discovered, which were distinct from previously described viruses and formed new clusters, as revealed by phylogenetic analyses. Notably, a novel bastrovirus, AtBastV/GCCDC11/2022, of the family Astroviridae was identified from the gut library, the genome of which contains three open reading frames, with the RNA-dependent RNA polymerase (RdRp) coded by ORF1 closely related to that of hepeviruses, and ORF2 encoding an astrovirus-related capsid protein. Notably, phenuiviruses were discovered for the first time in amphibians. AtPhenV1/GCCDC12/2022 and AtPhenV2/GCCDC13/2022 clustered together and formed a clade with the group of phenuiviruses identified from rodents. Picornaviruses and several invertebrate RNA viruses were also detected. These findings improve our understanding of the high RNA viral diversity in the Asiatic toad and provide new insights in the evolution of RNA viruses in amphibians.
Collapse
|
6
|
A Novel Rhabdovirus Associated with the Idaho Population of Potato Cyst Nematode Globodera pallida. Viruses 2022; 14:v14122718. [PMID: 36560722 PMCID: PMC9783950 DOI: 10.3390/v14122718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Globodera pallida, a potato cyst nematode (PCN), is a quarantine endoparasitic pest of potato (Solanum tuberosum) in the US due to its effects on yield and quality of potato tubers. A new rhabdovirus, named potato cyst nematode rhabdovirus (PcRV), was revealed and characterized in the G. pallida populations collected in Idaho through use of high-throughput sequencing (HTS) and RT-PCR and found to be most closely related to soybean cyst nematode rhabdovirus (ScRV). PcRV has a 13,604 bp long, single-stranded RNA genome encoding five open reading frames, including four rhabdovirus-specific genes, N, P, G, and L, and one unknown gene. PcRV was found present in eggs, invasive second-stage juveniles, and parasitic females of G. pallida, implying a vertical transmission mode. RT-PCR and partial sequencing of PcRV in laboratory-reared G. pallida populations maintained over five years suggested that the virus is highly persistent and genetically stable. Two other Globodera spp. reproducing on potato and reported in the US, G. rostochiensis and G. ellingtonae, tested negative for PcRV presence. To the best of our knowledge, PcRV is the first virus experimentally found infecting G. pallida. Based on their similar genome organizations, the phylogeny of their RNA-dependent RNA polymerase domains (L gene), and relatively high identity levels in their protein products, PcRV and ScRV are proposed to form a new genus, provisionally named "Gammanemrhavirus", within the family Rhabdoviridae.
Collapse
|
7
|
A Novel Flavi-like Virus in Alfalfa ( Medicago sativa L.) Crops along the Snake River Valley. Viruses 2022; 14:v14061320. [PMID: 35746792 PMCID: PMC9228291 DOI: 10.3390/v14061320] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/07/2022] [Accepted: 06/14/2022] [Indexed: 11/18/2022] Open
Abstract
Alfalfa is an important perennial forage crop in Idaho supporting dairy and cattle industries that is typically grown in the same field for as many as 4 years. Alfalfa stands of different ages were subjected to screening for viruses using high-throughput sequencing and RT-PCR. The two most common viruses found were alfalfa mosaic virus and bean leafroll virus, along with Medicago sativa amalgavirus, two alphapartitiviruses, and one deltapartitivirus. Additionally, a new flavi-like virus with an unusual genome organization was discovered, dubbed Snake River alfalfa virus (SRAV). The 11,745 nt, positive-sense (+) RNA genome of SRAV encodes a single 3835 aa polyprotein with only two identifiable conserved domains, an RNA-dependent RNA polymerase (RdRP) and a predicted serine protease. Notably, unlike all +RNA virus genomes in the similar size range, the SRAV polyprotein contained no predicted helicase domain. In the RdRP phylogeny, SRAV was placed inside the flavi-like lineage as a sister clade to a branch consisting of hepaci-, and pegiviruses. To the best of our knowledge, SRAV is the first flavi-like virus identified in a plant host. Although commonly detected in alfalfa crops in southern Idaho, SRAV sequences were also amplified from thrips feeding in alfalfa stands in the area, suggesting a possible role of Frankliniella occidentalis in virus transmission.
Collapse
|
8
|
Abstract
Rhabdoviruses are ubiquitous and diverse viruses that propagate owing to bidirectional interactions with their vertebrate, arthropod, and plant hosts, and some of them could pose global health or agricultural threats. However, rhabdoviruses have rarely been reported in fungi. Here, two newly identified fungal rhabdoviruses, Rhizoctonia solani rhabdovirus 1 (RsRhV1) and RsRhV2, were discovered and molecularly characterized from the phytopathogenic fungus Rhizoctonia solani. The genomic organizations of RsRhV1 and RsRhV2 are 11,716 and 11,496 nucleotides (nt) in length, respectively, and consist of five open reading frames (ORFs) (ORFs I to V). ORF I, ORF IV, and ORF V encode the viral nucleocapsid (N), glycoprotein (G), and RNA polymerase (L), respectively. The putative protein encoded by ORF III has a lower level of identity with the matrix protein of rhabdoviruses. ORF II encodes a hypothetical protein with unknown function. Phylogenetic trees based on multiple alignments of N, L, and G proteins revealed that RsRhV1 and RsRhV2 are new members of the family Rhabdoviridae, but they form an independent evolutionary branch significantly distinct from other known nonfungal rhabdoviruses, suggesting that they represent a novel viral evolutionary lineage within Rhabdoviridae. Compared to strains lacking rhabdoviruses, strains harboring RsRhV2 and RsRhV1 showed hypervirulence, suggesting that RsRhV1 and RsRhV2 might be associated with the virulence of R. solani. Taken together, this study enriches our understanding of the diversity and host range of rhabdoviruses. IMPORTANCE Mycoviruses have been attracting an increasing amount of attention due to their impact on important medical, agricultural, and industrial fungi. Rhabdoviruses are prevalent across a wide spectrum of hosts, from plants to invertebrates and vertebrates. This study molecularly characterized two novel rhabdoviruses from four Rhizoctonia solani strains, based on their genomic structures, transcription strategy, phylogenetic relationships, and biological impact on their host. Our study makes a significant contribution to the literature because it not only enriches the mycovirus database but also expands the known host range of rhabdoviruses. It also offers insight into the evolutionary linkage between animal viruses and mycoviruses and the transmission of viruses from one host to another. Our study will also help expand the contemporary knowledge of the classification of rhabdoviruses, as well as providing a new model to study rhabdovirus-host interactions, which will benefit the agriculture and medical areas of human welfare.
Collapse
|
9
|
Vieira P, Subbotin SA, Alkharouf N, Eisenback J, Nemchinov LG. Expanding the RNA virome of nematodes and other soil-inhabiting organisms. Virus Evol 2022; 8:veac019. [PMID: 35371560 PMCID: PMC8967085 DOI: 10.1093/ve/veac019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/02/2022] [Accepted: 03/10/2022] [Indexed: 07/25/2023] Open
Abstract
In recent years, several newly discovered viruses infecting free-living nematodes, sedentary plant-parasitic nematodes, and migratory root lesion nematodes have been described. However, to the best of our knowledge, no comprehensive research focusing exclusively on metagenomic analysis of the soil nematode community virome has thus far been carried out. In this work, we have attempted to bridge this gap by investigating viral communities that are associated with soil-inhabiting organisms, particularly nematodes. This study demonstrates a remarkable diversity of RNA viruses in the natural soil environment. Over 150 viruses were identified in different soil-inhabiting hosts, of which more than 139 are potentially new virus species. Many of these viruses belong to the nematode virome, thereby enriching our understanding of the diversity and evolution of this complex part of the natural ecosystem.
Collapse
Affiliation(s)
- Paulo Vieira
- USDA-ARS Mycology & Nematology Genetic Diversity & Biology Laboratory, Beltsville, MD 20705, USA
| | - Sergei A Subbotin
- Plant Pest Diagnostics Branch, California Department of Food & Agriculture, Sacramento, CA 95832, USA
- Center of Parasitology of A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Leninskii Prospect 33, Moscow 117071, Russia
| | - Nadim Alkharouf
- Department of Computer & Information Sciences Faculty, Towson University, Towson, MD 21204, USA
| | - Jonathan Eisenback
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | | |
Collapse
|
10
|
Wang S, Ahmed I, Li X, Nie J, Guo L. Evidence for a novel partitivirus isolated from the entomopathogenic nematode Steinernema ceratophorum. Arch Virol 2022; 167:969-972. [PMID: 35112200 DOI: 10.1007/s00705-021-05314-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/12/2021] [Indexed: 12/26/2022]
Abstract
Nematodes are abundant, but little is known about their viruses. In this study, we report a novel partitivirus isolated from the entomopathogenic nematode species Steinernema ceratophorum, named "Steinernema ceratophorum partitivirus 1" (ScPV-1). The complete genome of ScPV-1 comprises two dsRNA segments, dsRNA1 (2352 bp) and dsRNA2 (2196 bp). Each dsRNA contains a single open reading frame (ORF), encoding a putative RNA-dependent RNA polymerase (RdRp) and a coat protein (CP), respectively. The sequences of the RdRp and CP showed the highest similarity (47% and 33% identity, respectively) to Plasmopara viticola associated partitivirus 7 (PvAP-7). A multiple sequence alignment and phylogenetic analysis of the RdRp of ScPV-1 and other selected viruses indicated that ScPV-1 is a new member of the genus Betapartitivirus in the family Partitiviridae.
Collapse
Affiliation(s)
- Shuangchao Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Irfan Ahmed
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xianhui Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianhua Nie
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lihua Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
11
|
Dietzgen RG, Firth AE, Jiāng D, Junglen S, Kondo H, Kuhn JH, Paraskevopoulou S, Vasilakis N, ICTV Report Consortium. ICTV Virus Taxonomy Profile: Nyamiviridae 2021. J Gen Virol 2021; 102:001681. [PMID: 34738886 PMCID: PMC10010136 DOI: 10.1099/jgv.0.001681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 11/18/2022] Open
Abstract
Nyamiviridae is a family of viruses in the order Mononegavirales, with unsegmented (except for members of the genus Tapwovirus), negative-sense RNA genomes of 10-13 kb. Nyamviruses have a genome organisation and content similar to that of other mononegaviruses. Nyamiviridae includes several genera that form monophyletic clades on phylogenetic analysis of the RNA polymerase. Nyamiviruses have been found associated with diverse invertebrates as well as land- and seabirds. Members of the genera Nyavirus and Socyvirus produce enveloped, spherical virions. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Nyamiviridae, which is available at ictv.global/report/nyamiviridae.
Collapse
Affiliation(s)
| | | | | | - Sandra Junglen
- Charité, Institute of Virology, Rahel-Hirsch-Weg 3, 10117 Berlin, Germany
| | | | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick, NIAID, NIH, Frederick, MD 21702, USA
| | | | - Nikos Vasilakis
- University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | - ICTV Report Consortium
- University of Queensland, St. Lucia, Queensland 4072, Australia
- University of Cambridge, Hills Rd, Cambridge CB2 0QQ, UK
- Huázhōng Agricultural University, Wǔhàn, PR China
- Charité, Institute of Virology, Rahel-Hirsch-Weg 3, 10117 Berlin, Germany
- Okayama University, Kurashiki, 710-0046, Japan
- Integrated Research Facility at Fort Detrick, NIAID, NIH, Frederick, MD 21702, USA
- University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| |
Collapse
|
12
|
Kormelink R, Verchot J, Tao X, Desbiez C. The Bunyavirales: The Plant-Infecting Counterparts. Viruses 2021; 13:842. [PMID: 34066457 PMCID: PMC8148189 DOI: 10.3390/v13050842] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 12/18/2022] Open
Abstract
Negative-strand (-) RNA viruses (NSVs) comprise a large and diverse group of viruses that are generally divided in those with non-segmented and those with segmented genomes. Whereas most NSVs infect animals and humans, the smaller group of the plant-infecting counterparts is expanding, with many causing devastating diseases worldwide, affecting a large number of major bulk and high-value food crops. In 2018, the taxonomy of segmented NSVs faced a major reorganization with the establishment of the order Bunyavirales. This article overviews the major plant viruses that are part of the order, i.e., orthospoviruses (Tospoviridae), tenuiviruses (Phenuiviridae), and emaraviruses (Fimoviridae), and provides updates on the more recent ongoing research. Features shared with the animal-infecting counterparts are mentioned, however, special attention is given to their adaptation to plant hosts and vector transmission, including intra/intercellular trafficking and viral counter defense to antiviral RNAi.
Collapse
Affiliation(s)
- Richard Kormelink
- Laboratory of Virology, Department of Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jeanmarie Verchot
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA;
| | - Xiaorong Tao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China;
| | | |
Collapse
|
13
|
Kobayashi D, Komatsu N, Faizah AN, Amoa-Bosompem M, Sawabe K, Isawa H. A novel nyavirus lacking matrix and glycoprotein genes from Argas japonicus ticks. Virus Res 2020; 292:198254. [PMID: 33276024 DOI: 10.1016/j.virusres.2020.198254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/25/2022]
Abstract
Viruses are highly diverse and are the sole agents that can infect organisms in all domains of life. Viruses are defined as capsid-encoding organisms as opposed to ribosome-encoding cellular organisms. However, recent advances in virology indicate the existence of unique viruses that do not meet this basic definition, such as capsidless viruses. During virome analysis of the soft tick Argas japonicus, we identified virus-like sequences closely related to the members of genus Nyavirus (family Nyamiviridae). Further analysis revealed sequences derived from a novel nyavirus that lacks two structural protein genes, matrix (M) and glycoprotein (G). This unique nyavirus is tentatively named Sekira virus (SEKRV). To our knowledge, this is the first study to report a nyavirus deficient in M and G genes in nature. The mechanism of infection, replication, and persistence of SEKRV remain unknown, yet this finding provides new insight into virus evolution and the diverse way of viral life in nature.
Collapse
Affiliation(s)
- Daisuke Kobayashi
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Noriyuki Komatsu
- Research and Development Department, Civil International Corporation, 1-19-4 Imado, Taito-ku, Tokyo, 111-0024, Japan
| | - Astri Nur Faizah
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Michael Amoa-Bosompem
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Kyoko Sawabe
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Haruhiko Isawa
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.
| |
Collapse
|
14
|
Thekke-Veetil T, Lagos-Kutz D, McCoppin NK, Hartman GL, Ju HK, Lim HS, Domier LL. Soybean Thrips (Thysanoptera: Thripidae) Harbor Highly Diverse Populations of Arthropod, Fungal and Plant Viruses. Viruses 2020; 12:E1376. [PMID: 33271916 PMCID: PMC7761488 DOI: 10.3390/v12121376] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/21/2020] [Accepted: 11/29/2020] [Indexed: 12/11/2022] Open
Abstract
Soybean thrips (Neohydatothrips variabilis) are one of the most efficient vectors of soybean vein necrosis virus, which can cause severe necrotic symptoms in sensitive soybean plants. To determine which other viruses are associated with soybean thrips, the metatranscriptome of soybean thrips, collected by the Midwest Suction Trap Network during 2018, was analyzed. Contigs assembled from the data revealed a remarkable diversity of virus-like sequences. Of the 181 virus-like sequences identified, 155 were novel and associated primarily with taxa of arthropod-infecting viruses, but sequences similar to plant and fungus-infecting viruses were also identified. The novel viruses were predicted to have positive-sense RNA, negative-stranded RNA, double-stranded RNA, and single-stranded DNA genomes. The assembled sequences included 100 contigs that represented at least 95% coverage of a virus genome or genome segment. Sequences represented 12 previously described arthropod viruses including eight viruses reported from Hubei Province in China, and 12 plant virus sequences of which six have been previously described. The presence of diverse populations of plant viruses within soybean thrips suggests they feed on and acquire viruses from multiple host plant species that could be transmitted to soybean. Assessment of the virome of soybean thrips provides, for the first time, information on the diversity of viruses present in thrips.
Collapse
Affiliation(s)
| | - Doris Lagos-Kutz
- Soybean/Maize Germplasm, Pathology, and Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, Urbana, IL 61801, USA; (D.L.-K.); (N.K.M.); (G.L.H.)
| | - Nancy K. McCoppin
- Soybean/Maize Germplasm, Pathology, and Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, Urbana, IL 61801, USA; (D.L.-K.); (N.K.M.); (G.L.H.)
| | - Glen L. Hartman
- Soybean/Maize Germplasm, Pathology, and Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, Urbana, IL 61801, USA; (D.L.-K.); (N.K.M.); (G.L.H.)
| | - Hye-Kyoung Ju
- Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 300-010, Korea; (H.-K.J.); (H.-S.L.)
| | - Hyoun-Sub Lim
- Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 300-010, Korea; (H.-K.J.); (H.-S.L.)
| | - Leslie. L. Domier
- Soybean/Maize Germplasm, Pathology, and Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, Urbana, IL 61801, USA; (D.L.-K.); (N.K.M.); (G.L.H.)
| |
Collapse
|
15
|
Dolja VV, Krupovic M, Koonin EV. Deep Roots and Splendid Boughs of the Global Plant Virome. ANNUAL REVIEW OF PHYTOPATHOLOGY 2020; 58:23-53. [PMID: 32459570 DOI: 10.1146/annurev-phyto-030320-041346] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Land plants host a vast and diverse virome that is dominated by RNA viruses, with major additional contributions from reverse-transcribing and single-stranded (ss) DNA viruses. Here, we introduce the recently adopted comprehensive taxonomy of viruses based on phylogenomic analyses, as applied to the plant virome. We further trace the evolutionary ancestry of distinct plant virus lineages to primordial genetic mobile elements. We discuss the growing evidence of the pivotal role of horizontal virus transfer from invertebrates to plants during the terrestrialization of these organisms, which was enabled by the evolution of close ecological associations between these diverse organisms. It is our hope that the emerging big picture of the formation and global architecture of the plant virome will be of broad interest to plant biologists and virologists alike and will stimulate ever deeper inquiry into the fascinating field of virus-plant coevolution.
Collapse
Affiliation(s)
- Valerian V Dolja
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331-2902, USA;
| | - Mart Krupovic
- Archaeal Virology Unit, Department of Microbiology, Institut Pasteur, 75015 Paris, France
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| |
Collapse
|
16
|
Ruark-Seward CL, Davis EL, Sit TL. Localization of viral and host RNA within soybean cyst nematode via fluorescence in situ hybridization. Exp Parasitol 2020; 211:107866. [PMID: 32113861 DOI: 10.1016/j.exppara.2020.107866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/19/2019] [Accepted: 02/23/2020] [Indexed: 10/24/2022]
Abstract
Nematode-infecting RNA viruses have recently been discovered via transcriptome sequencing. In soybean cyst nematode (SCN; Heterodera glycines), seven single-stranded RNA viruses have been identified from transcriptome data and experimentally confirmed with qRT-PCR and Sanger sequencing. Presently, there is still much unknown about the relationship between these viruses and the nematode host. In this study, we localize three viruses within the soybean cyst nematode: SCN socyvirus-1 (SbCNV-1), SCN nyami-like virus (NLV), and SCN bunya-like virus (BLV). To visually locate the viruses, whole-mount fluorescence in situ hybridization (FISH) methodology was developed for SCN pre-parasitic second-stage juveniles (ppJ2s). Two SCN populations with differing viral titers (LY1 and MM21) were used as a comparison for viral probe fluorescence intensity. Viral RNAs for all three viruses were abundant in cells throughout the SCN ppJ2 body of the high titer (LY1) population but absent within the majority of the intestinal tract. A significant reduction in viral fluorescence intensity was observed in a similar body pattern in ppJ2 of the low-titer (MM21) SCN, highlighting the specificity of the FISH method. As controls, viral RNAs were colocalized with host mRNA glyceraldehyde 3-phosphate dehydrogenase (GAPDH) for full body localization and a secretory ubiquitin protein (4G06) expressed specifically within the subventral esophageal glands. In addition, viral replication was confirmed in SCN eggs and ppJ2s via qRT-PCR detection of the anti-genomic RNA strands.
Collapse
Affiliation(s)
- Casey L Ruark-Seward
- Department of Entomology and Plant Pathology, North Carolina State University, 1575 Varsity Drive, Raleigh, NC, 27606, USA.
| | - Eric L Davis
- Department of Entomology and Plant Pathology, North Carolina State University, 1575 Varsity Drive, Raleigh, NC, 27606, USA
| | - Tim L Sit
- Department of Entomology and Plant Pathology, North Carolina State University, 1575 Varsity Drive, Raleigh, NC, 27606, USA
| |
Collapse
|
17
|
Obbard DJ, Shi M, Roberts KE, Longdon B, Dennis AB. A new lineage of segmented RNA viruses infecting animals. Virus Evol 2020; 6:vez061. [PMID: 31976084 PMCID: PMC6966834 DOI: 10.1093/ve/vez061] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Metagenomic sequencing has revolutionised our knowledge of virus diversity, with new virus sequences being reported faster than ever before. However, virus discovery from metagenomic sequencing usually depends on detectable homology: without a sufficiently close relative, so-called 'dark' virus sequences remain unrecognisable. An alternative approach is to use virus-identification methods that do not depend on detecting homology, such as virus recognition by host antiviral immunity. For example, virus-derived small RNAs have previously been used to propose 'dark' virus sequences associated with the Drosophilidae (Diptera). Here, we combine published Drosophila data with a comprehensive search of transcriptomic sequences and selected meta-transcriptomic datasets to identify a completely new lineage of segmented positive-sense single-stranded RNA viruses that we provisionally refer to as the Quenyaviruses. Each of the five segments contains a single open reading frame, with most encoding proteins showing no detectable similarity to characterised viruses, and one sharing a small number of residues with the RNA-dependent RNA polymerases of single- and double-stranded RNA viruses. Using these sequences, we identify close relatives in approximately 20 arthropods, including insects, crustaceans, spiders, and a myriapod. Using a more conserved sequence from the putative polymerase, we further identify relatives in meta-transcriptomic datasets from gut, gill, and lung tissues of vertebrates, reflecting infections of vertebrates or of their associated parasites. Our data illustrate the utility of small RNAs to detect viruses with limited sequence conservation, and provide robust evidence for a new deeply divergent and phylogenetically distinct RNA virus lineage.
Collapse
Affiliation(s)
- Darren J Obbard
- Institute of Evolutionary Biology, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Mang Shi
- Charles Perkins Center, The University of Sydney, NSW 2006, Australia
| | - Katherine E Roberts
- Biosciences, College of Life & Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK
| | - Ben Longdon
- Biosciences, College of Life & Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK
| | - Alice B Dennis
- Department of Evolutionary Biology & Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| |
Collapse
|
18
|
Vieira P, Peetz A, Mimee B, Saikai K, Mollov D, MacGuidwin A, Zasada I, Nemchinov LG. Prevalence of the root lesion nematode virus (RLNV1) in populations of Pratylenchus penetrans from North America. J Nematol 2020; 52:1-10. [PMID: 32421266 PMCID: PMC7266026 DOI: 10.21307/jofnem-2020-045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Indexed: 11/11/2022] Open
Abstract
Root lesion nematode virus 1 (RLNV1) was discovered in the migratory endoparasitic nematode species Pratylenchus penetrans. It was found in a P. penetrans population collected from soil samples in Beltsville, Maryland, USA. In this study, the distribution of the RLNV1 in 31 geographically distinct P. penetrans populations obtained from different crops was examined. The results demonstrate that RLNV1 is widespread in North American populations of P. penetrans and exhibits low genetic variability in the helicase and RNA-dependent RNA polymerase regions of the genome.
Collapse
Affiliation(s)
- Paulo Vieira
- Molecular Plant Pathology Laboratory , USDA-ARS , Beltsville, MD 20705 ; School of Plant Environmental Science , Virginia Tech , Blacksburg, VA 24061
| | - Amy Peetz
- Horticultural Crops Research Laboratory , USDA-ARS , Corvallis, OR 97330
| | - Benjamin Mimee
- St-Jean-sur-Richelieu Research and Development Center , Agriculture and Agri-Food Canada , St-Jean-sur-Richelieu , Canada
| | - Kanan Saikai
- Department of Plant Pathology, University of Wisconsin-Madison , Madison, WI 53706
| | - Dimitre Mollov
- National Germplasm Resources Laboratory , USDA-ARS , Beltsville, MD 20705
| | - Ann MacGuidwin
- Department of Plant Pathology, University of Wisconsin-Madison , Madison, WI 53706
| | - Inga Zasada
- Horticultural Crops Research Laboratory , USDA-ARS , Corvallis, OR 97330
| | - Lev G Nemchinov
- Molecular Plant Pathology Laboratory , USDA-ARS , Beltsville, MD 20705
| |
Collapse
|
19
|
Abstract
Caenorhabditis elegans has long been a laboratory model organism with no known natural pathogens. In the past ten years, however, natural viruses have been isolated from wild-caught C. elegans (Orsay virus) and its relative Caenorhabditis briggsae (Santeuil virus, Le Blanc virus, and Melnik virus). All are RNA positive-sense viruses related to Nodaviridae; they infect intestinal cells and are horizontally transmitted. The Orsay virus capsid structure has been determined and the virus can be reconstituted by transgenesis of the host. Recent use of the Orsay virus has enabled researchers to identify evolutionarily conserved proviral and antiviral genes that function in nematodes and mammals. These pathways include endocytosis through SID-3 and WASP; a uridylyltransferase that destabilizes viral RNAs by uridylation of their 3′ end; ubiquitin protein modifications and turnover; and the RNA interference pathway, which recognizes and degrades viral RNA.
Collapse
Affiliation(s)
- Marie-Anne Félix
- Institute of Biology of the École Normale Supérieure, CNRS UMR8197, INSERM U1024, 75230 Paris CEDEX 05, France
| | - David Wang
- Departments of Molecular Microbiology and Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA
| |
Collapse
|
20
|
Williams SH, Che X, Oleynik A, Garcia JA, Muller D, Zabka TS, Firth C, Corrigan RM, Briese T, Jain K, Lipkin WI. Discovery of two highly divergent negative-sense RNA viruses associated with the parasitic nematode, Capillaria hepatica, in wild Mus musculus from New York City. J Gen Virol 2019; 100:1350-1362. [PMID: 31513008 PMCID: PMC7363305 DOI: 10.1099/jgv.0.001315] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recent advances in high-throughput sequencing technology have led to a rapid expansion in the number of viral sequences associated with samples from vertebrates, invertebrates and environmental samples. Accurate host identification can be difficult in assays of complex samples that contain more than one potential host. Using unbiased metagenomic sequencing, we investigated wild house mice (Mus musculus) and brown rats (Rattus norvegicus) from New York City to determine the aetiology of liver disease. Light microscopy was used to characterize liver disease, and fluorescent microscopy with in situ hybridization was employed to identify viral cell tropism. Sequences representing two novel negative-sense RNA viruses were identified in homogenates of wild house mouse liver tissue: Amsterdam virus and Fulton virus. In situ hybridization localized viral RNA to Capillaria hepatica, a parasitic nematode that had infected the mouse liver. RNA from either virus was found within nematode adults and unembryonated eggs. Expanded PCR screening identified brown rats as a second rodent host for C. hepatica as well as both nematode-associated viruses. Our findings indicate that the current diversity of nematode-associated viruses may be underappreciated and that anatomical imaging offers an alternative to computational host assignment approaches.
Collapse
Affiliation(s)
- Simon H Williams
- Center for Infection and Immunity, Columbia University, New York, NY, USA
| | - Xiaoyu Che
- Center for Infection and Immunity, Columbia University, New York, NY, USA
| | - Alexandra Oleynik
- Center for Infection and Immunity, Columbia University, New York, NY, USA
| | - Joel A Garcia
- Center for Infection and Immunity, Columbia University, New York, NY, USA
| | - Dorothy Muller
- Center for Infection and Immunity, Columbia University, New York, NY, USA
| | - Tanja S Zabka
- Development Sciences Safety Assessment, Genentech, Inc., South San Francisco, California
| | - Cadhla Firth
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | | | - Thomas Briese
- Center for Infection and Immunity, Columbia University, New York, NY, USA
| | - Komal Jain
- Center for Infection and Immunity, Columbia University, New York, NY, USA
| | - W Ian Lipkin
- Center for Infection and Immunity, Columbia University, New York, NY, USA
| |
Collapse
|
21
|
Gilbert KB, Holcomb EE, Allscheid RL, Carrington JC. Hiding in plain sight: New virus genomes discovered via a systematic analysis of fungal public transcriptomes. PLoS One 2019; 14:e0219207. [PMID: 31339899 PMCID: PMC6655640 DOI: 10.1371/journal.pone.0219207] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/18/2019] [Indexed: 11/25/2022] Open
Abstract
The distribution and diversity of RNA viruses in fungi is incompletely understood due to the often cryptic nature of mycoviral infections and the focused study of primarily pathogenic and/or economically important fungi. As most viruses that are known to infect fungi possess either single-stranded or double-stranded RNA genomes, transcriptomic data provides the opportunity to query for viruses in diverse fungal samples without any a priori knowledge of virus infection. Here we describe a systematic survey of all transcriptomic datasets from fungi belonging to the subphylum Pezizomycotina. Using a simple but effective computational pipeline that uses reads discarded during normal RNA-seq analyses, followed by identification of a viral RNA-dependent RNA polymerase (RdRP) motif in de novo assembled contigs, 59 viruses from 44 different fungi were identified. Among the viruses identified, 88% were determined to be new species and 68% are, to our knowledge, the first virus described from the fungal species. Comprehensive analyses of both nucleotide and inferred protein sequences characterize the phylogenetic relationships between these viruses and the known set of mycoviral sequences and support the classification of up to four new families and two new genera. Thus the results provide a deeper understanding of the scope of mycoviral diversity while also increasing the distribution of fungal hosts. Further, this study demonstrates the suitability of analyzing RNA-seq data to facilitate rapid discovery of new viruses.
Collapse
Affiliation(s)
- Kerrigan B. Gilbert
- Donald Danforth Plant Science Center, Saint Louis, Missouri, United States of America
| | - Emily E. Holcomb
- Donald Danforth Plant Science Center, Saint Louis, Missouri, United States of America
| | - Robyn L. Allscheid
- Donald Danforth Plant Science Center, Saint Louis, Missouri, United States of America
| | - James C. Carrington
- Donald Danforth Plant Science Center, Saint Louis, Missouri, United States of America
| |
Collapse
|
22
|
Schlub TE, Buchmann JP, Holmes EC. A Simple Method to Detect Candidate Overlapping Genes in Viruses Using Single Genome Sequences. Mol Biol Evol 2019; 35:2572-2581. [PMID: 30099499 PMCID: PMC6188560 DOI: 10.1093/molbev/msy155] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Overlapping genes in viruses maximize the coding capacity of their genomes and allow the generation of new genes without major increases in genome size. Despite their importance, the evolution and function of overlapping genes are often not well understood, in part due to difficulties in their detection. In addition, most bioinformatic approaches for the detection of overlapping genes require the comparison of multiple genome sequences that may not be available in metagenomic surveys of virus biodiversity. We introduce a simple new method for identifying candidate functional overlapping genes using single virus genome sequences. Our method uses randomization tests to estimate the expected length of open reading frames and then identifies overlapping open reading frames that significantly exceed this length and are thus predicted to be functional. We applied this method to 2548 reference RNA virus genomes and find that it has both high sensitivity and low false discovery for genes that overlap by at least 50 nucleotides. Notably, this analysis provided evidence for 29 previously undiscovered functional overlapping genes, some of which are coded in the antisense direction suggesting there are limitations in our current understanding of RNA virus replication.
Collapse
Affiliation(s)
- Timothy E Schlub
- Sydney School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Jan P Buchmann
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW , Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW , Australia
| |
Collapse
|
23
|
Vieira P, Nemchinov LG. A novel species of RNA virus associated with root lesion nematode Pratylenchus penetrans. J Gen Virol 2019; 100:704-708. [DOI: 10.1099/jgv.0.001246] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Paulo Vieira
- 1Molecular Plant Pathology Laboratory, Agricultural Research Service, USA Department of Agriculture, Beltsville, USA
- 2School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, USA
| | - Lev G. Nemchinov
- 1Molecular Plant Pathology Laboratory, Agricultural Research Service, USA Department of Agriculture, Beltsville, USA
| |
Collapse
|
24
|
Ortega V, Stone JA, Contreras EM, Iorio RM, Aguilar HC. Addicted to sugar: roles of glycans in the order Mononegavirales. Glycobiology 2019; 29:2-21. [PMID: 29878112 PMCID: PMC6291800 DOI: 10.1093/glycob/cwy053] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/29/2018] [Accepted: 06/05/2018] [Indexed: 12/25/2022] Open
Abstract
Glycosylation is a biologically important protein modification process by which a carbohydrate chain is enzymatically added to a protein at a specific amino acid residue. This process plays roles in many cellular functions, including intracellular trafficking, cell-cell signaling, protein folding and receptor binding. While glycosylation is a common host cell process, it is utilized by many pathogens as well. Protein glycosylation is widely employed by viruses for both host invasion and evasion of host immune responses. Thus better understanding of viral glycosylation functions has potential applications for improved antiviral therapeutic and vaccine development. Here, we summarize our current knowledge on the broad biological functions of glycans for the Mononegavirales, an order of enveloped negative-sense single-stranded RNA viruses of high medical importance that includes Ebola, rabies, measles and Nipah viruses. We discuss glycobiological findings by genera in alphabetical order within each of eight Mononegavirales families, namely, the bornaviruses, filoviruses, mymonaviruses, nyamiviruses, paramyxoviruses, pneumoviruses, rhabdoviruses and sunviruses.
Collapse
Affiliation(s)
- Victoria Ortega
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Jacquelyn A Stone
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, USA
| | - Erik M Contreras
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Ronald M Iorio
- Department of Microbiology and Physiological Systems and Program in Immunology and Microbiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Hector C Aguilar
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
25
|
Anderson S, Soman C, Bekal S, Domier L, Lambert K, Bhalerao K. An Agent-Based Metapopulation Model Simulating Virus-Based Biocontrol of Heterodera Glycines. J Nematol 2018; 50:79-90. [PMID: 30451429 DOI: 10.21307/jofnem-2018-002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
With recently discovered soybean cyst nematode (SCN) viruses, biological control of the nematodes is a theoretical possibility. This study explores the question of what kinds of viruses would make useful biocontrol agents, taking into account evolutionary and population dynamics. An agent-based model, Soybean Cyst Nematode Simulation (SCNSim), was developed to simulate within-host virulence evolution in a virus-nematode-soybean ecosystem. SCNSim was used to predict nematode suppression under a range of viral mutation rates, initial virulences, and release strategies. The simulation model suggested that virus-based biocontrol worked best when the nematodes were inundated with the viruses. Under lower infection prevalence, the viral burden thinned out rapidly due to the limited mobility and high reproductive rate of the SCN. In accordance with the generally accepted trade-off theory, SCNSim predicted the optimal initial virulence for the maximum nematode suppression. Higher initial virulence resulted in shorter lifetime transmission, whereas viruses with lower initial virulence values evolved toward avirulence. SCNSim also indicated that a greater viral mutation rate reinforced the virulence pathotype, suggesting the presence of a virulence threshold necessary to achieve biocontrol against SCN.
Collapse
Affiliation(s)
- Safyre Anderson
- School of Information, University of California at Berkeley, Berkeley, CA
| | - Chinmay Soman
- Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Sadia Bekal
- Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Leslie Domier
- Agricultural Research Service, United States Department of Agriculture, Beltsville, MD ; Crop Science, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Kris Lambert
- Crop Science, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Kaustubh Bhalerao
- Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL
| |
Collapse
|
26
|
Lin J, Ye R, Thekke-Veetil T, Staton ME, Arelli PR, Bernard EC, Hewezi T, Domier LL, Hajimorad MR. A novel picornavirus-like genome from transcriptome sequencing of sugar beet cyst nematode represents a new putative genus. J Gen Virol 2018; 99:1418-1424. [PMID: 30156527 DOI: 10.1099/jgv.0.001139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Analysis of transcriptome sequence data from eggs and second-stage juveniles (J2s) of sugar beet cyst nematode (SBCN, Heterodera schachtii) identified the full-length genome of a positive-sense single-stranded RNA virus, provisionally named sugar beet cyst nematode virus 1 (SBCNV1). The SBCNV1 sequence was detected in both eggs and J2s, indicating its possible vertical transmission. The 9503-nucleotide genome sequence contains a single long open reading frame, which was predicted to encode a polyprotein with conserved domains for picornaviral structural proteins proximal to its amino terminus and RNA helicase, cysteine proteinase and RNA-dependent RNA polymerase (RdRp) conserved domains proximal to its carboxyl terminus, hallmarks of viruses belonging to the order Picornavirales. Phylogenetic analysis of the predicted SBCNV1 RdRp amino acid sequence indicated that the SBCNV1 sequence is most closely related to members of the family Secoviridae, which includes genera of nematode-transmitted plant-infecting viruses. SBCNV1 represents the first fully sequenced viral genome from SBCN.
Collapse
Affiliation(s)
- Jingyu Lin
- 1Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
| | - Rongjian Ye
- 1Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA.,†Present address: Life Science and Technology Center, China National Seed Group Company Limited, Wuhan 430075, PR China
| | | | - Margaret E Staton
- 1Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
| | - Prakash R Arelli
- 3Crop Genetics Research Unit, USDA-ARS, 605 Airways Blvd., Jackson, TN 38301, USA
| | - Ernest C Bernard
- 1Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
| | - Tarek Hewezi
- 4Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
| | - Leslie L Domier
- 2Department of Crop Sciences, University of Illinois, Urbana, IL 61801, USA.,5Soybean/Maize Germplasm, Pathology, and Genetics Research Unit, USDA-ARS, Urbana, IL 61801, USA
| | - M R Hajimorad
- 1Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
27
|
Abstract
Viruses are an important but sequence-diverse and often understudied component of the phytobiome. We succinctly review current information on how plant viruses directly affect plant health and physiology and consequently have the capacity to modulate plant interactions with their biotic and abiotic environments. Virus interactions with other biota in the phytobiome, including arthropods, fungi, and nematodes, may also impact plant health. For example, viruses interact with and modulate the interface between plants and insects. This has been extensively studied for insect-vectored plant viruses, some of which also infect their vectors. Other viruses have been shown to alter the impacts of plant-interacting phytopathogenic and nonpathogenic fungi and bacteria. Viruses that infect nematodes have also recently been discovered, but the impact of these and phage infecting soil bacteria on plant health remain largely unexplored.
Collapse
Affiliation(s)
- James E Schoelz
- Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Lucy R Stewart
- Corn, Soybean and Wheat Quality Research Unit, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Wooster, Ohio 44691, USA;
| |
Collapse
|
28
|
Navarro B, Minutolo M, De Stradis A, Palmisano F, Alioto D, Di Serio F. The first phlebo-like virus infecting plants: a case study on the adaptation of negative-stranded RNA viruses to new hosts. MOLECULAR PLANT PATHOLOGY 2018; 19:1075-1089. [PMID: 28752569 PMCID: PMC6637980 DOI: 10.1111/mpp.12587] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 05/07/2023]
Abstract
A novel negative-stranded (ns) RNA virus associated with a severe citrus disease reported more than 80 years ago has been identified. Transmission electron microscopy showed that this novel virus, tentatively named citrus concave gum-associated virus, is flexuous and non-enveloped. Notwithstanding, its two genomic RNAs share structural features with members of the genus Phlebovirus, which are enveloped arthropod-transmitted viruses infecting mammals, and with a group of still unclassified phlebo-like viruses mainly infecting arthropods. CCGaV genomic RNAs code for an RNA-dependent RNA polymerase, a nucleocapsid protein and a putative movement protein showing structural and phylogenetic relationships with phlebo-like viruses, phleboviruses and the unrelated ophioviruses, respectively, thus providing intriguing evidence of a modular genome evolution. Phylogenetic reconstructions identified an invertebrate-restricted virus as the most likely ancestor of this virus, revealing that its adaptation to plants was independent from and possibly predated that of the other nsRNA plant viruses. These data are consistent with an evolutionary scenario in which trans-kingdom adaptation occurred several times during the history of nsRNA viruses and followed different evolutionary pathways, in which genomic RNA segments were gained or lost. The need to create a new genus for this bipartite nsRNA virus and the impact of the rapid and specific detection methods developed here on citrus sanitation and certification are also discussed.
Collapse
Affiliation(s)
- Beatriz Navarro
- Istituto per la Protezione Sostenibile delle PianteConsiglio Nazionale delle Ricerche70126 BariItaly
| | - Maria Minutolo
- Dipartimento di AgrariaUniversità degli Studi di Napoli Federico II80055 PorticiNaplesItaly
| | - Angelo De Stradis
- Istituto per la Protezione Sostenibile delle PianteConsiglio Nazionale delle Ricerche70126 BariItaly
| | - Francesco Palmisano
- Centro di RicercaSperimentazione e Formazione in Agricoltura Basile Caramia70010 LocorotondoBariItaly
| | - Daniela Alioto
- Dipartimento di AgrariaUniversità degli Studi di Napoli Federico II80055 PorticiNaplesItaly
| | - Francesco Di Serio
- Istituto per la Protezione Sostenibile delle PianteConsiglio Nazionale delle Ricerche70126 BariItaly
| |
Collapse
|
29
|
Horie M, Tomonaga K. Paleovirology of bornaviruses: What can be learned from molecular fossils of bornaviruses. Virus Res 2018; 262:2-9. [PMID: 29630909 DOI: 10.1016/j.virusres.2018.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/05/2018] [Accepted: 04/05/2018] [Indexed: 02/05/2023]
Abstract
Endogenous viral elements (EVEs) are virus-derived sequences embedded in eukaryotic genomes formed by germline integration of viral sequences. As many EVEs were integrated into eukaryotic genomes millions of years ago, EVEs are considered molecular fossils of viruses. EVEs can be valuable informational sources about ancient viruses, including their time scale, geographical distribution, genetic information, and hosts. Although integration of viral sequences is not required for replications of viruses other than retroviruses, many non-retroviral EVEs have been reported to exist in eukaryotes. Investigation of these EVEs has expanded our knowledge regarding virus-host interactions, as well as provided information on ancient viruses. Among them, EVEs derived from bornaviruses, non-retroviral RNA viruses, have been relatively well studied. Bornavirus-derived EVEs are widely distributed in animal genomes, including the human genome, and the history of bornaviruses can be dated back to more than 65 million years. Although there are several reports focusing on the biological significance of bornavirus-derived sequences in mammals, paleovirology of bornaviruses has not yet been well described and summarized. In this paper, we describe what can be learned about bornaviruses from endogenous bornavirus-like elements from the view of paleovirology using published results and our novel data.
Collapse
Affiliation(s)
- Masayuki Horie
- Hakubi Center for Advanced Research, Kyoto University, Kyoto, Japan; Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| | - Keizo Tomonaga
- Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan; Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
30
|
Ruark CL, Gardner M, Mitchum MG, Davis EL, Sit TL. Novel RNA viruses within plant parasitic cyst nematodes. PLoS One 2018; 13:e0193881. [PMID: 29509804 PMCID: PMC5839581 DOI: 10.1371/journal.pone.0193881] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/20/2018] [Indexed: 02/06/2023] Open
Abstract
The study of invertebrate-and particularly nematode-viruses is emerging with the advancement of transcriptome sequencing. Five single-stranded RNA viruses have now been confirmed within the economically important soybean cyst nematode (SCN; Heterodera glycines). From previous research, we know these viruses to be widespread in greenhouse and field populations of SCN. Several of the SCN viruses were also confirmed within clover (H. trifolii) and beet (H. schachtii) cyst nematodes. In the presented study, we sequenced the transcriptomes of several inbred SCN populations and identified two previously undiscovered viral-like genomes. Both of these proposed viruses are negative-sense RNA viruses and have been named SCN nyami-like virus (NLV) and SCN bunya-like virus (BLV). Finally, we analyzed publicly available transcriptome data of two potato cyst nematode (PCN) species, Globodera pallida and G. rostochiensis. From these data, a third potential virus was discovered and called PCN picorna-like virus (PLV). PCN PLV is a positive-sense RNA virus, and to the best of our knowledge, is the first virus described within PCN. The presence of these novel viruses was confirmed via qRT-PCR, endpoint PCR, and Sanger sequencing with the exception of PCN PLV due to quarantine restrictions on the nematode host. While much work needs to be done to understand the biological and evolutionary significance of these viruses, they offer insight into nematode ecology and the possibility of novel nematode management strategies.
Collapse
Affiliation(s)
- Casey L. Ruark
- Department of Entomology and Plant Pathology, North Carolina State University, Thomas Hall, Raleigh, North Carolina, United States of America
| | - Michael Gardner
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, 371H Bond Life Sciences Center, Columbia, Missouri, United States of America
| | - Melissa G. Mitchum
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, 371H Bond Life Sciences Center, Columbia, Missouri, United States of America
| | - Eric L. Davis
- Department of Entomology and Plant Pathology, North Carolina State University, Thomas Hall, Raleigh, North Carolina, United States of America
| | - Tim L. Sit
- Department of Entomology and Plant Pathology, North Carolina State University, Thomas Hall, Raleigh, North Carolina, United States of America
| |
Collapse
|
31
|
Gardner M, Dhroso A, Johnson N, Davis EL, Baum TJ, Korkin D, Mitchum MG. Novel global effector mining from the transcriptome of early life stages of the soybean cyst nematode Heterodera glycines. Sci Rep 2018; 8:2505. [PMID: 29410430 PMCID: PMC5802810 DOI: 10.1038/s41598-018-20536-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 01/12/2018] [Indexed: 11/08/2022] Open
Abstract
Soybean cyst nematode (SCN) Heterodera glycines is an obligate parasite that relies on the secretion of effector proteins to manipulate host cellular processes that favor the formation of a feeding site within host roots to ensure its survival. The sequence complexity and co-evolutionary forces acting upon these effectors remain unknown. Here we generated a de novo transcriptome assembly representing the early life stages of SCN in both a compatible and an incompatible host interaction to facilitate global effector mining efforts in the absence of an available annotated SCN genome. We then employed a dual effector prediction strategy coupling a newly developed nematode effector prediction tool, N-Preffector, with a traditional secreted protein prediction pipeline to uncover a suite of novel effector candidates. Our analysis distinguished between effectors that co-evolve with the host genotype and those conserved by the pathogen to maintain a core function in parasitism and demonstrated that alternative splicing is one mechanism used to diversify the effector pool. In addition, we confirmed the presence of viral and microbial inhabitants with molecular sequence information. This transcriptome represents the most comprehensive whole-nematode sequence currently available for SCN and can be used as a tool for annotation of expected genome assemblies.
Collapse
Affiliation(s)
- Michael Gardner
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, USA
| | - Andi Dhroso
- Department of Computer Science and Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, USA
| | - Nathan Johnson
- Department of Computer Science and Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, USA
| | - Eric L Davis
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, USA
| | - Thomas J Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, USA
| | - Dmitry Korkin
- Department of Computer Science and Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, USA.
| | - Melissa G Mitchum
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, USA.
| |
Collapse
|
32
|
Greninger AL. A decade of RNA virus metagenomics is (not) enough. Virus Res 2018; 244:218-229. [PMID: 29055712 PMCID: PMC7114529 DOI: 10.1016/j.virusres.2017.10.014] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 10/14/2017] [Accepted: 10/17/2017] [Indexed: 12/16/2022]
Abstract
It is hard to overemphasize the role that metagenomics has had on our recent understanding of RNA virus diversity. Metagenomics in the 21st century has brought with it an explosion in the number of RNA virus species, genera, and families far exceeding that following the discovery of the microscope in the 18th century for eukaryotic life or culture media in the 19th century for bacteriology or the 20th century for virology. When the definition of success in organism discovery is measured by sequence diversity and evolutionary distance, RNA viruses win. This review explores the history of RNA virus metagenomics, reasons for the successes so far in RNA virus metagenomics, and methodological concerns. In addition, the review briefly covers clinical metagenomics and environmental metagenomics and highlights some of the critical accomplishments that have defined the fast pace of RNA virus discoveries in recent years. Slightly more than a decade in, the field is exhausted from its discoveries but knows that there is yet even more out there to be found.
Collapse
Affiliation(s)
- Alexander L Greninger
- Virology Division, Department of Laboratory Medicine, University of Washington, Seattle, WA, United States; Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| |
Collapse
|
33
|
Dietzgen RG, Ghedin E, Jiāng D, Kuhn JH, Song T, Vasilakis N, Wang D, ICTV Report Consortium. ICTV Virus Taxonomy Profile: Nyamiviridae. J Gen Virol 2017; 98:2914-2915. [PMID: 29120298 PMCID: PMC5775900 DOI: 10.1099/jgv.0.000973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 10/26/2017] [Indexed: 12/15/2022] Open
Abstract
The Nyamiviridae is a family of viruses with unsegmented, negative-sense RNA genomes of 11.3-12.2 kb that produce enveloped, spherical virions. Viruses of the genus Nyavirus are tick-borne and some also infect birds. Other nyamiviruses infecting parasitoid wasps and plant parasitic nematodes have been classified into the genera Peropuvirus and Socyvirus, respectively. This is a summary of the current International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of Nyamiviridae, which is available at www.ictv.global/report/nyamiviridae.
Collapse
Affiliation(s)
- Ralf G. Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St. Lucia, Queensland, Australia
| | - Elodie Ghedin
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Dàohóng Jiāng
- State Key Laboratory of Agricultural Microbiology, The Provincial Key Lab of Plant Pathology of Húběi Province, College of Plant Science and Technology, Huázhōng Agricultural University, Wuhan, PR China
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| | - Timothy Song
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Nikos Vasilakis
- Center for Biodefense and Emerging Infectious Diseases, Department of Pathology, The University of Texas Medical Branch, Galveston, TX, USA
| | - David Wang
- Departments of Molecular Microbiology and Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - ICTV Report Consortium
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St. Lucia, Queensland, Australia
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
- State Key Laboratory of Agricultural Microbiology, The Provincial Key Lab of Plant Pathology of Húběi Province, College of Plant Science and Technology, Huázhōng Agricultural University, Wuhan, PR China
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
- Center for Biodefense and Emerging Infectious Diseases, Department of Pathology, The University of Texas Medical Branch, Galveston, TX, USA
- Departments of Molecular Microbiology and Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
34
|
Metagenomics reshapes the concepts of RNA virus evolution by revealing extensive horizontal virus transfer. Virus Res 2017; 244:36-52. [PMID: 29103997 PMCID: PMC5801114 DOI: 10.1016/j.virusres.2017.10.020] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 12/22/2022]
Abstract
Virus metagenomics is a young research filed but it has already transformed our understanding of virus diversity and evolution, and illuminated at a new level the connections between virus evolution and the evolution and ecology of the hosts. In this review article, we examine the new picture of the evolution of RNA viruses, the dominant component of the eukaryotic virome, that is emerging from metagenomic data analysis. The major expansion of many groups of RNA viruses through metagenomics allowed the construction of substantially improved phylogenetic trees for the conserved virus genes, primarily, the RNA-dependent RNA polymerases (RdRp). In particular, a new superfamily of widespread, small positive-strand RNA viruses was delineated that unites tombus-like and noda-like viruses. Comparison of the genome architectures of RNA viruses discovered by metagenomics and by traditional methods reveals an extent of gene module shuffling among diverse virus genomes that far exceeds the previous appreciation of this evolutionary phenomenon. Most dramatically, inclusion of the metagenomic data in phylogenetic analyses of the RdRp resulted in the identification of numerous, strongly supported groups that encompass RNA viruses from diverse hosts including different groups of protists, animals and plants. Notwithstanding potential caveats, in particular, incomplete and uneven sampling of eukaryotic taxa, these highly unexpected findings reveal horizontal virus transfer (HVT) between diverse hosts as the central aspect of RNA virus evolution. The vast and diverse virome of invertebrates, particularly nematodes and arthropods, appears to be the reservoir, from which the viromes of plants and vertebrates evolved via multiple HVT events.
Collapse
|
35
|
Walsh E, Elmore JM, Taylor CG. Root-Knot Nematode Parasitism Suppresses Host RNA Silencing. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:295-300. [PMID: 28402184 DOI: 10.1094/mpmi-08-16-0160-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Root-knot nematodes damage crops around the world by developing complex feeding sites from normal root cells of their hosts. The ability to initiate and maintain this feeding site (composed of individual "giant cells") is essential to their parasitism process. RNA silencing pathways in plants serve a diverse set of functions, from directing growth and development to defending against invading pathogens. Influencing a host's RNA silencing pathways as a pathogenicity strategy has been well-documented for viral plant pathogens, but recently, it has become clear that silencing pathways also play an important role in other plant pathosystems. To determine if RNA silencing pathways play a role in nematode parasitism, we tested the susceptibility of plants that express a viral suppressor of RNA silencing. We observed an increase in susceptibility to nematode parasitism in plants expressing viral suppressors of RNA silencing. Results from studies utilizing a silenced reporter gene suggest that active suppression of RNA silencing pathways may be occurring during nematode parasitism. With these studies, we provide further evidence to the growing body of plant-biotic interaction research that suppression of RNA silencing is important in the successful interaction between a plant-parasitic animal and its host.
Collapse
Affiliation(s)
- E Walsh
- 1 Department of Plant Pathology, The Ohio State University, OARDC, Wooster, OH 44691, U.S.A.; and
| | - J M Elmore
- 2 Department of Plant Pathology & Microbiology, Iowa State University, Ames, IA 50011, U.S.A
| | - C G Taylor
- 1 Department of Plant Pathology, The Ohio State University, OARDC, Wooster, OH 44691, U.S.A.; and
| |
Collapse
|
36
|
Wang F, Fang Q, Wang B, Yan Z, Hong J, Bao Y, Kuhn JH, Werren JH, Song Q, Ye G. A novel negative-stranded RNA virus mediates sex ratio in its parasitoid host. PLoS Pathog 2017; 13:e1006201. [PMID: 28278298 PMCID: PMC5344506 DOI: 10.1371/journal.ppat.1006201] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 01/26/2017] [Indexed: 11/23/2022] Open
Abstract
Parasitoid wasps are important natural enemies of arthropod hosts in natural and agricultural ecosystems and are often associated with viruses or virion-like particles. Here, we report a novel negative-stranded RNA virus from a parasitoid wasp (Pteromalus puparum). The complete viral genome is 12,230 nucleotides in length, containing five non-overlapping, linearly arranged open reading frames. Phylogenetically, the virus clusters with and is a novel member of the mononegaviral family Nyamiviridae, here designated as Pteromalus puparum negative-strand RNA virus 1 (PpNSRV-1). PpNSRV-1 is present in various tissues and life stages of the parasitoid wasp, and is transmitted vertically through infected females and males. Virus infections in field populations of P. puparum wasps ranged from 16.7 to 37.5%, without linearly correlating with temperature. PpNSRV-1 increased adult longevity and impaired several fitness parameters of the wasp, but had no influence on successful parasitism. Strikingly, PpNSRV-1 mediated the offspring sex ratio by decreasing female offspring numbers. RNA interference knockdown of virus open reading frame I eliminated these PpNSRV-1-induced effects. Thus, we infer that PpNSRV-1 has complex effects on its insect host including sex ratio distortion towards males, as well as possible mutualistic benefits through increasing wasp longevity.
Collapse
Affiliation(s)
- Fei Wang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi Fang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Beibei Wang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Zhichao Yan
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jian Hong
- Analysis Center of Agrobiology and Environmental Sciences & Institute of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Yiming Bao
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick (IRF-Frederick), Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Fort Detrick, Frederick, Maryland, United States of America
| | - John H. Werren
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Qisheng Song
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, Missouri, United States of America
| | - Gongyin Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
37
|
Ruark CL, Koenning SR, Davis EL, Opperman CH, Lommel SA, Mitchum MG, Sit TL. Soybean cyst nematode culture collections and field populations from North Carolina and Missouri reveal high incidences of infection by viruses. PLoS One 2017; 12:e0171514. [PMID: 28141854 PMCID: PMC5283738 DOI: 10.1371/journal.pone.0171514] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/20/2017] [Indexed: 11/18/2022] Open
Abstract
Five viruses were previously discovered infecting soybean cyst nematodes (SCN; Heterodera glycines) from greenhouse cultures maintained in Illinois. In this study, the five viruses [ScNV, ScPV, ScRV, ScTV, and SbCNV-5] were detected within SCN greenhouse and field populations from North Carolina (NC) and Missouri (MO). The prevalence and titers of viruses in SCN from 43 greenhouse cultures and 25 field populations were analyzed using qRT-PCR. Viral titers within SCN greenhouse cultures were similar throughout juvenile development, and the presence of viral anti-genomic RNAs within egg, second-stage juvenile (J2), and pooled J3 and J4 stages suggests active viral replication within the nematode. Viruses were found at similar or lower levels within field populations of SCN compared with greenhouse cultures of North Carolina populations. Five greenhouse cultures harbored all five known viruses whereas in most populations a mixture of fewer viruses was detected. In contrast, three greenhouse cultures of similar descent to one another did not possess any detectable viruses and primarily differed in location of the cultures (NC versus MO). Several of these SCN viruses were also detected in Heterodera trifolii (clover cyst) and Heterodera schachtii (beet cyst), but not the other cyst, root-knot, or reniform nematode species tested. Viruses were not detected within soybean host plant tissue. If nematode infection with viruses is truly more common than first considered, the potential influence on nematode biology, pathogenicity, ecology, and control warrants continued investigation.
Collapse
Affiliation(s)
- Casey L. Ruark
- Department of Entomology and Plant Pathology, North Carolina State University, 2510 Thomas Hall, Raleigh, North Carolina, United States of America
| | - Stephen R. Koenning
- Department of Entomology and Plant Pathology, North Carolina State University, 2510 Thomas Hall, Raleigh, North Carolina, United States of America
| | - Eric L. Davis
- Department of Entomology and Plant Pathology, North Carolina State University, 2510 Thomas Hall, Raleigh, North Carolina, United States of America
| | - Charles H. Opperman
- Department of Entomology and Plant Pathology, North Carolina State University, 2510 Thomas Hall, Raleigh, North Carolina, United States of America
| | - Steven A. Lommel
- Department of Entomology and Plant Pathology, North Carolina State University, 2510 Thomas Hall, Raleigh, North Carolina, United States of America
| | - Melissa G. Mitchum
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, 371H Bond Life Sciences Center, Columbia, Missouri, United States of America
| | - Tim L. Sit
- Department of Entomology and Plant Pathology, North Carolina State University, 2510 Thomas Hall, Raleigh, North Carolina, United States of America
| |
Collapse
|
38
|
Cotton JA, Steinbiss S, Yokoi T, Tsai IJ, Kikuchi T. An expressed, endogenous Nodavirus-like element captured by a retrotransposon in the genome of the plant parasitic nematode Bursaphelenchus xylophilus. Sci Rep 2016; 6:39749. [PMID: 28004836 PMCID: PMC5177903 DOI: 10.1038/srep39749] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/28/2016] [Indexed: 12/26/2022] Open
Abstract
Recently, nematode viruses infecting Caenorhabditis elegans have been reported from the family Nodaviridae, the first nematode viruses described. Here, we report the observation of a novel endogenous viral element (EVE) in the genome of Bursaphelenchus xylophilus, a plant parasitic nematode unrelated to other nematodes from which viruses have been characterised. This element derives from a different clade of nodaviruses to the previously reported nematode viruses. This represents the first endogenous nodavirus sequence, the first nematode endogenous viral element, and significantly extends our knowledge of the potential diversity of the Nodaviridae. A search for endogenous elements related to the Nodaviridae did not reveal any elements in other available nematode genomes. Further surveillance for endogenous viral elements is warranted as our knowledge of nematode genome diversity, and in particular of free-living nematodes, expands.
Collapse
Affiliation(s)
- James A Cotton
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Sascha Steinbiss
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Toshiro Yokoi
- Forestry and Forest Products Research Institute, Tsukuba 305-8687, Japan
| | - Isheng J Tsai
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.,Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan.,Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Taisei Kikuchi
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.,Forestry and Forest Products Research Institute, Tsukuba 305-8687, Japan.,Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| |
Collapse
|
39
|
Abstract
Current knowledge of RNA virus biodiversity is both biased and fragmentary, reflecting a focus on culturable or disease-causing agents. Here we profile the transcriptomes of over 220 invertebrate species sampled across nine animal phyla and report the discovery of 1,445 RNA viruses, including some that are sufficiently divergent to comprise new families. The identified viruses fill major gaps in the RNA virus phylogeny and reveal an evolutionary history that is characterized by both host switching and co-divergence. The invertebrate virome also reveals remarkable genomic flexibility that includes frequent recombination, lateral gene transfer among viruses and hosts, gene gain and loss, and complex genomic rearrangements. Together, these data present a view of the RNA virosphere that is more phylogenetically and genomically diverse than that depicted in current classification schemes and provide a more solid foundation for studies in virus ecology and evolution.
Collapse
|
40
|
Webster CL, Longdon B, Lewis SH, Obbard DJ. Twenty-Five New Viruses Associated with the Drosophilidae (Diptera). Evol Bioinform Online 2016; 12:13-25. [PMID: 27375356 PMCID: PMC4915790 DOI: 10.4137/ebo.s39454] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/21/2016] [Accepted: 04/23/2016] [Indexed: 01/19/2023] Open
Abstract
Drosophila melanogaster is an important laboratory model for studies of antiviral immunity in invertebrates, and Drosophila species provide a valuable system to study virus host range and host switching. Here, we use metagenomic RNA sequencing of about 1600 adult flies to discover 25 new RNA viruses associated with six different drosophilid hosts in the wild. We also provide a comprehensive listing of viruses previously reported from the Drosophilidae. The new viruses include Iflaviruses, Rhabdoviruses, Nodaviruses, and Reoviruses, and members of unclassified lineages distantly related to Negeviruses, Sobemoviruses, Poleroviruses, Flaviviridae, and Tombusviridae. Among these are close relatives of Drosophila X virus and Flock House virus, which we find in association with wild Drosophila immigrans. These two viruses are widely used in experimental studies but have not been previously reported to naturally infect Drosophila. Although we detect no new DNA viruses, in D. immigrans and Drosophila obscura, we identify sequences very closely related to Armadillidium vulgare iridescent virus (Invertebrate iridescent virus 31), bringing the total number of DNA viruses found in the Drosophilidae to three.
Collapse
Affiliation(s)
- Claire L. Webster
- Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, UK
- Evolution, behaviour and environment, School of Life Sciences, University of Sussex, Brighton, UK
| | - Ben Longdon
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Samuel H. Lewis
- Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Darren J. Obbard
- Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, UK
- Centre for Immunity, Infection and Evolution, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
41
|
Fosu-Nyarko J, Tan JACH, Gill R, Agrez VG, Rao U, Jones MGK. De novo analysis of the transcriptome of Pratylenchus zeae to identify transcripts for proteins required for structural integrity, sensation, locomotion and parasitism. MOLECULAR PLANT PATHOLOGY 2016; 17:532-52. [PMID: 26292651 PMCID: PMC6638428 DOI: 10.1111/mpp.12301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The root lesion nematode Pratylenchus zeae, a migratory endoparasite, is an economically important pest of major crop plants (e.g. cereals, sugarcane). It enters host roots, migrates through root tissues and feeds from cortical cells, and defends itself against biotic and abiotic stresses in the soil and in host tissues. We report de novo sequencing of the P. zeae transcriptome using 454 FLX, and the identification of putative transcripts encoding proteins required for movement, response to stimuli, feeding and parasitism. Sequencing generated 347,443 good quality reads which were assembled into 10,163 contigs and 139,104 singletons: 65% of contigs and 28% of singletons matched sequences of free-living and parasitic nematodes. Three-quarters of the annotated transcripts were common to reference nematodes, mainly representing genes encoding proteins for structural integrity and fundamental biochemical processes. Over 15,000 transcripts were similar to Caenorhabditis elegans genes encoding proteins with roles in mechanical and neural control of movement, responses to chemicals, mechanical and thermal stresses. Notably, 766 transcripts matched parasitism genes employed by both migratory and sedentary endoparasites in host interactions, three of which hybridized to the gland cell region, suggesting that they might be secreted. Conversely, transcripts for effectors reported to be involved in feeding site formation by sedentary endoparasites were conspicuously absent. Transcripts similar to those encoding some secretory-excretory products at the host interface of Brugia malayi, the secretome of Meloidogyne incognita and products of gland cells of Heterodera glycines were also identified. This P. zeae transcriptome provides new information for genome annotation and functional analysis of possible targets for control of pratylenchid nematodes.
Collapse
Affiliation(s)
- John Fosu-Nyarko
- Plant Biotechnology Research Group, WA State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, WA, 6150, Australia
- Nemgenix Pty Ltd, WA State Agricultural Biotechnology Centre, Murdoch University, Perth, WA, 6150, Australia
| | - Jo-Anne C H Tan
- Plant Biotechnology Research Group, WA State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, WA, 6150, Australia
| | - Reetinder Gill
- Plant Biotechnology Research Group, WA State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, WA, 6150, Australia
| | - Vaughan G Agrez
- Plant Biotechnology Research Group, WA State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, WA, 6150, Australia
| | - Uma Rao
- Division of Nematology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Michael G K Jones
- Plant Biotechnology Research Group, WA State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, WA, 6150, Australia
| |
Collapse
|
42
|
Fosu-Nyarko J, Nicol P, Naz F, Gill R, Jones MGK. Analysis of the Transcriptome of the Infective Stage of the Beet Cyst Nematode, H. schachtii. PLoS One 2016; 11:e0147511. [PMID: 26824923 PMCID: PMC4733053 DOI: 10.1371/journal.pone.0147511] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 01/05/2016] [Indexed: 01/08/2023] Open
Abstract
The beet cyst nematode, Heterodera schachtii, is a major root pest that significantly impacts the yield of sugar beet, brassicas and related species. There has been limited molecular characterisation of this important plant pathogen: to identify target genes for its control the transcriptome of the pre-parasitic J2 stage of H. schachtii was sequenced using Roche GS FLX. Ninety seven percent of reads (i.e., 387,668) with an average PHRED score > 22 were assembled with CAP3 and CLC Genomics Workbench into 37,345 and 47,263 contigs, respectively. The transcripts were annotated by comparing with gene and genomic sequences of other nematodes and annotated proteins on public databases. The annotated transcripts were much more similar to sequences of Heterodera glycines than to those of Globodera pallida and root knot nematodes (Meloidogyne spp.). Analysis of these transcripts showed that a subset of 2,918 transcripts was common to free-living and plant parasitic nematodes suggesting that this subset is involved in general nematode metabolism and development. A set of 148 contigs and 183 singletons encoding putative homologues of effectors previously characterised for plant parasitic nematodes were also identified: these are known to be important for parasitism of host plants during migration through tissues or feeding from cells or are thought to be involved in evasion or modulation of host defences. In addition, the presence of sequences from a nematode virus is suggested. The sequencing and annotation of this transcriptome significantly adds to the genetic data available for H. schachtii, and identifies genes primed to undertake required roles in the critical pre-parasitic and early post-parasitic J2 stages. These data provide new information for identifying potential gene targets for future protection of susceptible crops against H. schachtii.
Collapse
Affiliation(s)
- John Fosu-Nyarko
- Plant Biotechnology Research Group, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
- NemGenix Pty Ltd, Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, Australia
- * E-mail: ; (JFN); (MGKJ)
| | - Paul Nicol
- Plant Biotechnology Research Group, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | - Fareeha Naz
- Plant Biotechnology Research Group, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | - Reetinder Gill
- Plant Biotechnology Research Group, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | - Michael G. K. Jones
- Plant Biotechnology Research Group, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
- * E-mail: ; (JFN); (MGKJ)
| |
Collapse
|
43
|
Teixeira M, Sela N, Ng J, Casteel CL, Peng HC, Bekal S, Girke T, Ghanim M, Kaloshian I. A novel virus from Macrosiphum euphorbiae with similarities to members of the family Flaviviridae. J Gen Virol 2016; 97:1261-1271. [PMID: 26822322 DOI: 10.1099/jgv.0.000414] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A virus with a large genome was identified in the transcriptome of the potato aphid (Macrosiphum euphorbiae) and was named Macrosiphum euphorbiae virus 1 (MeV-1). The MeV-1 genome is 22 780 nt in size, including 3' and 5' non-coding regions, with a single large ORF encoding a putative polyprotein of 7333 aa. The C-terminal region of the predicted MeV-1 polyprotein contained sequences with similarities to helicase, methyltransferase and RNA-dependent RNA polymerase (RdRp) motifs, while the N-terminal region lacked any motifs including structural proteins. Phylogenetic analysis of the helicase placed MeV-1 close to pestiviruses, while the RdRp region placed it close to pestiviruses and flaviviruses, suggesting MeV-1 has a positive-polarity ssRNA genome and is a member of the family Flaviviridae. Since the MeV-1 genome is predicted to contain a methyltransferase, a gene present typically in flaviviruses but not pestiviruses, MeV-1 is likely a member of the genus Flavivirus. MeV-1 was present in nymphal and adult stages of the aphid, aphid saliva and plant tissues fed upon by aphids. However, the virus was unable to multiply and spread in tomato plants. In addition, dsRNA, the replication intermediate of RNA viruses, was isolated from virus-infected M. euphorbiae and not from tomato plants infested with the aphid. Furthermore, nymphs laid without exposure to infected plants harboured the virus, indicating that MeV-1 is an aphid-infecting virus likely transmitted transovarially. The virus was present in M. euphorbiae populations from Europe but not from North America and was absent in all other aphid species tested.
Collapse
Affiliation(s)
- Marcella Teixeira
- Department of Nematology,University of California, Riverside, California,USA
| | - Noa Sela
- Department of Plant Pathology and Weed Research,Volcani Center, Bet Dagan,Israel
| | - James Ng
- Plant Pathology and Microbiology,University of California, Riverside, California,USA.,Institute of Integrative Genome Biology,University of California, Riverside, California,USA
| | - Clare L Casteel
- Department of Plant Pathology,University of California, Davis, California,USA
| | - Hsuan-Chieh Peng
- Plant Pathology and Microbiology,University of California, Riverside, California,USA
| | - Sadia Bekal
- Department of Agricultural and Biological Engineering,University of Illinois, Urbana, IL,USA
| | - Thomas Girke
- Institute of Integrative Genome Biology,University of California, Riverside, California,USA.,Department of Botany and Plant Sciences,University of California, Riverside, California,USA
| | - Murad Ghanim
- Department of Entomology,Volcani Center, Bet Dagan,Israel
| | - Isgouhi Kaloshian
- Institute of Integrative Genome Biology,University of California, Riverside, California,USA.,Department of Nematology,University of California, Riverside, California,USA
| |
Collapse
|
44
|
Koonin EV, Dolja VV, Krupovic M. Origins and evolution of viruses of eukaryotes: The ultimate modularity. Virology 2015; 479-480:2-25. [PMID: 25771806 PMCID: PMC5898234 DOI: 10.1016/j.virol.2015.02.039] [Citation(s) in RCA: 352] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 02/19/2015] [Accepted: 02/20/2015] [Indexed: 01/04/2023]
Abstract
Viruses and other selfish genetic elements are dominant entities in the biosphere, with respect to both physical abundance and genetic diversity. Various selfish elements parasitize on all cellular life forms. The relative abundances of different classes of viruses are dramatically different between prokaryotes and eukaryotes. In prokaryotes, the great majority of viruses possess double-stranded (ds) DNA genomes, with a substantial minority of single-stranded (ss) DNA viruses and only limited presence of RNA viruses. In contrast, in eukaryotes, RNA viruses account for the majority of the virome diversity although ssDNA and dsDNA viruses are common as well. Phylogenomic analysis yields tangible clues for the origins of major classes of eukaryotic viruses and in particular their likely roots in prokaryotes. Specifically, the ancestral genome of positive-strand RNA viruses of eukaryotes might have been assembled de novo from genes derived from prokaryotic retroelements and bacteria although a primordial origin of this class of viruses cannot be ruled out. Different groups of double-stranded RNA viruses derive either from dsRNA bacteriophages or from positive-strand RNA viruses. The eukaryotic ssDNA viruses apparently evolved via a fusion of genes from prokaryotic rolling circle-replicating plasmids and positive-strand RNA viruses. Different families of eukaryotic dsDNA viruses appear to have originated from specific groups of bacteriophages on at least two independent occasions. Polintons, the largest known eukaryotic transposons, predicted to also form virus particles, most likely, were the evolutionary intermediates between bacterial tectiviruses and several groups of eukaryotic dsDNA viruses including the proposed order "Megavirales" that unites diverse families of large and giant viruses. Strikingly, evolution of all classes of eukaryotic viruses appears to have involved fusion between structural and replicative gene modules derived from different sources along with additional acquisitions of diverse genes.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | - Valerian V Dolja
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA.
| | - Mart Krupovic
- Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Department of Microbiology, Paris 75015, France.
| |
Collapse
|
45
|
Tokarz R, Williams SH, Sameroff S, Sanchez Leon M, Jain K, Lipkin WI. Virome analysis of Amblyomma americanum, Dermacentor variabilis, and Ixodes scapularis ticks reveals novel highly divergent vertebrate and invertebrate viruses. J Virol 2014; 88:11480-92. [PMID: 25056893 PMCID: PMC4178814 DOI: 10.1128/jvi.01858-14] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 07/17/2014] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED A wide range of bacterial pathogens have been identified in ticks, yet the diversity of viruses in ticks is largely unexplored. In the United States, Amblyomma americanum, Dermacentor variabilis, and Ixodes scapularis are among the principal tick species associated with pathogen transmission. We used high-throughput sequencing to characterize the viromes of these tick species and identified the presence of Powassan virus and eight novel viruses. These included the most divergent nairovirus described to date, two new clades of tick-borne phleboviruses, a mononegavirus, and viruses with similarity to plant and insect viruses. Our analysis revealed that ticks are reservoirs for a wide range of viruses and suggests that discovery and characterization of tick-borne viruses will have implications for viral taxonomy and may provide insight into tick-transmitted diseases. IMPORTANCE Ticks are implicated as vectors of a wide array of human and animal pathogens. To better understand the extent of tick-borne diseases, it is crucial to uncover the full range of microbial agents associated with ticks. Our current knowledge of the diversity of tick-associated viruses is limited, in part due to the lack of investigation of tick viromes. In this study, we examined the viromes of three tick species from the United States. We found that ticks are hosts to highly divergent viruses across several taxa, including ones previously associated with human disease. Our data underscore the diversity of tick-associated viruses and provide the foundation for further studies into viral etiology of tick-borne diseases.
Collapse
Affiliation(s)
- Rafal Tokarz
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Simon Hedley Williams
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Stephen Sameroff
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Maria Sanchez Leon
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Komal Jain
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - W Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, USA
| |
Collapse
|
46
|
Liu L, Xie J, Cheng J, Fu Y, Li G, Yi X, Jiang D. Fungal negative-stranded RNA virus that is related to bornaviruses and nyaviruses. Proc Natl Acad Sci U S A 2014; 111:12205-12210. [PMID: 25092337 PMCID: PMC4143027 DOI: 10.1073/pnas.1401786111] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mycoviruses are widespread in nature and often occur with dsRNA and positive-stranded RNA genomes. Recently, strong evidence from RNA sequencing analysis suggested that negative-stranded (-)ssRNA viruses could infect fungi. Here we describe a (-)ssRNA virus, Sclerotinia sclerotiorum negative-stranded RNA virus 1 (SsNSRV-1), isolated from a hypovirulent strain of Sclerotinia sclerotiorum. The complete genome of SsNSRV-1 is 10,002 nt with six ORFs that are nonoverlapping and linearly arranged. Conserved gene-junction sequences that occur widely in mononegaviruses, (A/U)(U/A/C)UAUU(U/A)AA(U/G)AAAACUUAGG(A/U)(G/U), were identified between these ORFs. The analyses 5' and 3' rapid amplification of cDNA ends showed that all genes can be transcribed independently. ORF V encodes the largest protein that contains a conserved mononegaviral RNA-dependent RNA polymerase (RdRp) domain. Putative enveloped virion-like structures with filamentous morphology similar to members of Filoviridae were observed both in virion preparation samples and in ultrathin hyphal sections. The nucleocapsids are long, flexible, and helical; and are 22 nm in diameter and 200-2,000 nm in length. SDS/PAGE showed that the nucleocapsid possibly contains two nucleoproteins with different molecular masses, ∼43 kDa (p43) and ∼41 kDa (p41), and both are translated from ORF II. Purified SsNSRV-1 virions successfully transfected a virus-free strain of S. sclerotiorum and conferred hypovirulence. Phylogenetic analysis based on RdRp showed that SsNSRV-1 is clustered with viruses of Nyamiviridae and Bornaviridae. Moreover, SsNSRV-1 is widely distributed, as it has been detected in different regions of China. Our findings demonstrate that a (-)ssRNA virus can occur naturally in fungi and enhance our understanding of the ecology and evolution of (-)ssRNA viruses.
Collapse
Affiliation(s)
- Lijiang Liu
- State Key Laboratory of Agricultural Microbiology andThe Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Jiatao Xie
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Jiasen Cheng
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Yanping Fu
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Guoqing Li
- State Key Laboratory of Agricultural Microbiology andThe Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Xianhong Yi
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology andThe Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| |
Collapse
|
47
|
Bekal S, Domier LL, Gonfa B, McCoppin NK, Lambert KN, Bhalerao K. A novel flavivirus in the soybean cyst nematode. J Gen Virol 2014; 95:1272-1280. [PMID: 24643877 DOI: 10.1099/vir.0.060889-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Heterodera glycines, the soybean cyst nematode (SCN), is a subterranean root pathogen that causes the most damaging disease of soybean in the USA. A novel nematode virus genome, soybean cyst nematode virus 5 (SbCNV-5), was identified in RNA sequencing data from SCN eggs and second-stage juveniles. The SbCNV-5 RNA-dependent RNA polymerase and RNA helicase domains had homology to pestiviruses in the family Flaviviridae, suggesting that SbCNV-5 is a positive-polarity ssRNA virus. SbCNV-5 RNA was present in all nematode developmental stages, indicating a transovarial mode of transmission, but is also potentially sexually transmitted via the male. SbCNV-5 was common in SCN laboratory cultures and in nematode populations isolated from the field. Transmission electron microscopy of sections from a female SCN showed virus particles budding from the endoplasmic reticulum and in endosomes. The size of the viral genome was 19 191 nt, which makes it much larger than other known pestiviruses. Additionally, the presence of a methyltransferase in the SbCNV-5 genome is atypical for a pestivirus. When cDNA sequences were mapped to the genome of SbCNV-5, a disproportionate number aligned to the 3' NTR, suggesting that SbCNV-5 produces a subgenomic RNA, which was confirmed by RNA blot analysis. As subgenomic RNAs and methyltransferases do not occur in pestiviruses, we conclude that SbCNV-5 is a new flavivirus infecting SCNs.
Collapse
Affiliation(s)
- Sadia Bekal
- Department of Agricultural and Biological Engineering, University of Illinois, Urbana, IL 61810, USA
| | - Leslie L Domier
- US Department of Agriculture, Agricultural Research Service, University of Illinois, Urbana, IL 61801, USA
- Department of Crop Sciences, University of Illinois, Urbana, IL 61810, USA
| | - Biruk Gonfa
- Department of Crop Sciences, University of Illinois, Urbana, IL 61810, USA
| | - Nancy K McCoppin
- US Department of Agriculture, Agricultural Research Service, University of Illinois, Urbana, IL 61801, USA
- Department of Crop Sciences, University of Illinois, Urbana, IL 61810, USA
| | - Kris N Lambert
- Department of Crop Sciences, University of Illinois, Urbana, IL 61810, USA
| | - Kaustubh Bhalerao
- Department of Agricultural and Biological Engineering, University of Illinois, Urbana, IL 61810, USA
| |
Collapse
|
48
|
Rogers MB, Cui L, Fitch A, Popov V, Travassos da Rosa APA, Vasilakis N, Tesh RB, Ghedin E. Whole genome analysis of sierra nevada virus, a novel mononegavirus in the family nyamiviridae. Am J Trop Med Hyg 2014; 91:159-64. [PMID: 24778199 DOI: 10.4269/ajtmh.14-0076] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
A novel mononegavirus was isolated in 1975 from ticks (Ornithodoros coriaceus) collected during investigation of an outbreak of epizootic bovine abortion (EBA) in northern California. It was originally designated "bovine abortion-tick virus" (BA-T virus). The EBA is now known to be associated with a deltaproteobacterium infection, and not a virus. The BA-T virus had remained uncharacterized until now. We have determined by electron microscopy, serology, and genome sequencing that the BA-T virus is a fourth member of the newly proposed family Nyamiviridae, and we have renamed it Sierra Nevada virus (SNVV). Although antigenically distinct, phylogenetically SNVV is basal to Nyamanini virus (NYMV) and Midway virus (MIDWV), two other tick-borne agents. Although NYMV was found to infect land birds, and MIDWV seabirds, it is presently unknown whether SNVV naturally infects birds or mammals.
Collapse
Affiliation(s)
- Matthew B Rogers
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Tsinghua University School of Medicine, Beijing, China; Center for Biodefense and Emerging Diseases and Department of Pathology, University of Texas Medical Branch, Galveston, Texas; Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas
| | - Lijia Cui
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Tsinghua University School of Medicine, Beijing, China; Center for Biodefense and Emerging Diseases and Department of Pathology, University of Texas Medical Branch, Galveston, Texas; Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas
| | - Adam Fitch
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Tsinghua University School of Medicine, Beijing, China; Center for Biodefense and Emerging Diseases and Department of Pathology, University of Texas Medical Branch, Galveston, Texas; Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas
| | - Vsevolod Popov
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Tsinghua University School of Medicine, Beijing, China; Center for Biodefense and Emerging Diseases and Department of Pathology, University of Texas Medical Branch, Galveston, Texas; Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas
| | - Amelia P A Travassos da Rosa
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Tsinghua University School of Medicine, Beijing, China; Center for Biodefense and Emerging Diseases and Department of Pathology, University of Texas Medical Branch, Galveston, Texas; Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas
| | - Nikos Vasilakis
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Tsinghua University School of Medicine, Beijing, China; Center for Biodefense and Emerging Diseases and Department of Pathology, University of Texas Medical Branch, Galveston, Texas; Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas
| | - Robert B Tesh
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Tsinghua University School of Medicine, Beijing, China; Center for Biodefense and Emerging Diseases and Department of Pathology, University of Texas Medical Branch, Galveston, Texas; Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas
| | - Elodie Ghedin
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Tsinghua University School of Medicine, Beijing, China; Center for Biodefense and Emerging Diseases and Department of Pathology, University of Texas Medical Branch, Galveston, Texas; Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
49
|
Ribeiro JMC, Chagas AC, Pham VM, Lounibos LP, Calvo E. An insight into the sialome of the frog biting fly, Corethrella appendiculata. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 44:23-32. [PMID: 24514880 PMCID: PMC4035455 DOI: 10.1016/j.ibmb.2013.10.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 10/15/2013] [Accepted: 10/18/2013] [Indexed: 05/24/2023]
Abstract
The Nematocera infraorder Culicomorpha is believed to have descended from bloodfeeding ancestors over 200 million years ago, generating bloodfeeding and non-bloodfeeding flies in two superfamilies, the Culicoidea-containing the mosquitoes, the frog-feeding midges, the Chaoboridae, and the Dixidae-and the Chironomoidea-containing the black flies, the ceratopogonids, the Chironomidae, and the Thaumaleidae. Blood feeding requires many adaptations, including development of a sophisticated salivary potion that disarms host hemostasis, the physiologic mechanism comprising platelet aggregation, vasoconstriction, and blood clotting. The composition of the sialome (from the Greek sialo = saliva) from bloodfeeding animals can be inferred from analysis of their salivary gland transcriptome. While members of the mosquitoes, black flies, and biting midges have provided sialotranscriptome descriptions, no species of the frog-biting midges has been thus analyzed. We describe in this work the sialotranscriptome of Corethrella appendiculata, revealing a complex potion of enzymes, classical nematoceran protein families involved in blood feeding, and novel protein families unique to this species of frog-feeding fly. Bacterial (Wolbachia) and novel viral sequences were also discovered.
Collapse
Affiliation(s)
- José M C Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, 12735 Twinbrook Parkway, Rockville, MD 20852, USA.
| | - Andrezza C Chagas
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, 12735 Twinbrook Parkway, Rockville, MD 20852, USA
| | - Van M Pham
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, 12735 Twinbrook Parkway, Rockville, MD 20852, USA
| | - L P Lounibos
- Florida Medical Entomology Laboratory, University of Florida, 200 9th Street SE, Vero Beach, FL 32962-4657, USA
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, 12735 Twinbrook Parkway, Rockville, MD 20852, USA
| |
Collapse
|
50
|
Franz CJ, Renshaw H, Frezal L, Jiang Y, Félix MA, Wang D. Orsay, Santeuil and Le Blanc viruses primarily infect intestinal cells in Caenorhabditis nematodes. Virology 2013; 448:255-64. [PMID: 24314656 DOI: 10.1016/j.virol.2013.09.024] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 09/26/2013] [Indexed: 12/14/2022]
Abstract
The discoveries of Orsay, Santeuil and Le Blanc viruses, three viruses infecting either Caenorhabditis elegans or its relative Caenorhabditis briggsae, enable the study of virus-host interactions using natural pathogens of these two well-established model organisms. We characterized the tissue tropism of infection in Caenorhabditis nematodes by these viruses. Using immunofluorescence assays targeting proteins from each of the viruses, and in situ hybridization, we demonstrate viral proteins and RNAs localize to intestinal cells in larval stage Caenorhabditis nematodes. Viral proteins were detected in one to six of the 20 intestinal cells present in Caenorhabditis nematodes. In Orsay virus-infected C. elegans, viral proteins were detected as early as 6h post-infection. The RNA-dependent RNA polymerase and capsid proteins of Orsay virus exhibited different subcellular localization patterns. Collectively, these observations provide the first experimental insights into viral protein expression in any nematode host, and broaden our understanding of viral infection in Caenorhabditis nematodes.
Collapse
Affiliation(s)
- Carl J Franz
- Departments of Molecular Microbiology and Pathology and Immunology, Washington University in St. Louis School of Medicine, 660 S. Euclid Avenue, St. Louis, MO, USA
| | | | | | | | | | | |
Collapse
|